Linux Audio

Check our new training course

Loading...
v4.17
 
   1 /*
   2 *	x86 SMP booting functions
   3 *
   4 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   5 *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   6 *	Copyright 2001 Andi Kleen, SuSE Labs.
   7 *
   8 *	Much of the core SMP work is based on previous work by Thomas Radke, to
   9 *	whom a great many thanks are extended.
  10 *
  11 *	Thanks to Intel for making available several different Pentium,
  12 *	Pentium Pro and Pentium-II/Xeon MP machines.
  13 *	Original development of Linux SMP code supported by Caldera.
  14 *
  15 *	This code is released under the GNU General Public License version 2 or
  16 *	later.
  17 *
  18 *	Fixes
  19 *		Felix Koop	:	NR_CPUS used properly
  20 *		Jose Renau	:	Handle single CPU case.
  21 *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
  22 *		Greg Wright	:	Fix for kernel stacks panic.
  23 *		Erich Boleyn	:	MP v1.4 and additional changes.
  24 *	Matthias Sattler	:	Changes for 2.1 kernel map.
  25 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
  26 *	Michael Chastain	:	Change trampoline.S to gnu as.
  27 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
  28 *		Ingo Molnar	:	Added APIC timers, based on code
  29 *					from Jose Renau
  30 *		Ingo Molnar	:	various cleanups and rewrites
  31 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
  32 *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
  33 *	Andi Kleen		:	Changed for SMP boot into long mode.
  34 *		Martin J. Bligh	: 	Added support for multi-quad systems
  35 *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
  36 *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
  37 *      Andi Kleen              :       Converted to new state machine.
  38 *	Ashok Raj		: 	CPU hotplug support
  39 *	Glauber Costa		:	i386 and x86_64 integration
  40 */
  41
  42#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  43
  44#include <linux/init.h>
  45#include <linux/smp.h>
  46#include <linux/export.h>
  47#include <linux/sched.h>
  48#include <linux/sched/topology.h>
  49#include <linux/sched/hotplug.h>
  50#include <linux/sched/task_stack.h>
  51#include <linux/percpu.h>
  52#include <linux/bootmem.h>
  53#include <linux/err.h>
  54#include <linux/nmi.h>
  55#include <linux/tboot.h>
  56#include <linux/stackprotector.h>
  57#include <linux/gfp.h>
  58#include <linux/cpuidle.h>
 
 
 
 
 
 
 
  59
  60#include <asm/acpi.h>
 
  61#include <asm/desc.h>
  62#include <asm/nmi.h>
  63#include <asm/irq.h>
  64#include <asm/realmode.h>
  65#include <asm/cpu.h>
  66#include <asm/numa.h>
  67#include <asm/pgtable.h>
  68#include <asm/tlbflush.h>
  69#include <asm/mtrr.h>
  70#include <asm/mwait.h>
  71#include <asm/apic.h>
  72#include <asm/io_apic.h>
  73#include <asm/fpu/internal.h>
  74#include <asm/setup.h>
  75#include <asm/uv/uv.h>
  76#include <linux/mc146818rtc.h>
  77#include <asm/i8259.h>
  78#include <asm/misc.h>
  79#include <asm/qspinlock.h>
  80#include <asm/intel-family.h>
  81#include <asm/cpu_device_id.h>
  82#include <asm/spec-ctrl.h>
  83
  84/* Number of siblings per CPU package */
  85int smp_num_siblings = 1;
  86EXPORT_SYMBOL(smp_num_siblings);
  87
  88/* Last level cache ID of each logical CPU */
  89DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
  90
  91/* representing HT siblings of each logical CPU */
  92DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  93EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  94
  95/* representing HT and core siblings of each logical CPU */
  96DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  97EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  98
  99DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
 
 
 100
 101/* Per CPU bogomips and other parameters */
 102DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
 103EXPORT_PER_CPU_SYMBOL(cpu_info);
 104
 105/* Logical package management. We might want to allocate that dynamically */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106unsigned int __max_logical_packages __read_mostly;
 107EXPORT_SYMBOL(__max_logical_packages);
 108static unsigned int logical_packages __read_mostly;
 
 109
 110/* Maximum number of SMT threads on any online core */
 111int __read_mostly __max_smt_threads = 1;
 112
 113/* Flag to indicate if a complete sched domain rebuild is required */
 114bool x86_topology_update;
 115
 116int arch_update_cpu_topology(void)
 117{
 118	int retval = x86_topology_update;
 119
 120	x86_topology_update = false;
 121	return retval;
 122}
 123
 
 
 124static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
 125{
 126	unsigned long flags;
 127
 128	spin_lock_irqsave(&rtc_lock, flags);
 129	CMOS_WRITE(0xa, 0xf);
 
 
 
 
 130	spin_unlock_irqrestore(&rtc_lock, flags);
 131	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
 132							start_eip >> 4;
 133	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
 134							start_eip & 0xf;
 135}
 136
 137static inline void smpboot_restore_warm_reset_vector(void)
 138{
 139	unsigned long flags;
 140
 141	/*
 142	 * Paranoid:  Set warm reset code and vector here back
 143	 * to default values.
 144	 */
 145	spin_lock_irqsave(&rtc_lock, flags);
 146	CMOS_WRITE(0, 0xf);
 
 
 
 147	spin_unlock_irqrestore(&rtc_lock, flags);
 148
 149	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
 150}
 151
 152/*
 153 * Report back to the Boot Processor during boot time or to the caller processor
 154 * during CPU online.
 155 */
 156static void smp_callin(void)
 157{
 158	int cpuid, phys_id;
 159
 160	/*
 161	 * If waken up by an INIT in an 82489DX configuration
 162	 * cpu_callout_mask guarantees we don't get here before
 163	 * an INIT_deassert IPI reaches our local APIC, so it is
 164	 * now safe to touch our local APIC.
 165	 */
 166	cpuid = smp_processor_id();
 167
 168	/*
 169	 * (This works even if the APIC is not enabled.)
 170	 */
 171	phys_id = read_apic_id();
 172
 173	/*
 174	 * the boot CPU has finished the init stage and is spinning
 175	 * on callin_map until we finish. We are free to set up this
 176	 * CPU, first the APIC. (this is probably redundant on most
 177	 * boards)
 
 
 
 178	 */
 179	apic_ap_setup();
 180
 181	/*
 182	 * Save our processor parameters. Note: this information
 183	 * is needed for clock calibration.
 184	 */
 185	smp_store_cpu_info(cpuid);
 186
 187	/*
 188	 * The topology information must be up to date before
 189	 * calibrate_delay() and notify_cpu_starting().
 190	 */
 191	set_cpu_sibling_map(raw_smp_processor_id());
 
 
 192
 193	/*
 194	 * Get our bogomips.
 195	 * Update loops_per_jiffy in cpu_data. Previous call to
 196	 * smp_store_cpu_info() stored a value that is close but not as
 197	 * accurate as the value just calculated.
 198	 */
 199	calibrate_delay();
 200	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
 201	pr_debug("Stack at about %p\n", &cpuid);
 202
 203	wmb();
 204
 
 
 
 
 205	notify_cpu_starting(cpuid);
 
 206
 
 
 207	/*
 208	 * Allow the master to continue.
 
 
 
 
 
 
 209	 */
 210	cpumask_set_cpu(cpuid, cpu_callin_mask);
 
 211}
 212
 213static int cpu0_logical_apicid;
 214static int enable_start_cpu0;
 215/*
 216 * Activate a secondary processor.
 217 */
 218static void notrace start_secondary(void *unused)
 219{
 220	/*
 221	 * Don't put *anything* except direct CPU state initialization
 222	 * before cpu_init(), SMP booting is too fragile that we want to
 223	 * limit the things done here to the most necessary things.
 224	 */
 225	if (boot_cpu_has(X86_FEATURE_PCID))
 226		__write_cr4(__read_cr4() | X86_CR4_PCIDE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227
 228#ifdef CONFIG_X86_32
 229	/* switch away from the initial page table */
 230	load_cr3(swapper_pg_dir);
 231	__flush_tlb_all();
 232#endif
 233	load_current_idt();
 234	cpu_init();
 
 
 235	x86_cpuinit.early_percpu_clock_init();
 236	preempt_disable();
 237	smp_callin();
 238
 239	enable_start_cpu0 = 0;
 
 
 
 240
 241	/* otherwise gcc will move up smp_processor_id before the cpu_init */
 242	barrier();
 243	/*
 244	 * Check TSC synchronization with the boot CPU:
 
 
 245	 */
 246	check_tsc_sync_target();
 247
 248	speculative_store_bypass_ht_init();
 249
 250	/*
 251	 * Lock vector_lock, set CPU online and bring the vector
 252	 * allocator online. Online must be set with vector_lock held
 253	 * to prevent a concurrent irq setup/teardown from seeing a
 254	 * half valid vector space.
 255	 */
 256	lock_vector_lock();
 257	set_cpu_online(smp_processor_id(), true);
 258	lapic_online();
 259	unlock_vector_lock();
 260	cpu_set_state_online(smp_processor_id());
 261	x86_platform.nmi_init();
 262
 263	/* enable local interrupts */
 264	local_irq_enable();
 265
 266	/* to prevent fake stack check failure in clock setup */
 267	boot_init_stack_canary();
 268
 269	x86_cpuinit.setup_percpu_clockev();
 270
 271	wmb();
 272	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 273}
 274
 275/**
 276 * topology_phys_to_logical_pkg - Map a physical package id to a logical
 
 277 *
 278 * Returns logical package id or -1 if not found
 279 */
 280int topology_phys_to_logical_pkg(unsigned int phys_pkg)
 281{
 282	int cpu;
 283
 284	for_each_possible_cpu(cpu) {
 285		struct cpuinfo_x86 *c = &cpu_data(cpu);
 286
 287		if (c->initialized && c->phys_proc_id == phys_pkg)
 288			return c->logical_proc_id;
 289	}
 290	return -1;
 291}
 292EXPORT_SYMBOL(topology_phys_to_logical_pkg);
 293
 294/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295 * topology_update_package_map - Update the physical to logical package map
 296 * @pkg:	The physical package id as retrieved via CPUID
 297 * @cpu:	The cpu for which this is updated
 298 */
 299int topology_update_package_map(unsigned int pkg, unsigned int cpu)
 300{
 301	int new;
 302
 303	/* Already available somewhere? */
 304	new = topology_phys_to_logical_pkg(pkg);
 305	if (new >= 0)
 306		goto found;
 307
 308	new = logical_packages++;
 309	if (new != pkg) {
 310		pr_info("CPU %u Converting physical %u to logical package %u\n",
 311			cpu, pkg, new);
 312	}
 313found:
 314	cpu_data(cpu).logical_proc_id = new;
 
 
 315	return 0;
 316}
 
 
 
 
 
 
 
 
 317
 318void __init smp_store_boot_cpu_info(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319{
 320	int id = 0; /* CPU 0 */
 321	struct cpuinfo_x86 *c = &cpu_data(id);
 322
 323	*c = boot_cpu_data;
 324	c->cpu_index = id;
 325	topology_update_package_map(c->phys_proc_id, id);
 
 326	c->initialized = true;
 327}
 328
 329/*
 330 * The bootstrap kernel entry code has set these up. Save them for
 331 * a given CPU
 332 */
 333void smp_store_cpu_info(int id)
 334{
 335	struct cpuinfo_x86 *c = &cpu_data(id);
 336
 337	/* Copy boot_cpu_data only on the first bringup */
 338	if (!c->initialized)
 339		*c = boot_cpu_data;
 340	c->cpu_index = id;
 341	/*
 342	 * During boot time, CPU0 has this setup already. Save the info when
 343	 * bringing up AP or offlined CPU0.
 344	 */
 345	identify_secondary_cpu(c);
 346	c->initialized = true;
 347}
 348
 349static bool
 350topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 351{
 352	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 353
 354	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
 355}
 356
 357static bool
 358topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 359{
 360	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 361
 362	return !WARN_ONCE(!topology_same_node(c, o),
 363		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 364		"[node: %d != %d]. Ignoring dependency.\n",
 365		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 366}
 367
 368#define link_mask(mfunc, c1, c2)					\
 369do {									\
 370	cpumask_set_cpu((c1), mfunc(c2));				\
 371	cpumask_set_cpu((c2), mfunc(c1));				\
 372} while (0)
 373
 374static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 375{
 376	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 377		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 378
 379		if (c->phys_proc_id == o->phys_proc_id &&
 380		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
 381			if (c->cpu_core_id == o->cpu_core_id)
 
 382				return topology_sane(c, o, "smt");
 383
 384			if ((c->cu_id != 0xff) &&
 385			    (o->cu_id != 0xff) &&
 386			    (c->cu_id == o->cu_id))
 387				return topology_sane(c, o, "smt");
 388		}
 389
 390	} else if (c->phys_proc_id == o->phys_proc_id &&
 391		   c->cpu_core_id == o->cpu_core_id) {
 
 392		return topology_sane(c, o, "smt");
 393	}
 394
 395	return false;
 396}
 397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398/*
 399 * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
 
 
 
 
 
 
 
 
 
 
 
 
 400 *
 401 * These are Intel CPUs that enumerate an LLC that is shared by
 402 * multiple NUMA nodes. The LLC on these systems is shared for
 403 * off-package data access but private to the NUMA node (half
 404 * of the package) for on-package access.
 405 *
 406 * CPUID (the source of the information about the LLC) can only
 407 * enumerate the cache as being shared *or* unshared, but not
 408 * this particular configuration. The CPU in this case enumerates
 409 * the cache to be shared across the entire package (spanning both
 410 * NUMA nodes).
 
 411 */
 412
 413static const struct x86_cpu_id snc_cpu[] = {
 414	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X },
 
 
 415	{}
 416};
 417
 418static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 419{
 
 420	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 
 421
 422	/* Do not match if we do not have a valid APICID for cpu: */
 423	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
 424		return false;
 425
 426	/* Do not match if LLC id does not match: */
 427	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
 428		return false;
 429
 430	/*
 431	 * Allow the SNC topology without warning. Return of false
 432	 * means 'c' does not share the LLC of 'o'. This will be
 433	 * reflected to userspace.
 434	 */
 435	if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
 436		return false;
 437
 438	return topology_sane(c, o, "llc");
 439}
 440
 441/*
 442 * Unlike the other levels, we do not enforce keeping a
 443 * multicore group inside a NUMA node.  If this happens, we will
 444 * discard the MC level of the topology later.
 445 */
 446static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 447{
 448	if (c->phys_proc_id == o->phys_proc_id)
 449		return true;
 450	return false;
 451}
 452
 453#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
 454static inline int x86_sched_itmt_flags(void)
 455{
 456	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
 457}
 458
 459#ifdef CONFIG_SCHED_MC
 460static int x86_core_flags(void)
 461{
 462	return cpu_core_flags() | x86_sched_itmt_flags();
 463}
 464#endif
 465#ifdef CONFIG_SCHED_SMT
 466static int x86_smt_flags(void)
 467{
 468	return cpu_smt_flags() | x86_sched_itmt_flags();
 469}
 470#endif
 
 
 
 
 
 471#endif
 472
 473static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
 474#ifdef CONFIG_SCHED_SMT
 475	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
 476#endif
 477#ifdef CONFIG_SCHED_MC
 478	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
 479#endif
 480	{ NULL, },
 481};
 482
 483static struct sched_domain_topology_level x86_topology[] = {
 484#ifdef CONFIG_SCHED_SMT
 485	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
 486#endif
 487#ifdef CONFIG_SCHED_MC
 488	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
 489#endif
 490	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
 491	{ NULL, },
 492};
 493
 494/*
 495 * Set if a package/die has multiple NUMA nodes inside.
 496 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
 497 * Sub-NUMA Clustering have this.
 498 */
 499static bool x86_has_numa_in_package;
 500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 501void set_cpu_sibling_map(int cpu)
 502{
 503	bool has_smt = smp_num_siblings > 1;
 504	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
 505	struct cpuinfo_x86 *c = &cpu_data(cpu);
 506	struct cpuinfo_x86 *o;
 507	int i, threads;
 508
 509	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 510
 511	if (!has_mp) {
 512		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
 513		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 
 514		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
 
 515		c->booted_cores = 1;
 516		return;
 517	}
 518
 519	for_each_cpu(i, cpu_sibling_setup_mask) {
 520		o = &cpu_data(i);
 521
 
 
 
 522		if ((i == cpu) || (has_smt && match_smt(c, o)))
 523			link_mask(topology_sibling_cpumask, cpu, i);
 524
 525		if ((i == cpu) || (has_mp && match_llc(c, o)))
 526			link_mask(cpu_llc_shared_mask, cpu, i);
 527
 
 
 
 
 
 528	}
 529
 
 
 
 
 
 
 
 530	/*
 531	 * This needs a separate iteration over the cpus because we rely on all
 532	 * topology_sibling_cpumask links to be set-up.
 533	 */
 534	for_each_cpu(i, cpu_sibling_setup_mask) {
 535		o = &cpu_data(i);
 536
 537		if ((i == cpu) || (has_mp && match_die(c, o))) {
 538			link_mask(topology_core_cpumask, cpu, i);
 539
 540			/*
 541			 *  Does this new cpu bringup a new core?
 542			 */
 543			if (cpumask_weight(
 544			    topology_sibling_cpumask(cpu)) == 1) {
 545				/*
 546				 * for each core in package, increment
 547				 * the booted_cores for this new cpu
 548				 */
 549				if (cpumask_first(
 550				    topology_sibling_cpumask(i)) == i)
 551					c->booted_cores++;
 552				/*
 553				 * increment the core count for all
 554				 * the other cpus in this package
 555				 */
 556				if (i != cpu)
 557					cpu_data(i).booted_cores++;
 558			} else if (i != cpu && !c->booted_cores)
 559				c->booted_cores = cpu_data(i).booted_cores;
 560		}
 561		if (match_die(c, o) && !topology_same_node(c, o))
 562			x86_has_numa_in_package = true;
 563	}
 564
 565	threads = cpumask_weight(topology_sibling_cpumask(cpu));
 566	if (threads > __max_smt_threads)
 567		__max_smt_threads = threads;
 568}
 569
 570/* maps the cpu to the sched domain representing multi-core */
 571const struct cpumask *cpu_coregroup_mask(int cpu)
 572{
 573	return cpu_llc_shared_mask(cpu);
 574}
 575
 
 
 
 
 
 
 576static void impress_friends(void)
 577{
 578	int cpu;
 579	unsigned long bogosum = 0;
 580	/*
 581	 * Allow the user to impress friends.
 582	 */
 583	pr_debug("Before bogomips\n");
 584	for_each_possible_cpu(cpu)
 585		if (cpumask_test_cpu(cpu, cpu_callout_mask))
 586			bogosum += cpu_data(cpu).loops_per_jiffy;
 587	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
 588		num_online_cpus(),
 589		bogosum/(500000/HZ),
 590		(bogosum/(5000/HZ))%100);
 591
 592	pr_debug("Before bogocount - setting activated=1\n");
 593}
 594
 595void __inquire_remote_apic(int apicid)
 596{
 597	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
 598	const char * const names[] = { "ID", "VERSION", "SPIV" };
 599	int timeout;
 600	u32 status;
 601
 602	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
 603
 604	for (i = 0; i < ARRAY_SIZE(regs); i++) {
 605		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
 606
 607		/*
 608		 * Wait for idle.
 609		 */
 610		status = safe_apic_wait_icr_idle();
 611		if (status)
 612			pr_cont("a previous APIC delivery may have failed\n");
 613
 614		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
 615
 616		timeout = 0;
 617		do {
 618			udelay(100);
 619			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
 620		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
 621
 622		switch (status) {
 623		case APIC_ICR_RR_VALID:
 624			status = apic_read(APIC_RRR);
 625			pr_cont("%08x\n", status);
 626			break;
 627		default:
 628			pr_cont("failed\n");
 629		}
 630	}
 631}
 632
 633/*
 634 * The Multiprocessor Specification 1.4 (1997) example code suggests
 635 * that there should be a 10ms delay between the BSP asserting INIT
 636 * and de-asserting INIT, when starting a remote processor.
 637 * But that slows boot and resume on modern processors, which include
 638 * many cores and don't require that delay.
 639 *
 640 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 641 * Modern processor families are quirked to remove the delay entirely.
 642 */
 643#define UDELAY_10MS_DEFAULT 10000
 644
 645static unsigned int init_udelay = UINT_MAX;
 646
 647static int __init cpu_init_udelay(char *str)
 648{
 649	get_option(&str, &init_udelay);
 650
 651	return 0;
 652}
 653early_param("cpu_init_udelay", cpu_init_udelay);
 654
 655static void __init smp_quirk_init_udelay(void)
 656{
 657	/* if cmdline changed it from default, leave it alone */
 658	if (init_udelay != UINT_MAX)
 659		return;
 660
 661	/* if modern processor, use no delay */
 662	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
 
 663	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
 664		init_udelay = 0;
 665		return;
 666	}
 667	/* else, use legacy delay */
 668	init_udelay = UDELAY_10MS_DEFAULT;
 669}
 670
 671/*
 672 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
 673 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
 674 * won't ... remember to clear down the APIC, etc later.
 675 */
 676int
 677wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
 678{
 679	unsigned long send_status, accept_status = 0;
 680	int maxlvt;
 681
 682	/* Target chip */
 683	/* Boot on the stack */
 684	/* Kick the second */
 685	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
 686
 687	pr_debug("Waiting for send to finish...\n");
 688	send_status = safe_apic_wait_icr_idle();
 689
 690	/*
 691	 * Give the other CPU some time to accept the IPI.
 692	 */
 693	udelay(200);
 694	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 695		maxlvt = lapic_get_maxlvt();
 696		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
 697			apic_write(APIC_ESR, 0);
 698		accept_status = (apic_read(APIC_ESR) & 0xEF);
 699	}
 700	pr_debug("NMI sent\n");
 701
 702	if (send_status)
 703		pr_err("APIC never delivered???\n");
 704	if (accept_status)
 705		pr_err("APIC delivery error (%lx)\n", accept_status);
 706
 707	return (send_status | accept_status);
 
 
 
 
 708}
 709
 710static int
 711wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
 
 
 712{
 713	unsigned long send_status = 0, accept_status = 0;
 714	int maxlvt, num_starts, j;
 715
 
 716	maxlvt = lapic_get_maxlvt();
 717
 718	/*
 719	 * Be paranoid about clearing APIC errors.
 720	 */
 721	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 722		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 723			apic_write(APIC_ESR, 0);
 724		apic_read(APIC_ESR);
 725	}
 726
 727	pr_debug("Asserting INIT\n");
 728
 729	/*
 730	 * Turn INIT on target chip
 731	 */
 732	/*
 733	 * Send IPI
 734	 */
 735	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
 736		       phys_apicid);
 737
 738	pr_debug("Waiting for send to finish...\n");
 739	send_status = safe_apic_wait_icr_idle();
 740
 741	udelay(init_udelay);
 742
 743	pr_debug("Deasserting INIT\n");
 744
 745	/* Target chip */
 746	/* Send IPI */
 747	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 748
 749	pr_debug("Waiting for send to finish...\n");
 750	send_status = safe_apic_wait_icr_idle();
 751
 752	mb();
 753
 754	/*
 755	 * Should we send STARTUP IPIs ?
 756	 *
 757	 * Determine this based on the APIC version.
 758	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 759	 */
 760	if (APIC_INTEGRATED(boot_cpu_apic_version))
 761		num_starts = 2;
 762	else
 763		num_starts = 0;
 764
 765	/*
 766	 * Run STARTUP IPI loop.
 767	 */
 768	pr_debug("#startup loops: %d\n", num_starts);
 769
 770	for (j = 1; j <= num_starts; j++) {
 771		pr_debug("Sending STARTUP #%d\n", j);
 772		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 773			apic_write(APIC_ESR, 0);
 774		apic_read(APIC_ESR);
 775		pr_debug("After apic_write\n");
 776
 777		/*
 778		 * STARTUP IPI
 779		 */
 780
 781		/* Target chip */
 782		/* Boot on the stack */
 783		/* Kick the second */
 784		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 785			       phys_apicid);
 786
 787		/*
 788		 * Give the other CPU some time to accept the IPI.
 789		 */
 790		if (init_udelay == 0)
 791			udelay(10);
 792		else
 793			udelay(300);
 794
 795		pr_debug("Startup point 1\n");
 796
 797		pr_debug("Waiting for send to finish...\n");
 798		send_status = safe_apic_wait_icr_idle();
 799
 800		/*
 801		 * Give the other CPU some time to accept the IPI.
 802		 */
 803		if (init_udelay == 0)
 804			udelay(10);
 805		else
 806			udelay(200);
 807
 808		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 809			apic_write(APIC_ESR, 0);
 810		accept_status = (apic_read(APIC_ESR) & 0xEF);
 811		if (send_status || accept_status)
 812			break;
 813	}
 814	pr_debug("After Startup\n");
 815
 816	if (send_status)
 817		pr_err("APIC never delivered???\n");
 818	if (accept_status)
 819		pr_err("APIC delivery error (%lx)\n", accept_status);
 820
 
 821	return (send_status | accept_status);
 822}
 823
 824/* reduce the number of lines printed when booting a large cpu count system */
 825static void announce_cpu(int cpu, int apicid)
 826{
 827	static int current_node = -1;
 
 828	int node = early_cpu_to_node(cpu);
 829	static int width, node_width;
 830
 831	if (!width)
 832		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
 833
 834	if (!node_width)
 835		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
 836
 837	if (cpu == 1)
 838		printk(KERN_INFO "x86: Booting SMP configuration:\n");
 839
 840	if (system_state < SYSTEM_RUNNING) {
 
 
 
 841		if (node != current_node) {
 842			if (current_node > (-1))
 843				pr_cont("\n");
 844			current_node = node;
 845
 846			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
 847			       node_width - num_digits(node), " ", node);
 848		}
 849
 850		/* Add padding for the BSP */
 851		if (cpu == 1)
 852			pr_cont("%*s", width + 1, " ");
 
 853
 854		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
 855
 856	} else
 857		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 858			node, cpu, apicid);
 859}
 860
 861static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
 862{
 863	int cpu;
 864
 865	cpu = smp_processor_id();
 866	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
 867		return NMI_HANDLED;
 868
 869	return NMI_DONE;
 870}
 871
 872/*
 873 * Wake up AP by INIT, INIT, STARTUP sequence.
 874 *
 875 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
 876 * boot-strap code which is not a desired behavior for waking up BSP. To
 877 * void the boot-strap code, wake up CPU0 by NMI instead.
 878 *
 879 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
 880 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
 881 * We'll change this code in the future to wake up hard offlined CPU0 if
 882 * real platform and request are available.
 883 */
 884static int
 885wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
 886	       int *cpu0_nmi_registered)
 887{
 888	int id;
 889	int boot_error;
 890
 891	preempt_disable();
 892
 893	/*
 894	 * Wake up AP by INIT, INIT, STARTUP sequence.
 895	 */
 896	if (cpu) {
 897		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
 898		goto out;
 899	}
 900
 901	/*
 902	 * Wake up BSP by nmi.
 903	 *
 904	 * Register a NMI handler to help wake up CPU0.
 905	 */
 906	boot_error = register_nmi_handler(NMI_LOCAL,
 907					  wakeup_cpu0_nmi, 0, "wake_cpu0");
 908
 909	if (!boot_error) {
 910		enable_start_cpu0 = 1;
 911		*cpu0_nmi_registered = 1;
 912		if (apic->dest_logical == APIC_DEST_LOGICAL)
 913			id = cpu0_logical_apicid;
 914		else
 915			id = apicid;
 916		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
 917	}
 918
 919out:
 920	preempt_enable();
 921
 922	return boot_error;
 923}
 924
 925void common_cpu_up(unsigned int cpu, struct task_struct *idle)
 926{
 927	/* Just in case we booted with a single CPU. */
 928	alternatives_enable_smp();
 929
 930	per_cpu(current_task, cpu) = idle;
 
 
 
 
 
 
 931
 932#ifdef CONFIG_X86_32
 933	/* Stack for startup_32 can be just as for start_secondary onwards */
 934	irq_ctx_init(cpu);
 935	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
 936#else
 937	initial_gs = per_cpu_offset(cpu);
 938#endif
 
 939}
 940
 941/*
 942 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
 943 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
 944 * Returns zero if CPU booted OK, else error code from
 945 * ->wakeup_secondary_cpu.
 946 */
 947static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
 948		       int *cpu0_nmi_registered)
 949{
 950	volatile u32 *trampoline_status =
 951		(volatile u32 *) __va(real_mode_header->trampoline_status);
 952	/* start_ip had better be page-aligned! */
 953	unsigned long start_ip = real_mode_header->trampoline_start;
 
 954
 955	unsigned long boot_error = 0;
 956	unsigned long timeout;
 957
 
 
 958	idle->thread.sp = (unsigned long)task_pt_regs(idle);
 959	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
 960	initial_code = (unsigned long)start_secondary;
 961	initial_stack  = idle->thread.sp;
 
 
 
 
 
 
 962
 963	/* Enable the espfix hack for this CPU */
 964	init_espfix_ap(cpu);
 965
 966	/* So we see what's up */
 967	announce_cpu(cpu, apicid);
 968
 969	/*
 970	 * This grunge runs the startup process for
 971	 * the targeted processor.
 972	 */
 973
 974	if (x86_platform.legacy.warm_reset) {
 975
 976		pr_debug("Setting warm reset code and vector.\n");
 977
 978		smpboot_setup_warm_reset_vector(start_ip);
 979		/*
 980		 * Be paranoid about clearing APIC errors.
 981		*/
 982		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 983			apic_write(APIC_ESR, 0);
 984			apic_read(APIC_ESR);
 985		}
 986	}
 987
 988	/*
 989	 * AP might wait on cpu_callout_mask in cpu_init() with
 990	 * cpu_initialized_mask set if previous attempt to online
 991	 * it timed-out. Clear cpu_initialized_mask so that after
 992	 * INIT/SIPI it could start with a clean state.
 993	 */
 994	cpumask_clear_cpu(cpu, cpu_initialized_mask);
 995	smp_mb();
 996
 997	/*
 998	 * Wake up a CPU in difference cases:
 999	 * - Use the method in the APIC driver if it's defined
 
1000	 * Otherwise,
1001	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1002	 */
1003	if (apic->wakeup_secondary_cpu)
1004		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
 
 
1005	else
1006		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1007						     cpu0_nmi_registered);
1008
1009	if (!boot_error) {
1010		/*
1011		 * Wait 10s total for first sign of life from AP
1012		 */
1013		boot_error = -1;
1014		timeout = jiffies + 10*HZ;
1015		while (time_before(jiffies, timeout)) {
1016			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1017				/*
1018				 * Tell AP to proceed with initialization
1019				 */
1020				cpumask_set_cpu(cpu, cpu_callout_mask);
1021				boot_error = 0;
1022				break;
1023			}
1024			schedule();
1025		}
1026	}
1027
1028	if (!boot_error) {
1029		/*
1030		 * Wait till AP completes initial initialization
1031		 */
1032		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1033			/*
1034			 * Allow other tasks to run while we wait for the
1035			 * AP to come online. This also gives a chance
1036			 * for the MTRR work(triggered by the AP coming online)
1037			 * to be completed in the stop machine context.
1038			 */
1039			schedule();
1040		}
1041	}
1042
1043	/* mark "stuck" area as not stuck */
1044	*trampoline_status = 0;
1045
1046	if (x86_platform.legacy.warm_reset) {
1047		/*
1048		 * Cleanup possible dangling ends...
1049		 */
1050		smpboot_restore_warm_reset_vector();
1051	}
1052
1053	return boot_error;
 
 
 
1054}
1055
1056int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1057{
1058	int apicid = apic->cpu_present_to_apicid(cpu);
1059	int cpu0_nmi_registered = 0;
1060	unsigned long flags;
1061	int err, ret = 0;
1062
1063	lockdep_assert_irqs_enabled();
1064
1065	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1066
1067	if (apicid == BAD_APICID ||
1068	    !physid_isset(apicid, phys_cpu_present_map) ||
1069	    !apic->apic_id_valid(apicid)) {
1070		pr_err("%s: bad cpu %d\n", __func__, cpu);
1071		return -EINVAL;
1072	}
1073
1074	/*
1075	 * Already booted CPU?
1076	 */
1077	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1078		pr_debug("do_boot_cpu %d Already started\n", cpu);
1079		return -ENOSYS;
1080	}
1081
1082	/*
1083	 * Save current MTRR state in case it was changed since early boot
1084	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1085	 */
1086	mtrr_save_state();
1087
1088	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1089	err = cpu_check_up_prepare(cpu);
1090	if (err && err != -EBUSY)
1091		return err;
1092
1093	/* the FPU context is blank, nobody can own it */
1094	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1095
1096	common_cpu_up(cpu, tidle);
 
 
1097
1098	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1099	if (err) {
1100		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1101		ret = -EIO;
1102		goto unreg_nmi;
1103	}
1104
1105	/*
1106	 * Check TSC synchronization with the AP (keep irqs disabled
1107	 * while doing so):
1108	 */
1109	local_irq_save(flags);
1110	check_tsc_sync_source(cpu);
1111	local_irq_restore(flags);
1112
1113	while (!cpu_online(cpu)) {
1114		cpu_relax();
1115		touch_nmi_watchdog();
1116	}
1117
1118unreg_nmi:
1119	/*
1120	 * Clean up the nmi handler. Do this after the callin and callout sync
1121	 * to avoid impact of possible long unregister time.
1122	 */
1123	if (cpu0_nmi_registered)
1124		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1125
1126	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1127}
1128
1129/**
1130 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1131 */
1132void arch_disable_smp_support(void)
1133{
1134	disable_ioapic_support();
1135}
1136
1137/*
1138 * Fall back to non SMP mode after errors.
1139 *
1140 * RED-PEN audit/test this more. I bet there is more state messed up here.
1141 */
1142static __init void disable_smp(void)
1143{
1144	pr_info("SMP disabled\n");
1145
1146	disable_ioapic_support();
1147
1148	init_cpu_present(cpumask_of(0));
1149	init_cpu_possible(cpumask_of(0));
1150
1151	if (smp_found_config)
1152		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1153	else
1154		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1155	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1156	cpumask_set_cpu(0, topology_core_cpumask(0));
1157}
1158
1159/*
1160 * Various sanity checks.
1161 */
1162static void __init smp_sanity_check(void)
1163{
1164	preempt_disable();
1165
1166#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1167	if (def_to_bigsmp && nr_cpu_ids > 8) {
1168		unsigned int cpu;
1169		unsigned nr;
1170
1171		pr_warn("More than 8 CPUs detected - skipping them\n"
1172			"Use CONFIG_X86_BIGSMP\n");
1173
1174		nr = 0;
1175		for_each_present_cpu(cpu) {
1176			if (nr >= 8)
1177				set_cpu_present(cpu, false);
1178			nr++;
1179		}
1180
1181		nr = 0;
1182		for_each_possible_cpu(cpu) {
1183			if (nr >= 8)
1184				set_cpu_possible(cpu, false);
1185			nr++;
1186		}
1187
1188		nr_cpu_ids = 8;
1189	}
1190#endif
1191
1192	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1193		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1194			hard_smp_processor_id());
1195
1196		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1197	}
1198
1199	/*
1200	 * Should not be necessary because the MP table should list the boot
1201	 * CPU too, but we do it for the sake of robustness anyway.
1202	 */
1203	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1204		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1205			  boot_cpu_physical_apicid);
1206		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1207	}
1208	preempt_enable();
1209}
1210
1211static void __init smp_cpu_index_default(void)
1212{
1213	int i;
1214	struct cpuinfo_x86 *c;
1215
1216	for_each_possible_cpu(i) {
1217		c = &cpu_data(i);
1218		/* mark all to hotplug */
1219		c->cpu_index = nr_cpu_ids;
1220	}
1221}
1222
1223static void __init smp_get_logical_apicid(void)
1224{
1225	if (x2apic_mode)
1226		cpu0_logical_apicid = apic_read(APIC_LDR);
1227	else
1228		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1229}
1230
1231/*
1232 * Prepare for SMP bootup.
1233 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1234 *            for common interface support.
1235 */
1236void __init native_smp_prepare_cpus(unsigned int max_cpus)
1237{
1238	unsigned int i;
1239
1240	smp_cpu_index_default();
1241
1242	/*
1243	 * Setup boot CPU information
1244	 */
1245	smp_store_boot_cpu_info(); /* Final full version of the data */
1246	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1247	mb();
1248
1249	for_each_possible_cpu(i) {
1250		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1251		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
 
1252		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
 
1253	}
1254
1255	/*
1256	 * Set 'default' x86 topology, this matches default_topology() in that
1257	 * it has NUMA nodes as a topology level. See also
1258	 * native_smp_cpus_done().
1259	 *
1260	 * Must be done before set_cpus_sibling_map() is ran.
1261	 */
1262	set_sched_topology(x86_topology);
1263
1264	set_cpu_sibling_map(0);
 
1265
1266	smp_sanity_check();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267
1268	switch (apic_intr_mode) {
1269	case APIC_PIC:
1270	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1271		disable_smp();
1272		return;
1273	case APIC_SYMMETRIC_IO_NO_ROUTING:
1274		disable_smp();
1275		/* Setup local timer */
1276		x86_init.timers.setup_percpu_clockev();
1277		return;
1278	case APIC_VIRTUAL_WIRE:
1279	case APIC_SYMMETRIC_IO:
1280		break;
1281	}
1282
1283	/* Setup local timer */
1284	x86_init.timers.setup_percpu_clockev();
1285
1286	smp_get_logical_apicid();
1287
1288	pr_info("CPU0: ");
1289	print_cpu_info(&cpu_data(0));
1290
1291	native_pv_lock_init();
1292
1293	uv_system_init();
1294
1295	set_mtrr_aps_delayed_init();
1296
1297	smp_quirk_init_udelay();
1298
1299	speculative_store_bypass_ht_init();
 
 
1300}
1301
1302void arch_enable_nonboot_cpus_begin(void)
1303{
1304	set_mtrr_aps_delayed_init();
1305}
1306
1307void arch_enable_nonboot_cpus_end(void)
1308{
1309	mtrr_aps_init();
1310}
1311
1312/*
1313 * Early setup to make printk work.
1314 */
1315void __init native_smp_prepare_boot_cpu(void)
1316{
1317	int me = smp_processor_id();
1318	switch_to_new_gdt(me);
1319	/* already set me in cpu_online_mask in boot_cpu_init() */
1320	cpumask_set_cpu(me, cpu_callout_mask);
1321	cpu_set_state_online(me);
 
 
1322}
1323
1324void __init calculate_max_logical_packages(void)
1325{
1326	int ncpus;
1327
1328	/*
1329	 * Today neither Intel nor AMD support heterogenous systems so
1330	 * extrapolate the boot cpu's data to all packages.
1331	 */
1332	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1333	__max_logical_packages = DIV_ROUND_UP(nr_cpu_ids, ncpus);
1334	pr_info("Max logical packages: %u\n", __max_logical_packages);
1335}
1336
1337void __init native_smp_cpus_done(unsigned int max_cpus)
1338{
1339	pr_debug("Boot done\n");
1340
1341	calculate_max_logical_packages();
1342
1343	if (x86_has_numa_in_package)
1344		set_sched_topology(x86_numa_in_package_topology);
1345
1346	nmi_selftest();
1347	impress_friends();
1348	mtrr_aps_init();
1349}
1350
1351static int __initdata setup_possible_cpus = -1;
1352static int __init _setup_possible_cpus(char *str)
1353{
1354	get_option(&str, &setup_possible_cpus);
1355	return 0;
1356}
1357early_param("possible_cpus", _setup_possible_cpus);
1358
1359
1360/*
1361 * cpu_possible_mask should be static, it cannot change as cpu's
1362 * are onlined, or offlined. The reason is per-cpu data-structures
1363 * are allocated by some modules at init time, and dont expect to
1364 * do this dynamically on cpu arrival/departure.
1365 * cpu_present_mask on the other hand can change dynamically.
1366 * In case when cpu_hotplug is not compiled, then we resort to current
1367 * behaviour, which is cpu_possible == cpu_present.
1368 * - Ashok Raj
1369 *
1370 * Three ways to find out the number of additional hotplug CPUs:
1371 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1372 * - The user can overwrite it with possible_cpus=NUM
1373 * - Otherwise don't reserve additional CPUs.
1374 * We do this because additional CPUs waste a lot of memory.
1375 * -AK
1376 */
1377__init void prefill_possible_map(void)
1378{
1379	int i, possible;
1380
1381	/* No boot processor was found in mptable or ACPI MADT */
1382	if (!num_processors) {
1383		if (boot_cpu_has(X86_FEATURE_APIC)) {
1384			int apicid = boot_cpu_physical_apicid;
1385			int cpu = hard_smp_processor_id();
1386
1387			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1388
1389			/* Make sure boot cpu is enumerated */
1390			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1391			    apic->apic_id_valid(apicid))
1392				generic_processor_info(apicid, boot_cpu_apic_version);
1393		}
1394
1395		if (!num_processors)
1396			num_processors = 1;
1397	}
1398
1399	i = setup_max_cpus ?: 1;
1400	if (setup_possible_cpus == -1) {
1401		possible = num_processors;
1402#ifdef CONFIG_HOTPLUG_CPU
1403		if (setup_max_cpus)
1404			possible += disabled_cpus;
1405#else
1406		if (possible > i)
1407			possible = i;
1408#endif
1409	} else
1410		possible = setup_possible_cpus;
1411
1412	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1413
1414	/* nr_cpu_ids could be reduced via nr_cpus= */
1415	if (possible > nr_cpu_ids) {
1416		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1417			possible, nr_cpu_ids);
1418		possible = nr_cpu_ids;
1419	}
1420
1421#ifdef CONFIG_HOTPLUG_CPU
1422	if (!setup_max_cpus)
1423#endif
1424	if (possible > i) {
1425		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1426			possible, setup_max_cpus);
1427		possible = i;
1428	}
1429
1430	nr_cpu_ids = possible;
1431
1432	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1433		possible, max_t(int, possible - num_processors, 0));
1434
1435	reset_cpu_possible_mask();
1436
1437	for (i = 0; i < possible; i++)
1438		set_cpu_possible(i, true);
1439}
1440
 
 
 
 
 
 
1441#ifdef CONFIG_HOTPLUG_CPU
1442
1443/* Recompute SMT state for all CPUs on offline */
1444static void recompute_smt_state(void)
1445{
1446	int max_threads, cpu;
1447
1448	max_threads = 0;
1449	for_each_online_cpu (cpu) {
1450		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1451
1452		if (threads > max_threads)
1453			max_threads = threads;
1454	}
1455	__max_smt_threads = max_threads;
1456}
1457
1458static void remove_siblinginfo(int cpu)
1459{
1460	int sibling;
1461	struct cpuinfo_x86 *c = &cpu_data(cpu);
1462
1463	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1464		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1465		/*/
1466		 * last thread sibling in this cpu core going down
1467		 */
1468		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1469			cpu_data(sibling).booted_cores--;
1470	}
1471
1472	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
 
 
 
1473		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
 
 
 
 
1474	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1475		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
 
 
1476	cpumask_clear(cpu_llc_shared_mask(cpu));
 
1477	cpumask_clear(topology_sibling_cpumask(cpu));
1478	cpumask_clear(topology_core_cpumask(cpu));
1479	c->cpu_core_id = 0;
 
1480	c->booted_cores = 0;
1481	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1482	recompute_smt_state();
1483}
1484
1485static void remove_cpu_from_maps(int cpu)
1486{
1487	set_cpu_online(cpu, false);
1488	cpumask_clear_cpu(cpu, cpu_callout_mask);
1489	cpumask_clear_cpu(cpu, cpu_callin_mask);
1490	/* was set by cpu_init() */
1491	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1492	numa_remove_cpu(cpu);
1493}
1494
1495void cpu_disable_common(void)
1496{
1497	int cpu = smp_processor_id();
1498
1499	remove_siblinginfo(cpu);
1500
1501	/* It's now safe to remove this processor from the online map */
1502	lock_vector_lock();
1503	remove_cpu_from_maps(cpu);
1504	unlock_vector_lock();
1505	fixup_irqs();
1506	lapic_offline();
1507}
1508
1509int native_cpu_disable(void)
1510{
1511	int ret;
1512
1513	ret = lapic_can_unplug_cpu();
1514	if (ret)
1515		return ret;
1516
1517	clear_local_APIC();
1518	cpu_disable_common();
1519
1520	return 0;
1521}
1522
1523int common_cpu_die(unsigned int cpu)
1524{
1525	int ret = 0;
1526
1527	/* We don't do anything here: idle task is faking death itself. */
1528
1529	/* They ack this in play_dead() by setting CPU_DEAD */
1530	if (cpu_wait_death(cpu, 5)) {
1531		if (system_state == SYSTEM_RUNNING)
1532			pr_info("CPU %u is now offline\n", cpu);
1533	} else {
1534		pr_err("CPU %u didn't die...\n", cpu);
1535		ret = -1;
1536	}
 
 
1537
1538	return ret;
1539}
1540
1541void native_cpu_die(unsigned int cpu)
1542{
1543	common_cpu_die(cpu);
1544}
1545
1546void play_dead_common(void)
1547{
1548	idle_task_exit();
1549
1550	/* Ack it */
1551	(void)cpu_report_death();
1552
1553	/*
1554	 * With physical CPU hotplug, we should halt the cpu
1555	 */
1556	local_irq_disable();
1557}
1558
1559static bool wakeup_cpu0(void)
1560{
1561	if (smp_processor_id() == 0 && enable_start_cpu0)
1562		return true;
1563
1564	return false;
1565}
1566
1567/*
1568 * We need to flush the caches before going to sleep, lest we have
1569 * dirty data in our caches when we come back up.
1570 */
1571static inline void mwait_play_dead(void)
1572{
 
1573	unsigned int eax, ebx, ecx, edx;
1574	unsigned int highest_cstate = 0;
1575	unsigned int highest_subcstate = 0;
1576	void *mwait_ptr;
1577	int i;
1578
1579	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
 
1580		return;
1581	if (!this_cpu_has(X86_FEATURE_MWAIT))
1582		return;
1583	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1584		return;
1585	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1586		return;
1587
1588	eax = CPUID_MWAIT_LEAF;
1589	ecx = 0;
1590	native_cpuid(&eax, &ebx, &ecx, &edx);
1591
1592	/*
1593	 * eax will be 0 if EDX enumeration is not valid.
1594	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1595	 */
1596	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1597		eax = 0;
1598	} else {
1599		edx >>= MWAIT_SUBSTATE_SIZE;
1600		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1601			if (edx & MWAIT_SUBSTATE_MASK) {
1602				highest_cstate = i;
1603				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1604			}
1605		}
1606		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1607			(highest_subcstate - 1);
1608	}
1609
1610	/*
1611	 * This should be a memory location in a cache line which is
1612	 * unlikely to be touched by other processors.  The actual
1613	 * content is immaterial as it is not actually modified in any way.
1614	 */
1615	mwait_ptr = &current_thread_info()->flags;
1616
1617	wbinvd();
1618
1619	while (1) {
1620		/*
1621		 * The CLFLUSH is a workaround for erratum AAI65 for
1622		 * the Xeon 7400 series.  It's not clear it is actually
1623		 * needed, but it should be harmless in either case.
1624		 * The WBINVD is insufficient due to the spurious-wakeup
1625		 * case where we return around the loop.
1626		 */
1627		mb();
1628		clflush(mwait_ptr);
1629		mb();
1630		__monitor(mwait_ptr, 0, 0);
1631		mb();
1632		__mwait(eax, 0);
1633		/*
1634		 * If NMI wants to wake up CPU0, start CPU0.
1635		 */
1636		if (wakeup_cpu0())
1637			start_cpu0();
 
 
 
 
 
 
 
 
 
 
 
 
 
1638	}
1639}
1640
1641void hlt_play_dead(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1642{
1643	if (__this_cpu_read(cpu_info.x86) >= 4)
1644		wbinvd();
1645
1646	while (1) {
1647		native_halt();
1648		/*
1649		 * If NMI wants to wake up CPU0, start CPU0.
1650		 */
1651		if (wakeup_cpu0())
1652			start_cpu0();
1653	}
1654}
1655
 
 
 
 
1656void native_play_dead(void)
1657{
 
 
 
1658	play_dead_common();
1659	tboot_shutdown(TB_SHUTDOWN_WFS);
1660
1661	mwait_play_dead();	/* Only returns on failure */
1662	if (cpuidle_play_dead())
1663		hlt_play_dead();
1664}
1665
1666#else /* ... !CONFIG_HOTPLUG_CPU */
1667int native_cpu_disable(void)
1668{
1669	return -ENOSYS;
1670}
1671
1672void native_cpu_die(unsigned int cpu)
1673{
1674	/* We said "no" in __cpu_disable */
1675	BUG();
1676}
1677
1678void native_play_dead(void)
1679{
1680	BUG();
1681}
1682
1683#endif
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3 *	x86 SMP booting functions
   4 *
   5 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   6 *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   7 *	Copyright 2001 Andi Kleen, SuSE Labs.
   8 *
   9 *	Much of the core SMP work is based on previous work by Thomas Radke, to
  10 *	whom a great many thanks are extended.
  11 *
  12 *	Thanks to Intel for making available several different Pentium,
  13 *	Pentium Pro and Pentium-II/Xeon MP machines.
  14 *	Original development of Linux SMP code supported by Caldera.
  15 *
 
 
 
  16 *	Fixes
  17 *		Felix Koop	:	NR_CPUS used properly
  18 *		Jose Renau	:	Handle single CPU case.
  19 *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
  20 *		Greg Wright	:	Fix for kernel stacks panic.
  21 *		Erich Boleyn	:	MP v1.4 and additional changes.
  22 *	Matthias Sattler	:	Changes for 2.1 kernel map.
  23 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
  24 *	Michael Chastain	:	Change trampoline.S to gnu as.
  25 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
  26 *		Ingo Molnar	:	Added APIC timers, based on code
  27 *					from Jose Renau
  28 *		Ingo Molnar	:	various cleanups and rewrites
  29 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
  30 *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
  31 *	Andi Kleen		:	Changed for SMP boot into long mode.
  32 *		Martin J. Bligh	: 	Added support for multi-quad systems
  33 *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
  34 *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
  35 *      Andi Kleen              :       Converted to new state machine.
  36 *	Ashok Raj		: 	CPU hotplug support
  37 *	Glauber Costa		:	i386 and x86_64 integration
  38 */
  39
  40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  41
  42#include <linux/init.h>
  43#include <linux/smp.h>
  44#include <linux/export.h>
  45#include <linux/sched.h>
  46#include <linux/sched/topology.h>
  47#include <linux/sched/hotplug.h>
  48#include <linux/sched/task_stack.h>
  49#include <linux/percpu.h>
  50#include <linux/memblock.h>
  51#include <linux/err.h>
  52#include <linux/nmi.h>
  53#include <linux/tboot.h>
 
  54#include <linux/gfp.h>
  55#include <linux/cpuidle.h>
  56#include <linux/kexec.h>
  57#include <linux/numa.h>
  58#include <linux/pgtable.h>
  59#include <linux/overflow.h>
  60#include <linux/stackprotector.h>
  61#include <linux/cpuhotplug.h>
  62#include <linux/mc146818rtc.h>
  63
  64#include <asm/acpi.h>
  65#include <asm/cacheinfo.h>
  66#include <asm/desc.h>
  67#include <asm/nmi.h>
  68#include <asm/irq.h>
  69#include <asm/realmode.h>
  70#include <asm/cpu.h>
  71#include <asm/numa.h>
 
  72#include <asm/tlbflush.h>
  73#include <asm/mtrr.h>
  74#include <asm/mwait.h>
  75#include <asm/apic.h>
  76#include <asm/io_apic.h>
  77#include <asm/fpu/api.h>
  78#include <asm/setup.h>
  79#include <asm/uv/uv.h>
  80#include <asm/microcode.h>
  81#include <asm/i8259.h>
  82#include <asm/misc.h>
  83#include <asm/qspinlock.h>
  84#include <asm/intel-family.h>
  85#include <asm/cpu_device_id.h>
  86#include <asm/spec-ctrl.h>
  87#include <asm/hw_irq.h>
  88#include <asm/stackprotector.h>
  89#include <asm/sev.h>
  90#include <asm/spec-ctrl.h>
 
 
 
  91
  92/* representing HT siblings of each logical CPU */
  93DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  94EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  95
  96/* representing HT and core siblings of each logical CPU */
  97DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  98EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  99
 100/* representing HT, core, and die siblings of each logical CPU */
 101DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
 102EXPORT_PER_CPU_SYMBOL(cpu_die_map);
 103
 104/* Per CPU bogomips and other parameters */
 105DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
 106EXPORT_PER_CPU_SYMBOL(cpu_info);
 107
 108/* CPUs which are the primary SMT threads */
 109struct cpumask __cpu_primary_thread_mask __read_mostly;
 110
 111/* Representing CPUs for which sibling maps can be computed */
 112static cpumask_var_t cpu_sibling_setup_mask;
 113
 114struct mwait_cpu_dead {
 115	unsigned int	control;
 116	unsigned int	status;
 117};
 118
 119#define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
 120#define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
 121
 122/*
 123 * Cache line aligned data for mwait_play_dead(). Separate on purpose so
 124 * that it's unlikely to be touched by other CPUs.
 125 */
 126static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
 127
 128/* Logical package management. */
 129struct logical_maps {
 130	u32	phys_pkg_id;
 131	u32	phys_die_id;
 132	u32	logical_pkg_id;
 133	u32	logical_die_id;
 134};
 135
 136/* Temporary workaround until the full topology mechanics is in place */
 137static DEFINE_PER_CPU_READ_MOSTLY(struct logical_maps, logical_maps) = {
 138	.phys_pkg_id	= U32_MAX,
 139	.phys_die_id	= U32_MAX,
 140};
 141
 142unsigned int __max_logical_packages __read_mostly;
 143EXPORT_SYMBOL(__max_logical_packages);
 144static unsigned int logical_packages __read_mostly;
 145static unsigned int logical_die __read_mostly;
 146
 147/* Maximum number of SMT threads on any online core */
 148int __read_mostly __max_smt_threads = 1;
 149
 150/* Flag to indicate if a complete sched domain rebuild is required */
 151bool x86_topology_update;
 152
 153int arch_update_cpu_topology(void)
 154{
 155	int retval = x86_topology_update;
 156
 157	x86_topology_update = false;
 158	return retval;
 159}
 160
 161static unsigned int smpboot_warm_reset_vector_count;
 162
 163static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
 164{
 165	unsigned long flags;
 166
 167	spin_lock_irqsave(&rtc_lock, flags);
 168	if (!smpboot_warm_reset_vector_count++) {
 169		CMOS_WRITE(0xa, 0xf);
 170		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
 171		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
 172	}
 173	spin_unlock_irqrestore(&rtc_lock, flags);
 
 
 
 
 174}
 175
 176static inline void smpboot_restore_warm_reset_vector(void)
 177{
 178	unsigned long flags;
 179
 180	/*
 181	 * Paranoid:  Set warm reset code and vector here back
 182	 * to default values.
 183	 */
 184	spin_lock_irqsave(&rtc_lock, flags);
 185	if (!--smpboot_warm_reset_vector_count) {
 186		CMOS_WRITE(0, 0xf);
 187		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
 188	}
 189	spin_unlock_irqrestore(&rtc_lock, flags);
 190
 
 191}
 192
 193/* Run the next set of setup steps for the upcoming CPU */
 194static void ap_starting(void)
 
 
 
 195{
 196	int cpuid = smp_processor_id();
 
 
 
 
 
 
 
 
 197
 198	/* Mop up eventual mwait_play_dead() wreckage */
 199	this_cpu_write(mwait_cpu_dead.status, 0);
 200	this_cpu_write(mwait_cpu_dead.control, 0);
 
 201
 202	/*
 203	 * If woken up by an INIT in an 82489DX configuration the alive
 204	 * synchronization guarantees that the CPU does not reach this
 205	 * point before an INIT_deassert IPI reaches the local APIC, so it
 206	 * is now safe to touch the local APIC.
 207	 *
 208	 * Set up this CPU, first the APIC, which is probably redundant on
 209	 * most boards.
 210	 */
 211	apic_ap_setup();
 212
 213	/* Save the processor parameters. */
 
 
 
 214	smp_store_cpu_info(cpuid);
 215
 216	/*
 217	 * The topology information must be up to date before
 218	 * notify_cpu_starting().
 219	 */
 220	set_cpu_sibling_map(cpuid);
 221
 222	ap_init_aperfmperf();
 223
 
 
 
 
 
 
 
 
 224	pr_debug("Stack at about %p\n", &cpuid);
 225
 226	wmb();
 227
 228	/*
 229	 * This runs the AP through all the cpuhp states to its target
 230	 * state CPUHP_ONLINE.
 231	 */
 232	notify_cpu_starting(cpuid);
 233}
 234
 235static void ap_calibrate_delay(void)
 236{
 237	/*
 238	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
 239	 * smp_store_cpu_info() stored a value that is close but not as
 240	 * accurate as the value just calculated.
 241	 *
 242	 * As this is invoked after the TSC synchronization check,
 243	 * calibrate_delay_is_known() will skip the calibration routine
 244	 * when TSC is synchronized across sockets.
 245	 */
 246	calibrate_delay();
 247	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
 248}
 249
 
 
 250/*
 251 * Activate a secondary processor.
 252 */
 253static void notrace start_secondary(void *unused)
 254{
 255	/*
 256	 * Don't put *anything* except direct CPU state initialization
 257	 * before cpu_init(), SMP booting is too fragile that we want to
 258	 * limit the things done here to the most necessary things.
 259	 */
 260	cr4_init();
 261
 262	/*
 263	 * 32-bit specific. 64-bit reaches this code with the correct page
 264	 * table established. Yet another historical divergence.
 265	 */
 266	if (IS_ENABLED(CONFIG_X86_32)) {
 267		/* switch away from the initial page table */
 268		load_cr3(swapper_pg_dir);
 269		__flush_tlb_all();
 270	}
 271
 272	cpu_init_exception_handling();
 273
 274	/*
 275	 * Load the microcode before reaching the AP alive synchronization
 276	 * point below so it is not part of the full per CPU serialized
 277	 * bringup part when "parallel" bringup is enabled.
 278	 *
 279	 * That's even safe when hyperthreading is enabled in the CPU as
 280	 * the core code starts the primary threads first and leaves the
 281	 * secondary threads waiting for SIPI. Loading microcode on
 282	 * physical cores concurrently is a safe operation.
 283	 *
 284	 * This covers both the Intel specific issue that concurrent
 285	 * microcode loading on SMT siblings must be prohibited and the
 286	 * vendor independent issue`that microcode loading which changes
 287	 * CPUID, MSRs etc. must be strictly serialized to maintain
 288	 * software state correctness.
 289	 */
 290	load_ucode_ap();
 291
 292	/*
 293	 * Synchronization point with the hotplug core. Sets this CPUs
 294	 * synchronization state to ALIVE and spin-waits for the control CPU to
 295	 * release this CPU for further bringup.
 296	 */
 297	cpuhp_ap_sync_alive();
 298
 
 
 
 
 
 
 299	cpu_init();
 300	fpu__init_cpu();
 301	rcutree_report_cpu_starting(raw_smp_processor_id());
 302	x86_cpuinit.early_percpu_clock_init();
 
 
 303
 304	ap_starting();
 305
 306	/* Check TSC synchronization with the control CPU. */
 307	check_tsc_sync_target();
 308
 
 
 309	/*
 310	 * Calibrate the delay loop after the TSC synchronization check.
 311	 * This allows to skip the calibration when TSC is synchronized
 312	 * across sockets.
 313	 */
 314	ap_calibrate_delay();
 315
 316	speculative_store_bypass_ht_init();
 317
 318	/*
 319	 * Lock vector_lock, set CPU online and bring the vector
 320	 * allocator online. Online must be set with vector_lock held
 321	 * to prevent a concurrent irq setup/teardown from seeing a
 322	 * half valid vector space.
 323	 */
 324	lock_vector_lock();
 325	set_cpu_online(smp_processor_id(), true);
 326	lapic_online();
 327	unlock_vector_lock();
 
 328	x86_platform.nmi_init();
 329
 330	/* enable local interrupts */
 331	local_irq_enable();
 332
 
 
 
 333	x86_cpuinit.setup_percpu_clockev();
 334
 335	wmb();
 336	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 337}
 338
 339/**
 340 * topology_phys_to_logical_pkg - Map a physical package id to a logical
 341 * @phys_pkg:	The physical package id to map
 342 *
 343 * Returns logical package id or -1 if not found
 344 */
 345int topology_phys_to_logical_pkg(unsigned int phys_pkg)
 346{
 347	int cpu;
 348
 349	for_each_possible_cpu(cpu) {
 350		if (per_cpu(logical_maps.phys_pkg_id, cpu) == phys_pkg)
 351			return per_cpu(logical_maps.logical_pkg_id, cpu);
 
 
 352	}
 353	return -1;
 354}
 355EXPORT_SYMBOL(topology_phys_to_logical_pkg);
 356
 357/**
 358 * topology_phys_to_logical_die - Map a physical die id to logical
 359 * @die_id:	The physical die id to map
 360 * @cur_cpu:	The CPU for which the mapping is done
 361 *
 362 * Returns logical die id or -1 if not found
 363 */
 364static int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
 365{
 366	int cpu, proc_id = cpu_data(cur_cpu).topo.pkg_id;
 367
 368	for_each_possible_cpu(cpu) {
 369		if (per_cpu(logical_maps.phys_pkg_id, cpu) == proc_id &&
 370		    per_cpu(logical_maps.phys_die_id, cpu) == die_id)
 371			return per_cpu(logical_maps.logical_die_id, cpu);
 372	}
 373	return -1;
 374}
 375
 376/**
 377 * topology_update_package_map - Update the physical to logical package map
 378 * @pkg:	The physical package id as retrieved via CPUID
 379 * @cpu:	The cpu for which this is updated
 380 */
 381int topology_update_package_map(unsigned int pkg, unsigned int cpu)
 382{
 383	int new;
 384
 385	/* Already available somewhere? */
 386	new = topology_phys_to_logical_pkg(pkg);
 387	if (new >= 0)
 388		goto found;
 389
 390	new = logical_packages++;
 391	if (new != pkg) {
 392		pr_info("CPU %u Converting physical %u to logical package %u\n",
 393			cpu, pkg, new);
 394	}
 395found:
 396	per_cpu(logical_maps.phys_pkg_id, cpu) = pkg;
 397	per_cpu(logical_maps.logical_pkg_id, cpu) = new;
 398	cpu_data(cpu).topo.logical_pkg_id = new;
 399	return 0;
 400}
 401/**
 402 * topology_update_die_map - Update the physical to logical die map
 403 * @die:	The die id as retrieved via CPUID
 404 * @cpu:	The cpu for which this is updated
 405 */
 406int topology_update_die_map(unsigned int die, unsigned int cpu)
 407{
 408	int new;
 409
 410	/* Already available somewhere? */
 411	new = topology_phys_to_logical_die(die, cpu);
 412	if (new >= 0)
 413		goto found;
 414
 415	new = logical_die++;
 416	if (new != die) {
 417		pr_info("CPU %u Converting physical %u to logical die %u\n",
 418			cpu, die, new);
 419	}
 420found:
 421	per_cpu(logical_maps.phys_die_id, cpu) = die;
 422	per_cpu(logical_maps.logical_die_id, cpu) = new;
 423	cpu_data(cpu).topo.logical_die_id = new;
 424	return 0;
 425}
 426
 427static void __init smp_store_boot_cpu_info(void)
 428{
 429	int id = 0; /* CPU 0 */
 430	struct cpuinfo_x86 *c = &cpu_data(id);
 431
 432	*c = boot_cpu_data;
 433	c->cpu_index = id;
 434	topology_update_package_map(c->topo.pkg_id, id);
 435	topology_update_die_map(c->topo.die_id, id);
 436	c->initialized = true;
 437}
 438
 439/*
 440 * The bootstrap kernel entry code has set these up. Save them for
 441 * a given CPU
 442 */
 443void smp_store_cpu_info(int id)
 444{
 445	struct cpuinfo_x86 *c = &cpu_data(id);
 446
 447	/* Copy boot_cpu_data only on the first bringup */
 448	if (!c->initialized)
 449		*c = boot_cpu_data;
 450	c->cpu_index = id;
 451	/*
 452	 * During boot time, CPU0 has this setup already. Save the info when
 453	 * bringing up an AP.
 454	 */
 455	identify_secondary_cpu(c);
 456	c->initialized = true;
 457}
 458
 459static bool
 460topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 461{
 462	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 463
 464	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
 465}
 466
 467static bool
 468topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 469{
 470	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 471
 472	return !WARN_ONCE(!topology_same_node(c, o),
 473		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 474		"[node: %d != %d]. Ignoring dependency.\n",
 475		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 476}
 477
 478#define link_mask(mfunc, c1, c2)					\
 479do {									\
 480	cpumask_set_cpu((c1), mfunc(c2));				\
 481	cpumask_set_cpu((c2), mfunc(c1));				\
 482} while (0)
 483
 484static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 485{
 486	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 487		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 488
 489		if (c->topo.pkg_id == o->topo.pkg_id &&
 490		    c->topo.die_id == o->topo.die_id &&
 491		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
 492			if (c->topo.core_id == o->topo.core_id)
 493				return topology_sane(c, o, "smt");
 494
 495			if ((c->topo.cu_id != 0xff) &&
 496			    (o->topo.cu_id != 0xff) &&
 497			    (c->topo.cu_id == o->topo.cu_id))
 498				return topology_sane(c, o, "smt");
 499		}
 500
 501	} else if (c->topo.pkg_id == o->topo.pkg_id &&
 502		   c->topo.die_id == o->topo.die_id &&
 503		   c->topo.core_id == o->topo.core_id) {
 504		return topology_sane(c, o, "smt");
 505	}
 506
 507	return false;
 508}
 509
 510static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 511{
 512	if (c->topo.pkg_id == o->topo.pkg_id &&
 513	    c->topo.die_id == o->topo.die_id)
 514		return true;
 515	return false;
 516}
 517
 518static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 519{
 520	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 521
 522	/* If the arch didn't set up l2c_id, fall back to SMT */
 523	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
 524		return match_smt(c, o);
 525
 526	/* Do not match if L2 cache id does not match: */
 527	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
 528		return false;
 529
 530	return topology_sane(c, o, "l2c");
 531}
 532
 533/*
 534 * Unlike the other levels, we do not enforce keeping a
 535 * multicore group inside a NUMA node.  If this happens, we will
 536 * discard the MC level of the topology later.
 537 */
 538static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 539{
 540	if (c->topo.pkg_id == o->topo.pkg_id)
 541		return true;
 542	return false;
 543}
 544
 545/*
 546 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
 547 *
 548 * Any Intel CPU that has multiple nodes per package and does not
 549 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
 
 
 550 *
 551 * When in SNC mode, these CPUs enumerate an LLC that is shared
 552 * by multiple NUMA nodes. The LLC is shared for off-package data
 553 * access but private to the NUMA node (half of the package) for
 554 * on-package access. CPUID (the source of the information about
 555 * the LLC) can only enumerate the cache as shared or unshared,
 556 * but not this particular configuration.
 557 */
 558
 559static const struct x86_cpu_id intel_cod_cpu[] = {
 560	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
 561	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
 562	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
 563	{}
 564};
 565
 566static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 567{
 568	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
 569	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 570	bool intel_snc = id && id->driver_data;
 571
 572	/* Do not match if we do not have a valid APICID for cpu: */
 573	if (per_cpu_llc_id(cpu1) == BAD_APICID)
 574		return false;
 575
 576	/* Do not match if LLC id does not match: */
 577	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
 578		return false;
 579
 580	/*
 581	 * Allow the SNC topology without warning. Return of false
 582	 * means 'c' does not share the LLC of 'o'. This will be
 583	 * reflected to userspace.
 584	 */
 585	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
 586		return false;
 587
 588	return topology_sane(c, o, "llc");
 589}
 590
 
 
 
 
 
 
 
 
 
 
 
 591
 
 592static inline int x86_sched_itmt_flags(void)
 593{
 594	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
 595}
 596
 597#ifdef CONFIG_SCHED_MC
 598static int x86_core_flags(void)
 599{
 600	return cpu_core_flags() | x86_sched_itmt_flags();
 601}
 602#endif
 603#ifdef CONFIG_SCHED_SMT
 604static int x86_smt_flags(void)
 605{
 606	return cpu_smt_flags();
 607}
 608#endif
 609#ifdef CONFIG_SCHED_CLUSTER
 610static int x86_cluster_flags(void)
 611{
 612	return cpu_cluster_flags() | x86_sched_itmt_flags();
 613}
 614#endif
 615
 616static int x86_die_flags(void)
 617{
 618	if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
 619	       return x86_sched_itmt_flags();
 
 
 
 
 
 620
 621	return 0;
 622}
 
 
 
 
 
 
 
 
 623
 624/*
 625 * Set if a package/die has multiple NUMA nodes inside.
 626 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
 627 * Sub-NUMA Clustering have this.
 628 */
 629static bool x86_has_numa_in_package;
 630
 631static struct sched_domain_topology_level x86_topology[6];
 632
 633static void __init build_sched_topology(void)
 634{
 635	int i = 0;
 636
 637#ifdef CONFIG_SCHED_SMT
 638	x86_topology[i++] = (struct sched_domain_topology_level){
 639		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
 640	};
 641#endif
 642#ifdef CONFIG_SCHED_CLUSTER
 643	x86_topology[i++] = (struct sched_domain_topology_level){
 644		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
 645	};
 646#endif
 647#ifdef CONFIG_SCHED_MC
 648	x86_topology[i++] = (struct sched_domain_topology_level){
 649		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
 650	};
 651#endif
 652	/*
 653	 * When there is NUMA topology inside the package skip the PKG domain
 654	 * since the NUMA domains will auto-magically create the right spanning
 655	 * domains based on the SLIT.
 656	 */
 657	if (!x86_has_numa_in_package) {
 658		x86_topology[i++] = (struct sched_domain_topology_level){
 659			cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG)
 660		};
 661	}
 662
 663	/*
 664	 * There must be one trailing NULL entry left.
 665	 */
 666	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
 667
 668	set_sched_topology(x86_topology);
 669}
 670
 671void set_cpu_sibling_map(int cpu)
 672{
 673	bool has_smt = smp_num_siblings > 1;
 674	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
 675	struct cpuinfo_x86 *c = &cpu_data(cpu);
 676	struct cpuinfo_x86 *o;
 677	int i, threads;
 678
 679	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 680
 681	if (!has_mp) {
 682		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
 683		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 684		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
 685		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
 686		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
 687		c->booted_cores = 1;
 688		return;
 689	}
 690
 691	for_each_cpu(i, cpu_sibling_setup_mask) {
 692		o = &cpu_data(i);
 693
 694		if (match_pkg(c, o) && !topology_same_node(c, o))
 695			x86_has_numa_in_package = true;
 696
 697		if ((i == cpu) || (has_smt && match_smt(c, o)))
 698			link_mask(topology_sibling_cpumask, cpu, i);
 699
 700		if ((i == cpu) || (has_mp && match_llc(c, o)))
 701			link_mask(cpu_llc_shared_mask, cpu, i);
 702
 703		if ((i == cpu) || (has_mp && match_l2c(c, o)))
 704			link_mask(cpu_l2c_shared_mask, cpu, i);
 705
 706		if ((i == cpu) || (has_mp && match_die(c, o)))
 707			link_mask(topology_die_cpumask, cpu, i);
 708	}
 709
 710	threads = cpumask_weight(topology_sibling_cpumask(cpu));
 711	if (threads > __max_smt_threads)
 712		__max_smt_threads = threads;
 713
 714	for_each_cpu(i, topology_sibling_cpumask(cpu))
 715		cpu_data(i).smt_active = threads > 1;
 716
 717	/*
 718	 * This needs a separate iteration over the cpus because we rely on all
 719	 * topology_sibling_cpumask links to be set-up.
 720	 */
 721	for_each_cpu(i, cpu_sibling_setup_mask) {
 722		o = &cpu_data(i);
 723
 724		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
 725			link_mask(topology_core_cpumask, cpu, i);
 726
 727			/*
 728			 *  Does this new cpu bringup a new core?
 729			 */
 730			if (threads == 1) {
 
 731				/*
 732				 * for each core in package, increment
 733				 * the booted_cores for this new cpu
 734				 */
 735				if (cpumask_first(
 736				    topology_sibling_cpumask(i)) == i)
 737					c->booted_cores++;
 738				/*
 739				 * increment the core count for all
 740				 * the other cpus in this package
 741				 */
 742				if (i != cpu)
 743					cpu_data(i).booted_cores++;
 744			} else if (i != cpu && !c->booted_cores)
 745				c->booted_cores = cpu_data(i).booted_cores;
 746		}
 
 
 747	}
 
 
 
 
 748}
 749
 750/* maps the cpu to the sched domain representing multi-core */
 751const struct cpumask *cpu_coregroup_mask(int cpu)
 752{
 753	return cpu_llc_shared_mask(cpu);
 754}
 755
 756const struct cpumask *cpu_clustergroup_mask(int cpu)
 757{
 758	return cpu_l2c_shared_mask(cpu);
 759}
 760EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
 761
 762static void impress_friends(void)
 763{
 764	int cpu;
 765	unsigned long bogosum = 0;
 766	/*
 767	 * Allow the user to impress friends.
 768	 */
 769	pr_debug("Before bogomips\n");
 770	for_each_online_cpu(cpu)
 771		bogosum += cpu_data(cpu).loops_per_jiffy;
 772
 773	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
 774		num_online_cpus(),
 775		bogosum/(500000/HZ),
 776		(bogosum/(5000/HZ))%100);
 777
 778	pr_debug("Before bogocount - setting activated=1\n");
 779}
 780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781/*
 782 * The Multiprocessor Specification 1.4 (1997) example code suggests
 783 * that there should be a 10ms delay between the BSP asserting INIT
 784 * and de-asserting INIT, when starting a remote processor.
 785 * But that slows boot and resume on modern processors, which include
 786 * many cores and don't require that delay.
 787 *
 788 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 789 * Modern processor families are quirked to remove the delay entirely.
 790 */
 791#define UDELAY_10MS_DEFAULT 10000
 792
 793static unsigned int init_udelay = UINT_MAX;
 794
 795static int __init cpu_init_udelay(char *str)
 796{
 797	get_option(&str, &init_udelay);
 798
 799	return 0;
 800}
 801early_param("cpu_init_udelay", cpu_init_udelay);
 802
 803static void __init smp_quirk_init_udelay(void)
 804{
 805	/* if cmdline changed it from default, leave it alone */
 806	if (init_udelay != UINT_MAX)
 807		return;
 808
 809	/* if modern processor, use no delay */
 810	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
 811	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
 812	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
 813		init_udelay = 0;
 814		return;
 815	}
 816	/* else, use legacy delay */
 817	init_udelay = UDELAY_10MS_DEFAULT;
 818}
 819
 820/*
 821 * Wake up AP by INIT, INIT, STARTUP sequence.
 
 
 822 */
 823static void send_init_sequence(u32 phys_apicid)
 
 824{
 825	int maxlvt = lapic_get_maxlvt();
 
 
 
 
 
 
 826
 827	/* Be paranoid about clearing APIC errors. */
 
 
 
 
 
 
 828	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 829		/* Due to the Pentium erratum 3AP.  */
 830		if (maxlvt > 3)
 831			apic_write(APIC_ESR, 0);
 832		apic_read(APIC_ESR);
 833	}
 
 834
 835	/* Assert INIT on the target CPU */
 836	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
 837	safe_apic_wait_icr_idle();
 
 838
 839	udelay(init_udelay);
 840
 841	/* Deassert INIT on the target CPU */
 842	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 843	safe_apic_wait_icr_idle();
 844}
 845
 846/*
 847 * Wake up AP by INIT, INIT, STARTUP sequence.
 848 */
 849static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
 850{
 851	unsigned long send_status = 0, accept_status = 0;
 852	int num_starts, j, maxlvt;
 853
 854	preempt_disable();
 855	maxlvt = lapic_get_maxlvt();
 856	send_init_sequence(phys_apicid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857
 858	mb();
 859
 860	/*
 861	 * Should we send STARTUP IPIs ?
 862	 *
 863	 * Determine this based on the APIC version.
 864	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 865	 */
 866	if (APIC_INTEGRATED(boot_cpu_apic_version))
 867		num_starts = 2;
 868	else
 869		num_starts = 0;
 870
 871	/*
 872	 * Run STARTUP IPI loop.
 873	 */
 874	pr_debug("#startup loops: %d\n", num_starts);
 875
 876	for (j = 1; j <= num_starts; j++) {
 877		pr_debug("Sending STARTUP #%d\n", j);
 878		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 879			apic_write(APIC_ESR, 0);
 880		apic_read(APIC_ESR);
 881		pr_debug("After apic_write\n");
 882
 883		/*
 884		 * STARTUP IPI
 885		 */
 886
 887		/* Target chip */
 888		/* Boot on the stack */
 889		/* Kick the second */
 890		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 891			       phys_apicid);
 892
 893		/*
 894		 * Give the other CPU some time to accept the IPI.
 895		 */
 896		if (init_udelay == 0)
 897			udelay(10);
 898		else
 899			udelay(300);
 900
 901		pr_debug("Startup point 1\n");
 902
 903		pr_debug("Waiting for send to finish...\n");
 904		send_status = safe_apic_wait_icr_idle();
 905
 906		/*
 907		 * Give the other CPU some time to accept the IPI.
 908		 */
 909		if (init_udelay == 0)
 910			udelay(10);
 911		else
 912			udelay(200);
 913
 914		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 915			apic_write(APIC_ESR, 0);
 916		accept_status = (apic_read(APIC_ESR) & 0xEF);
 917		if (send_status || accept_status)
 918			break;
 919	}
 920	pr_debug("After Startup\n");
 921
 922	if (send_status)
 923		pr_err("APIC never delivered???\n");
 924	if (accept_status)
 925		pr_err("APIC delivery error (%lx)\n", accept_status);
 926
 927	preempt_enable();
 928	return (send_status | accept_status);
 929}
 930
 931/* reduce the number of lines printed when booting a large cpu count system */
 932static void announce_cpu(int cpu, int apicid)
 933{
 934	static int width, node_width, first = 1;
 935	static int current_node = NUMA_NO_NODE;
 936	int node = early_cpu_to_node(cpu);
 
 937
 938	if (!width)
 939		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
 940
 941	if (!node_width)
 942		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
 943
 
 
 
 944	if (system_state < SYSTEM_RUNNING) {
 945		if (first)
 946			pr_info("x86: Booting SMP configuration:\n");
 947
 948		if (node != current_node) {
 949			if (current_node > (-1))
 950				pr_cont("\n");
 951			current_node = node;
 952
 953			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
 954			       node_width - num_digits(node), " ", node);
 955		}
 956
 957		/* Add padding for the BSP */
 958		if (first)
 959			pr_cont("%*s", width + 1, " ");
 960		first = 0;
 961
 962		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
 
 963	} else
 964		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 965			node, cpu, apicid);
 966}
 967
 968int common_cpu_up(unsigned int cpu, struct task_struct *idle)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969{
 970	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971
 
 
 972	/* Just in case we booted with a single CPU. */
 973	alternatives_enable_smp();
 974
 975	per_cpu(pcpu_hot.current_task, cpu) = idle;
 976	cpu_init_stack_canary(cpu, idle);
 977
 978	/* Initialize the interrupt stack(s) */
 979	ret = irq_init_percpu_irqstack(cpu);
 980	if (ret)
 981		return ret;
 982
 983#ifdef CONFIG_X86_32
 984	/* Stack for startup_32 can be just as for start_secondary onwards */
 985	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
 
 
 
 986#endif
 987	return 0;
 988}
 989
 990/*
 991 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
 992 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
 993 * Returns zero if startup was successfully sent, else error code from
 994 * ->wakeup_secondary_cpu.
 995 */
 996static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
 
 997{
 
 
 
 998	unsigned long start_ip = real_mode_header->trampoline_start;
 999	int ret;
1000
1001#ifdef CONFIG_X86_64
1002	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
1003	if (apic->wakeup_secondary_cpu_64)
1004		start_ip = real_mode_header->trampoline_start64;
1005#endif
1006	idle->thread.sp = (unsigned long)task_pt_regs(idle);
 
1007	initial_code = (unsigned long)start_secondary;
1008
1009	if (IS_ENABLED(CONFIG_X86_32)) {
1010		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1011		initial_stack  = idle->thread.sp;
1012	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
1013		smpboot_control = cpu;
1014	}
1015
1016	/* Enable the espfix hack for this CPU */
1017	init_espfix_ap(cpu);
1018
1019	/* So we see what's up */
1020	announce_cpu(cpu, apicid);
1021
1022	/*
1023	 * This grunge runs the startup process for
1024	 * the targeted processor.
1025	 */
 
1026	if (x86_platform.legacy.warm_reset) {
1027
1028		pr_debug("Setting warm reset code and vector.\n");
1029
1030		smpboot_setup_warm_reset_vector(start_ip);
1031		/*
1032		 * Be paranoid about clearing APIC errors.
1033		*/
1034		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1035			apic_write(APIC_ESR, 0);
1036			apic_read(APIC_ESR);
1037		}
1038	}
1039
 
 
 
 
 
 
 
1040	smp_mb();
1041
1042	/*
1043	 * Wake up a CPU in difference cases:
1044	 * - Use a method from the APIC driver if one defined, with wakeup
1045	 *   straight to 64-bit mode preferred over wakeup to RM.
1046	 * Otherwise,
1047	 * - Use an INIT boot APIC message
1048	 */
1049	if (apic->wakeup_secondary_cpu_64)
1050		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
1051	else if (apic->wakeup_secondary_cpu)
1052		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
1053	else
1054		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055
1056	/* If the wakeup mechanism failed, cleanup the warm reset vector */
1057	if (ret)
1058		arch_cpuhp_cleanup_kick_cpu(cpu);
1059	return ret;
1060}
1061
1062int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
1063{
1064	u32 apicid = apic->cpu_present_to_apicid(cpu);
1065	int err;
 
 
1066
1067	lockdep_assert_irqs_enabled();
1068
1069	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1070
1071	if (apicid == BAD_APICID || !physid_isset(apicid, phys_cpu_present_map) ||
1072	    !apic_id_valid(apicid)) {
 
1073		pr_err("%s: bad cpu %d\n", __func__, cpu);
1074		return -EINVAL;
1075	}
1076
1077	/*
 
 
 
 
 
 
 
 
1078	 * Save current MTRR state in case it was changed since early boot
1079	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1080	 */
1081	mtrr_save_state();
1082
 
 
 
 
 
1083	/* the FPU context is blank, nobody can own it */
1084	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1085
1086	err = common_cpu_up(cpu, tidle);
1087	if (err)
1088		return err;
1089
1090	err = do_boot_cpu(apicid, cpu, tidle);
1091	if (err)
1092		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
 
 
 
1093
1094	return err;
1095}
 
 
 
 
 
1096
1097int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
1098{
1099	return smp_ops.kick_ap_alive(cpu, tidle);
1100}
1101
1102void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
1103{
1104	/* Cleanup possible dangling ends... */
1105	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
1106		smpboot_restore_warm_reset_vector();
1107}
 
1108
1109void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
1110{
1111	if (smp_ops.cleanup_dead_cpu)
1112		smp_ops.cleanup_dead_cpu(cpu);
1113
1114	if (system_state == SYSTEM_RUNNING)
1115		pr_info("CPU %u is now offline\n", cpu);
1116}
1117
1118void arch_cpuhp_sync_state_poll(void)
1119{
1120	if (smp_ops.poll_sync_state)
1121		smp_ops.poll_sync_state();
1122}
1123
1124/**
1125 * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1126 */
1127void __init arch_disable_smp_support(void)
1128{
1129	disable_ioapic_support();
1130}
1131
1132/*
1133 * Fall back to non SMP mode after errors.
1134 *
1135 * RED-PEN audit/test this more. I bet there is more state messed up here.
1136 */
1137static __init void disable_smp(void)
1138{
1139	pr_info("SMP disabled\n");
1140
1141	disable_ioapic_support();
1142
1143	init_cpu_present(cpumask_of(0));
1144	init_cpu_possible(cpumask_of(0));
1145
1146	if (smp_found_config)
1147		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1148	else
1149		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1150	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1151	cpumask_set_cpu(0, topology_core_cpumask(0));
1152	cpumask_set_cpu(0, topology_die_cpumask(0));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1153}
1154
1155static void __init smp_cpu_index_default(void)
1156{
1157	int i;
1158	struct cpuinfo_x86 *c;
1159
1160	for_each_possible_cpu(i) {
1161		c = &cpu_data(i);
1162		/* mark all to hotplug */
1163		c->cpu_index = nr_cpu_ids;
1164	}
1165}
1166
1167void __init smp_prepare_cpus_common(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
1168{
1169	unsigned int i;
1170
1171	smp_cpu_index_default();
1172
1173	/*
1174	 * Setup boot CPU information
1175	 */
1176	smp_store_boot_cpu_info(); /* Final full version of the data */
 
1177	mb();
1178
1179	for_each_possible_cpu(i) {
1180		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1181		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1182		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1183		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1184		zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1185	}
1186
 
 
 
 
 
 
 
 
 
1187	set_cpu_sibling_map(0);
1188}
1189
1190#ifdef CONFIG_X86_64
1191/* Establish whether parallel bringup can be supported. */
1192bool __init arch_cpuhp_init_parallel_bringup(void)
1193{
1194	if (!x86_cpuinit.parallel_bringup) {
1195		pr_info("Parallel CPU startup disabled by the platform\n");
1196		return false;
1197	}
1198
1199	smpboot_control = STARTUP_READ_APICID;
1200	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1201	return true;
1202}
1203#endif
1204
1205/*
1206 * Prepare for SMP bootup.
1207 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1208 *            for common interface support.
1209 */
1210void __init native_smp_prepare_cpus(unsigned int max_cpus)
1211{
1212	smp_prepare_cpus_common();
1213
1214	switch (apic_intr_mode) {
1215	case APIC_PIC:
1216	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1217		disable_smp();
1218		return;
1219	case APIC_SYMMETRIC_IO_NO_ROUTING:
1220		disable_smp();
1221		/* Setup local timer */
1222		x86_init.timers.setup_percpu_clockev();
1223		return;
1224	case APIC_VIRTUAL_WIRE:
1225	case APIC_SYMMETRIC_IO:
1226		break;
1227	}
1228
1229	/* Setup local timer */
1230	x86_init.timers.setup_percpu_clockev();
1231
 
 
1232	pr_info("CPU0: ");
1233	print_cpu_info(&cpu_data(0));
1234
 
 
1235	uv_system_init();
1236
 
 
1237	smp_quirk_init_udelay();
1238
1239	speculative_store_bypass_ht_init();
1240
1241	snp_set_wakeup_secondary_cpu();
1242}
1243
1244void arch_thaw_secondary_cpus_begin(void)
1245{
1246	set_cache_aps_delayed_init(true);
1247}
1248
1249void arch_thaw_secondary_cpus_end(void)
1250{
1251	cache_aps_init();
1252}
1253
1254/*
1255 * Early setup to make printk work.
1256 */
1257void __init native_smp_prepare_boot_cpu(void)
1258{
1259	int me = smp_processor_id();
1260
1261	/* SMP handles this from setup_per_cpu_areas() */
1262	if (!IS_ENABLED(CONFIG_SMP))
1263		switch_gdt_and_percpu_base(me);
1264
1265	native_pv_lock_init();
1266}
1267
1268void __init calculate_max_logical_packages(void)
1269{
1270	int ncpus;
1271
1272	/*
1273	 * Today neither Intel nor AMD support heterogeneous systems so
1274	 * extrapolate the boot cpu's data to all packages.
1275	 */
1276	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1277	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1278	pr_info("Max logical packages: %u\n", __max_logical_packages);
1279}
1280
1281void __init native_smp_cpus_done(unsigned int max_cpus)
1282{
1283	pr_debug("Boot done\n");
1284
1285	calculate_max_logical_packages();
1286	build_sched_topology();
 
 
 
1287	nmi_selftest();
1288	impress_friends();
1289	cache_aps_init();
1290}
1291
1292static int __initdata setup_possible_cpus = -1;
1293static int __init _setup_possible_cpus(char *str)
1294{
1295	get_option(&str, &setup_possible_cpus);
1296	return 0;
1297}
1298early_param("possible_cpus", _setup_possible_cpus);
1299
1300
1301/*
1302 * cpu_possible_mask should be static, it cannot change as cpu's
1303 * are onlined, or offlined. The reason is per-cpu data-structures
1304 * are allocated by some modules at init time, and don't expect to
1305 * do this dynamically on cpu arrival/departure.
1306 * cpu_present_mask on the other hand can change dynamically.
1307 * In case when cpu_hotplug is not compiled, then we resort to current
1308 * behaviour, which is cpu_possible == cpu_present.
1309 * - Ashok Raj
1310 *
1311 * Three ways to find out the number of additional hotplug CPUs:
1312 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1313 * - The user can overwrite it with possible_cpus=NUM
1314 * - Otherwise don't reserve additional CPUs.
1315 * We do this because additional CPUs waste a lot of memory.
1316 * -AK
1317 */
1318__init void prefill_possible_map(void)
1319{
1320	int i, possible;
1321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322	i = setup_max_cpus ?: 1;
1323	if (setup_possible_cpus == -1) {
1324		possible = num_processors;
1325#ifdef CONFIG_HOTPLUG_CPU
1326		if (setup_max_cpus)
1327			possible += disabled_cpus;
1328#else
1329		if (possible > i)
1330			possible = i;
1331#endif
1332	} else
1333		possible = setup_possible_cpus;
1334
1335	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1336
1337	/* nr_cpu_ids could be reduced via nr_cpus= */
1338	if (possible > nr_cpu_ids) {
1339		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1340			possible, nr_cpu_ids);
1341		possible = nr_cpu_ids;
1342	}
1343
1344#ifdef CONFIG_HOTPLUG_CPU
1345	if (!setup_max_cpus)
1346#endif
1347	if (possible > i) {
1348		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1349			possible, setup_max_cpus);
1350		possible = i;
1351	}
1352
1353	set_nr_cpu_ids(possible);
1354
1355	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1356		possible, max_t(int, possible - num_processors, 0));
1357
1358	reset_cpu_possible_mask();
1359
1360	for (i = 0; i < possible; i++)
1361		set_cpu_possible(i, true);
1362}
1363
1364/* correctly size the local cpu masks */
1365void __init setup_cpu_local_masks(void)
1366{
1367	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1368}
1369
1370#ifdef CONFIG_HOTPLUG_CPU
1371
1372/* Recompute SMT state for all CPUs on offline */
1373static void recompute_smt_state(void)
1374{
1375	int max_threads, cpu;
1376
1377	max_threads = 0;
1378	for_each_online_cpu (cpu) {
1379		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1380
1381		if (threads > max_threads)
1382			max_threads = threads;
1383	}
1384	__max_smt_threads = max_threads;
1385}
1386
1387static void remove_siblinginfo(int cpu)
1388{
1389	int sibling;
1390	struct cpuinfo_x86 *c = &cpu_data(cpu);
1391
1392	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1393		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1394		/*/
1395		 * last thread sibling in this cpu core going down
1396		 */
1397		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1398			cpu_data(sibling).booted_cores--;
1399	}
1400
1401	for_each_cpu(sibling, topology_die_cpumask(cpu))
1402		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1403
1404	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1405		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1406		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1407			cpu_data(sibling).smt_active = false;
1408	}
1409
1410	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1411		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1412	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1413		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1414	cpumask_clear(cpu_llc_shared_mask(cpu));
1415	cpumask_clear(cpu_l2c_shared_mask(cpu));
1416	cpumask_clear(topology_sibling_cpumask(cpu));
1417	cpumask_clear(topology_core_cpumask(cpu));
1418	cpumask_clear(topology_die_cpumask(cpu));
1419	c->topo.core_id = 0;
1420	c->booted_cores = 0;
1421	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1422	recompute_smt_state();
1423}
1424
1425static void remove_cpu_from_maps(int cpu)
1426{
1427	set_cpu_online(cpu, false);
 
 
 
 
1428	numa_remove_cpu(cpu);
1429}
1430
1431void cpu_disable_common(void)
1432{
1433	int cpu = smp_processor_id();
1434
1435	remove_siblinginfo(cpu);
1436
1437	/* It's now safe to remove this processor from the online map */
1438	lock_vector_lock();
1439	remove_cpu_from_maps(cpu);
1440	unlock_vector_lock();
1441	fixup_irqs();
1442	lapic_offline();
1443}
1444
1445int native_cpu_disable(void)
1446{
1447	int ret;
1448
1449	ret = lapic_can_unplug_cpu();
1450	if (ret)
1451		return ret;
1452
 
1453	cpu_disable_common();
1454
1455        /*
1456         * Disable the local APIC. Otherwise IPI broadcasts will reach
1457         * it. It still responds normally to INIT, NMI, SMI, and SIPI
1458         * messages.
1459         *
1460         * Disabling the APIC must happen after cpu_disable_common()
1461         * which invokes fixup_irqs().
1462         *
1463         * Disabling the APIC preserves already set bits in IRR, but
1464         * an interrupt arriving after disabling the local APIC does not
1465         * set the corresponding IRR bit.
1466         *
1467         * fixup_irqs() scans IRR for set bits so it can raise a not
1468         * yet handled interrupt on the new destination CPU via an IPI
1469         * but obviously it can't do so for IRR bits which are not set.
1470         * IOW, interrupts arriving after disabling the local APIC will
1471         * be lost.
1472         */
1473	apic_soft_disable();
1474
1475	return 0;
 
 
 
 
 
1476}
1477
1478void play_dead_common(void)
1479{
1480	idle_task_exit();
1481
1482	cpuhp_ap_report_dead();
 
1483
 
 
 
1484	local_irq_disable();
1485}
1486
 
 
 
 
 
 
 
 
1487/*
1488 * We need to flush the caches before going to sleep, lest we have
1489 * dirty data in our caches when we come back up.
1490 */
1491static inline void mwait_play_dead(void)
1492{
1493	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1494	unsigned int eax, ebx, ecx, edx;
1495	unsigned int highest_cstate = 0;
1496	unsigned int highest_subcstate = 0;
 
1497	int i;
1498
1499	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1500	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1501		return;
1502	if (!this_cpu_has(X86_FEATURE_MWAIT))
1503		return;
1504	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1505		return;
1506	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1507		return;
1508
1509	eax = CPUID_MWAIT_LEAF;
1510	ecx = 0;
1511	native_cpuid(&eax, &ebx, &ecx, &edx);
1512
1513	/*
1514	 * eax will be 0 if EDX enumeration is not valid.
1515	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1516	 */
1517	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1518		eax = 0;
1519	} else {
1520		edx >>= MWAIT_SUBSTATE_SIZE;
1521		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1522			if (edx & MWAIT_SUBSTATE_MASK) {
1523				highest_cstate = i;
1524				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1525			}
1526		}
1527		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1528			(highest_subcstate - 1);
1529	}
1530
1531	/* Set up state for the kexec() hack below */
1532	md->status = CPUDEAD_MWAIT_WAIT;
1533	md->control = CPUDEAD_MWAIT_WAIT;
 
 
 
1534
1535	wbinvd();
1536
1537	while (1) {
1538		/*
1539		 * The CLFLUSH is a workaround for erratum AAI65 for
1540		 * the Xeon 7400 series.  It's not clear it is actually
1541		 * needed, but it should be harmless in either case.
1542		 * The WBINVD is insufficient due to the spurious-wakeup
1543		 * case where we return around the loop.
1544		 */
1545		mb();
1546		clflush(md);
1547		mb();
1548		__monitor(md, 0, 0);
1549		mb();
1550		__mwait(eax, 0);
1551
1552		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1553			/*
1554			 * Kexec is about to happen. Don't go back into mwait() as
1555			 * the kexec kernel might overwrite text and data including
1556			 * page tables and stack. So mwait() would resume when the
1557			 * monitor cache line is written to and then the CPU goes
1558			 * south due to overwritten text, page tables and stack.
1559			 *
1560			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1561			 * SMI. They will resume execution at the instruction
1562			 * following the HLT instruction and run into the problem
1563			 * which this is trying to prevent.
1564			 */
1565			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1566			while(1)
1567				native_halt();
1568		}
1569	}
1570}
1571
1572/*
1573 * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1574 * mwait_play_dead().
1575 */
1576void smp_kick_mwait_play_dead(void)
1577{
1578	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1579	struct mwait_cpu_dead *md;
1580	unsigned int cpu, i;
1581
1582	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1583		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1584
1585		/* Does it sit in mwait_play_dead() ? */
1586		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1587			continue;
1588
1589		/* Wait up to 5ms */
1590		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1591			/* Bring it out of mwait */
1592			WRITE_ONCE(md->control, newstate);
1593			udelay(5);
1594		}
1595
1596		if (READ_ONCE(md->status) != newstate)
1597			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1598	}
1599}
1600
1601void __noreturn hlt_play_dead(void)
1602{
1603	if (__this_cpu_read(cpu_info.x86) >= 4)
1604		wbinvd();
1605
1606	while (1)
1607		native_halt();
 
 
 
 
 
 
1608}
1609
1610/*
1611 * native_play_dead() is essentially a __noreturn function, but it can't
1612 * be marked as such as the compiler may complain about it.
1613 */
1614void native_play_dead(void)
1615{
1616	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1617		__update_spec_ctrl(0);
1618
1619	play_dead_common();
1620	tboot_shutdown(TB_SHUTDOWN_WFS);
1621
1622	mwait_play_dead();
1623	if (cpuidle_play_dead())
1624		hlt_play_dead();
1625}
1626
1627#else /* ... !CONFIG_HOTPLUG_CPU */
1628int native_cpu_disable(void)
1629{
1630	return -ENOSYS;
 
 
 
 
 
 
1631}
1632
1633void native_play_dead(void)
1634{
1635	BUG();
1636}
1637
1638#endif