Loading...
1/*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30#include <linux/kernel.h>
31#include <linux/slab.h>
32#include <linux/hdmi.h>
33#include <linux/i2c.h>
34#include <linux/module.h>
35#include <linux/vga_switcheroo.h>
36#include <drm/drmP.h>
37#include <drm/drm_edid.h>
38#include <drm/drm_encoder.h>
39#include <drm/drm_displayid.h>
40#include <drm/drm_scdc_helper.h>
41
42#include "drm_crtc_internal.h"
43
44#define version_greater(edid, maj, min) \
45 (((edid)->version > (maj)) || \
46 ((edid)->version == (maj) && (edid)->revision > (min)))
47
48#define EDID_EST_TIMINGS 16
49#define EDID_STD_TIMINGS 8
50#define EDID_DETAILED_TIMINGS 4
51
52/*
53 * EDID blocks out in the wild have a variety of bugs, try to collect
54 * them here (note that userspace may work around broken monitors first,
55 * but fixes should make their way here so that the kernel "just works"
56 * on as many displays as possible).
57 */
58
59/* First detailed mode wrong, use largest 60Hz mode */
60#define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
61/* Reported 135MHz pixel clock is too high, needs adjustment */
62#define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
63/* Prefer the largest mode at 75 Hz */
64#define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
65/* Detail timing is in cm not mm */
66#define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
67/* Detailed timing descriptors have bogus size values, so just take the
68 * maximum size and use that.
69 */
70#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
71/* Monitor forgot to set the first detailed is preferred bit. */
72#define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5)
73/* use +hsync +vsync for detailed mode */
74#define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
75/* Force reduced-blanking timings for detailed modes */
76#define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
77/* Force 8bpc */
78#define EDID_QUIRK_FORCE_8BPC (1 << 8)
79/* Force 12bpc */
80#define EDID_QUIRK_FORCE_12BPC (1 << 9)
81/* Force 6bpc */
82#define EDID_QUIRK_FORCE_6BPC (1 << 10)
83/* Force 10bpc */
84#define EDID_QUIRK_FORCE_10BPC (1 << 11)
85/* Non desktop display (i.e. HMD) */
86#define EDID_QUIRK_NON_DESKTOP (1 << 12)
87
88struct detailed_mode_closure {
89 struct drm_connector *connector;
90 struct edid *edid;
91 bool preferred;
92 u32 quirks;
93 int modes;
94};
95
96#define LEVEL_DMT 0
97#define LEVEL_GTF 1
98#define LEVEL_GTF2 2
99#define LEVEL_CVT 3
100
101static const struct edid_quirk {
102 char vendor[4];
103 int product_id;
104 u32 quirks;
105} edid_quirk_list[] = {
106 /* Acer AL1706 */
107 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
108 /* Acer F51 */
109 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
110 /* Unknown Acer */
111 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
112
113 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
114 { "AEO", 0, EDID_QUIRK_FORCE_6BPC },
115
116 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
117 { "CPT", 0x17df, EDID_QUIRK_FORCE_6BPC },
118
119 /* Belinea 10 15 55 */
120 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
121 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
122
123 /* Envision Peripherals, Inc. EN-7100e */
124 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
125 /* Envision EN2028 */
126 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
127
128 /* Funai Electronics PM36B */
129 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
130 EDID_QUIRK_DETAILED_IN_CM },
131
132 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
133 { "LGD", 764, EDID_QUIRK_FORCE_10BPC },
134
135 /* LG Philips LCD LP154W01-A5 */
136 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
137 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
138
139 /* Philips 107p5 CRT */
140 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
141
142 /* Proview AY765C */
143 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
144
145 /* Samsung SyncMaster 205BW. Note: irony */
146 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
147 /* Samsung SyncMaster 22[5-6]BW */
148 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
149 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
150
151 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
152 { "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
153
154 /* ViewSonic VA2026w */
155 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
156
157 /* Medion MD 30217 PG */
158 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
159
160 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
161 { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
162
163 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
164 { "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
165
166 /* HTC Vive VR Headset */
167 { "HVR", 0xaa01, EDID_QUIRK_NON_DESKTOP },
168
169 /* Oculus Rift DK1, DK2, and CV1 VR Headsets */
170 { "OVR", 0x0001, EDID_QUIRK_NON_DESKTOP },
171 { "OVR", 0x0003, EDID_QUIRK_NON_DESKTOP },
172 { "OVR", 0x0004, EDID_QUIRK_NON_DESKTOP },
173
174 /* Windows Mixed Reality Headsets */
175 { "ACR", 0x7fce, EDID_QUIRK_NON_DESKTOP },
176 { "HPN", 0x3515, EDID_QUIRK_NON_DESKTOP },
177 { "LEN", 0x0408, EDID_QUIRK_NON_DESKTOP },
178 { "LEN", 0xb800, EDID_QUIRK_NON_DESKTOP },
179 { "FUJ", 0x1970, EDID_QUIRK_NON_DESKTOP },
180 { "DEL", 0x7fce, EDID_QUIRK_NON_DESKTOP },
181 { "SEC", 0x144a, EDID_QUIRK_NON_DESKTOP },
182 { "AUS", 0xc102, EDID_QUIRK_NON_DESKTOP },
183
184 /* Sony PlayStation VR Headset */
185 { "SNY", 0x0704, EDID_QUIRK_NON_DESKTOP },
186};
187
188/*
189 * Autogenerated from the DMT spec.
190 * This table is copied from xfree86/modes/xf86EdidModes.c.
191 */
192static const struct drm_display_mode drm_dmt_modes[] = {
193 /* 0x01 - 640x350@85Hz */
194 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
195 736, 832, 0, 350, 382, 385, 445, 0,
196 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
197 /* 0x02 - 640x400@85Hz */
198 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
199 736, 832, 0, 400, 401, 404, 445, 0,
200 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
201 /* 0x03 - 720x400@85Hz */
202 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
203 828, 936, 0, 400, 401, 404, 446, 0,
204 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
205 /* 0x04 - 640x480@60Hz */
206 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
207 752, 800, 0, 480, 490, 492, 525, 0,
208 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
209 /* 0x05 - 640x480@72Hz */
210 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
211 704, 832, 0, 480, 489, 492, 520, 0,
212 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
213 /* 0x06 - 640x480@75Hz */
214 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
215 720, 840, 0, 480, 481, 484, 500, 0,
216 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
217 /* 0x07 - 640x480@85Hz */
218 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
219 752, 832, 0, 480, 481, 484, 509, 0,
220 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
221 /* 0x08 - 800x600@56Hz */
222 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
223 896, 1024, 0, 600, 601, 603, 625, 0,
224 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
225 /* 0x09 - 800x600@60Hz */
226 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
227 968, 1056, 0, 600, 601, 605, 628, 0,
228 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
229 /* 0x0a - 800x600@72Hz */
230 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
231 976, 1040, 0, 600, 637, 643, 666, 0,
232 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
233 /* 0x0b - 800x600@75Hz */
234 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
235 896, 1056, 0, 600, 601, 604, 625, 0,
236 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
237 /* 0x0c - 800x600@85Hz */
238 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
239 896, 1048, 0, 600, 601, 604, 631, 0,
240 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
241 /* 0x0d - 800x600@120Hz RB */
242 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
243 880, 960, 0, 600, 603, 607, 636, 0,
244 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
245 /* 0x0e - 848x480@60Hz */
246 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
247 976, 1088, 0, 480, 486, 494, 517, 0,
248 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
249 /* 0x0f - 1024x768@43Hz, interlace */
250 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
251 1208, 1264, 0, 768, 768, 776, 817, 0,
252 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
253 DRM_MODE_FLAG_INTERLACE) },
254 /* 0x10 - 1024x768@60Hz */
255 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
256 1184, 1344, 0, 768, 771, 777, 806, 0,
257 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
258 /* 0x11 - 1024x768@70Hz */
259 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
260 1184, 1328, 0, 768, 771, 777, 806, 0,
261 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
262 /* 0x12 - 1024x768@75Hz */
263 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
264 1136, 1312, 0, 768, 769, 772, 800, 0,
265 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
266 /* 0x13 - 1024x768@85Hz */
267 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
268 1168, 1376, 0, 768, 769, 772, 808, 0,
269 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
270 /* 0x14 - 1024x768@120Hz RB */
271 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
272 1104, 1184, 0, 768, 771, 775, 813, 0,
273 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
274 /* 0x15 - 1152x864@75Hz */
275 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
276 1344, 1600, 0, 864, 865, 868, 900, 0,
277 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
278 /* 0x55 - 1280x720@60Hz */
279 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
280 1430, 1650, 0, 720, 725, 730, 750, 0,
281 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
282 /* 0x16 - 1280x768@60Hz RB */
283 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
284 1360, 1440, 0, 768, 771, 778, 790, 0,
285 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
286 /* 0x17 - 1280x768@60Hz */
287 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
288 1472, 1664, 0, 768, 771, 778, 798, 0,
289 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
290 /* 0x18 - 1280x768@75Hz */
291 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
292 1488, 1696, 0, 768, 771, 778, 805, 0,
293 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
294 /* 0x19 - 1280x768@85Hz */
295 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
296 1496, 1712, 0, 768, 771, 778, 809, 0,
297 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
298 /* 0x1a - 1280x768@120Hz RB */
299 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
300 1360, 1440, 0, 768, 771, 778, 813, 0,
301 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
302 /* 0x1b - 1280x800@60Hz RB */
303 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
304 1360, 1440, 0, 800, 803, 809, 823, 0,
305 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
306 /* 0x1c - 1280x800@60Hz */
307 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
308 1480, 1680, 0, 800, 803, 809, 831, 0,
309 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
310 /* 0x1d - 1280x800@75Hz */
311 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
312 1488, 1696, 0, 800, 803, 809, 838, 0,
313 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
314 /* 0x1e - 1280x800@85Hz */
315 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
316 1496, 1712, 0, 800, 803, 809, 843, 0,
317 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
318 /* 0x1f - 1280x800@120Hz RB */
319 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
320 1360, 1440, 0, 800, 803, 809, 847, 0,
321 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
322 /* 0x20 - 1280x960@60Hz */
323 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
324 1488, 1800, 0, 960, 961, 964, 1000, 0,
325 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
326 /* 0x21 - 1280x960@85Hz */
327 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
328 1504, 1728, 0, 960, 961, 964, 1011, 0,
329 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
330 /* 0x22 - 1280x960@120Hz RB */
331 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
332 1360, 1440, 0, 960, 963, 967, 1017, 0,
333 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
334 /* 0x23 - 1280x1024@60Hz */
335 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
336 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
337 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
338 /* 0x24 - 1280x1024@75Hz */
339 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
340 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
341 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
342 /* 0x25 - 1280x1024@85Hz */
343 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
344 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
345 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
346 /* 0x26 - 1280x1024@120Hz RB */
347 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
348 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
349 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
350 /* 0x27 - 1360x768@60Hz */
351 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
352 1536, 1792, 0, 768, 771, 777, 795, 0,
353 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
354 /* 0x28 - 1360x768@120Hz RB */
355 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
356 1440, 1520, 0, 768, 771, 776, 813, 0,
357 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
358 /* 0x51 - 1366x768@60Hz */
359 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
360 1579, 1792, 0, 768, 771, 774, 798, 0,
361 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
362 /* 0x56 - 1366x768@60Hz */
363 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
364 1436, 1500, 0, 768, 769, 772, 800, 0,
365 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
366 /* 0x29 - 1400x1050@60Hz RB */
367 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
368 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
369 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
370 /* 0x2a - 1400x1050@60Hz */
371 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
372 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
373 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
374 /* 0x2b - 1400x1050@75Hz */
375 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
376 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
377 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
378 /* 0x2c - 1400x1050@85Hz */
379 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
380 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
381 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
382 /* 0x2d - 1400x1050@120Hz RB */
383 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
384 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
385 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
386 /* 0x2e - 1440x900@60Hz RB */
387 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
388 1520, 1600, 0, 900, 903, 909, 926, 0,
389 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
390 /* 0x2f - 1440x900@60Hz */
391 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
392 1672, 1904, 0, 900, 903, 909, 934, 0,
393 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
394 /* 0x30 - 1440x900@75Hz */
395 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
396 1688, 1936, 0, 900, 903, 909, 942, 0,
397 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
398 /* 0x31 - 1440x900@85Hz */
399 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
400 1696, 1952, 0, 900, 903, 909, 948, 0,
401 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
402 /* 0x32 - 1440x900@120Hz RB */
403 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
404 1520, 1600, 0, 900, 903, 909, 953, 0,
405 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
406 /* 0x53 - 1600x900@60Hz */
407 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
408 1704, 1800, 0, 900, 901, 904, 1000, 0,
409 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
410 /* 0x33 - 1600x1200@60Hz */
411 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
412 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
413 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
414 /* 0x34 - 1600x1200@65Hz */
415 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
416 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
417 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
418 /* 0x35 - 1600x1200@70Hz */
419 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
420 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
421 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
422 /* 0x36 - 1600x1200@75Hz */
423 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
424 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
425 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
426 /* 0x37 - 1600x1200@85Hz */
427 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
428 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
429 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
430 /* 0x38 - 1600x1200@120Hz RB */
431 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
432 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
433 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
434 /* 0x39 - 1680x1050@60Hz RB */
435 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
436 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
437 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
438 /* 0x3a - 1680x1050@60Hz */
439 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
440 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
441 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
442 /* 0x3b - 1680x1050@75Hz */
443 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
444 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
445 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
446 /* 0x3c - 1680x1050@85Hz */
447 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
448 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
449 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
450 /* 0x3d - 1680x1050@120Hz RB */
451 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
452 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
453 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
454 /* 0x3e - 1792x1344@60Hz */
455 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
456 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
457 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
458 /* 0x3f - 1792x1344@75Hz */
459 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
460 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
461 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
462 /* 0x40 - 1792x1344@120Hz RB */
463 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
464 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
465 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
466 /* 0x41 - 1856x1392@60Hz */
467 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
468 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
469 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
470 /* 0x42 - 1856x1392@75Hz */
471 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
472 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
473 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
474 /* 0x43 - 1856x1392@120Hz RB */
475 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
476 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
477 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
478 /* 0x52 - 1920x1080@60Hz */
479 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
480 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
481 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
482 /* 0x44 - 1920x1200@60Hz RB */
483 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
484 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
485 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
486 /* 0x45 - 1920x1200@60Hz */
487 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
488 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
489 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
490 /* 0x46 - 1920x1200@75Hz */
491 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
492 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
493 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
494 /* 0x47 - 1920x1200@85Hz */
495 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
496 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
497 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
498 /* 0x48 - 1920x1200@120Hz RB */
499 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
500 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
501 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
502 /* 0x49 - 1920x1440@60Hz */
503 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
504 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
505 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
506 /* 0x4a - 1920x1440@75Hz */
507 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
508 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
509 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
510 /* 0x4b - 1920x1440@120Hz RB */
511 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
512 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
513 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
514 /* 0x54 - 2048x1152@60Hz */
515 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
516 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
517 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
518 /* 0x4c - 2560x1600@60Hz RB */
519 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
520 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
521 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
522 /* 0x4d - 2560x1600@60Hz */
523 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
524 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
525 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
526 /* 0x4e - 2560x1600@75Hz */
527 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
528 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
529 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
530 /* 0x4f - 2560x1600@85Hz */
531 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
532 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
533 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
534 /* 0x50 - 2560x1600@120Hz RB */
535 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
536 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
537 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
538 /* 0x57 - 4096x2160@60Hz RB */
539 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
540 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
541 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
542 /* 0x58 - 4096x2160@59.94Hz RB */
543 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
544 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
545 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
546};
547
548/*
549 * These more or less come from the DMT spec. The 720x400 modes are
550 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
551 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
552 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
553 * mode.
554 *
555 * The DMT modes have been fact-checked; the rest are mild guesses.
556 */
557static const struct drm_display_mode edid_est_modes[] = {
558 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
559 968, 1056, 0, 600, 601, 605, 628, 0,
560 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
561 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
562 896, 1024, 0, 600, 601, 603, 625, 0,
563 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
564 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
565 720, 840, 0, 480, 481, 484, 500, 0,
566 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
567 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
568 704, 832, 0, 480, 489, 492, 520, 0,
569 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
570 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
571 768, 864, 0, 480, 483, 486, 525, 0,
572 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
573 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
574 752, 800, 0, 480, 490, 492, 525, 0,
575 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
576 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
577 846, 900, 0, 400, 421, 423, 449, 0,
578 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
579 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
580 846, 900, 0, 400, 412, 414, 449, 0,
581 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
582 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
583 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
584 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
585 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
586 1136, 1312, 0, 768, 769, 772, 800, 0,
587 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
588 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
589 1184, 1328, 0, 768, 771, 777, 806, 0,
590 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
591 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
592 1184, 1344, 0, 768, 771, 777, 806, 0,
593 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
594 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
595 1208, 1264, 0, 768, 768, 776, 817, 0,
596 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
597 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
598 928, 1152, 0, 624, 625, 628, 667, 0,
599 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
600 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
601 896, 1056, 0, 600, 601, 604, 625, 0,
602 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
603 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
604 976, 1040, 0, 600, 637, 643, 666, 0,
605 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
606 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
607 1344, 1600, 0, 864, 865, 868, 900, 0,
608 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
609};
610
611struct minimode {
612 short w;
613 short h;
614 short r;
615 short rb;
616};
617
618static const struct minimode est3_modes[] = {
619 /* byte 6 */
620 { 640, 350, 85, 0 },
621 { 640, 400, 85, 0 },
622 { 720, 400, 85, 0 },
623 { 640, 480, 85, 0 },
624 { 848, 480, 60, 0 },
625 { 800, 600, 85, 0 },
626 { 1024, 768, 85, 0 },
627 { 1152, 864, 75, 0 },
628 /* byte 7 */
629 { 1280, 768, 60, 1 },
630 { 1280, 768, 60, 0 },
631 { 1280, 768, 75, 0 },
632 { 1280, 768, 85, 0 },
633 { 1280, 960, 60, 0 },
634 { 1280, 960, 85, 0 },
635 { 1280, 1024, 60, 0 },
636 { 1280, 1024, 85, 0 },
637 /* byte 8 */
638 { 1360, 768, 60, 0 },
639 { 1440, 900, 60, 1 },
640 { 1440, 900, 60, 0 },
641 { 1440, 900, 75, 0 },
642 { 1440, 900, 85, 0 },
643 { 1400, 1050, 60, 1 },
644 { 1400, 1050, 60, 0 },
645 { 1400, 1050, 75, 0 },
646 /* byte 9 */
647 { 1400, 1050, 85, 0 },
648 { 1680, 1050, 60, 1 },
649 { 1680, 1050, 60, 0 },
650 { 1680, 1050, 75, 0 },
651 { 1680, 1050, 85, 0 },
652 { 1600, 1200, 60, 0 },
653 { 1600, 1200, 65, 0 },
654 { 1600, 1200, 70, 0 },
655 /* byte 10 */
656 { 1600, 1200, 75, 0 },
657 { 1600, 1200, 85, 0 },
658 { 1792, 1344, 60, 0 },
659 { 1792, 1344, 75, 0 },
660 { 1856, 1392, 60, 0 },
661 { 1856, 1392, 75, 0 },
662 { 1920, 1200, 60, 1 },
663 { 1920, 1200, 60, 0 },
664 /* byte 11 */
665 { 1920, 1200, 75, 0 },
666 { 1920, 1200, 85, 0 },
667 { 1920, 1440, 60, 0 },
668 { 1920, 1440, 75, 0 },
669};
670
671static const struct minimode extra_modes[] = {
672 { 1024, 576, 60, 0 },
673 { 1366, 768, 60, 0 },
674 { 1600, 900, 60, 0 },
675 { 1680, 945, 60, 0 },
676 { 1920, 1080, 60, 0 },
677 { 2048, 1152, 60, 0 },
678 { 2048, 1536, 60, 0 },
679};
680
681/*
682 * Probably taken from CEA-861 spec.
683 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
684 *
685 * Index using the VIC.
686 */
687static const struct drm_display_mode edid_cea_modes[] = {
688 /* 0 - dummy, VICs start at 1 */
689 { },
690 /* 1 - 640x480@60Hz */
691 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
692 752, 800, 0, 480, 490, 492, 525, 0,
693 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
694 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
695 /* 2 - 720x480@60Hz */
696 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
697 798, 858, 0, 480, 489, 495, 525, 0,
698 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
699 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
700 /* 3 - 720x480@60Hz */
701 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
702 798, 858, 0, 480, 489, 495, 525, 0,
703 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
704 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
705 /* 4 - 1280x720@60Hz */
706 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
707 1430, 1650, 0, 720, 725, 730, 750, 0,
708 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
709 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
710 /* 5 - 1920x1080i@60Hz */
711 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
712 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
713 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
714 DRM_MODE_FLAG_INTERLACE),
715 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
716 /* 6 - 720(1440)x480i@60Hz */
717 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
718 801, 858, 0, 480, 488, 494, 525, 0,
719 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
720 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
721 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
722 /* 7 - 720(1440)x480i@60Hz */
723 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
724 801, 858, 0, 480, 488, 494, 525, 0,
725 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
726 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
727 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
728 /* 8 - 720(1440)x240@60Hz */
729 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
730 801, 858, 0, 240, 244, 247, 262, 0,
731 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
732 DRM_MODE_FLAG_DBLCLK),
733 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
734 /* 9 - 720(1440)x240@60Hz */
735 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
736 801, 858, 0, 240, 244, 247, 262, 0,
737 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
738 DRM_MODE_FLAG_DBLCLK),
739 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
740 /* 10 - 2880x480i@60Hz */
741 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
742 3204, 3432, 0, 480, 488, 494, 525, 0,
743 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
744 DRM_MODE_FLAG_INTERLACE),
745 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
746 /* 11 - 2880x480i@60Hz */
747 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
748 3204, 3432, 0, 480, 488, 494, 525, 0,
749 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
750 DRM_MODE_FLAG_INTERLACE),
751 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
752 /* 12 - 2880x240@60Hz */
753 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
754 3204, 3432, 0, 240, 244, 247, 262, 0,
755 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
756 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
757 /* 13 - 2880x240@60Hz */
758 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
759 3204, 3432, 0, 240, 244, 247, 262, 0,
760 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
761 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
762 /* 14 - 1440x480@60Hz */
763 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
764 1596, 1716, 0, 480, 489, 495, 525, 0,
765 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
766 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
767 /* 15 - 1440x480@60Hz */
768 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
769 1596, 1716, 0, 480, 489, 495, 525, 0,
770 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
771 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
772 /* 16 - 1920x1080@60Hz */
773 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
774 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
775 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
776 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
777 /* 17 - 720x576@50Hz */
778 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
779 796, 864, 0, 576, 581, 586, 625, 0,
780 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
781 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
782 /* 18 - 720x576@50Hz */
783 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
784 796, 864, 0, 576, 581, 586, 625, 0,
785 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
786 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
787 /* 19 - 1280x720@50Hz */
788 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
789 1760, 1980, 0, 720, 725, 730, 750, 0,
790 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
791 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
792 /* 20 - 1920x1080i@50Hz */
793 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
794 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
795 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
796 DRM_MODE_FLAG_INTERLACE),
797 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
798 /* 21 - 720(1440)x576i@50Hz */
799 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
800 795, 864, 0, 576, 580, 586, 625, 0,
801 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
802 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
803 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
804 /* 22 - 720(1440)x576i@50Hz */
805 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
806 795, 864, 0, 576, 580, 586, 625, 0,
807 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
808 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
809 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
810 /* 23 - 720(1440)x288@50Hz */
811 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
812 795, 864, 0, 288, 290, 293, 312, 0,
813 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
814 DRM_MODE_FLAG_DBLCLK),
815 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
816 /* 24 - 720(1440)x288@50Hz */
817 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
818 795, 864, 0, 288, 290, 293, 312, 0,
819 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
820 DRM_MODE_FLAG_DBLCLK),
821 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
822 /* 25 - 2880x576i@50Hz */
823 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
824 3180, 3456, 0, 576, 580, 586, 625, 0,
825 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
826 DRM_MODE_FLAG_INTERLACE),
827 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
828 /* 26 - 2880x576i@50Hz */
829 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
830 3180, 3456, 0, 576, 580, 586, 625, 0,
831 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
832 DRM_MODE_FLAG_INTERLACE),
833 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
834 /* 27 - 2880x288@50Hz */
835 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
836 3180, 3456, 0, 288, 290, 293, 312, 0,
837 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
838 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
839 /* 28 - 2880x288@50Hz */
840 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
841 3180, 3456, 0, 288, 290, 293, 312, 0,
842 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
843 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
844 /* 29 - 1440x576@50Hz */
845 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
846 1592, 1728, 0, 576, 581, 586, 625, 0,
847 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
848 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
849 /* 30 - 1440x576@50Hz */
850 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
851 1592, 1728, 0, 576, 581, 586, 625, 0,
852 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
853 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
854 /* 31 - 1920x1080@50Hz */
855 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
856 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
857 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
858 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
859 /* 32 - 1920x1080@24Hz */
860 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
861 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
862 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
863 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
864 /* 33 - 1920x1080@25Hz */
865 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
866 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
867 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
868 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
869 /* 34 - 1920x1080@30Hz */
870 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
871 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
872 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
873 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
874 /* 35 - 2880x480@60Hz */
875 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
876 3192, 3432, 0, 480, 489, 495, 525, 0,
877 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
878 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
879 /* 36 - 2880x480@60Hz */
880 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
881 3192, 3432, 0, 480, 489, 495, 525, 0,
882 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
883 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
884 /* 37 - 2880x576@50Hz */
885 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
886 3184, 3456, 0, 576, 581, 586, 625, 0,
887 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
888 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
889 /* 38 - 2880x576@50Hz */
890 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
891 3184, 3456, 0, 576, 581, 586, 625, 0,
892 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
893 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
894 /* 39 - 1920x1080i@50Hz */
895 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
896 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
897 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
898 DRM_MODE_FLAG_INTERLACE),
899 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
900 /* 40 - 1920x1080i@100Hz */
901 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
902 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
903 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
904 DRM_MODE_FLAG_INTERLACE),
905 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
906 /* 41 - 1280x720@100Hz */
907 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
908 1760, 1980, 0, 720, 725, 730, 750, 0,
909 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
910 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
911 /* 42 - 720x576@100Hz */
912 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
913 796, 864, 0, 576, 581, 586, 625, 0,
914 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
915 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
916 /* 43 - 720x576@100Hz */
917 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
918 796, 864, 0, 576, 581, 586, 625, 0,
919 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
920 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
921 /* 44 - 720(1440)x576i@100Hz */
922 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
923 795, 864, 0, 576, 580, 586, 625, 0,
924 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
925 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
926 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
927 /* 45 - 720(1440)x576i@100Hz */
928 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
929 795, 864, 0, 576, 580, 586, 625, 0,
930 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
931 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
932 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
933 /* 46 - 1920x1080i@120Hz */
934 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
935 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
936 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
937 DRM_MODE_FLAG_INTERLACE),
938 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
939 /* 47 - 1280x720@120Hz */
940 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
941 1430, 1650, 0, 720, 725, 730, 750, 0,
942 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
943 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
944 /* 48 - 720x480@120Hz */
945 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
946 798, 858, 0, 480, 489, 495, 525, 0,
947 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
948 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
949 /* 49 - 720x480@120Hz */
950 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
951 798, 858, 0, 480, 489, 495, 525, 0,
952 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
953 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
954 /* 50 - 720(1440)x480i@120Hz */
955 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
956 801, 858, 0, 480, 488, 494, 525, 0,
957 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
958 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
959 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
960 /* 51 - 720(1440)x480i@120Hz */
961 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
962 801, 858, 0, 480, 488, 494, 525, 0,
963 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
964 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
965 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
966 /* 52 - 720x576@200Hz */
967 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
968 796, 864, 0, 576, 581, 586, 625, 0,
969 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
970 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
971 /* 53 - 720x576@200Hz */
972 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
973 796, 864, 0, 576, 581, 586, 625, 0,
974 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
975 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
976 /* 54 - 720(1440)x576i@200Hz */
977 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
978 795, 864, 0, 576, 580, 586, 625, 0,
979 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
980 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
981 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
982 /* 55 - 720(1440)x576i@200Hz */
983 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
984 795, 864, 0, 576, 580, 586, 625, 0,
985 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
986 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
987 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
988 /* 56 - 720x480@240Hz */
989 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
990 798, 858, 0, 480, 489, 495, 525, 0,
991 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
992 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
993 /* 57 - 720x480@240Hz */
994 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
995 798, 858, 0, 480, 489, 495, 525, 0,
996 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
997 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
998 /* 58 - 720(1440)x480i@240Hz */
999 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1000 801, 858, 0, 480, 488, 494, 525, 0,
1001 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1002 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1003 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1004 /* 59 - 720(1440)x480i@240Hz */
1005 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1006 801, 858, 0, 480, 488, 494, 525, 0,
1007 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1008 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1009 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1010 /* 60 - 1280x720@24Hz */
1011 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1012 3080, 3300, 0, 720, 725, 730, 750, 0,
1013 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1014 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1015 /* 61 - 1280x720@25Hz */
1016 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1017 3740, 3960, 0, 720, 725, 730, 750, 0,
1018 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1019 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1020 /* 62 - 1280x720@30Hz */
1021 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1022 3080, 3300, 0, 720, 725, 730, 750, 0,
1023 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1024 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1025 /* 63 - 1920x1080@120Hz */
1026 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1027 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1028 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1029 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1030 /* 64 - 1920x1080@100Hz */
1031 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1032 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1033 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1034 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1035 /* 65 - 1280x720@24Hz */
1036 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1037 3080, 3300, 0, 720, 725, 730, 750, 0,
1038 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1039 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1040 /* 66 - 1280x720@25Hz */
1041 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1042 3740, 3960, 0, 720, 725, 730, 750, 0,
1043 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1044 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1045 /* 67 - 1280x720@30Hz */
1046 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1047 3080, 3300, 0, 720, 725, 730, 750, 0,
1048 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1049 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1050 /* 68 - 1280x720@50Hz */
1051 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1052 1760, 1980, 0, 720, 725, 730, 750, 0,
1053 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1054 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1055 /* 69 - 1280x720@60Hz */
1056 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1057 1430, 1650, 0, 720, 725, 730, 750, 0,
1058 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1059 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1060 /* 70 - 1280x720@100Hz */
1061 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1062 1760, 1980, 0, 720, 725, 730, 750, 0,
1063 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1064 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1065 /* 71 - 1280x720@120Hz */
1066 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1067 1430, 1650, 0, 720, 725, 730, 750, 0,
1068 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1069 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1070 /* 72 - 1920x1080@24Hz */
1071 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1072 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1073 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1074 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1075 /* 73 - 1920x1080@25Hz */
1076 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1077 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1078 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1079 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1080 /* 74 - 1920x1080@30Hz */
1081 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1082 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1083 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1084 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1085 /* 75 - 1920x1080@50Hz */
1086 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1087 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1088 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1089 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1090 /* 76 - 1920x1080@60Hz */
1091 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1092 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1093 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1094 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1095 /* 77 - 1920x1080@100Hz */
1096 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1097 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1098 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1099 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1100 /* 78 - 1920x1080@120Hz */
1101 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1102 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1103 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1104 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1105 /* 79 - 1680x720@24Hz */
1106 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1107 3080, 3300, 0, 720, 725, 730, 750, 0,
1108 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1109 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1110 /* 80 - 1680x720@25Hz */
1111 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1112 2948, 3168, 0, 720, 725, 730, 750, 0,
1113 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1114 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1115 /* 81 - 1680x720@30Hz */
1116 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1117 2420, 2640, 0, 720, 725, 730, 750, 0,
1118 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1119 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1120 /* 82 - 1680x720@50Hz */
1121 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1122 1980, 2200, 0, 720, 725, 730, 750, 0,
1123 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1124 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1125 /* 83 - 1680x720@60Hz */
1126 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1127 1980, 2200, 0, 720, 725, 730, 750, 0,
1128 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1129 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1130 /* 84 - 1680x720@100Hz */
1131 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1132 1780, 2000, 0, 720, 725, 730, 825, 0,
1133 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1134 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1135 /* 85 - 1680x720@120Hz */
1136 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1137 1780, 2000, 0, 720, 725, 730, 825, 0,
1138 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1139 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1140 /* 86 - 2560x1080@24Hz */
1141 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1142 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1143 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1144 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1145 /* 87 - 2560x1080@25Hz */
1146 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1147 3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1148 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1149 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1150 /* 88 - 2560x1080@30Hz */
1151 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1152 3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1153 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1154 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1155 /* 89 - 2560x1080@50Hz */
1156 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1157 3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1158 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1159 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1160 /* 90 - 2560x1080@60Hz */
1161 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1162 2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1163 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1164 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1165 /* 91 - 2560x1080@100Hz */
1166 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1167 2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1168 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1169 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1170 /* 92 - 2560x1080@120Hz */
1171 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1172 3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1173 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1174 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1175 /* 93 - 3840x2160p@24Hz 16:9 */
1176 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1177 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1178 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1179 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1180 /* 94 - 3840x2160p@25Hz 16:9 */
1181 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1182 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1183 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1184 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1185 /* 95 - 3840x2160p@30Hz 16:9 */
1186 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1187 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1188 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1189 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1190 /* 96 - 3840x2160p@50Hz 16:9 */
1191 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1192 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1193 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1194 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1195 /* 97 - 3840x2160p@60Hz 16:9 */
1196 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1197 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1198 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1199 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1200 /* 98 - 4096x2160p@24Hz 256:135 */
1201 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1202 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1203 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1204 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1205 /* 99 - 4096x2160p@25Hz 256:135 */
1206 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1207 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1208 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1209 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1210 /* 100 - 4096x2160p@30Hz 256:135 */
1211 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1212 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1213 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1214 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1215 /* 101 - 4096x2160p@50Hz 256:135 */
1216 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1217 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1218 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1219 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1220 /* 102 - 4096x2160p@60Hz 256:135 */
1221 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1222 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1223 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1224 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1225 /* 103 - 3840x2160p@24Hz 64:27 */
1226 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1227 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1228 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1229 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1230 /* 104 - 3840x2160p@25Hz 64:27 */
1231 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1232 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1233 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1234 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1235 /* 105 - 3840x2160p@30Hz 64:27 */
1236 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1237 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1238 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1239 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1240 /* 106 - 3840x2160p@50Hz 64:27 */
1241 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1242 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1243 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1244 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1245 /* 107 - 3840x2160p@60Hz 64:27 */
1246 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1247 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1248 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1249 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1250};
1251
1252/*
1253 * HDMI 1.4 4k modes. Index using the VIC.
1254 */
1255static const struct drm_display_mode edid_4k_modes[] = {
1256 /* 0 - dummy, VICs start at 1 */
1257 { },
1258 /* 1 - 3840x2160@30Hz */
1259 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1260 3840, 4016, 4104, 4400, 0,
1261 2160, 2168, 2178, 2250, 0,
1262 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1263 .vrefresh = 30, },
1264 /* 2 - 3840x2160@25Hz */
1265 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1266 3840, 4896, 4984, 5280, 0,
1267 2160, 2168, 2178, 2250, 0,
1268 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1269 .vrefresh = 25, },
1270 /* 3 - 3840x2160@24Hz */
1271 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1272 3840, 5116, 5204, 5500, 0,
1273 2160, 2168, 2178, 2250, 0,
1274 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275 .vrefresh = 24, },
1276 /* 4 - 4096x2160@24Hz (SMPTE) */
1277 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1278 4096, 5116, 5204, 5500, 0,
1279 2160, 2168, 2178, 2250, 0,
1280 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1281 .vrefresh = 24, },
1282};
1283
1284/*** DDC fetch and block validation ***/
1285
1286static const u8 edid_header[] = {
1287 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1288};
1289
1290/**
1291 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1292 * @raw_edid: pointer to raw base EDID block
1293 *
1294 * Sanity check the header of the base EDID block.
1295 *
1296 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1297 */
1298int drm_edid_header_is_valid(const u8 *raw_edid)
1299{
1300 int i, score = 0;
1301
1302 for (i = 0; i < sizeof(edid_header); i++)
1303 if (raw_edid[i] == edid_header[i])
1304 score++;
1305
1306 return score;
1307}
1308EXPORT_SYMBOL(drm_edid_header_is_valid);
1309
1310static int edid_fixup __read_mostly = 6;
1311module_param_named(edid_fixup, edid_fixup, int, 0400);
1312MODULE_PARM_DESC(edid_fixup,
1313 "Minimum number of valid EDID header bytes (0-8, default 6)");
1314
1315static void drm_get_displayid(struct drm_connector *connector,
1316 struct edid *edid);
1317
1318static int drm_edid_block_checksum(const u8 *raw_edid)
1319{
1320 int i;
1321 u8 csum = 0;
1322 for (i = 0; i < EDID_LENGTH; i++)
1323 csum += raw_edid[i];
1324
1325 return csum;
1326}
1327
1328static bool drm_edid_is_zero(const u8 *in_edid, int length)
1329{
1330 if (memchr_inv(in_edid, 0, length))
1331 return false;
1332
1333 return true;
1334}
1335
1336/**
1337 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1338 * @raw_edid: pointer to raw EDID block
1339 * @block: type of block to validate (0 for base, extension otherwise)
1340 * @print_bad_edid: if true, dump bad EDID blocks to the console
1341 * @edid_corrupt: if true, the header or checksum is invalid
1342 *
1343 * Validate a base or extension EDID block and optionally dump bad blocks to
1344 * the console.
1345 *
1346 * Return: True if the block is valid, false otherwise.
1347 */
1348bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1349 bool *edid_corrupt)
1350{
1351 u8 csum;
1352 struct edid *edid = (struct edid *)raw_edid;
1353
1354 if (WARN_ON(!raw_edid))
1355 return false;
1356
1357 if (edid_fixup > 8 || edid_fixup < 0)
1358 edid_fixup = 6;
1359
1360 if (block == 0) {
1361 int score = drm_edid_header_is_valid(raw_edid);
1362 if (score == 8) {
1363 if (edid_corrupt)
1364 *edid_corrupt = false;
1365 } else if (score >= edid_fixup) {
1366 /* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1367 * The corrupt flag needs to be set here otherwise, the
1368 * fix-up code here will correct the problem, the
1369 * checksum is correct and the test fails
1370 */
1371 if (edid_corrupt)
1372 *edid_corrupt = true;
1373 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1374 memcpy(raw_edid, edid_header, sizeof(edid_header));
1375 } else {
1376 if (edid_corrupt)
1377 *edid_corrupt = true;
1378 goto bad;
1379 }
1380 }
1381
1382 csum = drm_edid_block_checksum(raw_edid);
1383 if (csum) {
1384 if (edid_corrupt)
1385 *edid_corrupt = true;
1386
1387 /* allow CEA to slide through, switches mangle this */
1388 if (raw_edid[0] == CEA_EXT) {
1389 DRM_DEBUG("EDID checksum is invalid, remainder is %d\n", csum);
1390 DRM_DEBUG("Assuming a KVM switch modified the CEA block but left the original checksum\n");
1391 } else {
1392 if (print_bad_edid)
1393 DRM_NOTE("EDID checksum is invalid, remainder is %d\n", csum);
1394
1395 goto bad;
1396 }
1397 }
1398
1399 /* per-block-type checks */
1400 switch (raw_edid[0]) {
1401 case 0: /* base */
1402 if (edid->version != 1) {
1403 DRM_NOTE("EDID has major version %d, instead of 1\n", edid->version);
1404 goto bad;
1405 }
1406
1407 if (edid->revision > 4)
1408 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1409 break;
1410
1411 default:
1412 break;
1413 }
1414
1415 return true;
1416
1417bad:
1418 if (print_bad_edid) {
1419 if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1420 pr_notice("EDID block is all zeroes\n");
1421 } else {
1422 pr_notice("Raw EDID:\n");
1423 print_hex_dump(KERN_NOTICE,
1424 " \t", DUMP_PREFIX_NONE, 16, 1,
1425 raw_edid, EDID_LENGTH, false);
1426 }
1427 }
1428 return false;
1429}
1430EXPORT_SYMBOL(drm_edid_block_valid);
1431
1432/**
1433 * drm_edid_is_valid - sanity check EDID data
1434 * @edid: EDID data
1435 *
1436 * Sanity-check an entire EDID record (including extensions)
1437 *
1438 * Return: True if the EDID data is valid, false otherwise.
1439 */
1440bool drm_edid_is_valid(struct edid *edid)
1441{
1442 int i;
1443 u8 *raw = (u8 *)edid;
1444
1445 if (!edid)
1446 return false;
1447
1448 for (i = 0; i <= edid->extensions; i++)
1449 if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1450 return false;
1451
1452 return true;
1453}
1454EXPORT_SYMBOL(drm_edid_is_valid);
1455
1456#define DDC_SEGMENT_ADDR 0x30
1457/**
1458 * drm_do_probe_ddc_edid() - get EDID information via I2C
1459 * @data: I2C device adapter
1460 * @buf: EDID data buffer to be filled
1461 * @block: 128 byte EDID block to start fetching from
1462 * @len: EDID data buffer length to fetch
1463 *
1464 * Try to fetch EDID information by calling I2C driver functions.
1465 *
1466 * Return: 0 on success or -1 on failure.
1467 */
1468static int
1469drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1470{
1471 struct i2c_adapter *adapter = data;
1472 unsigned char start = block * EDID_LENGTH;
1473 unsigned char segment = block >> 1;
1474 unsigned char xfers = segment ? 3 : 2;
1475 int ret, retries = 5;
1476
1477 /*
1478 * The core I2C driver will automatically retry the transfer if the
1479 * adapter reports EAGAIN. However, we find that bit-banging transfers
1480 * are susceptible to errors under a heavily loaded machine and
1481 * generate spurious NAKs and timeouts. Retrying the transfer
1482 * of the individual block a few times seems to overcome this.
1483 */
1484 do {
1485 struct i2c_msg msgs[] = {
1486 {
1487 .addr = DDC_SEGMENT_ADDR,
1488 .flags = 0,
1489 .len = 1,
1490 .buf = &segment,
1491 }, {
1492 .addr = DDC_ADDR,
1493 .flags = 0,
1494 .len = 1,
1495 .buf = &start,
1496 }, {
1497 .addr = DDC_ADDR,
1498 .flags = I2C_M_RD,
1499 .len = len,
1500 .buf = buf,
1501 }
1502 };
1503
1504 /*
1505 * Avoid sending the segment addr to not upset non-compliant
1506 * DDC monitors.
1507 */
1508 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1509
1510 if (ret == -ENXIO) {
1511 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1512 adapter->name);
1513 break;
1514 }
1515 } while (ret != xfers && --retries);
1516
1517 return ret == xfers ? 0 : -1;
1518}
1519
1520static void connector_bad_edid(struct drm_connector *connector,
1521 u8 *edid, int num_blocks)
1522{
1523 int i;
1524
1525 if (connector->bad_edid_counter++ && !(drm_debug & DRM_UT_KMS))
1526 return;
1527
1528 dev_warn(connector->dev->dev,
1529 "%s: EDID is invalid:\n",
1530 connector->name);
1531 for (i = 0; i < num_blocks; i++) {
1532 u8 *block = edid + i * EDID_LENGTH;
1533 char prefix[20];
1534
1535 if (drm_edid_is_zero(block, EDID_LENGTH))
1536 sprintf(prefix, "\t[%02x] ZERO ", i);
1537 else if (!drm_edid_block_valid(block, i, false, NULL))
1538 sprintf(prefix, "\t[%02x] BAD ", i);
1539 else
1540 sprintf(prefix, "\t[%02x] GOOD ", i);
1541
1542 print_hex_dump(KERN_WARNING,
1543 prefix, DUMP_PREFIX_NONE, 16, 1,
1544 block, EDID_LENGTH, false);
1545 }
1546}
1547
1548/**
1549 * drm_do_get_edid - get EDID data using a custom EDID block read function
1550 * @connector: connector we're probing
1551 * @get_edid_block: EDID block read function
1552 * @data: private data passed to the block read function
1553 *
1554 * When the I2C adapter connected to the DDC bus is hidden behind a device that
1555 * exposes a different interface to read EDID blocks this function can be used
1556 * to get EDID data using a custom block read function.
1557 *
1558 * As in the general case the DDC bus is accessible by the kernel at the I2C
1559 * level, drivers must make all reasonable efforts to expose it as an I2C
1560 * adapter and use drm_get_edid() instead of abusing this function.
1561 *
1562 * The EDID may be overridden using debugfs override_edid or firmare EDID
1563 * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority
1564 * order. Having either of them bypasses actual EDID reads.
1565 *
1566 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1567 */
1568struct edid *drm_do_get_edid(struct drm_connector *connector,
1569 int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1570 size_t len),
1571 void *data)
1572{
1573 int i, j = 0, valid_extensions = 0;
1574 u8 *edid, *new;
1575 struct edid *override = NULL;
1576
1577 if (connector->override_edid)
1578 override = drm_edid_duplicate(connector->edid_blob_ptr->data);
1579
1580 if (!override)
1581 override = drm_load_edid_firmware(connector);
1582
1583 if (!IS_ERR_OR_NULL(override))
1584 return override;
1585
1586 if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1587 return NULL;
1588
1589 /* base block fetch */
1590 for (i = 0; i < 4; i++) {
1591 if (get_edid_block(data, edid, 0, EDID_LENGTH))
1592 goto out;
1593 if (drm_edid_block_valid(edid, 0, false,
1594 &connector->edid_corrupt))
1595 break;
1596 if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) {
1597 connector->null_edid_counter++;
1598 goto carp;
1599 }
1600 }
1601 if (i == 4)
1602 goto carp;
1603
1604 /* if there's no extensions, we're done */
1605 valid_extensions = edid[0x7e];
1606 if (valid_extensions == 0)
1607 return (struct edid *)edid;
1608
1609 new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1610 if (!new)
1611 goto out;
1612 edid = new;
1613
1614 for (j = 1; j <= edid[0x7e]; j++) {
1615 u8 *block = edid + j * EDID_LENGTH;
1616
1617 for (i = 0; i < 4; i++) {
1618 if (get_edid_block(data, block, j, EDID_LENGTH))
1619 goto out;
1620 if (drm_edid_block_valid(block, j, false, NULL))
1621 break;
1622 }
1623
1624 if (i == 4)
1625 valid_extensions--;
1626 }
1627
1628 if (valid_extensions != edid[0x7e]) {
1629 u8 *base;
1630
1631 connector_bad_edid(connector, edid, edid[0x7e] + 1);
1632
1633 edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions;
1634 edid[0x7e] = valid_extensions;
1635
1636 new = kmalloc((valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1637 if (!new)
1638 goto out;
1639
1640 base = new;
1641 for (i = 0; i <= edid[0x7e]; i++) {
1642 u8 *block = edid + i * EDID_LENGTH;
1643
1644 if (!drm_edid_block_valid(block, i, false, NULL))
1645 continue;
1646
1647 memcpy(base, block, EDID_LENGTH);
1648 base += EDID_LENGTH;
1649 }
1650
1651 kfree(edid);
1652 edid = new;
1653 }
1654
1655 return (struct edid *)edid;
1656
1657carp:
1658 connector_bad_edid(connector, edid, 1);
1659out:
1660 kfree(edid);
1661 return NULL;
1662}
1663EXPORT_SYMBOL_GPL(drm_do_get_edid);
1664
1665/**
1666 * drm_probe_ddc() - probe DDC presence
1667 * @adapter: I2C adapter to probe
1668 *
1669 * Return: True on success, false on failure.
1670 */
1671bool
1672drm_probe_ddc(struct i2c_adapter *adapter)
1673{
1674 unsigned char out;
1675
1676 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1677}
1678EXPORT_SYMBOL(drm_probe_ddc);
1679
1680/**
1681 * drm_get_edid - get EDID data, if available
1682 * @connector: connector we're probing
1683 * @adapter: I2C adapter to use for DDC
1684 *
1685 * Poke the given I2C channel to grab EDID data if possible. If found,
1686 * attach it to the connector.
1687 *
1688 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1689 */
1690struct edid *drm_get_edid(struct drm_connector *connector,
1691 struct i2c_adapter *adapter)
1692{
1693 struct edid *edid;
1694
1695 if (connector->force == DRM_FORCE_OFF)
1696 return NULL;
1697
1698 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
1699 return NULL;
1700
1701 edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1702 if (edid)
1703 drm_get_displayid(connector, edid);
1704 return edid;
1705}
1706EXPORT_SYMBOL(drm_get_edid);
1707
1708/**
1709 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
1710 * @connector: connector we're probing
1711 * @adapter: I2C adapter to use for DDC
1712 *
1713 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
1714 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
1715 * switch DDC to the GPU which is retrieving EDID.
1716 *
1717 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
1718 */
1719struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
1720 struct i2c_adapter *adapter)
1721{
1722 struct pci_dev *pdev = connector->dev->pdev;
1723 struct edid *edid;
1724
1725 vga_switcheroo_lock_ddc(pdev);
1726 edid = drm_get_edid(connector, adapter);
1727 vga_switcheroo_unlock_ddc(pdev);
1728
1729 return edid;
1730}
1731EXPORT_SYMBOL(drm_get_edid_switcheroo);
1732
1733/**
1734 * drm_edid_duplicate - duplicate an EDID and the extensions
1735 * @edid: EDID to duplicate
1736 *
1737 * Return: Pointer to duplicated EDID or NULL on allocation failure.
1738 */
1739struct edid *drm_edid_duplicate(const struct edid *edid)
1740{
1741 return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1742}
1743EXPORT_SYMBOL(drm_edid_duplicate);
1744
1745/*** EDID parsing ***/
1746
1747/**
1748 * edid_vendor - match a string against EDID's obfuscated vendor field
1749 * @edid: EDID to match
1750 * @vendor: vendor string
1751 *
1752 * Returns true if @vendor is in @edid, false otherwise
1753 */
1754static bool edid_vendor(const struct edid *edid, const char *vendor)
1755{
1756 char edid_vendor[3];
1757
1758 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1759 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1760 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1761 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1762
1763 return !strncmp(edid_vendor, vendor, 3);
1764}
1765
1766/**
1767 * edid_get_quirks - return quirk flags for a given EDID
1768 * @edid: EDID to process
1769 *
1770 * This tells subsequent routines what fixes they need to apply.
1771 */
1772static u32 edid_get_quirks(const struct edid *edid)
1773{
1774 const struct edid_quirk *quirk;
1775 int i;
1776
1777 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1778 quirk = &edid_quirk_list[i];
1779
1780 if (edid_vendor(edid, quirk->vendor) &&
1781 (EDID_PRODUCT_ID(edid) == quirk->product_id))
1782 return quirk->quirks;
1783 }
1784
1785 return 0;
1786}
1787
1788#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1789#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1790
1791/**
1792 * edid_fixup_preferred - set preferred modes based on quirk list
1793 * @connector: has mode list to fix up
1794 * @quirks: quirks list
1795 *
1796 * Walk the mode list for @connector, clearing the preferred status
1797 * on existing modes and setting it anew for the right mode ala @quirks.
1798 */
1799static void edid_fixup_preferred(struct drm_connector *connector,
1800 u32 quirks)
1801{
1802 struct drm_display_mode *t, *cur_mode, *preferred_mode;
1803 int target_refresh = 0;
1804 int cur_vrefresh, preferred_vrefresh;
1805
1806 if (list_empty(&connector->probed_modes))
1807 return;
1808
1809 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1810 target_refresh = 60;
1811 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1812 target_refresh = 75;
1813
1814 preferred_mode = list_first_entry(&connector->probed_modes,
1815 struct drm_display_mode, head);
1816
1817 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1818 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1819
1820 if (cur_mode == preferred_mode)
1821 continue;
1822
1823 /* Largest mode is preferred */
1824 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1825 preferred_mode = cur_mode;
1826
1827 cur_vrefresh = cur_mode->vrefresh ?
1828 cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1829 preferred_vrefresh = preferred_mode->vrefresh ?
1830 preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1831 /* At a given size, try to get closest to target refresh */
1832 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1833 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1834 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1835 preferred_mode = cur_mode;
1836 }
1837 }
1838
1839 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1840}
1841
1842static bool
1843mode_is_rb(const struct drm_display_mode *mode)
1844{
1845 return (mode->htotal - mode->hdisplay == 160) &&
1846 (mode->hsync_end - mode->hdisplay == 80) &&
1847 (mode->hsync_end - mode->hsync_start == 32) &&
1848 (mode->vsync_start - mode->vdisplay == 3);
1849}
1850
1851/*
1852 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1853 * @dev: Device to duplicate against
1854 * @hsize: Mode width
1855 * @vsize: Mode height
1856 * @fresh: Mode refresh rate
1857 * @rb: Mode reduced-blanking-ness
1858 *
1859 * Walk the DMT mode list looking for a match for the given parameters.
1860 *
1861 * Return: A newly allocated copy of the mode, or NULL if not found.
1862 */
1863struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1864 int hsize, int vsize, int fresh,
1865 bool rb)
1866{
1867 int i;
1868
1869 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1870 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1871 if (hsize != ptr->hdisplay)
1872 continue;
1873 if (vsize != ptr->vdisplay)
1874 continue;
1875 if (fresh != drm_mode_vrefresh(ptr))
1876 continue;
1877 if (rb != mode_is_rb(ptr))
1878 continue;
1879
1880 return drm_mode_duplicate(dev, ptr);
1881 }
1882
1883 return NULL;
1884}
1885EXPORT_SYMBOL(drm_mode_find_dmt);
1886
1887typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1888
1889static void
1890cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1891{
1892 int i, n = 0;
1893 u8 d = ext[0x02];
1894 u8 *det_base = ext + d;
1895
1896 n = (127 - d) / 18;
1897 for (i = 0; i < n; i++)
1898 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1899}
1900
1901static void
1902vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1903{
1904 unsigned int i, n = min((int)ext[0x02], 6);
1905 u8 *det_base = ext + 5;
1906
1907 if (ext[0x01] != 1)
1908 return; /* unknown version */
1909
1910 for (i = 0; i < n; i++)
1911 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1912}
1913
1914static void
1915drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1916{
1917 int i;
1918 struct edid *edid = (struct edid *)raw_edid;
1919
1920 if (edid == NULL)
1921 return;
1922
1923 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1924 cb(&(edid->detailed_timings[i]), closure);
1925
1926 for (i = 1; i <= raw_edid[0x7e]; i++) {
1927 u8 *ext = raw_edid + (i * EDID_LENGTH);
1928 switch (*ext) {
1929 case CEA_EXT:
1930 cea_for_each_detailed_block(ext, cb, closure);
1931 break;
1932 case VTB_EXT:
1933 vtb_for_each_detailed_block(ext, cb, closure);
1934 break;
1935 default:
1936 break;
1937 }
1938 }
1939}
1940
1941static void
1942is_rb(struct detailed_timing *t, void *data)
1943{
1944 u8 *r = (u8 *)t;
1945 if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1946 if (r[15] & 0x10)
1947 *(bool *)data = true;
1948}
1949
1950/* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
1951static bool
1952drm_monitor_supports_rb(struct edid *edid)
1953{
1954 if (edid->revision >= 4) {
1955 bool ret = false;
1956 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1957 return ret;
1958 }
1959
1960 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1961}
1962
1963static void
1964find_gtf2(struct detailed_timing *t, void *data)
1965{
1966 u8 *r = (u8 *)t;
1967 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1968 *(u8 **)data = r;
1969}
1970
1971/* Secondary GTF curve kicks in above some break frequency */
1972static int
1973drm_gtf2_hbreak(struct edid *edid)
1974{
1975 u8 *r = NULL;
1976 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1977 return r ? (r[12] * 2) : 0;
1978}
1979
1980static int
1981drm_gtf2_2c(struct edid *edid)
1982{
1983 u8 *r = NULL;
1984 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1985 return r ? r[13] : 0;
1986}
1987
1988static int
1989drm_gtf2_m(struct edid *edid)
1990{
1991 u8 *r = NULL;
1992 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1993 return r ? (r[15] << 8) + r[14] : 0;
1994}
1995
1996static int
1997drm_gtf2_k(struct edid *edid)
1998{
1999 u8 *r = NULL;
2000 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2001 return r ? r[16] : 0;
2002}
2003
2004static int
2005drm_gtf2_2j(struct edid *edid)
2006{
2007 u8 *r = NULL;
2008 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2009 return r ? r[17] : 0;
2010}
2011
2012/**
2013 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
2014 * @edid: EDID block to scan
2015 */
2016static int standard_timing_level(struct edid *edid)
2017{
2018 if (edid->revision >= 2) {
2019 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
2020 return LEVEL_CVT;
2021 if (drm_gtf2_hbreak(edid))
2022 return LEVEL_GTF2;
2023 return LEVEL_GTF;
2024 }
2025 return LEVEL_DMT;
2026}
2027
2028/*
2029 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
2030 * monitors fill with ascii space (0x20) instead.
2031 */
2032static int
2033bad_std_timing(u8 a, u8 b)
2034{
2035 return (a == 0x00 && b == 0x00) ||
2036 (a == 0x01 && b == 0x01) ||
2037 (a == 0x20 && b == 0x20);
2038}
2039
2040/**
2041 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
2042 * @connector: connector of for the EDID block
2043 * @edid: EDID block to scan
2044 * @t: standard timing params
2045 *
2046 * Take the standard timing params (in this case width, aspect, and refresh)
2047 * and convert them into a real mode using CVT/GTF/DMT.
2048 */
2049static struct drm_display_mode *
2050drm_mode_std(struct drm_connector *connector, struct edid *edid,
2051 struct std_timing *t)
2052{
2053 struct drm_device *dev = connector->dev;
2054 struct drm_display_mode *m, *mode = NULL;
2055 int hsize, vsize;
2056 int vrefresh_rate;
2057 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
2058 >> EDID_TIMING_ASPECT_SHIFT;
2059 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
2060 >> EDID_TIMING_VFREQ_SHIFT;
2061 int timing_level = standard_timing_level(edid);
2062
2063 if (bad_std_timing(t->hsize, t->vfreq_aspect))
2064 return NULL;
2065
2066 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
2067 hsize = t->hsize * 8 + 248;
2068 /* vrefresh_rate = vfreq + 60 */
2069 vrefresh_rate = vfreq + 60;
2070 /* the vdisplay is calculated based on the aspect ratio */
2071 if (aspect_ratio == 0) {
2072 if (edid->revision < 3)
2073 vsize = hsize;
2074 else
2075 vsize = (hsize * 10) / 16;
2076 } else if (aspect_ratio == 1)
2077 vsize = (hsize * 3) / 4;
2078 else if (aspect_ratio == 2)
2079 vsize = (hsize * 4) / 5;
2080 else
2081 vsize = (hsize * 9) / 16;
2082
2083 /* HDTV hack, part 1 */
2084 if (vrefresh_rate == 60 &&
2085 ((hsize == 1360 && vsize == 765) ||
2086 (hsize == 1368 && vsize == 769))) {
2087 hsize = 1366;
2088 vsize = 768;
2089 }
2090
2091 /*
2092 * If this connector already has a mode for this size and refresh
2093 * rate (because it came from detailed or CVT info), use that
2094 * instead. This way we don't have to guess at interlace or
2095 * reduced blanking.
2096 */
2097 list_for_each_entry(m, &connector->probed_modes, head)
2098 if (m->hdisplay == hsize && m->vdisplay == vsize &&
2099 drm_mode_vrefresh(m) == vrefresh_rate)
2100 return NULL;
2101
2102 /* HDTV hack, part 2 */
2103 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
2104 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
2105 false);
2106 if (!mode)
2107 return NULL;
2108 mode->hdisplay = 1366;
2109 mode->hsync_start = mode->hsync_start - 1;
2110 mode->hsync_end = mode->hsync_end - 1;
2111 return mode;
2112 }
2113
2114 /* check whether it can be found in default mode table */
2115 if (drm_monitor_supports_rb(edid)) {
2116 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
2117 true);
2118 if (mode)
2119 return mode;
2120 }
2121 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
2122 if (mode)
2123 return mode;
2124
2125 /* okay, generate it */
2126 switch (timing_level) {
2127 case LEVEL_DMT:
2128 break;
2129 case LEVEL_GTF:
2130 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2131 break;
2132 case LEVEL_GTF2:
2133 /*
2134 * This is potentially wrong if there's ever a monitor with
2135 * more than one ranges section, each claiming a different
2136 * secondary GTF curve. Please don't do that.
2137 */
2138 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2139 if (!mode)
2140 return NULL;
2141 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
2142 drm_mode_destroy(dev, mode);
2143 mode = drm_gtf_mode_complex(dev, hsize, vsize,
2144 vrefresh_rate, 0, 0,
2145 drm_gtf2_m(edid),
2146 drm_gtf2_2c(edid),
2147 drm_gtf2_k(edid),
2148 drm_gtf2_2j(edid));
2149 }
2150 break;
2151 case LEVEL_CVT:
2152 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
2153 false);
2154 break;
2155 }
2156 return mode;
2157}
2158
2159/*
2160 * EDID is delightfully ambiguous about how interlaced modes are to be
2161 * encoded. Our internal representation is of frame height, but some
2162 * HDTV detailed timings are encoded as field height.
2163 *
2164 * The format list here is from CEA, in frame size. Technically we
2165 * should be checking refresh rate too. Whatever.
2166 */
2167static void
2168drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
2169 struct detailed_pixel_timing *pt)
2170{
2171 int i;
2172 static const struct {
2173 int w, h;
2174 } cea_interlaced[] = {
2175 { 1920, 1080 },
2176 { 720, 480 },
2177 { 1440, 480 },
2178 { 2880, 480 },
2179 { 720, 576 },
2180 { 1440, 576 },
2181 { 2880, 576 },
2182 };
2183
2184 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
2185 return;
2186
2187 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
2188 if ((mode->hdisplay == cea_interlaced[i].w) &&
2189 (mode->vdisplay == cea_interlaced[i].h / 2)) {
2190 mode->vdisplay *= 2;
2191 mode->vsync_start *= 2;
2192 mode->vsync_end *= 2;
2193 mode->vtotal *= 2;
2194 mode->vtotal |= 1;
2195 }
2196 }
2197
2198 mode->flags |= DRM_MODE_FLAG_INTERLACE;
2199}
2200
2201/**
2202 * drm_mode_detailed - create a new mode from an EDID detailed timing section
2203 * @dev: DRM device (needed to create new mode)
2204 * @edid: EDID block
2205 * @timing: EDID detailed timing info
2206 * @quirks: quirks to apply
2207 *
2208 * An EDID detailed timing block contains enough info for us to create and
2209 * return a new struct drm_display_mode.
2210 */
2211static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
2212 struct edid *edid,
2213 struct detailed_timing *timing,
2214 u32 quirks)
2215{
2216 struct drm_display_mode *mode;
2217 struct detailed_pixel_timing *pt = &timing->data.pixel_data;
2218 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
2219 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
2220 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
2221 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
2222 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
2223 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
2224 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
2225 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
2226
2227 /* ignore tiny modes */
2228 if (hactive < 64 || vactive < 64)
2229 return NULL;
2230
2231 if (pt->misc & DRM_EDID_PT_STEREO) {
2232 DRM_DEBUG_KMS("stereo mode not supported\n");
2233 return NULL;
2234 }
2235 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
2236 DRM_DEBUG_KMS("composite sync not supported\n");
2237 }
2238
2239 /* it is incorrect if hsync/vsync width is zero */
2240 if (!hsync_pulse_width || !vsync_pulse_width) {
2241 DRM_DEBUG_KMS("Incorrect Detailed timing. "
2242 "Wrong Hsync/Vsync pulse width\n");
2243 return NULL;
2244 }
2245
2246 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
2247 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
2248 if (!mode)
2249 return NULL;
2250
2251 goto set_size;
2252 }
2253
2254 mode = drm_mode_create(dev);
2255 if (!mode)
2256 return NULL;
2257
2258 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
2259 timing->pixel_clock = cpu_to_le16(1088);
2260
2261 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
2262
2263 mode->hdisplay = hactive;
2264 mode->hsync_start = mode->hdisplay + hsync_offset;
2265 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
2266 mode->htotal = mode->hdisplay + hblank;
2267
2268 mode->vdisplay = vactive;
2269 mode->vsync_start = mode->vdisplay + vsync_offset;
2270 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
2271 mode->vtotal = mode->vdisplay + vblank;
2272
2273 /* Some EDIDs have bogus h/vtotal values */
2274 if (mode->hsync_end > mode->htotal)
2275 mode->htotal = mode->hsync_end + 1;
2276 if (mode->vsync_end > mode->vtotal)
2277 mode->vtotal = mode->vsync_end + 1;
2278
2279 drm_mode_do_interlace_quirk(mode, pt);
2280
2281 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
2282 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
2283 }
2284
2285 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
2286 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
2287 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
2288 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
2289
2290set_size:
2291 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
2292 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
2293
2294 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
2295 mode->width_mm *= 10;
2296 mode->height_mm *= 10;
2297 }
2298
2299 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
2300 mode->width_mm = edid->width_cm * 10;
2301 mode->height_mm = edid->height_cm * 10;
2302 }
2303
2304 mode->type = DRM_MODE_TYPE_DRIVER;
2305 mode->vrefresh = drm_mode_vrefresh(mode);
2306 drm_mode_set_name(mode);
2307
2308 return mode;
2309}
2310
2311static bool
2312mode_in_hsync_range(const struct drm_display_mode *mode,
2313 struct edid *edid, u8 *t)
2314{
2315 int hsync, hmin, hmax;
2316
2317 hmin = t[7];
2318 if (edid->revision >= 4)
2319 hmin += ((t[4] & 0x04) ? 255 : 0);
2320 hmax = t[8];
2321 if (edid->revision >= 4)
2322 hmax += ((t[4] & 0x08) ? 255 : 0);
2323 hsync = drm_mode_hsync(mode);
2324
2325 return (hsync <= hmax && hsync >= hmin);
2326}
2327
2328static bool
2329mode_in_vsync_range(const struct drm_display_mode *mode,
2330 struct edid *edid, u8 *t)
2331{
2332 int vsync, vmin, vmax;
2333
2334 vmin = t[5];
2335 if (edid->revision >= 4)
2336 vmin += ((t[4] & 0x01) ? 255 : 0);
2337 vmax = t[6];
2338 if (edid->revision >= 4)
2339 vmax += ((t[4] & 0x02) ? 255 : 0);
2340 vsync = drm_mode_vrefresh(mode);
2341
2342 return (vsync <= vmax && vsync >= vmin);
2343}
2344
2345static u32
2346range_pixel_clock(struct edid *edid, u8 *t)
2347{
2348 /* unspecified */
2349 if (t[9] == 0 || t[9] == 255)
2350 return 0;
2351
2352 /* 1.4 with CVT support gives us real precision, yay */
2353 if (edid->revision >= 4 && t[10] == 0x04)
2354 return (t[9] * 10000) - ((t[12] >> 2) * 250);
2355
2356 /* 1.3 is pathetic, so fuzz up a bit */
2357 return t[9] * 10000 + 5001;
2358}
2359
2360static bool
2361mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2362 struct detailed_timing *timing)
2363{
2364 u32 max_clock;
2365 u8 *t = (u8 *)timing;
2366
2367 if (!mode_in_hsync_range(mode, edid, t))
2368 return false;
2369
2370 if (!mode_in_vsync_range(mode, edid, t))
2371 return false;
2372
2373 if ((max_clock = range_pixel_clock(edid, t)))
2374 if (mode->clock > max_clock)
2375 return false;
2376
2377 /* 1.4 max horizontal check */
2378 if (edid->revision >= 4 && t[10] == 0x04)
2379 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2380 return false;
2381
2382 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2383 return false;
2384
2385 return true;
2386}
2387
2388static bool valid_inferred_mode(const struct drm_connector *connector,
2389 const struct drm_display_mode *mode)
2390{
2391 const struct drm_display_mode *m;
2392 bool ok = false;
2393
2394 list_for_each_entry(m, &connector->probed_modes, head) {
2395 if (mode->hdisplay == m->hdisplay &&
2396 mode->vdisplay == m->vdisplay &&
2397 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2398 return false; /* duplicated */
2399 if (mode->hdisplay <= m->hdisplay &&
2400 mode->vdisplay <= m->vdisplay)
2401 ok = true;
2402 }
2403 return ok;
2404}
2405
2406static int
2407drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2408 struct detailed_timing *timing)
2409{
2410 int i, modes = 0;
2411 struct drm_display_mode *newmode;
2412 struct drm_device *dev = connector->dev;
2413
2414 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2415 if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2416 valid_inferred_mode(connector, drm_dmt_modes + i)) {
2417 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2418 if (newmode) {
2419 drm_mode_probed_add(connector, newmode);
2420 modes++;
2421 }
2422 }
2423 }
2424
2425 return modes;
2426}
2427
2428/* fix up 1366x768 mode from 1368x768;
2429 * GFT/CVT can't express 1366 width which isn't dividable by 8
2430 */
2431void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
2432{
2433 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2434 mode->hdisplay = 1366;
2435 mode->hsync_start--;
2436 mode->hsync_end--;
2437 drm_mode_set_name(mode);
2438 }
2439}
2440
2441static int
2442drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2443 struct detailed_timing *timing)
2444{
2445 int i, modes = 0;
2446 struct drm_display_mode *newmode;
2447 struct drm_device *dev = connector->dev;
2448
2449 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2450 const struct minimode *m = &extra_modes[i];
2451 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2452 if (!newmode)
2453 return modes;
2454
2455 drm_mode_fixup_1366x768(newmode);
2456 if (!mode_in_range(newmode, edid, timing) ||
2457 !valid_inferred_mode(connector, newmode)) {
2458 drm_mode_destroy(dev, newmode);
2459 continue;
2460 }
2461
2462 drm_mode_probed_add(connector, newmode);
2463 modes++;
2464 }
2465
2466 return modes;
2467}
2468
2469static int
2470drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2471 struct detailed_timing *timing)
2472{
2473 int i, modes = 0;
2474 struct drm_display_mode *newmode;
2475 struct drm_device *dev = connector->dev;
2476 bool rb = drm_monitor_supports_rb(edid);
2477
2478 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2479 const struct minimode *m = &extra_modes[i];
2480 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2481 if (!newmode)
2482 return modes;
2483
2484 drm_mode_fixup_1366x768(newmode);
2485 if (!mode_in_range(newmode, edid, timing) ||
2486 !valid_inferred_mode(connector, newmode)) {
2487 drm_mode_destroy(dev, newmode);
2488 continue;
2489 }
2490
2491 drm_mode_probed_add(connector, newmode);
2492 modes++;
2493 }
2494
2495 return modes;
2496}
2497
2498static void
2499do_inferred_modes(struct detailed_timing *timing, void *c)
2500{
2501 struct detailed_mode_closure *closure = c;
2502 struct detailed_non_pixel *data = &timing->data.other_data;
2503 struct detailed_data_monitor_range *range = &data->data.range;
2504
2505 if (data->type != EDID_DETAIL_MONITOR_RANGE)
2506 return;
2507
2508 closure->modes += drm_dmt_modes_for_range(closure->connector,
2509 closure->edid,
2510 timing);
2511
2512 if (!version_greater(closure->edid, 1, 1))
2513 return; /* GTF not defined yet */
2514
2515 switch (range->flags) {
2516 case 0x02: /* secondary gtf, XXX could do more */
2517 case 0x00: /* default gtf */
2518 closure->modes += drm_gtf_modes_for_range(closure->connector,
2519 closure->edid,
2520 timing);
2521 break;
2522 case 0x04: /* cvt, only in 1.4+ */
2523 if (!version_greater(closure->edid, 1, 3))
2524 break;
2525
2526 closure->modes += drm_cvt_modes_for_range(closure->connector,
2527 closure->edid,
2528 timing);
2529 break;
2530 case 0x01: /* just the ranges, no formula */
2531 default:
2532 break;
2533 }
2534}
2535
2536static int
2537add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2538{
2539 struct detailed_mode_closure closure = {
2540 .connector = connector,
2541 .edid = edid,
2542 };
2543
2544 if (version_greater(edid, 1, 0))
2545 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2546 &closure);
2547
2548 return closure.modes;
2549}
2550
2551static int
2552drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2553{
2554 int i, j, m, modes = 0;
2555 struct drm_display_mode *mode;
2556 u8 *est = ((u8 *)timing) + 6;
2557
2558 for (i = 0; i < 6; i++) {
2559 for (j = 7; j >= 0; j--) {
2560 m = (i * 8) + (7 - j);
2561 if (m >= ARRAY_SIZE(est3_modes))
2562 break;
2563 if (est[i] & (1 << j)) {
2564 mode = drm_mode_find_dmt(connector->dev,
2565 est3_modes[m].w,
2566 est3_modes[m].h,
2567 est3_modes[m].r,
2568 est3_modes[m].rb);
2569 if (mode) {
2570 drm_mode_probed_add(connector, mode);
2571 modes++;
2572 }
2573 }
2574 }
2575 }
2576
2577 return modes;
2578}
2579
2580static void
2581do_established_modes(struct detailed_timing *timing, void *c)
2582{
2583 struct detailed_mode_closure *closure = c;
2584 struct detailed_non_pixel *data = &timing->data.other_data;
2585
2586 if (data->type == EDID_DETAIL_EST_TIMINGS)
2587 closure->modes += drm_est3_modes(closure->connector, timing);
2588}
2589
2590/**
2591 * add_established_modes - get est. modes from EDID and add them
2592 * @connector: connector to add mode(s) to
2593 * @edid: EDID block to scan
2594 *
2595 * Each EDID block contains a bitmap of the supported "established modes" list
2596 * (defined above). Tease them out and add them to the global modes list.
2597 */
2598static int
2599add_established_modes(struct drm_connector *connector, struct edid *edid)
2600{
2601 struct drm_device *dev = connector->dev;
2602 unsigned long est_bits = edid->established_timings.t1 |
2603 (edid->established_timings.t2 << 8) |
2604 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
2605 int i, modes = 0;
2606 struct detailed_mode_closure closure = {
2607 .connector = connector,
2608 .edid = edid,
2609 };
2610
2611 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2612 if (est_bits & (1<<i)) {
2613 struct drm_display_mode *newmode;
2614 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2615 if (newmode) {
2616 drm_mode_probed_add(connector, newmode);
2617 modes++;
2618 }
2619 }
2620 }
2621
2622 if (version_greater(edid, 1, 0))
2623 drm_for_each_detailed_block((u8 *)edid,
2624 do_established_modes, &closure);
2625
2626 return modes + closure.modes;
2627}
2628
2629static void
2630do_standard_modes(struct detailed_timing *timing, void *c)
2631{
2632 struct detailed_mode_closure *closure = c;
2633 struct detailed_non_pixel *data = &timing->data.other_data;
2634 struct drm_connector *connector = closure->connector;
2635 struct edid *edid = closure->edid;
2636
2637 if (data->type == EDID_DETAIL_STD_MODES) {
2638 int i;
2639 for (i = 0; i < 6; i++) {
2640 struct std_timing *std;
2641 struct drm_display_mode *newmode;
2642
2643 std = &data->data.timings[i];
2644 newmode = drm_mode_std(connector, edid, std);
2645 if (newmode) {
2646 drm_mode_probed_add(connector, newmode);
2647 closure->modes++;
2648 }
2649 }
2650 }
2651}
2652
2653/**
2654 * add_standard_modes - get std. modes from EDID and add them
2655 * @connector: connector to add mode(s) to
2656 * @edid: EDID block to scan
2657 *
2658 * Standard modes can be calculated using the appropriate standard (DMT,
2659 * GTF or CVT. Grab them from @edid and add them to the list.
2660 */
2661static int
2662add_standard_modes(struct drm_connector *connector, struct edid *edid)
2663{
2664 int i, modes = 0;
2665 struct detailed_mode_closure closure = {
2666 .connector = connector,
2667 .edid = edid,
2668 };
2669
2670 for (i = 0; i < EDID_STD_TIMINGS; i++) {
2671 struct drm_display_mode *newmode;
2672
2673 newmode = drm_mode_std(connector, edid,
2674 &edid->standard_timings[i]);
2675 if (newmode) {
2676 drm_mode_probed_add(connector, newmode);
2677 modes++;
2678 }
2679 }
2680
2681 if (version_greater(edid, 1, 0))
2682 drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2683 &closure);
2684
2685 /* XXX should also look for standard codes in VTB blocks */
2686
2687 return modes + closure.modes;
2688}
2689
2690static int drm_cvt_modes(struct drm_connector *connector,
2691 struct detailed_timing *timing)
2692{
2693 int i, j, modes = 0;
2694 struct drm_display_mode *newmode;
2695 struct drm_device *dev = connector->dev;
2696 struct cvt_timing *cvt;
2697 const int rates[] = { 60, 85, 75, 60, 50 };
2698 const u8 empty[3] = { 0, 0, 0 };
2699
2700 for (i = 0; i < 4; i++) {
2701 int uninitialized_var(width), height;
2702 cvt = &(timing->data.other_data.data.cvt[i]);
2703
2704 if (!memcmp(cvt->code, empty, 3))
2705 continue;
2706
2707 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2708 switch (cvt->code[1] & 0x0c) {
2709 case 0x00:
2710 width = height * 4 / 3;
2711 break;
2712 case 0x04:
2713 width = height * 16 / 9;
2714 break;
2715 case 0x08:
2716 width = height * 16 / 10;
2717 break;
2718 case 0x0c:
2719 width = height * 15 / 9;
2720 break;
2721 }
2722
2723 for (j = 1; j < 5; j++) {
2724 if (cvt->code[2] & (1 << j)) {
2725 newmode = drm_cvt_mode(dev, width, height,
2726 rates[j], j == 0,
2727 false, false);
2728 if (newmode) {
2729 drm_mode_probed_add(connector, newmode);
2730 modes++;
2731 }
2732 }
2733 }
2734 }
2735
2736 return modes;
2737}
2738
2739static void
2740do_cvt_mode(struct detailed_timing *timing, void *c)
2741{
2742 struct detailed_mode_closure *closure = c;
2743 struct detailed_non_pixel *data = &timing->data.other_data;
2744
2745 if (data->type == EDID_DETAIL_CVT_3BYTE)
2746 closure->modes += drm_cvt_modes(closure->connector, timing);
2747}
2748
2749static int
2750add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2751{
2752 struct detailed_mode_closure closure = {
2753 .connector = connector,
2754 .edid = edid,
2755 };
2756
2757 if (version_greater(edid, 1, 2))
2758 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2759
2760 /* XXX should also look for CVT codes in VTB blocks */
2761
2762 return closure.modes;
2763}
2764
2765static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
2766
2767static void
2768do_detailed_mode(struct detailed_timing *timing, void *c)
2769{
2770 struct detailed_mode_closure *closure = c;
2771 struct drm_display_mode *newmode;
2772
2773 if (timing->pixel_clock) {
2774 newmode = drm_mode_detailed(closure->connector->dev,
2775 closure->edid, timing,
2776 closure->quirks);
2777 if (!newmode)
2778 return;
2779
2780 if (closure->preferred)
2781 newmode->type |= DRM_MODE_TYPE_PREFERRED;
2782
2783 /*
2784 * Detailed modes are limited to 10kHz pixel clock resolution,
2785 * so fix up anything that looks like CEA/HDMI mode, but the clock
2786 * is just slightly off.
2787 */
2788 fixup_detailed_cea_mode_clock(newmode);
2789
2790 drm_mode_probed_add(closure->connector, newmode);
2791 closure->modes++;
2792 closure->preferred = false;
2793 }
2794}
2795
2796/*
2797 * add_detailed_modes - Add modes from detailed timings
2798 * @connector: attached connector
2799 * @edid: EDID block to scan
2800 * @quirks: quirks to apply
2801 */
2802static int
2803add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2804 u32 quirks)
2805{
2806 struct detailed_mode_closure closure = {
2807 .connector = connector,
2808 .edid = edid,
2809 .preferred = true,
2810 .quirks = quirks,
2811 };
2812
2813 if (closure.preferred && !version_greater(edid, 1, 3))
2814 closure.preferred =
2815 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2816
2817 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2818
2819 return closure.modes;
2820}
2821
2822#define AUDIO_BLOCK 0x01
2823#define VIDEO_BLOCK 0x02
2824#define VENDOR_BLOCK 0x03
2825#define SPEAKER_BLOCK 0x04
2826#define USE_EXTENDED_TAG 0x07
2827#define EXT_VIDEO_CAPABILITY_BLOCK 0x00
2828#define EXT_VIDEO_DATA_BLOCK_420 0x0E
2829#define EXT_VIDEO_CAP_BLOCK_Y420CMDB 0x0F
2830#define EDID_BASIC_AUDIO (1 << 6)
2831#define EDID_CEA_YCRCB444 (1 << 5)
2832#define EDID_CEA_YCRCB422 (1 << 4)
2833#define EDID_CEA_VCDB_QS (1 << 6)
2834
2835/*
2836 * Search EDID for CEA extension block.
2837 */
2838static u8 *drm_find_edid_extension(const struct edid *edid, int ext_id)
2839{
2840 u8 *edid_ext = NULL;
2841 int i;
2842
2843 /* No EDID or EDID extensions */
2844 if (edid == NULL || edid->extensions == 0)
2845 return NULL;
2846
2847 /* Find CEA extension */
2848 for (i = 0; i < edid->extensions; i++) {
2849 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2850 if (edid_ext[0] == ext_id)
2851 break;
2852 }
2853
2854 if (i == edid->extensions)
2855 return NULL;
2856
2857 return edid_ext;
2858}
2859
2860static u8 *drm_find_cea_extension(const struct edid *edid)
2861{
2862 return drm_find_edid_extension(edid, CEA_EXT);
2863}
2864
2865static u8 *drm_find_displayid_extension(const struct edid *edid)
2866{
2867 return drm_find_edid_extension(edid, DISPLAYID_EXT);
2868}
2869
2870/*
2871 * Calculate the alternate clock for the CEA mode
2872 * (60Hz vs. 59.94Hz etc.)
2873 */
2874static unsigned int
2875cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2876{
2877 unsigned int clock = cea_mode->clock;
2878
2879 if (cea_mode->vrefresh % 6 != 0)
2880 return clock;
2881
2882 /*
2883 * edid_cea_modes contains the 59.94Hz
2884 * variant for 240 and 480 line modes,
2885 * and the 60Hz variant otherwise.
2886 */
2887 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2888 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2889 else
2890 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2891
2892 return clock;
2893}
2894
2895static bool
2896cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
2897{
2898 /*
2899 * For certain VICs the spec allows the vertical
2900 * front porch to vary by one or two lines.
2901 *
2902 * cea_modes[] stores the variant with the shortest
2903 * vertical front porch. We can adjust the mode to
2904 * get the other variants by simply increasing the
2905 * vertical front porch length.
2906 */
2907 BUILD_BUG_ON(edid_cea_modes[8].vtotal != 262 ||
2908 edid_cea_modes[9].vtotal != 262 ||
2909 edid_cea_modes[12].vtotal != 262 ||
2910 edid_cea_modes[13].vtotal != 262 ||
2911 edid_cea_modes[23].vtotal != 312 ||
2912 edid_cea_modes[24].vtotal != 312 ||
2913 edid_cea_modes[27].vtotal != 312 ||
2914 edid_cea_modes[28].vtotal != 312);
2915
2916 if (((vic == 8 || vic == 9 ||
2917 vic == 12 || vic == 13) && mode->vtotal < 263) ||
2918 ((vic == 23 || vic == 24 ||
2919 vic == 27 || vic == 28) && mode->vtotal < 314)) {
2920 mode->vsync_start++;
2921 mode->vsync_end++;
2922 mode->vtotal++;
2923
2924 return true;
2925 }
2926
2927 return false;
2928}
2929
2930static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
2931 unsigned int clock_tolerance)
2932{
2933 u8 vic;
2934
2935 if (!to_match->clock)
2936 return 0;
2937
2938 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2939 struct drm_display_mode cea_mode = edid_cea_modes[vic];
2940 unsigned int clock1, clock2;
2941
2942 /* Check both 60Hz and 59.94Hz */
2943 clock1 = cea_mode.clock;
2944 clock2 = cea_mode_alternate_clock(&cea_mode);
2945
2946 if (abs(to_match->clock - clock1) > clock_tolerance &&
2947 abs(to_match->clock - clock2) > clock_tolerance)
2948 continue;
2949
2950 do {
2951 if (drm_mode_equal_no_clocks_no_stereo(to_match, &cea_mode))
2952 return vic;
2953 } while (cea_mode_alternate_timings(vic, &cea_mode));
2954 }
2955
2956 return 0;
2957}
2958
2959/**
2960 * drm_match_cea_mode - look for a CEA mode matching given mode
2961 * @to_match: display mode
2962 *
2963 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2964 * mode.
2965 */
2966u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2967{
2968 u8 vic;
2969
2970 if (!to_match->clock)
2971 return 0;
2972
2973 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2974 struct drm_display_mode cea_mode = edid_cea_modes[vic];
2975 unsigned int clock1, clock2;
2976
2977 /* Check both 60Hz and 59.94Hz */
2978 clock1 = cea_mode.clock;
2979 clock2 = cea_mode_alternate_clock(&cea_mode);
2980
2981 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
2982 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
2983 continue;
2984
2985 do {
2986 if (drm_mode_equal_no_clocks_no_stereo(to_match, &cea_mode))
2987 return vic;
2988 } while (cea_mode_alternate_timings(vic, &cea_mode));
2989 }
2990
2991 return 0;
2992}
2993EXPORT_SYMBOL(drm_match_cea_mode);
2994
2995static bool drm_valid_cea_vic(u8 vic)
2996{
2997 return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes);
2998}
2999
3000/**
3001 * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
3002 * the input VIC from the CEA mode list
3003 * @video_code: ID given to each of the CEA modes
3004 *
3005 * Returns picture aspect ratio
3006 */
3007enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
3008{
3009 return edid_cea_modes[video_code].picture_aspect_ratio;
3010}
3011EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
3012
3013/*
3014 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
3015 * specific block).
3016 *
3017 * It's almost like cea_mode_alternate_clock(), we just need to add an
3018 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
3019 * one.
3020 */
3021static unsigned int
3022hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
3023{
3024 if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
3025 return hdmi_mode->clock;
3026
3027 return cea_mode_alternate_clock(hdmi_mode);
3028}
3029
3030static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
3031 unsigned int clock_tolerance)
3032{
3033 u8 vic;
3034
3035 if (!to_match->clock)
3036 return 0;
3037
3038 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3039 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3040 unsigned int clock1, clock2;
3041
3042 /* Make sure to also match alternate clocks */
3043 clock1 = hdmi_mode->clock;
3044 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3045
3046 if (abs(to_match->clock - clock1) > clock_tolerance &&
3047 abs(to_match->clock - clock2) > clock_tolerance)
3048 continue;
3049
3050 if (drm_mode_equal_no_clocks(to_match, hdmi_mode))
3051 return vic;
3052 }
3053
3054 return 0;
3055}
3056
3057/*
3058 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
3059 * @to_match: display mode
3060 *
3061 * An HDMI mode is one defined in the HDMI vendor specific block.
3062 *
3063 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
3064 */
3065static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
3066{
3067 u8 vic;
3068
3069 if (!to_match->clock)
3070 return 0;
3071
3072 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3073 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3074 unsigned int clock1, clock2;
3075
3076 /* Make sure to also match alternate clocks */
3077 clock1 = hdmi_mode->clock;
3078 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3079
3080 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
3081 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
3082 drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
3083 return vic;
3084 }
3085 return 0;
3086}
3087
3088static bool drm_valid_hdmi_vic(u8 vic)
3089{
3090 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
3091}
3092
3093static int
3094add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
3095{
3096 struct drm_device *dev = connector->dev;
3097 struct drm_display_mode *mode, *tmp;
3098 LIST_HEAD(list);
3099 int modes = 0;
3100
3101 /* Don't add CEA modes if the CEA extension block is missing */
3102 if (!drm_find_cea_extension(edid))
3103 return 0;
3104
3105 /*
3106 * Go through all probed modes and create a new mode
3107 * with the alternate clock for certain CEA modes.
3108 */
3109 list_for_each_entry(mode, &connector->probed_modes, head) {
3110 const struct drm_display_mode *cea_mode = NULL;
3111 struct drm_display_mode *newmode;
3112 u8 vic = drm_match_cea_mode(mode);
3113 unsigned int clock1, clock2;
3114
3115 if (drm_valid_cea_vic(vic)) {
3116 cea_mode = &edid_cea_modes[vic];
3117 clock2 = cea_mode_alternate_clock(cea_mode);
3118 } else {
3119 vic = drm_match_hdmi_mode(mode);
3120 if (drm_valid_hdmi_vic(vic)) {
3121 cea_mode = &edid_4k_modes[vic];
3122 clock2 = hdmi_mode_alternate_clock(cea_mode);
3123 }
3124 }
3125
3126 if (!cea_mode)
3127 continue;
3128
3129 clock1 = cea_mode->clock;
3130
3131 if (clock1 == clock2)
3132 continue;
3133
3134 if (mode->clock != clock1 && mode->clock != clock2)
3135 continue;
3136
3137 newmode = drm_mode_duplicate(dev, cea_mode);
3138 if (!newmode)
3139 continue;
3140
3141 /* Carry over the stereo flags */
3142 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
3143
3144 /*
3145 * The current mode could be either variant. Make
3146 * sure to pick the "other" clock for the new mode.
3147 */
3148 if (mode->clock != clock1)
3149 newmode->clock = clock1;
3150 else
3151 newmode->clock = clock2;
3152
3153 list_add_tail(&newmode->head, &list);
3154 }
3155
3156 list_for_each_entry_safe(mode, tmp, &list, head) {
3157 list_del(&mode->head);
3158 drm_mode_probed_add(connector, mode);
3159 modes++;
3160 }
3161
3162 return modes;
3163}
3164
3165static u8 svd_to_vic(u8 svd)
3166{
3167 /* 0-6 bit vic, 7th bit native mode indicator */
3168 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192))
3169 return svd & 127;
3170
3171 return svd;
3172}
3173
3174static struct drm_display_mode *
3175drm_display_mode_from_vic_index(struct drm_connector *connector,
3176 const u8 *video_db, u8 video_len,
3177 u8 video_index)
3178{
3179 struct drm_device *dev = connector->dev;
3180 struct drm_display_mode *newmode;
3181 u8 vic;
3182
3183 if (video_db == NULL || video_index >= video_len)
3184 return NULL;
3185
3186 /* CEA modes are numbered 1..127 */
3187 vic = svd_to_vic(video_db[video_index]);
3188 if (!drm_valid_cea_vic(vic))
3189 return NULL;
3190
3191 newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3192 if (!newmode)
3193 return NULL;
3194
3195 newmode->vrefresh = 0;
3196
3197 return newmode;
3198}
3199
3200/*
3201 * do_y420vdb_modes - Parse YCBCR 420 only modes
3202 * @connector: connector corresponding to the HDMI sink
3203 * @svds: start of the data block of CEA YCBCR 420 VDB
3204 * @len: length of the CEA YCBCR 420 VDB
3205 *
3206 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
3207 * which contains modes which can be supported in YCBCR 420
3208 * output format only.
3209 */
3210static int do_y420vdb_modes(struct drm_connector *connector,
3211 const u8 *svds, u8 svds_len)
3212{
3213 int modes = 0, i;
3214 struct drm_device *dev = connector->dev;
3215 struct drm_display_info *info = &connector->display_info;
3216 struct drm_hdmi_info *hdmi = &info->hdmi;
3217
3218 for (i = 0; i < svds_len; i++) {
3219 u8 vic = svd_to_vic(svds[i]);
3220 struct drm_display_mode *newmode;
3221
3222 if (!drm_valid_cea_vic(vic))
3223 continue;
3224
3225 newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3226 if (!newmode)
3227 break;
3228 bitmap_set(hdmi->y420_vdb_modes, vic, 1);
3229 drm_mode_probed_add(connector, newmode);
3230 modes++;
3231 }
3232
3233 if (modes > 0)
3234 info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3235 return modes;
3236}
3237
3238/*
3239 * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
3240 * @connector: connector corresponding to the HDMI sink
3241 * @vic: CEA vic for the video mode to be added in the map
3242 *
3243 * Makes an entry for a videomode in the YCBCR 420 bitmap
3244 */
3245static void
3246drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
3247{
3248 u8 vic = svd_to_vic(svd);
3249 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3250
3251 if (!drm_valid_cea_vic(vic))
3252 return;
3253
3254 bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
3255}
3256
3257static int
3258do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
3259{
3260 int i, modes = 0;
3261 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3262
3263 for (i = 0; i < len; i++) {
3264 struct drm_display_mode *mode;
3265 mode = drm_display_mode_from_vic_index(connector, db, len, i);
3266 if (mode) {
3267 /*
3268 * YCBCR420 capability block contains a bitmap which
3269 * gives the index of CEA modes from CEA VDB, which
3270 * can support YCBCR 420 sampling output also (apart
3271 * from RGB/YCBCR444 etc).
3272 * For example, if the bit 0 in bitmap is set,
3273 * first mode in VDB can support YCBCR420 output too.
3274 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
3275 */
3276 if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
3277 drm_add_cmdb_modes(connector, db[i]);
3278
3279 drm_mode_probed_add(connector, mode);
3280 modes++;
3281 }
3282 }
3283
3284 return modes;
3285}
3286
3287struct stereo_mandatory_mode {
3288 int width, height, vrefresh;
3289 unsigned int flags;
3290};
3291
3292static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
3293 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3294 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
3295 { 1920, 1080, 50,
3296 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3297 { 1920, 1080, 60,
3298 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3299 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3300 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
3301 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3302 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
3303};
3304
3305static bool
3306stereo_match_mandatory(const struct drm_display_mode *mode,
3307 const struct stereo_mandatory_mode *stereo_mode)
3308{
3309 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
3310
3311 return mode->hdisplay == stereo_mode->width &&
3312 mode->vdisplay == stereo_mode->height &&
3313 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
3314 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
3315}
3316
3317static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
3318{
3319 struct drm_device *dev = connector->dev;
3320 const struct drm_display_mode *mode;
3321 struct list_head stereo_modes;
3322 int modes = 0, i;
3323
3324 INIT_LIST_HEAD(&stereo_modes);
3325
3326 list_for_each_entry(mode, &connector->probed_modes, head) {
3327 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
3328 const struct stereo_mandatory_mode *mandatory;
3329 struct drm_display_mode *new_mode;
3330
3331 if (!stereo_match_mandatory(mode,
3332 &stereo_mandatory_modes[i]))
3333 continue;
3334
3335 mandatory = &stereo_mandatory_modes[i];
3336 new_mode = drm_mode_duplicate(dev, mode);
3337 if (!new_mode)
3338 continue;
3339
3340 new_mode->flags |= mandatory->flags;
3341 list_add_tail(&new_mode->head, &stereo_modes);
3342 modes++;
3343 }
3344 }
3345
3346 list_splice_tail(&stereo_modes, &connector->probed_modes);
3347
3348 return modes;
3349}
3350
3351static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
3352{
3353 struct drm_device *dev = connector->dev;
3354 struct drm_display_mode *newmode;
3355
3356 if (!drm_valid_hdmi_vic(vic)) {
3357 DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
3358 return 0;
3359 }
3360
3361 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
3362 if (!newmode)
3363 return 0;
3364
3365 drm_mode_probed_add(connector, newmode);
3366
3367 return 1;
3368}
3369
3370static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
3371 const u8 *video_db, u8 video_len, u8 video_index)
3372{
3373 struct drm_display_mode *newmode;
3374 int modes = 0;
3375
3376 if (structure & (1 << 0)) {
3377 newmode = drm_display_mode_from_vic_index(connector, video_db,
3378 video_len,
3379 video_index);
3380 if (newmode) {
3381 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
3382 drm_mode_probed_add(connector, newmode);
3383 modes++;
3384 }
3385 }
3386 if (structure & (1 << 6)) {
3387 newmode = drm_display_mode_from_vic_index(connector, video_db,
3388 video_len,
3389 video_index);
3390 if (newmode) {
3391 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3392 drm_mode_probed_add(connector, newmode);
3393 modes++;
3394 }
3395 }
3396 if (structure & (1 << 8)) {
3397 newmode = drm_display_mode_from_vic_index(connector, video_db,
3398 video_len,
3399 video_index);
3400 if (newmode) {
3401 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3402 drm_mode_probed_add(connector, newmode);
3403 modes++;
3404 }
3405 }
3406
3407 return modes;
3408}
3409
3410/*
3411 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
3412 * @connector: connector corresponding to the HDMI sink
3413 * @db: start of the CEA vendor specific block
3414 * @len: length of the CEA block payload, ie. one can access up to db[len]
3415 *
3416 * Parses the HDMI VSDB looking for modes to add to @connector. This function
3417 * also adds the stereo 3d modes when applicable.
3418 */
3419static int
3420do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
3421 const u8 *video_db, u8 video_len)
3422{
3423 struct drm_display_info *info = &connector->display_info;
3424 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
3425 u8 vic_len, hdmi_3d_len = 0;
3426 u16 mask;
3427 u16 structure_all;
3428
3429 if (len < 8)
3430 goto out;
3431
3432 /* no HDMI_Video_Present */
3433 if (!(db[8] & (1 << 5)))
3434 goto out;
3435
3436 /* Latency_Fields_Present */
3437 if (db[8] & (1 << 7))
3438 offset += 2;
3439
3440 /* I_Latency_Fields_Present */
3441 if (db[8] & (1 << 6))
3442 offset += 2;
3443
3444 /* the declared length is not long enough for the 2 first bytes
3445 * of additional video format capabilities */
3446 if (len < (8 + offset + 2))
3447 goto out;
3448
3449 /* 3D_Present */
3450 offset++;
3451 if (db[8 + offset] & (1 << 7)) {
3452 modes += add_hdmi_mandatory_stereo_modes(connector);
3453
3454 /* 3D_Multi_present */
3455 multi_present = (db[8 + offset] & 0x60) >> 5;
3456 }
3457
3458 offset++;
3459 vic_len = db[8 + offset] >> 5;
3460 hdmi_3d_len = db[8 + offset] & 0x1f;
3461
3462 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3463 u8 vic;
3464
3465 vic = db[9 + offset + i];
3466 modes += add_hdmi_mode(connector, vic);
3467 }
3468 offset += 1 + vic_len;
3469
3470 if (multi_present == 1)
3471 multi_len = 2;
3472 else if (multi_present == 2)
3473 multi_len = 4;
3474 else
3475 multi_len = 0;
3476
3477 if (len < (8 + offset + hdmi_3d_len - 1))
3478 goto out;
3479
3480 if (hdmi_3d_len < multi_len)
3481 goto out;
3482
3483 if (multi_present == 1 || multi_present == 2) {
3484 /* 3D_Structure_ALL */
3485 structure_all = (db[8 + offset] << 8) | db[9 + offset];
3486
3487 /* check if 3D_MASK is present */
3488 if (multi_present == 2)
3489 mask = (db[10 + offset] << 8) | db[11 + offset];
3490 else
3491 mask = 0xffff;
3492
3493 for (i = 0; i < 16; i++) {
3494 if (mask & (1 << i))
3495 modes += add_3d_struct_modes(connector,
3496 structure_all,
3497 video_db,
3498 video_len, i);
3499 }
3500 }
3501
3502 offset += multi_len;
3503
3504 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3505 int vic_index;
3506 struct drm_display_mode *newmode = NULL;
3507 unsigned int newflag = 0;
3508 bool detail_present;
3509
3510 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3511
3512 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3513 break;
3514
3515 /* 2D_VIC_order_X */
3516 vic_index = db[8 + offset + i] >> 4;
3517
3518 /* 3D_Structure_X */
3519 switch (db[8 + offset + i] & 0x0f) {
3520 case 0:
3521 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3522 break;
3523 case 6:
3524 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3525 break;
3526 case 8:
3527 /* 3D_Detail_X */
3528 if ((db[9 + offset + i] >> 4) == 1)
3529 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3530 break;
3531 }
3532
3533 if (newflag != 0) {
3534 newmode = drm_display_mode_from_vic_index(connector,
3535 video_db,
3536 video_len,
3537 vic_index);
3538
3539 if (newmode) {
3540 newmode->flags |= newflag;
3541 drm_mode_probed_add(connector, newmode);
3542 modes++;
3543 }
3544 }
3545
3546 if (detail_present)
3547 i++;
3548 }
3549
3550out:
3551 if (modes > 0)
3552 info->has_hdmi_infoframe = true;
3553 return modes;
3554}
3555
3556static int
3557cea_db_payload_len(const u8 *db)
3558{
3559 return db[0] & 0x1f;
3560}
3561
3562static int
3563cea_db_extended_tag(const u8 *db)
3564{
3565 return db[1];
3566}
3567
3568static int
3569cea_db_tag(const u8 *db)
3570{
3571 return db[0] >> 5;
3572}
3573
3574static int
3575cea_revision(const u8 *cea)
3576{
3577 return cea[1];
3578}
3579
3580static int
3581cea_db_offsets(const u8 *cea, int *start, int *end)
3582{
3583 /* Data block offset in CEA extension block */
3584 *start = 4;
3585 *end = cea[2];
3586 if (*end == 0)
3587 *end = 127;
3588 if (*end < 4 || *end > 127)
3589 return -ERANGE;
3590 return 0;
3591}
3592
3593static bool cea_db_is_hdmi_vsdb(const u8 *db)
3594{
3595 int hdmi_id;
3596
3597 if (cea_db_tag(db) != VENDOR_BLOCK)
3598 return false;
3599
3600 if (cea_db_payload_len(db) < 5)
3601 return false;
3602
3603 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3604
3605 return hdmi_id == HDMI_IEEE_OUI;
3606}
3607
3608static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
3609{
3610 unsigned int oui;
3611
3612 if (cea_db_tag(db) != VENDOR_BLOCK)
3613 return false;
3614
3615 if (cea_db_payload_len(db) < 7)
3616 return false;
3617
3618 oui = db[3] << 16 | db[2] << 8 | db[1];
3619
3620 return oui == HDMI_FORUM_IEEE_OUI;
3621}
3622
3623static bool cea_db_is_y420cmdb(const u8 *db)
3624{
3625 if (cea_db_tag(db) != USE_EXTENDED_TAG)
3626 return false;
3627
3628 if (!cea_db_payload_len(db))
3629 return false;
3630
3631 if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
3632 return false;
3633
3634 return true;
3635}
3636
3637static bool cea_db_is_y420vdb(const u8 *db)
3638{
3639 if (cea_db_tag(db) != USE_EXTENDED_TAG)
3640 return false;
3641
3642 if (!cea_db_payload_len(db))
3643 return false;
3644
3645 if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
3646 return false;
3647
3648 return true;
3649}
3650
3651#define for_each_cea_db(cea, i, start, end) \
3652 for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
3653
3654static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
3655 const u8 *db)
3656{
3657 struct drm_display_info *info = &connector->display_info;
3658 struct drm_hdmi_info *hdmi = &info->hdmi;
3659 u8 map_len = cea_db_payload_len(db) - 1;
3660 u8 count;
3661 u64 map = 0;
3662
3663 if (map_len == 0) {
3664 /* All CEA modes support ycbcr420 sampling also.*/
3665 hdmi->y420_cmdb_map = U64_MAX;
3666 info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3667 return;
3668 }
3669
3670 /*
3671 * This map indicates which of the existing CEA block modes
3672 * from VDB can support YCBCR420 output too. So if bit=0 is
3673 * set, first mode from VDB can support YCBCR420 output too.
3674 * We will parse and keep this map, before parsing VDB itself
3675 * to avoid going through the same block again and again.
3676 *
3677 * Spec is not clear about max possible size of this block.
3678 * Clamping max bitmap block size at 8 bytes. Every byte can
3679 * address 8 CEA modes, in this way this map can address
3680 * 8*8 = first 64 SVDs.
3681 */
3682 if (WARN_ON_ONCE(map_len > 8))
3683 map_len = 8;
3684
3685 for (count = 0; count < map_len; count++)
3686 map |= (u64)db[2 + count] << (8 * count);
3687
3688 if (map)
3689 info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3690
3691 hdmi->y420_cmdb_map = map;
3692}
3693
3694static int
3695add_cea_modes(struct drm_connector *connector, struct edid *edid)
3696{
3697 const u8 *cea = drm_find_cea_extension(edid);
3698 const u8 *db, *hdmi = NULL, *video = NULL;
3699 u8 dbl, hdmi_len, video_len = 0;
3700 int modes = 0;
3701
3702 if (cea && cea_revision(cea) >= 3) {
3703 int i, start, end;
3704
3705 if (cea_db_offsets(cea, &start, &end))
3706 return 0;
3707
3708 for_each_cea_db(cea, i, start, end) {
3709 db = &cea[i];
3710 dbl = cea_db_payload_len(db);
3711
3712 if (cea_db_tag(db) == VIDEO_BLOCK) {
3713 video = db + 1;
3714 video_len = dbl;
3715 modes += do_cea_modes(connector, video, dbl);
3716 } else if (cea_db_is_hdmi_vsdb(db)) {
3717 hdmi = db;
3718 hdmi_len = dbl;
3719 } else if (cea_db_is_y420vdb(db)) {
3720 const u8 *vdb420 = &db[2];
3721
3722 /* Add 4:2:0(only) modes present in EDID */
3723 modes += do_y420vdb_modes(connector,
3724 vdb420,
3725 dbl - 1);
3726 }
3727 }
3728 }
3729
3730 /*
3731 * We parse the HDMI VSDB after having added the cea modes as we will
3732 * be patching their flags when the sink supports stereo 3D.
3733 */
3734 if (hdmi)
3735 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3736 video_len);
3737
3738 return modes;
3739}
3740
3741static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3742{
3743 const struct drm_display_mode *cea_mode;
3744 int clock1, clock2, clock;
3745 u8 vic;
3746 const char *type;
3747
3748 /*
3749 * allow 5kHz clock difference either way to account for
3750 * the 10kHz clock resolution limit of detailed timings.
3751 */
3752 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3753 if (drm_valid_cea_vic(vic)) {
3754 type = "CEA";
3755 cea_mode = &edid_cea_modes[vic];
3756 clock1 = cea_mode->clock;
3757 clock2 = cea_mode_alternate_clock(cea_mode);
3758 } else {
3759 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3760 if (drm_valid_hdmi_vic(vic)) {
3761 type = "HDMI";
3762 cea_mode = &edid_4k_modes[vic];
3763 clock1 = cea_mode->clock;
3764 clock2 = hdmi_mode_alternate_clock(cea_mode);
3765 } else {
3766 return;
3767 }
3768 }
3769
3770 /* pick whichever is closest */
3771 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3772 clock = clock1;
3773 else
3774 clock = clock2;
3775
3776 if (mode->clock == clock)
3777 return;
3778
3779 DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3780 type, vic, mode->clock, clock);
3781 mode->clock = clock;
3782}
3783
3784static void
3785drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
3786{
3787 u8 len = cea_db_payload_len(db);
3788
3789 if (len >= 6 && (db[6] & (1 << 7)))
3790 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
3791 if (len >= 8) {
3792 connector->latency_present[0] = db[8] >> 7;
3793 connector->latency_present[1] = (db[8] >> 6) & 1;
3794 }
3795 if (len >= 9)
3796 connector->video_latency[0] = db[9];
3797 if (len >= 10)
3798 connector->audio_latency[0] = db[10];
3799 if (len >= 11)
3800 connector->video_latency[1] = db[11];
3801 if (len >= 12)
3802 connector->audio_latency[1] = db[12];
3803
3804 DRM_DEBUG_KMS("HDMI: latency present %d %d, "
3805 "video latency %d %d, "
3806 "audio latency %d %d\n",
3807 connector->latency_present[0],
3808 connector->latency_present[1],
3809 connector->video_latency[0],
3810 connector->video_latency[1],
3811 connector->audio_latency[0],
3812 connector->audio_latency[1]);
3813}
3814
3815static void
3816monitor_name(struct detailed_timing *t, void *data)
3817{
3818 if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3819 *(u8 **)data = t->data.other_data.data.str.str;
3820}
3821
3822static int get_monitor_name(struct edid *edid, char name[13])
3823{
3824 char *edid_name = NULL;
3825 int mnl;
3826
3827 if (!edid || !name)
3828 return 0;
3829
3830 drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name);
3831 for (mnl = 0; edid_name && mnl < 13; mnl++) {
3832 if (edid_name[mnl] == 0x0a)
3833 break;
3834
3835 name[mnl] = edid_name[mnl];
3836 }
3837
3838 return mnl;
3839}
3840
3841/**
3842 * drm_edid_get_monitor_name - fetch the monitor name from the edid
3843 * @edid: monitor EDID information
3844 * @name: pointer to a character array to hold the name of the monitor
3845 * @bufsize: The size of the name buffer (should be at least 14 chars.)
3846 *
3847 */
3848void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize)
3849{
3850 int name_length;
3851 char buf[13];
3852
3853 if (bufsize <= 0)
3854 return;
3855
3856 name_length = min(get_monitor_name(edid, buf), bufsize - 1);
3857 memcpy(name, buf, name_length);
3858 name[name_length] = '\0';
3859}
3860EXPORT_SYMBOL(drm_edid_get_monitor_name);
3861
3862static void clear_eld(struct drm_connector *connector)
3863{
3864 memset(connector->eld, 0, sizeof(connector->eld));
3865
3866 connector->latency_present[0] = false;
3867 connector->latency_present[1] = false;
3868 connector->video_latency[0] = 0;
3869 connector->audio_latency[0] = 0;
3870 connector->video_latency[1] = 0;
3871 connector->audio_latency[1] = 0;
3872}
3873
3874/*
3875 * drm_edid_to_eld - build ELD from EDID
3876 * @connector: connector corresponding to the HDMI/DP sink
3877 * @edid: EDID to parse
3878 *
3879 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
3880 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
3881 */
3882static void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3883{
3884 uint8_t *eld = connector->eld;
3885 u8 *cea;
3886 u8 *db;
3887 int total_sad_count = 0;
3888 int mnl;
3889 int dbl;
3890
3891 clear_eld(connector);
3892
3893 if (!edid)
3894 return;
3895
3896 cea = drm_find_cea_extension(edid);
3897 if (!cea) {
3898 DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3899 return;
3900 }
3901
3902 mnl = get_monitor_name(edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
3903 DRM_DEBUG_KMS("ELD monitor %s\n", &eld[DRM_ELD_MONITOR_NAME_STRING]);
3904
3905 eld[DRM_ELD_CEA_EDID_VER_MNL] = cea[1] << DRM_ELD_CEA_EDID_VER_SHIFT;
3906 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
3907
3908 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
3909
3910 eld[DRM_ELD_MANUFACTURER_NAME0] = edid->mfg_id[0];
3911 eld[DRM_ELD_MANUFACTURER_NAME1] = edid->mfg_id[1];
3912 eld[DRM_ELD_PRODUCT_CODE0] = edid->prod_code[0];
3913 eld[DRM_ELD_PRODUCT_CODE1] = edid->prod_code[1];
3914
3915 if (cea_revision(cea) >= 3) {
3916 int i, start, end;
3917
3918 if (cea_db_offsets(cea, &start, &end)) {
3919 start = 0;
3920 end = 0;
3921 }
3922
3923 for_each_cea_db(cea, i, start, end) {
3924 db = &cea[i];
3925 dbl = cea_db_payload_len(db);
3926
3927 switch (cea_db_tag(db)) {
3928 int sad_count;
3929
3930 case AUDIO_BLOCK:
3931 /* Audio Data Block, contains SADs */
3932 sad_count = min(dbl / 3, 15 - total_sad_count);
3933 if (sad_count >= 1)
3934 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
3935 &db[1], sad_count * 3);
3936 total_sad_count += sad_count;
3937 break;
3938 case SPEAKER_BLOCK:
3939 /* Speaker Allocation Data Block */
3940 if (dbl >= 1)
3941 eld[DRM_ELD_SPEAKER] = db[1];
3942 break;
3943 case VENDOR_BLOCK:
3944 /* HDMI Vendor-Specific Data Block */
3945 if (cea_db_is_hdmi_vsdb(db))
3946 drm_parse_hdmi_vsdb_audio(connector, db);
3947 break;
3948 default:
3949 break;
3950 }
3951 }
3952 }
3953 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
3954
3955 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
3956 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3957 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
3958 else
3959 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
3960
3961 eld[DRM_ELD_BASELINE_ELD_LEN] =
3962 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
3963
3964 DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
3965 drm_eld_size(eld), total_sad_count);
3966}
3967
3968/**
3969 * drm_edid_to_sad - extracts SADs from EDID
3970 * @edid: EDID to parse
3971 * @sads: pointer that will be set to the extracted SADs
3972 *
3973 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3974 *
3975 * Note: The returned pointer needs to be freed using kfree().
3976 *
3977 * Return: The number of found SADs or negative number on error.
3978 */
3979int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3980{
3981 int count = 0;
3982 int i, start, end, dbl;
3983 u8 *cea;
3984
3985 cea = drm_find_cea_extension(edid);
3986 if (!cea) {
3987 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3988 return -ENOENT;
3989 }
3990
3991 if (cea_revision(cea) < 3) {
3992 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3993 return -ENOTSUPP;
3994 }
3995
3996 if (cea_db_offsets(cea, &start, &end)) {
3997 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3998 return -EPROTO;
3999 }
4000
4001 for_each_cea_db(cea, i, start, end) {
4002 u8 *db = &cea[i];
4003
4004 if (cea_db_tag(db) == AUDIO_BLOCK) {
4005 int j;
4006 dbl = cea_db_payload_len(db);
4007
4008 count = dbl / 3; /* SAD is 3B */
4009 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
4010 if (!*sads)
4011 return -ENOMEM;
4012 for (j = 0; j < count; j++) {
4013 u8 *sad = &db[1 + j * 3];
4014
4015 (*sads)[j].format = (sad[0] & 0x78) >> 3;
4016 (*sads)[j].channels = sad[0] & 0x7;
4017 (*sads)[j].freq = sad[1] & 0x7F;
4018 (*sads)[j].byte2 = sad[2];
4019 }
4020 break;
4021 }
4022 }
4023
4024 return count;
4025}
4026EXPORT_SYMBOL(drm_edid_to_sad);
4027
4028/**
4029 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
4030 * @edid: EDID to parse
4031 * @sadb: pointer to the speaker block
4032 *
4033 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
4034 *
4035 * Note: The returned pointer needs to be freed using kfree().
4036 *
4037 * Return: The number of found Speaker Allocation Blocks or negative number on
4038 * error.
4039 */
4040int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
4041{
4042 int count = 0;
4043 int i, start, end, dbl;
4044 const u8 *cea;
4045
4046 cea = drm_find_cea_extension(edid);
4047 if (!cea) {
4048 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4049 return -ENOENT;
4050 }
4051
4052 if (cea_revision(cea) < 3) {
4053 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4054 return -ENOTSUPP;
4055 }
4056
4057 if (cea_db_offsets(cea, &start, &end)) {
4058 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4059 return -EPROTO;
4060 }
4061
4062 for_each_cea_db(cea, i, start, end) {
4063 const u8 *db = &cea[i];
4064
4065 if (cea_db_tag(db) == SPEAKER_BLOCK) {
4066 dbl = cea_db_payload_len(db);
4067
4068 /* Speaker Allocation Data Block */
4069 if (dbl == 3) {
4070 *sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
4071 if (!*sadb)
4072 return -ENOMEM;
4073 count = dbl;
4074 break;
4075 }
4076 }
4077 }
4078
4079 return count;
4080}
4081EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
4082
4083/**
4084 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
4085 * @connector: connector associated with the HDMI/DP sink
4086 * @mode: the display mode
4087 *
4088 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
4089 * the sink doesn't support audio or video.
4090 */
4091int drm_av_sync_delay(struct drm_connector *connector,
4092 const struct drm_display_mode *mode)
4093{
4094 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
4095 int a, v;
4096
4097 if (!connector->latency_present[0])
4098 return 0;
4099 if (!connector->latency_present[1])
4100 i = 0;
4101
4102 a = connector->audio_latency[i];
4103 v = connector->video_latency[i];
4104
4105 /*
4106 * HDMI/DP sink doesn't support audio or video?
4107 */
4108 if (a == 255 || v == 255)
4109 return 0;
4110
4111 /*
4112 * Convert raw EDID values to millisecond.
4113 * Treat unknown latency as 0ms.
4114 */
4115 if (a)
4116 a = min(2 * (a - 1), 500);
4117 if (v)
4118 v = min(2 * (v - 1), 500);
4119
4120 return max(v - a, 0);
4121}
4122EXPORT_SYMBOL(drm_av_sync_delay);
4123
4124/**
4125 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
4126 * @edid: monitor EDID information
4127 *
4128 * Parse the CEA extension according to CEA-861-B.
4129 *
4130 * Return: True if the monitor is HDMI, false if not or unknown.
4131 */
4132bool drm_detect_hdmi_monitor(struct edid *edid)
4133{
4134 u8 *edid_ext;
4135 int i;
4136 int start_offset, end_offset;
4137
4138 edid_ext = drm_find_cea_extension(edid);
4139 if (!edid_ext)
4140 return false;
4141
4142 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4143 return false;
4144
4145 /*
4146 * Because HDMI identifier is in Vendor Specific Block,
4147 * search it from all data blocks of CEA extension.
4148 */
4149 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4150 if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
4151 return true;
4152 }
4153
4154 return false;
4155}
4156EXPORT_SYMBOL(drm_detect_hdmi_monitor);
4157
4158/**
4159 * drm_detect_monitor_audio - check monitor audio capability
4160 * @edid: EDID block to scan
4161 *
4162 * Monitor should have CEA extension block.
4163 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
4164 * audio' only. If there is any audio extension block and supported
4165 * audio format, assume at least 'basic audio' support, even if 'basic
4166 * audio' is not defined in EDID.
4167 *
4168 * Return: True if the monitor supports audio, false otherwise.
4169 */
4170bool drm_detect_monitor_audio(struct edid *edid)
4171{
4172 u8 *edid_ext;
4173 int i, j;
4174 bool has_audio = false;
4175 int start_offset, end_offset;
4176
4177 edid_ext = drm_find_cea_extension(edid);
4178 if (!edid_ext)
4179 goto end;
4180
4181 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
4182
4183 if (has_audio) {
4184 DRM_DEBUG_KMS("Monitor has basic audio support\n");
4185 goto end;
4186 }
4187
4188 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4189 goto end;
4190
4191 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4192 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
4193 has_audio = true;
4194 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
4195 DRM_DEBUG_KMS("CEA audio format %d\n",
4196 (edid_ext[i + j] >> 3) & 0xf);
4197 goto end;
4198 }
4199 }
4200end:
4201 return has_audio;
4202}
4203EXPORT_SYMBOL(drm_detect_monitor_audio);
4204
4205/**
4206 * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
4207 * @edid: EDID block to scan
4208 *
4209 * Check whether the monitor reports the RGB quantization range selection
4210 * as supported. The AVI infoframe can then be used to inform the monitor
4211 * which quantization range (full or limited) is used.
4212 *
4213 * Return: True if the RGB quantization range is selectable, false otherwise.
4214 */
4215bool drm_rgb_quant_range_selectable(struct edid *edid)
4216{
4217 u8 *edid_ext;
4218 int i, start, end;
4219
4220 edid_ext = drm_find_cea_extension(edid);
4221 if (!edid_ext)
4222 return false;
4223
4224 if (cea_db_offsets(edid_ext, &start, &end))
4225 return false;
4226
4227 for_each_cea_db(edid_ext, i, start, end) {
4228 if (cea_db_tag(&edid_ext[i]) == USE_EXTENDED_TAG &&
4229 cea_db_payload_len(&edid_ext[i]) == 2 &&
4230 cea_db_extended_tag(&edid_ext[i]) ==
4231 EXT_VIDEO_CAPABILITY_BLOCK) {
4232 DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
4233 return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
4234 }
4235 }
4236
4237 return false;
4238}
4239EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
4240
4241/**
4242 * drm_default_rgb_quant_range - default RGB quantization range
4243 * @mode: display mode
4244 *
4245 * Determine the default RGB quantization range for the mode,
4246 * as specified in CEA-861.
4247 *
4248 * Return: The default RGB quantization range for the mode
4249 */
4250enum hdmi_quantization_range
4251drm_default_rgb_quant_range(const struct drm_display_mode *mode)
4252{
4253 /* All CEA modes other than VIC 1 use limited quantization range. */
4254 return drm_match_cea_mode(mode) > 1 ?
4255 HDMI_QUANTIZATION_RANGE_LIMITED :
4256 HDMI_QUANTIZATION_RANGE_FULL;
4257}
4258EXPORT_SYMBOL(drm_default_rgb_quant_range);
4259
4260static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
4261 const u8 *db)
4262{
4263 u8 dc_mask;
4264 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4265
4266 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
4267 hdmi->y420_dc_modes |= dc_mask;
4268}
4269
4270static void drm_parse_hdmi_forum_vsdb(struct drm_connector *connector,
4271 const u8 *hf_vsdb)
4272{
4273 struct drm_display_info *display = &connector->display_info;
4274 struct drm_hdmi_info *hdmi = &display->hdmi;
4275
4276 display->has_hdmi_infoframe = true;
4277
4278 if (hf_vsdb[6] & 0x80) {
4279 hdmi->scdc.supported = true;
4280 if (hf_vsdb[6] & 0x40)
4281 hdmi->scdc.read_request = true;
4282 }
4283
4284 /*
4285 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
4286 * And as per the spec, three factors confirm this:
4287 * * Availability of a HF-VSDB block in EDID (check)
4288 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
4289 * * SCDC support available (let's check)
4290 * Lets check it out.
4291 */
4292
4293 if (hf_vsdb[5]) {
4294 /* max clock is 5000 KHz times block value */
4295 u32 max_tmds_clock = hf_vsdb[5] * 5000;
4296 struct drm_scdc *scdc = &hdmi->scdc;
4297
4298 if (max_tmds_clock > 340000) {
4299 display->max_tmds_clock = max_tmds_clock;
4300 DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n",
4301 display->max_tmds_clock);
4302 }
4303
4304 if (scdc->supported) {
4305 scdc->scrambling.supported = true;
4306
4307 /* Few sinks support scrambling for cloks < 340M */
4308 if ((hf_vsdb[6] & 0x8))
4309 scdc->scrambling.low_rates = true;
4310 }
4311 }
4312
4313 drm_parse_ycbcr420_deep_color_info(connector, hf_vsdb);
4314}
4315
4316static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
4317 const u8 *hdmi)
4318{
4319 struct drm_display_info *info = &connector->display_info;
4320 unsigned int dc_bpc = 0;
4321
4322 /* HDMI supports at least 8 bpc */
4323 info->bpc = 8;
4324
4325 if (cea_db_payload_len(hdmi) < 6)
4326 return;
4327
4328 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
4329 dc_bpc = 10;
4330 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
4331 DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
4332 connector->name);
4333 }
4334
4335 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
4336 dc_bpc = 12;
4337 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
4338 DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
4339 connector->name);
4340 }
4341
4342 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
4343 dc_bpc = 16;
4344 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
4345 DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
4346 connector->name);
4347 }
4348
4349 if (dc_bpc == 0) {
4350 DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
4351 connector->name);
4352 return;
4353 }
4354
4355 DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
4356 connector->name, dc_bpc);
4357 info->bpc = dc_bpc;
4358
4359 /*
4360 * Deep color support mandates RGB444 support for all video
4361 * modes and forbids YCRCB422 support for all video modes per
4362 * HDMI 1.3 spec.
4363 */
4364 info->color_formats = DRM_COLOR_FORMAT_RGB444;
4365
4366 /* YCRCB444 is optional according to spec. */
4367 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
4368 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4369 DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
4370 connector->name);
4371 }
4372
4373 /*
4374 * Spec says that if any deep color mode is supported at all,
4375 * then deep color 36 bit must be supported.
4376 */
4377 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
4378 DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
4379 connector->name);
4380 }
4381}
4382
4383static void
4384drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
4385{
4386 struct drm_display_info *info = &connector->display_info;
4387 u8 len = cea_db_payload_len(db);
4388
4389 if (len >= 6)
4390 info->dvi_dual = db[6] & 1;
4391 if (len >= 7)
4392 info->max_tmds_clock = db[7] * 5000;
4393
4394 DRM_DEBUG_KMS("HDMI: DVI dual %d, "
4395 "max TMDS clock %d kHz\n",
4396 info->dvi_dual,
4397 info->max_tmds_clock);
4398
4399 drm_parse_hdmi_deep_color_info(connector, db);
4400}
4401
4402static void drm_parse_cea_ext(struct drm_connector *connector,
4403 const struct edid *edid)
4404{
4405 struct drm_display_info *info = &connector->display_info;
4406 const u8 *edid_ext;
4407 int i, start, end;
4408
4409 edid_ext = drm_find_cea_extension(edid);
4410 if (!edid_ext)
4411 return;
4412
4413 info->cea_rev = edid_ext[1];
4414
4415 /* The existence of a CEA block should imply RGB support */
4416 info->color_formats = DRM_COLOR_FORMAT_RGB444;
4417 if (edid_ext[3] & EDID_CEA_YCRCB444)
4418 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4419 if (edid_ext[3] & EDID_CEA_YCRCB422)
4420 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4421
4422 if (cea_db_offsets(edid_ext, &start, &end))
4423 return;
4424
4425 for_each_cea_db(edid_ext, i, start, end) {
4426 const u8 *db = &edid_ext[i];
4427
4428 if (cea_db_is_hdmi_vsdb(db))
4429 drm_parse_hdmi_vsdb_video(connector, db);
4430 if (cea_db_is_hdmi_forum_vsdb(db))
4431 drm_parse_hdmi_forum_vsdb(connector, db);
4432 if (cea_db_is_y420cmdb(db))
4433 drm_parse_y420cmdb_bitmap(connector, db);
4434 }
4435}
4436
4437/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
4438 * all of the values which would have been set from EDID
4439 */
4440void
4441drm_reset_display_info(struct drm_connector *connector)
4442{
4443 struct drm_display_info *info = &connector->display_info;
4444
4445 info->width_mm = 0;
4446 info->height_mm = 0;
4447
4448 info->bpc = 0;
4449 info->color_formats = 0;
4450 info->cea_rev = 0;
4451 info->max_tmds_clock = 0;
4452 info->dvi_dual = false;
4453 info->has_hdmi_infoframe = false;
4454 memset(&info->hdmi, 0, sizeof(info->hdmi));
4455
4456 info->non_desktop = 0;
4457}
4458EXPORT_SYMBOL_GPL(drm_reset_display_info);
4459
4460u32 drm_add_display_info(struct drm_connector *connector, const struct edid *edid)
4461{
4462 struct drm_display_info *info = &connector->display_info;
4463
4464 u32 quirks = edid_get_quirks(edid);
4465
4466 drm_reset_display_info(connector);
4467
4468 info->width_mm = edid->width_cm * 10;
4469 info->height_mm = edid->height_cm * 10;
4470
4471 info->non_desktop = !!(quirks & EDID_QUIRK_NON_DESKTOP);
4472
4473 DRM_DEBUG_KMS("non_desktop set to %d\n", info->non_desktop);
4474
4475 if (edid->revision < 3)
4476 return quirks;
4477
4478 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
4479 return quirks;
4480
4481 drm_parse_cea_ext(connector, edid);
4482
4483 /*
4484 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
4485 *
4486 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
4487 * tells us to assume 8 bpc color depth if the EDID doesn't have
4488 * extensions which tell otherwise.
4489 */
4490 if ((info->bpc == 0) && (edid->revision < 4) &&
4491 (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) {
4492 info->bpc = 8;
4493 DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
4494 connector->name, info->bpc);
4495 }
4496
4497 /* Only defined for 1.4 with digital displays */
4498 if (edid->revision < 4)
4499 return quirks;
4500
4501 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
4502 case DRM_EDID_DIGITAL_DEPTH_6:
4503 info->bpc = 6;
4504 break;
4505 case DRM_EDID_DIGITAL_DEPTH_8:
4506 info->bpc = 8;
4507 break;
4508 case DRM_EDID_DIGITAL_DEPTH_10:
4509 info->bpc = 10;
4510 break;
4511 case DRM_EDID_DIGITAL_DEPTH_12:
4512 info->bpc = 12;
4513 break;
4514 case DRM_EDID_DIGITAL_DEPTH_14:
4515 info->bpc = 14;
4516 break;
4517 case DRM_EDID_DIGITAL_DEPTH_16:
4518 info->bpc = 16;
4519 break;
4520 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
4521 default:
4522 info->bpc = 0;
4523 break;
4524 }
4525
4526 DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
4527 connector->name, info->bpc);
4528
4529 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
4530 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
4531 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4532 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
4533 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4534 return quirks;
4535}
4536EXPORT_SYMBOL_GPL(drm_add_display_info);
4537
4538static int validate_displayid(u8 *displayid, int length, int idx)
4539{
4540 int i;
4541 u8 csum = 0;
4542 struct displayid_hdr *base;
4543
4544 base = (struct displayid_hdr *)&displayid[idx];
4545
4546 DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
4547 base->rev, base->bytes, base->prod_id, base->ext_count);
4548
4549 if (base->bytes + 5 > length - idx)
4550 return -EINVAL;
4551 for (i = idx; i <= base->bytes + 5; i++) {
4552 csum += displayid[i];
4553 }
4554 if (csum) {
4555 DRM_NOTE("DisplayID checksum invalid, remainder is %d\n", csum);
4556 return -EINVAL;
4557 }
4558 return 0;
4559}
4560
4561static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
4562 struct displayid_detailed_timings_1 *timings)
4563{
4564 struct drm_display_mode *mode;
4565 unsigned pixel_clock = (timings->pixel_clock[0] |
4566 (timings->pixel_clock[1] << 8) |
4567 (timings->pixel_clock[2] << 16));
4568 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
4569 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
4570 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
4571 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4572 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
4573 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4574 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
4575 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4576 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4577 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
4578 mode = drm_mode_create(dev);
4579 if (!mode)
4580 return NULL;
4581
4582 mode->clock = pixel_clock * 10;
4583 mode->hdisplay = hactive;
4584 mode->hsync_start = mode->hdisplay + hsync;
4585 mode->hsync_end = mode->hsync_start + hsync_width;
4586 mode->htotal = mode->hdisplay + hblank;
4587
4588 mode->vdisplay = vactive;
4589 mode->vsync_start = mode->vdisplay + vsync;
4590 mode->vsync_end = mode->vsync_start + vsync_width;
4591 mode->vtotal = mode->vdisplay + vblank;
4592
4593 mode->flags = 0;
4594 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4595 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4596 mode->type = DRM_MODE_TYPE_DRIVER;
4597
4598 if (timings->flags & 0x80)
4599 mode->type |= DRM_MODE_TYPE_PREFERRED;
4600 mode->vrefresh = drm_mode_vrefresh(mode);
4601 drm_mode_set_name(mode);
4602
4603 return mode;
4604}
4605
4606static int add_displayid_detailed_1_modes(struct drm_connector *connector,
4607 struct displayid_block *block)
4608{
4609 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
4610 int i;
4611 int num_timings;
4612 struct drm_display_mode *newmode;
4613 int num_modes = 0;
4614 /* blocks must be multiple of 20 bytes length */
4615 if (block->num_bytes % 20)
4616 return 0;
4617
4618 num_timings = block->num_bytes / 20;
4619 for (i = 0; i < num_timings; i++) {
4620 struct displayid_detailed_timings_1 *timings = &det->timings[i];
4621
4622 newmode = drm_mode_displayid_detailed(connector->dev, timings);
4623 if (!newmode)
4624 continue;
4625
4626 drm_mode_probed_add(connector, newmode);
4627 num_modes++;
4628 }
4629 return num_modes;
4630}
4631
4632static int add_displayid_detailed_modes(struct drm_connector *connector,
4633 struct edid *edid)
4634{
4635 u8 *displayid;
4636 int ret;
4637 int idx = 1;
4638 int length = EDID_LENGTH;
4639 struct displayid_block *block;
4640 int num_modes = 0;
4641
4642 displayid = drm_find_displayid_extension(edid);
4643 if (!displayid)
4644 return 0;
4645
4646 ret = validate_displayid(displayid, length, idx);
4647 if (ret)
4648 return 0;
4649
4650 idx += sizeof(struct displayid_hdr);
4651 while (block = (struct displayid_block *)&displayid[idx],
4652 idx + sizeof(struct displayid_block) <= length &&
4653 idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
4654 block->num_bytes > 0) {
4655 idx += block->num_bytes + sizeof(struct displayid_block);
4656 switch (block->tag) {
4657 case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4658 num_modes += add_displayid_detailed_1_modes(connector, block);
4659 break;
4660 }
4661 }
4662 return num_modes;
4663}
4664
4665/**
4666 * drm_add_edid_modes - add modes from EDID data, if available
4667 * @connector: connector we're probing
4668 * @edid: EDID data
4669 *
4670 * Add the specified modes to the connector's mode list. Also fills out the
4671 * &drm_display_info structure and ELD in @connector with any information which
4672 * can be derived from the edid.
4673 *
4674 * Return: The number of modes added or 0 if we couldn't find any.
4675 */
4676int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
4677{
4678 int num_modes = 0;
4679 u32 quirks;
4680
4681 if (edid == NULL) {
4682 clear_eld(connector);
4683 return 0;
4684 }
4685 if (!drm_edid_is_valid(edid)) {
4686 clear_eld(connector);
4687 dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
4688 connector->name);
4689 return 0;
4690 }
4691
4692 drm_edid_to_eld(connector, edid);
4693
4694 /*
4695 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
4696 * To avoid multiple parsing of same block, lets parse that map
4697 * from sink info, before parsing CEA modes.
4698 */
4699 quirks = drm_add_display_info(connector, edid);
4700
4701 /*
4702 * EDID spec says modes should be preferred in this order:
4703 * - preferred detailed mode
4704 * - other detailed modes from base block
4705 * - detailed modes from extension blocks
4706 * - CVT 3-byte code modes
4707 * - standard timing codes
4708 * - established timing codes
4709 * - modes inferred from GTF or CVT range information
4710 *
4711 * We get this pretty much right.
4712 *
4713 * XXX order for additional mode types in extension blocks?
4714 */
4715 num_modes += add_detailed_modes(connector, edid, quirks);
4716 num_modes += add_cvt_modes(connector, edid);
4717 num_modes += add_standard_modes(connector, edid);
4718 num_modes += add_established_modes(connector, edid);
4719 num_modes += add_cea_modes(connector, edid);
4720 num_modes += add_alternate_cea_modes(connector, edid);
4721 num_modes += add_displayid_detailed_modes(connector, edid);
4722 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
4723 num_modes += add_inferred_modes(connector, edid);
4724
4725 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
4726 edid_fixup_preferred(connector, quirks);
4727
4728 if (quirks & EDID_QUIRK_FORCE_6BPC)
4729 connector->display_info.bpc = 6;
4730
4731 if (quirks & EDID_QUIRK_FORCE_8BPC)
4732 connector->display_info.bpc = 8;
4733
4734 if (quirks & EDID_QUIRK_FORCE_10BPC)
4735 connector->display_info.bpc = 10;
4736
4737 if (quirks & EDID_QUIRK_FORCE_12BPC)
4738 connector->display_info.bpc = 12;
4739
4740 return num_modes;
4741}
4742EXPORT_SYMBOL(drm_add_edid_modes);
4743
4744/**
4745 * drm_add_modes_noedid - add modes for the connectors without EDID
4746 * @connector: connector we're probing
4747 * @hdisplay: the horizontal display limit
4748 * @vdisplay: the vertical display limit
4749 *
4750 * Add the specified modes to the connector's mode list. Only when the
4751 * hdisplay/vdisplay is not beyond the given limit, it will be added.
4752 *
4753 * Return: The number of modes added or 0 if we couldn't find any.
4754 */
4755int drm_add_modes_noedid(struct drm_connector *connector,
4756 int hdisplay, int vdisplay)
4757{
4758 int i, count, num_modes = 0;
4759 struct drm_display_mode *mode;
4760 struct drm_device *dev = connector->dev;
4761
4762 count = ARRAY_SIZE(drm_dmt_modes);
4763 if (hdisplay < 0)
4764 hdisplay = 0;
4765 if (vdisplay < 0)
4766 vdisplay = 0;
4767
4768 for (i = 0; i < count; i++) {
4769 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
4770 if (hdisplay && vdisplay) {
4771 /*
4772 * Only when two are valid, they will be used to check
4773 * whether the mode should be added to the mode list of
4774 * the connector.
4775 */
4776 if (ptr->hdisplay > hdisplay ||
4777 ptr->vdisplay > vdisplay)
4778 continue;
4779 }
4780 if (drm_mode_vrefresh(ptr) > 61)
4781 continue;
4782 mode = drm_mode_duplicate(dev, ptr);
4783 if (mode) {
4784 drm_mode_probed_add(connector, mode);
4785 num_modes++;
4786 }
4787 }
4788 return num_modes;
4789}
4790EXPORT_SYMBOL(drm_add_modes_noedid);
4791
4792/**
4793 * drm_set_preferred_mode - Sets the preferred mode of a connector
4794 * @connector: connector whose mode list should be processed
4795 * @hpref: horizontal resolution of preferred mode
4796 * @vpref: vertical resolution of preferred mode
4797 *
4798 * Marks a mode as preferred if it matches the resolution specified by @hpref
4799 * and @vpref.
4800 */
4801void drm_set_preferred_mode(struct drm_connector *connector,
4802 int hpref, int vpref)
4803{
4804 struct drm_display_mode *mode;
4805
4806 list_for_each_entry(mode, &connector->probed_modes, head) {
4807 if (mode->hdisplay == hpref &&
4808 mode->vdisplay == vpref)
4809 mode->type |= DRM_MODE_TYPE_PREFERRED;
4810 }
4811}
4812EXPORT_SYMBOL(drm_set_preferred_mode);
4813
4814/**
4815 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
4816 * data from a DRM display mode
4817 * @frame: HDMI AVI infoframe
4818 * @mode: DRM display mode
4819 * @is_hdmi2_sink: Sink is HDMI 2.0 compliant
4820 *
4821 * Return: 0 on success or a negative error code on failure.
4822 */
4823int
4824drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
4825 const struct drm_display_mode *mode,
4826 bool is_hdmi2_sink)
4827{
4828 int err;
4829
4830 if (!frame || !mode)
4831 return -EINVAL;
4832
4833 err = hdmi_avi_infoframe_init(frame);
4834 if (err < 0)
4835 return err;
4836
4837 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
4838 frame->pixel_repeat = 1;
4839
4840 frame->video_code = drm_match_cea_mode(mode);
4841
4842 /*
4843 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
4844 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
4845 * have to make sure we dont break HDMI 1.4 sinks.
4846 */
4847 if (!is_hdmi2_sink && frame->video_code > 64)
4848 frame->video_code = 0;
4849
4850 /*
4851 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
4852 * we should send its VIC in vendor infoframes, else send the
4853 * VIC in AVI infoframes. Lets check if this mode is present in
4854 * HDMI 1.4b 4K modes
4855 */
4856 if (frame->video_code) {
4857 u8 vendor_if_vic = drm_match_hdmi_mode(mode);
4858 bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK;
4859
4860 if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d)
4861 frame->video_code = 0;
4862 }
4863
4864 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
4865
4866 /*
4867 * Populate picture aspect ratio from either
4868 * user input (if specified) or from the CEA mode list.
4869 */
4870 if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
4871 mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
4872 frame->picture_aspect = mode->picture_aspect_ratio;
4873 else if (frame->video_code > 0)
4874 frame->picture_aspect = drm_get_cea_aspect_ratio(
4875 frame->video_code);
4876
4877 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
4878 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
4879
4880 return 0;
4881}
4882EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
4883
4884/**
4885 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
4886 * quantization range information
4887 * @frame: HDMI AVI infoframe
4888 * @mode: DRM display mode
4889 * @rgb_quant_range: RGB quantization range (Q)
4890 * @rgb_quant_range_selectable: Sink support selectable RGB quantization range (QS)
4891 * @is_hdmi2_sink: HDMI 2.0 sink, which has different default recommendations
4892 *
4893 * Note that @is_hdmi2_sink can be derived by looking at the
4894 * &drm_scdc.supported flag stored in &drm_hdmi_info.scdc,
4895 * &drm_display_info.hdmi, which can be found in &drm_connector.display_info.
4896 */
4897void
4898drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
4899 const struct drm_display_mode *mode,
4900 enum hdmi_quantization_range rgb_quant_range,
4901 bool rgb_quant_range_selectable,
4902 bool is_hdmi2_sink)
4903{
4904 /*
4905 * CEA-861:
4906 * "A Source shall not send a non-zero Q value that does not correspond
4907 * to the default RGB Quantization Range for the transmitted Picture
4908 * unless the Sink indicates support for the Q bit in a Video
4909 * Capabilities Data Block."
4910 *
4911 * HDMI 2.0 recommends sending non-zero Q when it does match the
4912 * default RGB quantization range for the mode, even when QS=0.
4913 */
4914 if (rgb_quant_range_selectable ||
4915 rgb_quant_range == drm_default_rgb_quant_range(mode))
4916 frame->quantization_range = rgb_quant_range;
4917 else
4918 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
4919
4920 /*
4921 * CEA-861-F:
4922 * "When transmitting any RGB colorimetry, the Source should set the
4923 * YQ-field to match the RGB Quantization Range being transmitted
4924 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
4925 * set YQ=1) and the Sink shall ignore the YQ-field."
4926 *
4927 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
4928 * by non-zero YQ when receiving RGB. There doesn't seem to be any
4929 * good way to tell which version of CEA-861 the sink supports, so
4930 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
4931 * on on CEA-861-F.
4932 */
4933 if (!is_hdmi2_sink ||
4934 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
4935 frame->ycc_quantization_range =
4936 HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
4937 else
4938 frame->ycc_quantization_range =
4939 HDMI_YCC_QUANTIZATION_RANGE_FULL;
4940}
4941EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
4942
4943static enum hdmi_3d_structure
4944s3d_structure_from_display_mode(const struct drm_display_mode *mode)
4945{
4946 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
4947
4948 switch (layout) {
4949 case DRM_MODE_FLAG_3D_FRAME_PACKING:
4950 return HDMI_3D_STRUCTURE_FRAME_PACKING;
4951 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
4952 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
4953 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
4954 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
4955 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
4956 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
4957 case DRM_MODE_FLAG_3D_L_DEPTH:
4958 return HDMI_3D_STRUCTURE_L_DEPTH;
4959 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
4960 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
4961 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
4962 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
4963 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
4964 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
4965 default:
4966 return HDMI_3D_STRUCTURE_INVALID;
4967 }
4968}
4969
4970/**
4971 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
4972 * data from a DRM display mode
4973 * @frame: HDMI vendor infoframe
4974 * @connector: the connector
4975 * @mode: DRM display mode
4976 *
4977 * Note that there's is a need to send HDMI vendor infoframes only when using a
4978 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
4979 * function will return -EINVAL, error that can be safely ignored.
4980 *
4981 * Return: 0 on success or a negative error code on failure.
4982 */
4983int
4984drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
4985 struct drm_connector *connector,
4986 const struct drm_display_mode *mode)
4987{
4988 /*
4989 * FIXME: sil-sii8620 doesn't have a connector around when
4990 * we need one, so we have to be prepared for a NULL connector.
4991 */
4992 bool has_hdmi_infoframe = connector ?
4993 connector->display_info.has_hdmi_infoframe : false;
4994 int err;
4995 u32 s3d_flags;
4996 u8 vic;
4997
4998 if (!frame || !mode)
4999 return -EINVAL;
5000
5001 if (!has_hdmi_infoframe)
5002 return -EINVAL;
5003
5004 vic = drm_match_hdmi_mode(mode);
5005 s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
5006
5007 /*
5008 * Even if it's not absolutely necessary to send the infoframe
5009 * (ie.vic==0 and s3d_struct==0) we will still send it if we
5010 * know that the sink can handle it. This is based on a
5011 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
5012 * have trouble realizing that they shuld switch from 3D to 2D
5013 * mode if the source simply stops sending the infoframe when
5014 * it wants to switch from 3D to 2D.
5015 */
5016
5017 if (vic && s3d_flags)
5018 return -EINVAL;
5019
5020 err = hdmi_vendor_infoframe_init(frame);
5021 if (err < 0)
5022 return err;
5023
5024 frame->vic = vic;
5025 frame->s3d_struct = s3d_structure_from_display_mode(mode);
5026
5027 return 0;
5028}
5029EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
5030
5031static int drm_parse_tiled_block(struct drm_connector *connector,
5032 struct displayid_block *block)
5033{
5034 struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
5035 u16 w, h;
5036 u8 tile_v_loc, tile_h_loc;
5037 u8 num_v_tile, num_h_tile;
5038 struct drm_tile_group *tg;
5039
5040 w = tile->tile_size[0] | tile->tile_size[1] << 8;
5041 h = tile->tile_size[2] | tile->tile_size[3] << 8;
5042
5043 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
5044 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
5045 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
5046 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
5047
5048 connector->has_tile = true;
5049 if (tile->tile_cap & 0x80)
5050 connector->tile_is_single_monitor = true;
5051
5052 connector->num_h_tile = num_h_tile + 1;
5053 connector->num_v_tile = num_v_tile + 1;
5054 connector->tile_h_loc = tile_h_loc;
5055 connector->tile_v_loc = tile_v_loc;
5056 connector->tile_h_size = w + 1;
5057 connector->tile_v_size = h + 1;
5058
5059 DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
5060 DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
5061 DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
5062 num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
5063 DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
5064
5065 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
5066 if (!tg) {
5067 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
5068 }
5069 if (!tg)
5070 return -ENOMEM;
5071
5072 if (connector->tile_group != tg) {
5073 /* if we haven't got a pointer,
5074 take the reference, drop ref to old tile group */
5075 if (connector->tile_group) {
5076 drm_mode_put_tile_group(connector->dev, connector->tile_group);
5077 }
5078 connector->tile_group = tg;
5079 } else
5080 /* if same tile group, then release the ref we just took. */
5081 drm_mode_put_tile_group(connector->dev, tg);
5082 return 0;
5083}
5084
5085static int drm_parse_display_id(struct drm_connector *connector,
5086 u8 *displayid, int length,
5087 bool is_edid_extension)
5088{
5089 /* if this is an EDID extension the first byte will be 0x70 */
5090 int idx = 0;
5091 struct displayid_block *block;
5092 int ret;
5093
5094 if (is_edid_extension)
5095 idx = 1;
5096
5097 ret = validate_displayid(displayid, length, idx);
5098 if (ret)
5099 return ret;
5100
5101 idx += sizeof(struct displayid_hdr);
5102 while (block = (struct displayid_block *)&displayid[idx],
5103 idx + sizeof(struct displayid_block) <= length &&
5104 idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
5105 block->num_bytes > 0) {
5106 idx += block->num_bytes + sizeof(struct displayid_block);
5107 DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n",
5108 block->tag, block->rev, block->num_bytes);
5109
5110 switch (block->tag) {
5111 case DATA_BLOCK_TILED_DISPLAY:
5112 ret = drm_parse_tiled_block(connector, block);
5113 if (ret)
5114 return ret;
5115 break;
5116 case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
5117 /* handled in mode gathering code. */
5118 break;
5119 default:
5120 DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag);
5121 break;
5122 }
5123 }
5124 return 0;
5125}
5126
5127static void drm_get_displayid(struct drm_connector *connector,
5128 struct edid *edid)
5129{
5130 void *displayid = NULL;
5131 int ret;
5132 connector->has_tile = false;
5133 displayid = drm_find_displayid_extension(edid);
5134 if (!displayid) {
5135 /* drop reference to any tile group we had */
5136 goto out_drop_ref;
5137 }
5138
5139 ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
5140 if (ret < 0)
5141 goto out_drop_ref;
5142 if (!connector->has_tile)
5143 goto out_drop_ref;
5144 return;
5145out_drop_ref:
5146 if (connector->tile_group) {
5147 drm_mode_put_tile_group(connector->dev, connector->tile_group);
5148 connector->tile_group = NULL;
5149 }
5150 return;
5151}
1/*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30
31#include <linux/bitfield.h>
32#include <linux/cec.h>
33#include <linux/hdmi.h>
34#include <linux/i2c.h>
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/slab.h>
39#include <linux/vga_switcheroo.h>
40
41#include <drm/drm_displayid.h>
42#include <drm/drm_drv.h>
43#include <drm/drm_edid.h>
44#include <drm/drm_eld.h>
45#include <drm/drm_encoder.h>
46#include <drm/drm_print.h>
47
48#include "drm_crtc_internal.h"
49#include "drm_internal.h"
50
51static int oui(u8 first, u8 second, u8 third)
52{
53 return (first << 16) | (second << 8) | third;
54}
55
56#define EDID_EST_TIMINGS 16
57#define EDID_STD_TIMINGS 8
58#define EDID_DETAILED_TIMINGS 4
59
60/*
61 * EDID blocks out in the wild have a variety of bugs, try to collect
62 * them here (note that userspace may work around broken monitors first,
63 * but fixes should make their way here so that the kernel "just works"
64 * on as many displays as possible).
65 */
66
67/* First detailed mode wrong, use largest 60Hz mode */
68#define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
69/* Reported 135MHz pixel clock is too high, needs adjustment */
70#define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
71/* Prefer the largest mode at 75 Hz */
72#define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
73/* Detail timing is in cm not mm */
74#define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
75/* Detailed timing descriptors have bogus size values, so just take the
76 * maximum size and use that.
77 */
78#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
79/* use +hsync +vsync for detailed mode */
80#define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
81/* Force reduced-blanking timings for detailed modes */
82#define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
83/* Force 8bpc */
84#define EDID_QUIRK_FORCE_8BPC (1 << 8)
85/* Force 12bpc */
86#define EDID_QUIRK_FORCE_12BPC (1 << 9)
87/* Force 6bpc */
88#define EDID_QUIRK_FORCE_6BPC (1 << 10)
89/* Force 10bpc */
90#define EDID_QUIRK_FORCE_10BPC (1 << 11)
91/* Non desktop display (i.e. HMD) */
92#define EDID_QUIRK_NON_DESKTOP (1 << 12)
93/* Cap the DSC target bitrate to 15bpp */
94#define EDID_QUIRK_CAP_DSC_15BPP (1 << 13)
95
96#define MICROSOFT_IEEE_OUI 0xca125c
97
98struct detailed_mode_closure {
99 struct drm_connector *connector;
100 const struct drm_edid *drm_edid;
101 bool preferred;
102 int modes;
103};
104
105#define LEVEL_DMT 0
106#define LEVEL_GTF 1
107#define LEVEL_GTF2 2
108#define LEVEL_CVT 3
109
110#define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
111{ \
112 .panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
113 product_id), \
114 .quirks = _quirks \
115}
116
117static const struct edid_quirk {
118 u32 panel_id;
119 u32 quirks;
120} edid_quirk_list[] = {
121 /* Acer AL1706 */
122 EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
123 /* Acer F51 */
124 EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
125
126 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
127 EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
128
129 /* BenQ GW2765 */
130 EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
131
132 /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
133 EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
134
135 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
136 EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
137
138 /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
139 EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
140
141 /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
142 EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
143
144 /* Belinea 10 15 55 */
145 EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
146 EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
147
148 /* Envision Peripherals, Inc. EN-7100e */
149 EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
150 /* Envision EN2028 */
151 EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
152
153 /* Funai Electronics PM36B */
154 EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
155 EDID_QUIRK_DETAILED_IN_CM),
156
157 /* LG 27GP950 */
158 EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
159
160 /* LG 27GN950 */
161 EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
162
163 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
164 EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
165
166 /* LG Philips LCD LP154W01-A5 */
167 EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
168 EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
169
170 /* Samsung SyncMaster 205BW. Note: irony */
171 EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
172 /* Samsung SyncMaster 22[5-6]BW */
173 EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
174 EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
175
176 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
177 EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
178
179 /* ViewSonic VA2026w */
180 EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
181
182 /* Medion MD 30217 PG */
183 EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
184
185 /* Lenovo G50 */
186 EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
187
188 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
189 EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
190
191 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
192 EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
193
194 /* Valve Index Headset */
195 EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
196 EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
197 EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
198 EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
199 EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
200 EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
201 EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
202 EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
203 EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
204 EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
205 EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
206 EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
207 EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
208 EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
209 EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
210 EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
211 EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
212
213 /* HTC Vive and Vive Pro VR Headsets */
214 EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
215 EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
216
217 /* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
218 EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
219 EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
220 EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
221 EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
222
223 /* Windows Mixed Reality Headsets */
224 EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
225 EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
226 EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
227 EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
228 EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
229 EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
230
231 /* Sony PlayStation VR Headset */
232 EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
233
234 /* Sensics VR Headsets */
235 EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
236
237 /* OSVR HDK and HDK2 VR Headsets */
238 EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
239 EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
240};
241
242/*
243 * Autogenerated from the DMT spec.
244 * This table is copied from xfree86/modes/xf86EdidModes.c.
245 */
246static const struct drm_display_mode drm_dmt_modes[] = {
247 /* 0x01 - 640x350@85Hz */
248 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
249 736, 832, 0, 350, 382, 385, 445, 0,
250 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
251 /* 0x02 - 640x400@85Hz */
252 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
253 736, 832, 0, 400, 401, 404, 445, 0,
254 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
255 /* 0x03 - 720x400@85Hz */
256 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
257 828, 936, 0, 400, 401, 404, 446, 0,
258 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
259 /* 0x04 - 640x480@60Hz */
260 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
261 752, 800, 0, 480, 490, 492, 525, 0,
262 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
263 /* 0x05 - 640x480@72Hz */
264 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
265 704, 832, 0, 480, 489, 492, 520, 0,
266 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
267 /* 0x06 - 640x480@75Hz */
268 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
269 720, 840, 0, 480, 481, 484, 500, 0,
270 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
271 /* 0x07 - 640x480@85Hz */
272 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
273 752, 832, 0, 480, 481, 484, 509, 0,
274 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
275 /* 0x08 - 800x600@56Hz */
276 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
277 896, 1024, 0, 600, 601, 603, 625, 0,
278 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 /* 0x09 - 800x600@60Hz */
280 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
281 968, 1056, 0, 600, 601, 605, 628, 0,
282 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
283 /* 0x0a - 800x600@72Hz */
284 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
285 976, 1040, 0, 600, 637, 643, 666, 0,
286 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
287 /* 0x0b - 800x600@75Hz */
288 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
289 896, 1056, 0, 600, 601, 604, 625, 0,
290 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
291 /* 0x0c - 800x600@85Hz */
292 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
293 896, 1048, 0, 600, 601, 604, 631, 0,
294 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295 /* 0x0d - 800x600@120Hz RB */
296 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
297 880, 960, 0, 600, 603, 607, 636, 0,
298 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
299 /* 0x0e - 848x480@60Hz */
300 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
301 976, 1088, 0, 480, 486, 494, 517, 0,
302 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
303 /* 0x0f - 1024x768@43Hz, interlace */
304 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
305 1208, 1264, 0, 768, 768, 776, 817, 0,
306 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
307 DRM_MODE_FLAG_INTERLACE) },
308 /* 0x10 - 1024x768@60Hz */
309 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
310 1184, 1344, 0, 768, 771, 777, 806, 0,
311 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
312 /* 0x11 - 1024x768@70Hz */
313 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
314 1184, 1328, 0, 768, 771, 777, 806, 0,
315 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
316 /* 0x12 - 1024x768@75Hz */
317 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
318 1136, 1312, 0, 768, 769, 772, 800, 0,
319 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
320 /* 0x13 - 1024x768@85Hz */
321 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
322 1168, 1376, 0, 768, 769, 772, 808, 0,
323 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
324 /* 0x14 - 1024x768@120Hz RB */
325 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
326 1104, 1184, 0, 768, 771, 775, 813, 0,
327 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
328 /* 0x15 - 1152x864@75Hz */
329 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
330 1344, 1600, 0, 864, 865, 868, 900, 0,
331 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
332 /* 0x55 - 1280x720@60Hz */
333 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
334 1430, 1650, 0, 720, 725, 730, 750, 0,
335 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
336 /* 0x16 - 1280x768@60Hz RB */
337 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
338 1360, 1440, 0, 768, 771, 778, 790, 0,
339 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
340 /* 0x17 - 1280x768@60Hz */
341 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
342 1472, 1664, 0, 768, 771, 778, 798, 0,
343 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
344 /* 0x18 - 1280x768@75Hz */
345 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
346 1488, 1696, 0, 768, 771, 778, 805, 0,
347 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
348 /* 0x19 - 1280x768@85Hz */
349 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
350 1496, 1712, 0, 768, 771, 778, 809, 0,
351 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
352 /* 0x1a - 1280x768@120Hz RB */
353 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
354 1360, 1440, 0, 768, 771, 778, 813, 0,
355 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
356 /* 0x1b - 1280x800@60Hz RB */
357 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
358 1360, 1440, 0, 800, 803, 809, 823, 0,
359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
360 /* 0x1c - 1280x800@60Hz */
361 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
362 1480, 1680, 0, 800, 803, 809, 831, 0,
363 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
364 /* 0x1d - 1280x800@75Hz */
365 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
366 1488, 1696, 0, 800, 803, 809, 838, 0,
367 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
368 /* 0x1e - 1280x800@85Hz */
369 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
370 1496, 1712, 0, 800, 803, 809, 843, 0,
371 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
372 /* 0x1f - 1280x800@120Hz RB */
373 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
374 1360, 1440, 0, 800, 803, 809, 847, 0,
375 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
376 /* 0x20 - 1280x960@60Hz */
377 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
378 1488, 1800, 0, 960, 961, 964, 1000, 0,
379 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
380 /* 0x21 - 1280x960@85Hz */
381 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
382 1504, 1728, 0, 960, 961, 964, 1011, 0,
383 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 /* 0x22 - 1280x960@120Hz RB */
385 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
386 1360, 1440, 0, 960, 963, 967, 1017, 0,
387 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
388 /* 0x23 - 1280x1024@60Hz */
389 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
390 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
391 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
392 /* 0x24 - 1280x1024@75Hz */
393 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
394 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
395 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
396 /* 0x25 - 1280x1024@85Hz */
397 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
398 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
400 /* 0x26 - 1280x1024@120Hz RB */
401 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
402 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
403 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
404 /* 0x27 - 1360x768@60Hz */
405 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
406 1536, 1792, 0, 768, 771, 777, 795, 0,
407 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
408 /* 0x28 - 1360x768@120Hz RB */
409 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
410 1440, 1520, 0, 768, 771, 776, 813, 0,
411 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
412 /* 0x51 - 1366x768@60Hz */
413 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
414 1579, 1792, 0, 768, 771, 774, 798, 0,
415 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
416 /* 0x56 - 1366x768@60Hz */
417 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
418 1436, 1500, 0, 768, 769, 772, 800, 0,
419 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 /* 0x29 - 1400x1050@60Hz RB */
421 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
422 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
423 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
424 /* 0x2a - 1400x1050@60Hz */
425 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
426 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
427 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
428 /* 0x2b - 1400x1050@75Hz */
429 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
430 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
431 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
432 /* 0x2c - 1400x1050@85Hz */
433 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
434 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
435 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
436 /* 0x2d - 1400x1050@120Hz RB */
437 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
438 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
439 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
440 /* 0x2e - 1440x900@60Hz RB */
441 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
442 1520, 1600, 0, 900, 903, 909, 926, 0,
443 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
444 /* 0x2f - 1440x900@60Hz */
445 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
446 1672, 1904, 0, 900, 903, 909, 934, 0,
447 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
448 /* 0x30 - 1440x900@75Hz */
449 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
450 1688, 1936, 0, 900, 903, 909, 942, 0,
451 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452 /* 0x31 - 1440x900@85Hz */
453 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
454 1696, 1952, 0, 900, 903, 909, 948, 0,
455 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
456 /* 0x32 - 1440x900@120Hz RB */
457 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
458 1520, 1600, 0, 900, 903, 909, 953, 0,
459 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
460 /* 0x53 - 1600x900@60Hz */
461 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
462 1704, 1800, 0, 900, 901, 904, 1000, 0,
463 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
464 /* 0x33 - 1600x1200@60Hz */
465 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
466 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
467 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
468 /* 0x34 - 1600x1200@65Hz */
469 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
470 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
471 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
472 /* 0x35 - 1600x1200@70Hz */
473 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
474 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
475 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
476 /* 0x36 - 1600x1200@75Hz */
477 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
478 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
479 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
480 /* 0x37 - 1600x1200@85Hz */
481 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
482 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
483 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
484 /* 0x38 - 1600x1200@120Hz RB */
485 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
486 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
487 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
488 /* 0x39 - 1680x1050@60Hz RB */
489 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
490 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
491 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
492 /* 0x3a - 1680x1050@60Hz */
493 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
494 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
495 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
496 /* 0x3b - 1680x1050@75Hz */
497 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
498 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
499 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
500 /* 0x3c - 1680x1050@85Hz */
501 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
502 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
503 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
504 /* 0x3d - 1680x1050@120Hz RB */
505 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
506 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
507 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
508 /* 0x3e - 1792x1344@60Hz */
509 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
510 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
511 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
512 /* 0x3f - 1792x1344@75Hz */
513 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
514 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
515 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
516 /* 0x40 - 1792x1344@120Hz RB */
517 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
518 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
519 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
520 /* 0x41 - 1856x1392@60Hz */
521 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
522 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
523 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
524 /* 0x42 - 1856x1392@75Hz */
525 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
526 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
527 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
528 /* 0x43 - 1856x1392@120Hz RB */
529 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
530 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
531 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
532 /* 0x52 - 1920x1080@60Hz */
533 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
534 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
535 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
536 /* 0x44 - 1920x1200@60Hz RB */
537 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
538 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
539 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
540 /* 0x45 - 1920x1200@60Hz */
541 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
542 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
543 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
544 /* 0x46 - 1920x1200@75Hz */
545 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
546 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
547 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
548 /* 0x47 - 1920x1200@85Hz */
549 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
550 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
551 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
552 /* 0x48 - 1920x1200@120Hz RB */
553 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
554 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
555 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
556 /* 0x49 - 1920x1440@60Hz */
557 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
558 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
559 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
560 /* 0x4a - 1920x1440@75Hz */
561 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
562 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
563 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
564 /* 0x4b - 1920x1440@120Hz RB */
565 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
566 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
567 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
568 /* 0x54 - 2048x1152@60Hz */
569 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
570 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
571 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
572 /* 0x4c - 2560x1600@60Hz RB */
573 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
574 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
575 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
576 /* 0x4d - 2560x1600@60Hz */
577 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
578 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
579 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
580 /* 0x4e - 2560x1600@75Hz */
581 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
582 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
583 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
584 /* 0x4f - 2560x1600@85Hz */
585 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
586 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
587 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
588 /* 0x50 - 2560x1600@120Hz RB */
589 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
590 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
591 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
592 /* 0x57 - 4096x2160@60Hz RB */
593 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
594 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
595 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
596 /* 0x58 - 4096x2160@59.94Hz RB */
597 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
598 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
599 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
600};
601
602/*
603 * These more or less come from the DMT spec. The 720x400 modes are
604 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
605 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
606 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
607 * mode.
608 *
609 * The DMT modes have been fact-checked; the rest are mild guesses.
610 */
611static const struct drm_display_mode edid_est_modes[] = {
612 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
613 968, 1056, 0, 600, 601, 605, 628, 0,
614 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
615 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
616 896, 1024, 0, 600, 601, 603, 625, 0,
617 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
618 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
619 720, 840, 0, 480, 481, 484, 500, 0,
620 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
621 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
622 704, 832, 0, 480, 489, 492, 520, 0,
623 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
624 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
625 768, 864, 0, 480, 483, 486, 525, 0,
626 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
627 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
628 752, 800, 0, 480, 490, 492, 525, 0,
629 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
630 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
631 846, 900, 0, 400, 421, 423, 449, 0,
632 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
633 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
634 846, 900, 0, 400, 412, 414, 449, 0,
635 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
636 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
637 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
638 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
639 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
640 1136, 1312, 0, 768, 769, 772, 800, 0,
641 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
642 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
643 1184, 1328, 0, 768, 771, 777, 806, 0,
644 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
645 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
646 1184, 1344, 0, 768, 771, 777, 806, 0,
647 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
648 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
649 1208, 1264, 0, 768, 768, 776, 817, 0,
650 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
651 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
652 928, 1152, 0, 624, 625, 628, 667, 0,
653 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
654 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
655 896, 1056, 0, 600, 601, 604, 625, 0,
656 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
657 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
658 976, 1040, 0, 600, 637, 643, 666, 0,
659 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
660 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
661 1344, 1600, 0, 864, 865, 868, 900, 0,
662 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
663};
664
665struct minimode {
666 short w;
667 short h;
668 short r;
669 short rb;
670};
671
672static const struct minimode est3_modes[] = {
673 /* byte 6 */
674 { 640, 350, 85, 0 },
675 { 640, 400, 85, 0 },
676 { 720, 400, 85, 0 },
677 { 640, 480, 85, 0 },
678 { 848, 480, 60, 0 },
679 { 800, 600, 85, 0 },
680 { 1024, 768, 85, 0 },
681 { 1152, 864, 75, 0 },
682 /* byte 7 */
683 { 1280, 768, 60, 1 },
684 { 1280, 768, 60, 0 },
685 { 1280, 768, 75, 0 },
686 { 1280, 768, 85, 0 },
687 { 1280, 960, 60, 0 },
688 { 1280, 960, 85, 0 },
689 { 1280, 1024, 60, 0 },
690 { 1280, 1024, 85, 0 },
691 /* byte 8 */
692 { 1360, 768, 60, 0 },
693 { 1440, 900, 60, 1 },
694 { 1440, 900, 60, 0 },
695 { 1440, 900, 75, 0 },
696 { 1440, 900, 85, 0 },
697 { 1400, 1050, 60, 1 },
698 { 1400, 1050, 60, 0 },
699 { 1400, 1050, 75, 0 },
700 /* byte 9 */
701 { 1400, 1050, 85, 0 },
702 { 1680, 1050, 60, 1 },
703 { 1680, 1050, 60, 0 },
704 { 1680, 1050, 75, 0 },
705 { 1680, 1050, 85, 0 },
706 { 1600, 1200, 60, 0 },
707 { 1600, 1200, 65, 0 },
708 { 1600, 1200, 70, 0 },
709 /* byte 10 */
710 { 1600, 1200, 75, 0 },
711 { 1600, 1200, 85, 0 },
712 { 1792, 1344, 60, 0 },
713 { 1792, 1344, 75, 0 },
714 { 1856, 1392, 60, 0 },
715 { 1856, 1392, 75, 0 },
716 { 1920, 1200, 60, 1 },
717 { 1920, 1200, 60, 0 },
718 /* byte 11 */
719 { 1920, 1200, 75, 0 },
720 { 1920, 1200, 85, 0 },
721 { 1920, 1440, 60, 0 },
722 { 1920, 1440, 75, 0 },
723};
724
725static const struct minimode extra_modes[] = {
726 { 1024, 576, 60, 0 },
727 { 1366, 768, 60, 0 },
728 { 1600, 900, 60, 0 },
729 { 1680, 945, 60, 0 },
730 { 1920, 1080, 60, 0 },
731 { 2048, 1152, 60, 0 },
732 { 2048, 1536, 60, 0 },
733};
734
735/*
736 * From CEA/CTA-861 spec.
737 *
738 * Do not access directly, instead always use cea_mode_for_vic().
739 */
740static const struct drm_display_mode edid_cea_modes_1[] = {
741 /* 1 - 640x480@60Hz 4:3 */
742 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
743 752, 800, 0, 480, 490, 492, 525, 0,
744 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
745 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
746 /* 2 - 720x480@60Hz 4:3 */
747 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
748 798, 858, 0, 480, 489, 495, 525, 0,
749 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
750 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
751 /* 3 - 720x480@60Hz 16:9 */
752 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
753 798, 858, 0, 480, 489, 495, 525, 0,
754 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
755 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
756 /* 4 - 1280x720@60Hz 16:9 */
757 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
758 1430, 1650, 0, 720, 725, 730, 750, 0,
759 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
760 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
761 /* 5 - 1920x1080i@60Hz 16:9 */
762 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
763 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
764 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
765 DRM_MODE_FLAG_INTERLACE),
766 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
767 /* 6 - 720(1440)x480i@60Hz 4:3 */
768 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
769 801, 858, 0, 480, 488, 494, 525, 0,
770 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
771 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
772 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
773 /* 7 - 720(1440)x480i@60Hz 16:9 */
774 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
775 801, 858, 0, 480, 488, 494, 525, 0,
776 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
777 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
778 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
779 /* 8 - 720(1440)x240@60Hz 4:3 */
780 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
781 801, 858, 0, 240, 244, 247, 262, 0,
782 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
783 DRM_MODE_FLAG_DBLCLK),
784 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
785 /* 9 - 720(1440)x240@60Hz 16:9 */
786 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
787 801, 858, 0, 240, 244, 247, 262, 0,
788 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
789 DRM_MODE_FLAG_DBLCLK),
790 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
791 /* 10 - 2880x480i@60Hz 4:3 */
792 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
793 3204, 3432, 0, 480, 488, 494, 525, 0,
794 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
795 DRM_MODE_FLAG_INTERLACE),
796 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
797 /* 11 - 2880x480i@60Hz 16:9 */
798 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
799 3204, 3432, 0, 480, 488, 494, 525, 0,
800 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
801 DRM_MODE_FLAG_INTERLACE),
802 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
803 /* 12 - 2880x240@60Hz 4:3 */
804 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
805 3204, 3432, 0, 240, 244, 247, 262, 0,
806 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
807 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
808 /* 13 - 2880x240@60Hz 16:9 */
809 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
810 3204, 3432, 0, 240, 244, 247, 262, 0,
811 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
812 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
813 /* 14 - 1440x480@60Hz 4:3 */
814 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
815 1596, 1716, 0, 480, 489, 495, 525, 0,
816 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
817 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
818 /* 15 - 1440x480@60Hz 16:9 */
819 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
820 1596, 1716, 0, 480, 489, 495, 525, 0,
821 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
822 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
823 /* 16 - 1920x1080@60Hz 16:9 */
824 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
825 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
826 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
827 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
828 /* 17 - 720x576@50Hz 4:3 */
829 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
830 796, 864, 0, 576, 581, 586, 625, 0,
831 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
832 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
833 /* 18 - 720x576@50Hz 16:9 */
834 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
835 796, 864, 0, 576, 581, 586, 625, 0,
836 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
837 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
838 /* 19 - 1280x720@50Hz 16:9 */
839 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
840 1760, 1980, 0, 720, 725, 730, 750, 0,
841 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
842 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
843 /* 20 - 1920x1080i@50Hz 16:9 */
844 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
845 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
846 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
847 DRM_MODE_FLAG_INTERLACE),
848 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849 /* 21 - 720(1440)x576i@50Hz 4:3 */
850 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
851 795, 864, 0, 576, 580, 586, 625, 0,
852 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
853 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
854 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
855 /* 22 - 720(1440)x576i@50Hz 16:9 */
856 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
857 795, 864, 0, 576, 580, 586, 625, 0,
858 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
859 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
860 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
861 /* 23 - 720(1440)x288@50Hz 4:3 */
862 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
863 795, 864, 0, 288, 290, 293, 312, 0,
864 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
865 DRM_MODE_FLAG_DBLCLK),
866 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
867 /* 24 - 720(1440)x288@50Hz 16:9 */
868 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
869 795, 864, 0, 288, 290, 293, 312, 0,
870 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
871 DRM_MODE_FLAG_DBLCLK),
872 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
873 /* 25 - 2880x576i@50Hz 4:3 */
874 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
875 3180, 3456, 0, 576, 580, 586, 625, 0,
876 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
877 DRM_MODE_FLAG_INTERLACE),
878 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
879 /* 26 - 2880x576i@50Hz 16:9 */
880 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
881 3180, 3456, 0, 576, 580, 586, 625, 0,
882 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
883 DRM_MODE_FLAG_INTERLACE),
884 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
885 /* 27 - 2880x288@50Hz 4:3 */
886 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
887 3180, 3456, 0, 288, 290, 293, 312, 0,
888 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
889 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
890 /* 28 - 2880x288@50Hz 16:9 */
891 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
892 3180, 3456, 0, 288, 290, 293, 312, 0,
893 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
894 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
895 /* 29 - 1440x576@50Hz 4:3 */
896 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
897 1592, 1728, 0, 576, 581, 586, 625, 0,
898 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
899 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
900 /* 30 - 1440x576@50Hz 16:9 */
901 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
902 1592, 1728, 0, 576, 581, 586, 625, 0,
903 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
904 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
905 /* 31 - 1920x1080@50Hz 16:9 */
906 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
907 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
908 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
909 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
910 /* 32 - 1920x1080@24Hz 16:9 */
911 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
912 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
913 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
914 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
915 /* 33 - 1920x1080@25Hz 16:9 */
916 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
917 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
918 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
919 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
920 /* 34 - 1920x1080@30Hz 16:9 */
921 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
922 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
923 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
924 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
925 /* 35 - 2880x480@60Hz 4:3 */
926 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
927 3192, 3432, 0, 480, 489, 495, 525, 0,
928 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
929 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
930 /* 36 - 2880x480@60Hz 16:9 */
931 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
932 3192, 3432, 0, 480, 489, 495, 525, 0,
933 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
934 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
935 /* 37 - 2880x576@50Hz 4:3 */
936 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
937 3184, 3456, 0, 576, 581, 586, 625, 0,
938 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
939 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
940 /* 38 - 2880x576@50Hz 16:9 */
941 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
942 3184, 3456, 0, 576, 581, 586, 625, 0,
943 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
944 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
945 /* 39 - 1920x1080i@50Hz 16:9 */
946 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
947 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
948 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
949 DRM_MODE_FLAG_INTERLACE),
950 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
951 /* 40 - 1920x1080i@100Hz 16:9 */
952 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
953 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
954 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
955 DRM_MODE_FLAG_INTERLACE),
956 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
957 /* 41 - 1280x720@100Hz 16:9 */
958 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
959 1760, 1980, 0, 720, 725, 730, 750, 0,
960 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
961 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
962 /* 42 - 720x576@100Hz 4:3 */
963 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
964 796, 864, 0, 576, 581, 586, 625, 0,
965 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
966 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
967 /* 43 - 720x576@100Hz 16:9 */
968 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
969 796, 864, 0, 576, 581, 586, 625, 0,
970 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
971 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
972 /* 44 - 720(1440)x576i@100Hz 4:3 */
973 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
974 795, 864, 0, 576, 580, 586, 625, 0,
975 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
976 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
977 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
978 /* 45 - 720(1440)x576i@100Hz 16:9 */
979 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
980 795, 864, 0, 576, 580, 586, 625, 0,
981 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
982 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
983 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
984 /* 46 - 1920x1080i@120Hz 16:9 */
985 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
986 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
987 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
988 DRM_MODE_FLAG_INTERLACE),
989 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
990 /* 47 - 1280x720@120Hz 16:9 */
991 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
992 1430, 1650, 0, 720, 725, 730, 750, 0,
993 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
994 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
995 /* 48 - 720x480@120Hz 4:3 */
996 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
997 798, 858, 0, 480, 489, 495, 525, 0,
998 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
999 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1000 /* 49 - 720x480@120Hz 16:9 */
1001 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1002 798, 858, 0, 480, 489, 495, 525, 0,
1003 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1004 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1005 /* 50 - 720(1440)x480i@120Hz 4:3 */
1006 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007 801, 858, 0, 480, 488, 494, 525, 0,
1008 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1011 /* 51 - 720(1440)x480i@120Hz 16:9 */
1012 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1013 801, 858, 0, 480, 488, 494, 525, 0,
1014 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1015 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1016 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1017 /* 52 - 720x576@200Hz 4:3 */
1018 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1019 796, 864, 0, 576, 581, 586, 625, 0,
1020 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1021 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1022 /* 53 - 720x576@200Hz 16:9 */
1023 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1024 796, 864, 0, 576, 581, 586, 625, 0,
1025 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1026 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1027 /* 54 - 720(1440)x576i@200Hz 4:3 */
1028 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029 795, 864, 0, 576, 580, 586, 625, 0,
1030 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1033 /* 55 - 720(1440)x576i@200Hz 16:9 */
1034 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1035 795, 864, 0, 576, 580, 586, 625, 0,
1036 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1037 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1038 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1039 /* 56 - 720x480@240Hz 4:3 */
1040 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1041 798, 858, 0, 480, 489, 495, 525, 0,
1042 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1043 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1044 /* 57 - 720x480@240Hz 16:9 */
1045 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1046 798, 858, 0, 480, 489, 495, 525, 0,
1047 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1048 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1049 /* 58 - 720(1440)x480i@240Hz 4:3 */
1050 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051 801, 858, 0, 480, 488, 494, 525, 0,
1052 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1055 /* 59 - 720(1440)x480i@240Hz 16:9 */
1056 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1057 801, 858, 0, 480, 488, 494, 525, 0,
1058 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1059 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1060 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1061 /* 60 - 1280x720@24Hz 16:9 */
1062 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1063 3080, 3300, 0, 720, 725, 730, 750, 0,
1064 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1066 /* 61 - 1280x720@25Hz 16:9 */
1067 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1068 3740, 3960, 0, 720, 725, 730, 750, 0,
1069 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1071 /* 62 - 1280x720@30Hz 16:9 */
1072 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1073 3080, 3300, 0, 720, 725, 730, 750, 0,
1074 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1076 /* 63 - 1920x1080@120Hz 16:9 */
1077 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1078 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1079 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1081 /* 64 - 1920x1080@100Hz 16:9 */
1082 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1083 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1084 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1086 /* 65 - 1280x720@24Hz 64:27 */
1087 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1088 3080, 3300, 0, 720, 725, 730, 750, 0,
1089 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091 /* 66 - 1280x720@25Hz 64:27 */
1092 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1093 3740, 3960, 0, 720, 725, 730, 750, 0,
1094 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096 /* 67 - 1280x720@30Hz 64:27 */
1097 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1098 3080, 3300, 0, 720, 725, 730, 750, 0,
1099 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101 /* 68 - 1280x720@50Hz 64:27 */
1102 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1103 1760, 1980, 0, 720, 725, 730, 750, 0,
1104 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106 /* 69 - 1280x720@60Hz 64:27 */
1107 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1108 1430, 1650, 0, 720, 725, 730, 750, 0,
1109 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111 /* 70 - 1280x720@100Hz 64:27 */
1112 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1113 1760, 1980, 0, 720, 725, 730, 750, 0,
1114 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116 /* 71 - 1280x720@120Hz 64:27 */
1117 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1118 1430, 1650, 0, 720, 725, 730, 750, 0,
1119 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121 /* 72 - 1920x1080@24Hz 64:27 */
1122 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1123 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1124 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126 /* 73 - 1920x1080@25Hz 64:27 */
1127 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1128 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1129 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131 /* 74 - 1920x1080@30Hz 64:27 */
1132 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1133 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1134 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136 /* 75 - 1920x1080@50Hz 64:27 */
1137 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1138 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1139 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141 /* 76 - 1920x1080@60Hz 64:27 */
1142 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1143 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1144 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146 /* 77 - 1920x1080@100Hz 64:27 */
1147 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1148 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1149 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151 /* 78 - 1920x1080@120Hz 64:27 */
1152 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1153 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1154 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156 /* 79 - 1680x720@24Hz 64:27 */
1157 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1158 3080, 3300, 0, 720, 725, 730, 750, 0,
1159 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161 /* 80 - 1680x720@25Hz 64:27 */
1162 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1163 2948, 3168, 0, 720, 725, 730, 750, 0,
1164 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166 /* 81 - 1680x720@30Hz 64:27 */
1167 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1168 2420, 2640, 0, 720, 725, 730, 750, 0,
1169 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171 /* 82 - 1680x720@50Hz 64:27 */
1172 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1173 1980, 2200, 0, 720, 725, 730, 750, 0,
1174 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176 /* 83 - 1680x720@60Hz 64:27 */
1177 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1178 1980, 2200, 0, 720, 725, 730, 750, 0,
1179 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181 /* 84 - 1680x720@100Hz 64:27 */
1182 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1183 1780, 2000, 0, 720, 725, 730, 825, 0,
1184 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186 /* 85 - 1680x720@120Hz 64:27 */
1187 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1188 1780, 2000, 0, 720, 725, 730, 825, 0,
1189 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191 /* 86 - 2560x1080@24Hz 64:27 */
1192 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1193 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1194 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196 /* 87 - 2560x1080@25Hz 64:27 */
1197 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1198 3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1199 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201 /* 88 - 2560x1080@30Hz 64:27 */
1202 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1203 3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1204 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206 /* 89 - 2560x1080@50Hz 64:27 */
1207 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1208 3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1209 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1211 /* 90 - 2560x1080@60Hz 64:27 */
1212 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1213 2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1214 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1216 /* 91 - 2560x1080@100Hz 64:27 */
1217 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1218 2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1219 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1221 /* 92 - 2560x1080@120Hz 64:27 */
1222 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1223 3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1224 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1226 /* 93 - 3840x2160@24Hz 16:9 */
1227 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1228 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1229 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1231 /* 94 - 3840x2160@25Hz 16:9 */
1232 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1233 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1234 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1236 /* 95 - 3840x2160@30Hz 16:9 */
1237 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1238 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1239 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1241 /* 96 - 3840x2160@50Hz 16:9 */
1242 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1243 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1244 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1246 /* 97 - 3840x2160@60Hz 16:9 */
1247 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1248 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1249 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1251 /* 98 - 4096x2160@24Hz 256:135 */
1252 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1253 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1254 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1256 /* 99 - 4096x2160@25Hz 256:135 */
1257 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1258 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1259 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1261 /* 100 - 4096x2160@30Hz 256:135 */
1262 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1263 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1264 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1266 /* 101 - 4096x2160@50Hz 256:135 */
1267 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1268 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1269 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1271 /* 102 - 4096x2160@60Hz 256:135 */
1272 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1273 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1274 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1276 /* 103 - 3840x2160@24Hz 64:27 */
1277 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1278 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1279 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1281 /* 104 - 3840x2160@25Hz 64:27 */
1282 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1283 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1284 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1285 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1286 /* 105 - 3840x2160@30Hz 64:27 */
1287 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1288 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1289 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1290 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1291 /* 106 - 3840x2160@50Hz 64:27 */
1292 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1293 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1294 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1295 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1296 /* 107 - 3840x2160@60Hz 64:27 */
1297 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1298 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1299 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1301 /* 108 - 1280x720@48Hz 16:9 */
1302 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1303 2280, 2500, 0, 720, 725, 730, 750, 0,
1304 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1305 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1306 /* 109 - 1280x720@48Hz 64:27 */
1307 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1308 2280, 2500, 0, 720, 725, 730, 750, 0,
1309 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1310 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1311 /* 110 - 1680x720@48Hz 64:27 */
1312 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1313 2530, 2750, 0, 720, 725, 730, 750, 0,
1314 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1315 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1316 /* 111 - 1920x1080@48Hz 16:9 */
1317 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1318 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1319 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1320 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1321 /* 112 - 1920x1080@48Hz 64:27 */
1322 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1323 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1324 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1325 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1326 /* 113 - 2560x1080@48Hz 64:27 */
1327 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1328 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1329 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1330 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1331 /* 114 - 3840x2160@48Hz 16:9 */
1332 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1333 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1334 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1335 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1336 /* 115 - 4096x2160@48Hz 256:135 */
1337 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1338 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1339 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1340 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1341 /* 116 - 3840x2160@48Hz 64:27 */
1342 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1343 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1344 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1345 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1346 /* 117 - 3840x2160@100Hz 16:9 */
1347 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1348 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1349 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1350 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1351 /* 118 - 3840x2160@120Hz 16:9 */
1352 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1353 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1354 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1355 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1356 /* 119 - 3840x2160@100Hz 64:27 */
1357 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1358 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1360 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1361 /* 120 - 3840x2160@120Hz 64:27 */
1362 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1363 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1364 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1365 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1366 /* 121 - 5120x2160@24Hz 64:27 */
1367 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1368 7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1369 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1370 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1371 /* 122 - 5120x2160@25Hz 64:27 */
1372 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1373 6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1374 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1375 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1376 /* 123 - 5120x2160@30Hz 64:27 */
1377 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1378 5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1379 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1380 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1381 /* 124 - 5120x2160@48Hz 64:27 */
1382 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1383 5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1384 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1385 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1386 /* 125 - 5120x2160@50Hz 64:27 */
1387 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1388 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1389 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1390 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1391 /* 126 - 5120x2160@60Hz 64:27 */
1392 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1393 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1394 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1395 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1396 /* 127 - 5120x2160@100Hz 64:27 */
1397 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1398 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1400 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1401};
1402
1403/*
1404 * From CEA/CTA-861 spec.
1405 *
1406 * Do not access directly, instead always use cea_mode_for_vic().
1407 */
1408static const struct drm_display_mode edid_cea_modes_193[] = {
1409 /* 193 - 5120x2160@120Hz 64:27 */
1410 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1411 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1412 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1413 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1414 /* 194 - 7680x4320@24Hz 16:9 */
1415 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1416 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1417 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1418 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1419 /* 195 - 7680x4320@25Hz 16:9 */
1420 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1421 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1422 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1423 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1424 /* 196 - 7680x4320@30Hz 16:9 */
1425 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1426 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1427 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1428 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1429 /* 197 - 7680x4320@48Hz 16:9 */
1430 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1431 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1432 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1433 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1434 /* 198 - 7680x4320@50Hz 16:9 */
1435 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1436 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1437 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1438 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1439 /* 199 - 7680x4320@60Hz 16:9 */
1440 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1441 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1442 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1443 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1444 /* 200 - 7680x4320@100Hz 16:9 */
1445 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1446 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1447 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1448 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1449 /* 201 - 7680x4320@120Hz 16:9 */
1450 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1451 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1452 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454 /* 202 - 7680x4320@24Hz 64:27 */
1455 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1456 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1457 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1458 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1459 /* 203 - 7680x4320@25Hz 64:27 */
1460 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1461 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1462 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1463 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1464 /* 204 - 7680x4320@30Hz 64:27 */
1465 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1466 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1467 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1468 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1469 /* 205 - 7680x4320@48Hz 64:27 */
1470 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1471 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1472 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1473 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1474 /* 206 - 7680x4320@50Hz 64:27 */
1475 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1476 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1477 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1478 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1479 /* 207 - 7680x4320@60Hz 64:27 */
1480 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1481 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1482 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1483 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1484 /* 208 - 7680x4320@100Hz 64:27 */
1485 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1486 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1487 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1488 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1489 /* 209 - 7680x4320@120Hz 64:27 */
1490 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1491 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1492 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1493 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1494 /* 210 - 10240x4320@24Hz 64:27 */
1495 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1496 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1497 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1498 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1499 /* 211 - 10240x4320@25Hz 64:27 */
1500 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1501 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1502 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1503 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1504 /* 212 - 10240x4320@30Hz 64:27 */
1505 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1506 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1507 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1508 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1509 /* 213 - 10240x4320@48Hz 64:27 */
1510 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1511 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1512 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1513 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1514 /* 214 - 10240x4320@50Hz 64:27 */
1515 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1516 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1517 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1518 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1519 /* 215 - 10240x4320@60Hz 64:27 */
1520 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1521 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1522 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1523 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1524 /* 216 - 10240x4320@100Hz 64:27 */
1525 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1526 12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1527 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1529 /* 217 - 10240x4320@120Hz 64:27 */
1530 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1531 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1532 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1534 /* 218 - 4096x2160@100Hz 256:135 */
1535 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1536 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1537 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1539 /* 219 - 4096x2160@120Hz 256:135 */
1540 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1541 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1542 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1544};
1545
1546/*
1547 * HDMI 1.4 4k modes. Index using the VIC.
1548 */
1549static const struct drm_display_mode edid_4k_modes[] = {
1550 /* 0 - dummy, VICs start at 1 */
1551 { },
1552 /* 1 - 3840x2160@30Hz */
1553 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554 3840, 4016, 4104, 4400, 0,
1555 2160, 2168, 2178, 2250, 0,
1556 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558 /* 2 - 3840x2160@25Hz */
1559 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560 3840, 4896, 4984, 5280, 0,
1561 2160, 2168, 2178, 2250, 0,
1562 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564 /* 3 - 3840x2160@24Hz */
1565 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566 3840, 5116, 5204, 5500, 0,
1567 2160, 2168, 2178, 2250, 0,
1568 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1570 /* 4 - 4096x2160@24Hz (SMPTE) */
1571 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1572 4096, 5116, 5204, 5500, 0,
1573 2160, 2168, 2178, 2250, 0,
1574 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1575 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1576};
1577
1578/*** DDC fetch and block validation ***/
1579
1580/*
1581 * The opaque EDID type, internal to drm_edid.c.
1582 */
1583struct drm_edid {
1584 /* Size allocated for edid */
1585 size_t size;
1586 const struct edid *edid;
1587};
1588
1589static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1590
1591static int edid_hfeeodb_block_count(const struct edid *edid)
1592{
1593 int eeodb = edid_hfeeodb_extension_block_count(edid);
1594
1595 return eeodb ? eeodb + 1 : 0;
1596}
1597
1598static int edid_extension_block_count(const struct edid *edid)
1599{
1600 return edid->extensions;
1601}
1602
1603static int edid_block_count(const struct edid *edid)
1604{
1605 return edid_extension_block_count(edid) + 1;
1606}
1607
1608static int edid_size_by_blocks(int num_blocks)
1609{
1610 return num_blocks * EDID_LENGTH;
1611}
1612
1613static int edid_size(const struct edid *edid)
1614{
1615 return edid_size_by_blocks(edid_block_count(edid));
1616}
1617
1618static const void *edid_block_data(const struct edid *edid, int index)
1619{
1620 BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1621
1622 return edid + index;
1623}
1624
1625static const void *edid_extension_block_data(const struct edid *edid, int index)
1626{
1627 return edid_block_data(edid, index + 1);
1628}
1629
1630/* EDID block count indicated in EDID, may exceed allocated size */
1631static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1632{
1633 int num_blocks;
1634
1635 /* Starting point */
1636 num_blocks = edid_block_count(drm_edid->edid);
1637
1638 /* HF-EEODB override */
1639 if (drm_edid->size >= edid_size_by_blocks(2)) {
1640 int eeodb;
1641
1642 /*
1643 * Note: HF-EEODB may specify a smaller extension count than the
1644 * regular one. Unlike in buffer allocation, here we can use it.
1645 */
1646 eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1647 if (eeodb)
1648 num_blocks = eeodb;
1649 }
1650
1651 return num_blocks;
1652}
1653
1654/* EDID block count, limited by allocated size */
1655static int drm_edid_block_count(const struct drm_edid *drm_edid)
1656{
1657 /* Limit by allocated size */
1658 return min(__drm_edid_block_count(drm_edid),
1659 (int)drm_edid->size / EDID_LENGTH);
1660}
1661
1662/* EDID extension block count, limited by allocated size */
1663static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1664{
1665 return drm_edid_block_count(drm_edid) - 1;
1666}
1667
1668static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1669{
1670 return edid_block_data(drm_edid->edid, index);
1671}
1672
1673static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1674 int index)
1675{
1676 return edid_extension_block_data(drm_edid->edid, index);
1677}
1678
1679/*
1680 * Initializer helper for legacy interfaces, where we have no choice but to
1681 * trust edid size. Not for general purpose use.
1682 */
1683static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1684 const struct edid *edid)
1685{
1686 if (!edid)
1687 return NULL;
1688
1689 memset(drm_edid, 0, sizeof(*drm_edid));
1690
1691 drm_edid->edid = edid;
1692 drm_edid->size = edid_size(edid);
1693
1694 return drm_edid;
1695}
1696
1697/*
1698 * EDID base and extension block iterator.
1699 *
1700 * struct drm_edid_iter iter;
1701 * const u8 *block;
1702 *
1703 * drm_edid_iter_begin(drm_edid, &iter);
1704 * drm_edid_iter_for_each(block, &iter) {
1705 * // do stuff with block
1706 * }
1707 * drm_edid_iter_end(&iter);
1708 */
1709struct drm_edid_iter {
1710 const struct drm_edid *drm_edid;
1711
1712 /* Current block index. */
1713 int index;
1714};
1715
1716static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1717 struct drm_edid_iter *iter)
1718{
1719 memset(iter, 0, sizeof(*iter));
1720
1721 iter->drm_edid = drm_edid;
1722}
1723
1724static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1725{
1726 const void *block = NULL;
1727
1728 if (!iter->drm_edid)
1729 return NULL;
1730
1731 if (iter->index < drm_edid_block_count(iter->drm_edid))
1732 block = drm_edid_block_data(iter->drm_edid, iter->index++);
1733
1734 return block;
1735}
1736
1737#define drm_edid_iter_for_each(__block, __iter) \
1738 while (((__block) = __drm_edid_iter_next(__iter)))
1739
1740static void drm_edid_iter_end(struct drm_edid_iter *iter)
1741{
1742 memset(iter, 0, sizeof(*iter));
1743}
1744
1745static const u8 edid_header[] = {
1746 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1747};
1748
1749static void edid_header_fix(void *edid)
1750{
1751 memcpy(edid, edid_header, sizeof(edid_header));
1752}
1753
1754/**
1755 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1756 * @_edid: pointer to raw base EDID block
1757 *
1758 * Sanity check the header of the base EDID block.
1759 *
1760 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1761 */
1762int drm_edid_header_is_valid(const void *_edid)
1763{
1764 const struct edid *edid = _edid;
1765 int i, score = 0;
1766
1767 for (i = 0; i < sizeof(edid_header); i++) {
1768 if (edid->header[i] == edid_header[i])
1769 score++;
1770 }
1771
1772 return score;
1773}
1774EXPORT_SYMBOL(drm_edid_header_is_valid);
1775
1776static int edid_fixup __read_mostly = 6;
1777module_param_named(edid_fixup, edid_fixup, int, 0400);
1778MODULE_PARM_DESC(edid_fixup,
1779 "Minimum number of valid EDID header bytes (0-8, default 6)");
1780
1781static int edid_block_compute_checksum(const void *_block)
1782{
1783 const u8 *block = _block;
1784 int i;
1785 u8 csum = 0, crc = 0;
1786
1787 for (i = 0; i < EDID_LENGTH - 1; i++)
1788 csum += block[i];
1789
1790 crc = 0x100 - csum;
1791
1792 return crc;
1793}
1794
1795static int edid_block_get_checksum(const void *_block)
1796{
1797 const struct edid *block = _block;
1798
1799 return block->checksum;
1800}
1801
1802static int edid_block_tag(const void *_block)
1803{
1804 const u8 *block = _block;
1805
1806 return block[0];
1807}
1808
1809static bool edid_block_is_zero(const void *edid)
1810{
1811 return !memchr_inv(edid, 0, EDID_LENGTH);
1812}
1813
1814/**
1815 * drm_edid_are_equal - compare two edid blobs.
1816 * @edid1: pointer to first blob
1817 * @edid2: pointer to second blob
1818 * This helper can be used during probing to determine if
1819 * edid had changed.
1820 */
1821bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1822{
1823 int edid1_len, edid2_len;
1824 bool edid1_present = edid1 != NULL;
1825 bool edid2_present = edid2 != NULL;
1826
1827 if (edid1_present != edid2_present)
1828 return false;
1829
1830 if (edid1) {
1831 edid1_len = edid_size(edid1);
1832 edid2_len = edid_size(edid2);
1833
1834 if (edid1_len != edid2_len)
1835 return false;
1836
1837 if (memcmp(edid1, edid2, edid1_len))
1838 return false;
1839 }
1840
1841 return true;
1842}
1843EXPORT_SYMBOL(drm_edid_are_equal);
1844
1845enum edid_block_status {
1846 EDID_BLOCK_OK = 0,
1847 EDID_BLOCK_READ_FAIL,
1848 EDID_BLOCK_NULL,
1849 EDID_BLOCK_ZERO,
1850 EDID_BLOCK_HEADER_CORRUPT,
1851 EDID_BLOCK_HEADER_REPAIR,
1852 EDID_BLOCK_HEADER_FIXED,
1853 EDID_BLOCK_CHECKSUM,
1854 EDID_BLOCK_VERSION,
1855};
1856
1857static enum edid_block_status edid_block_check(const void *_block,
1858 bool is_base_block)
1859{
1860 const struct edid *block = _block;
1861
1862 if (!block)
1863 return EDID_BLOCK_NULL;
1864
1865 if (is_base_block) {
1866 int score = drm_edid_header_is_valid(block);
1867
1868 if (score < clamp(edid_fixup, 0, 8)) {
1869 if (edid_block_is_zero(block))
1870 return EDID_BLOCK_ZERO;
1871 else
1872 return EDID_BLOCK_HEADER_CORRUPT;
1873 }
1874
1875 if (score < 8)
1876 return EDID_BLOCK_HEADER_REPAIR;
1877 }
1878
1879 if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1880 if (edid_block_is_zero(block))
1881 return EDID_BLOCK_ZERO;
1882 else
1883 return EDID_BLOCK_CHECKSUM;
1884 }
1885
1886 if (is_base_block) {
1887 if (block->version != 1)
1888 return EDID_BLOCK_VERSION;
1889 }
1890
1891 return EDID_BLOCK_OK;
1892}
1893
1894static bool edid_block_status_valid(enum edid_block_status status, int tag)
1895{
1896 return status == EDID_BLOCK_OK ||
1897 status == EDID_BLOCK_HEADER_FIXED ||
1898 (status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1899}
1900
1901static bool edid_block_valid(const void *block, bool base)
1902{
1903 return edid_block_status_valid(edid_block_check(block, base),
1904 edid_block_tag(block));
1905}
1906
1907static void edid_block_status_print(enum edid_block_status status,
1908 const struct edid *block,
1909 int block_num)
1910{
1911 switch (status) {
1912 case EDID_BLOCK_OK:
1913 break;
1914 case EDID_BLOCK_READ_FAIL:
1915 pr_debug("EDID block %d read failed\n", block_num);
1916 break;
1917 case EDID_BLOCK_NULL:
1918 pr_debug("EDID block %d pointer is NULL\n", block_num);
1919 break;
1920 case EDID_BLOCK_ZERO:
1921 pr_notice("EDID block %d is all zeroes\n", block_num);
1922 break;
1923 case EDID_BLOCK_HEADER_CORRUPT:
1924 pr_notice("EDID has corrupt header\n");
1925 break;
1926 case EDID_BLOCK_HEADER_REPAIR:
1927 pr_debug("EDID corrupt header needs repair\n");
1928 break;
1929 case EDID_BLOCK_HEADER_FIXED:
1930 pr_debug("EDID corrupt header fixed\n");
1931 break;
1932 case EDID_BLOCK_CHECKSUM:
1933 if (edid_block_status_valid(status, edid_block_tag(block))) {
1934 pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1935 block_num, edid_block_tag(block),
1936 edid_block_compute_checksum(block));
1937 } else {
1938 pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1939 block_num, edid_block_tag(block),
1940 edid_block_compute_checksum(block));
1941 }
1942 break;
1943 case EDID_BLOCK_VERSION:
1944 pr_notice("EDID has major version %d, instead of 1\n",
1945 block->version);
1946 break;
1947 default:
1948 WARN(1, "EDID block %d unknown edid block status code %d\n",
1949 block_num, status);
1950 break;
1951 }
1952}
1953
1954static void edid_block_dump(const char *level, const void *block, int block_num)
1955{
1956 enum edid_block_status status;
1957 char prefix[20];
1958
1959 status = edid_block_check(block, block_num == 0);
1960 if (status == EDID_BLOCK_ZERO)
1961 sprintf(prefix, "\t[%02x] ZERO ", block_num);
1962 else if (!edid_block_status_valid(status, edid_block_tag(block)))
1963 sprintf(prefix, "\t[%02x] BAD ", block_num);
1964 else
1965 sprintf(prefix, "\t[%02x] GOOD ", block_num);
1966
1967 print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1968 block, EDID_LENGTH, false);
1969}
1970
1971/**
1972 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1973 * @_block: pointer to raw EDID block
1974 * @block_num: type of block to validate (0 for base, extension otherwise)
1975 * @print_bad_edid: if true, dump bad EDID blocks to the console
1976 * @edid_corrupt: if true, the header or checksum is invalid
1977 *
1978 * Validate a base or extension EDID block and optionally dump bad blocks to
1979 * the console.
1980 *
1981 * Return: True if the block is valid, false otherwise.
1982 */
1983bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1984 bool *edid_corrupt)
1985{
1986 struct edid *block = (struct edid *)_block;
1987 enum edid_block_status status;
1988 bool is_base_block = block_num == 0;
1989 bool valid;
1990
1991 if (WARN_ON(!block))
1992 return false;
1993
1994 status = edid_block_check(block, is_base_block);
1995 if (status == EDID_BLOCK_HEADER_REPAIR) {
1996 DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1997 edid_header_fix(block);
1998
1999 /* Retry with fixed header, update status if that worked. */
2000 status = edid_block_check(block, is_base_block);
2001 if (status == EDID_BLOCK_OK)
2002 status = EDID_BLOCK_HEADER_FIXED;
2003 }
2004
2005 if (edid_corrupt) {
2006 /*
2007 * Unknown major version isn't corrupt but we can't use it. Only
2008 * the base block can reset edid_corrupt to false.
2009 */
2010 if (is_base_block &&
2011 (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2012 *edid_corrupt = false;
2013 else if (status != EDID_BLOCK_OK)
2014 *edid_corrupt = true;
2015 }
2016
2017 edid_block_status_print(status, block, block_num);
2018
2019 /* Determine whether we can use this block with this status. */
2020 valid = edid_block_status_valid(status, edid_block_tag(block));
2021
2022 if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2023 pr_notice("Raw EDID:\n");
2024 edid_block_dump(KERN_NOTICE, block, block_num);
2025 }
2026
2027 return valid;
2028}
2029EXPORT_SYMBOL(drm_edid_block_valid);
2030
2031/**
2032 * drm_edid_is_valid - sanity check EDID data
2033 * @edid: EDID data
2034 *
2035 * Sanity-check an entire EDID record (including extensions)
2036 *
2037 * Return: True if the EDID data is valid, false otherwise.
2038 */
2039bool drm_edid_is_valid(struct edid *edid)
2040{
2041 int i;
2042
2043 if (!edid)
2044 return false;
2045
2046 for (i = 0; i < edid_block_count(edid); i++) {
2047 void *block = (void *)edid_block_data(edid, i);
2048
2049 if (!drm_edid_block_valid(block, i, true, NULL))
2050 return false;
2051 }
2052
2053 return true;
2054}
2055EXPORT_SYMBOL(drm_edid_is_valid);
2056
2057/**
2058 * drm_edid_valid - sanity check EDID data
2059 * @drm_edid: EDID data
2060 *
2061 * Sanity check an EDID. Cross check block count against allocated size and
2062 * checksum the blocks.
2063 *
2064 * Return: True if the EDID data is valid, false otherwise.
2065 */
2066bool drm_edid_valid(const struct drm_edid *drm_edid)
2067{
2068 int i;
2069
2070 if (!drm_edid)
2071 return false;
2072
2073 if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2074 return false;
2075
2076 for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2077 const void *block = drm_edid_block_data(drm_edid, i);
2078
2079 if (!edid_block_valid(block, i == 0))
2080 return false;
2081 }
2082
2083 return true;
2084}
2085EXPORT_SYMBOL(drm_edid_valid);
2086
2087static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2088 size_t *alloc_size)
2089{
2090 struct edid *new;
2091 int i, valid_blocks = 0;
2092
2093 /*
2094 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2095 * back to regular extension count here. We don't want to start
2096 * modifying the HF-EEODB extension too.
2097 */
2098 for (i = 0; i < edid_block_count(edid); i++) {
2099 const void *src_block = edid_block_data(edid, i);
2100
2101 if (edid_block_valid(src_block, i == 0)) {
2102 void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2103
2104 memmove(dst_block, src_block, EDID_LENGTH);
2105 valid_blocks++;
2106 }
2107 }
2108
2109 /* We already trusted the base block to be valid here... */
2110 if (WARN_ON(!valid_blocks)) {
2111 kfree(edid);
2112 return NULL;
2113 }
2114
2115 edid->extensions = valid_blocks - 1;
2116 edid->checksum = edid_block_compute_checksum(edid);
2117
2118 *alloc_size = edid_size_by_blocks(valid_blocks);
2119
2120 new = krealloc(edid, *alloc_size, GFP_KERNEL);
2121 if (!new)
2122 kfree(edid);
2123
2124 return new;
2125}
2126
2127#define DDC_SEGMENT_ADDR 0x30
2128/**
2129 * drm_do_probe_ddc_edid() - get EDID information via I2C
2130 * @data: I2C device adapter
2131 * @buf: EDID data buffer to be filled
2132 * @block: 128 byte EDID block to start fetching from
2133 * @len: EDID data buffer length to fetch
2134 *
2135 * Try to fetch EDID information by calling I2C driver functions.
2136 *
2137 * Return: 0 on success or -1 on failure.
2138 */
2139static int
2140drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2141{
2142 struct i2c_adapter *adapter = data;
2143 unsigned char start = block * EDID_LENGTH;
2144 unsigned char segment = block >> 1;
2145 unsigned char xfers = segment ? 3 : 2;
2146 int ret, retries = 5;
2147
2148 /*
2149 * The core I2C driver will automatically retry the transfer if the
2150 * adapter reports EAGAIN. However, we find that bit-banging transfers
2151 * are susceptible to errors under a heavily loaded machine and
2152 * generate spurious NAKs and timeouts. Retrying the transfer
2153 * of the individual block a few times seems to overcome this.
2154 */
2155 do {
2156 struct i2c_msg msgs[] = {
2157 {
2158 .addr = DDC_SEGMENT_ADDR,
2159 .flags = 0,
2160 .len = 1,
2161 .buf = &segment,
2162 }, {
2163 .addr = DDC_ADDR,
2164 .flags = 0,
2165 .len = 1,
2166 .buf = &start,
2167 }, {
2168 .addr = DDC_ADDR,
2169 .flags = I2C_M_RD,
2170 .len = len,
2171 .buf = buf,
2172 }
2173 };
2174
2175 /*
2176 * Avoid sending the segment addr to not upset non-compliant
2177 * DDC monitors.
2178 */
2179 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2180
2181 if (ret == -ENXIO) {
2182 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2183 adapter->name);
2184 break;
2185 }
2186 } while (ret != xfers && --retries);
2187
2188 return ret == xfers ? 0 : -1;
2189}
2190
2191static void connector_bad_edid(struct drm_connector *connector,
2192 const struct edid *edid, int num_blocks)
2193{
2194 int i;
2195 u8 last_block;
2196
2197 /*
2198 * 0x7e in the EDID is the number of extension blocks. The EDID
2199 * is 1 (base block) + num_ext_blocks big. That means we can think
2200 * of 0x7e in the EDID of the _index_ of the last block in the
2201 * combined chunk of memory.
2202 */
2203 last_block = edid->extensions;
2204
2205 /* Calculate real checksum for the last edid extension block data */
2206 if (last_block < num_blocks)
2207 connector->real_edid_checksum =
2208 edid_block_compute_checksum(edid + last_block);
2209
2210 if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2211 return;
2212
2213 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2214 connector->base.id, connector->name);
2215 for (i = 0; i < num_blocks; i++)
2216 edid_block_dump(KERN_DEBUG, edid + i, i);
2217}
2218
2219/* Get override or firmware EDID */
2220static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2221{
2222 const struct drm_edid *override = NULL;
2223
2224 mutex_lock(&connector->edid_override_mutex);
2225
2226 if (connector->edid_override)
2227 override = drm_edid_dup(connector->edid_override);
2228
2229 mutex_unlock(&connector->edid_override_mutex);
2230
2231 if (!override)
2232 override = drm_edid_load_firmware(connector);
2233
2234 return IS_ERR(override) ? NULL : override;
2235}
2236
2237/* For debugfs edid_override implementation */
2238int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2239{
2240 const struct drm_edid *drm_edid;
2241
2242 mutex_lock(&connector->edid_override_mutex);
2243
2244 drm_edid = connector->edid_override;
2245 if (drm_edid)
2246 seq_write(m, drm_edid->edid, drm_edid->size);
2247
2248 mutex_unlock(&connector->edid_override_mutex);
2249
2250 return 0;
2251}
2252
2253/* For debugfs edid_override implementation */
2254int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2255 size_t size)
2256{
2257 const struct drm_edid *drm_edid;
2258
2259 drm_edid = drm_edid_alloc(edid, size);
2260 if (!drm_edid_valid(drm_edid)) {
2261 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2262 connector->base.id, connector->name);
2263 drm_edid_free(drm_edid);
2264 return -EINVAL;
2265 }
2266
2267 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2268 connector->base.id, connector->name);
2269
2270 mutex_lock(&connector->edid_override_mutex);
2271
2272 drm_edid_free(connector->edid_override);
2273 connector->edid_override = drm_edid;
2274
2275 mutex_unlock(&connector->edid_override_mutex);
2276
2277 return 0;
2278}
2279
2280/* For debugfs edid_override implementation */
2281int drm_edid_override_reset(struct drm_connector *connector)
2282{
2283 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2284 connector->base.id, connector->name);
2285
2286 mutex_lock(&connector->edid_override_mutex);
2287
2288 drm_edid_free(connector->edid_override);
2289 connector->edid_override = NULL;
2290
2291 mutex_unlock(&connector->edid_override_mutex);
2292
2293 return 0;
2294}
2295
2296/**
2297 * drm_edid_override_connector_update - add modes from override/firmware EDID
2298 * @connector: connector we're probing
2299 *
2300 * Add modes from the override/firmware EDID, if available. Only to be used from
2301 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2302 * failed during drm_get_edid() and caused the override/firmware EDID to be
2303 * skipped.
2304 *
2305 * Return: The number of modes added or 0 if we couldn't find any.
2306 */
2307int drm_edid_override_connector_update(struct drm_connector *connector)
2308{
2309 const struct drm_edid *override;
2310 int num_modes = 0;
2311
2312 override = drm_edid_override_get(connector);
2313 if (override) {
2314 if (drm_edid_connector_update(connector, override) == 0)
2315 num_modes = drm_edid_connector_add_modes(connector);
2316
2317 drm_edid_free(override);
2318
2319 drm_dbg_kms(connector->dev,
2320 "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2321 connector->base.id, connector->name, num_modes);
2322 }
2323
2324 return num_modes;
2325}
2326EXPORT_SYMBOL(drm_edid_override_connector_update);
2327
2328typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2329
2330static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2331 read_block_fn read_block,
2332 void *context)
2333{
2334 enum edid_block_status status;
2335 bool is_base_block = block_num == 0;
2336 int try;
2337
2338 for (try = 0; try < 4; try++) {
2339 if (read_block(context, block, block_num, EDID_LENGTH))
2340 return EDID_BLOCK_READ_FAIL;
2341
2342 status = edid_block_check(block, is_base_block);
2343 if (status == EDID_BLOCK_HEADER_REPAIR) {
2344 edid_header_fix(block);
2345
2346 /* Retry with fixed header, update status if that worked. */
2347 status = edid_block_check(block, is_base_block);
2348 if (status == EDID_BLOCK_OK)
2349 status = EDID_BLOCK_HEADER_FIXED;
2350 }
2351
2352 if (edid_block_status_valid(status, edid_block_tag(block)))
2353 break;
2354
2355 /* Fail early for unrepairable base block all zeros. */
2356 if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2357 break;
2358 }
2359
2360 return status;
2361}
2362
2363static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2364 read_block_fn read_block, void *context,
2365 size_t *size)
2366{
2367 enum edid_block_status status;
2368 int i, num_blocks, invalid_blocks = 0;
2369 const struct drm_edid *override;
2370 struct edid *edid, *new;
2371 size_t alloc_size = EDID_LENGTH;
2372
2373 override = drm_edid_override_get(connector);
2374 if (override) {
2375 alloc_size = override->size;
2376 edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2377 drm_edid_free(override);
2378 if (!edid)
2379 return NULL;
2380 goto ok;
2381 }
2382
2383 edid = kmalloc(alloc_size, GFP_KERNEL);
2384 if (!edid)
2385 return NULL;
2386
2387 status = edid_block_read(edid, 0, read_block, context);
2388
2389 edid_block_status_print(status, edid, 0);
2390
2391 if (status == EDID_BLOCK_READ_FAIL)
2392 goto fail;
2393
2394 /* FIXME: Clarify what a corrupt EDID actually means. */
2395 if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2396 connector->edid_corrupt = false;
2397 else
2398 connector->edid_corrupt = true;
2399
2400 if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2401 if (status == EDID_BLOCK_ZERO)
2402 connector->null_edid_counter++;
2403
2404 connector_bad_edid(connector, edid, 1);
2405 goto fail;
2406 }
2407
2408 if (!edid_extension_block_count(edid))
2409 goto ok;
2410
2411 alloc_size = edid_size(edid);
2412 new = krealloc(edid, alloc_size, GFP_KERNEL);
2413 if (!new)
2414 goto fail;
2415 edid = new;
2416
2417 num_blocks = edid_block_count(edid);
2418 for (i = 1; i < num_blocks; i++) {
2419 void *block = (void *)edid_block_data(edid, i);
2420
2421 status = edid_block_read(block, i, read_block, context);
2422
2423 edid_block_status_print(status, block, i);
2424
2425 if (!edid_block_status_valid(status, edid_block_tag(block))) {
2426 if (status == EDID_BLOCK_READ_FAIL)
2427 goto fail;
2428 invalid_blocks++;
2429 } else if (i == 1) {
2430 /*
2431 * If the first EDID extension is a CTA extension, and
2432 * the first Data Block is HF-EEODB, override the
2433 * extension block count.
2434 *
2435 * Note: HF-EEODB could specify a smaller extension
2436 * count too, but we can't risk allocating a smaller
2437 * amount.
2438 */
2439 int eeodb = edid_hfeeodb_block_count(edid);
2440
2441 if (eeodb > num_blocks) {
2442 num_blocks = eeodb;
2443 alloc_size = edid_size_by_blocks(num_blocks);
2444 new = krealloc(edid, alloc_size, GFP_KERNEL);
2445 if (!new)
2446 goto fail;
2447 edid = new;
2448 }
2449 }
2450 }
2451
2452 if (invalid_blocks) {
2453 connector_bad_edid(connector, edid, num_blocks);
2454
2455 edid = edid_filter_invalid_blocks(edid, &alloc_size);
2456 }
2457
2458ok:
2459 if (size)
2460 *size = alloc_size;
2461
2462 return edid;
2463
2464fail:
2465 kfree(edid);
2466 return NULL;
2467}
2468
2469/**
2470 * drm_do_get_edid - get EDID data using a custom EDID block read function
2471 * @connector: connector we're probing
2472 * @read_block: EDID block read function
2473 * @context: private data passed to the block read function
2474 *
2475 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2476 * exposes a different interface to read EDID blocks this function can be used
2477 * to get EDID data using a custom block read function.
2478 *
2479 * As in the general case the DDC bus is accessible by the kernel at the I2C
2480 * level, drivers must make all reasonable efforts to expose it as an I2C
2481 * adapter and use drm_get_edid() instead of abusing this function.
2482 *
2483 * The EDID may be overridden using debugfs override_edid or firmware EDID
2484 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2485 * order. Having either of them bypasses actual EDID reads.
2486 *
2487 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2488 */
2489struct edid *drm_do_get_edid(struct drm_connector *connector,
2490 read_block_fn read_block,
2491 void *context)
2492{
2493 return _drm_do_get_edid(connector, read_block, context, NULL);
2494}
2495EXPORT_SYMBOL_GPL(drm_do_get_edid);
2496
2497/**
2498 * drm_edid_raw - Get a pointer to the raw EDID data.
2499 * @drm_edid: drm_edid container
2500 *
2501 * Get a pointer to the raw EDID data.
2502 *
2503 * This is for transition only. Avoid using this like the plague.
2504 *
2505 * Return: Pointer to raw EDID data.
2506 */
2507const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2508{
2509 if (!drm_edid || !drm_edid->size)
2510 return NULL;
2511
2512 /*
2513 * Do not return pointers where relying on EDID extension count would
2514 * lead to buffer overflow.
2515 */
2516 if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2517 return NULL;
2518
2519 return drm_edid->edid;
2520}
2521EXPORT_SYMBOL(drm_edid_raw);
2522
2523/* Allocate struct drm_edid container *without* duplicating the edid data */
2524static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2525{
2526 struct drm_edid *drm_edid;
2527
2528 if (!edid || !size || size < EDID_LENGTH)
2529 return NULL;
2530
2531 drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2532 if (drm_edid) {
2533 drm_edid->edid = edid;
2534 drm_edid->size = size;
2535 }
2536
2537 return drm_edid;
2538}
2539
2540/**
2541 * drm_edid_alloc - Allocate a new drm_edid container
2542 * @edid: Pointer to raw EDID data
2543 * @size: Size of memory allocated for EDID
2544 *
2545 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2546 * the actual size that has been allocated for the data. There is no validation
2547 * of the raw EDID data against the size, but at least the EDID base block must
2548 * fit in the buffer.
2549 *
2550 * The returned pointer must be freed using drm_edid_free().
2551 *
2552 * Return: drm_edid container, or NULL on errors
2553 */
2554const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2555{
2556 const struct drm_edid *drm_edid;
2557
2558 if (!edid || !size || size < EDID_LENGTH)
2559 return NULL;
2560
2561 edid = kmemdup(edid, size, GFP_KERNEL);
2562 if (!edid)
2563 return NULL;
2564
2565 drm_edid = _drm_edid_alloc(edid, size);
2566 if (!drm_edid)
2567 kfree(edid);
2568
2569 return drm_edid;
2570}
2571EXPORT_SYMBOL(drm_edid_alloc);
2572
2573/**
2574 * drm_edid_dup - Duplicate a drm_edid container
2575 * @drm_edid: EDID to duplicate
2576 *
2577 * The returned pointer must be freed using drm_edid_free().
2578 *
2579 * Returns: drm_edid container copy, or NULL on errors
2580 */
2581const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2582{
2583 if (!drm_edid)
2584 return NULL;
2585
2586 return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2587}
2588EXPORT_SYMBOL(drm_edid_dup);
2589
2590/**
2591 * drm_edid_free - Free the drm_edid container
2592 * @drm_edid: EDID to free
2593 */
2594void drm_edid_free(const struct drm_edid *drm_edid)
2595{
2596 if (!drm_edid)
2597 return;
2598
2599 kfree(drm_edid->edid);
2600 kfree(drm_edid);
2601}
2602EXPORT_SYMBOL(drm_edid_free);
2603
2604/**
2605 * drm_probe_ddc() - probe DDC presence
2606 * @adapter: I2C adapter to probe
2607 *
2608 * Return: True on success, false on failure.
2609 */
2610bool
2611drm_probe_ddc(struct i2c_adapter *adapter)
2612{
2613 unsigned char out;
2614
2615 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2616}
2617EXPORT_SYMBOL(drm_probe_ddc);
2618
2619/**
2620 * drm_get_edid - get EDID data, if available
2621 * @connector: connector we're probing
2622 * @adapter: I2C adapter to use for DDC
2623 *
2624 * Poke the given I2C channel to grab EDID data if possible. If found,
2625 * attach it to the connector.
2626 *
2627 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2628 */
2629struct edid *drm_get_edid(struct drm_connector *connector,
2630 struct i2c_adapter *adapter)
2631{
2632 struct edid *edid;
2633
2634 if (connector->force == DRM_FORCE_OFF)
2635 return NULL;
2636
2637 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2638 return NULL;
2639
2640 edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2641 drm_connector_update_edid_property(connector, edid);
2642 return edid;
2643}
2644EXPORT_SYMBOL(drm_get_edid);
2645
2646/**
2647 * drm_edid_read_custom - Read EDID data using given EDID block read function
2648 * @connector: Connector to use
2649 * @read_block: EDID block read function
2650 * @context: Private data passed to the block read function
2651 *
2652 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2653 * exposes a different interface to read EDID blocks this function can be used
2654 * to get EDID data using a custom block read function.
2655 *
2656 * As in the general case the DDC bus is accessible by the kernel at the I2C
2657 * level, drivers must make all reasonable efforts to expose it as an I2C
2658 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2659 * this function.
2660 *
2661 * The EDID may be overridden using debugfs override_edid or firmware EDID
2662 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2663 * order. Having either of them bypasses actual EDID reads.
2664 *
2665 * The returned pointer must be freed using drm_edid_free().
2666 *
2667 * Return: Pointer to EDID, or NULL if probe/read failed.
2668 */
2669const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2670 read_block_fn read_block,
2671 void *context)
2672{
2673 const struct drm_edid *drm_edid;
2674 struct edid *edid;
2675 size_t size = 0;
2676
2677 edid = _drm_do_get_edid(connector, read_block, context, &size);
2678 if (!edid)
2679 return NULL;
2680
2681 /* Sanity check for now */
2682 drm_WARN_ON(connector->dev, !size);
2683
2684 drm_edid = _drm_edid_alloc(edid, size);
2685 if (!drm_edid)
2686 kfree(edid);
2687
2688 return drm_edid;
2689}
2690EXPORT_SYMBOL(drm_edid_read_custom);
2691
2692/**
2693 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2694 * @connector: Connector to use
2695 * @adapter: I2C adapter to use for DDC
2696 *
2697 * Read EDID using the given I2C adapter.
2698 *
2699 * The EDID may be overridden using debugfs override_edid or firmware EDID
2700 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2701 * order. Having either of them bypasses actual EDID reads.
2702 *
2703 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2704 * using drm_edid_read() instead of this function.
2705 *
2706 * The returned pointer must be freed using drm_edid_free().
2707 *
2708 * Return: Pointer to EDID, or NULL if probe/read failed.
2709 */
2710const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2711 struct i2c_adapter *adapter)
2712{
2713 const struct drm_edid *drm_edid;
2714
2715 if (connector->force == DRM_FORCE_OFF)
2716 return NULL;
2717
2718 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2719 return NULL;
2720
2721 drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2722
2723 /* Note: Do *not* call connector updates here. */
2724
2725 return drm_edid;
2726}
2727EXPORT_SYMBOL(drm_edid_read_ddc);
2728
2729/**
2730 * drm_edid_read - Read EDID data using connector's I2C adapter
2731 * @connector: Connector to use
2732 *
2733 * Read EDID using the connector's I2C adapter.
2734 *
2735 * The EDID may be overridden using debugfs override_edid or firmware EDID
2736 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2737 * order. Having either of them bypasses actual EDID reads.
2738 *
2739 * The returned pointer must be freed using drm_edid_free().
2740 *
2741 * Return: Pointer to EDID, or NULL if probe/read failed.
2742 */
2743const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2744{
2745 if (drm_WARN_ON(connector->dev, !connector->ddc))
2746 return NULL;
2747
2748 return drm_edid_read_ddc(connector, connector->ddc);
2749}
2750EXPORT_SYMBOL(drm_edid_read);
2751
2752static u32 edid_extract_panel_id(const struct edid *edid)
2753{
2754 /*
2755 * We represent the ID as a 32-bit number so it can easily be compared
2756 * with "==".
2757 *
2758 * NOTE that we deal with endianness differently for the top half
2759 * of this ID than for the bottom half. The bottom half (the product
2760 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2761 * that's how everyone seems to interpret it. The top half (the mfg_id)
2762 * gets stored as big endian because that makes
2763 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2764 * to write (it's easier to extract the ASCII). It doesn't really
2765 * matter, though, as long as the number here is unique.
2766 */
2767 return (u32)edid->mfg_id[0] << 24 |
2768 (u32)edid->mfg_id[1] << 16 |
2769 (u32)EDID_PRODUCT_ID(edid);
2770}
2771
2772/**
2773 * drm_edid_get_panel_id - Get a panel's ID through DDC
2774 * @adapter: I2C adapter to use for DDC
2775 *
2776 * This function reads the first block of the EDID of a panel and (assuming
2777 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2778 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2779 * supposed to be different for each different modem of panel.
2780 *
2781 * This function is intended to be used during early probing on devices where
2782 * more than one panel might be present. Because of its intended use it must
2783 * assume that the EDID of the panel is correct, at least as far as the ID
2784 * is concerned (in other words, we don't process any overrides here).
2785 *
2786 * NOTE: it's expected that this function and drm_do_get_edid() will both
2787 * be read the EDID, but there is no caching between them. Since we're only
2788 * reading the first block, hopefully this extra overhead won't be too big.
2789 *
2790 * Return: A 32-bit ID that should be different for each make/model of panel.
2791 * See the functions drm_edid_encode_panel_id() and
2792 * drm_edid_decode_panel_id() for some details on the structure of this
2793 * ID.
2794 */
2795
2796u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2797{
2798 enum edid_block_status status;
2799 void *base_block;
2800 u32 panel_id = 0;
2801
2802 /*
2803 * There are no manufacturer IDs of 0, so if there is a problem reading
2804 * the EDID then we'll just return 0.
2805 */
2806
2807 base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2808 if (!base_block)
2809 return 0;
2810
2811 status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2812
2813 edid_block_status_print(status, base_block, 0);
2814
2815 if (edid_block_status_valid(status, edid_block_tag(base_block)))
2816 panel_id = edid_extract_panel_id(base_block);
2817 else
2818 edid_block_dump(KERN_NOTICE, base_block, 0);
2819
2820 kfree(base_block);
2821
2822 return panel_id;
2823}
2824EXPORT_SYMBOL(drm_edid_get_panel_id);
2825
2826/**
2827 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2828 * @connector: connector we're probing
2829 * @adapter: I2C adapter to use for DDC
2830 *
2831 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2832 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2833 * switch DDC to the GPU which is retrieving EDID.
2834 *
2835 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2836 */
2837struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2838 struct i2c_adapter *adapter)
2839{
2840 struct drm_device *dev = connector->dev;
2841 struct pci_dev *pdev = to_pci_dev(dev->dev);
2842 struct edid *edid;
2843
2844 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2845 return NULL;
2846
2847 vga_switcheroo_lock_ddc(pdev);
2848 edid = drm_get_edid(connector, adapter);
2849 vga_switcheroo_unlock_ddc(pdev);
2850
2851 return edid;
2852}
2853EXPORT_SYMBOL(drm_get_edid_switcheroo);
2854
2855/**
2856 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2857 * @connector: connector we're probing
2858 * @adapter: I2C adapter to use for DDC
2859 *
2860 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2861 * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2862 * temporarily switch DDC to the GPU which is retrieving EDID.
2863 *
2864 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2865 */
2866const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2867 struct i2c_adapter *adapter)
2868{
2869 struct drm_device *dev = connector->dev;
2870 struct pci_dev *pdev = to_pci_dev(dev->dev);
2871 const struct drm_edid *drm_edid;
2872
2873 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2874 return NULL;
2875
2876 vga_switcheroo_lock_ddc(pdev);
2877 drm_edid = drm_edid_read_ddc(connector, adapter);
2878 vga_switcheroo_unlock_ddc(pdev);
2879
2880 return drm_edid;
2881}
2882EXPORT_SYMBOL(drm_edid_read_switcheroo);
2883
2884/**
2885 * drm_edid_duplicate - duplicate an EDID and the extensions
2886 * @edid: EDID to duplicate
2887 *
2888 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2889 */
2890struct edid *drm_edid_duplicate(const struct edid *edid)
2891{
2892 if (!edid)
2893 return NULL;
2894
2895 return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2896}
2897EXPORT_SYMBOL(drm_edid_duplicate);
2898
2899/*** EDID parsing ***/
2900
2901/**
2902 * edid_get_quirks - return quirk flags for a given EDID
2903 * @drm_edid: EDID to process
2904 *
2905 * This tells subsequent routines what fixes they need to apply.
2906 */
2907static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2908{
2909 u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2910 const struct edid_quirk *quirk;
2911 int i;
2912
2913 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2914 quirk = &edid_quirk_list[i];
2915 if (quirk->panel_id == panel_id)
2916 return quirk->quirks;
2917 }
2918
2919 return 0;
2920}
2921
2922#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2923#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2924
2925/*
2926 * Walk the mode list for connector, clearing the preferred status on existing
2927 * modes and setting it anew for the right mode ala quirks.
2928 */
2929static void edid_fixup_preferred(struct drm_connector *connector)
2930{
2931 const struct drm_display_info *info = &connector->display_info;
2932 struct drm_display_mode *t, *cur_mode, *preferred_mode;
2933 int target_refresh = 0;
2934 int cur_vrefresh, preferred_vrefresh;
2935
2936 if (list_empty(&connector->probed_modes))
2937 return;
2938
2939 if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2940 target_refresh = 60;
2941 if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2942 target_refresh = 75;
2943
2944 preferred_mode = list_first_entry(&connector->probed_modes,
2945 struct drm_display_mode, head);
2946
2947 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2948 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2949
2950 if (cur_mode == preferred_mode)
2951 continue;
2952
2953 /* Largest mode is preferred */
2954 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2955 preferred_mode = cur_mode;
2956
2957 cur_vrefresh = drm_mode_vrefresh(cur_mode);
2958 preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2959 /* At a given size, try to get closest to target refresh */
2960 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2961 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2962 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2963 preferred_mode = cur_mode;
2964 }
2965 }
2966
2967 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2968}
2969
2970static bool
2971mode_is_rb(const struct drm_display_mode *mode)
2972{
2973 return (mode->htotal - mode->hdisplay == 160) &&
2974 (mode->hsync_end - mode->hdisplay == 80) &&
2975 (mode->hsync_end - mode->hsync_start == 32) &&
2976 (mode->vsync_start - mode->vdisplay == 3);
2977}
2978
2979/*
2980 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2981 * @dev: Device to duplicate against
2982 * @hsize: Mode width
2983 * @vsize: Mode height
2984 * @fresh: Mode refresh rate
2985 * @rb: Mode reduced-blanking-ness
2986 *
2987 * Walk the DMT mode list looking for a match for the given parameters.
2988 *
2989 * Return: A newly allocated copy of the mode, or NULL if not found.
2990 */
2991struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2992 int hsize, int vsize, int fresh,
2993 bool rb)
2994{
2995 int i;
2996
2997 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2998 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2999
3000 if (hsize != ptr->hdisplay)
3001 continue;
3002 if (vsize != ptr->vdisplay)
3003 continue;
3004 if (fresh != drm_mode_vrefresh(ptr))
3005 continue;
3006 if (rb != mode_is_rb(ptr))
3007 continue;
3008
3009 return drm_mode_duplicate(dev, ptr);
3010 }
3011
3012 return NULL;
3013}
3014EXPORT_SYMBOL(drm_mode_find_dmt);
3015
3016static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3017{
3018 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3019 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3020 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3021
3022 return descriptor->pixel_clock == 0 &&
3023 descriptor->data.other_data.pad1 == 0 &&
3024 descriptor->data.other_data.type == type;
3025}
3026
3027static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3028{
3029 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3030
3031 return descriptor->pixel_clock != 0;
3032}
3033
3034typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3035
3036static void
3037cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3038{
3039 int i, n;
3040 u8 d = ext[0x02];
3041 const u8 *det_base = ext + d;
3042
3043 if (d < 4 || d > 127)
3044 return;
3045
3046 n = (127 - d) / 18;
3047 for (i = 0; i < n; i++)
3048 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3049}
3050
3051static void
3052vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3053{
3054 unsigned int i, n = min((int)ext[0x02], 6);
3055 const u8 *det_base = ext + 5;
3056
3057 if (ext[0x01] != 1)
3058 return; /* unknown version */
3059
3060 for (i = 0; i < n; i++)
3061 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3062}
3063
3064static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3065 detailed_cb *cb, void *closure)
3066{
3067 struct drm_edid_iter edid_iter;
3068 const u8 *ext;
3069 int i;
3070
3071 if (!drm_edid)
3072 return;
3073
3074 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3075 cb(&drm_edid->edid->detailed_timings[i], closure);
3076
3077 drm_edid_iter_begin(drm_edid, &edid_iter);
3078 drm_edid_iter_for_each(ext, &edid_iter) {
3079 switch (*ext) {
3080 case CEA_EXT:
3081 cea_for_each_detailed_block(ext, cb, closure);
3082 break;
3083 case VTB_EXT:
3084 vtb_for_each_detailed_block(ext, cb, closure);
3085 break;
3086 default:
3087 break;
3088 }
3089 }
3090 drm_edid_iter_end(&edid_iter);
3091}
3092
3093static void
3094is_rb(const struct detailed_timing *descriptor, void *data)
3095{
3096 bool *res = data;
3097
3098 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3099 return;
3100
3101 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3102 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3103
3104 if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3105 descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3106 *res = true;
3107}
3108
3109/* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
3110static bool
3111drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3112{
3113 if (drm_edid->edid->revision >= 4) {
3114 bool ret = false;
3115
3116 drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3117 return ret;
3118 }
3119
3120 return drm_edid_is_digital(drm_edid);
3121}
3122
3123static void
3124find_gtf2(const struct detailed_timing *descriptor, void *data)
3125{
3126 const struct detailed_timing **res = data;
3127
3128 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3129 return;
3130
3131 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3132
3133 if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3134 *res = descriptor;
3135}
3136
3137/* Secondary GTF curve kicks in above some break frequency */
3138static int
3139drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3140{
3141 const struct detailed_timing *descriptor = NULL;
3142
3143 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3144
3145 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3146
3147 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3148}
3149
3150static int
3151drm_gtf2_2c(const struct drm_edid *drm_edid)
3152{
3153 const struct detailed_timing *descriptor = NULL;
3154
3155 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3156
3157 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3158
3159 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3160}
3161
3162static int
3163drm_gtf2_m(const struct drm_edid *drm_edid)
3164{
3165 const struct detailed_timing *descriptor = NULL;
3166
3167 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3168
3169 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3170
3171 return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3172}
3173
3174static int
3175drm_gtf2_k(const struct drm_edid *drm_edid)
3176{
3177 const struct detailed_timing *descriptor = NULL;
3178
3179 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3180
3181 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3182
3183 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3184}
3185
3186static int
3187drm_gtf2_2j(const struct drm_edid *drm_edid)
3188{
3189 const struct detailed_timing *descriptor = NULL;
3190
3191 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3192
3193 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3194
3195 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3196}
3197
3198static void
3199get_timing_level(const struct detailed_timing *descriptor, void *data)
3200{
3201 int *res = data;
3202
3203 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3204 return;
3205
3206 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3207
3208 switch (descriptor->data.other_data.data.range.flags) {
3209 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3210 *res = LEVEL_GTF;
3211 break;
3212 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3213 *res = LEVEL_GTF2;
3214 break;
3215 case DRM_EDID_CVT_SUPPORT_FLAG:
3216 *res = LEVEL_CVT;
3217 break;
3218 default:
3219 break;
3220 }
3221}
3222
3223/* Get standard timing level (CVT/GTF/DMT). */
3224static int standard_timing_level(const struct drm_edid *drm_edid)
3225{
3226 const struct edid *edid = drm_edid->edid;
3227
3228 if (edid->revision >= 4) {
3229 /*
3230 * If the range descriptor doesn't
3231 * indicate otherwise default to CVT
3232 */
3233 int ret = LEVEL_CVT;
3234
3235 drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3236
3237 return ret;
3238 } else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3239 return LEVEL_GTF2;
3240 } else if (edid->revision >= 2) {
3241 return LEVEL_GTF;
3242 } else {
3243 return LEVEL_DMT;
3244 }
3245}
3246
3247/*
3248 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
3249 * monitors fill with ascii space (0x20) instead.
3250 */
3251static int
3252bad_std_timing(u8 a, u8 b)
3253{
3254 return (a == 0x00 && b == 0x00) ||
3255 (a == 0x01 && b == 0x01) ||
3256 (a == 0x20 && b == 0x20);
3257}
3258
3259static int drm_mode_hsync(const struct drm_display_mode *mode)
3260{
3261 if (mode->htotal <= 0)
3262 return 0;
3263
3264 return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3265}
3266
3267static struct drm_display_mode *
3268drm_gtf2_mode(struct drm_device *dev,
3269 const struct drm_edid *drm_edid,
3270 int hsize, int vsize, int vrefresh_rate)
3271{
3272 struct drm_display_mode *mode;
3273
3274 /*
3275 * This is potentially wrong if there's ever a monitor with
3276 * more than one ranges section, each claiming a different
3277 * secondary GTF curve. Please don't do that.
3278 */
3279 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3280 if (!mode)
3281 return NULL;
3282
3283 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3284 drm_mode_destroy(dev, mode);
3285 mode = drm_gtf_mode_complex(dev, hsize, vsize,
3286 vrefresh_rate, 0, 0,
3287 drm_gtf2_m(drm_edid),
3288 drm_gtf2_2c(drm_edid),
3289 drm_gtf2_k(drm_edid),
3290 drm_gtf2_2j(drm_edid));
3291 }
3292
3293 return mode;
3294}
3295
3296/*
3297 * Take the standard timing params (in this case width, aspect, and refresh)
3298 * and convert them into a real mode using CVT/GTF/DMT.
3299 */
3300static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3301 const struct drm_edid *drm_edid,
3302 const struct std_timing *t)
3303{
3304 struct drm_device *dev = connector->dev;
3305 struct drm_display_mode *m, *mode = NULL;
3306 int hsize, vsize;
3307 int vrefresh_rate;
3308 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3309 >> EDID_TIMING_ASPECT_SHIFT;
3310 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3311 >> EDID_TIMING_VFREQ_SHIFT;
3312 int timing_level = standard_timing_level(drm_edid);
3313
3314 if (bad_std_timing(t->hsize, t->vfreq_aspect))
3315 return NULL;
3316
3317 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3318 hsize = t->hsize * 8 + 248;
3319 /* vrefresh_rate = vfreq + 60 */
3320 vrefresh_rate = vfreq + 60;
3321 /* the vdisplay is calculated based on the aspect ratio */
3322 if (aspect_ratio == 0) {
3323 if (drm_edid->edid->revision < 3)
3324 vsize = hsize;
3325 else
3326 vsize = (hsize * 10) / 16;
3327 } else if (aspect_ratio == 1)
3328 vsize = (hsize * 3) / 4;
3329 else if (aspect_ratio == 2)
3330 vsize = (hsize * 4) / 5;
3331 else
3332 vsize = (hsize * 9) / 16;
3333
3334 /* HDTV hack, part 1 */
3335 if (vrefresh_rate == 60 &&
3336 ((hsize == 1360 && vsize == 765) ||
3337 (hsize == 1368 && vsize == 769))) {
3338 hsize = 1366;
3339 vsize = 768;
3340 }
3341
3342 /*
3343 * If this connector already has a mode for this size and refresh
3344 * rate (because it came from detailed or CVT info), use that
3345 * instead. This way we don't have to guess at interlace or
3346 * reduced blanking.
3347 */
3348 list_for_each_entry(m, &connector->probed_modes, head)
3349 if (m->hdisplay == hsize && m->vdisplay == vsize &&
3350 drm_mode_vrefresh(m) == vrefresh_rate)
3351 return NULL;
3352
3353 /* HDTV hack, part 2 */
3354 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3355 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3356 false);
3357 if (!mode)
3358 return NULL;
3359 mode->hdisplay = 1366;
3360 mode->hsync_start = mode->hsync_start - 1;
3361 mode->hsync_end = mode->hsync_end - 1;
3362 return mode;
3363 }
3364
3365 /* check whether it can be found in default mode table */
3366 if (drm_monitor_supports_rb(drm_edid)) {
3367 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3368 true);
3369 if (mode)
3370 return mode;
3371 }
3372 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3373 if (mode)
3374 return mode;
3375
3376 /* okay, generate it */
3377 switch (timing_level) {
3378 case LEVEL_DMT:
3379 break;
3380 case LEVEL_GTF:
3381 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3382 break;
3383 case LEVEL_GTF2:
3384 mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3385 break;
3386 case LEVEL_CVT:
3387 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3388 false);
3389 break;
3390 }
3391 return mode;
3392}
3393
3394/*
3395 * EDID is delightfully ambiguous about how interlaced modes are to be
3396 * encoded. Our internal representation is of frame height, but some
3397 * HDTV detailed timings are encoded as field height.
3398 *
3399 * The format list here is from CEA, in frame size. Technically we
3400 * should be checking refresh rate too. Whatever.
3401 */
3402static void
3403drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3404 const struct detailed_pixel_timing *pt)
3405{
3406 int i;
3407 static const struct {
3408 int w, h;
3409 } cea_interlaced[] = {
3410 { 1920, 1080 },
3411 { 720, 480 },
3412 { 1440, 480 },
3413 { 2880, 480 },
3414 { 720, 576 },
3415 { 1440, 576 },
3416 { 2880, 576 },
3417 };
3418
3419 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3420 return;
3421
3422 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3423 if ((mode->hdisplay == cea_interlaced[i].w) &&
3424 (mode->vdisplay == cea_interlaced[i].h / 2)) {
3425 mode->vdisplay *= 2;
3426 mode->vsync_start *= 2;
3427 mode->vsync_end *= 2;
3428 mode->vtotal *= 2;
3429 mode->vtotal |= 1;
3430 }
3431 }
3432
3433 mode->flags |= DRM_MODE_FLAG_INTERLACE;
3434}
3435
3436/*
3437 * Create a new mode from an EDID detailed timing section. An EDID detailed
3438 * timing block contains enough info for us to create and return a new struct
3439 * drm_display_mode.
3440 */
3441static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3442 const struct drm_edid *drm_edid,
3443 const struct detailed_timing *timing)
3444{
3445 const struct drm_display_info *info = &connector->display_info;
3446 struct drm_device *dev = connector->dev;
3447 struct drm_display_mode *mode;
3448 const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3449 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3450 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3451 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3452 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3453 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3454 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3455 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3456 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3457
3458 /* ignore tiny modes */
3459 if (hactive < 64 || vactive < 64)
3460 return NULL;
3461
3462 if (pt->misc & DRM_EDID_PT_STEREO) {
3463 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3464 connector->base.id, connector->name);
3465 return NULL;
3466 }
3467 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3468 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3469 connector->base.id, connector->name);
3470 }
3471
3472 /* it is incorrect if hsync/vsync width is zero */
3473 if (!hsync_pulse_width || !vsync_pulse_width) {
3474 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3475 connector->base.id, connector->name);
3476 return NULL;
3477 }
3478
3479 if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3480 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3481 if (!mode)
3482 return NULL;
3483
3484 goto set_size;
3485 }
3486
3487 mode = drm_mode_create(dev);
3488 if (!mode)
3489 return NULL;
3490
3491 if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3492 mode->clock = 1088 * 10;
3493 else
3494 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3495
3496 mode->hdisplay = hactive;
3497 mode->hsync_start = mode->hdisplay + hsync_offset;
3498 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3499 mode->htotal = mode->hdisplay + hblank;
3500
3501 mode->vdisplay = vactive;
3502 mode->vsync_start = mode->vdisplay + vsync_offset;
3503 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3504 mode->vtotal = mode->vdisplay + vblank;
3505
3506 /* Some EDIDs have bogus h/vsync_end values */
3507 if (mode->hsync_end > mode->htotal) {
3508 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3509 connector->base.id, connector->name,
3510 mode->hsync_end, mode->htotal);
3511 mode->hsync_end = mode->htotal;
3512 }
3513 if (mode->vsync_end > mode->vtotal) {
3514 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3515 connector->base.id, connector->name,
3516 mode->vsync_end, mode->vtotal);
3517 mode->vsync_end = mode->vtotal;
3518 }
3519
3520 drm_mode_do_interlace_quirk(mode, pt);
3521
3522 if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3523 mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3524 } else {
3525 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3526 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3527 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3528 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3529 }
3530
3531set_size:
3532 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3533 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3534
3535 if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3536 mode->width_mm *= 10;
3537 mode->height_mm *= 10;
3538 }
3539
3540 if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3541 mode->width_mm = drm_edid->edid->width_cm * 10;
3542 mode->height_mm = drm_edid->edid->height_cm * 10;
3543 }
3544
3545 mode->type = DRM_MODE_TYPE_DRIVER;
3546 drm_mode_set_name(mode);
3547
3548 return mode;
3549}
3550
3551static bool
3552mode_in_hsync_range(const struct drm_display_mode *mode,
3553 const struct edid *edid, const u8 *t)
3554{
3555 int hsync, hmin, hmax;
3556
3557 hmin = t[7];
3558 if (edid->revision >= 4)
3559 hmin += ((t[4] & 0x04) ? 255 : 0);
3560 hmax = t[8];
3561 if (edid->revision >= 4)
3562 hmax += ((t[4] & 0x08) ? 255 : 0);
3563 hsync = drm_mode_hsync(mode);
3564
3565 return (hsync <= hmax && hsync >= hmin);
3566}
3567
3568static bool
3569mode_in_vsync_range(const struct drm_display_mode *mode,
3570 const struct edid *edid, const u8 *t)
3571{
3572 int vsync, vmin, vmax;
3573
3574 vmin = t[5];
3575 if (edid->revision >= 4)
3576 vmin += ((t[4] & 0x01) ? 255 : 0);
3577 vmax = t[6];
3578 if (edid->revision >= 4)
3579 vmax += ((t[4] & 0x02) ? 255 : 0);
3580 vsync = drm_mode_vrefresh(mode);
3581
3582 return (vsync <= vmax && vsync >= vmin);
3583}
3584
3585static u32
3586range_pixel_clock(const struct edid *edid, const u8 *t)
3587{
3588 /* unspecified */
3589 if (t[9] == 0 || t[9] == 255)
3590 return 0;
3591
3592 /* 1.4 with CVT support gives us real precision, yay */
3593 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3594 return (t[9] * 10000) - ((t[12] >> 2) * 250);
3595
3596 /* 1.3 is pathetic, so fuzz up a bit */
3597 return t[9] * 10000 + 5001;
3598}
3599
3600static bool mode_in_range(const struct drm_display_mode *mode,
3601 const struct drm_edid *drm_edid,
3602 const struct detailed_timing *timing)
3603{
3604 const struct edid *edid = drm_edid->edid;
3605 u32 max_clock;
3606 const u8 *t = (const u8 *)timing;
3607
3608 if (!mode_in_hsync_range(mode, edid, t))
3609 return false;
3610
3611 if (!mode_in_vsync_range(mode, edid, t))
3612 return false;
3613
3614 if ((max_clock = range_pixel_clock(edid, t)))
3615 if (mode->clock > max_clock)
3616 return false;
3617
3618 /* 1.4 max horizontal check */
3619 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3620 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3621 return false;
3622
3623 if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3624 return false;
3625
3626 return true;
3627}
3628
3629static bool valid_inferred_mode(const struct drm_connector *connector,
3630 const struct drm_display_mode *mode)
3631{
3632 const struct drm_display_mode *m;
3633 bool ok = false;
3634
3635 list_for_each_entry(m, &connector->probed_modes, head) {
3636 if (mode->hdisplay == m->hdisplay &&
3637 mode->vdisplay == m->vdisplay &&
3638 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3639 return false; /* duplicated */
3640 if (mode->hdisplay <= m->hdisplay &&
3641 mode->vdisplay <= m->vdisplay)
3642 ok = true;
3643 }
3644 return ok;
3645}
3646
3647static int drm_dmt_modes_for_range(struct drm_connector *connector,
3648 const struct drm_edid *drm_edid,
3649 const struct detailed_timing *timing)
3650{
3651 int i, modes = 0;
3652 struct drm_display_mode *newmode;
3653 struct drm_device *dev = connector->dev;
3654
3655 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3656 if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3657 valid_inferred_mode(connector, drm_dmt_modes + i)) {
3658 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3659 if (newmode) {
3660 drm_mode_probed_add(connector, newmode);
3661 modes++;
3662 }
3663 }
3664 }
3665
3666 return modes;
3667}
3668
3669/* fix up 1366x768 mode from 1368x768;
3670 * GFT/CVT can't express 1366 width which isn't dividable by 8
3671 */
3672void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3673{
3674 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3675 mode->hdisplay = 1366;
3676 mode->hsync_start--;
3677 mode->hsync_end--;
3678 drm_mode_set_name(mode);
3679 }
3680}
3681
3682static int drm_gtf_modes_for_range(struct drm_connector *connector,
3683 const struct drm_edid *drm_edid,
3684 const struct detailed_timing *timing)
3685{
3686 int i, modes = 0;
3687 struct drm_display_mode *newmode;
3688 struct drm_device *dev = connector->dev;
3689
3690 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3691 const struct minimode *m = &extra_modes[i];
3692
3693 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3694 if (!newmode)
3695 return modes;
3696
3697 drm_mode_fixup_1366x768(newmode);
3698 if (!mode_in_range(newmode, drm_edid, timing) ||
3699 !valid_inferred_mode(connector, newmode)) {
3700 drm_mode_destroy(dev, newmode);
3701 continue;
3702 }
3703
3704 drm_mode_probed_add(connector, newmode);
3705 modes++;
3706 }
3707
3708 return modes;
3709}
3710
3711static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3712 const struct drm_edid *drm_edid,
3713 const struct detailed_timing *timing)
3714{
3715 int i, modes = 0;
3716 struct drm_display_mode *newmode;
3717 struct drm_device *dev = connector->dev;
3718
3719 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3720 const struct minimode *m = &extra_modes[i];
3721
3722 newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3723 if (!newmode)
3724 return modes;
3725
3726 drm_mode_fixup_1366x768(newmode);
3727 if (!mode_in_range(newmode, drm_edid, timing) ||
3728 !valid_inferred_mode(connector, newmode)) {
3729 drm_mode_destroy(dev, newmode);
3730 continue;
3731 }
3732
3733 drm_mode_probed_add(connector, newmode);
3734 modes++;
3735 }
3736
3737 return modes;
3738}
3739
3740static int drm_cvt_modes_for_range(struct drm_connector *connector,
3741 const struct drm_edid *drm_edid,
3742 const struct detailed_timing *timing)
3743{
3744 int i, modes = 0;
3745 struct drm_display_mode *newmode;
3746 struct drm_device *dev = connector->dev;
3747 bool rb = drm_monitor_supports_rb(drm_edid);
3748
3749 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3750 const struct minimode *m = &extra_modes[i];
3751
3752 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3753 if (!newmode)
3754 return modes;
3755
3756 drm_mode_fixup_1366x768(newmode);
3757 if (!mode_in_range(newmode, drm_edid, timing) ||
3758 !valid_inferred_mode(connector, newmode)) {
3759 drm_mode_destroy(dev, newmode);
3760 continue;
3761 }
3762
3763 drm_mode_probed_add(connector, newmode);
3764 modes++;
3765 }
3766
3767 return modes;
3768}
3769
3770static void
3771do_inferred_modes(const struct detailed_timing *timing, void *c)
3772{
3773 struct detailed_mode_closure *closure = c;
3774 const struct detailed_non_pixel *data = &timing->data.other_data;
3775 const struct detailed_data_monitor_range *range = &data->data.range;
3776
3777 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3778 return;
3779
3780 closure->modes += drm_dmt_modes_for_range(closure->connector,
3781 closure->drm_edid,
3782 timing);
3783
3784 if (closure->drm_edid->edid->revision < 2)
3785 return; /* GTF not defined yet */
3786
3787 switch (range->flags) {
3788 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3789 closure->modes += drm_gtf2_modes_for_range(closure->connector,
3790 closure->drm_edid,
3791 timing);
3792 break;
3793 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3794 closure->modes += drm_gtf_modes_for_range(closure->connector,
3795 closure->drm_edid,
3796 timing);
3797 break;
3798 case DRM_EDID_CVT_SUPPORT_FLAG:
3799 if (closure->drm_edid->edid->revision < 4)
3800 break;
3801
3802 closure->modes += drm_cvt_modes_for_range(closure->connector,
3803 closure->drm_edid,
3804 timing);
3805 break;
3806 case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3807 default:
3808 break;
3809 }
3810}
3811
3812static int add_inferred_modes(struct drm_connector *connector,
3813 const struct drm_edid *drm_edid)
3814{
3815 struct detailed_mode_closure closure = {
3816 .connector = connector,
3817 .drm_edid = drm_edid,
3818 };
3819
3820 if (drm_edid->edid->revision >= 1)
3821 drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3822
3823 return closure.modes;
3824}
3825
3826static int
3827drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3828{
3829 int i, j, m, modes = 0;
3830 struct drm_display_mode *mode;
3831 const u8 *est = ((const u8 *)timing) + 6;
3832
3833 for (i = 0; i < 6; i++) {
3834 for (j = 7; j >= 0; j--) {
3835 m = (i * 8) + (7 - j);
3836 if (m >= ARRAY_SIZE(est3_modes))
3837 break;
3838 if (est[i] & (1 << j)) {
3839 mode = drm_mode_find_dmt(connector->dev,
3840 est3_modes[m].w,
3841 est3_modes[m].h,
3842 est3_modes[m].r,
3843 est3_modes[m].rb);
3844 if (mode) {
3845 drm_mode_probed_add(connector, mode);
3846 modes++;
3847 }
3848 }
3849 }
3850 }
3851
3852 return modes;
3853}
3854
3855static void
3856do_established_modes(const struct detailed_timing *timing, void *c)
3857{
3858 struct detailed_mode_closure *closure = c;
3859
3860 if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3861 return;
3862
3863 closure->modes += drm_est3_modes(closure->connector, timing);
3864}
3865
3866/*
3867 * Get established modes from EDID and add them. Each EDID block contains a
3868 * bitmap of the supported "established modes" list (defined above). Tease them
3869 * out and add them to the global modes list.
3870 */
3871static int add_established_modes(struct drm_connector *connector,
3872 const struct drm_edid *drm_edid)
3873{
3874 struct drm_device *dev = connector->dev;
3875 const struct edid *edid = drm_edid->edid;
3876 unsigned long est_bits = edid->established_timings.t1 |
3877 (edid->established_timings.t2 << 8) |
3878 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
3879 int i, modes = 0;
3880 struct detailed_mode_closure closure = {
3881 .connector = connector,
3882 .drm_edid = drm_edid,
3883 };
3884
3885 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3886 if (est_bits & (1<<i)) {
3887 struct drm_display_mode *newmode;
3888
3889 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3890 if (newmode) {
3891 drm_mode_probed_add(connector, newmode);
3892 modes++;
3893 }
3894 }
3895 }
3896
3897 if (edid->revision >= 1)
3898 drm_for_each_detailed_block(drm_edid, do_established_modes,
3899 &closure);
3900
3901 return modes + closure.modes;
3902}
3903
3904static void
3905do_standard_modes(const struct detailed_timing *timing, void *c)
3906{
3907 struct detailed_mode_closure *closure = c;
3908 const struct detailed_non_pixel *data = &timing->data.other_data;
3909 struct drm_connector *connector = closure->connector;
3910 int i;
3911
3912 if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3913 return;
3914
3915 for (i = 0; i < 6; i++) {
3916 const struct std_timing *std = &data->data.timings[i];
3917 struct drm_display_mode *newmode;
3918
3919 newmode = drm_mode_std(connector, closure->drm_edid, std);
3920 if (newmode) {
3921 drm_mode_probed_add(connector, newmode);
3922 closure->modes++;
3923 }
3924 }
3925}
3926
3927/*
3928 * Get standard modes from EDID and add them. Standard modes can be calculated
3929 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3930 * add them to the list.
3931 */
3932static int add_standard_modes(struct drm_connector *connector,
3933 const struct drm_edid *drm_edid)
3934{
3935 int i, modes = 0;
3936 struct detailed_mode_closure closure = {
3937 .connector = connector,
3938 .drm_edid = drm_edid,
3939 };
3940
3941 for (i = 0; i < EDID_STD_TIMINGS; i++) {
3942 struct drm_display_mode *newmode;
3943
3944 newmode = drm_mode_std(connector, drm_edid,
3945 &drm_edid->edid->standard_timings[i]);
3946 if (newmode) {
3947 drm_mode_probed_add(connector, newmode);
3948 modes++;
3949 }
3950 }
3951
3952 if (drm_edid->edid->revision >= 1)
3953 drm_for_each_detailed_block(drm_edid, do_standard_modes,
3954 &closure);
3955
3956 /* XXX should also look for standard codes in VTB blocks */
3957
3958 return modes + closure.modes;
3959}
3960
3961static int drm_cvt_modes(struct drm_connector *connector,
3962 const struct detailed_timing *timing)
3963{
3964 int i, j, modes = 0;
3965 struct drm_display_mode *newmode;
3966 struct drm_device *dev = connector->dev;
3967 const struct cvt_timing *cvt;
3968 static const int rates[] = { 60, 85, 75, 60, 50 };
3969 const u8 empty[3] = { 0, 0, 0 };
3970
3971 for (i = 0; i < 4; i++) {
3972 int width, height;
3973
3974 cvt = &(timing->data.other_data.data.cvt[i]);
3975
3976 if (!memcmp(cvt->code, empty, 3))
3977 continue;
3978
3979 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3980 switch (cvt->code[1] & 0x0c) {
3981 /* default - because compiler doesn't see that we've enumerated all cases */
3982 default:
3983 case 0x00:
3984 width = height * 4 / 3;
3985 break;
3986 case 0x04:
3987 width = height * 16 / 9;
3988 break;
3989 case 0x08:
3990 width = height * 16 / 10;
3991 break;
3992 case 0x0c:
3993 width = height * 15 / 9;
3994 break;
3995 }
3996
3997 for (j = 1; j < 5; j++) {
3998 if (cvt->code[2] & (1 << j)) {
3999 newmode = drm_cvt_mode(dev, width, height,
4000 rates[j], j == 0,
4001 false, false);
4002 if (newmode) {
4003 drm_mode_probed_add(connector, newmode);
4004 modes++;
4005 }
4006 }
4007 }
4008 }
4009
4010 return modes;
4011}
4012
4013static void
4014do_cvt_mode(const struct detailed_timing *timing, void *c)
4015{
4016 struct detailed_mode_closure *closure = c;
4017
4018 if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4019 return;
4020
4021 closure->modes += drm_cvt_modes(closure->connector, timing);
4022}
4023
4024static int
4025add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4026{
4027 struct detailed_mode_closure closure = {
4028 .connector = connector,
4029 .drm_edid = drm_edid,
4030 };
4031
4032 if (drm_edid->edid->revision >= 3)
4033 drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4034
4035 /* XXX should also look for CVT codes in VTB blocks */
4036
4037 return closure.modes;
4038}
4039
4040static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4041 struct drm_display_mode *mode);
4042
4043static void
4044do_detailed_mode(const struct detailed_timing *timing, void *c)
4045{
4046 struct detailed_mode_closure *closure = c;
4047 struct drm_display_mode *newmode;
4048
4049 if (!is_detailed_timing_descriptor(timing))
4050 return;
4051
4052 newmode = drm_mode_detailed(closure->connector,
4053 closure->drm_edid, timing);
4054 if (!newmode)
4055 return;
4056
4057 if (closure->preferred)
4058 newmode->type |= DRM_MODE_TYPE_PREFERRED;
4059
4060 /*
4061 * Detailed modes are limited to 10kHz pixel clock resolution,
4062 * so fix up anything that looks like CEA/HDMI mode, but the clock
4063 * is just slightly off.
4064 */
4065 fixup_detailed_cea_mode_clock(closure->connector, newmode);
4066
4067 drm_mode_probed_add(closure->connector, newmode);
4068 closure->modes++;
4069 closure->preferred = false;
4070}
4071
4072/*
4073 * add_detailed_modes - Add modes from detailed timings
4074 * @connector: attached connector
4075 * @drm_edid: EDID block to scan
4076 */
4077static int add_detailed_modes(struct drm_connector *connector,
4078 const struct drm_edid *drm_edid)
4079{
4080 struct detailed_mode_closure closure = {
4081 .connector = connector,
4082 .drm_edid = drm_edid,
4083 };
4084
4085 if (drm_edid->edid->revision >= 4)
4086 closure.preferred = true; /* first detailed timing is always preferred */
4087 else
4088 closure.preferred =
4089 drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4090
4091 drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4092
4093 return closure.modes;
4094}
4095
4096/* CTA-861-H Table 60 - CTA Tag Codes */
4097#define CTA_DB_AUDIO 1
4098#define CTA_DB_VIDEO 2
4099#define CTA_DB_VENDOR 3
4100#define CTA_DB_SPEAKER 4
4101#define CTA_DB_EXTENDED_TAG 7
4102
4103/* CTA-861-H Table 62 - CTA Extended Tag Codes */
4104#define CTA_EXT_DB_VIDEO_CAP 0
4105#define CTA_EXT_DB_VENDOR 1
4106#define CTA_EXT_DB_HDR_STATIC_METADATA 6
4107#define CTA_EXT_DB_420_VIDEO_DATA 14
4108#define CTA_EXT_DB_420_VIDEO_CAP_MAP 15
4109#define CTA_EXT_DB_HF_EEODB 0x78
4110#define CTA_EXT_DB_HF_SCDB 0x79
4111
4112#define EDID_BASIC_AUDIO (1 << 6)
4113#define EDID_CEA_YCRCB444 (1 << 5)
4114#define EDID_CEA_YCRCB422 (1 << 4)
4115#define EDID_CEA_VCDB_QS (1 << 6)
4116
4117/*
4118 * Search EDID for CEA extension block.
4119 *
4120 * FIXME: Prefer not returning pointers to raw EDID data.
4121 */
4122const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4123 int ext_id, int *ext_index)
4124{
4125 const u8 *edid_ext = NULL;
4126 int i;
4127
4128 /* No EDID or EDID extensions */
4129 if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4130 return NULL;
4131
4132 /* Find CEA extension */
4133 for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4134 edid_ext = drm_edid_extension_block_data(drm_edid, i);
4135 if (edid_block_tag(edid_ext) == ext_id)
4136 break;
4137 }
4138
4139 if (i >= drm_edid_extension_block_count(drm_edid))
4140 return NULL;
4141
4142 *ext_index = i + 1;
4143
4144 return edid_ext;
4145}
4146
4147/* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4148static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4149{
4150 const struct displayid_block *block;
4151 struct displayid_iter iter;
4152 int ext_index = 0;
4153 bool found = false;
4154
4155 /* Look for a top level CEA extension block */
4156 if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4157 return true;
4158
4159 /* CEA blocks can also be found embedded in a DisplayID block */
4160 displayid_iter_edid_begin(drm_edid, &iter);
4161 displayid_iter_for_each(block, &iter) {
4162 if (block->tag == DATA_BLOCK_CTA) {
4163 found = true;
4164 break;
4165 }
4166 }
4167 displayid_iter_end(&iter);
4168
4169 return found;
4170}
4171
4172static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4173{
4174 BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4175 BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4176
4177 if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4178 return &edid_cea_modes_1[vic - 1];
4179 if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4180 return &edid_cea_modes_193[vic - 193];
4181 return NULL;
4182}
4183
4184static u8 cea_num_vics(void)
4185{
4186 return 193 + ARRAY_SIZE(edid_cea_modes_193);
4187}
4188
4189static u8 cea_next_vic(u8 vic)
4190{
4191 if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4192 vic = 193;
4193 return vic;
4194}
4195
4196/*
4197 * Calculate the alternate clock for the CEA mode
4198 * (60Hz vs. 59.94Hz etc.)
4199 */
4200static unsigned int
4201cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4202{
4203 unsigned int clock = cea_mode->clock;
4204
4205 if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4206 return clock;
4207
4208 /*
4209 * edid_cea_modes contains the 59.94Hz
4210 * variant for 240 and 480 line modes,
4211 * and the 60Hz variant otherwise.
4212 */
4213 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4214 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4215 else
4216 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4217
4218 return clock;
4219}
4220
4221static bool
4222cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4223{
4224 /*
4225 * For certain VICs the spec allows the vertical
4226 * front porch to vary by one or two lines.
4227 *
4228 * cea_modes[] stores the variant with the shortest
4229 * vertical front porch. We can adjust the mode to
4230 * get the other variants by simply increasing the
4231 * vertical front porch length.
4232 */
4233 BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4234 cea_mode_for_vic(9)->vtotal != 262 ||
4235 cea_mode_for_vic(12)->vtotal != 262 ||
4236 cea_mode_for_vic(13)->vtotal != 262 ||
4237 cea_mode_for_vic(23)->vtotal != 312 ||
4238 cea_mode_for_vic(24)->vtotal != 312 ||
4239 cea_mode_for_vic(27)->vtotal != 312 ||
4240 cea_mode_for_vic(28)->vtotal != 312);
4241
4242 if (((vic == 8 || vic == 9 ||
4243 vic == 12 || vic == 13) && mode->vtotal < 263) ||
4244 ((vic == 23 || vic == 24 ||
4245 vic == 27 || vic == 28) && mode->vtotal < 314)) {
4246 mode->vsync_start++;
4247 mode->vsync_end++;
4248 mode->vtotal++;
4249
4250 return true;
4251 }
4252
4253 return false;
4254}
4255
4256static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4257 unsigned int clock_tolerance)
4258{
4259 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4260 u8 vic;
4261
4262 if (!to_match->clock)
4263 return 0;
4264
4265 if (to_match->picture_aspect_ratio)
4266 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4267
4268 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4269 struct drm_display_mode cea_mode;
4270 unsigned int clock1, clock2;
4271
4272 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4273
4274 /* Check both 60Hz and 59.94Hz */
4275 clock1 = cea_mode.clock;
4276 clock2 = cea_mode_alternate_clock(&cea_mode);
4277
4278 if (abs(to_match->clock - clock1) > clock_tolerance &&
4279 abs(to_match->clock - clock2) > clock_tolerance)
4280 continue;
4281
4282 do {
4283 if (drm_mode_match(to_match, &cea_mode, match_flags))
4284 return vic;
4285 } while (cea_mode_alternate_timings(vic, &cea_mode));
4286 }
4287
4288 return 0;
4289}
4290
4291/**
4292 * drm_match_cea_mode - look for a CEA mode matching given mode
4293 * @to_match: display mode
4294 *
4295 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4296 * mode.
4297 */
4298u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4299{
4300 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4301 u8 vic;
4302
4303 if (!to_match->clock)
4304 return 0;
4305
4306 if (to_match->picture_aspect_ratio)
4307 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4308
4309 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4310 struct drm_display_mode cea_mode;
4311 unsigned int clock1, clock2;
4312
4313 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4314
4315 /* Check both 60Hz and 59.94Hz */
4316 clock1 = cea_mode.clock;
4317 clock2 = cea_mode_alternate_clock(&cea_mode);
4318
4319 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4320 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4321 continue;
4322
4323 do {
4324 if (drm_mode_match(to_match, &cea_mode, match_flags))
4325 return vic;
4326 } while (cea_mode_alternate_timings(vic, &cea_mode));
4327 }
4328
4329 return 0;
4330}
4331EXPORT_SYMBOL(drm_match_cea_mode);
4332
4333static bool drm_valid_cea_vic(u8 vic)
4334{
4335 return cea_mode_for_vic(vic) != NULL;
4336}
4337
4338static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4339{
4340 const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4341
4342 if (mode)
4343 return mode->picture_aspect_ratio;
4344
4345 return HDMI_PICTURE_ASPECT_NONE;
4346}
4347
4348static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4349{
4350 return edid_4k_modes[video_code].picture_aspect_ratio;
4351}
4352
4353/*
4354 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4355 * specific block).
4356 */
4357static unsigned int
4358hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4359{
4360 return cea_mode_alternate_clock(hdmi_mode);
4361}
4362
4363static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4364 unsigned int clock_tolerance)
4365{
4366 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4367 u8 vic;
4368
4369 if (!to_match->clock)
4370 return 0;
4371
4372 if (to_match->picture_aspect_ratio)
4373 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4374
4375 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4376 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4377 unsigned int clock1, clock2;
4378
4379 /* Make sure to also match alternate clocks */
4380 clock1 = hdmi_mode->clock;
4381 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4382
4383 if (abs(to_match->clock - clock1) > clock_tolerance &&
4384 abs(to_match->clock - clock2) > clock_tolerance)
4385 continue;
4386
4387 if (drm_mode_match(to_match, hdmi_mode, match_flags))
4388 return vic;
4389 }
4390
4391 return 0;
4392}
4393
4394/*
4395 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4396 * @to_match: display mode
4397 *
4398 * An HDMI mode is one defined in the HDMI vendor specific block.
4399 *
4400 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4401 */
4402static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4403{
4404 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4405 u8 vic;
4406
4407 if (!to_match->clock)
4408 return 0;
4409
4410 if (to_match->picture_aspect_ratio)
4411 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4412
4413 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4414 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4415 unsigned int clock1, clock2;
4416
4417 /* Make sure to also match alternate clocks */
4418 clock1 = hdmi_mode->clock;
4419 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4420
4421 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4422 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4423 drm_mode_match(to_match, hdmi_mode, match_flags))
4424 return vic;
4425 }
4426 return 0;
4427}
4428
4429static bool drm_valid_hdmi_vic(u8 vic)
4430{
4431 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4432}
4433
4434static int add_alternate_cea_modes(struct drm_connector *connector,
4435 const struct drm_edid *drm_edid)
4436{
4437 struct drm_device *dev = connector->dev;
4438 struct drm_display_mode *mode, *tmp;
4439 LIST_HEAD(list);
4440 int modes = 0;
4441
4442 /* Don't add CTA modes if the CTA extension block is missing */
4443 if (!drm_edid_has_cta_extension(drm_edid))
4444 return 0;
4445
4446 /*
4447 * Go through all probed modes and create a new mode
4448 * with the alternate clock for certain CEA modes.
4449 */
4450 list_for_each_entry(mode, &connector->probed_modes, head) {
4451 const struct drm_display_mode *cea_mode = NULL;
4452 struct drm_display_mode *newmode;
4453 u8 vic = drm_match_cea_mode(mode);
4454 unsigned int clock1, clock2;
4455
4456 if (drm_valid_cea_vic(vic)) {
4457 cea_mode = cea_mode_for_vic(vic);
4458 clock2 = cea_mode_alternate_clock(cea_mode);
4459 } else {
4460 vic = drm_match_hdmi_mode(mode);
4461 if (drm_valid_hdmi_vic(vic)) {
4462 cea_mode = &edid_4k_modes[vic];
4463 clock2 = hdmi_mode_alternate_clock(cea_mode);
4464 }
4465 }
4466
4467 if (!cea_mode)
4468 continue;
4469
4470 clock1 = cea_mode->clock;
4471
4472 if (clock1 == clock2)
4473 continue;
4474
4475 if (mode->clock != clock1 && mode->clock != clock2)
4476 continue;
4477
4478 newmode = drm_mode_duplicate(dev, cea_mode);
4479 if (!newmode)
4480 continue;
4481
4482 /* Carry over the stereo flags */
4483 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4484
4485 /*
4486 * The current mode could be either variant. Make
4487 * sure to pick the "other" clock for the new mode.
4488 */
4489 if (mode->clock != clock1)
4490 newmode->clock = clock1;
4491 else
4492 newmode->clock = clock2;
4493
4494 list_add_tail(&newmode->head, &list);
4495 }
4496
4497 list_for_each_entry_safe(mode, tmp, &list, head) {
4498 list_del(&mode->head);
4499 drm_mode_probed_add(connector, mode);
4500 modes++;
4501 }
4502
4503 return modes;
4504}
4505
4506static u8 svd_to_vic(u8 svd)
4507{
4508 /* 0-6 bit vic, 7th bit native mode indicator */
4509 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192))
4510 return svd & 127;
4511
4512 return svd;
4513}
4514
4515/*
4516 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4517 * the EDID, or NULL on errors.
4518 */
4519static struct drm_display_mode *
4520drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4521{
4522 const struct drm_display_info *info = &connector->display_info;
4523 struct drm_device *dev = connector->dev;
4524
4525 if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4526 return NULL;
4527
4528 return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4529}
4530
4531/*
4532 * do_y420vdb_modes - Parse YCBCR 420 only modes
4533 * @connector: connector corresponding to the HDMI sink
4534 * @svds: start of the data block of CEA YCBCR 420 VDB
4535 * @len: length of the CEA YCBCR 420 VDB
4536 *
4537 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4538 * which contains modes which can be supported in YCBCR 420
4539 * output format only.
4540 */
4541static int do_y420vdb_modes(struct drm_connector *connector,
4542 const u8 *svds, u8 svds_len)
4543{
4544 struct drm_device *dev = connector->dev;
4545 int modes = 0, i;
4546
4547 for (i = 0; i < svds_len; i++) {
4548 u8 vic = svd_to_vic(svds[i]);
4549 struct drm_display_mode *newmode;
4550
4551 if (!drm_valid_cea_vic(vic))
4552 continue;
4553
4554 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4555 if (!newmode)
4556 break;
4557 drm_mode_probed_add(connector, newmode);
4558 modes++;
4559 }
4560
4561 return modes;
4562}
4563
4564/**
4565 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4566 * @dev: DRM device
4567 * @video_code: CEA VIC of the mode
4568 *
4569 * Creates a new mode matching the specified CEA VIC.
4570 *
4571 * Returns: A new drm_display_mode on success or NULL on failure
4572 */
4573struct drm_display_mode *
4574drm_display_mode_from_cea_vic(struct drm_device *dev,
4575 u8 video_code)
4576{
4577 const struct drm_display_mode *cea_mode;
4578 struct drm_display_mode *newmode;
4579
4580 cea_mode = cea_mode_for_vic(video_code);
4581 if (!cea_mode)
4582 return NULL;
4583
4584 newmode = drm_mode_duplicate(dev, cea_mode);
4585 if (!newmode)
4586 return NULL;
4587
4588 return newmode;
4589}
4590EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4591
4592/* Add modes based on VICs parsed in parse_cta_vdb() */
4593static int add_cta_vdb_modes(struct drm_connector *connector)
4594{
4595 const struct drm_display_info *info = &connector->display_info;
4596 int i, modes = 0;
4597
4598 if (!info->vics)
4599 return 0;
4600
4601 for (i = 0; i < info->vics_len; i++) {
4602 struct drm_display_mode *mode;
4603
4604 mode = drm_display_mode_from_vic_index(connector, i);
4605 if (mode) {
4606 drm_mode_probed_add(connector, mode);
4607 modes++;
4608 }
4609 }
4610
4611 return modes;
4612}
4613
4614struct stereo_mandatory_mode {
4615 int width, height, vrefresh;
4616 unsigned int flags;
4617};
4618
4619static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4620 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4621 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4622 { 1920, 1080, 50,
4623 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4624 { 1920, 1080, 60,
4625 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4626 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4627 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4628 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4629 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4630};
4631
4632static bool
4633stereo_match_mandatory(const struct drm_display_mode *mode,
4634 const struct stereo_mandatory_mode *stereo_mode)
4635{
4636 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4637
4638 return mode->hdisplay == stereo_mode->width &&
4639 mode->vdisplay == stereo_mode->height &&
4640 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4641 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4642}
4643
4644static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4645{
4646 struct drm_device *dev = connector->dev;
4647 const struct drm_display_mode *mode;
4648 struct list_head stereo_modes;
4649 int modes = 0, i;
4650
4651 INIT_LIST_HEAD(&stereo_modes);
4652
4653 list_for_each_entry(mode, &connector->probed_modes, head) {
4654 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4655 const struct stereo_mandatory_mode *mandatory;
4656 struct drm_display_mode *new_mode;
4657
4658 if (!stereo_match_mandatory(mode,
4659 &stereo_mandatory_modes[i]))
4660 continue;
4661
4662 mandatory = &stereo_mandatory_modes[i];
4663 new_mode = drm_mode_duplicate(dev, mode);
4664 if (!new_mode)
4665 continue;
4666
4667 new_mode->flags |= mandatory->flags;
4668 list_add_tail(&new_mode->head, &stereo_modes);
4669 modes++;
4670 }
4671 }
4672
4673 list_splice_tail(&stereo_modes, &connector->probed_modes);
4674
4675 return modes;
4676}
4677
4678static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4679{
4680 struct drm_device *dev = connector->dev;
4681 struct drm_display_mode *newmode;
4682
4683 if (!drm_valid_hdmi_vic(vic)) {
4684 drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4685 connector->base.id, connector->name, vic);
4686 return 0;
4687 }
4688
4689 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4690 if (!newmode)
4691 return 0;
4692
4693 drm_mode_probed_add(connector, newmode);
4694
4695 return 1;
4696}
4697
4698static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4699 int vic_index)
4700{
4701 struct drm_display_mode *newmode;
4702 int modes = 0;
4703
4704 if (structure & (1 << 0)) {
4705 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4706 if (newmode) {
4707 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4708 drm_mode_probed_add(connector, newmode);
4709 modes++;
4710 }
4711 }
4712 if (structure & (1 << 6)) {
4713 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4714 if (newmode) {
4715 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4716 drm_mode_probed_add(connector, newmode);
4717 modes++;
4718 }
4719 }
4720 if (structure & (1 << 8)) {
4721 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4722 if (newmode) {
4723 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4724 drm_mode_probed_add(connector, newmode);
4725 modes++;
4726 }
4727 }
4728
4729 return modes;
4730}
4731
4732static bool hdmi_vsdb_latency_present(const u8 *db)
4733{
4734 return db[8] & BIT(7);
4735}
4736
4737static bool hdmi_vsdb_i_latency_present(const u8 *db)
4738{
4739 return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4740}
4741
4742static int hdmi_vsdb_latency_length(const u8 *db)
4743{
4744 if (hdmi_vsdb_i_latency_present(db))
4745 return 4;
4746 else if (hdmi_vsdb_latency_present(db))
4747 return 2;
4748 else
4749 return 0;
4750}
4751
4752/*
4753 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4754 * @connector: connector corresponding to the HDMI sink
4755 * @db: start of the CEA vendor specific block
4756 * @len: length of the CEA block payload, ie. one can access up to db[len]
4757 *
4758 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4759 * also adds the stereo 3d modes when applicable.
4760 */
4761static int
4762do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4763{
4764 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4765 u8 vic_len, hdmi_3d_len = 0;
4766 u16 mask;
4767 u16 structure_all;
4768
4769 if (len < 8)
4770 goto out;
4771
4772 /* no HDMI_Video_Present */
4773 if (!(db[8] & (1 << 5)))
4774 goto out;
4775
4776 offset += hdmi_vsdb_latency_length(db);
4777
4778 /* the declared length is not long enough for the 2 first bytes
4779 * of additional video format capabilities */
4780 if (len < (8 + offset + 2))
4781 goto out;
4782
4783 /* 3D_Present */
4784 offset++;
4785 if (db[8 + offset] & (1 << 7)) {
4786 modes += add_hdmi_mandatory_stereo_modes(connector);
4787
4788 /* 3D_Multi_present */
4789 multi_present = (db[8 + offset] & 0x60) >> 5;
4790 }
4791
4792 offset++;
4793 vic_len = db[8 + offset] >> 5;
4794 hdmi_3d_len = db[8 + offset] & 0x1f;
4795
4796 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4797 u8 vic;
4798
4799 vic = db[9 + offset + i];
4800 modes += add_hdmi_mode(connector, vic);
4801 }
4802 offset += 1 + vic_len;
4803
4804 if (multi_present == 1)
4805 multi_len = 2;
4806 else if (multi_present == 2)
4807 multi_len = 4;
4808 else
4809 multi_len = 0;
4810
4811 if (len < (8 + offset + hdmi_3d_len - 1))
4812 goto out;
4813
4814 if (hdmi_3d_len < multi_len)
4815 goto out;
4816
4817 if (multi_present == 1 || multi_present == 2) {
4818 /* 3D_Structure_ALL */
4819 structure_all = (db[8 + offset] << 8) | db[9 + offset];
4820
4821 /* check if 3D_MASK is present */
4822 if (multi_present == 2)
4823 mask = (db[10 + offset] << 8) | db[11 + offset];
4824 else
4825 mask = 0xffff;
4826
4827 for (i = 0; i < 16; i++) {
4828 if (mask & (1 << i))
4829 modes += add_3d_struct_modes(connector,
4830 structure_all, i);
4831 }
4832 }
4833
4834 offset += multi_len;
4835
4836 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4837 int vic_index;
4838 struct drm_display_mode *newmode = NULL;
4839 unsigned int newflag = 0;
4840 bool detail_present;
4841
4842 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4843
4844 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4845 break;
4846
4847 /* 2D_VIC_order_X */
4848 vic_index = db[8 + offset + i] >> 4;
4849
4850 /* 3D_Structure_X */
4851 switch (db[8 + offset + i] & 0x0f) {
4852 case 0:
4853 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4854 break;
4855 case 6:
4856 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4857 break;
4858 case 8:
4859 /* 3D_Detail_X */
4860 if ((db[9 + offset + i] >> 4) == 1)
4861 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4862 break;
4863 }
4864
4865 if (newflag != 0) {
4866 newmode = drm_display_mode_from_vic_index(connector,
4867 vic_index);
4868
4869 if (newmode) {
4870 newmode->flags |= newflag;
4871 drm_mode_probed_add(connector, newmode);
4872 modes++;
4873 }
4874 }
4875
4876 if (detail_present)
4877 i++;
4878 }
4879
4880out:
4881 return modes;
4882}
4883
4884static int
4885cea_revision(const u8 *cea)
4886{
4887 /*
4888 * FIXME is this correct for the DispID variant?
4889 * The DispID spec doesn't really specify whether
4890 * this is the revision of the CEA extension or
4891 * the DispID CEA data block. And the only value
4892 * given as an example is 0.
4893 */
4894 return cea[1];
4895}
4896
4897/*
4898 * CTA Data Block iterator.
4899 *
4900 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4901 * CTA Data Blocks.
4902 *
4903 * struct cea_db *db:
4904 * struct cea_db_iter iter;
4905 *
4906 * cea_db_iter_edid_begin(edid, &iter);
4907 * cea_db_iter_for_each(db, &iter) {
4908 * // do stuff with db
4909 * }
4910 * cea_db_iter_end(&iter);
4911 */
4912struct cea_db_iter {
4913 struct drm_edid_iter edid_iter;
4914 struct displayid_iter displayid_iter;
4915
4916 /* Current Data Block Collection. */
4917 const u8 *collection;
4918
4919 /* Current Data Block index in current collection. */
4920 int index;
4921
4922 /* End index in current collection. */
4923 int end;
4924};
4925
4926/* CTA-861-H section 7.4 CTA Data BLock Collection */
4927struct cea_db {
4928 u8 tag_length;
4929 u8 data[];
4930} __packed;
4931
4932static int cea_db_tag(const struct cea_db *db)
4933{
4934 return db->tag_length >> 5;
4935}
4936
4937static int cea_db_payload_len(const void *_db)
4938{
4939 /* FIXME: Transition to passing struct cea_db * everywhere. */
4940 const struct cea_db *db = _db;
4941
4942 return db->tag_length & 0x1f;
4943}
4944
4945static const void *cea_db_data(const struct cea_db *db)
4946{
4947 return db->data;
4948}
4949
4950static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4951{
4952 return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4953 cea_db_payload_len(db) >= 1 &&
4954 db->data[0] == tag;
4955}
4956
4957static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4958{
4959 const u8 *data = cea_db_data(db);
4960
4961 return cea_db_tag(db) == CTA_DB_VENDOR &&
4962 cea_db_payload_len(db) >= 3 &&
4963 oui(data[2], data[1], data[0]) == vendor_oui;
4964}
4965
4966static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4967 struct cea_db_iter *iter)
4968{
4969 memset(iter, 0, sizeof(*iter));
4970
4971 drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4972 displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4973}
4974
4975static const struct cea_db *
4976__cea_db_iter_current_block(const struct cea_db_iter *iter)
4977{
4978 const struct cea_db *db;
4979
4980 if (!iter->collection)
4981 return NULL;
4982
4983 db = (const struct cea_db *)&iter->collection[iter->index];
4984
4985 if (iter->index + sizeof(*db) <= iter->end &&
4986 iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4987 return db;
4988
4989 return NULL;
4990}
4991
4992/*
4993 * References:
4994 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4995 */
4996static int cea_db_collection_size(const u8 *cta)
4997{
4998 u8 d = cta[2];
4999
5000 if (d < 4 || d > 127)
5001 return 0;
5002
5003 return d - 4;
5004}
5005
5006/*
5007 * References:
5008 * - VESA E-EDID v1.4
5009 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5010 */
5011static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5012{
5013 const u8 *ext;
5014
5015 drm_edid_iter_for_each(ext, &iter->edid_iter) {
5016 int size;
5017
5018 /* Only support CTA Extension revision 3+ */
5019 if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5020 continue;
5021
5022 size = cea_db_collection_size(ext);
5023 if (!size)
5024 continue;
5025
5026 iter->index = 4;
5027 iter->end = iter->index + size;
5028
5029 return ext;
5030 }
5031
5032 return NULL;
5033}
5034
5035/*
5036 * References:
5037 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5038 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5039 *
5040 * Note that the above do not specify any connection between DisplayID Data
5041 * Block revision and CTA Extension versions.
5042 */
5043static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5044{
5045 const struct displayid_block *block;
5046
5047 displayid_iter_for_each(block, &iter->displayid_iter) {
5048 if (block->tag != DATA_BLOCK_CTA)
5049 continue;
5050
5051 /*
5052 * The displayid iterator has already verified the block bounds
5053 * in displayid_iter_block().
5054 */
5055 iter->index = sizeof(*block);
5056 iter->end = iter->index + block->num_bytes;
5057
5058 return block;
5059 }
5060
5061 return NULL;
5062}
5063
5064static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5065{
5066 const struct cea_db *db;
5067
5068 if (iter->collection) {
5069 /* Current collection should always be valid. */
5070 db = __cea_db_iter_current_block(iter);
5071 if (WARN_ON(!db)) {
5072 iter->collection = NULL;
5073 return NULL;
5074 }
5075
5076 /* Next block in CTA Data Block Collection */
5077 iter->index += sizeof(*db) + cea_db_payload_len(db);
5078
5079 db = __cea_db_iter_current_block(iter);
5080 if (db)
5081 return db;
5082 }
5083
5084 for (;;) {
5085 /*
5086 * Find the next CTA Data Block Collection. First iterate all
5087 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5088 *
5089 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5090 * Extension, it's recommended that DisplayID extensions are
5091 * exposed after all of the CTA Extensions.
5092 */
5093 iter->collection = __cea_db_iter_edid_next(iter);
5094 if (!iter->collection)
5095 iter->collection = __cea_db_iter_displayid_next(iter);
5096
5097 if (!iter->collection)
5098 return NULL;
5099
5100 db = __cea_db_iter_current_block(iter);
5101 if (db)
5102 return db;
5103 }
5104}
5105
5106#define cea_db_iter_for_each(__db, __iter) \
5107 while (((__db) = __cea_db_iter_next(__iter)))
5108
5109static void cea_db_iter_end(struct cea_db_iter *iter)
5110{
5111 displayid_iter_end(&iter->displayid_iter);
5112 drm_edid_iter_end(&iter->edid_iter);
5113
5114 memset(iter, 0, sizeof(*iter));
5115}
5116
5117static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5118{
5119 return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5120 cea_db_payload_len(db) >= 5;
5121}
5122
5123static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5124{
5125 return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5126 cea_db_payload_len(db) >= 7;
5127}
5128
5129static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5130{
5131 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5132 cea_db_payload_len(db) >= 2;
5133}
5134
5135static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5136{
5137 return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5138 cea_db_payload_len(db) == 21;
5139}
5140
5141static bool cea_db_is_vcdb(const struct cea_db *db)
5142{
5143 return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5144 cea_db_payload_len(db) == 2;
5145}
5146
5147static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5148{
5149 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5150 cea_db_payload_len(db) >= 7;
5151}
5152
5153static bool cea_db_is_y420cmdb(const struct cea_db *db)
5154{
5155 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5156}
5157
5158static bool cea_db_is_y420vdb(const struct cea_db *db)
5159{
5160 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5161}
5162
5163static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5164{
5165 return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5166 cea_db_payload_len(db) >= 3;
5167}
5168
5169/*
5170 * Get the HF-EEODB override extension block count from EDID.
5171 *
5172 * The passed in EDID may be partially read, as long as it has at least two
5173 * blocks (base block and one extension block) if EDID extension count is > 0.
5174 *
5175 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5176 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5177 * iterators instead.
5178 *
5179 * References:
5180 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5181 */
5182static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5183{
5184 const u8 *cta;
5185
5186 /* No extensions according to base block, no HF-EEODB. */
5187 if (!edid_extension_block_count(edid))
5188 return 0;
5189
5190 /* HF-EEODB is always in the first EDID extension block only */
5191 cta = edid_extension_block_data(edid, 0);
5192 if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5193 return 0;
5194
5195 /* Need to have the data block collection, and at least 3 bytes. */
5196 if (cea_db_collection_size(cta) < 3)
5197 return 0;
5198
5199 /*
5200 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5201 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5202 * through 6 of Block 1 of the E-EDID.
5203 */
5204 if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5205 return 0;
5206
5207 return cta[4 + 2];
5208}
5209
5210/*
5211 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5212 *
5213 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5214 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5215 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5216 * support YCBCR420 output too.
5217 */
5218static void parse_cta_y420cmdb(struct drm_connector *connector,
5219 const struct cea_db *db, u64 *y420cmdb_map)
5220{
5221 struct drm_display_info *info = &connector->display_info;
5222 int i, map_len = cea_db_payload_len(db) - 1;
5223 const u8 *data = cea_db_data(db) + 1;
5224 u64 map = 0;
5225
5226 if (map_len == 0) {
5227 /* All CEA modes support ycbcr420 sampling also.*/
5228 map = U64_MAX;
5229 goto out;
5230 }
5231
5232 /*
5233 * This map indicates which of the existing CEA block modes
5234 * from VDB can support YCBCR420 output too. So if bit=0 is
5235 * set, first mode from VDB can support YCBCR420 output too.
5236 * We will parse and keep this map, before parsing VDB itself
5237 * to avoid going through the same block again and again.
5238 *
5239 * Spec is not clear about max possible size of this block.
5240 * Clamping max bitmap block size at 8 bytes. Every byte can
5241 * address 8 CEA modes, in this way this map can address
5242 * 8*8 = first 64 SVDs.
5243 */
5244 if (WARN_ON_ONCE(map_len > 8))
5245 map_len = 8;
5246
5247 for (i = 0; i < map_len; i++)
5248 map |= (u64)data[i] << (8 * i);
5249
5250out:
5251 if (map)
5252 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5253
5254 *y420cmdb_map = map;
5255}
5256
5257static int add_cea_modes(struct drm_connector *connector,
5258 const struct drm_edid *drm_edid)
5259{
5260 const struct cea_db *db;
5261 struct cea_db_iter iter;
5262 int modes;
5263
5264 /* CTA VDB block VICs parsed earlier */
5265 modes = add_cta_vdb_modes(connector);
5266
5267 cea_db_iter_edid_begin(drm_edid, &iter);
5268 cea_db_iter_for_each(db, &iter) {
5269 if (cea_db_is_hdmi_vsdb(db)) {
5270 modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5271 cea_db_payload_len(db));
5272 } else if (cea_db_is_y420vdb(db)) {
5273 const u8 *vdb420 = cea_db_data(db) + 1;
5274
5275 /* Add 4:2:0(only) modes present in EDID */
5276 modes += do_y420vdb_modes(connector, vdb420,
5277 cea_db_payload_len(db) - 1);
5278 }
5279 }
5280 cea_db_iter_end(&iter);
5281
5282 return modes;
5283}
5284
5285static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5286 struct drm_display_mode *mode)
5287{
5288 const struct drm_display_mode *cea_mode;
5289 int clock1, clock2, clock;
5290 u8 vic;
5291 const char *type;
5292
5293 /*
5294 * allow 5kHz clock difference either way to account for
5295 * the 10kHz clock resolution limit of detailed timings.
5296 */
5297 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5298 if (drm_valid_cea_vic(vic)) {
5299 type = "CEA";
5300 cea_mode = cea_mode_for_vic(vic);
5301 clock1 = cea_mode->clock;
5302 clock2 = cea_mode_alternate_clock(cea_mode);
5303 } else {
5304 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5305 if (drm_valid_hdmi_vic(vic)) {
5306 type = "HDMI";
5307 cea_mode = &edid_4k_modes[vic];
5308 clock1 = cea_mode->clock;
5309 clock2 = hdmi_mode_alternate_clock(cea_mode);
5310 } else {
5311 return;
5312 }
5313 }
5314
5315 /* pick whichever is closest */
5316 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5317 clock = clock1;
5318 else
5319 clock = clock2;
5320
5321 if (mode->clock == clock)
5322 return;
5323
5324 drm_dbg_kms(connector->dev,
5325 "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5326 connector->base.id, connector->name,
5327 type, vic, mode->clock, clock);
5328 mode->clock = clock;
5329}
5330
5331static void drm_calculate_luminance_range(struct drm_connector *connector)
5332{
5333 struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5334 struct drm_luminance_range_info *luminance_range =
5335 &connector->display_info.luminance_range;
5336 static const u8 pre_computed_values[] = {
5337 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5338 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5339 };
5340 u32 max_avg, min_cll, max, min, q, r;
5341
5342 if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5343 return;
5344
5345 max_avg = hdr_metadata->max_fall;
5346 min_cll = hdr_metadata->min_cll;
5347
5348 /*
5349 * From the specification (CTA-861-G), for calculating the maximum
5350 * luminance we need to use:
5351 * Luminance = 50*2**(CV/32)
5352 * Where CV is a one-byte value.
5353 * For calculating this expression we may need float point precision;
5354 * to avoid this complexity level, we take advantage that CV is divided
5355 * by a constant. From the Euclids division algorithm, we know that CV
5356 * can be written as: CV = 32*q + r. Next, we replace CV in the
5357 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5358 * need to pre-compute the value of r/32. For pre-computing the values
5359 * We just used the following Ruby line:
5360 * (0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5361 * The results of the above expressions can be verified at
5362 * pre_computed_values.
5363 */
5364 q = max_avg >> 5;
5365 r = max_avg % 32;
5366 max = (1 << q) * pre_computed_values[r];
5367
5368 /* min luminance: maxLum * (CV/255)^2 / 100 */
5369 q = DIV_ROUND_CLOSEST(min_cll, 255);
5370 min = max * DIV_ROUND_CLOSEST((q * q), 100);
5371
5372 luminance_range->min_luminance = min;
5373 luminance_range->max_luminance = max;
5374}
5375
5376static uint8_t eotf_supported(const u8 *edid_ext)
5377{
5378 return edid_ext[2] &
5379 (BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5380 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5381 BIT(HDMI_EOTF_SMPTE_ST2084) |
5382 BIT(HDMI_EOTF_BT_2100_HLG));
5383}
5384
5385static uint8_t hdr_metadata_type(const u8 *edid_ext)
5386{
5387 return edid_ext[3] &
5388 BIT(HDMI_STATIC_METADATA_TYPE1);
5389}
5390
5391static void
5392drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5393{
5394 u16 len;
5395
5396 len = cea_db_payload_len(db);
5397
5398 connector->hdr_sink_metadata.hdmi_type1.eotf =
5399 eotf_supported(db);
5400 connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5401 hdr_metadata_type(db);
5402
5403 if (len >= 4)
5404 connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5405 if (len >= 5)
5406 connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5407 if (len >= 6) {
5408 connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5409
5410 /* Calculate only when all values are available */
5411 drm_calculate_luminance_range(connector);
5412 }
5413}
5414
5415/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5416static void
5417drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5418{
5419 u8 len = cea_db_payload_len(db);
5420
5421 if (len >= 6 && (db[6] & (1 << 7)))
5422 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5423
5424 if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5425 connector->latency_present[0] = true;
5426 connector->video_latency[0] = db[9];
5427 connector->audio_latency[0] = db[10];
5428 }
5429
5430 if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5431 connector->latency_present[1] = true;
5432 connector->video_latency[1] = db[11];
5433 connector->audio_latency[1] = db[12];
5434 }
5435
5436 drm_dbg_kms(connector->dev,
5437 "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5438 connector->base.id, connector->name,
5439 connector->latency_present[0], connector->latency_present[1],
5440 connector->video_latency[0], connector->video_latency[1],
5441 connector->audio_latency[0], connector->audio_latency[1]);
5442}
5443
5444static void
5445monitor_name(const struct detailed_timing *timing, void *data)
5446{
5447 const char **res = data;
5448
5449 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5450 return;
5451
5452 *res = timing->data.other_data.data.str.str;
5453}
5454
5455static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5456{
5457 const char *edid_name = NULL;
5458 int mnl;
5459
5460 if (!drm_edid || !name)
5461 return 0;
5462
5463 drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5464 for (mnl = 0; edid_name && mnl < 13; mnl++) {
5465 if (edid_name[mnl] == 0x0a)
5466 break;
5467
5468 name[mnl] = edid_name[mnl];
5469 }
5470
5471 return mnl;
5472}
5473
5474/**
5475 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5476 * @edid: monitor EDID information
5477 * @name: pointer to a character array to hold the name of the monitor
5478 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5479 *
5480 */
5481void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5482{
5483 int name_length = 0;
5484
5485 if (bufsize <= 0)
5486 return;
5487
5488 if (edid) {
5489 char buf[13];
5490 struct drm_edid drm_edid = {
5491 .edid = edid,
5492 .size = edid_size(edid),
5493 };
5494
5495 name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5496 memcpy(name, buf, name_length);
5497 }
5498
5499 name[name_length] = '\0';
5500}
5501EXPORT_SYMBOL(drm_edid_get_monitor_name);
5502
5503static void clear_eld(struct drm_connector *connector)
5504{
5505 memset(connector->eld, 0, sizeof(connector->eld));
5506
5507 connector->latency_present[0] = false;
5508 connector->latency_present[1] = false;
5509 connector->video_latency[0] = 0;
5510 connector->audio_latency[0] = 0;
5511 connector->video_latency[1] = 0;
5512 connector->audio_latency[1] = 0;
5513}
5514
5515/*
5516 * Get 3-byte SAD buffer from struct cea_sad.
5517 */
5518void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5519{
5520 sad[0] = cta_sad->format << 3 | cta_sad->channels;
5521 sad[1] = cta_sad->freq;
5522 sad[2] = cta_sad->byte2;
5523}
5524
5525/*
5526 * Set struct cea_sad from 3-byte SAD buffer.
5527 */
5528void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5529{
5530 cta_sad->format = (sad[0] & 0x78) >> 3;
5531 cta_sad->channels = sad[0] & 0x07;
5532 cta_sad->freq = sad[1] & 0x7f;
5533 cta_sad->byte2 = sad[2];
5534}
5535
5536/*
5537 * drm_edid_to_eld - build ELD from EDID
5538 * @connector: connector corresponding to the HDMI/DP sink
5539 * @drm_edid: EDID to parse
5540 *
5541 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5542 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5543 */
5544static void drm_edid_to_eld(struct drm_connector *connector,
5545 const struct drm_edid *drm_edid)
5546{
5547 const struct drm_display_info *info = &connector->display_info;
5548 const struct cea_db *db;
5549 struct cea_db_iter iter;
5550 uint8_t *eld = connector->eld;
5551 int total_sad_count = 0;
5552 int mnl;
5553
5554 if (!drm_edid)
5555 return;
5556
5557 mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5558 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5559 connector->base.id, connector->name,
5560 &eld[DRM_ELD_MONITOR_NAME_STRING]);
5561
5562 eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5563 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5564
5565 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5566
5567 eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5568 eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5569 eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5570 eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5571
5572 cea_db_iter_edid_begin(drm_edid, &iter);
5573 cea_db_iter_for_each(db, &iter) {
5574 const u8 *data = cea_db_data(db);
5575 int len = cea_db_payload_len(db);
5576 int sad_count;
5577
5578 switch (cea_db_tag(db)) {
5579 case CTA_DB_AUDIO:
5580 /* Audio Data Block, contains SADs */
5581 sad_count = min(len / 3, 15 - total_sad_count);
5582 if (sad_count >= 1)
5583 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5584 data, sad_count * 3);
5585 total_sad_count += sad_count;
5586 break;
5587 case CTA_DB_SPEAKER:
5588 /* Speaker Allocation Data Block */
5589 if (len >= 1)
5590 eld[DRM_ELD_SPEAKER] = data[0];
5591 break;
5592 case CTA_DB_VENDOR:
5593 /* HDMI Vendor-Specific Data Block */
5594 if (cea_db_is_hdmi_vsdb(db))
5595 drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5596 break;
5597 default:
5598 break;
5599 }
5600 }
5601 cea_db_iter_end(&iter);
5602
5603 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5604
5605 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5606 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5607 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5608 else
5609 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5610
5611 eld[DRM_ELD_BASELINE_ELD_LEN] =
5612 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5613
5614 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5615 connector->base.id, connector->name,
5616 drm_eld_size(eld), total_sad_count);
5617}
5618
5619static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5620 struct cea_sad **psads)
5621{
5622 const struct cea_db *db;
5623 struct cea_db_iter iter;
5624 int count = 0;
5625
5626 cea_db_iter_edid_begin(drm_edid, &iter);
5627 cea_db_iter_for_each(db, &iter) {
5628 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5629 struct cea_sad *sads;
5630 int i;
5631
5632 count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5633 sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5634 *psads = sads;
5635 if (!sads)
5636 return -ENOMEM;
5637 for (i = 0; i < count; i++)
5638 drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5639 break;
5640 }
5641 }
5642 cea_db_iter_end(&iter);
5643
5644 DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5645
5646 return count;
5647}
5648
5649/**
5650 * drm_edid_to_sad - extracts SADs from EDID
5651 * @edid: EDID to parse
5652 * @sads: pointer that will be set to the extracted SADs
5653 *
5654 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5655 *
5656 * Note: The returned pointer needs to be freed using kfree().
5657 *
5658 * Return: The number of found SADs or negative number on error.
5659 */
5660int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5661{
5662 struct drm_edid drm_edid;
5663
5664 return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5665}
5666EXPORT_SYMBOL(drm_edid_to_sad);
5667
5668static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5669 u8 **sadb)
5670{
5671 const struct cea_db *db;
5672 struct cea_db_iter iter;
5673 int count = 0;
5674
5675 cea_db_iter_edid_begin(drm_edid, &iter);
5676 cea_db_iter_for_each(db, &iter) {
5677 if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5678 cea_db_payload_len(db) == 3) {
5679 *sadb = kmemdup(db->data, cea_db_payload_len(db),
5680 GFP_KERNEL);
5681 if (!*sadb)
5682 return -ENOMEM;
5683 count = cea_db_payload_len(db);
5684 break;
5685 }
5686 }
5687 cea_db_iter_end(&iter);
5688
5689 DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5690
5691 return count;
5692}
5693
5694/**
5695 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5696 * @edid: EDID to parse
5697 * @sadb: pointer to the speaker block
5698 *
5699 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5700 *
5701 * Note: The returned pointer needs to be freed using kfree().
5702 *
5703 * Return: The number of found Speaker Allocation Blocks or negative number on
5704 * error.
5705 */
5706int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5707{
5708 struct drm_edid drm_edid;
5709
5710 return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5711 sadb);
5712}
5713EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5714
5715/**
5716 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5717 * @connector: connector associated with the HDMI/DP sink
5718 * @mode: the display mode
5719 *
5720 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5721 * the sink doesn't support audio or video.
5722 */
5723int drm_av_sync_delay(struct drm_connector *connector,
5724 const struct drm_display_mode *mode)
5725{
5726 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5727 int a, v;
5728
5729 if (!connector->latency_present[0])
5730 return 0;
5731 if (!connector->latency_present[1])
5732 i = 0;
5733
5734 a = connector->audio_latency[i];
5735 v = connector->video_latency[i];
5736
5737 /*
5738 * HDMI/DP sink doesn't support audio or video?
5739 */
5740 if (a == 255 || v == 255)
5741 return 0;
5742
5743 /*
5744 * Convert raw EDID values to millisecond.
5745 * Treat unknown latency as 0ms.
5746 */
5747 if (a)
5748 a = min(2 * (a - 1), 500);
5749 if (v)
5750 v = min(2 * (v - 1), 500);
5751
5752 return max(v - a, 0);
5753}
5754EXPORT_SYMBOL(drm_av_sync_delay);
5755
5756static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5757{
5758 const struct cea_db *db;
5759 struct cea_db_iter iter;
5760 bool hdmi = false;
5761
5762 /*
5763 * Because HDMI identifier is in Vendor Specific Block,
5764 * search it from all data blocks of CEA extension.
5765 */
5766 cea_db_iter_edid_begin(drm_edid, &iter);
5767 cea_db_iter_for_each(db, &iter) {
5768 if (cea_db_is_hdmi_vsdb(db)) {
5769 hdmi = true;
5770 break;
5771 }
5772 }
5773 cea_db_iter_end(&iter);
5774
5775 return hdmi;
5776}
5777
5778/**
5779 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5780 * @edid: monitor EDID information
5781 *
5782 * Parse the CEA extension according to CEA-861-B.
5783 *
5784 * Drivers that have added the modes parsed from EDID to drm_display_info
5785 * should use &drm_display_info.is_hdmi instead of calling this function.
5786 *
5787 * Return: True if the monitor is HDMI, false if not or unknown.
5788 */
5789bool drm_detect_hdmi_monitor(const struct edid *edid)
5790{
5791 struct drm_edid drm_edid;
5792
5793 return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5794}
5795EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5796
5797static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5798{
5799 struct drm_edid_iter edid_iter;
5800 const struct cea_db *db;
5801 struct cea_db_iter iter;
5802 const u8 *edid_ext;
5803 bool has_audio = false;
5804
5805 drm_edid_iter_begin(drm_edid, &edid_iter);
5806 drm_edid_iter_for_each(edid_ext, &edid_iter) {
5807 if (edid_ext[0] == CEA_EXT) {
5808 has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5809 if (has_audio)
5810 break;
5811 }
5812 }
5813 drm_edid_iter_end(&edid_iter);
5814
5815 if (has_audio) {
5816 DRM_DEBUG_KMS("Monitor has basic audio support\n");
5817 goto end;
5818 }
5819
5820 cea_db_iter_edid_begin(drm_edid, &iter);
5821 cea_db_iter_for_each(db, &iter) {
5822 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5823 const u8 *data = cea_db_data(db);
5824 int i;
5825
5826 for (i = 0; i < cea_db_payload_len(db); i += 3)
5827 DRM_DEBUG_KMS("CEA audio format %d\n",
5828 (data[i] >> 3) & 0xf);
5829 has_audio = true;
5830 break;
5831 }
5832 }
5833 cea_db_iter_end(&iter);
5834
5835end:
5836 return has_audio;
5837}
5838
5839/**
5840 * drm_detect_monitor_audio - check monitor audio capability
5841 * @edid: EDID block to scan
5842 *
5843 * Monitor should have CEA extension block.
5844 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5845 * audio' only. If there is any audio extension block and supported
5846 * audio format, assume at least 'basic audio' support, even if 'basic
5847 * audio' is not defined in EDID.
5848 *
5849 * Return: True if the monitor supports audio, false otherwise.
5850 */
5851bool drm_detect_monitor_audio(const struct edid *edid)
5852{
5853 struct drm_edid drm_edid;
5854
5855 return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5856}
5857EXPORT_SYMBOL(drm_detect_monitor_audio);
5858
5859
5860/**
5861 * drm_default_rgb_quant_range - default RGB quantization range
5862 * @mode: display mode
5863 *
5864 * Determine the default RGB quantization range for the mode,
5865 * as specified in CEA-861.
5866 *
5867 * Return: The default RGB quantization range for the mode
5868 */
5869enum hdmi_quantization_range
5870drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5871{
5872 /* All CEA modes other than VIC 1 use limited quantization range. */
5873 return drm_match_cea_mode(mode) > 1 ?
5874 HDMI_QUANTIZATION_RANGE_LIMITED :
5875 HDMI_QUANTIZATION_RANGE_FULL;
5876}
5877EXPORT_SYMBOL(drm_default_rgb_quant_range);
5878
5879/* CTA-861 Video Data Block (CTA VDB) */
5880static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5881{
5882 struct drm_display_info *info = &connector->display_info;
5883 int i, vic_index, len = cea_db_payload_len(db);
5884 const u8 *svds = cea_db_data(db);
5885 u8 *vics;
5886
5887 if (!len)
5888 return;
5889
5890 /* Gracefully handle multiple VDBs, however unlikely that is */
5891 vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5892 if (!vics)
5893 return;
5894
5895 vic_index = info->vics_len;
5896 info->vics_len += len;
5897 info->vics = vics;
5898
5899 for (i = 0; i < len; i++) {
5900 u8 vic = svd_to_vic(svds[i]);
5901
5902 if (!drm_valid_cea_vic(vic))
5903 vic = 0;
5904
5905 info->vics[vic_index++] = vic;
5906 }
5907}
5908
5909/*
5910 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5911 *
5912 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5913 * using the VICs themselves.
5914 */
5915static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5916{
5917 struct drm_display_info *info = &connector->display_info;
5918 struct drm_hdmi_info *hdmi = &info->hdmi;
5919 int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5920
5921 for (i = 0; i < len; i++) {
5922 u8 vic = info->vics[i];
5923
5924 if (vic && y420cmdb_map & BIT_ULL(i))
5925 bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5926 }
5927}
5928
5929static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5930{
5931 const struct drm_display_info *info = &connector->display_info;
5932 int i;
5933
5934 if (!vic || !info->vics)
5935 return false;
5936
5937 for (i = 0; i < info->vics_len; i++) {
5938 if (info->vics[i] == vic)
5939 return true;
5940 }
5941
5942 return false;
5943}
5944
5945/* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5946static void parse_cta_y420vdb(struct drm_connector *connector,
5947 const struct cea_db *db)
5948{
5949 struct drm_display_info *info = &connector->display_info;
5950 struct drm_hdmi_info *hdmi = &info->hdmi;
5951 const u8 *svds = cea_db_data(db) + 1;
5952 int i;
5953
5954 for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5955 u8 vic = svd_to_vic(svds[i]);
5956
5957 if (!drm_valid_cea_vic(vic))
5958 continue;
5959
5960 bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5961 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5962 }
5963}
5964
5965static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5966{
5967 struct drm_display_info *info = &connector->display_info;
5968
5969 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5970 connector->base.id, connector->name, db[2]);
5971
5972 if (db[2] & EDID_CEA_VCDB_QS)
5973 info->rgb_quant_range_selectable = true;
5974}
5975
5976static
5977void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5978{
5979 switch (max_frl_rate) {
5980 case 1:
5981 *max_lanes = 3;
5982 *max_rate_per_lane = 3;
5983 break;
5984 case 2:
5985 *max_lanes = 3;
5986 *max_rate_per_lane = 6;
5987 break;
5988 case 3:
5989 *max_lanes = 4;
5990 *max_rate_per_lane = 6;
5991 break;
5992 case 4:
5993 *max_lanes = 4;
5994 *max_rate_per_lane = 8;
5995 break;
5996 case 5:
5997 *max_lanes = 4;
5998 *max_rate_per_lane = 10;
5999 break;
6000 case 6:
6001 *max_lanes = 4;
6002 *max_rate_per_lane = 12;
6003 break;
6004 case 0:
6005 default:
6006 *max_lanes = 0;
6007 *max_rate_per_lane = 0;
6008 }
6009}
6010
6011static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6012 const u8 *db)
6013{
6014 u8 dc_mask;
6015 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6016
6017 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6018 hdmi->y420_dc_modes = dc_mask;
6019}
6020
6021static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6022 const u8 *hf_scds)
6023{
6024 hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6025
6026 if (!hdmi_dsc->v_1p2)
6027 return;
6028
6029 hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6030 hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6031
6032 if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6033 hdmi_dsc->bpc_supported = 16;
6034 else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6035 hdmi_dsc->bpc_supported = 12;
6036 else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6037 hdmi_dsc->bpc_supported = 10;
6038 else
6039 /* Supports min 8 BPC if DSC 1.2 is supported*/
6040 hdmi_dsc->bpc_supported = 8;
6041
6042 if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6043 u8 dsc_max_slices;
6044 u8 dsc_max_frl_rate;
6045
6046 dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6047 drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6048 &hdmi_dsc->max_frl_rate_per_lane);
6049
6050 dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6051
6052 switch (dsc_max_slices) {
6053 case 1:
6054 hdmi_dsc->max_slices = 1;
6055 hdmi_dsc->clk_per_slice = 340;
6056 break;
6057 case 2:
6058 hdmi_dsc->max_slices = 2;
6059 hdmi_dsc->clk_per_slice = 340;
6060 break;
6061 case 3:
6062 hdmi_dsc->max_slices = 4;
6063 hdmi_dsc->clk_per_slice = 340;
6064 break;
6065 case 4:
6066 hdmi_dsc->max_slices = 8;
6067 hdmi_dsc->clk_per_slice = 340;
6068 break;
6069 case 5:
6070 hdmi_dsc->max_slices = 8;
6071 hdmi_dsc->clk_per_slice = 400;
6072 break;
6073 case 6:
6074 hdmi_dsc->max_slices = 12;
6075 hdmi_dsc->clk_per_slice = 400;
6076 break;
6077 case 7:
6078 hdmi_dsc->max_slices = 16;
6079 hdmi_dsc->clk_per_slice = 400;
6080 break;
6081 case 0:
6082 default:
6083 hdmi_dsc->max_slices = 0;
6084 hdmi_dsc->clk_per_slice = 0;
6085 }
6086 }
6087
6088 if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6089 hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6090}
6091
6092/* Sink Capability Data Structure */
6093static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6094 const u8 *hf_scds)
6095{
6096 struct drm_display_info *info = &connector->display_info;
6097 struct drm_hdmi_info *hdmi = &info->hdmi;
6098 struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6099 int max_tmds_clock = 0;
6100 u8 max_frl_rate = 0;
6101 bool dsc_support = false;
6102
6103 info->has_hdmi_infoframe = true;
6104
6105 if (hf_scds[6] & 0x80) {
6106 hdmi->scdc.supported = true;
6107 if (hf_scds[6] & 0x40)
6108 hdmi->scdc.read_request = true;
6109 }
6110
6111 /*
6112 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6113 * And as per the spec, three factors confirm this:
6114 * * Availability of a HF-VSDB block in EDID (check)
6115 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6116 * * SCDC support available (let's check)
6117 * Lets check it out.
6118 */
6119
6120 if (hf_scds[5]) {
6121 struct drm_scdc *scdc = &hdmi->scdc;
6122
6123 /* max clock is 5000 KHz times block value */
6124 max_tmds_clock = hf_scds[5] * 5000;
6125
6126 if (max_tmds_clock > 340000) {
6127 info->max_tmds_clock = max_tmds_clock;
6128 }
6129
6130 if (scdc->supported) {
6131 scdc->scrambling.supported = true;
6132
6133 /* Few sinks support scrambling for clocks < 340M */
6134 if ((hf_scds[6] & 0x8))
6135 scdc->scrambling.low_rates = true;
6136 }
6137 }
6138
6139 if (hf_scds[7]) {
6140 max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6141 drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6142 &hdmi->max_frl_rate_per_lane);
6143 }
6144
6145 drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6146
6147 if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6148 drm_parse_dsc_info(hdmi_dsc, hf_scds);
6149 dsc_support = true;
6150 }
6151
6152 drm_dbg_kms(connector->dev,
6153 "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6154 connector->base.id, connector->name,
6155 max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6156}
6157
6158static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6159 const u8 *hdmi)
6160{
6161 struct drm_display_info *info = &connector->display_info;
6162 unsigned int dc_bpc = 0;
6163
6164 /* HDMI supports at least 8 bpc */
6165 info->bpc = 8;
6166
6167 if (cea_db_payload_len(hdmi) < 6)
6168 return;
6169
6170 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6171 dc_bpc = 10;
6172 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6173 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6174 connector->base.id, connector->name);
6175 }
6176
6177 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6178 dc_bpc = 12;
6179 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6180 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6181 connector->base.id, connector->name);
6182 }
6183
6184 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6185 dc_bpc = 16;
6186 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6187 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6188 connector->base.id, connector->name);
6189 }
6190
6191 if (dc_bpc == 0) {
6192 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6193 connector->base.id, connector->name);
6194 return;
6195 }
6196
6197 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6198 connector->base.id, connector->name, dc_bpc);
6199 info->bpc = dc_bpc;
6200
6201 /* YCRCB444 is optional according to spec. */
6202 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6203 info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6204 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6205 connector->base.id, connector->name);
6206 }
6207
6208 /*
6209 * Spec says that if any deep color mode is supported at all,
6210 * then deep color 36 bit must be supported.
6211 */
6212 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6213 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6214 connector->base.id, connector->name);
6215 }
6216}
6217
6218/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6219static void
6220drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6221{
6222 struct drm_display_info *info = &connector->display_info;
6223 u8 len = cea_db_payload_len(db);
6224
6225 info->is_hdmi = true;
6226
6227 info->source_physical_address = (db[4] << 8) | db[5];
6228
6229 if (len >= 6)
6230 info->dvi_dual = db[6] & 1;
6231 if (len >= 7)
6232 info->max_tmds_clock = db[7] * 5000;
6233
6234 /*
6235 * Try to infer whether the sink supports HDMI infoframes.
6236 *
6237 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6238 * supports infoframes if HDMI_Video_present is set.
6239 */
6240 if (len >= 8 && db[8] & BIT(5))
6241 info->has_hdmi_infoframe = true;
6242
6243 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6244 connector->base.id, connector->name,
6245 info->dvi_dual, info->max_tmds_clock);
6246
6247 drm_parse_hdmi_deep_color_info(connector, db);
6248}
6249
6250/*
6251 * See EDID extension for head-mounted and specialized monitors, specified at:
6252 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6253 */
6254static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6255 const u8 *db)
6256{
6257 struct drm_display_info *info = &connector->display_info;
6258 u8 version = db[4];
6259 bool desktop_usage = db[5] & BIT(6);
6260
6261 /* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6262 if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6263 info->non_desktop = true;
6264
6265 drm_dbg_kms(connector->dev,
6266 "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6267 connector->base.id, connector->name, version, db[5]);
6268}
6269
6270static void drm_parse_cea_ext(struct drm_connector *connector,
6271 const struct drm_edid *drm_edid)
6272{
6273 struct drm_display_info *info = &connector->display_info;
6274 struct drm_edid_iter edid_iter;
6275 const struct cea_db *db;
6276 struct cea_db_iter iter;
6277 const u8 *edid_ext;
6278 u64 y420cmdb_map = 0;
6279
6280 drm_edid_iter_begin(drm_edid, &edid_iter);
6281 drm_edid_iter_for_each(edid_ext, &edid_iter) {
6282 if (edid_ext[0] != CEA_EXT)
6283 continue;
6284
6285 if (!info->cea_rev)
6286 info->cea_rev = edid_ext[1];
6287
6288 if (info->cea_rev != edid_ext[1])
6289 drm_dbg_kms(connector->dev,
6290 "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6291 connector->base.id, connector->name,
6292 info->cea_rev, edid_ext[1]);
6293
6294 /* The existence of a CTA extension should imply RGB support */
6295 info->color_formats = DRM_COLOR_FORMAT_RGB444;
6296 if (edid_ext[3] & EDID_CEA_YCRCB444)
6297 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6298 if (edid_ext[3] & EDID_CEA_YCRCB422)
6299 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6300 if (edid_ext[3] & EDID_BASIC_AUDIO)
6301 info->has_audio = true;
6302
6303 }
6304 drm_edid_iter_end(&edid_iter);
6305
6306 cea_db_iter_edid_begin(drm_edid, &iter);
6307 cea_db_iter_for_each(db, &iter) {
6308 /* FIXME: convert parsers to use struct cea_db */
6309 const u8 *data = (const u8 *)db;
6310
6311 if (cea_db_is_hdmi_vsdb(db))
6312 drm_parse_hdmi_vsdb_video(connector, data);
6313 else if (cea_db_is_hdmi_forum_vsdb(db) ||
6314 cea_db_is_hdmi_forum_scdb(db))
6315 drm_parse_hdmi_forum_scds(connector, data);
6316 else if (cea_db_is_microsoft_vsdb(db))
6317 drm_parse_microsoft_vsdb(connector, data);
6318 else if (cea_db_is_y420cmdb(db))
6319 parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6320 else if (cea_db_is_y420vdb(db))
6321 parse_cta_y420vdb(connector, db);
6322 else if (cea_db_is_vcdb(db))
6323 drm_parse_vcdb(connector, data);
6324 else if (cea_db_is_hdmi_hdr_metadata_block(db))
6325 drm_parse_hdr_metadata_block(connector, data);
6326 else if (cea_db_tag(db) == CTA_DB_VIDEO)
6327 parse_cta_vdb(connector, db);
6328 else if (cea_db_tag(db) == CTA_DB_AUDIO)
6329 info->has_audio = true;
6330 }
6331 cea_db_iter_end(&iter);
6332
6333 if (y420cmdb_map)
6334 update_cta_y420cmdb(connector, y420cmdb_map);
6335}
6336
6337static
6338void get_monitor_range(const struct detailed_timing *timing, void *c)
6339{
6340 struct detailed_mode_closure *closure = c;
6341 struct drm_display_info *info = &closure->connector->display_info;
6342 struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6343 const struct detailed_non_pixel *data = &timing->data.other_data;
6344 const struct detailed_data_monitor_range *range = &data->data.range;
6345 const struct edid *edid = closure->drm_edid->edid;
6346
6347 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6348 return;
6349
6350 /*
6351 * These limits are used to determine the VRR refresh
6352 * rate range. Only the "range limits only" variant
6353 * of the range descriptor seems to guarantee that
6354 * any and all timings are accepted by the sink, as
6355 * opposed to just timings conforming to the indicated
6356 * formula (GTF/GTF2/CVT). Thus other variants of the
6357 * range descriptor are not accepted here.
6358 */
6359 if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6360 return;
6361
6362 monitor_range->min_vfreq = range->min_vfreq;
6363 monitor_range->max_vfreq = range->max_vfreq;
6364
6365 if (edid->revision >= 4) {
6366 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6367 monitor_range->min_vfreq += 255;
6368 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6369 monitor_range->max_vfreq += 255;
6370 }
6371}
6372
6373static void drm_get_monitor_range(struct drm_connector *connector,
6374 const struct drm_edid *drm_edid)
6375{
6376 const struct drm_display_info *info = &connector->display_info;
6377 struct detailed_mode_closure closure = {
6378 .connector = connector,
6379 .drm_edid = drm_edid,
6380 };
6381
6382 if (drm_edid->edid->revision < 4)
6383 return;
6384
6385 if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6386 return;
6387
6388 drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6389
6390 drm_dbg_kms(connector->dev,
6391 "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6392 connector->base.id, connector->name,
6393 info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6394}
6395
6396static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6397 const struct displayid_block *block)
6398{
6399 struct displayid_vesa_vendor_specific_block *vesa =
6400 (struct displayid_vesa_vendor_specific_block *)block;
6401 struct drm_display_info *info = &connector->display_info;
6402
6403 if (block->num_bytes < 3) {
6404 drm_dbg_kms(connector->dev,
6405 "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6406 connector->base.id, connector->name, block->num_bytes);
6407 return;
6408 }
6409
6410 if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6411 return;
6412
6413 if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6414 drm_dbg_kms(connector->dev,
6415 "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6416 connector->base.id, connector->name);
6417 return;
6418 }
6419
6420 switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6421 default:
6422 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6423 connector->base.id, connector->name);
6424 fallthrough;
6425 case 0:
6426 info->mso_stream_count = 0;
6427 break;
6428 case 1:
6429 info->mso_stream_count = 2; /* 2 or 4 links */
6430 break;
6431 case 2:
6432 info->mso_stream_count = 4; /* 4 links */
6433 break;
6434 }
6435
6436 if (!info->mso_stream_count) {
6437 info->mso_pixel_overlap = 0;
6438 return;
6439 }
6440
6441 info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6442 if (info->mso_pixel_overlap > 8) {
6443 drm_dbg_kms(connector->dev,
6444 "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6445 connector->base.id, connector->name,
6446 info->mso_pixel_overlap);
6447 info->mso_pixel_overlap = 8;
6448 }
6449
6450 drm_dbg_kms(connector->dev,
6451 "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6452 connector->base.id, connector->name,
6453 info->mso_stream_count, info->mso_pixel_overlap);
6454}
6455
6456static void drm_update_mso(struct drm_connector *connector,
6457 const struct drm_edid *drm_edid)
6458{
6459 const struct displayid_block *block;
6460 struct displayid_iter iter;
6461
6462 displayid_iter_edid_begin(drm_edid, &iter);
6463 displayid_iter_for_each(block, &iter) {
6464 if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6465 drm_parse_vesa_mso_data(connector, block);
6466 }
6467 displayid_iter_end(&iter);
6468}
6469
6470/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6471 * all of the values which would have been set from EDID
6472 */
6473static void drm_reset_display_info(struct drm_connector *connector)
6474{
6475 struct drm_display_info *info = &connector->display_info;
6476
6477 info->width_mm = 0;
6478 info->height_mm = 0;
6479
6480 info->bpc = 0;
6481 info->color_formats = 0;
6482 info->cea_rev = 0;
6483 info->max_tmds_clock = 0;
6484 info->dvi_dual = false;
6485 info->is_hdmi = false;
6486 info->has_audio = false;
6487 info->has_hdmi_infoframe = false;
6488 info->rgb_quant_range_selectable = false;
6489 memset(&info->hdmi, 0, sizeof(info->hdmi));
6490
6491 info->edid_hdmi_rgb444_dc_modes = 0;
6492 info->edid_hdmi_ycbcr444_dc_modes = 0;
6493
6494 info->non_desktop = 0;
6495 memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6496 memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6497
6498 info->mso_stream_count = 0;
6499 info->mso_pixel_overlap = 0;
6500 info->max_dsc_bpp = 0;
6501
6502 kfree(info->vics);
6503 info->vics = NULL;
6504 info->vics_len = 0;
6505
6506 info->quirks = 0;
6507
6508 info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6509}
6510
6511static void update_displayid_info(struct drm_connector *connector,
6512 const struct drm_edid *drm_edid)
6513{
6514 struct drm_display_info *info = &connector->display_info;
6515 const struct displayid_block *block;
6516 struct displayid_iter iter;
6517
6518 displayid_iter_edid_begin(drm_edid, &iter);
6519 displayid_iter_for_each(block, &iter) {
6520 if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6521 (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6522 displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6523 info->non_desktop = true;
6524
6525 /*
6526 * We're only interested in the base section here, no need to
6527 * iterate further.
6528 */
6529 break;
6530 }
6531 displayid_iter_end(&iter);
6532}
6533
6534static void update_display_info(struct drm_connector *connector,
6535 const struct drm_edid *drm_edid)
6536{
6537 struct drm_display_info *info = &connector->display_info;
6538 const struct edid *edid;
6539
6540 drm_reset_display_info(connector);
6541 clear_eld(connector);
6542
6543 if (!drm_edid)
6544 return;
6545
6546 edid = drm_edid->edid;
6547
6548 info->quirks = edid_get_quirks(drm_edid);
6549
6550 info->width_mm = edid->width_cm * 10;
6551 info->height_mm = edid->height_cm * 10;
6552
6553 drm_get_monitor_range(connector, drm_edid);
6554
6555 if (edid->revision < 3)
6556 goto out;
6557
6558 if (!drm_edid_is_digital(drm_edid))
6559 goto out;
6560
6561 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6562 drm_parse_cea_ext(connector, drm_edid);
6563
6564 update_displayid_info(connector, drm_edid);
6565
6566 /*
6567 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6568 *
6569 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6570 * tells us to assume 8 bpc color depth if the EDID doesn't have
6571 * extensions which tell otherwise.
6572 */
6573 if (info->bpc == 0 && edid->revision == 3 &&
6574 edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6575 info->bpc = 8;
6576 drm_dbg_kms(connector->dev,
6577 "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6578 connector->base.id, connector->name, info->bpc);
6579 }
6580
6581 /* Only defined for 1.4 with digital displays */
6582 if (edid->revision < 4)
6583 goto out;
6584
6585 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6586 case DRM_EDID_DIGITAL_DEPTH_6:
6587 info->bpc = 6;
6588 break;
6589 case DRM_EDID_DIGITAL_DEPTH_8:
6590 info->bpc = 8;
6591 break;
6592 case DRM_EDID_DIGITAL_DEPTH_10:
6593 info->bpc = 10;
6594 break;
6595 case DRM_EDID_DIGITAL_DEPTH_12:
6596 info->bpc = 12;
6597 break;
6598 case DRM_EDID_DIGITAL_DEPTH_14:
6599 info->bpc = 14;
6600 break;
6601 case DRM_EDID_DIGITAL_DEPTH_16:
6602 info->bpc = 16;
6603 break;
6604 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6605 default:
6606 info->bpc = 0;
6607 break;
6608 }
6609
6610 drm_dbg_kms(connector->dev,
6611 "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6612 connector->base.id, connector->name, info->bpc);
6613
6614 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6615 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6616 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6617 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6618
6619 drm_update_mso(connector, drm_edid);
6620
6621out:
6622 if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6623 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6624 connector->base.id, connector->name,
6625 info->non_desktop ? " (redundant quirk)" : "");
6626 info->non_desktop = true;
6627 }
6628
6629 if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6630 info->max_dsc_bpp = 15;
6631
6632 if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6633 info->bpc = 6;
6634
6635 if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6636 info->bpc = 8;
6637
6638 if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6639 info->bpc = 10;
6640
6641 if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6642 info->bpc = 12;
6643
6644 /* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6645 drm_edid_to_eld(connector, drm_edid);
6646}
6647
6648static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6649 struct displayid_detailed_timings_1 *timings,
6650 bool type_7)
6651{
6652 struct drm_display_mode *mode;
6653 unsigned pixel_clock = (timings->pixel_clock[0] |
6654 (timings->pixel_clock[1] << 8) |
6655 (timings->pixel_clock[2] << 16)) + 1;
6656 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6657 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6658 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6659 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6660 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6661 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6662 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6663 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6664 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6665 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6666
6667 mode = drm_mode_create(dev);
6668 if (!mode)
6669 return NULL;
6670
6671 /* resolution is kHz for type VII, and 10 kHz for type I */
6672 mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6673 mode->hdisplay = hactive;
6674 mode->hsync_start = mode->hdisplay + hsync;
6675 mode->hsync_end = mode->hsync_start + hsync_width;
6676 mode->htotal = mode->hdisplay + hblank;
6677
6678 mode->vdisplay = vactive;
6679 mode->vsync_start = mode->vdisplay + vsync;
6680 mode->vsync_end = mode->vsync_start + vsync_width;
6681 mode->vtotal = mode->vdisplay + vblank;
6682
6683 mode->flags = 0;
6684 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6685 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6686 mode->type = DRM_MODE_TYPE_DRIVER;
6687
6688 if (timings->flags & 0x80)
6689 mode->type |= DRM_MODE_TYPE_PREFERRED;
6690 drm_mode_set_name(mode);
6691
6692 return mode;
6693}
6694
6695static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6696 const struct displayid_block *block)
6697{
6698 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6699 int i;
6700 int num_timings;
6701 struct drm_display_mode *newmode;
6702 int num_modes = 0;
6703 bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6704 /* blocks must be multiple of 20 bytes length */
6705 if (block->num_bytes % 20)
6706 return 0;
6707
6708 num_timings = block->num_bytes / 20;
6709 for (i = 0; i < num_timings; i++) {
6710 struct displayid_detailed_timings_1 *timings = &det->timings[i];
6711
6712 newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6713 if (!newmode)
6714 continue;
6715
6716 drm_mode_probed_add(connector, newmode);
6717 num_modes++;
6718 }
6719 return num_modes;
6720}
6721
6722static int add_displayid_detailed_modes(struct drm_connector *connector,
6723 const struct drm_edid *drm_edid)
6724{
6725 const struct displayid_block *block;
6726 struct displayid_iter iter;
6727 int num_modes = 0;
6728
6729 displayid_iter_edid_begin(drm_edid, &iter);
6730 displayid_iter_for_each(block, &iter) {
6731 if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6732 block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6733 num_modes += add_displayid_detailed_1_modes(connector, block);
6734 }
6735 displayid_iter_end(&iter);
6736
6737 return num_modes;
6738}
6739
6740static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6741 const struct drm_edid *drm_edid)
6742{
6743 const struct drm_display_info *info = &connector->display_info;
6744 int num_modes = 0;
6745
6746 if (!drm_edid)
6747 return 0;
6748
6749 /*
6750 * EDID spec says modes should be preferred in this order:
6751 * - preferred detailed mode
6752 * - other detailed modes from base block
6753 * - detailed modes from extension blocks
6754 * - CVT 3-byte code modes
6755 * - standard timing codes
6756 * - established timing codes
6757 * - modes inferred from GTF or CVT range information
6758 *
6759 * We get this pretty much right.
6760 *
6761 * XXX order for additional mode types in extension blocks?
6762 */
6763 num_modes += add_detailed_modes(connector, drm_edid);
6764 num_modes += add_cvt_modes(connector, drm_edid);
6765 num_modes += add_standard_modes(connector, drm_edid);
6766 num_modes += add_established_modes(connector, drm_edid);
6767 num_modes += add_cea_modes(connector, drm_edid);
6768 num_modes += add_alternate_cea_modes(connector, drm_edid);
6769 num_modes += add_displayid_detailed_modes(connector, drm_edid);
6770 if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6771 num_modes += add_inferred_modes(connector, drm_edid);
6772
6773 if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6774 edid_fixup_preferred(connector);
6775
6776 return num_modes;
6777}
6778
6779static void _drm_update_tile_info(struct drm_connector *connector,
6780 const struct drm_edid *drm_edid);
6781
6782static int _drm_edid_connector_property_update(struct drm_connector *connector,
6783 const struct drm_edid *drm_edid)
6784{
6785 struct drm_device *dev = connector->dev;
6786 int ret;
6787
6788 if (connector->edid_blob_ptr) {
6789 const struct edid *old_edid = connector->edid_blob_ptr->data;
6790
6791 if (old_edid) {
6792 if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6793 connector->epoch_counter++;
6794 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6795 connector->base.id, connector->name,
6796 connector->epoch_counter);
6797 }
6798 }
6799 }
6800
6801 ret = drm_property_replace_global_blob(dev,
6802 &connector->edid_blob_ptr,
6803 drm_edid ? drm_edid->size : 0,
6804 drm_edid ? drm_edid->edid : NULL,
6805 &connector->base,
6806 dev->mode_config.edid_property);
6807 if (ret) {
6808 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6809 connector->base.id, connector->name, ret);
6810 goto out;
6811 }
6812
6813 ret = drm_object_property_set_value(&connector->base,
6814 dev->mode_config.non_desktop_property,
6815 connector->display_info.non_desktop);
6816 if (ret) {
6817 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6818 connector->base.id, connector->name, ret);
6819 goto out;
6820 }
6821
6822 ret = drm_connector_set_tile_property(connector);
6823 if (ret) {
6824 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6825 connector->base.id, connector->name, ret);
6826 goto out;
6827 }
6828
6829out:
6830 return ret;
6831}
6832
6833/**
6834 * drm_edid_connector_update - Update connector information from EDID
6835 * @connector: Connector
6836 * @drm_edid: EDID
6837 *
6838 * Update the connector display info, ELD, HDR metadata, relevant properties,
6839 * etc. from the passed in EDID.
6840 *
6841 * If EDID is NULL, reset the information.
6842 *
6843 * Must be called before calling drm_edid_connector_add_modes().
6844 *
6845 * Return: 0 on success, negative error on errors.
6846 */
6847int drm_edid_connector_update(struct drm_connector *connector,
6848 const struct drm_edid *drm_edid)
6849{
6850 update_display_info(connector, drm_edid);
6851
6852 _drm_update_tile_info(connector, drm_edid);
6853
6854 return _drm_edid_connector_property_update(connector, drm_edid);
6855}
6856EXPORT_SYMBOL(drm_edid_connector_update);
6857
6858/**
6859 * drm_edid_connector_add_modes - Update probed modes from the EDID property
6860 * @connector: Connector
6861 *
6862 * Add the modes from the previously updated EDID property to the connector
6863 * probed modes list.
6864 *
6865 * drm_edid_connector_update() must have been called before this to update the
6866 * EDID property.
6867 *
6868 * Return: The number of modes added, or 0 if we couldn't find any.
6869 */
6870int drm_edid_connector_add_modes(struct drm_connector *connector)
6871{
6872 const struct drm_edid *drm_edid = NULL;
6873 int count;
6874
6875 if (connector->edid_blob_ptr)
6876 drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6877 connector->edid_blob_ptr->length);
6878
6879 count = _drm_edid_connector_add_modes(connector, drm_edid);
6880
6881 drm_edid_free(drm_edid);
6882
6883 return count;
6884}
6885EXPORT_SYMBOL(drm_edid_connector_add_modes);
6886
6887/**
6888 * drm_connector_update_edid_property - update the edid property of a connector
6889 * @connector: drm connector
6890 * @edid: new value of the edid property
6891 *
6892 * This function creates a new blob modeset object and assigns its id to the
6893 * connector's edid property.
6894 * Since we also parse tile information from EDID's displayID block, we also
6895 * set the connector's tile property here. See drm_connector_set_tile_property()
6896 * for more details.
6897 *
6898 * This function is deprecated. Use drm_edid_connector_update() instead.
6899 *
6900 * Returns:
6901 * Zero on success, negative errno on failure.
6902 */
6903int drm_connector_update_edid_property(struct drm_connector *connector,
6904 const struct edid *edid)
6905{
6906 struct drm_edid drm_edid;
6907
6908 return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6909}
6910EXPORT_SYMBOL(drm_connector_update_edid_property);
6911
6912/**
6913 * drm_add_edid_modes - add modes from EDID data, if available
6914 * @connector: connector we're probing
6915 * @edid: EDID data
6916 *
6917 * Add the specified modes to the connector's mode list. Also fills out the
6918 * &drm_display_info structure and ELD in @connector with any information which
6919 * can be derived from the edid.
6920 *
6921 * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6922 *
6923 * Return: The number of modes added or 0 if we couldn't find any.
6924 */
6925int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6926{
6927 struct drm_edid _drm_edid;
6928 const struct drm_edid *drm_edid;
6929
6930 if (edid && !drm_edid_is_valid(edid)) {
6931 drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6932 connector->base.id, connector->name);
6933 edid = NULL;
6934 }
6935
6936 drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6937
6938 update_display_info(connector, drm_edid);
6939
6940 return _drm_edid_connector_add_modes(connector, drm_edid);
6941}
6942EXPORT_SYMBOL(drm_add_edid_modes);
6943
6944/**
6945 * drm_add_modes_noedid - add modes for the connectors without EDID
6946 * @connector: connector we're probing
6947 * @hdisplay: the horizontal display limit
6948 * @vdisplay: the vertical display limit
6949 *
6950 * Add the specified modes to the connector's mode list. Only when the
6951 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6952 *
6953 * Return: The number of modes added or 0 if we couldn't find any.
6954 */
6955int drm_add_modes_noedid(struct drm_connector *connector,
6956 int hdisplay, int vdisplay)
6957{
6958 int i, count, num_modes = 0;
6959 struct drm_display_mode *mode;
6960 struct drm_device *dev = connector->dev;
6961
6962 count = ARRAY_SIZE(drm_dmt_modes);
6963 if (hdisplay < 0)
6964 hdisplay = 0;
6965 if (vdisplay < 0)
6966 vdisplay = 0;
6967
6968 for (i = 0; i < count; i++) {
6969 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6970
6971 if (hdisplay && vdisplay) {
6972 /*
6973 * Only when two are valid, they will be used to check
6974 * whether the mode should be added to the mode list of
6975 * the connector.
6976 */
6977 if (ptr->hdisplay > hdisplay ||
6978 ptr->vdisplay > vdisplay)
6979 continue;
6980 }
6981 if (drm_mode_vrefresh(ptr) > 61)
6982 continue;
6983 mode = drm_mode_duplicate(dev, ptr);
6984 if (mode) {
6985 drm_mode_probed_add(connector, mode);
6986 num_modes++;
6987 }
6988 }
6989 return num_modes;
6990}
6991EXPORT_SYMBOL(drm_add_modes_noedid);
6992
6993/**
6994 * drm_set_preferred_mode - Sets the preferred mode of a connector
6995 * @connector: connector whose mode list should be processed
6996 * @hpref: horizontal resolution of preferred mode
6997 * @vpref: vertical resolution of preferred mode
6998 *
6999 * Marks a mode as preferred if it matches the resolution specified by @hpref
7000 * and @vpref.
7001 */
7002void drm_set_preferred_mode(struct drm_connector *connector,
7003 int hpref, int vpref)
7004{
7005 struct drm_display_mode *mode;
7006
7007 list_for_each_entry(mode, &connector->probed_modes, head) {
7008 if (mode->hdisplay == hpref &&
7009 mode->vdisplay == vpref)
7010 mode->type |= DRM_MODE_TYPE_PREFERRED;
7011 }
7012}
7013EXPORT_SYMBOL(drm_set_preferred_mode);
7014
7015static bool is_hdmi2_sink(const struct drm_connector *connector)
7016{
7017 /*
7018 * FIXME: sil-sii8620 doesn't have a connector around when
7019 * we need one, so we have to be prepared for a NULL connector.
7020 */
7021 if (!connector)
7022 return true;
7023
7024 return connector->display_info.hdmi.scdc.supported ||
7025 connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7026}
7027
7028static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7029 const struct drm_display_mode *mode)
7030{
7031 bool has_hdmi_infoframe = connector ?
7032 connector->display_info.has_hdmi_infoframe : false;
7033
7034 if (!has_hdmi_infoframe)
7035 return 0;
7036
7037 /* No HDMI VIC when signalling 3D video format */
7038 if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7039 return 0;
7040
7041 return drm_match_hdmi_mode(mode);
7042}
7043
7044static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7045 const struct drm_display_mode *mode)
7046{
7047 /*
7048 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7049 * we should send its VIC in vendor infoframes, else send the
7050 * VIC in AVI infoframes. Lets check if this mode is present in
7051 * HDMI 1.4b 4K modes
7052 */
7053 if (drm_mode_hdmi_vic(connector, mode))
7054 return 0;
7055
7056 return drm_match_cea_mode(mode);
7057}
7058
7059/*
7060 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7061 * conform to HDMI 1.4.
7062 *
7063 * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7064 * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7065 *
7066 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7067 * version.
7068 */
7069static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7070{
7071 if (!is_hdmi2_sink(connector) && vic > 64 &&
7072 !cta_vdb_has_vic(connector, vic))
7073 return 0;
7074
7075 return vic;
7076}
7077
7078/**
7079 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7080 * data from a DRM display mode
7081 * @frame: HDMI AVI infoframe
7082 * @connector: the connector
7083 * @mode: DRM display mode
7084 *
7085 * Return: 0 on success or a negative error code on failure.
7086 */
7087int
7088drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7089 const struct drm_connector *connector,
7090 const struct drm_display_mode *mode)
7091{
7092 enum hdmi_picture_aspect picture_aspect;
7093 u8 vic, hdmi_vic;
7094
7095 if (!frame || !mode)
7096 return -EINVAL;
7097
7098 hdmi_avi_infoframe_init(frame);
7099
7100 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7101 frame->pixel_repeat = 1;
7102
7103 vic = drm_mode_cea_vic(connector, mode);
7104 hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7105
7106 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7107
7108 /*
7109 * As some drivers don't support atomic, we can't use connector state.
7110 * So just initialize the frame with default values, just the same way
7111 * as it's done with other properties here.
7112 */
7113 frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7114 frame->itc = 0;
7115
7116 /*
7117 * Populate picture aspect ratio from either
7118 * user input (if specified) or from the CEA/HDMI mode lists.
7119 */
7120 picture_aspect = mode->picture_aspect_ratio;
7121 if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7122 if (vic)
7123 picture_aspect = drm_get_cea_aspect_ratio(vic);
7124 else if (hdmi_vic)
7125 picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7126 }
7127
7128 /*
7129 * The infoframe can't convey anything but none, 4:3
7130 * and 16:9, so if the user has asked for anything else
7131 * we can only satisfy it by specifying the right VIC.
7132 */
7133 if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7134 if (vic) {
7135 if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7136 return -EINVAL;
7137 } else if (hdmi_vic) {
7138 if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7139 return -EINVAL;
7140 } else {
7141 return -EINVAL;
7142 }
7143
7144 picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7145 }
7146
7147 frame->video_code = vic_for_avi_infoframe(connector, vic);
7148 frame->picture_aspect = picture_aspect;
7149 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7150 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7151
7152 return 0;
7153}
7154EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7155
7156/**
7157 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7158 * quantization range information
7159 * @frame: HDMI AVI infoframe
7160 * @connector: the connector
7161 * @mode: DRM display mode
7162 * @rgb_quant_range: RGB quantization range (Q)
7163 */
7164void
7165drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7166 const struct drm_connector *connector,
7167 const struct drm_display_mode *mode,
7168 enum hdmi_quantization_range rgb_quant_range)
7169{
7170 const struct drm_display_info *info = &connector->display_info;
7171
7172 /*
7173 * CEA-861:
7174 * "A Source shall not send a non-zero Q value that does not correspond
7175 * to the default RGB Quantization Range for the transmitted Picture
7176 * unless the Sink indicates support for the Q bit in a Video
7177 * Capabilities Data Block."
7178 *
7179 * HDMI 2.0 recommends sending non-zero Q when it does match the
7180 * default RGB quantization range for the mode, even when QS=0.
7181 */
7182 if (info->rgb_quant_range_selectable ||
7183 rgb_quant_range == drm_default_rgb_quant_range(mode))
7184 frame->quantization_range = rgb_quant_range;
7185 else
7186 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7187
7188 /*
7189 * CEA-861-F:
7190 * "When transmitting any RGB colorimetry, the Source should set the
7191 * YQ-field to match the RGB Quantization Range being transmitted
7192 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7193 * set YQ=1) and the Sink shall ignore the YQ-field."
7194 *
7195 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7196 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7197 * good way to tell which version of CEA-861 the sink supports, so
7198 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7199 * on CEA-861-F.
7200 */
7201 if (!is_hdmi2_sink(connector) ||
7202 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7203 frame->ycc_quantization_range =
7204 HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7205 else
7206 frame->ycc_quantization_range =
7207 HDMI_YCC_QUANTIZATION_RANGE_FULL;
7208}
7209EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7210
7211static enum hdmi_3d_structure
7212s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7213{
7214 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7215
7216 switch (layout) {
7217 case DRM_MODE_FLAG_3D_FRAME_PACKING:
7218 return HDMI_3D_STRUCTURE_FRAME_PACKING;
7219 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7220 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7221 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7222 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7223 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7224 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7225 case DRM_MODE_FLAG_3D_L_DEPTH:
7226 return HDMI_3D_STRUCTURE_L_DEPTH;
7227 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7228 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7229 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7230 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7231 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7232 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7233 default:
7234 return HDMI_3D_STRUCTURE_INVALID;
7235 }
7236}
7237
7238/**
7239 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7240 * data from a DRM display mode
7241 * @frame: HDMI vendor infoframe
7242 * @connector: the connector
7243 * @mode: DRM display mode
7244 *
7245 * Note that there's is a need to send HDMI vendor infoframes only when using a
7246 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7247 * function will return -EINVAL, error that can be safely ignored.
7248 *
7249 * Return: 0 on success or a negative error code on failure.
7250 */
7251int
7252drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7253 const struct drm_connector *connector,
7254 const struct drm_display_mode *mode)
7255{
7256 /*
7257 * FIXME: sil-sii8620 doesn't have a connector around when
7258 * we need one, so we have to be prepared for a NULL connector.
7259 */
7260 bool has_hdmi_infoframe = connector ?
7261 connector->display_info.has_hdmi_infoframe : false;
7262 int err;
7263
7264 if (!frame || !mode)
7265 return -EINVAL;
7266
7267 if (!has_hdmi_infoframe)
7268 return -EINVAL;
7269
7270 err = hdmi_vendor_infoframe_init(frame);
7271 if (err < 0)
7272 return err;
7273
7274 /*
7275 * Even if it's not absolutely necessary to send the infoframe
7276 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7277 * know that the sink can handle it. This is based on a
7278 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7279 * have trouble realizing that they should switch from 3D to 2D
7280 * mode if the source simply stops sending the infoframe when
7281 * it wants to switch from 3D to 2D.
7282 */
7283 frame->vic = drm_mode_hdmi_vic(connector, mode);
7284 frame->s3d_struct = s3d_structure_from_display_mode(mode);
7285
7286 return 0;
7287}
7288EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7289
7290static void drm_parse_tiled_block(struct drm_connector *connector,
7291 const struct displayid_block *block)
7292{
7293 const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7294 u16 w, h;
7295 u8 tile_v_loc, tile_h_loc;
7296 u8 num_v_tile, num_h_tile;
7297 struct drm_tile_group *tg;
7298
7299 w = tile->tile_size[0] | tile->tile_size[1] << 8;
7300 h = tile->tile_size[2] | tile->tile_size[3] << 8;
7301
7302 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7303 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7304 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7305 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7306
7307 connector->has_tile = true;
7308 if (tile->tile_cap & 0x80)
7309 connector->tile_is_single_monitor = true;
7310
7311 connector->num_h_tile = num_h_tile + 1;
7312 connector->num_v_tile = num_v_tile + 1;
7313 connector->tile_h_loc = tile_h_loc;
7314 connector->tile_v_loc = tile_v_loc;
7315 connector->tile_h_size = w + 1;
7316 connector->tile_v_size = h + 1;
7317
7318 drm_dbg_kms(connector->dev,
7319 "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7320 connector->base.id, connector->name,
7321 tile->tile_cap,
7322 connector->tile_h_size, connector->tile_v_size,
7323 connector->num_h_tile, connector->num_v_tile,
7324 connector->tile_h_loc, connector->tile_v_loc,
7325 tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7326
7327 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7328 if (!tg)
7329 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7330 if (!tg)
7331 return;
7332
7333 if (connector->tile_group != tg) {
7334 /* if we haven't got a pointer,
7335 take the reference, drop ref to old tile group */
7336 if (connector->tile_group)
7337 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7338 connector->tile_group = tg;
7339 } else {
7340 /* if same tile group, then release the ref we just took. */
7341 drm_mode_put_tile_group(connector->dev, tg);
7342 }
7343}
7344
7345static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7346 const struct displayid_block *block)
7347{
7348 return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7349 block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7350 (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7351 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7352}
7353
7354static void _drm_update_tile_info(struct drm_connector *connector,
7355 const struct drm_edid *drm_edid)
7356{
7357 const struct displayid_block *block;
7358 struct displayid_iter iter;
7359
7360 connector->has_tile = false;
7361
7362 displayid_iter_edid_begin(drm_edid, &iter);
7363 displayid_iter_for_each(block, &iter) {
7364 if (displayid_is_tiled_block(&iter, block))
7365 drm_parse_tiled_block(connector, block);
7366 }
7367 displayid_iter_end(&iter);
7368
7369 if (!connector->has_tile && connector->tile_group) {
7370 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7371 connector->tile_group = NULL;
7372 }
7373}
7374
7375/**
7376 * drm_edid_is_digital - is digital?
7377 * @drm_edid: The EDID
7378 *
7379 * Return true if input is digital.
7380 */
7381bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7382{
7383 return drm_edid && drm_edid->edid &&
7384 drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7385}
7386EXPORT_SYMBOL(drm_edid_is_digital);