Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Generic pidhash and scalable, time-bounded PID allocator
  3 *
  4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  5 * (C) 2004 Nadia Yvette Chambers, Oracle
  6 * (C) 2002-2004 Ingo Molnar, Red Hat
  7 *
  8 * pid-structures are backing objects for tasks sharing a given ID to chain
  9 * against. There is very little to them aside from hashing them and
 10 * parking tasks using given ID's on a list.
 11 *
 12 * The hash is always changed with the tasklist_lock write-acquired,
 13 * and the hash is only accessed with the tasklist_lock at least
 14 * read-acquired, so there's no additional SMP locking needed here.
 15 *
 16 * We have a list of bitmap pages, which bitmaps represent the PID space.
 17 * Allocating and freeing PIDs is completely lockless. The worst-case
 18 * allocation scenario when all but one out of 1 million PIDs possible are
 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 21 *
 22 * Pid namespaces:
 23 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 24 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 25 *     Many thanks to Oleg Nesterov for comments and help
 26 *
 27 */
 28
 29#include <linux/mm.h>
 30#include <linux/export.h>
 31#include <linux/slab.h>
 32#include <linux/init.h>
 33#include <linux/rculist.h>
 34#include <linux/bootmem.h>
 35#include <linux/hash.h>
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/proc_fs.h>
 
 
 41#include <linux/sched/task.h>
 42#include <linux/idr.h>
 
 
 43
 44struct pid init_struct_pid = {
 45	.count 		= ATOMIC_INIT(1),
 46	.tasks		= {
 47		{ .first = NULL },
 48		{ .first = NULL },
 49		{ .first = NULL },
 50	},
 51	.level		= 0,
 52	.numbers	= { {
 53		.nr		= 0,
 54		.ns		= &init_pid_ns,
 55	}, }
 56};
 57
 58int pid_max = PID_MAX_DEFAULT;
 59
 60#define RESERVED_PIDS		300
 61
 62int pid_max_min = RESERVED_PIDS + 1;
 63int pid_max_max = PID_MAX_LIMIT;
 64
 65/*
 66 * PID-map pages start out as NULL, they get allocated upon
 67 * first use and are never deallocated. This way a low pid_max
 68 * value does not cause lots of bitmaps to be allocated, but
 69 * the scheme scales to up to 4 million PIDs, runtime.
 70 */
 71struct pid_namespace init_pid_ns = {
 72	.kref = KREF_INIT(2),
 73	.idr = IDR_INIT(init_pid_ns.idr),
 74	.pid_allocated = PIDNS_ADDING,
 75	.level = 0,
 76	.child_reaper = &init_task,
 77	.user_ns = &init_user_ns,
 78	.ns.inum = PROC_PID_INIT_INO,
 79#ifdef CONFIG_PID_NS
 80	.ns.ops = &pidns_operations,
 81#endif
 
 
 
 82};
 83EXPORT_SYMBOL_GPL(init_pid_ns);
 84
 85/*
 86 * Note: disable interrupts while the pidmap_lock is held as an
 87 * interrupt might come in and do read_lock(&tasklist_lock).
 88 *
 89 * If we don't disable interrupts there is a nasty deadlock between
 90 * detach_pid()->free_pid() and another cpu that does
 91 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 92 * read_lock(&tasklist_lock);
 93 *
 94 * After we clean up the tasklist_lock and know there are no
 95 * irq handlers that take it we can leave the interrupts enabled.
 96 * For now it is easier to be safe than to prove it can't happen.
 97 */
 98
 99static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
100
101void put_pid(struct pid *pid)
102{
103	struct pid_namespace *ns;
104
105	if (!pid)
106		return;
107
108	ns = pid->numbers[pid->level].ns;
109	if ((atomic_read(&pid->count) == 1) ||
110	     atomic_dec_and_test(&pid->count)) {
111		kmem_cache_free(ns->pid_cachep, pid);
112		put_pid_ns(ns);
113	}
114}
115EXPORT_SYMBOL_GPL(put_pid);
116
117static void delayed_put_pid(struct rcu_head *rhp)
118{
119	struct pid *pid = container_of(rhp, struct pid, rcu);
120	put_pid(pid);
121}
122
123void free_pid(struct pid *pid)
124{
125	/* We can be called with write_lock_irq(&tasklist_lock) held */
126	int i;
127	unsigned long flags;
128
129	spin_lock_irqsave(&pidmap_lock, flags);
130	for (i = 0; i <= pid->level; i++) {
131		struct upid *upid = pid->numbers + i;
132		struct pid_namespace *ns = upid->ns;
133		switch (--ns->pid_allocated) {
134		case 2:
135		case 1:
136			/* When all that is left in the pid namespace
137			 * is the reaper wake up the reaper.  The reaper
138			 * may be sleeping in zap_pid_ns_processes().
139			 */
140			wake_up_process(ns->child_reaper);
141			break;
142		case PIDNS_ADDING:
143			/* Handle a fork failure of the first process */
144			WARN_ON(ns->child_reaper);
145			ns->pid_allocated = 0;
146			/* fall through */
147		case 0:
148			schedule_work(&ns->proc_work);
149			break;
150		}
151
152		idr_remove(&ns->idr, upid->nr);
153	}
154	spin_unlock_irqrestore(&pidmap_lock, flags);
155
156	call_rcu(&pid->rcu, delayed_put_pid);
157}
158
159struct pid *alloc_pid(struct pid_namespace *ns)
 
160{
161	struct pid *pid;
162	enum pid_type type;
163	int i, nr;
164	struct pid_namespace *tmp;
165	struct upid *upid;
166	int retval = -ENOMEM;
167
 
 
 
 
 
 
 
 
 
 
 
168	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
169	if (!pid)
170		return ERR_PTR(retval);
171
172	tmp = ns;
173	pid->level = ns->level;
174
175	for (i = ns->level; i >= 0; i--) {
176		int pid_min = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177
178		idr_preload(GFP_KERNEL);
179		spin_lock_irq(&pidmap_lock);
180
181		/*
182		 * init really needs pid 1, but after reaching the maximum
183		 * wrap back to RESERVED_PIDS
184		 */
185		if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
186			pid_min = RESERVED_PIDS;
187
188		/*
189		 * Store a null pointer so find_pid_ns does not find
190		 * a partially initialized PID (see below).
191		 */
192		nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
193				      pid_max, GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
 
 
 
194		spin_unlock_irq(&pidmap_lock);
195		idr_preload_end();
196
197		if (nr < 0) {
198			retval = nr;
199			goto out_free;
200		}
201
202		pid->numbers[i].nr = nr;
203		pid->numbers[i].ns = tmp;
204		tmp = tmp->parent;
205	}
206
207	if (unlikely(is_child_reaper(pid))) {
208		if (pid_ns_prepare_proc(ns))
209			goto out_free;
210	}
 
 
 
 
 
211
212	get_pid_ns(ns);
213	atomic_set(&pid->count, 1);
 
214	for (type = 0; type < PIDTYPE_MAX; ++type)
215		INIT_HLIST_HEAD(&pid->tasks[type]);
216
 
 
 
217	upid = pid->numbers + ns->level;
218	spin_lock_irq(&pidmap_lock);
219	if (!(ns->pid_allocated & PIDNS_ADDING))
220		goto out_unlock;
221	for ( ; upid >= pid->numbers; --upid) {
222		/* Make the PID visible to find_pid_ns. */
223		idr_replace(&upid->ns->idr, pid, upid->nr);
224		upid->ns->pid_allocated++;
225	}
226	spin_unlock_irq(&pidmap_lock);
227
228	return pid;
229
230out_unlock:
231	spin_unlock_irq(&pidmap_lock);
232	put_pid_ns(ns);
233
234out_free:
235	spin_lock_irq(&pidmap_lock);
236	while (++i <= ns->level)
237		idr_remove(&ns->idr, (pid->numbers + i)->nr);
 
 
238
239	/* On failure to allocate the first pid, reset the state */
240	if (ns->pid_allocated == PIDNS_ADDING)
241		idr_set_cursor(&ns->idr, 0);
242
243	spin_unlock_irq(&pidmap_lock);
244
245	kmem_cache_free(ns->pid_cachep, pid);
246	return ERR_PTR(retval);
247}
248
249void disable_pid_allocation(struct pid_namespace *ns)
250{
251	spin_lock_irq(&pidmap_lock);
252	ns->pid_allocated &= ~PIDNS_ADDING;
253	spin_unlock_irq(&pidmap_lock);
254}
255
256struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
257{
258	return idr_find(&ns->idr, nr);
259}
260EXPORT_SYMBOL_GPL(find_pid_ns);
261
262struct pid *find_vpid(int nr)
263{
264	return find_pid_ns(nr, task_active_pid_ns(current));
265}
266EXPORT_SYMBOL_GPL(find_vpid);
267
 
 
 
 
 
 
 
268/*
269 * attach_pid() must be called with the tasklist_lock write-held.
270 */
271void attach_pid(struct task_struct *task, enum pid_type type)
272{
273	struct pid_link *link = &task->pids[type];
274	hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
275}
276
277static void __change_pid(struct task_struct *task, enum pid_type type,
278			struct pid *new)
279{
280	struct pid_link *link;
281	struct pid *pid;
282	int tmp;
283
284	link = &task->pids[type];
285	pid = link->pid;
286
287	hlist_del_rcu(&link->node);
288	link->pid = new;
289
290	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
291		if (!hlist_empty(&pid->tasks[tmp]))
292			return;
293
294	free_pid(pid);
295}
296
297void detach_pid(struct task_struct *task, enum pid_type type)
298{
299	__change_pid(task, type, NULL);
300}
301
302void change_pid(struct task_struct *task, enum pid_type type,
303		struct pid *pid)
304{
305	__change_pid(task, type, pid);
306	attach_pid(task, type);
307}
308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
309/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
310void transfer_pid(struct task_struct *old, struct task_struct *new,
311			   enum pid_type type)
312{
313	new->pids[type].pid = old->pids[type].pid;
314	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
 
315}
316
317struct task_struct *pid_task(struct pid *pid, enum pid_type type)
318{
319	struct task_struct *result = NULL;
320	if (pid) {
321		struct hlist_node *first;
322		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
323					      lockdep_tasklist_lock_is_held());
324		if (first)
325			result = hlist_entry(first, struct task_struct, pids[(type)].node);
326	}
327	return result;
328}
329EXPORT_SYMBOL(pid_task);
330
331/*
332 * Must be called under rcu_read_lock().
333 */
334struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
335{
336	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
337			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
338	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
339}
340
341struct task_struct *find_task_by_vpid(pid_t vnr)
342{
343	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
344}
345
346struct task_struct *find_get_task_by_vpid(pid_t nr)
347{
348	struct task_struct *task;
349
350	rcu_read_lock();
351	task = find_task_by_vpid(nr);
352	if (task)
353		get_task_struct(task);
354	rcu_read_unlock();
355
356	return task;
357}
358
359struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
360{
361	struct pid *pid;
362	rcu_read_lock();
363	if (type != PIDTYPE_PID)
364		task = task->group_leader;
365	pid = get_pid(rcu_dereference(task->pids[type].pid));
366	rcu_read_unlock();
367	return pid;
368}
369EXPORT_SYMBOL_GPL(get_task_pid);
370
371struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
372{
373	struct task_struct *result;
374	rcu_read_lock();
375	result = pid_task(pid, type);
376	if (result)
377		get_task_struct(result);
378	rcu_read_unlock();
379	return result;
380}
381EXPORT_SYMBOL_GPL(get_pid_task);
382
383struct pid *find_get_pid(pid_t nr)
384{
385	struct pid *pid;
386
387	rcu_read_lock();
388	pid = get_pid(find_vpid(nr));
389	rcu_read_unlock();
390
391	return pid;
392}
393EXPORT_SYMBOL_GPL(find_get_pid);
394
395pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
396{
397	struct upid *upid;
398	pid_t nr = 0;
399
400	if (pid && ns->level <= pid->level) {
401		upid = &pid->numbers[ns->level];
402		if (upid->ns == ns)
403			nr = upid->nr;
404	}
405	return nr;
406}
407EXPORT_SYMBOL_GPL(pid_nr_ns);
408
409pid_t pid_vnr(struct pid *pid)
410{
411	return pid_nr_ns(pid, task_active_pid_ns(current));
412}
413EXPORT_SYMBOL_GPL(pid_vnr);
414
415pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
416			struct pid_namespace *ns)
417{
418	pid_t nr = 0;
419
420	rcu_read_lock();
421	if (!ns)
422		ns = task_active_pid_ns(current);
423	if (likely(pid_alive(task))) {
424		if (type != PIDTYPE_PID) {
425			if (type == __PIDTYPE_TGID)
426				type = PIDTYPE_PID;
427
428			task = task->group_leader;
429		}
430		nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
431	}
432	rcu_read_unlock();
433
434	return nr;
435}
436EXPORT_SYMBOL(__task_pid_nr_ns);
437
438struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
439{
440	return ns_of_pid(task_pid(tsk));
441}
442EXPORT_SYMBOL_GPL(task_active_pid_ns);
443
444/*
445 * Used by proc to find the first pid that is greater than or equal to nr.
446 *
447 * If there is a pid at nr this function is exactly the same as find_pid_ns.
448 */
449struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
450{
451	return idr_get_next(&ns->idr, &nr);
452}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453
454void __init pid_idr_init(void)
455{
456	/* Verify no one has done anything silly: */
457	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
458
459	/* bump default and minimum pid_max based on number of cpus */
460	pid_max = min(pid_max_max, max_t(int, pid_max,
461				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
462	pid_max_min = max_t(int, pid_max_min,
463				PIDS_PER_CPU_MIN * num_possible_cpus());
464	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
465
466	idr_init(&init_pid_ns.idr);
467
468	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
469			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic pidhash and scalable, time-bounded PID allocator
  4 *
  5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  6 * (C) 2004 Nadia Yvette Chambers, Oracle
  7 * (C) 2002-2004 Ingo Molnar, Red Hat
  8 *
  9 * pid-structures are backing objects for tasks sharing a given ID to chain
 10 * against. There is very little to them aside from hashing them and
 11 * parking tasks using given ID's on a list.
 12 *
 13 * The hash is always changed with the tasklist_lock write-acquired,
 14 * and the hash is only accessed with the tasklist_lock at least
 15 * read-acquired, so there's no additional SMP locking needed here.
 16 *
 17 * We have a list of bitmap pages, which bitmaps represent the PID space.
 18 * Allocating and freeing PIDs is completely lockless. The worst-case
 19 * allocation scenario when all but one out of 1 million PIDs possible are
 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 22 *
 23 * Pid namespaces:
 24 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 25 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 26 *     Many thanks to Oleg Nesterov for comments and help
 27 *
 28 */
 29
 30#include <linux/mm.h>
 31#include <linux/export.h>
 32#include <linux/slab.h>
 33#include <linux/init.h>
 34#include <linux/rculist.h>
 35#include <linux/memblock.h>
 
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/refcount.h>
 41#include <linux/anon_inodes.h>
 42#include <linux/sched/signal.h>
 43#include <linux/sched/task.h>
 44#include <linux/idr.h>
 45#include <net/sock.h>
 46#include <uapi/linux/pidfd.h>
 47
 48struct pid init_struct_pid = {
 49	.count		= REFCOUNT_INIT(1),
 50	.tasks		= {
 51		{ .first = NULL },
 52		{ .first = NULL },
 53		{ .first = NULL },
 54	},
 55	.level		= 0,
 56	.numbers	= { {
 57		.nr		= 0,
 58		.ns		= &init_pid_ns,
 59	}, }
 60};
 61
 62int pid_max = PID_MAX_DEFAULT;
 63
 64#define RESERVED_PIDS		300
 65
 66int pid_max_min = RESERVED_PIDS + 1;
 67int pid_max_max = PID_MAX_LIMIT;
 68
 69/*
 70 * PID-map pages start out as NULL, they get allocated upon
 71 * first use and are never deallocated. This way a low pid_max
 72 * value does not cause lots of bitmaps to be allocated, but
 73 * the scheme scales to up to 4 million PIDs, runtime.
 74 */
 75struct pid_namespace init_pid_ns = {
 76	.ns.count = REFCOUNT_INIT(2),
 77	.idr = IDR_INIT(init_pid_ns.idr),
 78	.pid_allocated = PIDNS_ADDING,
 79	.level = 0,
 80	.child_reaper = &init_task,
 81	.user_ns = &init_user_ns,
 82	.ns.inum = PROC_PID_INIT_INO,
 83#ifdef CONFIG_PID_NS
 84	.ns.ops = &pidns_operations,
 85#endif
 86#if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
 87	.memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
 88#endif
 89};
 90EXPORT_SYMBOL_GPL(init_pid_ns);
 91
 92/*
 93 * Note: disable interrupts while the pidmap_lock is held as an
 94 * interrupt might come in and do read_lock(&tasklist_lock).
 95 *
 96 * If we don't disable interrupts there is a nasty deadlock between
 97 * detach_pid()->free_pid() and another cpu that does
 98 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 99 * read_lock(&tasklist_lock);
100 *
101 * After we clean up the tasklist_lock and know there are no
102 * irq handlers that take it we can leave the interrupts enabled.
103 * For now it is easier to be safe than to prove it can't happen.
104 */
105
106static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
107
108void put_pid(struct pid *pid)
109{
110	struct pid_namespace *ns;
111
112	if (!pid)
113		return;
114
115	ns = pid->numbers[pid->level].ns;
116	if (refcount_dec_and_test(&pid->count)) {
 
117		kmem_cache_free(ns->pid_cachep, pid);
118		put_pid_ns(ns);
119	}
120}
121EXPORT_SYMBOL_GPL(put_pid);
122
123static void delayed_put_pid(struct rcu_head *rhp)
124{
125	struct pid *pid = container_of(rhp, struct pid, rcu);
126	put_pid(pid);
127}
128
129void free_pid(struct pid *pid)
130{
131	/* We can be called with write_lock_irq(&tasklist_lock) held */
132	int i;
133	unsigned long flags;
134
135	spin_lock_irqsave(&pidmap_lock, flags);
136	for (i = 0; i <= pid->level; i++) {
137		struct upid *upid = pid->numbers + i;
138		struct pid_namespace *ns = upid->ns;
139		switch (--ns->pid_allocated) {
140		case 2:
141		case 1:
142			/* When all that is left in the pid namespace
143			 * is the reaper wake up the reaper.  The reaper
144			 * may be sleeping in zap_pid_ns_processes().
145			 */
146			wake_up_process(ns->child_reaper);
147			break;
148		case PIDNS_ADDING:
149			/* Handle a fork failure of the first process */
150			WARN_ON(ns->child_reaper);
151			ns->pid_allocated = 0;
 
 
 
152			break;
153		}
154
155		idr_remove(&ns->idr, upid->nr);
156	}
157	spin_unlock_irqrestore(&pidmap_lock, flags);
158
159	call_rcu(&pid->rcu, delayed_put_pid);
160}
161
162struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
163		      size_t set_tid_size)
164{
165	struct pid *pid;
166	enum pid_type type;
167	int i, nr;
168	struct pid_namespace *tmp;
169	struct upid *upid;
170	int retval = -ENOMEM;
171
172	/*
173	 * set_tid_size contains the size of the set_tid array. Starting at
174	 * the most nested currently active PID namespace it tells alloc_pid()
175	 * which PID to set for a process in that most nested PID namespace
176	 * up to set_tid_size PID namespaces. It does not have to set the PID
177	 * for a process in all nested PID namespaces but set_tid_size must
178	 * never be greater than the current ns->level + 1.
179	 */
180	if (set_tid_size > ns->level + 1)
181		return ERR_PTR(-EINVAL);
182
183	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
184	if (!pid)
185		return ERR_PTR(retval);
186
187	tmp = ns;
188	pid->level = ns->level;
189
190	for (i = ns->level; i >= 0; i--) {
191		int tid = 0;
192
193		if (set_tid_size) {
194			tid = set_tid[ns->level - i];
195
196			retval = -EINVAL;
197			if (tid < 1 || tid >= pid_max)
198				goto out_free;
199			/*
200			 * Also fail if a PID != 1 is requested and
201			 * no PID 1 exists.
202			 */
203			if (tid != 1 && !tmp->child_reaper)
204				goto out_free;
205			retval = -EPERM;
206			if (!checkpoint_restore_ns_capable(tmp->user_ns))
207				goto out_free;
208			set_tid_size--;
209		}
210
211		idr_preload(GFP_KERNEL);
212		spin_lock_irq(&pidmap_lock);
213
214		if (tid) {
215			nr = idr_alloc(&tmp->idr, NULL, tid,
216				       tid + 1, GFP_ATOMIC);
217			/*
218			 * If ENOSPC is returned it means that the PID is
219			 * alreay in use. Return EEXIST in that case.
220			 */
221			if (nr == -ENOSPC)
222				nr = -EEXIST;
223		} else {
224			int pid_min = 1;
225			/*
226			 * init really needs pid 1, but after reaching the
227			 * maximum wrap back to RESERVED_PIDS
228			 */
229			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
230				pid_min = RESERVED_PIDS;
231
232			/*
233			 * Store a null pointer so find_pid_ns does not find
234			 * a partially initialized PID (see below).
235			 */
236			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
237					      pid_max, GFP_ATOMIC);
238		}
239		spin_unlock_irq(&pidmap_lock);
240		idr_preload_end();
241
242		if (nr < 0) {
243			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
244			goto out_free;
245		}
246
247		pid->numbers[i].nr = nr;
248		pid->numbers[i].ns = tmp;
249		tmp = tmp->parent;
250	}
251
252	/*
253	 * ENOMEM is not the most obvious choice especially for the case
254	 * where the child subreaper has already exited and the pid
255	 * namespace denies the creation of any new processes. But ENOMEM
256	 * is what we have exposed to userspace for a long time and it is
257	 * documented behavior for pid namespaces. So we can't easily
258	 * change it even if there were an error code better suited.
259	 */
260	retval = -ENOMEM;
261
262	get_pid_ns(ns);
263	refcount_set(&pid->count, 1);
264	spin_lock_init(&pid->lock);
265	for (type = 0; type < PIDTYPE_MAX; ++type)
266		INIT_HLIST_HEAD(&pid->tasks[type]);
267
268	init_waitqueue_head(&pid->wait_pidfd);
269	INIT_HLIST_HEAD(&pid->inodes);
270
271	upid = pid->numbers + ns->level;
272	spin_lock_irq(&pidmap_lock);
273	if (!(ns->pid_allocated & PIDNS_ADDING))
274		goto out_unlock;
275	for ( ; upid >= pid->numbers; --upid) {
276		/* Make the PID visible to find_pid_ns. */
277		idr_replace(&upid->ns->idr, pid, upid->nr);
278		upid->ns->pid_allocated++;
279	}
280	spin_unlock_irq(&pidmap_lock);
281
282	return pid;
283
284out_unlock:
285	spin_unlock_irq(&pidmap_lock);
286	put_pid_ns(ns);
287
288out_free:
289	spin_lock_irq(&pidmap_lock);
290	while (++i <= ns->level) {
291		upid = pid->numbers + i;
292		idr_remove(&upid->ns->idr, upid->nr);
293	}
294
295	/* On failure to allocate the first pid, reset the state */
296	if (ns->pid_allocated == PIDNS_ADDING)
297		idr_set_cursor(&ns->idr, 0);
298
299	spin_unlock_irq(&pidmap_lock);
300
301	kmem_cache_free(ns->pid_cachep, pid);
302	return ERR_PTR(retval);
303}
304
305void disable_pid_allocation(struct pid_namespace *ns)
306{
307	spin_lock_irq(&pidmap_lock);
308	ns->pid_allocated &= ~PIDNS_ADDING;
309	spin_unlock_irq(&pidmap_lock);
310}
311
312struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
313{
314	return idr_find(&ns->idr, nr);
315}
316EXPORT_SYMBOL_GPL(find_pid_ns);
317
318struct pid *find_vpid(int nr)
319{
320	return find_pid_ns(nr, task_active_pid_ns(current));
321}
322EXPORT_SYMBOL_GPL(find_vpid);
323
324static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
325{
326	return (type == PIDTYPE_PID) ?
327		&task->thread_pid :
328		&task->signal->pids[type];
329}
330
331/*
332 * attach_pid() must be called with the tasklist_lock write-held.
333 */
334void attach_pid(struct task_struct *task, enum pid_type type)
335{
336	struct pid *pid = *task_pid_ptr(task, type);
337	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
338}
339
340static void __change_pid(struct task_struct *task, enum pid_type type,
341			struct pid *new)
342{
343	struct pid **pid_ptr = task_pid_ptr(task, type);
344	struct pid *pid;
345	int tmp;
346
347	pid = *pid_ptr;
 
348
349	hlist_del_rcu(&task->pid_links[type]);
350	*pid_ptr = new;
351
352	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
353		if (pid_has_task(pid, tmp))
354			return;
355
356	free_pid(pid);
357}
358
359void detach_pid(struct task_struct *task, enum pid_type type)
360{
361	__change_pid(task, type, NULL);
362}
363
364void change_pid(struct task_struct *task, enum pid_type type,
365		struct pid *pid)
366{
367	__change_pid(task, type, pid);
368	attach_pid(task, type);
369}
370
371void exchange_tids(struct task_struct *left, struct task_struct *right)
372{
373	struct pid *pid1 = left->thread_pid;
374	struct pid *pid2 = right->thread_pid;
375	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
376	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
377
378	/* Swap the single entry tid lists */
379	hlists_swap_heads_rcu(head1, head2);
380
381	/* Swap the per task_struct pid */
382	rcu_assign_pointer(left->thread_pid, pid2);
383	rcu_assign_pointer(right->thread_pid, pid1);
384
385	/* Swap the cached value */
386	WRITE_ONCE(left->pid, pid_nr(pid2));
387	WRITE_ONCE(right->pid, pid_nr(pid1));
388}
389
390/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
391void transfer_pid(struct task_struct *old, struct task_struct *new,
392			   enum pid_type type)
393{
394	if (type == PIDTYPE_PID)
395		new->thread_pid = old->thread_pid;
396	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
397}
398
399struct task_struct *pid_task(struct pid *pid, enum pid_type type)
400{
401	struct task_struct *result = NULL;
402	if (pid) {
403		struct hlist_node *first;
404		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
405					      lockdep_tasklist_lock_is_held());
406		if (first)
407			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
408	}
409	return result;
410}
411EXPORT_SYMBOL(pid_task);
412
413/*
414 * Must be called under rcu_read_lock().
415 */
416struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
417{
418	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
419			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
420	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
421}
422
423struct task_struct *find_task_by_vpid(pid_t vnr)
424{
425	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
426}
427
428struct task_struct *find_get_task_by_vpid(pid_t nr)
429{
430	struct task_struct *task;
431
432	rcu_read_lock();
433	task = find_task_by_vpid(nr);
434	if (task)
435		get_task_struct(task);
436	rcu_read_unlock();
437
438	return task;
439}
440
441struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
442{
443	struct pid *pid;
444	rcu_read_lock();
445	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
 
 
446	rcu_read_unlock();
447	return pid;
448}
449EXPORT_SYMBOL_GPL(get_task_pid);
450
451struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
452{
453	struct task_struct *result;
454	rcu_read_lock();
455	result = pid_task(pid, type);
456	if (result)
457		get_task_struct(result);
458	rcu_read_unlock();
459	return result;
460}
461EXPORT_SYMBOL_GPL(get_pid_task);
462
463struct pid *find_get_pid(pid_t nr)
464{
465	struct pid *pid;
466
467	rcu_read_lock();
468	pid = get_pid(find_vpid(nr));
469	rcu_read_unlock();
470
471	return pid;
472}
473EXPORT_SYMBOL_GPL(find_get_pid);
474
475pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
476{
477	struct upid *upid;
478	pid_t nr = 0;
479
480	if (pid && ns->level <= pid->level) {
481		upid = &pid->numbers[ns->level];
482		if (upid->ns == ns)
483			nr = upid->nr;
484	}
485	return nr;
486}
487EXPORT_SYMBOL_GPL(pid_nr_ns);
488
489pid_t pid_vnr(struct pid *pid)
490{
491	return pid_nr_ns(pid, task_active_pid_ns(current));
492}
493EXPORT_SYMBOL_GPL(pid_vnr);
494
495pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
496			struct pid_namespace *ns)
497{
498	pid_t nr = 0;
499
500	rcu_read_lock();
501	if (!ns)
502		ns = task_active_pid_ns(current);
503	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
 
 
 
 
 
 
 
 
504	rcu_read_unlock();
505
506	return nr;
507}
508EXPORT_SYMBOL(__task_pid_nr_ns);
509
510struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
511{
512	return ns_of_pid(task_pid(tsk));
513}
514EXPORT_SYMBOL_GPL(task_active_pid_ns);
515
516/*
517 * Used by proc to find the first pid that is greater than or equal to nr.
518 *
519 * If there is a pid at nr this function is exactly the same as find_pid_ns.
520 */
521struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
522{
523	return idr_get_next(&ns->idr, &nr);
524}
525EXPORT_SYMBOL_GPL(find_ge_pid);
526
527struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
528{
529	struct fd f;
530	struct pid *pid;
531
532	f = fdget(fd);
533	if (!f.file)
534		return ERR_PTR(-EBADF);
535
536	pid = pidfd_pid(f.file);
537	if (!IS_ERR(pid)) {
538		get_pid(pid);
539		*flags = f.file->f_flags;
540	}
541
542	fdput(f);
543	return pid;
544}
545
546/**
547 * pidfd_get_task() - Get the task associated with a pidfd
548 *
549 * @pidfd: pidfd for which to get the task
550 * @flags: flags associated with this pidfd
551 *
552 * Return the task associated with @pidfd. The function takes a reference on
553 * the returned task. The caller is responsible for releasing that reference.
554 *
555 * Currently, the process identified by @pidfd is always a thread-group leader.
556 * This restriction currently exists for all aspects of pidfds including pidfd
557 * creation (CLONE_PIDFD cannot be used with CLONE_THREAD) and pidfd polling
558 * (only supports thread group leaders).
559 *
560 * Return: On success, the task_struct associated with the pidfd.
561 *	   On error, a negative errno number will be returned.
562 */
563struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
564{
565	unsigned int f_flags;
566	struct pid *pid;
567	struct task_struct *task;
568
569	pid = pidfd_get_pid(pidfd, &f_flags);
570	if (IS_ERR(pid))
571		return ERR_CAST(pid);
572
573	task = get_pid_task(pid, PIDTYPE_TGID);
574	put_pid(pid);
575	if (!task)
576		return ERR_PTR(-ESRCH);
577
578	*flags = f_flags;
579	return task;
580}
581
582/**
583 * pidfd_create() - Create a new pid file descriptor.
584 *
585 * @pid:   struct pid that the pidfd will reference
586 * @flags: flags to pass
587 *
588 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
589 *
590 * Note, that this function can only be called after the fd table has
591 * been unshared to avoid leaking the pidfd to the new process.
592 *
593 * This symbol should not be explicitly exported to loadable modules.
594 *
595 * Return: On success, a cloexec pidfd is returned.
596 *         On error, a negative errno number will be returned.
597 */
598int pidfd_create(struct pid *pid, unsigned int flags)
599{
600	int pidfd;
601	struct file *pidfd_file;
602
603	pidfd = pidfd_prepare(pid, flags, &pidfd_file);
604	if (pidfd < 0)
605		return pidfd;
606
607	fd_install(pidfd, pidfd_file);
608	return pidfd;
609}
610
611/**
612 * sys_pidfd_open() - Open new pid file descriptor.
613 *
614 * @pid:   pid for which to retrieve a pidfd
615 * @flags: flags to pass
616 *
617 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
618 * the process identified by @pid. Currently, the process identified by
619 * @pid must be a thread-group leader. This restriction currently exists
620 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
621 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
622 * leaders).
623 *
624 * Return: On success, a cloexec pidfd is returned.
625 *         On error, a negative errno number will be returned.
626 */
627SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
628{
629	int fd;
630	struct pid *p;
631
632	if (flags & ~PIDFD_NONBLOCK)
633		return -EINVAL;
634
635	if (pid <= 0)
636		return -EINVAL;
637
638	p = find_get_pid(pid);
639	if (!p)
640		return -ESRCH;
641
642	fd = pidfd_create(p, flags);
643
644	put_pid(p);
645	return fd;
646}
647
648void __init pid_idr_init(void)
649{
650	/* Verify no one has done anything silly: */
651	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
652
653	/* bump default and minimum pid_max based on number of cpus */
654	pid_max = min(pid_max_max, max_t(int, pid_max,
655				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
656	pid_max_min = max_t(int, pid_max_min,
657				PIDS_PER_CPU_MIN * num_possible_cpus());
658	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
659
660	idr_init(&init_pid_ns.idr);
661
662	init_pid_ns.pid_cachep = kmem_cache_create("pid",
663			struct_size_t(struct pid, numbers, 1),
664			__alignof__(struct pid),
665			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
666			NULL);
667}
668
669static struct file *__pidfd_fget(struct task_struct *task, int fd)
670{
671	struct file *file;
672	int ret;
673
674	ret = down_read_killable(&task->signal->exec_update_lock);
675	if (ret)
676		return ERR_PTR(ret);
677
678	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
679		file = fget_task(task, fd);
680	else
681		file = ERR_PTR(-EPERM);
682
683	up_read(&task->signal->exec_update_lock);
684
685	return file ?: ERR_PTR(-EBADF);
686}
687
688static int pidfd_getfd(struct pid *pid, int fd)
689{
690	struct task_struct *task;
691	struct file *file;
692	int ret;
693
694	task = get_pid_task(pid, PIDTYPE_PID);
695	if (!task)
696		return -ESRCH;
697
698	file = __pidfd_fget(task, fd);
699	put_task_struct(task);
700	if (IS_ERR(file))
701		return PTR_ERR(file);
702
703	ret = receive_fd(file, NULL, O_CLOEXEC);
704	fput(file);
705
706	return ret;
707}
708
709/**
710 * sys_pidfd_getfd() - Get a file descriptor from another process
711 *
712 * @pidfd:	the pidfd file descriptor of the process
713 * @fd:		the file descriptor number to get
714 * @flags:	flags on how to get the fd (reserved)
715 *
716 * This syscall gets a copy of a file descriptor from another process
717 * based on the pidfd, and file descriptor number. It requires that
718 * the calling process has the ability to ptrace the process represented
719 * by the pidfd. The process which is having its file descriptor copied
720 * is otherwise unaffected.
721 *
722 * Return: On success, a cloexec file descriptor is returned.
723 *         On error, a negative errno number will be returned.
724 */
725SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
726		unsigned int, flags)
727{
728	struct pid *pid;
729	struct fd f;
730	int ret;
731
732	/* flags is currently unused - make sure it's unset */
733	if (flags)
734		return -EINVAL;
735
736	f = fdget(pidfd);
737	if (!f.file)
738		return -EBADF;
739
740	pid = pidfd_pid(f.file);
741	if (IS_ERR(pid))
742		ret = PTR_ERR(pid);
743	else
744		ret = pidfd_getfd(pid, fd);
745
746	fdput(f);
747	return ret;
748}