Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Based on arch/arm/mm/init.c
  3 *
  4 * Copyright (C) 1995-2005 Russell King
  5 * Copyright (C) 2012 ARM Ltd.
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope that it will be useful,
 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * You should have received a copy of the GNU General Public License
 17 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 18 */
 19
 20#include <linux/kernel.h>
 21#include <linux/export.h>
 22#include <linux/errno.h>
 23#include <linux/swap.h>
 24#include <linux/init.h>
 25#include <linux/bootmem.h>
 26#include <linux/cache.h>
 27#include <linux/mman.h>
 28#include <linux/nodemask.h>
 29#include <linux/initrd.h>
 30#include <linux/gfp.h>
 
 31#include <linux/memblock.h>
 32#include <linux/sort.h>
 33#include <linux/of.h>
 34#include <linux/of_fdt.h>
 35#include <linux/dma-mapping.h>
 36#include <linux/dma-contiguous.h>
 37#include <linux/efi.h>
 38#include <linux/swiotlb.h>
 39#include <linux/vmalloc.h>
 40#include <linux/mm.h>
 41#include <linux/kexec.h>
 42#include <linux/crash_dump.h>
 
 
 
 43
 44#include <asm/boot.h>
 45#include <asm/fixmap.h>
 46#include <asm/kasan.h>
 47#include <asm/kernel-pgtable.h>
 
 48#include <asm/memory.h>
 49#include <asm/numa.h>
 50#include <asm/sections.h>
 51#include <asm/setup.h>
 52#include <asm/sizes.h>
 53#include <asm/tlb.h>
 54#include <asm/alternative.h>
 
 55
 56/*
 57 * We need to be able to catch inadvertent references to memstart_addr
 58 * that occur (potentially in generic code) before arm64_memblock_init()
 59 * executes, which assigns it its actual value. So use a default value
 60 * that cannot be mistaken for a real physical address.
 61 */
 62s64 memstart_addr __ro_after_init = -1;
 63phys_addr_t arm64_dma_phys_limit __ro_after_init;
 64
 65#ifdef CONFIG_BLK_DEV_INITRD
 66static int __init early_initrd(char *p)
 67{
 68	unsigned long start, size;
 69	char *endp;
 70
 71	start = memparse(p, &endp);
 72	if (*endp == ',') {
 73		size = memparse(endp + 1, NULL);
 74
 75		initrd_start = start;
 76		initrd_end = start + size;
 77	}
 78	return 0;
 79}
 80early_param("initrd", early_initrd);
 
 
 
 
 
 
 
 81#endif
 82
 83#ifdef CONFIG_KEXEC_CORE
 84/*
 85 * reserve_crashkernel() - reserves memory for crash kernel
 86 *
 87 * This function reserves memory area given in "crashkernel=" kernel command
 88 * line parameter. The memory reserved is used by dump capture kernel when
 89 * primary kernel is crashing.
 90 */
 91static void __init reserve_crashkernel(void)
 
 
 
 
 
 
 92{
 
 93	unsigned long long crash_base, crash_size;
 
 
 94	int ret;
 95
 96	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 97				&crash_size, &crash_base);
 98	/* no crashkernel= or invalid value specified */
 99	if (ret || !crash_size)
100		return;
101
102	crash_size = PAGE_ALIGN(crash_size);
103
104	if (crash_base == 0) {
105		/* Current arm64 boot protocol requires 2MB alignment */
106		crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
107				crash_size, SZ_2M);
108		if (crash_base == 0) {
109			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
110				crash_size);
111			return;
112		}
113	} else {
114		/* User specifies base address explicitly. */
115		if (!memblock_is_region_memory(crash_base, crash_size)) {
116			pr_warn("cannot reserve crashkernel: region is not memory\n");
117			return;
118		}
119
120		if (memblock_is_region_reserved(crash_base, crash_size)) {
121			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
122			return;
123		}
124
125		if (!IS_ALIGNED(crash_base, SZ_2M)) {
126			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
127			return;
128		}
129	}
130	memblock_reserve(crash_base, crash_size);
131
132	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
133		crash_base, crash_base + crash_size, crash_size >> 20);
134
135	crashk_res.start = crash_base;
136	crashk_res.end = crash_base + crash_size - 1;
137}
138
139static void __init kexec_reserve_crashkres_pages(void)
140{
141#ifdef CONFIG_HIBERNATION
142	phys_addr_t addr;
143	struct page *page;
144
145	if (!crashk_res.end)
146		return;
147
148	/*
149	 * To reduce the size of hibernation image, all the pages are
150	 * marked as Reserved initially.
151	 */
152	for (addr = crashk_res.start; addr < (crashk_res.end + 1);
153			addr += PAGE_SIZE) {
154		page = phys_to_page(addr);
155		SetPageReserved(page);
156	}
157#endif
158}
159#else
160static void __init reserve_crashkernel(void)
161{
162}
163
164static void __init kexec_reserve_crashkres_pages(void)
165{
166}
167#endif /* CONFIG_KEXEC_CORE */
168
169#ifdef CONFIG_CRASH_DUMP
170static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
171		const char *uname, int depth, void *data)
172{
173	const __be32 *reg;
174	int len;
175
176	if (depth != 1 || strcmp(uname, "chosen") != 0)
177		return 0;
178
179	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
180	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
181		return 1;
182
183	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
184	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
185
186	return 1;
187}
188
189/*
190 * reserve_elfcorehdr() - reserves memory for elf core header
191 *
192 * This function reserves the memory occupied by an elf core header
193 * described in the device tree. This region contains all the
194 * information about primary kernel's core image and is used by a dump
195 * capture kernel to access the system memory on primary kernel.
196 */
197static void __init reserve_elfcorehdr(void)
198{
199	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
200
201	if (!elfcorehdr_size)
202		return;
203
204	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
205		pr_warn("elfcorehdr is overlapped\n");
206		return;
207	}
208
209	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
 
 
 
210
211	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
212		elfcorehdr_size >> 10, elfcorehdr_addr);
213}
214#else
215static void __init reserve_elfcorehdr(void)
216{
217}
218#endif /* CONFIG_CRASH_DUMP */
219/*
220 * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
221 * currently assumes that for memory starting above 4G, 32-bit devices will
222 * use a DMA offset.
223 */
224static phys_addr_t __init max_zone_dma_phys(void)
225{
226	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
227	return min(offset + (1ULL << 32), memblock_end_of_DRAM());
228}
229
230#ifdef CONFIG_NUMA
231
232static void __init zone_sizes_init(unsigned long min, unsigned long max)
233{
234	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
235
236	if (IS_ENABLED(CONFIG_ZONE_DMA32))
237		max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
238	max_zone_pfns[ZONE_NORMAL] = max;
239
240	free_area_init_nodes(max_zone_pfns);
241}
242
243#else
244
245static void __init zone_sizes_init(unsigned long min, unsigned long max)
246{
247	struct memblock_region *reg;
248	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
249	unsigned long max_dma = min;
250
251	memset(zone_size, 0, sizeof(zone_size));
252
253	/* 4GB maximum for 32-bit only capable devices */
254#ifdef CONFIG_ZONE_DMA32
255	max_dma = PFN_DOWN(arm64_dma_phys_limit);
256	zone_size[ZONE_DMA32] = max_dma - min;
257#endif
258	zone_size[ZONE_NORMAL] = max - max_dma;
259
260	memcpy(zhole_size, zone_size, sizeof(zhole_size));
261
262	for_each_memblock(memory, reg) {
263		unsigned long start = memblock_region_memory_base_pfn(reg);
264		unsigned long end = memblock_region_memory_end_pfn(reg);
265
266		if (start >= max)
267			continue;
268
269#ifdef CONFIG_ZONE_DMA32
270		if (start < max_dma) {
271			unsigned long dma_end = min(end, max_dma);
272			zhole_size[ZONE_DMA32] -= dma_end - start;
273		}
274#endif
275		if (end > max_dma) {
276			unsigned long normal_end = min(end, max);
277			unsigned long normal_start = max(start, max_dma);
278			zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
279		}
280	}
281
282	free_area_init_node(0, zone_size, min, zhole_size);
283}
284
285#endif /* CONFIG_NUMA */
286
287#ifdef CONFIG_HAVE_ARCH_PFN_VALID
288int pfn_valid(unsigned long pfn)
289{
290	return memblock_is_map_memory(pfn << PAGE_SHIFT);
291}
292EXPORT_SYMBOL(pfn_valid);
293#endif
294
295#ifndef CONFIG_SPARSEMEM
296static void __init arm64_memory_present(void)
297{
298}
299#else
300static void __init arm64_memory_present(void)
301{
302	struct memblock_region *reg;
303
304	for_each_memblock(memory, reg) {
305		int nid = memblock_get_region_node(reg);
 
306
307		memory_present(nid, memblock_region_memory_base_pfn(reg),
308				memblock_region_memory_end_pfn(reg));
309	}
310}
311#endif
312
313static phys_addr_t memory_limit = (phys_addr_t)ULLONG_MAX;
314
315/*
316 * Limit the memory size that was specified via FDT.
317 */
318static int __init early_mem(char *p)
319{
320	if (!p)
321		return 1;
322
323	memory_limit = memparse(p, &p) & PAGE_MASK;
324	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
325
326	return 0;
327}
328early_param("mem", early_mem);
329
330static int __init early_init_dt_scan_usablemem(unsigned long node,
331		const char *uname, int depth, void *data)
332{
333	struct memblock_region *usablemem = data;
334	const __be32 *reg;
335	int len;
336
337	if (depth != 1 || strcmp(uname, "chosen") != 0)
338		return 0;
339
340	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
341	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
342		return 1;
343
344	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
345	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
346
347	return 1;
348}
349
350static void __init fdt_enforce_memory_region(void)
351{
352	struct memblock_region reg = {
353		.size = 0,
354	};
355
356	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
357
358	if (reg.size)
359		memblock_cap_memory_range(reg.base, reg.size);
360}
361
362void __init arm64_memblock_init(void)
363{
364	const s64 linear_region_size = -(s64)PAGE_OFFSET;
365
366	/* Handle linux,usable-memory-range property */
367	fdt_enforce_memory_region();
 
 
 
 
 
 
 
 
 
 
 
368
369	/* Remove memory above our supported physical address size */
370	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
371
372	/*
373	 * Ensure that the linear region takes up exactly half of the kernel
374	 * virtual address space. This way, we can distinguish a linear address
375	 * from a kernel/module/vmalloc address by testing a single bit.
376	 */
377	BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
378
379	/*
380	 * Select a suitable value for the base of physical memory.
381	 */
382	memstart_addr = round_down(memblock_start_of_DRAM(),
383				   ARM64_MEMSTART_ALIGN);
384
 
 
 
385	/*
386	 * Remove the memory that we will not be able to cover with the
387	 * linear mapping. Take care not to clip the kernel which may be
388	 * high in memory.
389	 */
390	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
391			__pa_symbol(_end)), ULLONG_MAX);
392	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
393		/* ensure that memstart_addr remains sufficiently aligned */
394		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
395					 ARM64_MEMSTART_ALIGN);
396		memblock_remove(0, memstart_addr);
397	}
398
399	/*
 
 
 
 
 
 
 
 
 
 
400	 * Apply the memory limit if it was set. Since the kernel may be loaded
401	 * high up in memory, add back the kernel region that must be accessible
402	 * via the linear mapping.
403	 */
404	if (memory_limit != (phys_addr_t)ULLONG_MAX) {
405		memblock_mem_limit_remove_map(memory_limit);
406		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
407	}
408
409	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) {
410		/*
411		 * Add back the memory we just removed if it results in the
412		 * initrd to become inaccessible via the linear mapping.
413		 * Otherwise, this is a no-op
414		 */
415		u64 base = initrd_start & PAGE_MASK;
416		u64 size = PAGE_ALIGN(initrd_end) - base;
417
418		/*
419		 * We can only add back the initrd memory if we don't end up
420		 * with more memory than we can address via the linear mapping.
421		 * It is up to the bootloader to position the kernel and the
422		 * initrd reasonably close to each other (i.e., within 32 GB of
423		 * each other) so that all granule/#levels combinations can
424		 * always access both.
425		 */
426		if (WARN(base < memblock_start_of_DRAM() ||
427			 base + size > memblock_start_of_DRAM() +
428				       linear_region_size,
429			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
430			initrd_start = 0;
431		} else {
432			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
433			memblock_add(base, size);
 
434			memblock_reserve(base, size);
435		}
436	}
437
438	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
439		extern u16 memstart_offset_seed;
440		u64 range = linear_region_size -
441			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
 
 
 
442
443		/*
444		 * If the size of the linear region exceeds, by a sufficient
445		 * margin, the size of the region that the available physical
446		 * memory spans, randomize the linear region as well.
447		 */
448		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
449			range = range / ARM64_MEMSTART_ALIGN + 1;
450			memstart_addr -= ARM64_MEMSTART_ALIGN *
451					 ((range * memstart_offset_seed) >> 16);
452		}
453	}
454
455	/*
456	 * Register the kernel text, kernel data, initrd, and initial
457	 * pagetables with memblock.
458	 */
459	memblock_reserve(__pa_symbol(_text), _end - _text);
460#ifdef CONFIG_BLK_DEV_INITRD
461	if (initrd_start) {
462		memblock_reserve(initrd_start, initrd_end - initrd_start);
463
464		/* the generic initrd code expects virtual addresses */
465		initrd_start = __phys_to_virt(initrd_start);
466		initrd_end = __phys_to_virt(initrd_end);
467	}
468#endif
469
470	early_init_fdt_scan_reserved_mem();
471
472	/* 4GB maximum for 32-bit only capable devices */
473	if (IS_ENABLED(CONFIG_ZONE_DMA32))
474		arm64_dma_phys_limit = max_zone_dma_phys();
475	else
476		arm64_dma_phys_limit = PHYS_MASK + 1;
477
478	reserve_crashkernel();
479
480	reserve_elfcorehdr();
481
482	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
483
484	dma_contiguous_reserve(arm64_dma_phys_limit);
485
486	memblock_allow_resize();
487}
488
489void __init bootmem_init(void)
490{
491	unsigned long min, max;
492
493	min = PFN_UP(memblock_start_of_DRAM());
494	max = PFN_DOWN(memblock_end_of_DRAM());
495
496	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
497
498	max_pfn = max_low_pfn = max;
 
 
 
499
500	arm64_numa_init();
501	/*
502	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
503	 * done after the fixed reservations.
 
504	 */
505	arm64_memory_present();
506
507	sparse_init();
508	zone_sizes_init(min, max);
509
510	memblock_dump_all();
511}
512
513#ifndef CONFIG_SPARSEMEM_VMEMMAP
514static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
515{
516	struct page *start_pg, *end_pg;
517	unsigned long pg, pgend;
518
519	/*
520	 * Convert start_pfn/end_pfn to a struct page pointer.
 
521	 */
522	start_pg = pfn_to_page(start_pfn - 1) + 1;
523	end_pg = pfn_to_page(end_pfn - 1) + 1;
524
525	/*
526	 * Convert to physical addresses, and round start upwards and end
527	 * downwards.
528	 */
529	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
530	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
531
532	/*
533	 * If there are free pages between these, free the section of the
534	 * memmap array.
535	 */
536	if (pg < pgend)
537		free_bootmem(pg, pgend - pg);
538}
539
540/*
541 * The mem_map array can get very big. Free the unused area of the memory map.
542 */
543static void __init free_unused_memmap(void)
544{
545	unsigned long start, prev_end = 0;
546	struct memblock_region *reg;
547
548	for_each_memblock(memory, reg) {
549		start = __phys_to_pfn(reg->base);
550
551#ifdef CONFIG_SPARSEMEM
552		/*
553		 * Take care not to free memmap entries that don't exist due
554		 * to SPARSEMEM sections which aren't present.
555		 */
556		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
557#endif
558		/*
559		 * If we had a previous bank, and there is a space between the
560		 * current bank and the previous, free it.
561		 */
562		if (prev_end && prev_end < start)
563			free_memmap(prev_end, start);
564
565		/*
566		 * Align up here since the VM subsystem insists that the
567		 * memmap entries are valid from the bank end aligned to
568		 * MAX_ORDER_NR_PAGES.
569		 */
570		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
571				 MAX_ORDER_NR_PAGES);
572	}
573
574#ifdef CONFIG_SPARSEMEM
575	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
576		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
577#endif
578}
579#endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
580
581/*
582 * mem_init() marks the free areas in the mem_map and tells us how much memory
583 * is free.  This is done after various parts of the system have claimed their
584 * memory after the kernel image.
585 */
586void __init mem_init(void)
587{
588	if (swiotlb_force == SWIOTLB_FORCE ||
589	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
590		swiotlb_init(1);
591	else
592		swiotlb_force = SWIOTLB_NO_FORCE;
593
594	set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
595
596#ifndef CONFIG_SPARSEMEM_VMEMMAP
597	free_unused_memmap();
598#endif
599	/* this will put all unused low memory onto the freelists */
600	free_all_bootmem();
 
 
 
 
 
601
602	kexec_reserve_crashkres_pages();
603
604	mem_init_print_info(NULL);
 
605
606	/*
607	 * Check boundaries twice: Some fundamental inconsistencies can be
608	 * detected at build time already.
609	 */
610#ifdef CONFIG_COMPAT
611	BUILD_BUG_ON(TASK_SIZE_32			> TASK_SIZE_64);
612#endif
613
614	/*
615	 * Make sure we chose the upper bound of sizeof(struct page)
616	 * correctly.
617	 */
618	BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT));
 
619
620	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
621		extern int sysctl_overcommit_memory;
622		/*
623		 * On a machine this small we won't get anywhere without
624		 * overcommit, so turn it on by default.
625		 */
626		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
627	}
628}
629
630void free_initmem(void)
631{
632	free_reserved_area(lm_alias(__init_begin),
633			   lm_alias(__init_end),
634			   0, "unused kernel");
635	/*
636	 * Unmap the __init region but leave the VM area in place. This
637	 * prevents the region from being reused for kernel modules, which
638	 * is not supported by kallsyms.
639	 */
640	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
641}
642
643#ifdef CONFIG_BLK_DEV_INITRD
644
645static int keep_initrd __initdata;
646
647void __init free_initrd_mem(unsigned long start, unsigned long end)
648{
649	if (!keep_initrd) {
650		free_reserved_area((void *)start, (void *)end, 0, "initrd");
651		memblock_free(__virt_to_phys(start), end - start);
652	}
653}
654
655static int __init keepinitrd_setup(char *__unused)
656{
657	keep_initrd = 1;
658	return 1;
659}
660
661__setup("keepinitrd", keepinitrd_setup);
662#endif
663
664/*
665 * Dump out memory limit information on panic.
666 */
667static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
668{
669	if (memory_limit != (phys_addr_t)ULLONG_MAX) {
670		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
671	} else {
672		pr_emerg("Memory Limit: none\n");
673	}
674	return 0;
675}
676
677static struct notifier_block mem_limit_notifier = {
678	.notifier_call = dump_mem_limit,
679};
680
681static int __init register_mem_limit_dumper(void)
682{
683	atomic_notifier_chain_register(&panic_notifier_list,
684				       &mem_limit_notifier);
685	return 0;
686}
687__initcall(register_mem_limit_dumper);
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/mm/init.c
  4 *
  5 * Copyright (C) 1995-2005 Russell King
  6 * Copyright (C) 2012 ARM Ltd.
 
 
 
 
 
 
 
 
 
 
 
 
  7 */
  8
  9#include <linux/kernel.h>
 10#include <linux/export.h>
 11#include <linux/errno.h>
 12#include <linux/swap.h>
 13#include <linux/init.h>
 
 14#include <linux/cache.h>
 15#include <linux/mman.h>
 16#include <linux/nodemask.h>
 17#include <linux/initrd.h>
 18#include <linux/gfp.h>
 19#include <linux/math.h>
 20#include <linux/memblock.h>
 21#include <linux/sort.h>
 22#include <linux/of.h>
 23#include <linux/of_fdt.h>
 24#include <linux/dma-direct.h>
 25#include <linux/dma-map-ops.h>
 26#include <linux/efi.h>
 27#include <linux/swiotlb.h>
 28#include <linux/vmalloc.h>
 29#include <linux/mm.h>
 30#include <linux/kexec.h>
 31#include <linux/crash_dump.h>
 32#include <linux/hugetlb.h>
 33#include <linux/acpi_iort.h>
 34#include <linux/kmemleak.h>
 35
 36#include <asm/boot.h>
 37#include <asm/fixmap.h>
 38#include <asm/kasan.h>
 39#include <asm/kernel-pgtable.h>
 40#include <asm/kvm_host.h>
 41#include <asm/memory.h>
 42#include <asm/numa.h>
 43#include <asm/sections.h>
 44#include <asm/setup.h>
 45#include <linux/sizes.h>
 46#include <asm/tlb.h>
 47#include <asm/alternative.h>
 48#include <asm/xen/swiotlb-xen.h>
 49
 50/*
 51 * We need to be able to catch inadvertent references to memstart_addr
 52 * that occur (potentially in generic code) before arm64_memblock_init()
 53 * executes, which assigns it its actual value. So use a default value
 54 * that cannot be mistaken for a real physical address.
 55 */
 56s64 memstart_addr __ro_after_init = -1;
 57EXPORT_SYMBOL(memstart_addr);
 58
 59/*
 60 * If the corresponding config options are enabled, we create both ZONE_DMA
 61 * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
 62 * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
 63 * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
 64 * otherwise it is empty.
 65 */
 66phys_addr_t __ro_after_init arm64_dma_phys_limit;
 
 67
 68/*
 69 * To make optimal use of block mappings when laying out the linear
 70 * mapping, round down the base of physical memory to a size that can
 71 * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE
 72 * (64k granule), or a multiple that can be mapped using contiguous bits
 73 * in the page tables: 32 * PMD_SIZE (16k granule)
 74 */
 75#if defined(CONFIG_ARM64_4K_PAGES)
 76#define ARM64_MEMSTART_SHIFT		PUD_SHIFT
 77#elif defined(CONFIG_ARM64_16K_PAGES)
 78#define ARM64_MEMSTART_SHIFT		CONT_PMD_SHIFT
 79#else
 80#define ARM64_MEMSTART_SHIFT		PMD_SHIFT
 81#endif
 82
 
 83/*
 84 * sparsemem vmemmap imposes an additional requirement on the alignment of
 85 * memstart_addr, due to the fact that the base of the vmemmap region
 86 * has a direct correspondence, and needs to appear sufficiently aligned
 87 * in the virtual address space.
 
 88 */
 89#if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS
 90#define ARM64_MEMSTART_ALIGN	(1UL << SECTION_SIZE_BITS)
 91#else
 92#define ARM64_MEMSTART_ALIGN	(1UL << ARM64_MEMSTART_SHIFT)
 93#endif
 94
 95static void __init arch_reserve_crashkernel(void)
 96{
 97	unsigned long long low_size = 0;
 98	unsigned long long crash_base, crash_size;
 99	char *cmdline = boot_command_line;
100	bool high = false;
101	int ret;
102
103	if (!IS_ENABLED(CONFIG_KEXEC_CORE))
 
 
 
104		return;
105
106	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
107				&crash_size, &crash_base,
108				&low_size, &high);
109	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110		return;
111
112	reserve_crashkernel_generic(cmdline, crash_size, crash_base,
113				    low_size, high);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114}
115
116/*
117 * Return the maximum physical address for a zone accessible by the given bits
118 * limit. If DRAM starts above 32-bit, expand the zone to the maximum
119 * available memory, otherwise cap it at 32-bit.
 
 
 
120 */
121static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
122{
123	phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
124	phys_addr_t phys_start = memblock_start_of_DRAM();
 
 
 
 
 
 
 
125
126	if (phys_start > U32_MAX)
127		zone_mask = PHYS_ADDR_MAX;
128	else if (phys_start > zone_mask)
129		zone_mask = U32_MAX;
130
131	return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
 
132}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
134static void __init zone_sizes_init(void)
135{
136	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
137	unsigned int __maybe_unused acpi_zone_dma_bits;
138	unsigned int __maybe_unused dt_zone_dma_bits;
139	phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
140
141#ifdef CONFIG_ZONE_DMA
142	acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
143	dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
144	zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
145	arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
146	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
 
 
 
 
 
 
 
 
 
 
 
 
147#endif
 
 
 
 
 
 
 
 
 
 
 
148#ifdef CONFIG_ZONE_DMA32
149	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
150	if (!arm64_dma_phys_limit)
151		arm64_dma_phys_limit = dma32_phys_limit;
 
152#endif
153	if (!arm64_dma_phys_limit)
154		arm64_dma_phys_limit = PHYS_MASK + 1;
155	max_zone_pfns[ZONE_NORMAL] = max_pfn;
 
 
 
 
 
 
 
 
156
157	free_area_init(max_zone_pfns);
 
 
 
158}
 
 
159
160int pfn_is_map_memory(unsigned long pfn)
 
 
 
 
 
161{
162	phys_addr_t addr = PFN_PHYS(pfn);
163
164	/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
165	if (PHYS_PFN(addr) != pfn)
166		return 0;
167
168	return memblock_is_map_memory(addr);
 
 
169}
170EXPORT_SYMBOL(pfn_is_map_memory);
171
172static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
173
174/*
175 * Limit the memory size that was specified via FDT.
176 */
177static int __init early_mem(char *p)
178{
179	if (!p)
180		return 1;
181
182	memory_limit = memparse(p, &p) & PAGE_MASK;
183	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
184
185	return 0;
186}
187early_param("mem", early_mem);
188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189void __init arm64_memblock_init(void)
190{
191	s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
192
193	/*
194	 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
195	 * be limited in their ability to support a linear map that exceeds 51
196	 * bits of VA space, depending on the placement of the ID map. Given
197	 * that the placement of the ID map may be randomized, let's simply
198	 * limit the kernel's linear map to 51 bits as well if we detect this
199	 * configuration.
200	 */
201	if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
202	    is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
203		pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
204		linear_region_size = min_t(u64, linear_region_size, BIT(51));
205	}
206
207	/* Remove memory above our supported physical address size */
208	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
209
210	/*
 
 
 
 
 
 
 
211	 * Select a suitable value for the base of physical memory.
212	 */
213	memstart_addr = round_down(memblock_start_of_DRAM(),
214				   ARM64_MEMSTART_ALIGN);
215
216	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
217		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
218
219	/*
220	 * Remove the memory that we will not be able to cover with the
221	 * linear mapping. Take care not to clip the kernel which may be
222	 * high in memory.
223	 */
224	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
225			__pa_symbol(_end)), ULLONG_MAX);
226	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
227		/* ensure that memstart_addr remains sufficiently aligned */
228		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
229					 ARM64_MEMSTART_ALIGN);
230		memblock_remove(0, memstart_addr);
231	}
232
233	/*
234	 * If we are running with a 52-bit kernel VA config on a system that
235	 * does not support it, we have to place the available physical
236	 * memory in the 48-bit addressable part of the linear region, i.e.,
237	 * we have to move it upward. Since memstart_addr represents the
238	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
239	 */
240	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
241		memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
242
243	/*
244	 * Apply the memory limit if it was set. Since the kernel may be loaded
245	 * high up in memory, add back the kernel region that must be accessible
246	 * via the linear mapping.
247	 */
248	if (memory_limit != PHYS_ADDR_MAX) {
249		memblock_mem_limit_remove_map(memory_limit);
250		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
251	}
252
253	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
254		/*
255		 * Add back the memory we just removed if it results in the
256		 * initrd to become inaccessible via the linear mapping.
257		 * Otherwise, this is a no-op
258		 */
259		u64 base = phys_initrd_start & PAGE_MASK;
260		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
261
262		/*
263		 * We can only add back the initrd memory if we don't end up
264		 * with more memory than we can address via the linear mapping.
265		 * It is up to the bootloader to position the kernel and the
266		 * initrd reasonably close to each other (i.e., within 32 GB of
267		 * each other) so that all granule/#levels combinations can
268		 * always access both.
269		 */
270		if (WARN(base < memblock_start_of_DRAM() ||
271			 base + size > memblock_start_of_DRAM() +
272				       linear_region_size,
273			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
274			phys_initrd_size = 0;
275		} else {
 
276			memblock_add(base, size);
277			memblock_clear_nomap(base, size);
278			memblock_reserve(base, size);
279		}
280	}
281
282	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
283		extern u16 memstart_offset_seed;
284		u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
285		int parange = cpuid_feature_extract_unsigned_field(
286					mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
287		s64 range = linear_region_size -
288			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
289
290		/*
291		 * If the size of the linear region exceeds, by a sufficient
292		 * margin, the size of the region that the physical memory can
293		 * span, randomize the linear region as well.
294		 */
295		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
296			range /= ARM64_MEMSTART_ALIGN;
297			memstart_addr -= ARM64_MEMSTART_ALIGN *
298					 ((range * memstart_offset_seed) >> 16);
299		}
300	}
301
302	/*
303	 * Register the kernel text, kernel data, initrd, and initial
304	 * pagetables with memblock.
305	 */
306	memblock_reserve(__pa_symbol(_stext), _end - _stext);
307	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
 
 
 
308		/* the generic initrd code expects virtual addresses */
309		initrd_start = __phys_to_virt(phys_initrd_start);
310		initrd_end = initrd_start + phys_initrd_size;
311	}
 
312
313	early_init_fdt_scan_reserved_mem();
314
 
 
 
 
 
 
 
 
 
 
315	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
 
 
 
 
316}
317
318void __init bootmem_init(void)
319{
320	unsigned long min, max;
321
322	min = PFN_UP(memblock_start_of_DRAM());
323	max = PFN_DOWN(memblock_end_of_DRAM());
324
325	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
326
327	max_pfn = max_low_pfn = max;
328	min_low_pfn = min;
329
330	arch_numa_init();
331
 
332	/*
333	 * must be done after arch_numa_init() which calls numa_init() to
334	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
335	 * while allocating required CMA size across online nodes.
336	 */
337#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
338	arm64_hugetlb_cma_reserve();
339#endif
 
 
 
 
340
341	kvm_hyp_reserve();
 
 
 
 
342
343	/*
344	 * sparse_init() tries to allocate memory from memblock, so must be
345	 * done after the fixed reservations
346	 */
347	sparse_init();
348	zone_sizes_init();
349
350	/*
351	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
 
352	 */
353	dma_contiguous_reserve(arm64_dma_phys_limit);
 
354
355	/*
356	 * request_standard_resources() depends on crashkernel's memory being
357	 * reserved, so do it here.
358	 */
359	arch_reserve_crashkernel();
 
 
 
 
 
 
 
 
 
 
360
361	memblock_dump_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362}
 
363
364/*
365 * mem_init() marks the free areas in the mem_map and tells us how much memory
366 * is free.  This is done after various parts of the system have claimed their
367 * memory after the kernel image.
368 */
369void __init mem_init(void)
370{
371	bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
 
 
 
 
 
 
372
373	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) {
374		/*
375		 * If no bouncing needed for ZONE_DMA, reduce the swiotlb
376		 * buffer for kmalloc() bouncing to 1MB per 1GB of RAM.
377		 */
378		unsigned long size =
379			DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
380		swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
381		swiotlb = true;
382	}
383
384	swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
385
386	/* this will put all unused low memory onto the freelists */
387	memblock_free_all();
388
389	/*
390	 * Check boundaries twice: Some fundamental inconsistencies can be
391	 * detected at build time already.
392	 */
393#ifdef CONFIG_COMPAT
394	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
395#endif
396
397	/*
398	 * Selected page table levels should match when derived from
399	 * scratch using the virtual address range and page size.
400	 */
401	BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
402		     CONFIG_PGTABLE_LEVELS);
403
404	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
405		extern int sysctl_overcommit_memory;
406		/*
407		 * On a machine this small we won't get anywhere without
408		 * overcommit, so turn it on by default.
409		 */
410		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
411	}
412}
413
414void free_initmem(void)
415{
416	free_reserved_area(lm_alias(__init_begin),
417			   lm_alias(__init_end),
418			   POISON_FREE_INITMEM, "unused kernel");
419	/*
420	 * Unmap the __init region but leave the VM area in place. This
421	 * prevents the region from being reused for kernel modules, which
422	 * is not supported by kallsyms.
423	 */
424	vunmap_range((u64)__init_begin, (u64)__init_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
425}
426
427void dump_mem_limit(void)
 
 
 
 
 
 
428{
429	if (memory_limit != PHYS_ADDR_MAX) {
430		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
431	} else {
432		pr_emerg("Memory Limit: none\n");
433	}
 
 
 
 
 
 
 
 
 
 
 
 
434}