Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.17
 
  1/*
  2 *  linux/arch/arm/mm/flush.c
  3 *
  4 *  Copyright (C) 1995-2002 Russell King
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#include <linux/module.h>
 11#include <linux/mm.h>
 12#include <linux/pagemap.h>
 13#include <linux/highmem.h>
 14
 15#include <asm/cacheflush.h>
 16#include <asm/cachetype.h>
 17#include <asm/highmem.h>
 18#include <asm/smp_plat.h>
 19#include <asm/tlbflush.h>
 20#include <linux/hugetlb.h>
 21
 22#include "mm.h"
 23
 24#ifdef CONFIG_ARM_HEAVY_MB
 25void (*soc_mb)(void);
 26
 27void arm_heavy_mb(void)
 28{
 29#ifdef CONFIG_OUTER_CACHE_SYNC
 30	if (outer_cache.sync)
 31		outer_cache.sync();
 32#endif
 33	if (soc_mb)
 34		soc_mb();
 35}
 36EXPORT_SYMBOL(arm_heavy_mb);
 37#endif
 38
 39#ifdef CONFIG_CPU_CACHE_VIPT
 40
 41static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr)
 42{
 43	unsigned long to = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
 44	const int zero = 0;
 45
 46	set_top_pte(to, pfn_pte(pfn, PAGE_KERNEL));
 47
 48	asm(	"mcrr	p15, 0, %1, %0, c14\n"
 49	"	mcr	p15, 0, %2, c7, c10, 4"
 50	    :
 51	    : "r" (to), "r" (to + PAGE_SIZE - 1), "r" (zero)
 52	    : "cc");
 53}
 54
 55static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len)
 56{
 57	unsigned long va = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
 58	unsigned long offset = vaddr & (PAGE_SIZE - 1);
 59	unsigned long to;
 60
 61	set_top_pte(va, pfn_pte(pfn, PAGE_KERNEL));
 62	to = va + offset;
 63	flush_icache_range(to, to + len);
 64}
 65
 66void flush_cache_mm(struct mm_struct *mm)
 67{
 68	if (cache_is_vivt()) {
 69		vivt_flush_cache_mm(mm);
 70		return;
 71	}
 72
 73	if (cache_is_vipt_aliasing()) {
 74		asm(	"mcr	p15, 0, %0, c7, c14, 0\n"
 75		"	mcr	p15, 0, %0, c7, c10, 4"
 76		    :
 77		    : "r" (0)
 78		    : "cc");
 79	}
 80}
 81
 82void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
 83{
 84	if (cache_is_vivt()) {
 85		vivt_flush_cache_range(vma, start, end);
 86		return;
 87	}
 88
 89	if (cache_is_vipt_aliasing()) {
 90		asm(	"mcr	p15, 0, %0, c7, c14, 0\n"
 91		"	mcr	p15, 0, %0, c7, c10, 4"
 92		    :
 93		    : "r" (0)
 94		    : "cc");
 95	}
 96
 97	if (vma->vm_flags & VM_EXEC)
 98		__flush_icache_all();
 99}
100
101void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
102{
103	if (cache_is_vivt()) {
104		vivt_flush_cache_page(vma, user_addr, pfn);
105		return;
106	}
107
108	if (cache_is_vipt_aliasing()) {
109		flush_pfn_alias(pfn, user_addr);
110		__flush_icache_all();
111	}
112
113	if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged())
114		__flush_icache_all();
115}
116
117#else
118#define flush_pfn_alias(pfn,vaddr)		do { } while (0)
119#define flush_icache_alias(pfn,vaddr,len)	do { } while (0)
120#endif
121
122#define FLAG_PA_IS_EXEC 1
123#define FLAG_PA_CORE_IN_MM 2
124
125static void flush_ptrace_access_other(void *args)
126{
127	__flush_icache_all();
128}
129
130static inline
131void __flush_ptrace_access(struct page *page, unsigned long uaddr, void *kaddr,
132			   unsigned long len, unsigned int flags)
133{
134	if (cache_is_vivt()) {
135		if (flags & FLAG_PA_CORE_IN_MM) {
136			unsigned long addr = (unsigned long)kaddr;
137			__cpuc_coherent_kern_range(addr, addr + len);
138		}
139		return;
140	}
141
142	if (cache_is_vipt_aliasing()) {
143		flush_pfn_alias(page_to_pfn(page), uaddr);
144		__flush_icache_all();
145		return;
146	}
147
148	/* VIPT non-aliasing D-cache */
149	if (flags & FLAG_PA_IS_EXEC) {
150		unsigned long addr = (unsigned long)kaddr;
151		if (icache_is_vipt_aliasing())
152			flush_icache_alias(page_to_pfn(page), uaddr, len);
153		else
154			__cpuc_coherent_kern_range(addr, addr + len);
155		if (cache_ops_need_broadcast())
156			smp_call_function(flush_ptrace_access_other,
157					  NULL, 1);
158	}
159}
160
161static
162void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
163			 unsigned long uaddr, void *kaddr, unsigned long len)
164{
165	unsigned int flags = 0;
166	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm)))
167		flags |= FLAG_PA_CORE_IN_MM;
168	if (vma->vm_flags & VM_EXEC)
169		flags |= FLAG_PA_IS_EXEC;
170	__flush_ptrace_access(page, uaddr, kaddr, len, flags);
171}
172
173void flush_uprobe_xol_access(struct page *page, unsigned long uaddr,
174			     void *kaddr, unsigned long len)
175{
176	unsigned int flags = FLAG_PA_CORE_IN_MM|FLAG_PA_IS_EXEC;
177
178	__flush_ptrace_access(page, uaddr, kaddr, len, flags);
179}
180
181/*
182 * Copy user data from/to a page which is mapped into a different
183 * processes address space.  Really, we want to allow our "user
184 * space" model to handle this.
185 *
186 * Note that this code needs to run on the current CPU.
187 */
188void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
189		       unsigned long uaddr, void *dst, const void *src,
190		       unsigned long len)
191{
192#ifdef CONFIG_SMP
193	preempt_disable();
194#endif
195	memcpy(dst, src, len);
196	flush_ptrace_access(vma, page, uaddr, dst, len);
197#ifdef CONFIG_SMP
198	preempt_enable();
199#endif
200}
201
202void __flush_dcache_page(struct address_space *mapping, struct page *page)
203{
204	/*
205	 * Writeback any data associated with the kernel mapping of this
206	 * page.  This ensures that data in the physical page is mutually
207	 * coherent with the kernels mapping.
208	 */
209	if (!PageHighMem(page)) {
210		size_t page_size = PAGE_SIZE << compound_order(page);
211		__cpuc_flush_dcache_area(page_address(page), page_size);
212	} else {
213		unsigned long i;
214		if (cache_is_vipt_nonaliasing()) {
215			for (i = 0; i < (1 << compound_order(page)); i++) {
216				void *addr = kmap_atomic(page + i);
 
217				__cpuc_flush_dcache_area(addr, PAGE_SIZE);
218				kunmap_atomic(addr);
219			}
220		} else {
221			for (i = 0; i < (1 << compound_order(page)); i++) {
222				void *addr = kmap_high_get(page + i);
223				if (addr) {
224					__cpuc_flush_dcache_area(addr, PAGE_SIZE);
225					kunmap_high(page + i);
226				}
227			}
228		}
229	}
230
231	/*
232	 * If this is a page cache page, and we have an aliasing VIPT cache,
233	 * we only need to do one flush - which would be at the relevant
234	 * userspace colour, which is congruent with page->index.
235	 */
236	if (mapping && cache_is_vipt_aliasing())
237		flush_pfn_alias(page_to_pfn(page),
238				page->index << PAGE_SHIFT);
239}
240
241static void __flush_dcache_aliases(struct address_space *mapping, struct page *page)
242{
243	struct mm_struct *mm = current->active_mm;
244	struct vm_area_struct *mpnt;
245	pgoff_t pgoff;
246
247	/*
248	 * There are possible user space mappings of this page:
249	 * - VIVT cache: we need to also write back and invalidate all user
250	 *   data in the current VM view associated with this page.
251	 * - aliasing VIPT: we only need to find one mapping of this page.
252	 */
253	pgoff = page->index;
 
254
255	flush_dcache_mmap_lock(mapping);
256	vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
257		unsigned long offset;
 
258
259		/*
260		 * If this VMA is not in our MM, we can ignore it.
261		 */
262		if (mpnt->vm_mm != mm)
263			continue;
264		if (!(mpnt->vm_flags & VM_MAYSHARE))
265			continue;
266		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
267		flush_cache_page(mpnt, mpnt->vm_start + offset, page_to_pfn(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
268	}
269	flush_dcache_mmap_unlock(mapping);
270}
271
272#if __LINUX_ARM_ARCH__ >= 6
273void __sync_icache_dcache(pte_t pteval)
274{
275	unsigned long pfn;
276	struct page *page;
277	struct address_space *mapping;
278
279	if (cache_is_vipt_nonaliasing() && !pte_exec(pteval))
280		/* only flush non-aliasing VIPT caches for exec mappings */
281		return;
282	pfn = pte_pfn(pteval);
283	if (!pfn_valid(pfn))
284		return;
285
286	page = pfn_to_page(pfn);
287	if (cache_is_vipt_aliasing())
288		mapping = page_mapping_file(page);
289	else
290		mapping = NULL;
291
292	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
293		__flush_dcache_page(mapping, page);
294
295	if (pte_exec(pteval))
296		__flush_icache_all();
297}
298#endif
299
300/*
301 * Ensure cache coherency between kernel mapping and userspace mapping
302 * of this page.
303 *
304 * We have three cases to consider:
305 *  - VIPT non-aliasing cache: fully coherent so nothing required.
306 *  - VIVT: fully aliasing, so we need to handle every alias in our
307 *          current VM view.
308 *  - VIPT aliasing: need to handle one alias in our current VM view.
309 *
310 * If we need to handle aliasing:
311 *  If the page only exists in the page cache and there are no user
312 *  space mappings, we can be lazy and remember that we may have dirty
313 *  kernel cache lines for later.  Otherwise, we assume we have
314 *  aliasing mappings.
315 *
316 * Note that we disable the lazy flush for SMP configurations where
317 * the cache maintenance operations are not automatically broadcasted.
318 */
319void flush_dcache_page(struct page *page)
320{
321	struct address_space *mapping;
322
323	/*
324	 * The zero page is never written to, so never has any dirty
325	 * cache lines, and therefore never needs to be flushed.
326	 */
327	if (page == ZERO_PAGE(0))
328		return;
329
330	if (!cache_ops_need_broadcast() && cache_is_vipt_nonaliasing()) {
331		if (test_bit(PG_dcache_clean, &page->flags))
332			clear_bit(PG_dcache_clean, &page->flags);
333		return;
334	}
335
336	mapping = page_mapping_file(page);
337
338	if (!cache_ops_need_broadcast() &&
339	    mapping && !page_mapcount(page))
340		clear_bit(PG_dcache_clean, &page->flags);
341	else {
342		__flush_dcache_page(mapping, page);
343		if (mapping && cache_is_vivt())
344			__flush_dcache_aliases(mapping, page);
345		else if (mapping)
346			__flush_icache_all();
347		set_bit(PG_dcache_clean, &page->flags);
348	}
349}
350EXPORT_SYMBOL(flush_dcache_page);
351
352/*
353 * Ensure cache coherency for the kernel mapping of this page. We can
354 * assume that the page is pinned via kmap.
355 *
356 * If the page only exists in the page cache and there are no user
357 * space mappings, this is a no-op since the page was already marked
358 * dirty at creation.  Otherwise, we need to flush the dirty kernel
359 * cache lines directly.
360 */
361void flush_kernel_dcache_page(struct page *page)
362{
363	if (cache_is_vivt() || cache_is_vipt_aliasing()) {
364		struct address_space *mapping;
365
366		mapping = page_mapping_file(page);
367
368		if (!mapping || mapping_mapped(mapping)) {
369			void *addr;
370
371			addr = page_address(page);
372			/*
373			 * kmap_atomic() doesn't set the page virtual
374			 * address for highmem pages, and
375			 * kunmap_atomic() takes care of cache
376			 * flushing already.
377			 */
378			if (!IS_ENABLED(CONFIG_HIGHMEM) || addr)
379				__cpuc_flush_dcache_area(addr, PAGE_SIZE);
380		}
381	}
382}
383EXPORT_SYMBOL(flush_kernel_dcache_page);
384
385/*
386 * Flush an anonymous page so that users of get_user_pages()
387 * can safely access the data.  The expected sequence is:
388 *
389 *  get_user_pages()
390 *    -> flush_anon_page
391 *  memcpy() to/from page
392 *  if written to page, flush_dcache_page()
393 */
 
394void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
395{
396	unsigned long pfn;
397
398	/* VIPT non-aliasing caches need do nothing */
399	if (cache_is_vipt_nonaliasing())
400		return;
401
402	/*
403	 * Write back and invalidate userspace mapping.
404	 */
405	pfn = page_to_pfn(page);
406	if (cache_is_vivt()) {
407		flush_cache_page(vma, vmaddr, pfn);
408	} else {
409		/*
410		 * For aliasing VIPT, we can flush an alias of the
411		 * userspace address only.
412		 */
413		flush_pfn_alias(pfn, vmaddr);
414		__flush_icache_all();
415	}
416
417	/*
418	 * Invalidate kernel mapping.  No data should be contained
419	 * in this mapping of the page.  FIXME: this is overkill
420	 * since we actually ask for a write-back and invalidate.
421	 */
422	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
423}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/mm/flush.c
  4 *
  5 *  Copyright (C) 1995-2002 Russell King
 
 
 
 
  6 */
  7#include <linux/module.h>
  8#include <linux/mm.h>
  9#include <linux/pagemap.h>
 10#include <linux/highmem.h>
 11
 12#include <asm/cacheflush.h>
 13#include <asm/cachetype.h>
 14#include <asm/highmem.h>
 15#include <asm/smp_plat.h>
 16#include <asm/tlbflush.h>
 17#include <linux/hugetlb.h>
 18
 19#include "mm.h"
 20
 21#ifdef CONFIG_ARM_HEAVY_MB
 22void (*soc_mb)(void);
 23
 24void arm_heavy_mb(void)
 25{
 26#ifdef CONFIG_OUTER_CACHE_SYNC
 27	if (outer_cache.sync)
 28		outer_cache.sync();
 29#endif
 30	if (soc_mb)
 31		soc_mb();
 32}
 33EXPORT_SYMBOL(arm_heavy_mb);
 34#endif
 35
 36#ifdef CONFIG_CPU_CACHE_VIPT
 37
 38static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr)
 39{
 40	unsigned long to = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
 41	const int zero = 0;
 42
 43	set_top_pte(to, pfn_pte(pfn, PAGE_KERNEL));
 44
 45	asm(	"mcrr	p15, 0, %1, %0, c14\n"
 46	"	mcr	p15, 0, %2, c7, c10, 4"
 47	    :
 48	    : "r" (to), "r" (to + PAGE_SIZE - 1), "r" (zero)
 49	    : "cc");
 50}
 51
 52static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len)
 53{
 54	unsigned long va = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
 55	unsigned long offset = vaddr & (PAGE_SIZE - 1);
 56	unsigned long to;
 57
 58	set_top_pte(va, pfn_pte(pfn, PAGE_KERNEL));
 59	to = va + offset;
 60	flush_icache_range(to, to + len);
 61}
 62
 63void flush_cache_mm(struct mm_struct *mm)
 64{
 65	if (cache_is_vivt()) {
 66		vivt_flush_cache_mm(mm);
 67		return;
 68	}
 69
 70	if (cache_is_vipt_aliasing()) {
 71		asm(	"mcr	p15, 0, %0, c7, c14, 0\n"
 72		"	mcr	p15, 0, %0, c7, c10, 4"
 73		    :
 74		    : "r" (0)
 75		    : "cc");
 76	}
 77}
 78
 79void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
 80{
 81	if (cache_is_vivt()) {
 82		vivt_flush_cache_range(vma, start, end);
 83		return;
 84	}
 85
 86	if (cache_is_vipt_aliasing()) {
 87		asm(	"mcr	p15, 0, %0, c7, c14, 0\n"
 88		"	mcr	p15, 0, %0, c7, c10, 4"
 89		    :
 90		    : "r" (0)
 91		    : "cc");
 92	}
 93
 94	if (vma->vm_flags & VM_EXEC)
 95		__flush_icache_all();
 96}
 97
 98void flush_cache_pages(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn, unsigned int nr)
 99{
100	if (cache_is_vivt()) {
101		vivt_flush_cache_pages(vma, user_addr, pfn, nr);
102		return;
103	}
104
105	if (cache_is_vipt_aliasing()) {
106		flush_pfn_alias(pfn, user_addr);
107		__flush_icache_all();
108	}
109
110	if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged())
111		__flush_icache_all();
112}
113
114#else
115#define flush_pfn_alias(pfn,vaddr)		do { } while (0)
116#define flush_icache_alias(pfn,vaddr,len)	do { } while (0)
117#endif
118
119#define FLAG_PA_IS_EXEC 1
120#define FLAG_PA_CORE_IN_MM 2
121
122static void flush_ptrace_access_other(void *args)
123{
124	__flush_icache_all();
125}
126
127static inline
128void __flush_ptrace_access(struct page *page, unsigned long uaddr, void *kaddr,
129			   unsigned long len, unsigned int flags)
130{
131	if (cache_is_vivt()) {
132		if (flags & FLAG_PA_CORE_IN_MM) {
133			unsigned long addr = (unsigned long)kaddr;
134			__cpuc_coherent_kern_range(addr, addr + len);
135		}
136		return;
137	}
138
139	if (cache_is_vipt_aliasing()) {
140		flush_pfn_alias(page_to_pfn(page), uaddr);
141		__flush_icache_all();
142		return;
143	}
144
145	/* VIPT non-aliasing D-cache */
146	if (flags & FLAG_PA_IS_EXEC) {
147		unsigned long addr = (unsigned long)kaddr;
148		if (icache_is_vipt_aliasing())
149			flush_icache_alias(page_to_pfn(page), uaddr, len);
150		else
151			__cpuc_coherent_kern_range(addr, addr + len);
152		if (cache_ops_need_broadcast())
153			smp_call_function(flush_ptrace_access_other,
154					  NULL, 1);
155	}
156}
157
158static
159void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
160			 unsigned long uaddr, void *kaddr, unsigned long len)
161{
162	unsigned int flags = 0;
163	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm)))
164		flags |= FLAG_PA_CORE_IN_MM;
165	if (vma->vm_flags & VM_EXEC)
166		flags |= FLAG_PA_IS_EXEC;
167	__flush_ptrace_access(page, uaddr, kaddr, len, flags);
168}
169
170void flush_uprobe_xol_access(struct page *page, unsigned long uaddr,
171			     void *kaddr, unsigned long len)
172{
173	unsigned int flags = FLAG_PA_CORE_IN_MM|FLAG_PA_IS_EXEC;
174
175	__flush_ptrace_access(page, uaddr, kaddr, len, flags);
176}
177
178/*
179 * Copy user data from/to a page which is mapped into a different
180 * processes address space.  Really, we want to allow our "user
181 * space" model to handle this.
182 *
183 * Note that this code needs to run on the current CPU.
184 */
185void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
186		       unsigned long uaddr, void *dst, const void *src,
187		       unsigned long len)
188{
189#ifdef CONFIG_SMP
190	preempt_disable();
191#endif
192	memcpy(dst, src, len);
193	flush_ptrace_access(vma, page, uaddr, dst, len);
194#ifdef CONFIG_SMP
195	preempt_enable();
196#endif
197}
198
199void __flush_dcache_folio(struct address_space *mapping, struct folio *folio)
200{
201	/*
202	 * Writeback any data associated with the kernel mapping of this
203	 * page.  This ensures that data in the physical page is mutually
204	 * coherent with the kernels mapping.
205	 */
206	if (!folio_test_highmem(folio)) {
207		__cpuc_flush_dcache_area(folio_address(folio),
208					folio_size(folio));
209	} else {
210		unsigned long i;
211		if (cache_is_vipt_nonaliasing()) {
212			for (i = 0; i < folio_nr_pages(folio); i++) {
213				void *addr = kmap_local_folio(folio,
214								i * PAGE_SIZE);
215				__cpuc_flush_dcache_area(addr, PAGE_SIZE);
216				kunmap_local(addr);
217			}
218		} else {
219			for (i = 0; i < folio_nr_pages(folio); i++) {
220				void *addr = kmap_high_get(folio_page(folio, i));
221				if (addr) {
222					__cpuc_flush_dcache_area(addr, PAGE_SIZE);
223					kunmap_high(folio_page(folio, i));
224				}
225			}
226		}
227	}
228
229	/*
230	 * If this is a page cache page, and we have an aliasing VIPT cache,
231	 * we only need to do one flush - which would be at the relevant
232	 * userspace colour, which is congruent with page->index.
233	 */
234	if (mapping && cache_is_vipt_aliasing())
235		flush_pfn_alias(folio_pfn(folio), folio_pos(folio));
 
236}
237
238static void __flush_dcache_aliases(struct address_space *mapping, struct folio *folio)
239{
240	struct mm_struct *mm = current->active_mm;
241	struct vm_area_struct *vma;
242	pgoff_t pgoff, pgoff_end;
243
244	/*
245	 * There are possible user space mappings of this page:
246	 * - VIVT cache: we need to also write back and invalidate all user
247	 *   data in the current VM view associated with this page.
248	 * - aliasing VIPT: we only need to find one mapping of this page.
249	 */
250	pgoff = folio->index;
251	pgoff_end = pgoff + folio_nr_pages(folio) - 1;
252
253	flush_dcache_mmap_lock(mapping);
254	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff_end) {
255		unsigned long start, offset, pfn;
256		unsigned int nr;
257
258		/*
259		 * If this VMA is not in our MM, we can ignore it.
260		 */
261		if (vma->vm_mm != mm)
262			continue;
263		if (!(vma->vm_flags & VM_MAYSHARE))
264			continue;
265
266		start = vma->vm_start;
267		pfn = folio_pfn(folio);
268		nr = folio_nr_pages(folio);
269		offset = pgoff - vma->vm_pgoff;
270		if (offset > -nr) {
271			pfn -= offset;
272			nr += offset;
273		} else {
274			start += offset * PAGE_SIZE;
275		}
276		if (start + nr * PAGE_SIZE > vma->vm_end)
277			nr = (vma->vm_end - start) / PAGE_SIZE;
278
279		flush_cache_pages(vma, start, pfn, nr);
280	}
281	flush_dcache_mmap_unlock(mapping);
282}
283
284#if __LINUX_ARM_ARCH__ >= 6
285void __sync_icache_dcache(pte_t pteval)
286{
287	unsigned long pfn;
288	struct folio *folio;
289	struct address_space *mapping;
290
291	if (cache_is_vipt_nonaliasing() && !pte_exec(pteval))
292		/* only flush non-aliasing VIPT caches for exec mappings */
293		return;
294	pfn = pte_pfn(pteval);
295	if (!pfn_valid(pfn))
296		return;
297
298	folio = page_folio(pfn_to_page(pfn));
299	if (cache_is_vipt_aliasing())
300		mapping = folio_flush_mapping(folio);
301	else
302		mapping = NULL;
303
304	if (!test_and_set_bit(PG_dcache_clean, &folio->flags))
305		__flush_dcache_folio(mapping, folio);
306
307	if (pte_exec(pteval))
308		__flush_icache_all();
309}
310#endif
311
312/*
313 * Ensure cache coherency between kernel mapping and userspace mapping
314 * of this page.
315 *
316 * We have three cases to consider:
317 *  - VIPT non-aliasing cache: fully coherent so nothing required.
318 *  - VIVT: fully aliasing, so we need to handle every alias in our
319 *          current VM view.
320 *  - VIPT aliasing: need to handle one alias in our current VM view.
321 *
322 * If we need to handle aliasing:
323 *  If the page only exists in the page cache and there are no user
324 *  space mappings, we can be lazy and remember that we may have dirty
325 *  kernel cache lines for later.  Otherwise, we assume we have
326 *  aliasing mappings.
327 *
328 * Note that we disable the lazy flush for SMP configurations where
329 * the cache maintenance operations are not automatically broadcasted.
330 */
331void flush_dcache_folio(struct folio *folio)
332{
333	struct address_space *mapping;
334
335	/*
336	 * The zero page is never written to, so never has any dirty
337	 * cache lines, and therefore never needs to be flushed.
338	 */
339	if (is_zero_pfn(folio_pfn(folio)))
340		return;
341
342	if (!cache_ops_need_broadcast() && cache_is_vipt_nonaliasing()) {
343		if (test_bit(PG_dcache_clean, &folio->flags))
344			clear_bit(PG_dcache_clean, &folio->flags);
345		return;
346	}
347
348	mapping = folio_flush_mapping(folio);
349
350	if (!cache_ops_need_broadcast() &&
351	    mapping && !folio_mapped(folio))
352		clear_bit(PG_dcache_clean, &folio->flags);
353	else {
354		__flush_dcache_folio(mapping, folio);
355		if (mapping && cache_is_vivt())
356			__flush_dcache_aliases(mapping, folio);
357		else if (mapping)
358			__flush_icache_all();
359		set_bit(PG_dcache_clean, &folio->flags);
360	}
361}
362EXPORT_SYMBOL(flush_dcache_folio);
363
364void flush_dcache_page(struct page *page)
 
 
 
 
 
 
 
 
 
365{
366	flush_dcache_folio(page_folio(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367}
368EXPORT_SYMBOL(flush_dcache_page);
 
369/*
370 * Flush an anonymous page so that users of get_user_pages()
371 * can safely access the data.  The expected sequence is:
372 *
373 *  get_user_pages()
374 *    -> flush_anon_page
375 *  memcpy() to/from page
376 *  if written to page, flush_dcache_page()
377 */
378void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr);
379void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
380{
381	unsigned long pfn;
382
383	/* VIPT non-aliasing caches need do nothing */
384	if (cache_is_vipt_nonaliasing())
385		return;
386
387	/*
388	 * Write back and invalidate userspace mapping.
389	 */
390	pfn = page_to_pfn(page);
391	if (cache_is_vivt()) {
392		flush_cache_page(vma, vmaddr, pfn);
393	} else {
394		/*
395		 * For aliasing VIPT, we can flush an alias of the
396		 * userspace address only.
397		 */
398		flush_pfn_alias(pfn, vmaddr);
399		__flush_icache_all();
400	}
401
402	/*
403	 * Invalidate kernel mapping.  No data should be contained
404	 * in this mapping of the page.  FIXME: this is overkill
405	 * since we actually ask for a write-back and invalidate.
406	 */
407	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
408}