Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * kexec.c - kexec_load system call
  3 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  4 *
  5 * This source code is licensed under the GNU General Public License,
  6 * Version 2.  See the file COPYING for more details.
  7 */
  8
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 11#include <linux/capability.h>
 12#include <linux/mm.h>
 13#include <linux/file.h>
 
 14#include <linux/kexec.h>
 15#include <linux/mutex.h>
 16#include <linux/list.h>
 17#include <linux/syscalls.h>
 18#include <linux/vmalloc.h>
 19#include <linux/slab.h>
 20
 21#include "kexec_internal.h"
 22
 23static int copy_user_segment_list(struct kimage *image,
 24				  unsigned long nr_segments,
 25				  struct kexec_segment __user *segments)
 26{
 27	int ret;
 28	size_t segment_bytes;
 29
 30	/* Read in the segments */
 31	image->nr_segments = nr_segments;
 32	segment_bytes = nr_segments * sizeof(*segments);
 33	ret = copy_from_user(image->segment, segments, segment_bytes);
 34	if (ret)
 35		ret = -EFAULT;
 36
 37	return ret;
 38}
 39
 40static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
 41			     unsigned long nr_segments,
 42			     struct kexec_segment __user *segments,
 43			     unsigned long flags)
 44{
 45	int ret;
 46	struct kimage *image;
 47	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
 48
 49	if (kexec_on_panic) {
 50		/* Verify we have a valid entry point */
 51		if ((entry < phys_to_boot_phys(crashk_res.start)) ||
 52		    (entry > phys_to_boot_phys(crashk_res.end)))
 53			return -EADDRNOTAVAIL;
 54	}
 55
 56	/* Allocate and initialize a controlling structure */
 57	image = do_kimage_alloc_init();
 58	if (!image)
 59		return -ENOMEM;
 60
 61	image->start = entry;
 62
 63	ret = copy_user_segment_list(image, nr_segments, segments);
 64	if (ret)
 65		goto out_free_image;
 66
 67	if (kexec_on_panic) {
 68		/* Enable special crash kernel control page alloc policy. */
 69		image->control_page = crashk_res.start;
 70		image->type = KEXEC_TYPE_CRASH;
 71	}
 72
 73	ret = sanity_check_segment_list(image);
 74	if (ret)
 75		goto out_free_image;
 76
 77	/*
 78	 * Find a location for the control code buffer, and add it
 79	 * the vector of segments so that it's pages will also be
 80	 * counted as destination pages.
 81	 */
 82	ret = -ENOMEM;
 83	image->control_code_page = kimage_alloc_control_pages(image,
 84					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 85	if (!image->control_code_page) {
 86		pr_err("Could not allocate control_code_buffer\n");
 87		goto out_free_image;
 88	}
 89
 90	if (!kexec_on_panic) {
 91		image->swap_page = kimage_alloc_control_pages(image, 0);
 92		if (!image->swap_page) {
 93			pr_err("Could not allocate swap buffer\n");
 94			goto out_free_control_pages;
 95		}
 96	}
 97
 98	*rimage = image;
 99	return 0;
100out_free_control_pages:
101	kimage_free_page_list(&image->control_pages);
102out_free_image:
103	kfree(image);
104	return ret;
105}
106
107static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
108		struct kexec_segment __user *segments, unsigned long flags)
109{
110	struct kimage **dest_image, *image;
111	unsigned long i;
112	int ret;
113
 
 
 
 
 
 
 
 
114	if (flags & KEXEC_ON_CRASH) {
115		dest_image = &kexec_crash_image;
116		if (kexec_crash_image)
117			arch_kexec_unprotect_crashkres();
118	} else {
119		dest_image = &kexec_image;
120	}
121
122	if (nr_segments == 0) {
123		/* Uninstall image */
124		kimage_free(xchg(dest_image, NULL));
125		return 0;
 
126	}
127	if (flags & KEXEC_ON_CRASH) {
128		/*
129		 * Loading another kernel to switch to if this one
130		 * crashes.  Free any current crash dump kernel before
131		 * we corrupt it.
132		 */
133		kimage_free(xchg(&kexec_crash_image, NULL));
134	}
135
136	ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
137	if (ret)
138		return ret;
139
140	if (flags & KEXEC_PRESERVE_CONTEXT)
141		image->preserve_context = 1;
142
 
 
 
 
 
143	ret = machine_kexec_prepare(image);
144	if (ret)
145		goto out;
146
147	/*
148	 * Some architecture(like S390) may touch the crash memory before
149	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
150	 */
151	ret = kimage_crash_copy_vmcoreinfo(image);
152	if (ret)
153		goto out;
154
155	for (i = 0; i < nr_segments; i++) {
156		ret = kimage_load_segment(image, &image->segment[i]);
157		if (ret)
158			goto out;
159	}
160
161	kimage_terminate(image);
162
 
 
 
 
163	/* Install the new kernel and uninstall the old */
164	image = xchg(dest_image, image);
165
166out:
167	if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
168		arch_kexec_protect_crashkres();
169
170	kimage_free(image);
 
 
171	return ret;
172}
173
174/*
175 * Exec Kernel system call: for obvious reasons only root may call it.
176 *
177 * This call breaks up into three pieces.
178 * - A generic part which loads the new kernel from the current
179 *   address space, and very carefully places the data in the
180 *   allocated pages.
181 *
182 * - A generic part that interacts with the kernel and tells all of
183 *   the devices to shut down.  Preventing on-going dmas, and placing
184 *   the devices in a consistent state so a later kernel can
185 *   reinitialize them.
186 *
187 * - A machine specific part that includes the syscall number
188 *   and then copies the image to it's final destination.  And
189 *   jumps into the image at entry.
190 *
191 * kexec does not sync, or unmount filesystems so if you need
192 * that to happen you need to do that yourself.
193 */
194
195static inline int kexec_load_check(unsigned long nr_segments,
196				   unsigned long flags)
197{
 
 
 
 
198	/* We only trust the superuser with rebooting the system. */
199	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
200		return -EPERM;
201
 
 
 
 
 
 
 
 
 
 
 
 
 
202	/*
203	 * Verify we have a legal set of flags
204	 * This leaves us room for future extensions.
205	 */
206	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
207		return -EINVAL;
208
209	/* Put an artificial cap on the number
210	 * of segments passed to kexec_load.
211	 */
212	if (nr_segments > KEXEC_SEGMENT_MAX)
213		return -EINVAL;
214
215	return 0;
216}
217
218SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
219		struct kexec_segment __user *, segments, unsigned long, flags)
220{
221	int result;
 
222
223	result = kexec_load_check(nr_segments, flags);
224	if (result)
225		return result;
226
227	/* Verify we are on the appropriate architecture */
228	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
229		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
230		return -EINVAL;
231
232	/* Because we write directly to the reserved memory
233	 * region when loading crash kernels we need a mutex here to
234	 * prevent multiple crash  kernels from attempting to load
235	 * simultaneously, and to prevent a crash kernel from loading
236	 * over the top of a in use crash kernel.
237	 *
238	 * KISS: always take the mutex.
239	 */
240	if (!mutex_trylock(&kexec_mutex))
241		return -EBUSY;
242
243	result = do_kexec_load(entry, nr_segments, segments, flags);
244
245	mutex_unlock(&kexec_mutex);
 
246
247	return result;
248}
249
250#ifdef CONFIG_COMPAT
251COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
252		       compat_ulong_t, nr_segments,
253		       struct compat_kexec_segment __user *, segments,
254		       compat_ulong_t, flags)
255{
256	struct compat_kexec_segment in;
257	struct kexec_segment out, __user *ksegments;
258	unsigned long i, result;
259
260	result = kexec_load_check(nr_segments, flags);
261	if (result)
262		return result;
263
264	/* Don't allow clients that don't understand the native
265	 * architecture to do anything.
266	 */
267	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
268		return -EINVAL;
269
270	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
 
 
 
 
271	for (i = 0; i < nr_segments; i++) {
272		result = copy_from_user(&in, &segments[i], sizeof(in));
273		if (result)
274			return -EFAULT;
275
276		out.buf   = compat_ptr(in.buf);
277		out.bufsz = in.bufsz;
278		out.mem   = in.mem;
279		out.memsz = in.memsz;
280
281		result = copy_to_user(&ksegments[i], &out, sizeof(out));
282		if (result)
283			return -EFAULT;
 
284	}
285
286	/* Because we write directly to the reserved memory
287	 * region when loading crash kernels we need a mutex here to
288	 * prevent multiple crash  kernels from attempting to load
289	 * simultaneously, and to prevent a crash kernel from loading
290	 * over the top of a in use crash kernel.
291	 *
292	 * KISS: always take the mutex.
293	 */
294	if (!mutex_trylock(&kexec_mutex))
295		return -EBUSY;
296
297	result = do_kexec_load(entry, nr_segments, ksegments, flags);
298
299	mutex_unlock(&kexec_mutex);
300
301	return result;
302}
303#endif
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * kexec.c - kexec_load system call
  4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
 
 
 
  5 */
  6
  7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8
  9#include <linux/capability.h>
 10#include <linux/mm.h>
 11#include <linux/file.h>
 12#include <linux/security.h>
 13#include <linux/kexec.h>
 14#include <linux/mutex.h>
 15#include <linux/list.h>
 16#include <linux/syscalls.h>
 17#include <linux/vmalloc.h>
 18#include <linux/slab.h>
 19
 20#include "kexec_internal.h"
 21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
 23			     unsigned long nr_segments,
 24			     struct kexec_segment *segments,
 25			     unsigned long flags)
 26{
 27	int ret;
 28	struct kimage *image;
 29	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
 30
 31	if (kexec_on_panic) {
 32		/* Verify we have a valid entry point */
 33		if ((entry < phys_to_boot_phys(crashk_res.start)) ||
 34		    (entry > phys_to_boot_phys(crashk_res.end)))
 35			return -EADDRNOTAVAIL;
 36	}
 37
 38	/* Allocate and initialize a controlling structure */
 39	image = do_kimage_alloc_init();
 40	if (!image)
 41		return -ENOMEM;
 42
 43	image->start = entry;
 44	image->nr_segments = nr_segments;
 45	memcpy(image->segment, segments, nr_segments * sizeof(*segments));
 
 
 46
 47	if (kexec_on_panic) {
 48		/* Enable special crash kernel control page alloc policy. */
 49		image->control_page = crashk_res.start;
 50		image->type = KEXEC_TYPE_CRASH;
 51	}
 52
 53	ret = sanity_check_segment_list(image);
 54	if (ret)
 55		goto out_free_image;
 56
 57	/*
 58	 * Find a location for the control code buffer, and add it
 59	 * the vector of segments so that it's pages will also be
 60	 * counted as destination pages.
 61	 */
 62	ret = -ENOMEM;
 63	image->control_code_page = kimage_alloc_control_pages(image,
 64					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 65	if (!image->control_code_page) {
 66		pr_err("Could not allocate control_code_buffer\n");
 67		goto out_free_image;
 68	}
 69
 70	if (!kexec_on_panic) {
 71		image->swap_page = kimage_alloc_control_pages(image, 0);
 72		if (!image->swap_page) {
 73			pr_err("Could not allocate swap buffer\n");
 74			goto out_free_control_pages;
 75		}
 76	}
 77
 78	*rimage = image;
 79	return 0;
 80out_free_control_pages:
 81	kimage_free_page_list(&image->control_pages);
 82out_free_image:
 83	kfree(image);
 84	return ret;
 85}
 86
 87static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
 88		struct kexec_segment *segments, unsigned long flags)
 89{
 90	struct kimage **dest_image, *image;
 91	unsigned long i;
 92	int ret;
 93
 94	/*
 95	 * Because we write directly to the reserved memory region when loading
 96	 * crash kernels we need a serialization here to prevent multiple crash
 97	 * kernels from attempting to load simultaneously.
 98	 */
 99	if (!kexec_trylock())
100		return -EBUSY;
101
102	if (flags & KEXEC_ON_CRASH) {
103		dest_image = &kexec_crash_image;
104		if (kexec_crash_image)
105			arch_kexec_unprotect_crashkres();
106	} else {
107		dest_image = &kexec_image;
108	}
109
110	if (nr_segments == 0) {
111		/* Uninstall image */
112		kimage_free(xchg(dest_image, NULL));
113		ret = 0;
114		goto out_unlock;
115	}
116	if (flags & KEXEC_ON_CRASH) {
117		/*
118		 * Loading another kernel to switch to if this one
119		 * crashes.  Free any current crash dump kernel before
120		 * we corrupt it.
121		 */
122		kimage_free(xchg(&kexec_crash_image, NULL));
123	}
124
125	ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
126	if (ret)
127		goto out_unlock;
128
129	if (flags & KEXEC_PRESERVE_CONTEXT)
130		image->preserve_context = 1;
131
132#ifdef CONFIG_CRASH_HOTPLUG
133	if (flags & KEXEC_UPDATE_ELFCOREHDR)
134		image->update_elfcorehdr = 1;
135#endif
136
137	ret = machine_kexec_prepare(image);
138	if (ret)
139		goto out;
140
141	/*
142	 * Some architecture(like S390) may touch the crash memory before
143	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
144	 */
145	ret = kimage_crash_copy_vmcoreinfo(image);
146	if (ret)
147		goto out;
148
149	for (i = 0; i < nr_segments; i++) {
150		ret = kimage_load_segment(image, &image->segment[i]);
151		if (ret)
152			goto out;
153	}
154
155	kimage_terminate(image);
156
157	ret = machine_kexec_post_load(image);
158	if (ret)
159		goto out;
160
161	/* Install the new kernel and uninstall the old */
162	image = xchg(dest_image, image);
163
164out:
165	if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
166		arch_kexec_protect_crashkres();
167
168	kimage_free(image);
169out_unlock:
170	kexec_unlock();
171	return ret;
172}
173
174/*
175 * Exec Kernel system call: for obvious reasons only root may call it.
176 *
177 * This call breaks up into three pieces.
178 * - A generic part which loads the new kernel from the current
179 *   address space, and very carefully places the data in the
180 *   allocated pages.
181 *
182 * - A generic part that interacts with the kernel and tells all of
183 *   the devices to shut down.  Preventing on-going dmas, and placing
184 *   the devices in a consistent state so a later kernel can
185 *   reinitialize them.
186 *
187 * - A machine specific part that includes the syscall number
188 *   and then copies the image to it's final destination.  And
189 *   jumps into the image at entry.
190 *
191 * kexec does not sync, or unmount filesystems so if you need
192 * that to happen you need to do that yourself.
193 */
194
195static inline int kexec_load_check(unsigned long nr_segments,
196				   unsigned long flags)
197{
198	int image_type = (flags & KEXEC_ON_CRASH) ?
199			 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
200	int result;
201
202	/* We only trust the superuser with rebooting the system. */
203	if (!kexec_load_permitted(image_type))
204		return -EPERM;
205
206	/* Permit LSMs and IMA to fail the kexec */
207	result = security_kernel_load_data(LOADING_KEXEC_IMAGE, false);
208	if (result < 0)
209		return result;
210
211	/*
212	 * kexec can be used to circumvent module loading restrictions, so
213	 * prevent loading in that case
214	 */
215	result = security_locked_down(LOCKDOWN_KEXEC);
216	if (result)
217		return result;
218
219	/*
220	 * Verify we have a legal set of flags
221	 * This leaves us room for future extensions.
222	 */
223	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
224		return -EINVAL;
225
226	/* Put an artificial cap on the number
227	 * of segments passed to kexec_load.
228	 */
229	if (nr_segments > KEXEC_SEGMENT_MAX)
230		return -EINVAL;
231
232	return 0;
233}
234
235SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
236		struct kexec_segment __user *, segments, unsigned long, flags)
237{
238	struct kexec_segment *ksegments;
239	unsigned long result;
240
241	result = kexec_load_check(nr_segments, flags);
242	if (result)
243		return result;
244
245	/* Verify we are on the appropriate architecture */
246	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
247		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
248		return -EINVAL;
249
250	ksegments = memdup_array_user(segments, nr_segments, sizeof(ksegments[0]));
251	if (IS_ERR(ksegments))
252		return PTR_ERR(ksegments);
 
 
 
 
 
 
 
 
 
253
254	result = do_kexec_load(entry, nr_segments, ksegments, flags);
255	kfree(ksegments);
256
257	return result;
258}
259
260#ifdef CONFIG_COMPAT
261COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
262		       compat_ulong_t, nr_segments,
263		       struct compat_kexec_segment __user *, segments,
264		       compat_ulong_t, flags)
265{
266	struct compat_kexec_segment in;
267	struct kexec_segment *ksegments;
268	unsigned long i, result;
269
270	result = kexec_load_check(nr_segments, flags);
271	if (result)
272		return result;
273
274	/* Don't allow clients that don't understand the native
275	 * architecture to do anything.
276	 */
277	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
278		return -EINVAL;
279
280	ksegments = kmalloc_array(nr_segments, sizeof(ksegments[0]),
281			GFP_KERNEL);
282	if (!ksegments)
283		return -ENOMEM;
284
285	for (i = 0; i < nr_segments; i++) {
286		result = copy_from_user(&in, &segments[i], sizeof(in));
287		if (result)
288			goto fail;
 
 
 
 
 
289
290		ksegments[i].buf   = compat_ptr(in.buf);
291		ksegments[i].bufsz = in.bufsz;
292		ksegments[i].mem   = in.mem;
293		ksegments[i].memsz = in.memsz;
294	}
295
 
 
 
 
 
 
 
 
 
 
 
296	result = do_kexec_load(entry, nr_segments, ksegments, flags);
297
298fail:
299	kfree(ksegments);
300	return result;
301}
302#endif