Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Support for INET connection oriented protocols.
7 *
8 * Authors: See the TCP sources
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or(at your option) any later version.
14 */
15
16#include <linux/module.h>
17#include <linux/jhash.h>
18
19#include <net/inet_connection_sock.h>
20#include <net/inet_hashtables.h>
21#include <net/inet_timewait_sock.h>
22#include <net/ip.h>
23#include <net/route.h>
24#include <net/tcp_states.h>
25#include <net/xfrm.h>
26#include <net/tcp.h>
27#include <net/sock_reuseport.h>
28#include <net/addrconf.h>
29
30#ifdef INET_CSK_DEBUG
31const char inet_csk_timer_bug_msg[] = "inet_csk BUG: unknown timer value\n";
32EXPORT_SYMBOL(inet_csk_timer_bug_msg);
33#endif
34
35#if IS_ENABLED(CONFIG_IPV6)
36/* match_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
37 * only, and any IPv4 addresses if not IPv6 only
38 * match_wildcard == false: addresses must be exactly the same, i.e.
39 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
40 * and 0.0.0.0 equals to 0.0.0.0 only
41 */
42static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
43 const struct in6_addr *sk2_rcv_saddr6,
44 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
45 bool sk1_ipv6only, bool sk2_ipv6only,
46 bool match_wildcard)
47{
48 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
49 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
50
51 /* if both are mapped, treat as IPv4 */
52 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
53 if (!sk2_ipv6only) {
54 if (sk1_rcv_saddr == sk2_rcv_saddr)
55 return true;
56 if (!sk1_rcv_saddr || !sk2_rcv_saddr)
57 return match_wildcard;
58 }
59 return false;
60 }
61
62 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
63 return true;
64
65 if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
66 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
67 return true;
68
69 if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
70 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
71 return true;
72
73 if (sk2_rcv_saddr6 &&
74 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
75 return true;
76
77 return false;
78}
79#endif
80
81/* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
82 * match_wildcard == false: addresses must be exactly the same, i.e.
83 * 0.0.0.0 only equals to 0.0.0.0
84 */
85static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
86 bool sk2_ipv6only, bool match_wildcard)
87{
88 if (!sk2_ipv6only) {
89 if (sk1_rcv_saddr == sk2_rcv_saddr)
90 return true;
91 if (!sk1_rcv_saddr || !sk2_rcv_saddr)
92 return match_wildcard;
93 }
94 return false;
95}
96
97bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
98 bool match_wildcard)
99{
100#if IS_ENABLED(CONFIG_IPV6)
101 if (sk->sk_family == AF_INET6)
102 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
103 inet6_rcv_saddr(sk2),
104 sk->sk_rcv_saddr,
105 sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk),
107 ipv6_only_sock(sk2),
108 match_wildcard);
109#endif
110 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
111 ipv6_only_sock(sk2), match_wildcard);
112}
113EXPORT_SYMBOL(inet_rcv_saddr_equal);
114
115void inet_get_local_port_range(struct net *net, int *low, int *high)
116{
117 unsigned int seq;
118
119 do {
120 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
121
122 *low = net->ipv4.ip_local_ports.range[0];
123 *high = net->ipv4.ip_local_ports.range[1];
124 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
125}
126EXPORT_SYMBOL(inet_get_local_port_range);
127
128static int inet_csk_bind_conflict(const struct sock *sk,
129 const struct inet_bind_bucket *tb,
130 bool relax, bool reuseport_ok)
131{
132 struct sock *sk2;
133 bool reuse = sk->sk_reuse;
134 bool reuseport = !!sk->sk_reuseport && reuseport_ok;
135 kuid_t uid = sock_i_uid((struct sock *)sk);
136
137 /*
138 * Unlike other sk lookup places we do not check
139 * for sk_net here, since _all_ the socks listed
140 * in tb->owners list belong to the same net - the
141 * one this bucket belongs to.
142 */
143
144 sk_for_each_bound(sk2, &tb->owners) {
145 if (sk != sk2 &&
146 (!sk->sk_bound_dev_if ||
147 !sk2->sk_bound_dev_if ||
148 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
149 if ((!reuse || !sk2->sk_reuse ||
150 sk2->sk_state == TCP_LISTEN) &&
151 (!reuseport || !sk2->sk_reuseport ||
152 rcu_access_pointer(sk->sk_reuseport_cb) ||
153 (sk2->sk_state != TCP_TIME_WAIT &&
154 !uid_eq(uid, sock_i_uid(sk2))))) {
155 if (inet_rcv_saddr_equal(sk, sk2, true))
156 break;
157 }
158 if (!relax && reuse && sk2->sk_reuse &&
159 sk2->sk_state != TCP_LISTEN) {
160 if (inet_rcv_saddr_equal(sk, sk2, true))
161 break;
162 }
163 }
164 }
165 return sk2 != NULL;
166}
167
168/*
169 * Find an open port number for the socket. Returns with the
170 * inet_bind_hashbucket lock held.
171 */
172static struct inet_bind_hashbucket *
173inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
174{
175 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
176 int port = 0;
177 struct inet_bind_hashbucket *head;
178 struct net *net = sock_net(sk);
179 int i, low, high, attempt_half;
180 struct inet_bind_bucket *tb;
181 u32 remaining, offset;
182
183 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
184other_half_scan:
185 inet_get_local_port_range(net, &low, &high);
186 high++; /* [32768, 60999] -> [32768, 61000[ */
187 if (high - low < 4)
188 attempt_half = 0;
189 if (attempt_half) {
190 int half = low + (((high - low) >> 2) << 1);
191
192 if (attempt_half == 1)
193 high = half;
194 else
195 low = half;
196 }
197 remaining = high - low;
198 if (likely(remaining > 1))
199 remaining &= ~1U;
200
201 offset = prandom_u32() % remaining;
202 /* __inet_hash_connect() favors ports having @low parity
203 * We do the opposite to not pollute connect() users.
204 */
205 offset |= 1U;
206
207other_parity_scan:
208 port = low + offset;
209 for (i = 0; i < remaining; i += 2, port += 2) {
210 if (unlikely(port >= high))
211 port -= remaining;
212 if (inet_is_local_reserved_port(net, port))
213 continue;
214 head = &hinfo->bhash[inet_bhashfn(net, port,
215 hinfo->bhash_size)];
216 spin_lock_bh(&head->lock);
217 inet_bind_bucket_for_each(tb, &head->chain)
218 if (net_eq(ib_net(tb), net) && tb->port == port) {
219 if (!inet_csk_bind_conflict(sk, tb, false, false))
220 goto success;
221 goto next_port;
222 }
223 tb = NULL;
224 goto success;
225next_port:
226 spin_unlock_bh(&head->lock);
227 cond_resched();
228 }
229
230 offset--;
231 if (!(offset & 1))
232 goto other_parity_scan;
233
234 if (attempt_half == 1) {
235 /* OK we now try the upper half of the range */
236 attempt_half = 2;
237 goto other_half_scan;
238 }
239 return NULL;
240success:
241 *port_ret = port;
242 *tb_ret = tb;
243 return head;
244}
245
246static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
247 struct sock *sk)
248{
249 kuid_t uid = sock_i_uid(sk);
250
251 if (tb->fastreuseport <= 0)
252 return 0;
253 if (!sk->sk_reuseport)
254 return 0;
255 if (rcu_access_pointer(sk->sk_reuseport_cb))
256 return 0;
257 if (!uid_eq(tb->fastuid, uid))
258 return 0;
259 /* We only need to check the rcv_saddr if this tb was once marked
260 * without fastreuseport and then was reset, as we can only know that
261 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
262 * owners list.
263 */
264 if (tb->fastreuseport == FASTREUSEPORT_ANY)
265 return 1;
266#if IS_ENABLED(CONFIG_IPV6)
267 if (tb->fast_sk_family == AF_INET6)
268 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
269 inet6_rcv_saddr(sk),
270 tb->fast_rcv_saddr,
271 sk->sk_rcv_saddr,
272 tb->fast_ipv6_only,
273 ipv6_only_sock(sk), true);
274#endif
275 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
276 ipv6_only_sock(sk), true);
277}
278
279/* Obtain a reference to a local port for the given sock,
280 * if snum is zero it means select any available local port.
281 * We try to allocate an odd port (and leave even ports for connect())
282 */
283int inet_csk_get_port(struct sock *sk, unsigned short snum)
284{
285 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
286 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
287 int ret = 1, port = snum;
288 struct inet_bind_hashbucket *head;
289 struct net *net = sock_net(sk);
290 struct inet_bind_bucket *tb = NULL;
291 kuid_t uid = sock_i_uid(sk);
292
293 if (!port) {
294 head = inet_csk_find_open_port(sk, &tb, &port);
295 if (!head)
296 return ret;
297 if (!tb)
298 goto tb_not_found;
299 goto success;
300 }
301 head = &hinfo->bhash[inet_bhashfn(net, port,
302 hinfo->bhash_size)];
303 spin_lock_bh(&head->lock);
304 inet_bind_bucket_for_each(tb, &head->chain)
305 if (net_eq(ib_net(tb), net) && tb->port == port)
306 goto tb_found;
307tb_not_found:
308 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
309 net, head, port);
310 if (!tb)
311 goto fail_unlock;
312tb_found:
313 if (!hlist_empty(&tb->owners)) {
314 if (sk->sk_reuse == SK_FORCE_REUSE)
315 goto success;
316
317 if ((tb->fastreuse > 0 && reuse) ||
318 sk_reuseport_match(tb, sk))
319 goto success;
320 if (inet_csk_bind_conflict(sk, tb, true, true))
321 goto fail_unlock;
322 }
323success:
324 if (hlist_empty(&tb->owners)) {
325 tb->fastreuse = reuse;
326 if (sk->sk_reuseport) {
327 tb->fastreuseport = FASTREUSEPORT_ANY;
328 tb->fastuid = uid;
329 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
330 tb->fast_ipv6_only = ipv6_only_sock(sk);
331 tb->fast_sk_family = sk->sk_family;
332#if IS_ENABLED(CONFIG_IPV6)
333 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
334#endif
335 } else {
336 tb->fastreuseport = 0;
337 }
338 } else {
339 if (!reuse)
340 tb->fastreuse = 0;
341 if (sk->sk_reuseport) {
342 /* We didn't match or we don't have fastreuseport set on
343 * the tb, but we have sk_reuseport set on this socket
344 * and we know that there are no bind conflicts with
345 * this socket in this tb, so reset our tb's reuseport
346 * settings so that any subsequent sockets that match
347 * our current socket will be put on the fast path.
348 *
349 * If we reset we need to set FASTREUSEPORT_STRICT so we
350 * do extra checking for all subsequent sk_reuseport
351 * socks.
352 */
353 if (!sk_reuseport_match(tb, sk)) {
354 tb->fastreuseport = FASTREUSEPORT_STRICT;
355 tb->fastuid = uid;
356 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
357 tb->fast_ipv6_only = ipv6_only_sock(sk);
358 tb->fast_sk_family = sk->sk_family;
359#if IS_ENABLED(CONFIG_IPV6)
360 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
361#endif
362 }
363 } else {
364 tb->fastreuseport = 0;
365 }
366 }
367 if (!inet_csk(sk)->icsk_bind_hash)
368 inet_bind_hash(sk, tb, port);
369 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
370 ret = 0;
371
372fail_unlock:
373 spin_unlock_bh(&head->lock);
374 return ret;
375}
376EXPORT_SYMBOL_GPL(inet_csk_get_port);
377
378/*
379 * Wait for an incoming connection, avoid race conditions. This must be called
380 * with the socket locked.
381 */
382static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
383{
384 struct inet_connection_sock *icsk = inet_csk(sk);
385 DEFINE_WAIT(wait);
386 int err;
387
388 /*
389 * True wake-one mechanism for incoming connections: only
390 * one process gets woken up, not the 'whole herd'.
391 * Since we do not 'race & poll' for established sockets
392 * anymore, the common case will execute the loop only once.
393 *
394 * Subtle issue: "add_wait_queue_exclusive()" will be added
395 * after any current non-exclusive waiters, and we know that
396 * it will always _stay_ after any new non-exclusive waiters
397 * because all non-exclusive waiters are added at the
398 * beginning of the wait-queue. As such, it's ok to "drop"
399 * our exclusiveness temporarily when we get woken up without
400 * having to remove and re-insert us on the wait queue.
401 */
402 for (;;) {
403 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
404 TASK_INTERRUPTIBLE);
405 release_sock(sk);
406 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
407 timeo = schedule_timeout(timeo);
408 sched_annotate_sleep();
409 lock_sock(sk);
410 err = 0;
411 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
412 break;
413 err = -EINVAL;
414 if (sk->sk_state != TCP_LISTEN)
415 break;
416 err = sock_intr_errno(timeo);
417 if (signal_pending(current))
418 break;
419 err = -EAGAIN;
420 if (!timeo)
421 break;
422 }
423 finish_wait(sk_sleep(sk), &wait);
424 return err;
425}
426
427/*
428 * This will accept the next outstanding connection.
429 */
430struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
431{
432 struct inet_connection_sock *icsk = inet_csk(sk);
433 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
434 struct request_sock *req;
435 struct sock *newsk;
436 int error;
437
438 lock_sock(sk);
439
440 /* We need to make sure that this socket is listening,
441 * and that it has something pending.
442 */
443 error = -EINVAL;
444 if (sk->sk_state != TCP_LISTEN)
445 goto out_err;
446
447 /* Find already established connection */
448 if (reqsk_queue_empty(queue)) {
449 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
450
451 /* If this is a non blocking socket don't sleep */
452 error = -EAGAIN;
453 if (!timeo)
454 goto out_err;
455
456 error = inet_csk_wait_for_connect(sk, timeo);
457 if (error)
458 goto out_err;
459 }
460 req = reqsk_queue_remove(queue, sk);
461 newsk = req->sk;
462
463 if (sk->sk_protocol == IPPROTO_TCP &&
464 tcp_rsk(req)->tfo_listener) {
465 spin_lock_bh(&queue->fastopenq.lock);
466 if (tcp_rsk(req)->tfo_listener) {
467 /* We are still waiting for the final ACK from 3WHS
468 * so can't free req now. Instead, we set req->sk to
469 * NULL to signify that the child socket is taken
470 * so reqsk_fastopen_remove() will free the req
471 * when 3WHS finishes (or is aborted).
472 */
473 req->sk = NULL;
474 req = NULL;
475 }
476 spin_unlock_bh(&queue->fastopenq.lock);
477 }
478out:
479 release_sock(sk);
480 if (req)
481 reqsk_put(req);
482 return newsk;
483out_err:
484 newsk = NULL;
485 req = NULL;
486 *err = error;
487 goto out;
488}
489EXPORT_SYMBOL(inet_csk_accept);
490
491/*
492 * Using different timers for retransmit, delayed acks and probes
493 * We may wish use just one timer maintaining a list of expire jiffies
494 * to optimize.
495 */
496void inet_csk_init_xmit_timers(struct sock *sk,
497 void (*retransmit_handler)(struct timer_list *t),
498 void (*delack_handler)(struct timer_list *t),
499 void (*keepalive_handler)(struct timer_list *t))
500{
501 struct inet_connection_sock *icsk = inet_csk(sk);
502
503 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
504 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
505 timer_setup(&sk->sk_timer, keepalive_handler, 0);
506 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
507}
508EXPORT_SYMBOL(inet_csk_init_xmit_timers);
509
510void inet_csk_clear_xmit_timers(struct sock *sk)
511{
512 struct inet_connection_sock *icsk = inet_csk(sk);
513
514 icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
515
516 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
517 sk_stop_timer(sk, &icsk->icsk_delack_timer);
518 sk_stop_timer(sk, &sk->sk_timer);
519}
520EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
521
522void inet_csk_delete_keepalive_timer(struct sock *sk)
523{
524 sk_stop_timer(sk, &sk->sk_timer);
525}
526EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
527
528void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
529{
530 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
531}
532EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
533
534struct dst_entry *inet_csk_route_req(const struct sock *sk,
535 struct flowi4 *fl4,
536 const struct request_sock *req)
537{
538 const struct inet_request_sock *ireq = inet_rsk(req);
539 struct net *net = read_pnet(&ireq->ireq_net);
540 struct ip_options_rcu *opt;
541 struct rtable *rt;
542
543 opt = ireq_opt_deref(ireq);
544
545 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
546 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
547 sk->sk_protocol, inet_sk_flowi_flags(sk),
548 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
549 ireq->ir_loc_addr, ireq->ir_rmt_port,
550 htons(ireq->ir_num), sk->sk_uid);
551 security_req_classify_flow(req, flowi4_to_flowi(fl4));
552 rt = ip_route_output_flow(net, fl4, sk);
553 if (IS_ERR(rt))
554 goto no_route;
555 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
556 goto route_err;
557 return &rt->dst;
558
559route_err:
560 ip_rt_put(rt);
561no_route:
562 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
563 return NULL;
564}
565EXPORT_SYMBOL_GPL(inet_csk_route_req);
566
567struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
568 struct sock *newsk,
569 const struct request_sock *req)
570{
571 const struct inet_request_sock *ireq = inet_rsk(req);
572 struct net *net = read_pnet(&ireq->ireq_net);
573 struct inet_sock *newinet = inet_sk(newsk);
574 struct ip_options_rcu *opt;
575 struct flowi4 *fl4;
576 struct rtable *rt;
577
578 opt = rcu_dereference(ireq->ireq_opt);
579 fl4 = &newinet->cork.fl.u.ip4;
580
581 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
582 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
583 sk->sk_protocol, inet_sk_flowi_flags(sk),
584 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
585 ireq->ir_loc_addr, ireq->ir_rmt_port,
586 htons(ireq->ir_num), sk->sk_uid);
587 security_req_classify_flow(req, flowi4_to_flowi(fl4));
588 rt = ip_route_output_flow(net, fl4, sk);
589 if (IS_ERR(rt))
590 goto no_route;
591 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
592 goto route_err;
593 return &rt->dst;
594
595route_err:
596 ip_rt_put(rt);
597no_route:
598 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
599 return NULL;
600}
601EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
602
603#if IS_ENABLED(CONFIG_IPV6)
604#define AF_INET_FAMILY(fam) ((fam) == AF_INET)
605#else
606#define AF_INET_FAMILY(fam) true
607#endif
608
609/* Decide when to expire the request and when to resend SYN-ACK */
610static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
611 const int max_retries,
612 const u8 rskq_defer_accept,
613 int *expire, int *resend)
614{
615 if (!rskq_defer_accept) {
616 *expire = req->num_timeout >= thresh;
617 *resend = 1;
618 return;
619 }
620 *expire = req->num_timeout >= thresh &&
621 (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
622 /*
623 * Do not resend while waiting for data after ACK,
624 * start to resend on end of deferring period to give
625 * last chance for data or ACK to create established socket.
626 */
627 *resend = !inet_rsk(req)->acked ||
628 req->num_timeout >= rskq_defer_accept - 1;
629}
630
631int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
632{
633 int err = req->rsk_ops->rtx_syn_ack(parent, req);
634
635 if (!err)
636 req->num_retrans++;
637 return err;
638}
639EXPORT_SYMBOL(inet_rtx_syn_ack);
640
641/* return true if req was found in the ehash table */
642static bool reqsk_queue_unlink(struct request_sock_queue *queue,
643 struct request_sock *req)
644{
645 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
646 bool found = false;
647
648 if (sk_hashed(req_to_sk(req))) {
649 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
650
651 spin_lock(lock);
652 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
653 spin_unlock(lock);
654 }
655 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
656 reqsk_put(req);
657 return found;
658}
659
660void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
661{
662 if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) {
663 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
664 reqsk_put(req);
665 }
666}
667EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
668
669void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
670{
671 inet_csk_reqsk_queue_drop(sk, req);
672 reqsk_put(req);
673}
674EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
675
676static void reqsk_timer_handler(struct timer_list *t)
677{
678 struct request_sock *req = from_timer(req, t, rsk_timer);
679 struct sock *sk_listener = req->rsk_listener;
680 struct net *net = sock_net(sk_listener);
681 struct inet_connection_sock *icsk = inet_csk(sk_listener);
682 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
683 int qlen, expire = 0, resend = 0;
684 int max_retries, thresh;
685 u8 defer_accept;
686
687 if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
688 goto drop;
689
690 max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
691 thresh = max_retries;
692 /* Normally all the openreqs are young and become mature
693 * (i.e. converted to established socket) for first timeout.
694 * If synack was not acknowledged for 1 second, it means
695 * one of the following things: synack was lost, ack was lost,
696 * rtt is high or nobody planned to ack (i.e. synflood).
697 * When server is a bit loaded, queue is populated with old
698 * open requests, reducing effective size of queue.
699 * When server is well loaded, queue size reduces to zero
700 * after several minutes of work. It is not synflood,
701 * it is normal operation. The solution is pruning
702 * too old entries overriding normal timeout, when
703 * situation becomes dangerous.
704 *
705 * Essentially, we reserve half of room for young
706 * embrions; and abort old ones without pity, if old
707 * ones are about to clog our table.
708 */
709 qlen = reqsk_queue_len(queue);
710 if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
711 int young = reqsk_queue_len_young(queue) << 1;
712
713 while (thresh > 2) {
714 if (qlen < young)
715 break;
716 thresh--;
717 young <<= 1;
718 }
719 }
720 defer_accept = READ_ONCE(queue->rskq_defer_accept);
721 if (defer_accept)
722 max_retries = defer_accept;
723 syn_ack_recalc(req, thresh, max_retries, defer_accept,
724 &expire, &resend);
725 req->rsk_ops->syn_ack_timeout(req);
726 if (!expire &&
727 (!resend ||
728 !inet_rtx_syn_ack(sk_listener, req) ||
729 inet_rsk(req)->acked)) {
730 unsigned long timeo;
731
732 if (req->num_timeout++ == 0)
733 atomic_dec(&queue->young);
734 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
735 mod_timer(&req->rsk_timer, jiffies + timeo);
736 return;
737 }
738drop:
739 inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
740}
741
742static void reqsk_queue_hash_req(struct request_sock *req,
743 unsigned long timeout)
744{
745 req->num_retrans = 0;
746 req->num_timeout = 0;
747 req->sk = NULL;
748
749 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
750 mod_timer(&req->rsk_timer, jiffies + timeout);
751
752 inet_ehash_insert(req_to_sk(req), NULL);
753 /* before letting lookups find us, make sure all req fields
754 * are committed to memory and refcnt initialized.
755 */
756 smp_wmb();
757 refcount_set(&req->rsk_refcnt, 2 + 1);
758}
759
760void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
761 unsigned long timeout)
762{
763 reqsk_queue_hash_req(req, timeout);
764 inet_csk_reqsk_queue_added(sk);
765}
766EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
767
768/**
769 * inet_csk_clone_lock - clone an inet socket, and lock its clone
770 * @sk: the socket to clone
771 * @req: request_sock
772 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
773 *
774 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
775 */
776struct sock *inet_csk_clone_lock(const struct sock *sk,
777 const struct request_sock *req,
778 const gfp_t priority)
779{
780 struct sock *newsk = sk_clone_lock(sk, priority);
781
782 if (newsk) {
783 struct inet_connection_sock *newicsk = inet_csk(newsk);
784
785 inet_sk_set_state(newsk, TCP_SYN_RECV);
786 newicsk->icsk_bind_hash = NULL;
787
788 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
789 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
790 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
791
792 /* listeners have SOCK_RCU_FREE, not the children */
793 sock_reset_flag(newsk, SOCK_RCU_FREE);
794
795 inet_sk(newsk)->mc_list = NULL;
796
797 newsk->sk_mark = inet_rsk(req)->ir_mark;
798 atomic64_set(&newsk->sk_cookie,
799 atomic64_read(&inet_rsk(req)->ir_cookie));
800
801 newicsk->icsk_retransmits = 0;
802 newicsk->icsk_backoff = 0;
803 newicsk->icsk_probes_out = 0;
804
805 /* Deinitialize accept_queue to trap illegal accesses. */
806 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
807
808 security_inet_csk_clone(newsk, req);
809 }
810 return newsk;
811}
812EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
813
814/*
815 * At this point, there should be no process reference to this
816 * socket, and thus no user references at all. Therefore we
817 * can assume the socket waitqueue is inactive and nobody will
818 * try to jump onto it.
819 */
820void inet_csk_destroy_sock(struct sock *sk)
821{
822 WARN_ON(sk->sk_state != TCP_CLOSE);
823 WARN_ON(!sock_flag(sk, SOCK_DEAD));
824
825 /* It cannot be in hash table! */
826 WARN_ON(!sk_unhashed(sk));
827
828 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
829 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
830
831 sk->sk_prot->destroy(sk);
832
833 sk_stream_kill_queues(sk);
834
835 xfrm_sk_free_policy(sk);
836
837 sk_refcnt_debug_release(sk);
838
839 percpu_counter_dec(sk->sk_prot->orphan_count);
840
841 sock_put(sk);
842}
843EXPORT_SYMBOL(inet_csk_destroy_sock);
844
845/* This function allows to force a closure of a socket after the call to
846 * tcp/dccp_create_openreq_child().
847 */
848void inet_csk_prepare_forced_close(struct sock *sk)
849 __releases(&sk->sk_lock.slock)
850{
851 /* sk_clone_lock locked the socket and set refcnt to 2 */
852 bh_unlock_sock(sk);
853 sock_put(sk);
854
855 /* The below has to be done to allow calling inet_csk_destroy_sock */
856 sock_set_flag(sk, SOCK_DEAD);
857 percpu_counter_inc(sk->sk_prot->orphan_count);
858 inet_sk(sk)->inet_num = 0;
859}
860EXPORT_SYMBOL(inet_csk_prepare_forced_close);
861
862int inet_csk_listen_start(struct sock *sk, int backlog)
863{
864 struct inet_connection_sock *icsk = inet_csk(sk);
865 struct inet_sock *inet = inet_sk(sk);
866 int err = -EADDRINUSE;
867
868 reqsk_queue_alloc(&icsk->icsk_accept_queue);
869
870 sk->sk_max_ack_backlog = backlog;
871 sk->sk_ack_backlog = 0;
872 inet_csk_delack_init(sk);
873
874 /* There is race window here: we announce ourselves listening,
875 * but this transition is still not validated by get_port().
876 * It is OK, because this socket enters to hash table only
877 * after validation is complete.
878 */
879 inet_sk_state_store(sk, TCP_LISTEN);
880 if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
881 inet->inet_sport = htons(inet->inet_num);
882
883 sk_dst_reset(sk);
884 err = sk->sk_prot->hash(sk);
885
886 if (likely(!err))
887 return 0;
888 }
889
890 inet_sk_set_state(sk, TCP_CLOSE);
891 return err;
892}
893EXPORT_SYMBOL_GPL(inet_csk_listen_start);
894
895static void inet_child_forget(struct sock *sk, struct request_sock *req,
896 struct sock *child)
897{
898 sk->sk_prot->disconnect(child, O_NONBLOCK);
899
900 sock_orphan(child);
901
902 percpu_counter_inc(sk->sk_prot->orphan_count);
903
904 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
905 BUG_ON(tcp_sk(child)->fastopen_rsk != req);
906 BUG_ON(sk != req->rsk_listener);
907
908 /* Paranoid, to prevent race condition if
909 * an inbound pkt destined for child is
910 * blocked by sock lock in tcp_v4_rcv().
911 * Also to satisfy an assertion in
912 * tcp_v4_destroy_sock().
913 */
914 tcp_sk(child)->fastopen_rsk = NULL;
915 }
916 inet_csk_destroy_sock(child);
917}
918
919struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
920 struct request_sock *req,
921 struct sock *child)
922{
923 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
924
925 spin_lock(&queue->rskq_lock);
926 if (unlikely(sk->sk_state != TCP_LISTEN)) {
927 inet_child_forget(sk, req, child);
928 child = NULL;
929 } else {
930 req->sk = child;
931 req->dl_next = NULL;
932 if (queue->rskq_accept_head == NULL)
933 queue->rskq_accept_head = req;
934 else
935 queue->rskq_accept_tail->dl_next = req;
936 queue->rskq_accept_tail = req;
937 sk_acceptq_added(sk);
938 }
939 spin_unlock(&queue->rskq_lock);
940 return child;
941}
942EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
943
944struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
945 struct request_sock *req, bool own_req)
946{
947 if (own_req) {
948 inet_csk_reqsk_queue_drop(sk, req);
949 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
950 if (inet_csk_reqsk_queue_add(sk, req, child))
951 return child;
952 }
953 /* Too bad, another child took ownership of the request, undo. */
954 bh_unlock_sock(child);
955 sock_put(child);
956 return NULL;
957}
958EXPORT_SYMBOL(inet_csk_complete_hashdance);
959
960/*
961 * This routine closes sockets which have been at least partially
962 * opened, but not yet accepted.
963 */
964void inet_csk_listen_stop(struct sock *sk)
965{
966 struct inet_connection_sock *icsk = inet_csk(sk);
967 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
968 struct request_sock *next, *req;
969
970 /* Following specs, it would be better either to send FIN
971 * (and enter FIN-WAIT-1, it is normal close)
972 * or to send active reset (abort).
973 * Certainly, it is pretty dangerous while synflood, but it is
974 * bad justification for our negligence 8)
975 * To be honest, we are not able to make either
976 * of the variants now. --ANK
977 */
978 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
979 struct sock *child = req->sk;
980
981 local_bh_disable();
982 bh_lock_sock(child);
983 WARN_ON(sock_owned_by_user(child));
984 sock_hold(child);
985
986 inet_child_forget(sk, req, child);
987 reqsk_put(req);
988 bh_unlock_sock(child);
989 local_bh_enable();
990 sock_put(child);
991
992 cond_resched();
993 }
994 if (queue->fastopenq.rskq_rst_head) {
995 /* Free all the reqs queued in rskq_rst_head. */
996 spin_lock_bh(&queue->fastopenq.lock);
997 req = queue->fastopenq.rskq_rst_head;
998 queue->fastopenq.rskq_rst_head = NULL;
999 spin_unlock_bh(&queue->fastopenq.lock);
1000 while (req != NULL) {
1001 next = req->dl_next;
1002 reqsk_put(req);
1003 req = next;
1004 }
1005 }
1006 WARN_ON_ONCE(sk->sk_ack_backlog);
1007}
1008EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1009
1010void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1011{
1012 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1013 const struct inet_sock *inet = inet_sk(sk);
1014
1015 sin->sin_family = AF_INET;
1016 sin->sin_addr.s_addr = inet->inet_daddr;
1017 sin->sin_port = inet->inet_dport;
1018}
1019EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1020
1021#ifdef CONFIG_COMPAT
1022int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1023 char __user *optval, int __user *optlen)
1024{
1025 const struct inet_connection_sock *icsk = inet_csk(sk);
1026
1027 if (icsk->icsk_af_ops->compat_getsockopt)
1028 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1029 optval, optlen);
1030 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1031 optval, optlen);
1032}
1033EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1034
1035int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1036 char __user *optval, unsigned int optlen)
1037{
1038 const struct inet_connection_sock *icsk = inet_csk(sk);
1039
1040 if (icsk->icsk_af_ops->compat_setsockopt)
1041 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1042 optval, optlen);
1043 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1044 optval, optlen);
1045}
1046EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1047#endif
1048
1049static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1050{
1051 const struct inet_sock *inet = inet_sk(sk);
1052 const struct ip_options_rcu *inet_opt;
1053 __be32 daddr = inet->inet_daddr;
1054 struct flowi4 *fl4;
1055 struct rtable *rt;
1056
1057 rcu_read_lock();
1058 inet_opt = rcu_dereference(inet->inet_opt);
1059 if (inet_opt && inet_opt->opt.srr)
1060 daddr = inet_opt->opt.faddr;
1061 fl4 = &fl->u.ip4;
1062 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1063 inet->inet_saddr, inet->inet_dport,
1064 inet->inet_sport, sk->sk_protocol,
1065 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1066 if (IS_ERR(rt))
1067 rt = NULL;
1068 if (rt)
1069 sk_setup_caps(sk, &rt->dst);
1070 rcu_read_unlock();
1071
1072 return &rt->dst;
1073}
1074
1075struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1076{
1077 struct dst_entry *dst = __sk_dst_check(sk, 0);
1078 struct inet_sock *inet = inet_sk(sk);
1079
1080 if (!dst) {
1081 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1082 if (!dst)
1083 goto out;
1084 }
1085 dst->ops->update_pmtu(dst, sk, NULL, mtu);
1086
1087 dst = __sk_dst_check(sk, 0);
1088 if (!dst)
1089 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1090out:
1091 return dst;
1092}
1093EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12#include <linux/module.h>
13#include <linux/jhash.h>
14
15#include <net/inet_connection_sock.h>
16#include <net/inet_hashtables.h>
17#include <net/inet_timewait_sock.h>
18#include <net/ip.h>
19#include <net/route.h>
20#include <net/tcp_states.h>
21#include <net/xfrm.h>
22#include <net/tcp.h>
23#include <net/sock_reuseport.h>
24#include <net/addrconf.h>
25
26#if IS_ENABLED(CONFIG_IPV6)
27/* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
33 */
34static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
40{
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
51 }
52 return false;
53 }
54
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
57
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
61
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
65
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
69
70 return false;
71}
72#endif
73
74/* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
77 */
78static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
81{
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
87 }
88 return false;
89}
90
91bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
93{
94#if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104#endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
108}
109EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111bool inet_rcv_saddr_any(const struct sock *sk)
112{
113#if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116#endif
117 return !sk->sk_rcv_saddr;
118}
119
120/**
121 * inet_sk_get_local_port_range - fetch ephemeral ports range
122 * @sk: socket
123 * @low: pointer to low port
124 * @high: pointer to high port
125 *
126 * Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127 * Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128 * Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129 */
130bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131{
132 int lo, hi, sk_lo, sk_hi;
133 bool local_range = false;
134 u32 sk_range;
135
136 inet_get_local_port_range(sock_net(sk), &lo, &hi);
137
138 sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139 if (unlikely(sk_range)) {
140 sk_lo = sk_range & 0xffff;
141 sk_hi = sk_range >> 16;
142
143 if (lo <= sk_lo && sk_lo <= hi)
144 lo = sk_lo;
145 if (lo <= sk_hi && sk_hi <= hi)
146 hi = sk_hi;
147 local_range = true;
148 }
149
150 *low = lo;
151 *high = hi;
152 return local_range;
153}
154EXPORT_SYMBOL(inet_sk_get_local_port_range);
155
156static bool inet_use_bhash2_on_bind(const struct sock *sk)
157{
158#if IS_ENABLED(CONFIG_IPV6)
159 if (sk->sk_family == AF_INET6) {
160 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
161
162 if (addr_type == IPV6_ADDR_ANY)
163 return false;
164
165 if (addr_type != IPV6_ADDR_MAPPED)
166 return true;
167 }
168#endif
169 return sk->sk_rcv_saddr != htonl(INADDR_ANY);
170}
171
172static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
173 kuid_t sk_uid, bool relax,
174 bool reuseport_cb_ok, bool reuseport_ok)
175{
176 int bound_dev_if2;
177
178 if (sk == sk2)
179 return false;
180
181 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
182
183 if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
184 sk->sk_bound_dev_if == bound_dev_if2) {
185 if (sk->sk_reuse && sk2->sk_reuse &&
186 sk2->sk_state != TCP_LISTEN) {
187 if (!relax || (!reuseport_ok && sk->sk_reuseport &&
188 sk2->sk_reuseport && reuseport_cb_ok &&
189 (sk2->sk_state == TCP_TIME_WAIT ||
190 uid_eq(sk_uid, sock_i_uid(sk2)))))
191 return true;
192 } else if (!reuseport_ok || !sk->sk_reuseport ||
193 !sk2->sk_reuseport || !reuseport_cb_ok ||
194 (sk2->sk_state != TCP_TIME_WAIT &&
195 !uid_eq(sk_uid, sock_i_uid(sk2)))) {
196 return true;
197 }
198 }
199 return false;
200}
201
202static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
203 kuid_t sk_uid, bool relax,
204 bool reuseport_cb_ok, bool reuseport_ok)
205{
206 if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
207 return false;
208
209 return inet_bind_conflict(sk, sk2, sk_uid, relax,
210 reuseport_cb_ok, reuseport_ok);
211}
212
213static bool inet_bhash2_conflict(const struct sock *sk,
214 const struct inet_bind2_bucket *tb2,
215 kuid_t sk_uid,
216 bool relax, bool reuseport_cb_ok,
217 bool reuseport_ok)
218{
219 struct sock *sk2;
220
221 sk_for_each_bound(sk2, &tb2->owners) {
222 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
223 reuseport_cb_ok, reuseport_ok))
224 return true;
225 }
226
227 return false;
228}
229
230#define sk_for_each_bound_bhash(__sk, __tb2, __tb) \
231 hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \
232 sk_for_each_bound(sk2, &(__tb2)->owners)
233
234/* This should be called only when the tb and tb2 hashbuckets' locks are held */
235static int inet_csk_bind_conflict(const struct sock *sk,
236 const struct inet_bind_bucket *tb,
237 const struct inet_bind2_bucket *tb2, /* may be null */
238 bool relax, bool reuseport_ok)
239{
240 kuid_t uid = sock_i_uid((struct sock *)sk);
241 struct sock_reuseport *reuseport_cb;
242 bool reuseport_cb_ok;
243 struct sock *sk2;
244
245 rcu_read_lock();
246 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
247 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
248 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
249 rcu_read_unlock();
250
251 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
252 * ipv4) should have been checked already. We need to do these two
253 * checks separately because their spinlocks have to be acquired/released
254 * independently of each other, to prevent possible deadlocks
255 */
256 if (inet_use_bhash2_on_bind(sk))
257 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
258 reuseport_cb_ok, reuseport_ok);
259
260 /* Unlike other sk lookup places we do not check
261 * for sk_net here, since _all_ the socks listed
262 * in tb->owners and tb2->owners list belong
263 * to the same net - the one this bucket belongs to.
264 */
265 sk_for_each_bound_bhash(sk2, tb2, tb) {
266 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
267 continue;
268
269 if (inet_rcv_saddr_equal(sk, sk2, true))
270 return true;
271 }
272
273 return false;
274}
275
276/* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
277 * INADDR_ANY (if ipv4) socket.
278 *
279 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
280 * against concurrent binds on the port for addr any
281 */
282static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
283 bool relax, bool reuseport_ok)
284{
285 kuid_t uid = sock_i_uid((struct sock *)sk);
286 const struct net *net = sock_net(sk);
287 struct sock_reuseport *reuseport_cb;
288 struct inet_bind_hashbucket *head2;
289 struct inet_bind2_bucket *tb2;
290 bool reuseport_cb_ok;
291
292 rcu_read_lock();
293 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
294 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
295 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
296 rcu_read_unlock();
297
298 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
299
300 spin_lock(&head2->lock);
301
302 inet_bind_bucket_for_each(tb2, &head2->chain)
303 if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
304 break;
305
306 if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
307 reuseport_ok)) {
308 spin_unlock(&head2->lock);
309 return true;
310 }
311
312 spin_unlock(&head2->lock);
313 return false;
314}
315
316/*
317 * Find an open port number for the socket. Returns with the
318 * inet_bind_hashbucket locks held if successful.
319 */
320static struct inet_bind_hashbucket *
321inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
322 struct inet_bind2_bucket **tb2_ret,
323 struct inet_bind_hashbucket **head2_ret, int *port_ret)
324{
325 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
326 int i, low, high, attempt_half, port, l3mdev;
327 struct inet_bind_hashbucket *head, *head2;
328 struct net *net = sock_net(sk);
329 struct inet_bind2_bucket *tb2;
330 struct inet_bind_bucket *tb;
331 u32 remaining, offset;
332 bool relax = false;
333
334 l3mdev = inet_sk_bound_l3mdev(sk);
335ports_exhausted:
336 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
337other_half_scan:
338 inet_sk_get_local_port_range(sk, &low, &high);
339 high++; /* [32768, 60999] -> [32768, 61000[ */
340 if (high - low < 4)
341 attempt_half = 0;
342 if (attempt_half) {
343 int half = low + (((high - low) >> 2) << 1);
344
345 if (attempt_half == 1)
346 high = half;
347 else
348 low = half;
349 }
350 remaining = high - low;
351 if (likely(remaining > 1))
352 remaining &= ~1U;
353
354 offset = get_random_u32_below(remaining);
355 /* __inet_hash_connect() favors ports having @low parity
356 * We do the opposite to not pollute connect() users.
357 */
358 offset |= 1U;
359
360other_parity_scan:
361 port = low + offset;
362 for (i = 0; i < remaining; i += 2, port += 2) {
363 if (unlikely(port >= high))
364 port -= remaining;
365 if (inet_is_local_reserved_port(net, port))
366 continue;
367 head = &hinfo->bhash[inet_bhashfn(net, port,
368 hinfo->bhash_size)];
369 spin_lock_bh(&head->lock);
370 if (inet_use_bhash2_on_bind(sk)) {
371 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
372 goto next_port;
373 }
374
375 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
376 spin_lock(&head2->lock);
377 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
378 inet_bind_bucket_for_each(tb, &head->chain)
379 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
380 if (!inet_csk_bind_conflict(sk, tb, tb2,
381 relax, false))
382 goto success;
383 spin_unlock(&head2->lock);
384 goto next_port;
385 }
386 tb = NULL;
387 goto success;
388next_port:
389 spin_unlock_bh(&head->lock);
390 cond_resched();
391 }
392
393 offset--;
394 if (!(offset & 1))
395 goto other_parity_scan;
396
397 if (attempt_half == 1) {
398 /* OK we now try the upper half of the range */
399 attempt_half = 2;
400 goto other_half_scan;
401 }
402
403 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
404 /* We still have a chance to connect to different destinations */
405 relax = true;
406 goto ports_exhausted;
407 }
408 return NULL;
409success:
410 *port_ret = port;
411 *tb_ret = tb;
412 *tb2_ret = tb2;
413 *head2_ret = head2;
414 return head;
415}
416
417static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
418 struct sock *sk)
419{
420 kuid_t uid = sock_i_uid(sk);
421
422 if (tb->fastreuseport <= 0)
423 return 0;
424 if (!sk->sk_reuseport)
425 return 0;
426 if (rcu_access_pointer(sk->sk_reuseport_cb))
427 return 0;
428 if (!uid_eq(tb->fastuid, uid))
429 return 0;
430 /* We only need to check the rcv_saddr if this tb was once marked
431 * without fastreuseport and then was reset, as we can only know that
432 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
433 * owners list.
434 */
435 if (tb->fastreuseport == FASTREUSEPORT_ANY)
436 return 1;
437#if IS_ENABLED(CONFIG_IPV6)
438 if (tb->fast_sk_family == AF_INET6)
439 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
440 inet6_rcv_saddr(sk),
441 tb->fast_rcv_saddr,
442 sk->sk_rcv_saddr,
443 tb->fast_ipv6_only,
444 ipv6_only_sock(sk), true, false);
445#endif
446 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
447 ipv6_only_sock(sk), true, false);
448}
449
450void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
451 struct sock *sk)
452{
453 kuid_t uid = sock_i_uid(sk);
454 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
455
456 if (hlist_empty(&tb->bhash2)) {
457 tb->fastreuse = reuse;
458 if (sk->sk_reuseport) {
459 tb->fastreuseport = FASTREUSEPORT_ANY;
460 tb->fastuid = uid;
461 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
462 tb->fast_ipv6_only = ipv6_only_sock(sk);
463 tb->fast_sk_family = sk->sk_family;
464#if IS_ENABLED(CONFIG_IPV6)
465 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
466#endif
467 } else {
468 tb->fastreuseport = 0;
469 }
470 } else {
471 if (!reuse)
472 tb->fastreuse = 0;
473 if (sk->sk_reuseport) {
474 /* We didn't match or we don't have fastreuseport set on
475 * the tb, but we have sk_reuseport set on this socket
476 * and we know that there are no bind conflicts with
477 * this socket in this tb, so reset our tb's reuseport
478 * settings so that any subsequent sockets that match
479 * our current socket will be put on the fast path.
480 *
481 * If we reset we need to set FASTREUSEPORT_STRICT so we
482 * do extra checking for all subsequent sk_reuseport
483 * socks.
484 */
485 if (!sk_reuseport_match(tb, sk)) {
486 tb->fastreuseport = FASTREUSEPORT_STRICT;
487 tb->fastuid = uid;
488 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
489 tb->fast_ipv6_only = ipv6_only_sock(sk);
490 tb->fast_sk_family = sk->sk_family;
491#if IS_ENABLED(CONFIG_IPV6)
492 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
493#endif
494 }
495 } else {
496 tb->fastreuseport = 0;
497 }
498 }
499}
500
501/* Obtain a reference to a local port for the given sock,
502 * if snum is zero it means select any available local port.
503 * We try to allocate an odd port (and leave even ports for connect())
504 */
505int inet_csk_get_port(struct sock *sk, unsigned short snum)
506{
507 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
508 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
509 bool found_port = false, check_bind_conflict = true;
510 bool bhash_created = false, bhash2_created = false;
511 int ret = -EADDRINUSE, port = snum, l3mdev;
512 struct inet_bind_hashbucket *head, *head2;
513 struct inet_bind2_bucket *tb2 = NULL;
514 struct inet_bind_bucket *tb = NULL;
515 bool head2_lock_acquired = false;
516 struct net *net = sock_net(sk);
517
518 l3mdev = inet_sk_bound_l3mdev(sk);
519
520 if (!port) {
521 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
522 if (!head)
523 return ret;
524
525 head2_lock_acquired = true;
526
527 if (tb && tb2)
528 goto success;
529 found_port = true;
530 } else {
531 head = &hinfo->bhash[inet_bhashfn(net, port,
532 hinfo->bhash_size)];
533 spin_lock_bh(&head->lock);
534 inet_bind_bucket_for_each(tb, &head->chain)
535 if (inet_bind_bucket_match(tb, net, port, l3mdev))
536 break;
537 }
538
539 if (!tb) {
540 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
541 head, port, l3mdev);
542 if (!tb)
543 goto fail_unlock;
544 bhash_created = true;
545 }
546
547 if (!found_port) {
548 if (!hlist_empty(&tb->bhash2)) {
549 if (sk->sk_reuse == SK_FORCE_REUSE ||
550 (tb->fastreuse > 0 && reuse) ||
551 sk_reuseport_match(tb, sk))
552 check_bind_conflict = false;
553 }
554
555 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
556 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
557 goto fail_unlock;
558 }
559
560 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
561 spin_lock(&head2->lock);
562 head2_lock_acquired = true;
563 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
564 }
565
566 if (!tb2) {
567 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
568 net, head2, tb, sk);
569 if (!tb2)
570 goto fail_unlock;
571 bhash2_created = true;
572 }
573
574 if (!found_port && check_bind_conflict) {
575 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
576 goto fail_unlock;
577 }
578
579success:
580 inet_csk_update_fastreuse(tb, sk);
581
582 if (!inet_csk(sk)->icsk_bind_hash)
583 inet_bind_hash(sk, tb, tb2, port);
584 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
585 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
586 ret = 0;
587
588fail_unlock:
589 if (ret) {
590 if (bhash2_created)
591 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
592 if (bhash_created)
593 inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
594 }
595 if (head2_lock_acquired)
596 spin_unlock(&head2->lock);
597 spin_unlock_bh(&head->lock);
598 return ret;
599}
600EXPORT_SYMBOL_GPL(inet_csk_get_port);
601
602/*
603 * Wait for an incoming connection, avoid race conditions. This must be called
604 * with the socket locked.
605 */
606static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
607{
608 struct inet_connection_sock *icsk = inet_csk(sk);
609 DEFINE_WAIT(wait);
610 int err;
611
612 /*
613 * True wake-one mechanism for incoming connections: only
614 * one process gets woken up, not the 'whole herd'.
615 * Since we do not 'race & poll' for established sockets
616 * anymore, the common case will execute the loop only once.
617 *
618 * Subtle issue: "add_wait_queue_exclusive()" will be added
619 * after any current non-exclusive waiters, and we know that
620 * it will always _stay_ after any new non-exclusive waiters
621 * because all non-exclusive waiters are added at the
622 * beginning of the wait-queue. As such, it's ok to "drop"
623 * our exclusiveness temporarily when we get woken up without
624 * having to remove and re-insert us on the wait queue.
625 */
626 for (;;) {
627 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
628 TASK_INTERRUPTIBLE);
629 release_sock(sk);
630 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
631 timeo = schedule_timeout(timeo);
632 sched_annotate_sleep();
633 lock_sock(sk);
634 err = 0;
635 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
636 break;
637 err = -EINVAL;
638 if (sk->sk_state != TCP_LISTEN)
639 break;
640 err = sock_intr_errno(timeo);
641 if (signal_pending(current))
642 break;
643 err = -EAGAIN;
644 if (!timeo)
645 break;
646 }
647 finish_wait(sk_sleep(sk), &wait);
648 return err;
649}
650
651/*
652 * This will accept the next outstanding connection.
653 */
654struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
655{
656 struct inet_connection_sock *icsk = inet_csk(sk);
657 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
658 struct request_sock *req;
659 struct sock *newsk;
660 int error;
661
662 lock_sock(sk);
663
664 /* We need to make sure that this socket is listening,
665 * and that it has something pending.
666 */
667 error = -EINVAL;
668 if (sk->sk_state != TCP_LISTEN)
669 goto out_err;
670
671 /* Find already established connection */
672 if (reqsk_queue_empty(queue)) {
673 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
674
675 /* If this is a non blocking socket don't sleep */
676 error = -EAGAIN;
677 if (!timeo)
678 goto out_err;
679
680 error = inet_csk_wait_for_connect(sk, timeo);
681 if (error)
682 goto out_err;
683 }
684 req = reqsk_queue_remove(queue, sk);
685 newsk = req->sk;
686
687 if (sk->sk_protocol == IPPROTO_TCP &&
688 tcp_rsk(req)->tfo_listener) {
689 spin_lock_bh(&queue->fastopenq.lock);
690 if (tcp_rsk(req)->tfo_listener) {
691 /* We are still waiting for the final ACK from 3WHS
692 * so can't free req now. Instead, we set req->sk to
693 * NULL to signify that the child socket is taken
694 * so reqsk_fastopen_remove() will free the req
695 * when 3WHS finishes (or is aborted).
696 */
697 req->sk = NULL;
698 req = NULL;
699 }
700 spin_unlock_bh(&queue->fastopenq.lock);
701 }
702
703out:
704 release_sock(sk);
705 if (newsk && mem_cgroup_sockets_enabled) {
706 int amt = 0;
707
708 /* atomically get the memory usage, set and charge the
709 * newsk->sk_memcg.
710 */
711 lock_sock(newsk);
712
713 mem_cgroup_sk_alloc(newsk);
714 if (newsk->sk_memcg) {
715 /* The socket has not been accepted yet, no need
716 * to look at newsk->sk_wmem_queued.
717 */
718 amt = sk_mem_pages(newsk->sk_forward_alloc +
719 atomic_read(&newsk->sk_rmem_alloc));
720 }
721
722 if (amt)
723 mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
724 GFP_KERNEL | __GFP_NOFAIL);
725
726 release_sock(newsk);
727 }
728 if (req)
729 reqsk_put(req);
730
731 if (newsk)
732 inet_init_csk_locks(newsk);
733
734 return newsk;
735out_err:
736 newsk = NULL;
737 req = NULL;
738 *err = error;
739 goto out;
740}
741EXPORT_SYMBOL(inet_csk_accept);
742
743/*
744 * Using different timers for retransmit, delayed acks and probes
745 * We may wish use just one timer maintaining a list of expire jiffies
746 * to optimize.
747 */
748void inet_csk_init_xmit_timers(struct sock *sk,
749 void (*retransmit_handler)(struct timer_list *t),
750 void (*delack_handler)(struct timer_list *t),
751 void (*keepalive_handler)(struct timer_list *t))
752{
753 struct inet_connection_sock *icsk = inet_csk(sk);
754
755 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
756 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
757 timer_setup(&sk->sk_timer, keepalive_handler, 0);
758 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
759}
760EXPORT_SYMBOL(inet_csk_init_xmit_timers);
761
762void inet_csk_clear_xmit_timers(struct sock *sk)
763{
764 struct inet_connection_sock *icsk = inet_csk(sk);
765
766 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
767
768 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
769 sk_stop_timer(sk, &icsk->icsk_delack_timer);
770 sk_stop_timer(sk, &sk->sk_timer);
771}
772EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
773
774void inet_csk_delete_keepalive_timer(struct sock *sk)
775{
776 sk_stop_timer(sk, &sk->sk_timer);
777}
778EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
779
780void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
781{
782 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
783}
784EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
785
786struct dst_entry *inet_csk_route_req(const struct sock *sk,
787 struct flowi4 *fl4,
788 const struct request_sock *req)
789{
790 const struct inet_request_sock *ireq = inet_rsk(req);
791 struct net *net = read_pnet(&ireq->ireq_net);
792 struct ip_options_rcu *opt;
793 struct rtable *rt;
794
795 rcu_read_lock();
796 opt = rcu_dereference(ireq->ireq_opt);
797
798 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
799 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
800 sk->sk_protocol, inet_sk_flowi_flags(sk),
801 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
802 ireq->ir_loc_addr, ireq->ir_rmt_port,
803 htons(ireq->ir_num), sk->sk_uid);
804 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
805 rt = ip_route_output_flow(net, fl4, sk);
806 if (IS_ERR(rt))
807 goto no_route;
808 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
809 goto route_err;
810 rcu_read_unlock();
811 return &rt->dst;
812
813route_err:
814 ip_rt_put(rt);
815no_route:
816 rcu_read_unlock();
817 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
818 return NULL;
819}
820EXPORT_SYMBOL_GPL(inet_csk_route_req);
821
822struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
823 struct sock *newsk,
824 const struct request_sock *req)
825{
826 const struct inet_request_sock *ireq = inet_rsk(req);
827 struct net *net = read_pnet(&ireq->ireq_net);
828 struct inet_sock *newinet = inet_sk(newsk);
829 struct ip_options_rcu *opt;
830 struct flowi4 *fl4;
831 struct rtable *rt;
832
833 opt = rcu_dereference(ireq->ireq_opt);
834 fl4 = &newinet->cork.fl.u.ip4;
835
836 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
837 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
838 sk->sk_protocol, inet_sk_flowi_flags(sk),
839 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
840 ireq->ir_loc_addr, ireq->ir_rmt_port,
841 htons(ireq->ir_num), sk->sk_uid);
842 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
843 rt = ip_route_output_flow(net, fl4, sk);
844 if (IS_ERR(rt))
845 goto no_route;
846 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
847 goto route_err;
848 return &rt->dst;
849
850route_err:
851 ip_rt_put(rt);
852no_route:
853 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
854 return NULL;
855}
856EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
857
858/* Decide when to expire the request and when to resend SYN-ACK */
859static void syn_ack_recalc(struct request_sock *req,
860 const int max_syn_ack_retries,
861 const u8 rskq_defer_accept,
862 int *expire, int *resend)
863{
864 if (!rskq_defer_accept) {
865 *expire = req->num_timeout >= max_syn_ack_retries;
866 *resend = 1;
867 return;
868 }
869 *expire = req->num_timeout >= max_syn_ack_retries &&
870 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
871 /* Do not resend while waiting for data after ACK,
872 * start to resend on end of deferring period to give
873 * last chance for data or ACK to create established socket.
874 */
875 *resend = !inet_rsk(req)->acked ||
876 req->num_timeout >= rskq_defer_accept - 1;
877}
878
879int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
880{
881 int err = req->rsk_ops->rtx_syn_ack(parent, req);
882
883 if (!err)
884 req->num_retrans++;
885 return err;
886}
887EXPORT_SYMBOL(inet_rtx_syn_ack);
888
889static struct request_sock *inet_reqsk_clone(struct request_sock *req,
890 struct sock *sk)
891{
892 struct sock *req_sk, *nreq_sk;
893 struct request_sock *nreq;
894
895 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
896 if (!nreq) {
897 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
898
899 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
900 sock_put(sk);
901 return NULL;
902 }
903
904 req_sk = req_to_sk(req);
905 nreq_sk = req_to_sk(nreq);
906
907 memcpy(nreq_sk, req_sk,
908 offsetof(struct sock, sk_dontcopy_begin));
909 memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
910 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
911
912 sk_node_init(&nreq_sk->sk_node);
913 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
914#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
915 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
916#endif
917 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
918
919 nreq->rsk_listener = sk;
920
921 /* We need not acquire fastopenq->lock
922 * because the child socket is locked in inet_csk_listen_stop().
923 */
924 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
925 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
926
927 return nreq;
928}
929
930static void reqsk_queue_migrated(struct request_sock_queue *queue,
931 const struct request_sock *req)
932{
933 if (req->num_timeout == 0)
934 atomic_inc(&queue->young);
935 atomic_inc(&queue->qlen);
936}
937
938static void reqsk_migrate_reset(struct request_sock *req)
939{
940 req->saved_syn = NULL;
941#if IS_ENABLED(CONFIG_IPV6)
942 inet_rsk(req)->ipv6_opt = NULL;
943 inet_rsk(req)->pktopts = NULL;
944#else
945 inet_rsk(req)->ireq_opt = NULL;
946#endif
947}
948
949/* return true if req was found in the ehash table */
950static bool reqsk_queue_unlink(struct request_sock *req)
951{
952 struct sock *sk = req_to_sk(req);
953 bool found = false;
954
955 if (sk_hashed(sk)) {
956 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
957 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
958
959 spin_lock(lock);
960 found = __sk_nulls_del_node_init_rcu(sk);
961 spin_unlock(lock);
962 }
963 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
964 reqsk_put(req);
965 return found;
966}
967
968bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
969{
970 bool unlinked = reqsk_queue_unlink(req);
971
972 if (unlinked) {
973 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
974 reqsk_put(req);
975 }
976 return unlinked;
977}
978EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
979
980void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
981{
982 inet_csk_reqsk_queue_drop(sk, req);
983 reqsk_put(req);
984}
985EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
986
987static void reqsk_timer_handler(struct timer_list *t)
988{
989 struct request_sock *req = from_timer(req, t, rsk_timer);
990 struct request_sock *nreq = NULL, *oreq = req;
991 struct sock *sk_listener = req->rsk_listener;
992 struct inet_connection_sock *icsk;
993 struct request_sock_queue *queue;
994 struct net *net;
995 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
996
997 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
998 struct sock *nsk;
999
1000 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1001 if (!nsk)
1002 goto drop;
1003
1004 nreq = inet_reqsk_clone(req, nsk);
1005 if (!nreq)
1006 goto drop;
1007
1008 /* The new timer for the cloned req can decrease the 2
1009 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1010 * hold another count to prevent use-after-free and
1011 * call reqsk_put() just before return.
1012 */
1013 refcount_set(&nreq->rsk_refcnt, 2 + 1);
1014 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1015 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1016
1017 req = nreq;
1018 sk_listener = nsk;
1019 }
1020
1021 icsk = inet_csk(sk_listener);
1022 net = sock_net(sk_listener);
1023 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1024 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1025 /* Normally all the openreqs are young and become mature
1026 * (i.e. converted to established socket) for first timeout.
1027 * If synack was not acknowledged for 1 second, it means
1028 * one of the following things: synack was lost, ack was lost,
1029 * rtt is high or nobody planned to ack (i.e. synflood).
1030 * When server is a bit loaded, queue is populated with old
1031 * open requests, reducing effective size of queue.
1032 * When server is well loaded, queue size reduces to zero
1033 * after several minutes of work. It is not synflood,
1034 * it is normal operation. The solution is pruning
1035 * too old entries overriding normal timeout, when
1036 * situation becomes dangerous.
1037 *
1038 * Essentially, we reserve half of room for young
1039 * embrions; and abort old ones without pity, if old
1040 * ones are about to clog our table.
1041 */
1042 queue = &icsk->icsk_accept_queue;
1043 qlen = reqsk_queue_len(queue);
1044 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1045 int young = reqsk_queue_len_young(queue) << 1;
1046
1047 while (max_syn_ack_retries > 2) {
1048 if (qlen < young)
1049 break;
1050 max_syn_ack_retries--;
1051 young <<= 1;
1052 }
1053 }
1054 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1055 &expire, &resend);
1056 req->rsk_ops->syn_ack_timeout(req);
1057 if (!expire &&
1058 (!resend ||
1059 !inet_rtx_syn_ack(sk_listener, req) ||
1060 inet_rsk(req)->acked)) {
1061 if (req->num_timeout++ == 0)
1062 atomic_dec(&queue->young);
1063 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1064
1065 if (!nreq)
1066 return;
1067
1068 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1069 /* delete timer */
1070 inet_csk_reqsk_queue_drop(sk_listener, nreq);
1071 goto no_ownership;
1072 }
1073
1074 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1075 reqsk_migrate_reset(oreq);
1076 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1077 reqsk_put(oreq);
1078
1079 reqsk_put(nreq);
1080 return;
1081 }
1082
1083 /* Even if we can clone the req, we may need not retransmit any more
1084 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1085 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1086 */
1087 if (nreq) {
1088 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1089no_ownership:
1090 reqsk_migrate_reset(nreq);
1091 reqsk_queue_removed(queue, nreq);
1092 __reqsk_free(nreq);
1093 }
1094
1095drop:
1096 inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1097}
1098
1099static void reqsk_queue_hash_req(struct request_sock *req,
1100 unsigned long timeout)
1101{
1102 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1103 mod_timer(&req->rsk_timer, jiffies + timeout);
1104
1105 inet_ehash_insert(req_to_sk(req), NULL, NULL);
1106 /* before letting lookups find us, make sure all req fields
1107 * are committed to memory and refcnt initialized.
1108 */
1109 smp_wmb();
1110 refcount_set(&req->rsk_refcnt, 2 + 1);
1111}
1112
1113void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1114 unsigned long timeout)
1115{
1116 reqsk_queue_hash_req(req, timeout);
1117 inet_csk_reqsk_queue_added(sk);
1118}
1119EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1120
1121static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1122 const gfp_t priority)
1123{
1124 struct inet_connection_sock *icsk = inet_csk(newsk);
1125
1126 if (!icsk->icsk_ulp_ops)
1127 return;
1128
1129 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1130}
1131
1132/**
1133 * inet_csk_clone_lock - clone an inet socket, and lock its clone
1134 * @sk: the socket to clone
1135 * @req: request_sock
1136 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1137 *
1138 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1139 */
1140struct sock *inet_csk_clone_lock(const struct sock *sk,
1141 const struct request_sock *req,
1142 const gfp_t priority)
1143{
1144 struct sock *newsk = sk_clone_lock(sk, priority);
1145
1146 if (newsk) {
1147 struct inet_connection_sock *newicsk = inet_csk(newsk);
1148
1149 inet_sk_set_state(newsk, TCP_SYN_RECV);
1150 newicsk->icsk_bind_hash = NULL;
1151 newicsk->icsk_bind2_hash = NULL;
1152
1153 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1154 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1155 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1156
1157 /* listeners have SOCK_RCU_FREE, not the children */
1158 sock_reset_flag(newsk, SOCK_RCU_FREE);
1159
1160 inet_sk(newsk)->mc_list = NULL;
1161
1162 newsk->sk_mark = inet_rsk(req)->ir_mark;
1163 atomic64_set(&newsk->sk_cookie,
1164 atomic64_read(&inet_rsk(req)->ir_cookie));
1165
1166 newicsk->icsk_retransmits = 0;
1167 newicsk->icsk_backoff = 0;
1168 newicsk->icsk_probes_out = 0;
1169 newicsk->icsk_probes_tstamp = 0;
1170
1171 /* Deinitialize accept_queue to trap illegal accesses. */
1172 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1173
1174 inet_clone_ulp(req, newsk, priority);
1175
1176 security_inet_csk_clone(newsk, req);
1177 }
1178 return newsk;
1179}
1180EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1181
1182/*
1183 * At this point, there should be no process reference to this
1184 * socket, and thus no user references at all. Therefore we
1185 * can assume the socket waitqueue is inactive and nobody will
1186 * try to jump onto it.
1187 */
1188void inet_csk_destroy_sock(struct sock *sk)
1189{
1190 WARN_ON(sk->sk_state != TCP_CLOSE);
1191 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1192
1193 /* It cannot be in hash table! */
1194 WARN_ON(!sk_unhashed(sk));
1195
1196 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1197 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1198
1199 sk->sk_prot->destroy(sk);
1200
1201 sk_stream_kill_queues(sk);
1202
1203 xfrm_sk_free_policy(sk);
1204
1205 this_cpu_dec(*sk->sk_prot->orphan_count);
1206
1207 sock_put(sk);
1208}
1209EXPORT_SYMBOL(inet_csk_destroy_sock);
1210
1211/* This function allows to force a closure of a socket after the call to
1212 * tcp/dccp_create_openreq_child().
1213 */
1214void inet_csk_prepare_forced_close(struct sock *sk)
1215 __releases(&sk->sk_lock.slock)
1216{
1217 /* sk_clone_lock locked the socket and set refcnt to 2 */
1218 bh_unlock_sock(sk);
1219 sock_put(sk);
1220 inet_csk_prepare_for_destroy_sock(sk);
1221 inet_sk(sk)->inet_num = 0;
1222}
1223EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1224
1225static int inet_ulp_can_listen(const struct sock *sk)
1226{
1227 const struct inet_connection_sock *icsk = inet_csk(sk);
1228
1229 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1230 return -EINVAL;
1231
1232 return 0;
1233}
1234
1235int inet_csk_listen_start(struct sock *sk)
1236{
1237 struct inet_connection_sock *icsk = inet_csk(sk);
1238 struct inet_sock *inet = inet_sk(sk);
1239 int err;
1240
1241 err = inet_ulp_can_listen(sk);
1242 if (unlikely(err))
1243 return err;
1244
1245 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1246
1247 sk->sk_ack_backlog = 0;
1248 inet_csk_delack_init(sk);
1249
1250 /* There is race window here: we announce ourselves listening,
1251 * but this transition is still not validated by get_port().
1252 * It is OK, because this socket enters to hash table only
1253 * after validation is complete.
1254 */
1255 inet_sk_state_store(sk, TCP_LISTEN);
1256 err = sk->sk_prot->get_port(sk, inet->inet_num);
1257 if (!err) {
1258 inet->inet_sport = htons(inet->inet_num);
1259
1260 sk_dst_reset(sk);
1261 err = sk->sk_prot->hash(sk);
1262
1263 if (likely(!err))
1264 return 0;
1265 }
1266
1267 inet_sk_set_state(sk, TCP_CLOSE);
1268 return err;
1269}
1270EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1271
1272static void inet_child_forget(struct sock *sk, struct request_sock *req,
1273 struct sock *child)
1274{
1275 sk->sk_prot->disconnect(child, O_NONBLOCK);
1276
1277 sock_orphan(child);
1278
1279 this_cpu_inc(*sk->sk_prot->orphan_count);
1280
1281 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1282 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1283 BUG_ON(sk != req->rsk_listener);
1284
1285 /* Paranoid, to prevent race condition if
1286 * an inbound pkt destined for child is
1287 * blocked by sock lock in tcp_v4_rcv().
1288 * Also to satisfy an assertion in
1289 * tcp_v4_destroy_sock().
1290 */
1291 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1292 }
1293 inet_csk_destroy_sock(child);
1294}
1295
1296struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1297 struct request_sock *req,
1298 struct sock *child)
1299{
1300 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1301
1302 spin_lock(&queue->rskq_lock);
1303 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1304 inet_child_forget(sk, req, child);
1305 child = NULL;
1306 } else {
1307 req->sk = child;
1308 req->dl_next = NULL;
1309 if (queue->rskq_accept_head == NULL)
1310 WRITE_ONCE(queue->rskq_accept_head, req);
1311 else
1312 queue->rskq_accept_tail->dl_next = req;
1313 queue->rskq_accept_tail = req;
1314 sk_acceptq_added(sk);
1315 }
1316 spin_unlock(&queue->rskq_lock);
1317 return child;
1318}
1319EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1320
1321struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1322 struct request_sock *req, bool own_req)
1323{
1324 if (own_req) {
1325 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1326 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1327
1328 if (sk != req->rsk_listener) {
1329 /* another listening sk has been selected,
1330 * migrate the req to it.
1331 */
1332 struct request_sock *nreq;
1333
1334 /* hold a refcnt for the nreq->rsk_listener
1335 * which is assigned in inet_reqsk_clone()
1336 */
1337 sock_hold(sk);
1338 nreq = inet_reqsk_clone(req, sk);
1339 if (!nreq) {
1340 inet_child_forget(sk, req, child);
1341 goto child_put;
1342 }
1343
1344 refcount_set(&nreq->rsk_refcnt, 1);
1345 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1346 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1347 reqsk_migrate_reset(req);
1348 reqsk_put(req);
1349 return child;
1350 }
1351
1352 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1353 reqsk_migrate_reset(nreq);
1354 __reqsk_free(nreq);
1355 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1356 return child;
1357 }
1358 }
1359 /* Too bad, another child took ownership of the request, undo. */
1360child_put:
1361 bh_unlock_sock(child);
1362 sock_put(child);
1363 return NULL;
1364}
1365EXPORT_SYMBOL(inet_csk_complete_hashdance);
1366
1367/*
1368 * This routine closes sockets which have been at least partially
1369 * opened, but not yet accepted.
1370 */
1371void inet_csk_listen_stop(struct sock *sk)
1372{
1373 struct inet_connection_sock *icsk = inet_csk(sk);
1374 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1375 struct request_sock *next, *req;
1376
1377 /* Following specs, it would be better either to send FIN
1378 * (and enter FIN-WAIT-1, it is normal close)
1379 * or to send active reset (abort).
1380 * Certainly, it is pretty dangerous while synflood, but it is
1381 * bad justification for our negligence 8)
1382 * To be honest, we are not able to make either
1383 * of the variants now. --ANK
1384 */
1385 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1386 struct sock *child = req->sk, *nsk;
1387 struct request_sock *nreq;
1388
1389 local_bh_disable();
1390 bh_lock_sock(child);
1391 WARN_ON(sock_owned_by_user(child));
1392 sock_hold(child);
1393
1394 nsk = reuseport_migrate_sock(sk, child, NULL);
1395 if (nsk) {
1396 nreq = inet_reqsk_clone(req, nsk);
1397 if (nreq) {
1398 refcount_set(&nreq->rsk_refcnt, 1);
1399
1400 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1401 __NET_INC_STATS(sock_net(nsk),
1402 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1403 reqsk_migrate_reset(req);
1404 } else {
1405 __NET_INC_STATS(sock_net(nsk),
1406 LINUX_MIB_TCPMIGRATEREQFAILURE);
1407 reqsk_migrate_reset(nreq);
1408 __reqsk_free(nreq);
1409 }
1410
1411 /* inet_csk_reqsk_queue_add() has already
1412 * called inet_child_forget() on failure case.
1413 */
1414 goto skip_child_forget;
1415 }
1416 }
1417
1418 inet_child_forget(sk, req, child);
1419skip_child_forget:
1420 reqsk_put(req);
1421 bh_unlock_sock(child);
1422 local_bh_enable();
1423 sock_put(child);
1424
1425 cond_resched();
1426 }
1427 if (queue->fastopenq.rskq_rst_head) {
1428 /* Free all the reqs queued in rskq_rst_head. */
1429 spin_lock_bh(&queue->fastopenq.lock);
1430 req = queue->fastopenq.rskq_rst_head;
1431 queue->fastopenq.rskq_rst_head = NULL;
1432 spin_unlock_bh(&queue->fastopenq.lock);
1433 while (req != NULL) {
1434 next = req->dl_next;
1435 reqsk_put(req);
1436 req = next;
1437 }
1438 }
1439 WARN_ON_ONCE(sk->sk_ack_backlog);
1440}
1441EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1442
1443void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1444{
1445 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1446 const struct inet_sock *inet = inet_sk(sk);
1447
1448 sin->sin_family = AF_INET;
1449 sin->sin_addr.s_addr = inet->inet_daddr;
1450 sin->sin_port = inet->inet_dport;
1451}
1452EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1453
1454static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1455{
1456 const struct inet_sock *inet = inet_sk(sk);
1457 const struct ip_options_rcu *inet_opt;
1458 __be32 daddr = inet->inet_daddr;
1459 struct flowi4 *fl4;
1460 struct rtable *rt;
1461
1462 rcu_read_lock();
1463 inet_opt = rcu_dereference(inet->inet_opt);
1464 if (inet_opt && inet_opt->opt.srr)
1465 daddr = inet_opt->opt.faddr;
1466 fl4 = &fl->u.ip4;
1467 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1468 inet->inet_saddr, inet->inet_dport,
1469 inet->inet_sport, sk->sk_protocol,
1470 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1471 if (IS_ERR(rt))
1472 rt = NULL;
1473 if (rt)
1474 sk_setup_caps(sk, &rt->dst);
1475 rcu_read_unlock();
1476
1477 return &rt->dst;
1478}
1479
1480struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1481{
1482 struct dst_entry *dst = __sk_dst_check(sk, 0);
1483 struct inet_sock *inet = inet_sk(sk);
1484
1485 if (!dst) {
1486 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1487 if (!dst)
1488 goto out;
1489 }
1490 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1491
1492 dst = __sk_dst_check(sk, 0);
1493 if (!dst)
1494 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1495out:
1496 return dst;
1497}
1498EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);