Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/* arch/sparc64/kernel/kprobes.c
  3 *
  4 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
  5 */
  6
  7#include <linux/kernel.h>
  8#include <linux/kprobes.h>
  9#include <linux/extable.h>
 10#include <linux/kdebug.h>
 11#include <linux/slab.h>
 12#include <linux/context_tracking.h>
 13#include <asm/signal.h>
 14#include <asm/cacheflush.h>
 15#include <linux/uaccess.h>
 16
 17/* We do not have hardware single-stepping on sparc64.
 18 * So we implement software single-stepping with breakpoint
 19 * traps.  The top-level scheme is similar to that used
 20 * in the x86 kprobes implementation.
 21 *
 22 * In the kprobe->ainsn.insn[] array we store the original
 23 * instruction at index zero and a break instruction at
 24 * index one.
 25 *
 26 * When we hit a kprobe we:
 27 * - Run the pre-handler
 28 * - Remember "regs->tnpc" and interrupt level stored in
 29 *   "regs->tstate" so we can restore them later
 30 * - Disable PIL interrupts
 31 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
 32 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
 33 * - Mark that we are actively in a kprobe
 34 *
 35 * At this point we wait for the second breakpoint at
 36 * kprobe->ainsn.insn[1] to hit.  When it does we:
 37 * - Run the post-handler
 38 * - Set regs->tpc to "remembered" regs->tnpc stored above,
 39 *   restore the PIL interrupt level in "regs->tstate" as well
 40 * - Make any adjustments necessary to regs->tnpc in order
 41 *   to handle relative branches correctly.  See below.
 42 * - Mark that we are no longer actively in a kprobe.
 43 */
 44
 45DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 46DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 47
 48struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 49
 50int __kprobes arch_prepare_kprobe(struct kprobe *p)
 51{
 52	if ((unsigned long) p->addr & 0x3UL)
 53		return -EILSEQ;
 54
 55	p->ainsn.insn[0] = *p->addr;
 56	flushi(&p->ainsn.insn[0]);
 57
 58	p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
 59	flushi(&p->ainsn.insn[1]);
 60
 61	p->opcode = *p->addr;
 62	return 0;
 63}
 64
 65void __kprobes arch_arm_kprobe(struct kprobe *p)
 66{
 67	*p->addr = BREAKPOINT_INSTRUCTION;
 68	flushi(p->addr);
 69}
 70
 71void __kprobes arch_disarm_kprobe(struct kprobe *p)
 72{
 73	*p->addr = p->opcode;
 74	flushi(p->addr);
 75}
 76
 77static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 78{
 79	kcb->prev_kprobe.kp = kprobe_running();
 80	kcb->prev_kprobe.status = kcb->kprobe_status;
 81	kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
 82	kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
 83}
 84
 85static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 86{
 87	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 88	kcb->kprobe_status = kcb->prev_kprobe.status;
 89	kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
 90	kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
 91}
 92
 93static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 94				struct kprobe_ctlblk *kcb)
 95{
 96	__this_cpu_write(current_kprobe, p);
 97	kcb->kprobe_orig_tnpc = regs->tnpc;
 98	kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
 99}
100
101static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
102			struct kprobe_ctlblk *kcb)
103{
104	regs->tstate |= TSTATE_PIL;
105
106	/*single step inline, if it a breakpoint instruction*/
107	if (p->opcode == BREAKPOINT_INSTRUCTION) {
108		regs->tpc = (unsigned long) p->addr;
109		regs->tnpc = kcb->kprobe_orig_tnpc;
110	} else {
111		regs->tpc = (unsigned long) &p->ainsn.insn[0];
112		regs->tnpc = (unsigned long) &p->ainsn.insn[1];
113	}
114}
115
116static int __kprobes kprobe_handler(struct pt_regs *regs)
117{
118	struct kprobe *p;
119	void *addr = (void *) regs->tpc;
120	int ret = 0;
121	struct kprobe_ctlblk *kcb;
122
123	/*
124	 * We don't want to be preempted for the entire
125	 * duration of kprobe processing
126	 */
127	preempt_disable();
128	kcb = get_kprobe_ctlblk();
129
130	if (kprobe_running()) {
131		p = get_kprobe(addr);
132		if (p) {
133			if (kcb->kprobe_status == KPROBE_HIT_SS) {
134				regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
135					kcb->kprobe_orig_tstate_pil);
136				goto no_kprobe;
137			}
138			/* We have reentered the kprobe_handler(), since
139			 * another probe was hit while within the handler.
140			 * We here save the original kprobes variables and
141			 * just single step on the instruction of the new probe
142			 * without calling any user handlers.
143			 */
144			save_previous_kprobe(kcb);
145			set_current_kprobe(p, regs, kcb);
146			kprobes_inc_nmissed_count(p);
147			kcb->kprobe_status = KPROBE_REENTER;
148			prepare_singlestep(p, regs, kcb);
149			return 1;
150		} else {
151			if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
152			/* The breakpoint instruction was removed by
153			 * another cpu right after we hit, no further
154			 * handling of this interrupt is appropriate
155			 */
156				ret = 1;
157				goto no_kprobe;
158			}
159			p = __this_cpu_read(current_kprobe);
160			if (p->break_handler && p->break_handler(p, regs))
161				goto ss_probe;
162		}
163		goto no_kprobe;
164	}
165
166	p = get_kprobe(addr);
167	if (!p) {
168		if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
169			/*
170			 * The breakpoint instruction was removed right
171			 * after we hit it.  Another cpu has removed
172			 * either a probepoint or a debugger breakpoint
173			 * at this address.  In either case, no further
174			 * handling of this interrupt is appropriate.
175			 */
176			ret = 1;
177		}
178		/* Not one of ours: let kernel handle it */
179		goto no_kprobe;
180	}
181
182	set_current_kprobe(p, regs, kcb);
183	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
184	if (p->pre_handler && p->pre_handler(p, regs))
 
 
185		return 1;
 
186
187ss_probe:
188	prepare_singlestep(p, regs, kcb);
189	kcb->kprobe_status = KPROBE_HIT_SS;
190	return 1;
191
192no_kprobe:
193	preempt_enable_no_resched();
194	return ret;
195}
196
197/* If INSN is a relative control transfer instruction,
198 * return the corrected branch destination value.
199 *
200 * regs->tpc and regs->tnpc still hold the values of the
201 * program counters at the time of trap due to the execution
202 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
203 * 
204 */
205static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
206					       struct pt_regs *regs)
207{
208	unsigned long real_pc = (unsigned long) p->addr;
209
210	/* Branch not taken, no mods necessary.  */
211	if (regs->tnpc == regs->tpc + 0x4UL)
212		return real_pc + 0x8UL;
213
214	/* The three cases are call, branch w/prediction,
215	 * and traditional branch.
216	 */
217	if ((insn & 0xc0000000) == 0x40000000 ||
218	    (insn & 0xc1c00000) == 0x00400000 ||
219	    (insn & 0xc1c00000) == 0x00800000) {
220		unsigned long ainsn_addr;
221
222		ainsn_addr = (unsigned long) &p->ainsn.insn[0];
223
224		/* The instruction did all the work for us
225		 * already, just apply the offset to the correct
226		 * instruction location.
227		 */
228		return (real_pc + (regs->tnpc - ainsn_addr));
229	}
230
231	/* It is jmpl or some other absolute PC modification instruction,
232	 * leave NPC as-is.
233	 */
234	return regs->tnpc;
235}
236
237/* If INSN is an instruction which writes it's PC location
238 * into a destination register, fix that up.
239 */
240static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
241				  unsigned long real_pc)
242{
243	unsigned long *slot = NULL;
244
245	/* Simplest case is 'call', which always uses %o7 */
246	if ((insn & 0xc0000000) == 0x40000000) {
247		slot = &regs->u_regs[UREG_I7];
248	}
249
250	/* 'jmpl' encodes the register inside of the opcode */
251	if ((insn & 0xc1f80000) == 0x81c00000) {
252		unsigned long rd = ((insn >> 25) & 0x1f);
253
254		if (rd <= 15) {
255			slot = &regs->u_regs[rd];
256		} else {
257			/* Hard case, it goes onto the stack. */
258			flushw_all();
259
260			rd -= 16;
261			slot = (unsigned long *)
262				(regs->u_regs[UREG_FP] + STACK_BIAS);
263			slot += rd;
264		}
265	}
266	if (slot != NULL)
267		*slot = real_pc;
268}
269
270/*
271 * Called after single-stepping.  p->addr is the address of the
272 * instruction which has been replaced by the breakpoint
273 * instruction.  To avoid the SMP problems that can occur when we
274 * temporarily put back the original opcode to single-step, we
275 * single-stepped a copy of the instruction.  The address of this
276 * copy is &p->ainsn.insn[0].
277 *
278 * This function prepares to return from the post-single-step
279 * breakpoint trap.
280 */
281static void __kprobes resume_execution(struct kprobe *p,
282		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
283{
284	u32 insn = p->ainsn.insn[0];
285
286	regs->tnpc = relbranch_fixup(insn, p, regs);
287
288	/* This assignment must occur after relbranch_fixup() */
289	regs->tpc = kcb->kprobe_orig_tnpc;
290
291	retpc_fixup(regs, insn, (unsigned long) p->addr);
292
293	regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
294			kcb->kprobe_orig_tstate_pil);
295}
296
297static int __kprobes post_kprobe_handler(struct pt_regs *regs)
298{
299	struct kprobe *cur = kprobe_running();
300	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
301
302	if (!cur)
303		return 0;
304
305	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
306		kcb->kprobe_status = KPROBE_HIT_SSDONE;
307		cur->post_handler(cur, regs, 0);
308	}
309
310	resume_execution(cur, regs, kcb);
311
312	/*Restore back the original saved kprobes variables and continue. */
313	if (kcb->kprobe_status == KPROBE_REENTER) {
314		restore_previous_kprobe(kcb);
315		goto out;
316	}
317	reset_current_kprobe();
318out:
319	preempt_enable_no_resched();
320
321	return 1;
322}
323
324int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
325{
326	struct kprobe *cur = kprobe_running();
327	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
328	const struct exception_table_entry *entry;
329
330	switch(kcb->kprobe_status) {
331	case KPROBE_HIT_SS:
332	case KPROBE_REENTER:
333		/*
334		 * We are here because the instruction being single
335		 * stepped caused a page fault. We reset the current
336		 * kprobe and the tpc points back to the probe address
337		 * and allow the page fault handler to continue as a
338		 * normal page fault.
339		 */
340		regs->tpc = (unsigned long)cur->addr;
341		regs->tnpc = kcb->kprobe_orig_tnpc;
342		regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
343				kcb->kprobe_orig_tstate_pil);
344		if (kcb->kprobe_status == KPROBE_REENTER)
345			restore_previous_kprobe(kcb);
346		else
347			reset_current_kprobe();
348		preempt_enable_no_resched();
349		break;
350	case KPROBE_HIT_ACTIVE:
351	case KPROBE_HIT_SSDONE:
352		/*
353		 * We increment the nmissed count for accounting,
354		 * we can also use npre/npostfault count for accounting
355		 * these specific fault cases.
356		 */
357		kprobes_inc_nmissed_count(cur);
358
359		/*
360		 * We come here because instructions in the pre/post
361		 * handler caused the page_fault, this could happen
362		 * if handler tries to access user space by
363		 * copy_from_user(), get_user() etc. Let the
364		 * user-specified handler try to fix it first.
365		 */
366		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
367			return 1;
368
369		/*
370		 * In case the user-specified fault handler returned
371		 * zero, try to fix up.
372		 */
373
374		entry = search_exception_tables(regs->tpc);
375		if (entry) {
376			regs->tpc = entry->fixup;
377			regs->tnpc = regs->tpc + 4;
378			return 1;
379		}
380
381		/*
382		 * fixup_exception() could not handle it,
383		 * Let do_page_fault() fix it.
384		 */
385		break;
386	default:
387		break;
388	}
389
390	return 0;
391}
392
393/*
394 * Wrapper routine to for handling exceptions.
395 */
396int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
397				       unsigned long val, void *data)
398{
399	struct die_args *args = (struct die_args *)data;
400	int ret = NOTIFY_DONE;
401
402	if (args->regs && user_mode(args->regs))
403		return ret;
404
405	switch (val) {
406	case DIE_DEBUG:
407		if (kprobe_handler(args->regs))
408			ret = NOTIFY_STOP;
409		break;
410	case DIE_DEBUG_2:
411		if (post_kprobe_handler(args->regs))
412			ret = NOTIFY_STOP;
413		break;
414	default:
415		break;
416	}
417	return ret;
418}
419
420asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
421				      struct pt_regs *regs)
422{
423	enum ctx_state prev_state = exception_enter();
424
425	BUG_ON(trap_level != 0x170 && trap_level != 0x171);
426
427	if (user_mode(regs)) {
428		local_irq_enable();
429		bad_trap(regs, trap_level);
430		goto out;
431	}
432
433	/* trap_level == 0x170 --> ta 0x70
434	 * trap_level == 0x171 --> ta 0x71
435	 */
436	if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
437		       (trap_level == 0x170) ? "debug" : "debug_2",
438		       regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
439		bad_trap(regs, trap_level);
440out:
441	exception_exit(prev_state);
442}
443
444/* Jprobes support.  */
445int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
446{
447	struct jprobe *jp = container_of(p, struct jprobe, kp);
448	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
449
450	memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
451
452	regs->tpc  = (unsigned long) jp->entry;
453	regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
454	regs->tstate |= TSTATE_PIL;
455
456	return 1;
457}
458
459void __kprobes jprobe_return(void)
460{
461	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
462	register unsigned long orig_fp asm("g1");
463
464	orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
465	__asm__ __volatile__("\n"
466"1:	cmp		%%sp, %0\n\t"
467	"blu,a,pt	%%xcc, 1b\n\t"
468	" restore\n\t"
469	".globl		jprobe_return_trap_instruction\n"
470"jprobe_return_trap_instruction:\n\t"
471	"ta		0x70"
472	: /* no outputs */
473	: "r" (orig_fp));
474}
475
476extern void jprobe_return_trap_instruction(void);
477
478int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
479{
480	u32 *addr = (u32 *) regs->tpc;
481	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
482
483	if (addr == (u32 *) jprobe_return_trap_instruction) {
484		memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
485		preempt_enable_no_resched();
486		return 1;
487	}
488	return 0;
489}
490
491/* The value stored in the return address register is actually 2
492 * instructions before where the callee will return to.
493 * Sequences usually look something like this
494 *
495 *		call	some_function	<--- return register points here
496 *		 nop			<--- call delay slot
497 *		whatever		<--- where callee returns to
498 *
499 * To keep trampoline_probe_handler logic simpler, we normalize the
500 * value kept in ri->ret_addr so we don't need to keep adjusting it
501 * back and forth.
502 */
503void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
504				      struct pt_regs *regs)
505{
506	ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
 
507
508	/* Replace the return addr with trampoline addr */
509	regs->u_regs[UREG_RETPC] =
510		((unsigned long)kretprobe_trampoline) - 8;
511}
512
513/*
514 * Called when the probe at kretprobe trampoline is hit
515 */
516static int __kprobes trampoline_probe_handler(struct kprobe *p,
517					      struct pt_regs *regs)
518{
519	struct kretprobe_instance *ri = NULL;
520	struct hlist_head *head, empty_rp;
521	struct hlist_node *tmp;
522	unsigned long flags, orig_ret_address = 0;
523	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
524
525	INIT_HLIST_HEAD(&empty_rp);
526	kretprobe_hash_lock(current, &head, &flags);
527
528	/*
529	 * It is possible to have multiple instances associated with a given
530	 * task either because an multiple functions in the call path
531	 * have a return probe installed on them, and/or more than one return
532	 * return probe was registered for a target function.
533	 *
534	 * We can handle this because:
535	 *     - instances are always inserted at the head of the list
536	 *     - when multiple return probes are registered for the same
537	 *       function, the first instance's ret_addr will point to the
538	 *       real return address, and all the rest will point to
539	 *       kretprobe_trampoline
540	 */
541	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
542		if (ri->task != current)
543			/* another task is sharing our hash bucket */
544			continue;
545
546		if (ri->rp && ri->rp->handler)
547			ri->rp->handler(ri, regs);
548
549		orig_ret_address = (unsigned long)ri->ret_addr;
550		recycle_rp_inst(ri, &empty_rp);
551
552		if (orig_ret_address != trampoline_address)
553			/*
554			 * This is the real return address. Any other
555			 * instances associated with this task are for
556			 * other calls deeper on the call stack
557			 */
558			break;
559	}
560
561	kretprobe_assert(ri, orig_ret_address, trampoline_address);
562	regs->tpc = orig_ret_address;
563	regs->tnpc = orig_ret_address + 4;
564
565	reset_current_kprobe();
566	kretprobe_hash_unlock(current, &flags);
567	preempt_enable_no_resched();
568
569	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
570		hlist_del(&ri->hlist);
571		kfree(ri);
572	}
573	/*
574	 * By returning a non-zero value, we are telling
575	 * kprobe_handler() that we don't want the post_handler
576	 * to run (and have re-enabled preemption)
577	 */
578	return 1;
579}
580
581static void __used kretprobe_trampoline_holder(void)
582{
583	asm volatile(".global kretprobe_trampoline\n"
584		     "kretprobe_trampoline:\n"
585		     "\tnop\n"
586		     "\tnop\n");
587}
588static struct kprobe trampoline_p = {
589	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
590	.pre_handler = trampoline_probe_handler
591};
592
593int __init arch_init_kprobes(void)
594{
595	return register_kprobe(&trampoline_p);
596}
597
598int __kprobes arch_trampoline_kprobe(struct kprobe *p)
599{
600	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
601		return 1;
602
603	return 0;
604}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/* arch/sparc64/kernel/kprobes.c
  3 *
  4 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
  5 */
  6
  7#include <linux/kernel.h>
  8#include <linux/kprobes.h>
  9#include <linux/extable.h>
 10#include <linux/kdebug.h>
 11#include <linux/slab.h>
 12#include <linux/context_tracking.h>
 13#include <asm/signal.h>
 14#include <asm/cacheflush.h>
 15#include <linux/uaccess.h>
 16
 17/* We do not have hardware single-stepping on sparc64.
 18 * So we implement software single-stepping with breakpoint
 19 * traps.  The top-level scheme is similar to that used
 20 * in the x86 kprobes implementation.
 21 *
 22 * In the kprobe->ainsn.insn[] array we store the original
 23 * instruction at index zero and a break instruction at
 24 * index one.
 25 *
 26 * When we hit a kprobe we:
 27 * - Run the pre-handler
 28 * - Remember "regs->tnpc" and interrupt level stored in
 29 *   "regs->tstate" so we can restore them later
 30 * - Disable PIL interrupts
 31 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
 32 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
 33 * - Mark that we are actively in a kprobe
 34 *
 35 * At this point we wait for the second breakpoint at
 36 * kprobe->ainsn.insn[1] to hit.  When it does we:
 37 * - Run the post-handler
 38 * - Set regs->tpc to "remembered" regs->tnpc stored above,
 39 *   restore the PIL interrupt level in "regs->tstate" as well
 40 * - Make any adjustments necessary to regs->tnpc in order
 41 *   to handle relative branches correctly.  See below.
 42 * - Mark that we are no longer actively in a kprobe.
 43 */
 44
 45DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 46DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 47
 48struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 49
 50int __kprobes arch_prepare_kprobe(struct kprobe *p)
 51{
 52	if ((unsigned long) p->addr & 0x3UL)
 53		return -EILSEQ;
 54
 55	p->ainsn.insn[0] = *p->addr;
 56	flushi(&p->ainsn.insn[0]);
 57
 58	p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
 59	flushi(&p->ainsn.insn[1]);
 60
 61	p->opcode = *p->addr;
 62	return 0;
 63}
 64
 65void __kprobes arch_arm_kprobe(struct kprobe *p)
 66{
 67	*p->addr = BREAKPOINT_INSTRUCTION;
 68	flushi(p->addr);
 69}
 70
 71void __kprobes arch_disarm_kprobe(struct kprobe *p)
 72{
 73	*p->addr = p->opcode;
 74	flushi(p->addr);
 75}
 76
 77static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 78{
 79	kcb->prev_kprobe.kp = kprobe_running();
 80	kcb->prev_kprobe.status = kcb->kprobe_status;
 81	kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
 82	kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
 83}
 84
 85static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 86{
 87	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 88	kcb->kprobe_status = kcb->prev_kprobe.status;
 89	kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
 90	kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
 91}
 92
 93static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 94				struct kprobe_ctlblk *kcb)
 95{
 96	__this_cpu_write(current_kprobe, p);
 97	kcb->kprobe_orig_tnpc = regs->tnpc;
 98	kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
 99}
100
101static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
102			struct kprobe_ctlblk *kcb)
103{
104	regs->tstate |= TSTATE_PIL;
105
106	/*single step inline, if it a breakpoint instruction*/
107	if (p->opcode == BREAKPOINT_INSTRUCTION) {
108		regs->tpc = (unsigned long) p->addr;
109		regs->tnpc = kcb->kprobe_orig_tnpc;
110	} else {
111		regs->tpc = (unsigned long) &p->ainsn.insn[0];
112		regs->tnpc = (unsigned long) &p->ainsn.insn[1];
113	}
114}
115
116static int __kprobes kprobe_handler(struct pt_regs *regs)
117{
118	struct kprobe *p;
119	void *addr = (void *) regs->tpc;
120	int ret = 0;
121	struct kprobe_ctlblk *kcb;
122
123	/*
124	 * We don't want to be preempted for the entire
125	 * duration of kprobe processing
126	 */
127	preempt_disable();
128	kcb = get_kprobe_ctlblk();
129
130	if (kprobe_running()) {
131		p = get_kprobe(addr);
132		if (p) {
133			if (kcb->kprobe_status == KPROBE_HIT_SS) {
134				regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
135					kcb->kprobe_orig_tstate_pil);
136				goto no_kprobe;
137			}
138			/* We have reentered the kprobe_handler(), since
139			 * another probe was hit while within the handler.
140			 * We here save the original kprobes variables and
141			 * just single step on the instruction of the new probe
142			 * without calling any user handlers.
143			 */
144			save_previous_kprobe(kcb);
145			set_current_kprobe(p, regs, kcb);
146			kprobes_inc_nmissed_count(p);
147			kcb->kprobe_status = KPROBE_REENTER;
148			prepare_singlestep(p, regs, kcb);
149			return 1;
150		} else if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
 
151			/* The breakpoint instruction was removed by
152			 * another cpu right after we hit, no further
153			 * handling of this interrupt is appropriate
154			 */
155			ret = 1;
 
 
 
 
 
156		}
157		goto no_kprobe;
158	}
159
160	p = get_kprobe(addr);
161	if (!p) {
162		if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
163			/*
164			 * The breakpoint instruction was removed right
165			 * after we hit it.  Another cpu has removed
166			 * either a probepoint or a debugger breakpoint
167			 * at this address.  In either case, no further
168			 * handling of this interrupt is appropriate.
169			 */
170			ret = 1;
171		}
172		/* Not one of ours: let kernel handle it */
173		goto no_kprobe;
174	}
175
176	set_current_kprobe(p, regs, kcb);
177	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
178	if (p->pre_handler && p->pre_handler(p, regs)) {
179		reset_current_kprobe();
180		preempt_enable_no_resched();
181		return 1;
182	}
183
 
184	prepare_singlestep(p, regs, kcb);
185	kcb->kprobe_status = KPROBE_HIT_SS;
186	return 1;
187
188no_kprobe:
189	preempt_enable_no_resched();
190	return ret;
191}
192
193/* If INSN is a relative control transfer instruction,
194 * return the corrected branch destination value.
195 *
196 * regs->tpc and regs->tnpc still hold the values of the
197 * program counters at the time of trap due to the execution
198 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
199 * 
200 */
201static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
202					       struct pt_regs *regs)
203{
204	unsigned long real_pc = (unsigned long) p->addr;
205
206	/* Branch not taken, no mods necessary.  */
207	if (regs->tnpc == regs->tpc + 0x4UL)
208		return real_pc + 0x8UL;
209
210	/* The three cases are call, branch w/prediction,
211	 * and traditional branch.
212	 */
213	if ((insn & 0xc0000000) == 0x40000000 ||
214	    (insn & 0xc1c00000) == 0x00400000 ||
215	    (insn & 0xc1c00000) == 0x00800000) {
216		unsigned long ainsn_addr;
217
218		ainsn_addr = (unsigned long) &p->ainsn.insn[0];
219
220		/* The instruction did all the work for us
221		 * already, just apply the offset to the correct
222		 * instruction location.
223		 */
224		return (real_pc + (regs->tnpc - ainsn_addr));
225	}
226
227	/* It is jmpl or some other absolute PC modification instruction,
228	 * leave NPC as-is.
229	 */
230	return regs->tnpc;
231}
232
233/* If INSN is an instruction which writes it's PC location
234 * into a destination register, fix that up.
235 */
236static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
237				  unsigned long real_pc)
238{
239	unsigned long *slot = NULL;
240
241	/* Simplest case is 'call', which always uses %o7 */
242	if ((insn & 0xc0000000) == 0x40000000) {
243		slot = &regs->u_regs[UREG_I7];
244	}
245
246	/* 'jmpl' encodes the register inside of the opcode */
247	if ((insn & 0xc1f80000) == 0x81c00000) {
248		unsigned long rd = ((insn >> 25) & 0x1f);
249
250		if (rd <= 15) {
251			slot = &regs->u_regs[rd];
252		} else {
253			/* Hard case, it goes onto the stack. */
254			flushw_all();
255
256			rd -= 16;
257			slot = (unsigned long *)
258				(regs->u_regs[UREG_FP] + STACK_BIAS);
259			slot += rd;
260		}
261	}
262	if (slot != NULL)
263		*slot = real_pc;
264}
265
266/*
267 * Called after single-stepping.  p->addr is the address of the
268 * instruction which has been replaced by the breakpoint
269 * instruction.  To avoid the SMP problems that can occur when we
270 * temporarily put back the original opcode to single-step, we
271 * single-stepped a copy of the instruction.  The address of this
272 * copy is &p->ainsn.insn[0].
273 *
274 * This function prepares to return from the post-single-step
275 * breakpoint trap.
276 */
277static void __kprobes resume_execution(struct kprobe *p,
278		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
279{
280	u32 insn = p->ainsn.insn[0];
281
282	regs->tnpc = relbranch_fixup(insn, p, regs);
283
284	/* This assignment must occur after relbranch_fixup() */
285	regs->tpc = kcb->kprobe_orig_tnpc;
286
287	retpc_fixup(regs, insn, (unsigned long) p->addr);
288
289	regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
290			kcb->kprobe_orig_tstate_pil);
291}
292
293static int __kprobes post_kprobe_handler(struct pt_regs *regs)
294{
295	struct kprobe *cur = kprobe_running();
296	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
297
298	if (!cur)
299		return 0;
300
301	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
302		kcb->kprobe_status = KPROBE_HIT_SSDONE;
303		cur->post_handler(cur, regs, 0);
304	}
305
306	resume_execution(cur, regs, kcb);
307
308	/*Restore back the original saved kprobes variables and continue. */
309	if (kcb->kprobe_status == KPROBE_REENTER) {
310		restore_previous_kprobe(kcb);
311		goto out;
312	}
313	reset_current_kprobe();
314out:
315	preempt_enable_no_resched();
316
317	return 1;
318}
319
320int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
321{
322	struct kprobe *cur = kprobe_running();
323	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
324	const struct exception_table_entry *entry;
325
326	switch(kcb->kprobe_status) {
327	case KPROBE_HIT_SS:
328	case KPROBE_REENTER:
329		/*
330		 * We are here because the instruction being single
331		 * stepped caused a page fault. We reset the current
332		 * kprobe and the tpc points back to the probe address
333		 * and allow the page fault handler to continue as a
334		 * normal page fault.
335		 */
336		regs->tpc = (unsigned long)cur->addr;
337		regs->tnpc = kcb->kprobe_orig_tnpc;
338		regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
339				kcb->kprobe_orig_tstate_pil);
340		if (kcb->kprobe_status == KPROBE_REENTER)
341			restore_previous_kprobe(kcb);
342		else
343			reset_current_kprobe();
344		preempt_enable_no_resched();
345		break;
346	case KPROBE_HIT_ACTIVE:
347	case KPROBE_HIT_SSDONE:
348		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349		 * In case the user-specified fault handler returned
350		 * zero, try to fix up.
351		 */
352
353		entry = search_exception_tables(regs->tpc);
354		if (entry) {
355			regs->tpc = entry->fixup;
356			regs->tnpc = regs->tpc + 4;
357			return 1;
358		}
359
360		/*
361		 * fixup_exception() could not handle it,
362		 * Let do_page_fault() fix it.
363		 */
364		break;
365	default:
366		break;
367	}
368
369	return 0;
370}
371
372/*
373 * Wrapper routine to for handling exceptions.
374 */
375int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
376				       unsigned long val, void *data)
377{
378	struct die_args *args = (struct die_args *)data;
379	int ret = NOTIFY_DONE;
380
381	if (args->regs && user_mode(args->regs))
382		return ret;
383
384	switch (val) {
385	case DIE_DEBUG:
386		if (kprobe_handler(args->regs))
387			ret = NOTIFY_STOP;
388		break;
389	case DIE_DEBUG_2:
390		if (post_kprobe_handler(args->regs))
391			ret = NOTIFY_STOP;
392		break;
393	default:
394		break;
395	}
396	return ret;
397}
398
399asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
400				      struct pt_regs *regs)
401{
402	enum ctx_state prev_state = exception_enter();
403
404	BUG_ON(trap_level != 0x170 && trap_level != 0x171);
405
406	if (user_mode(regs)) {
407		local_irq_enable();
408		bad_trap(regs, trap_level);
409		goto out;
410	}
411
412	/* trap_level == 0x170 --> ta 0x70
413	 * trap_level == 0x171 --> ta 0x71
414	 */
415	if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
416		       (trap_level == 0x170) ? "debug" : "debug_2",
417		       regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
418		bad_trap(regs, trap_level);
419out:
420	exception_exit(prev_state);
421}
422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423/* The value stored in the return address register is actually 2
424 * instructions before where the callee will return to.
425 * Sequences usually look something like this
426 *
427 *		call	some_function	<--- return register points here
428 *		 nop			<--- call delay slot
429 *		whatever		<--- where callee returns to
430 *
431 * To keep trampoline_probe_handler logic simpler, we normalize the
432 * value kept in ri->ret_addr so we don't need to keep adjusting it
433 * back and forth.
434 */
435void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
436				      struct pt_regs *regs)
437{
438	ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
439	ri->fp = NULL;
440
441	/* Replace the return addr with trampoline addr */
442	regs->u_regs[UREG_RETPC] =
443		((unsigned long)__kretprobe_trampoline) - 8;
444}
445
446/*
447 * Called when the probe at kretprobe trampoline is hit
448 */
449static int __kprobes trampoline_probe_handler(struct kprobe *p,
450					      struct pt_regs *regs)
451{
452	unsigned long orig_ret_address = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453
454	orig_ret_address = __kretprobe_trampoline_handler(regs, NULL);
455	regs->tpc = orig_ret_address;
456	regs->tnpc = orig_ret_address + 4;
457
 
 
 
 
 
 
 
 
458	/*
459	 * By returning a non-zero value, we are telling
460	 * kprobe_handler() that we don't want the post_handler
461	 * to run (and have re-enabled preemption)
462	 */
463	return 1;
464}
465
466static void __used kretprobe_trampoline_holder(void)
467{
468	asm volatile(".global __kretprobe_trampoline\n"
469		     "__kretprobe_trampoline:\n"
470		     "\tnop\n"
471		     "\tnop\n");
472}
473static struct kprobe trampoline_p = {
474	.addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
475	.pre_handler = trampoline_probe_handler
476};
477
478int __init arch_init_kprobes(void)
479{
480	return register_kprobe(&trampoline_p);
481}
482
483int __kprobes arch_trampoline_kprobe(struct kprobe *p)
484{
485	if (p->addr == (kprobe_opcode_t *)&__kretprobe_trampoline)
486		return 1;
487
488	return 0;
489}