Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext2/balloc.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
  11 *  Big-endian to little-endian byte-swapping/bitmaps by
  12 *        David S. Miller (davem@caip.rutgers.edu), 1995
  13 */
  14
  15#include "ext2.h"
  16#include <linux/quotaops.h>
  17#include <linux/slab.h>
  18#include <linux/sched.h>
  19#include <linux/cred.h>
  20#include <linux/buffer_head.h>
  21#include <linux/capability.h>
  22
  23/*
  24 * balloc.c contains the blocks allocation and deallocation routines
  25 */
  26
  27/*
  28 * The free blocks are managed by bitmaps.  A file system contains several
  29 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
  30 * block for inodes, N blocks for the inode table and data blocks.
  31 *
  32 * The file system contains group descriptors which are located after the
  33 * super block.  Each descriptor contains the number of the bitmap block and
  34 * the free blocks count in the block.  The descriptors are loaded in memory
  35 * when a file system is mounted (see ext2_fill_super).
  36 */
  37
  38
  39#define in_range(b, first, len)	((b) >= (first) && (b) <= (first) + (len) - 1)
  40
  41struct ext2_group_desc * ext2_get_group_desc(struct super_block * sb,
  42					     unsigned int block_group,
  43					     struct buffer_head ** bh)
  44{
  45	unsigned long group_desc;
  46	unsigned long offset;
  47	struct ext2_group_desc * desc;
  48	struct ext2_sb_info *sbi = EXT2_SB(sb);
  49
  50	if (block_group >= sbi->s_groups_count) {
  51		ext2_error (sb, "ext2_get_group_desc",
  52			    "block_group >= groups_count - "
  53			    "block_group = %d, groups_count = %lu",
  54			    block_group, sbi->s_groups_count);
  55
  56		return NULL;
  57	}
  58
  59	group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(sb);
  60	offset = block_group & (EXT2_DESC_PER_BLOCK(sb) - 1);
  61	if (!sbi->s_group_desc[group_desc]) {
  62		ext2_error (sb, "ext2_get_group_desc",
  63			    "Group descriptor not loaded - "
  64			    "block_group = %d, group_desc = %lu, desc = %lu",
  65			     block_group, group_desc, offset);
  66		return NULL;
  67	}
  68
  69	desc = (struct ext2_group_desc *) sbi->s_group_desc[group_desc]->b_data;
  70	if (bh)
  71		*bh = sbi->s_group_desc[group_desc];
  72	return desc + offset;
  73}
  74
  75static int ext2_valid_block_bitmap(struct super_block *sb,
  76					struct ext2_group_desc *desc,
  77					unsigned int block_group,
  78					struct buffer_head *bh)
  79{
  80	ext2_grpblk_t offset;
  81	ext2_grpblk_t next_zero_bit;
  82	ext2_fsblk_t bitmap_blk;
  83	ext2_fsblk_t group_first_block;
  84
  85	group_first_block = ext2_group_first_block_no(sb, block_group);
  86
  87	/* check whether block bitmap block number is set */
  88	bitmap_blk = le32_to_cpu(desc->bg_block_bitmap);
  89	offset = bitmap_blk - group_first_block;
  90	if (!ext2_test_bit(offset, bh->b_data))
  91		/* bad block bitmap */
  92		goto err_out;
  93
  94	/* check whether the inode bitmap block number is set */
  95	bitmap_blk = le32_to_cpu(desc->bg_inode_bitmap);
  96	offset = bitmap_blk - group_first_block;
  97	if (!ext2_test_bit(offset, bh->b_data))
  98		/* bad block bitmap */
  99		goto err_out;
 100
 101	/* check whether the inode table block number is set */
 102	bitmap_blk = le32_to_cpu(desc->bg_inode_table);
 103	offset = bitmap_blk - group_first_block;
 104	next_zero_bit = ext2_find_next_zero_bit(bh->b_data,
 105				offset + EXT2_SB(sb)->s_itb_per_group,
 106				offset);
 107	if (next_zero_bit >= offset + EXT2_SB(sb)->s_itb_per_group)
 108		/* good bitmap for inode tables */
 109		return 1;
 110
 111err_out:
 112	ext2_error(sb, __func__,
 113			"Invalid block bitmap - "
 114			"block_group = %d, block = %lu",
 115			block_group, bitmap_blk);
 116	return 0;
 117}
 118
 119/*
 120 * Read the bitmap for a given block_group,and validate the
 121 * bits for block/inode/inode tables are set in the bitmaps
 122 *
 123 * Return buffer_head on success or NULL in case of failure.
 124 */
 125static struct buffer_head *
 126read_block_bitmap(struct super_block *sb, unsigned int block_group)
 127{
 128	struct ext2_group_desc * desc;
 129	struct buffer_head * bh = NULL;
 130	ext2_fsblk_t bitmap_blk;
 
 131
 132	desc = ext2_get_group_desc(sb, block_group, NULL);
 133	if (!desc)
 134		return NULL;
 135	bitmap_blk = le32_to_cpu(desc->bg_block_bitmap);
 136	bh = sb_getblk(sb, bitmap_blk);
 137	if (unlikely(!bh)) {
 138		ext2_error(sb, __func__,
 139			    "Cannot read block bitmap - "
 140			    "block_group = %d, block_bitmap = %u",
 141			    block_group, le32_to_cpu(desc->bg_block_bitmap));
 142		return NULL;
 143	}
 144	if (likely(bh_uptodate_or_lock(bh)))
 
 145		return bh;
 146
 147	if (bh_submit_read(bh) < 0) {
 148		brelse(bh);
 149		ext2_error(sb, __func__,
 150			    "Cannot read block bitmap - "
 151			    "block_group = %d, block_bitmap = %u",
 152			    block_group, le32_to_cpu(desc->bg_block_bitmap));
 153		return NULL;
 154	}
 155
 156	ext2_valid_block_bitmap(sb, desc, block_group, bh);
 157	/*
 158	 * file system mounted not to panic on error, continue with corrupt
 159	 * bitmap
 160	 */
 161	return bh;
 162}
 163
 164static void group_adjust_blocks(struct super_block *sb, int group_no,
 165	struct ext2_group_desc *desc, struct buffer_head *bh, int count)
 166{
 167	if (count) {
 168		struct ext2_sb_info *sbi = EXT2_SB(sb);
 169		unsigned free_blocks;
 170
 171		spin_lock(sb_bgl_lock(sbi, group_no));
 172		free_blocks = le16_to_cpu(desc->bg_free_blocks_count);
 173		desc->bg_free_blocks_count = cpu_to_le16(free_blocks + count);
 174		spin_unlock(sb_bgl_lock(sbi, group_no));
 175		mark_buffer_dirty(bh);
 176	}
 177}
 178
 179/*
 180 * The reservation window structure operations
 181 * --------------------------------------------
 182 * Operations include:
 183 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
 184 *
 185 * We use a red-black tree to represent per-filesystem reservation
 186 * windows.
 187 *
 188 */
 189
 190/**
 191 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
 192 * @rb_root:		root of per-filesystem reservation rb tree
 193 * @verbose:		verbose mode
 194 * @fn:			function which wishes to dump the reservation map
 195 *
 196 * If verbose is turned on, it will print the whole block reservation
 197 * windows(start, end). Otherwise, it will only print out the "bad" windows,
 198 * those windows that overlap with their immediate neighbors.
 199 */
 200#if 1
 201static void __rsv_window_dump(struct rb_root *root, int verbose,
 202			      const char *fn)
 203{
 204	struct rb_node *n;
 205	struct ext2_reserve_window_node *rsv, *prev;
 206	int bad;
 207
 208restart:
 209	n = rb_first(root);
 210	bad = 0;
 211	prev = NULL;
 212
 213	printk("Block Allocation Reservation Windows Map (%s):\n", fn);
 214	while (n) {
 215		rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node);
 216		if (verbose)
 217			printk("reservation window 0x%p "
 218				"start: %lu, end: %lu\n",
 219				rsv, rsv->rsv_start, rsv->rsv_end);
 220		if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
 221			printk("Bad reservation %p (start >= end)\n",
 222			       rsv);
 223			bad = 1;
 224		}
 225		if (prev && prev->rsv_end >= rsv->rsv_start) {
 226			printk("Bad reservation %p (prev->end >= start)\n",
 227			       rsv);
 228			bad = 1;
 229		}
 230		if (bad) {
 231			if (!verbose) {
 232				printk("Restarting reservation walk in verbose mode\n");
 233				verbose = 1;
 234				goto restart;
 235			}
 236		}
 237		n = rb_next(n);
 238		prev = rsv;
 239	}
 240	printk("Window map complete.\n");
 241	BUG_ON(bad);
 242}
 243#define rsv_window_dump(root, verbose) \
 244	__rsv_window_dump((root), (verbose), __func__)
 245#else
 246#define rsv_window_dump(root, verbose) do {} while (0)
 247#endif
 248
 249/**
 250 * goal_in_my_reservation()
 251 * @rsv:		inode's reservation window
 252 * @grp_goal:		given goal block relative to the allocation block group
 253 * @group:		the current allocation block group
 254 * @sb:			filesystem super block
 255 *
 256 * Test if the given goal block (group relative) is within the file's
 257 * own block reservation window range.
 258 *
 259 * If the reservation window is outside the goal allocation group, return 0;
 260 * grp_goal (given goal block) could be -1, which means no specific
 261 * goal block. In this case, always return 1.
 262 * If the goal block is within the reservation window, return 1;
 263 * otherwise, return 0;
 264 */
 265static int
 266goal_in_my_reservation(struct ext2_reserve_window *rsv, ext2_grpblk_t grp_goal,
 267			unsigned int group, struct super_block * sb)
 268{
 269	ext2_fsblk_t group_first_block, group_last_block;
 270
 271	group_first_block = ext2_group_first_block_no(sb, group);
 272	group_last_block = group_first_block + EXT2_BLOCKS_PER_GROUP(sb) - 1;
 273
 274	if ((rsv->_rsv_start > group_last_block) ||
 275	    (rsv->_rsv_end < group_first_block))
 276		return 0;
 277	if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
 278		|| (grp_goal + group_first_block > rsv->_rsv_end)))
 279		return 0;
 280	return 1;
 281}
 282
 283/**
 284 * search_reserve_window()
 285 * @rb_root:		root of reservation tree
 286 * @goal:		target allocation block
 287 *
 288 * Find the reserved window which includes the goal, or the previous one
 289 * if the goal is not in any window.
 290 * Returns NULL if there are no windows or if all windows start after the goal.
 291 */
 292static struct ext2_reserve_window_node *
 293search_reserve_window(struct rb_root *root, ext2_fsblk_t goal)
 294{
 295	struct rb_node *n = root->rb_node;
 296	struct ext2_reserve_window_node *rsv;
 297
 298	if (!n)
 299		return NULL;
 300
 301	do {
 302		rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node);
 303
 304		if (goal < rsv->rsv_start)
 305			n = n->rb_left;
 306		else if (goal > rsv->rsv_end)
 307			n = n->rb_right;
 308		else
 309			return rsv;
 310	} while (n);
 311	/*
 312	 * We've fallen off the end of the tree: the goal wasn't inside
 313	 * any particular node.  OK, the previous node must be to one
 314	 * side of the interval containing the goal.  If it's the RHS,
 315	 * we need to back up one.
 316	 */
 317	if (rsv->rsv_start > goal) {
 318		n = rb_prev(&rsv->rsv_node);
 319		rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node);
 320	}
 321	return rsv;
 322}
 323
 324/*
 325 * ext2_rsv_window_add() -- Insert a window to the block reservation rb tree.
 326 * @sb:			super block
 327 * @rsv:		reservation window to add
 328 *
 329 * Must be called with rsv_lock held.
 330 */
 331void ext2_rsv_window_add(struct super_block *sb,
 332		    struct ext2_reserve_window_node *rsv)
 333{
 334	struct rb_root *root = &EXT2_SB(sb)->s_rsv_window_root;
 335	struct rb_node *node = &rsv->rsv_node;
 336	ext2_fsblk_t start = rsv->rsv_start;
 337
 338	struct rb_node ** p = &root->rb_node;
 339	struct rb_node * parent = NULL;
 340	struct ext2_reserve_window_node *this;
 341
 342	while (*p)
 343	{
 344		parent = *p;
 345		this = rb_entry(parent, struct ext2_reserve_window_node, rsv_node);
 346
 347		if (start < this->rsv_start)
 348			p = &(*p)->rb_left;
 349		else if (start > this->rsv_end)
 350			p = &(*p)->rb_right;
 351		else {
 352			rsv_window_dump(root, 1);
 353			BUG();
 354		}
 355	}
 356
 357	rb_link_node(node, parent, p);
 358	rb_insert_color(node, root);
 359}
 360
 361/**
 362 * rsv_window_remove() -- unlink a window from the reservation rb tree
 363 * @sb:			super block
 364 * @rsv:		reservation window to remove
 365 *
 366 * Mark the block reservation window as not allocated, and unlink it
 367 * from the filesystem reservation window rb tree. Must be called with
 368 * rsv_lock held.
 369 */
 370static void rsv_window_remove(struct super_block *sb,
 371			      struct ext2_reserve_window_node *rsv)
 372{
 373	rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 374	rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 375	rsv->rsv_alloc_hit = 0;
 376	rb_erase(&rsv->rsv_node, &EXT2_SB(sb)->s_rsv_window_root);
 377}
 378
 379/*
 380 * rsv_is_empty() -- Check if the reservation window is allocated.
 381 * @rsv:		given reservation window to check
 382 *
 383 * returns 1 if the end block is EXT2_RESERVE_WINDOW_NOT_ALLOCATED.
 384 */
 385static inline int rsv_is_empty(struct ext2_reserve_window *rsv)
 386{
 387	/* a valid reservation end block could not be 0 */
 388	return (rsv->_rsv_end == EXT2_RESERVE_WINDOW_NOT_ALLOCATED);
 389}
 390
 391/**
 392 * ext2_init_block_alloc_info()
 393 * @inode:		file inode structure
 394 *
 395 * Allocate and initialize the  reservation window structure, and
 396 * link the window to the ext2 inode structure at last
 397 *
 398 * The reservation window structure is only dynamically allocated
 399 * and linked to ext2 inode the first time the open file
 400 * needs a new block. So, before every ext2_new_block(s) call, for
 401 * regular files, we should check whether the reservation window
 402 * structure exists or not. In the latter case, this function is called.
 403 * Fail to do so will result in block reservation being turned off for that
 404 * open file.
 405 *
 406 * This function is called from ext2_get_blocks_handle(), also called
 407 * when setting the reservation window size through ioctl before the file
 408 * is open for write (needs block allocation).
 409 *
 410 * Needs truncate_mutex protection prior to calling this function.
 411 */
 412void ext2_init_block_alloc_info(struct inode *inode)
 413{
 414	struct ext2_inode_info *ei = EXT2_I(inode);
 415	struct ext2_block_alloc_info *block_i;
 416	struct super_block *sb = inode->i_sb;
 417
 418	block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
 419	if (block_i) {
 420		struct ext2_reserve_window_node *rsv = &block_i->rsv_window_node;
 421
 422		rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 423		rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 424
 425	 	/*
 426		 * if filesystem is mounted with NORESERVATION, the goal
 427		 * reservation window size is set to zero to indicate
 428		 * block reservation is off
 429		 */
 430		if (!test_opt(sb, RESERVATION))
 431			rsv->rsv_goal_size = 0;
 432		else
 433			rsv->rsv_goal_size = EXT2_DEFAULT_RESERVE_BLOCKS;
 434		rsv->rsv_alloc_hit = 0;
 435		block_i->last_alloc_logical_block = 0;
 436		block_i->last_alloc_physical_block = 0;
 437	}
 438	ei->i_block_alloc_info = block_i;
 439}
 440
 441/**
 442 * ext2_discard_reservation()
 443 * @inode:		inode
 444 *
 445 * Discard(free) block reservation window on last file close, or truncate
 446 * or at last iput().
 447 *
 448 * It is being called in three cases:
 449 * 	ext2_release_file(): last writer closes the file
 450 * 	ext2_clear_inode(): last iput(), when nobody links to this file.
 451 * 	ext2_truncate(): when the block indirect map is about to change.
 452 */
 453void ext2_discard_reservation(struct inode *inode)
 454{
 455	struct ext2_inode_info *ei = EXT2_I(inode);
 456	struct ext2_block_alloc_info *block_i = ei->i_block_alloc_info;
 457	struct ext2_reserve_window_node *rsv;
 458	spinlock_t *rsv_lock = &EXT2_SB(inode->i_sb)->s_rsv_window_lock;
 459
 460	if (!block_i)
 461		return;
 462
 463	rsv = &block_i->rsv_window_node;
 464	if (!rsv_is_empty(&rsv->rsv_window)) {
 465		spin_lock(rsv_lock);
 466		if (!rsv_is_empty(&rsv->rsv_window))
 467			rsv_window_remove(inode->i_sb, rsv);
 468		spin_unlock(rsv_lock);
 469	}
 470}
 471
 472/**
 473 * ext2_free_blocks() -- Free given blocks and update quota and i_blocks
 474 * @inode:		inode
 475 * @block:		start physical block to free
 476 * @count:		number of blocks to free
 477 */
 478void ext2_free_blocks (struct inode * inode, unsigned long block,
 479		       unsigned long count)
 480{
 481	struct buffer_head *bitmap_bh = NULL;
 482	struct buffer_head * bh2;
 483	unsigned long block_group;
 484	unsigned long bit;
 485	unsigned long i;
 486	unsigned long overflow;
 487	struct super_block * sb = inode->i_sb;
 488	struct ext2_sb_info * sbi = EXT2_SB(sb);
 489	struct ext2_group_desc * desc;
 490	struct ext2_super_block * es = sbi->s_es;
 491	unsigned freed = 0, group_freed;
 492
 493	if (block < le32_to_cpu(es->s_first_data_block) ||
 494	    block + count < block ||
 495	    block + count > le32_to_cpu(es->s_blocks_count)) {
 496		ext2_error (sb, "ext2_free_blocks",
 497			    "Freeing blocks not in datazone - "
 498			    "block = %lu, count = %lu", block, count);
 499		goto error_return;
 500	}
 501
 502	ext2_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1);
 503
 504do_more:
 505	overflow = 0;
 506	block_group = (block - le32_to_cpu(es->s_first_data_block)) /
 507		      EXT2_BLOCKS_PER_GROUP(sb);
 508	bit = (block - le32_to_cpu(es->s_first_data_block)) %
 509		      EXT2_BLOCKS_PER_GROUP(sb);
 510	/*
 511	 * Check to see if we are freeing blocks across a group
 512	 * boundary.
 513	 */
 514	if (bit + count > EXT2_BLOCKS_PER_GROUP(sb)) {
 515		overflow = bit + count - EXT2_BLOCKS_PER_GROUP(sb);
 516		count -= overflow;
 517	}
 518	brelse(bitmap_bh);
 519	bitmap_bh = read_block_bitmap(sb, block_group);
 520	if (!bitmap_bh)
 521		goto error_return;
 522
 523	desc = ext2_get_group_desc (sb, block_group, &bh2);
 524	if (!desc)
 525		goto error_return;
 526
 527	if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) ||
 528	    in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) ||
 529	    in_range (block, le32_to_cpu(desc->bg_inode_table),
 530		      sbi->s_itb_per_group) ||
 531	    in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table),
 532		      sbi->s_itb_per_group)) {
 533		ext2_error (sb, "ext2_free_blocks",
 534			    "Freeing blocks in system zones - "
 535			    "Block = %lu, count = %lu",
 536			    block, count);
 537		goto error_return;
 538	}
 539
 540	for (i = 0, group_freed = 0; i < count; i++) {
 541		if (!ext2_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
 542						bit + i, bitmap_bh->b_data)) {
 543			ext2_error(sb, __func__,
 544				"bit already cleared for block %lu", block + i);
 545		} else {
 546			group_freed++;
 547		}
 548	}
 549
 550	mark_buffer_dirty(bitmap_bh);
 551	if (sb->s_flags & SB_SYNCHRONOUS)
 552		sync_dirty_buffer(bitmap_bh);
 553
 554	group_adjust_blocks(sb, block_group, desc, bh2, group_freed);
 555	freed += group_freed;
 556
 557	if (overflow) {
 558		block += count;
 559		count = overflow;
 560		goto do_more;
 561	}
 562error_return:
 563	brelse(bitmap_bh);
 564	if (freed) {
 565		percpu_counter_add(&sbi->s_freeblocks_counter, freed);
 566		dquot_free_block_nodirty(inode, freed);
 567		mark_inode_dirty(inode);
 568	}
 569}
 570
 571/**
 572 * bitmap_search_next_usable_block()
 573 * @start:		the starting block (group relative) of the search
 574 * @bh:			bufferhead contains the block group bitmap
 575 * @maxblocks:		the ending block (group relative) of the reservation
 576 *
 577 * The bitmap search --- search forward through the actual bitmap on disk until
 578 * we find a bit free.
 579 */
 580static ext2_grpblk_t
 581bitmap_search_next_usable_block(ext2_grpblk_t start, struct buffer_head *bh,
 582					ext2_grpblk_t maxblocks)
 583{
 584	ext2_grpblk_t next;
 585
 586	next = ext2_find_next_zero_bit(bh->b_data, maxblocks, start);
 587	if (next >= maxblocks)
 588		return -1;
 589	return next;
 590}
 591
 592/**
 593 * find_next_usable_block()
 594 * @start:		the starting block (group relative) to find next
 595 * 			allocatable block in bitmap.
 596 * @bh:			bufferhead contains the block group bitmap
 597 * @maxblocks:		the ending block (group relative) for the search
 598 *
 599 * Find an allocatable block in a bitmap.  We perform the "most
 600 * appropriate allocation" algorithm of looking for a free block near
 601 * the initial goal; then for a free byte somewhere in the bitmap;
 602 * then for any free bit in the bitmap.
 603 */
 604static ext2_grpblk_t
 605find_next_usable_block(int start, struct buffer_head *bh, int maxblocks)
 606{
 607	ext2_grpblk_t here, next;
 608	char *p, *r;
 609
 610	if (start > 0) {
 611		/*
 612		 * The goal was occupied; search forward for a free 
 613		 * block within the next XX blocks.
 614		 *
 615		 * end_goal is more or less random, but it has to be
 616		 * less than EXT2_BLOCKS_PER_GROUP. Aligning up to the
 617		 * next 64-bit boundary is simple..
 618		 */
 619		ext2_grpblk_t end_goal = (start + 63) & ~63;
 620		if (end_goal > maxblocks)
 621			end_goal = maxblocks;
 622		here = ext2_find_next_zero_bit(bh->b_data, end_goal, start);
 623		if (here < end_goal)
 624			return here;
 625		ext2_debug("Bit not found near goal\n");
 626	}
 627
 628	here = start;
 629	if (here < 0)
 630		here = 0;
 631
 632	p = ((char *)bh->b_data) + (here >> 3);
 633	r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
 634	next = (r - ((char *)bh->b_data)) << 3;
 635
 636	if (next < maxblocks && next >= here)
 637		return next;
 638
 639	here = bitmap_search_next_usable_block(here, bh, maxblocks);
 640	return here;
 641}
 642
 643/**
 644 * ext2_try_to_allocate()
 645 * @sb:			superblock
 646 * @group:		given allocation block group
 647 * @bitmap_bh:		bufferhead holds the block bitmap
 648 * @grp_goal:		given target block within the group
 649 * @count:		target number of blocks to allocate
 650 * @my_rsv:		reservation window
 651 *
 652 * Attempt to allocate blocks within a give range. Set the range of allocation
 653 * first, then find the first free bit(s) from the bitmap (within the range),
 654 * and at last, allocate the blocks by claiming the found free bit as allocated.
 655 *
 656 * To set the range of this allocation:
 657 * 	if there is a reservation window, only try to allocate block(s)
 658 * 	from the file's own reservation window;
 659 * 	Otherwise, the allocation range starts from the give goal block,
 660 * 	ends at the block group's last block.
 661 *
 662 * If we failed to allocate the desired block then we may end up crossing to a
 663 * new bitmap.
 664 */
 665static int
 666ext2_try_to_allocate(struct super_block *sb, int group,
 667			struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal,
 668			unsigned long *count,
 669			struct ext2_reserve_window *my_rsv)
 670{
 671	ext2_fsblk_t group_first_block;
 672       	ext2_grpblk_t start, end;
 
 673	unsigned long num = 0;
 674
 
 
 675	/* we do allocation within the reservation window if we have a window */
 676	if (my_rsv) {
 677		group_first_block = ext2_group_first_block_no(sb, group);
 678		if (my_rsv->_rsv_start >= group_first_block)
 679			start = my_rsv->_rsv_start - group_first_block;
 680		else
 681			/* reservation window cross group boundary */
 682			start = 0;
 683		end = my_rsv->_rsv_end - group_first_block + 1;
 684		if (end > EXT2_BLOCKS_PER_GROUP(sb))
 685			/* reservation window crosses group boundary */
 686			end = EXT2_BLOCKS_PER_GROUP(sb);
 687		if ((start <= grp_goal) && (grp_goal < end))
 688			start = grp_goal;
 689		else
 690			grp_goal = -1;
 691	} else {
 692		if (grp_goal > 0)
 693			start = grp_goal;
 694		else
 695			start = 0;
 696		end = EXT2_BLOCKS_PER_GROUP(sb);
 697	}
 698
 699	BUG_ON(start > EXT2_BLOCKS_PER_GROUP(sb));
 700
 701repeat:
 702	if (grp_goal < 0) {
 703		grp_goal = find_next_usable_block(start, bitmap_bh, end);
 704		if (grp_goal < 0)
 705			goto fail_access;
 706		if (!my_rsv) {
 707			int i;
 708
 709			for (i = 0; i < 7 && grp_goal > start &&
 710					!ext2_test_bit(grp_goal - 1,
 711					     		bitmap_bh->b_data);
 712			     		i++, grp_goal--)
 713				;
 714		}
 715	}
 716	start = grp_goal;
 717
 718	if (ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), grp_goal,
 719			       				bitmap_bh->b_data)) {
 720		/*
 721		 * The block was allocated by another thread, or it was
 722		 * allocated and then freed by another thread
 723		 */
 724		start++;
 725		grp_goal++;
 726		if (start >= end)
 727			goto fail_access;
 728		goto repeat;
 729	}
 730	num++;
 731	grp_goal++;
 732	while (num < *count && grp_goal < end
 733		&& !ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group),
 734					grp_goal, bitmap_bh->b_data)) {
 
 
 
 
 735		num++;
 736		grp_goal++;
 737	}
 
 
 
 
 738	*count = num;
 739	return grp_goal - num;
 740fail_access:
 741	*count = num;
 742	return -1;
 743}
 744
 745/**
 746 * 	find_next_reservable_window():
 747 *		find a reservable space within the given range.
 748 *		It does not allocate the reservation window for now:
 749 *		alloc_new_reservation() will do the work later.
 750 *
 751 * 	@search_head: the head of the searching list;
 752 *		This is not necessarily the list head of the whole filesystem
 753 *
 754 *		We have both head and start_block to assist the search
 755 *		for the reservable space. The list starts from head,
 756 *		but we will shift to the place where start_block is,
 757 *		then start from there, when looking for a reservable space.
 758 *
 759 * 	@size: the target new reservation window size
 760 *
 761 * 	@group_first_block: the first block we consider to start
 762 *			the real search from
 763 *
 764 * 	@last_block:
 765 *		the maximum block number that our goal reservable space
 766 *		could start from. This is normally the last block in this
 767 *		group. The search will end when we found the start of next
 768 *		possible reservable space is out of this boundary.
 769 *		This could handle the cross boundary reservation window
 770 *		request.
 771 *
 772 * 	basically we search from the given range, rather than the whole
 773 * 	reservation double linked list, (start_block, last_block)
 774 * 	to find a free region that is of my size and has not
 775 * 	been reserved.
 776 *
 
 
 777 */
 778static int find_next_reservable_window(
 779				struct ext2_reserve_window_node *search_head,
 780				struct ext2_reserve_window_node *my_rsv,
 781				struct super_block * sb,
 782				ext2_fsblk_t start_block,
 783				ext2_fsblk_t last_block)
 784{
 785	struct rb_node *next;
 786	struct ext2_reserve_window_node *rsv, *prev;
 787	ext2_fsblk_t cur;
 788	int size = my_rsv->rsv_goal_size;
 789
 790	/* TODO: make the start of the reservation window byte-aligned */
 791	/* cur = *start_block & ~7;*/
 792	cur = start_block;
 793	rsv = search_head;
 794	if (!rsv)
 795		return -1;
 796
 797	while (1) {
 798		if (cur <= rsv->rsv_end)
 799			cur = rsv->rsv_end + 1;
 800
 801		/* TODO?
 802		 * in the case we could not find a reservable space
 803		 * that is what is expected, during the re-search, we could
 804		 * remember what's the largest reservable space we could have
 805		 * and return that one.
 806		 *
 807		 * For now it will fail if we could not find the reservable
 808		 * space with expected-size (or more)...
 809		 */
 810		if (cur > last_block)
 811			return -1;		/* fail */
 812
 813		prev = rsv;
 814		next = rb_next(&rsv->rsv_node);
 815		rsv = rb_entry(next,struct ext2_reserve_window_node,rsv_node);
 816
 817		/*
 818		 * Reached the last reservation, we can just append to the
 819		 * previous one.
 820		 */
 821		if (!next)
 822			break;
 823
 824		if (cur + size <= rsv->rsv_start) {
 825			/*
 826			 * Found a reserveable space big enough.  We could
 827			 * have a reservation across the group boundary here
 828		 	 */
 829			break;
 830		}
 831	}
 832	/*
 833	 * we come here either :
 834	 * when we reach the end of the whole list,
 835	 * and there is empty reservable space after last entry in the list.
 836	 * append it to the end of the list.
 837	 *
 838	 * or we found one reservable space in the middle of the list,
 839	 * return the reservation window that we could append to.
 840	 * succeed.
 841	 */
 842
 843	if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
 844		rsv_window_remove(sb, my_rsv);
 845
 846	/*
 847	 * Let's book the whole available window for now.  We will check the
 848	 * disk bitmap later and then, if there are free blocks then we adjust
 849	 * the window size if it's larger than requested.
 850	 * Otherwise, we will remove this node from the tree next time
 851	 * call find_next_reservable_window.
 852	 */
 853	my_rsv->rsv_start = cur;
 854	my_rsv->rsv_end = cur + size - 1;
 855	my_rsv->rsv_alloc_hit = 0;
 856
 857	if (prev != my_rsv)
 858		ext2_rsv_window_add(sb, my_rsv);
 859
 860	return 0;
 861}
 862
 863/**
 864 * 	alloc_new_reservation()--allocate a new reservation window
 865 *
 866 *		To make a new reservation, we search part of the filesystem
 867 *		reservation list (the list that inside the group). We try to
 868 *		allocate a new reservation window near the allocation goal,
 869 *		or the beginning of the group, if there is no goal.
 870 *
 871 *		We first find a reservable space after the goal, then from
 872 *		there, we check the bitmap for the first free block after
 873 *		it. If there is no free block until the end of group, then the
 874 *		whole group is full, we failed. Otherwise, check if the free
 875 *		block is inside the expected reservable space, if so, we
 876 *		succeed.
 877 *		If the first free block is outside the reservable space, then
 878 *		start from the first free block, we search for next available
 879 *		space, and go on.
 880 *
 881 *	on succeed, a new reservation will be found and inserted into the list
 882 *	It contains at least one free block, and it does not overlap with other
 883 *	reservation windows.
 884 *
 885 *	failed: we failed to find a reservation window in this group
 886 *
 887 *	@rsv: the reservation
 888 *
 889 *	@grp_goal: The goal (group-relative).  It is where the search for a
 890 *		free reservable space should start from.
 891 *		if we have a goal(goal >0 ), then start from there,
 892 *		no goal(goal = -1), we start from the first block
 893 *		of the group.
 894 *
 895 *	@sb: the super block
 896 *	@group: the group we are trying to allocate in
 897 *	@bitmap_bh: the block group block bitmap
 898 *
 
 
 899 */
 900static int alloc_new_reservation(struct ext2_reserve_window_node *my_rsv,
 901		ext2_grpblk_t grp_goal, struct super_block *sb,
 902		unsigned int group, struct buffer_head *bitmap_bh)
 903{
 904	struct ext2_reserve_window_node *search_head;
 905	ext2_fsblk_t group_first_block, group_end_block, start_block;
 906	ext2_grpblk_t first_free_block;
 907	struct rb_root *fs_rsv_root = &EXT2_SB(sb)->s_rsv_window_root;
 908	unsigned long size;
 909	int ret;
 910	spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock;
 911
 912	group_first_block = ext2_group_first_block_no(sb, group);
 913	group_end_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1);
 914
 915	if (grp_goal < 0)
 916		start_block = group_first_block;
 917	else
 918		start_block = grp_goal + group_first_block;
 919
 920	size = my_rsv->rsv_goal_size;
 921
 922	if (!rsv_is_empty(&my_rsv->rsv_window)) {
 923		/*
 924		 * if the old reservation is cross group boundary
 925		 * and if the goal is inside the old reservation window,
 926		 * we will come here when we just failed to allocate from
 927		 * the first part of the window. We still have another part
 928		 * that belongs to the next group. In this case, there is no
 929		 * point to discard our window and try to allocate a new one
 930		 * in this group(which will fail). we should
 931		 * keep the reservation window, just simply move on.
 932		 *
 933		 * Maybe we could shift the start block of the reservation
 934		 * window to the first block of next group.
 935		 */
 936
 937		if ((my_rsv->rsv_start <= group_end_block) &&
 938				(my_rsv->rsv_end > group_end_block) &&
 939				(start_block >= my_rsv->rsv_start))
 940			return -1;
 941
 942		if ((my_rsv->rsv_alloc_hit >
 943		     (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
 944			/*
 945			 * if the previously allocation hit ratio is
 946			 * greater than 1/2, then we double the size of
 947			 * the reservation window the next time,
 948			 * otherwise we keep the same size window
 949			 */
 950			size = size * 2;
 951			if (size > EXT2_MAX_RESERVE_BLOCKS)
 952				size = EXT2_MAX_RESERVE_BLOCKS;
 953			my_rsv->rsv_goal_size= size;
 954		}
 955	}
 956
 957	spin_lock(rsv_lock);
 958	/*
 959	 * shift the search start to the window near the goal block
 960	 */
 961	search_head = search_reserve_window(fs_rsv_root, start_block);
 962
 963	/*
 964	 * find_next_reservable_window() simply finds a reservable window
 965	 * inside the given range(start_block, group_end_block).
 966	 *
 967	 * To make sure the reservation window has a free bit inside it, we
 968	 * need to check the bitmap after we found a reservable window.
 969	 */
 970retry:
 971	ret = find_next_reservable_window(search_head, my_rsv, sb,
 972						start_block, group_end_block);
 973
 974	if (ret == -1) {
 975		if (!rsv_is_empty(&my_rsv->rsv_window))
 976			rsv_window_remove(sb, my_rsv);
 977		spin_unlock(rsv_lock);
 978		return -1;
 979	}
 980
 981	/*
 982	 * On success, find_next_reservable_window() returns the
 983	 * reservation window where there is a reservable space after it.
 984	 * Before we reserve this reservable space, we need
 985	 * to make sure there is at least a free block inside this region.
 986	 *
 987	 * Search the first free bit on the block bitmap.  Search starts from
 988	 * the start block of the reservable space we just found.
 989	 */
 990	spin_unlock(rsv_lock);
 991	first_free_block = bitmap_search_next_usable_block(
 992			my_rsv->rsv_start - group_first_block,
 993			bitmap_bh, group_end_block - group_first_block + 1);
 994
 995	if (first_free_block < 0) {
 996		/*
 997		 * no free block left on the bitmap, no point
 998		 * to reserve the space. return failed.
 999		 */
1000		spin_lock(rsv_lock);
1001		if (!rsv_is_empty(&my_rsv->rsv_window))
1002			rsv_window_remove(sb, my_rsv);
1003		spin_unlock(rsv_lock);
1004		return -1;		/* failed */
1005	}
1006
1007	start_block = first_free_block + group_first_block;
1008	/*
1009	 * check if the first free block is within the
1010	 * free space we just reserved
1011	 */
1012	if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1013		return 0;		/* success */
1014	/*
1015	 * if the first free bit we found is out of the reservable space
1016	 * continue search for next reservable space,
1017	 * start from where the free block is,
1018	 * we also shift the list head to where we stopped last time
1019	 */
1020	search_head = my_rsv;
1021	spin_lock(rsv_lock);
1022	goto retry;
1023}
1024
1025/**
1026 * try_to_extend_reservation()
1027 * @my_rsv:		given reservation window
1028 * @sb:			super block
1029 * @size:		the delta to extend
1030 *
1031 * Attempt to expand the reservation window large enough to have
1032 * required number of free blocks
1033 *
1034 * Since ext2_try_to_allocate() will always allocate blocks within
1035 * the reservation window range, if the window size is too small,
1036 * multiple blocks allocation has to stop at the end of the reservation
1037 * window. To make this more efficient, given the total number of
1038 * blocks needed and the current size of the window, we try to
1039 * expand the reservation window size if necessary on a best-effort
1040 * basis before ext2_new_blocks() tries to allocate blocks.
1041 */
1042static void try_to_extend_reservation(struct ext2_reserve_window_node *my_rsv,
1043			struct super_block *sb, int size)
1044{
1045	struct ext2_reserve_window_node *next_rsv;
1046	struct rb_node *next;
1047	spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock;
1048
1049	if (!spin_trylock(rsv_lock))
1050		return;
1051
1052	next = rb_next(&my_rsv->rsv_node);
1053
1054	if (!next)
1055		my_rsv->rsv_end += size;
1056	else {
1057		next_rsv = rb_entry(next, struct ext2_reserve_window_node, rsv_node);
1058
1059		if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1060			my_rsv->rsv_end += size;
1061		else
1062			my_rsv->rsv_end = next_rsv->rsv_start - 1;
1063	}
1064	spin_unlock(rsv_lock);
1065}
1066
1067/**
1068 * ext2_try_to_allocate_with_rsv()
1069 * @sb:			superblock
1070 * @group:		given allocation block group
1071 * @bitmap_bh:		bufferhead holds the block bitmap
1072 * @grp_goal:		given target block within the group
1073 * @count:		target number of blocks to allocate
1074 * @my_rsv:		reservation window
1075 *
1076 * This is the main function used to allocate a new block and its reservation
1077 * window.
1078 *
1079 * Each time when a new block allocation is need, first try to allocate from
1080 * its own reservation.  If it does not have a reservation window, instead of
1081 * looking for a free bit on bitmap first, then look up the reservation list to
1082 * see if it is inside somebody else's reservation window, we try to allocate a
1083 * reservation window for it starting from the goal first. Then do the block
1084 * allocation within the reservation window.
1085 *
1086 * This will avoid keeping on searching the reservation list again and
1087 * again when somebody is looking for a free block (without
1088 * reservation), and there are lots of free blocks, but they are all
1089 * being reserved.
1090 *
1091 * We use a red-black tree for the per-filesystem reservation list.
1092 */
1093static ext2_grpblk_t
1094ext2_try_to_allocate_with_rsv(struct super_block *sb, unsigned int group,
1095			struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal,
1096			struct ext2_reserve_window_node * my_rsv,
1097			unsigned long *count)
1098{
1099	ext2_fsblk_t group_first_block, group_last_block;
1100	ext2_grpblk_t ret = 0;
1101	unsigned long num = *count;
1102
1103	/*
1104	 * we don't deal with reservation when
1105	 * filesystem is mounted without reservation
1106	 * or the file is not a regular file
1107	 * or last attempt to allocate a block with reservation turned on failed
1108	 */
1109	if (my_rsv == NULL) {
1110		return ext2_try_to_allocate(sb, group, bitmap_bh,
1111						grp_goal, count, NULL);
1112	}
1113	/*
1114	 * grp_goal is a group relative block number (if there is a goal)
1115	 * 0 <= grp_goal < EXT2_BLOCKS_PER_GROUP(sb)
1116	 * first block is a filesystem wide block number
1117	 * first block is the block number of the first block in this group
1118	 */
1119	group_first_block = ext2_group_first_block_no(sb, group);
1120	group_last_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1);
1121
1122	/*
1123	 * Basically we will allocate a new block from inode's reservation
1124	 * window.
1125	 *
1126	 * We need to allocate a new reservation window, if:
1127	 * a) inode does not have a reservation window; or
1128	 * b) last attempt to allocate a block from existing reservation
1129	 *    failed; or
1130	 * c) we come here with a goal and with a reservation window
1131	 *
1132	 * We do not need to allocate a new reservation window if we come here
1133	 * at the beginning with a goal and the goal is inside the window, or
1134	 * we don't have a goal but already have a reservation window.
1135	 * then we could go to allocate from the reservation window directly.
1136	 */
1137	while (1) {
1138		if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1139			!goal_in_my_reservation(&my_rsv->rsv_window,
1140						grp_goal, group, sb)) {
1141			if (my_rsv->rsv_goal_size < *count)
1142				my_rsv->rsv_goal_size = *count;
1143			ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1144							group, bitmap_bh);
1145			if (ret < 0)
1146				break;			/* failed */
1147
1148			if (!goal_in_my_reservation(&my_rsv->rsv_window,
1149							grp_goal, group, sb))
1150				grp_goal = -1;
1151		} else if (grp_goal >= 0) {
1152			int curr = my_rsv->rsv_end -
1153					(grp_goal + group_first_block) + 1;
1154
1155			if (curr < *count)
1156				try_to_extend_reservation(my_rsv, sb,
1157							*count - curr);
1158		}
1159
1160		if ((my_rsv->rsv_start > group_last_block) ||
1161				(my_rsv->rsv_end < group_first_block)) {
 
 
 
 
 
1162			rsv_window_dump(&EXT2_SB(sb)->s_rsv_window_root, 1);
1163			BUG();
1164		}
1165		ret = ext2_try_to_allocate(sb, group, bitmap_bh, grp_goal,
1166					   &num, &my_rsv->rsv_window);
1167		if (ret >= 0) {
1168			my_rsv->rsv_alloc_hit += num;
1169			*count = num;
1170			break;				/* succeed */
1171		}
1172		num = *count;
1173	}
1174	return ret;
1175}
1176
1177/**
1178 * ext2_has_free_blocks()
1179 * @sbi:		in-core super block structure.
1180 *
1181 * Check if filesystem has at least 1 free block available for allocation.
1182 */
1183static int ext2_has_free_blocks(struct ext2_sb_info *sbi)
1184{
1185	ext2_fsblk_t free_blocks, root_blocks;
1186
1187	free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1188	root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count);
1189	if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1190		!uid_eq(sbi->s_resuid, current_fsuid()) &&
1191		(gid_eq(sbi->s_resgid, GLOBAL_ROOT_GID) ||
1192		 !in_group_p (sbi->s_resgid))) {
1193		return 0;
1194	}
1195	return 1;
1196}
1197
1198/*
1199 * Returns 1 if the passed-in block region is valid; 0 if some part overlaps
1200 * with filesystem metadata blocksi.
1201 */
1202int ext2_data_block_valid(struct ext2_sb_info *sbi, ext2_fsblk_t start_blk,
1203			  unsigned int count)
1204{
1205	if ((start_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
1206	    (start_blk + count < start_blk) ||
1207	    (start_blk > le32_to_cpu(sbi->s_es->s_blocks_count)))
1208		return 0;
1209
1210	/* Ensure we do not step over superblock */
1211	if ((start_blk <= sbi->s_sb_block) &&
1212	    (start_blk + count >= sbi->s_sb_block))
1213		return 0;
1214
1215
1216	return 1;
1217}
1218
1219/*
1220 * ext2_new_blocks() -- core block(s) allocation function
1221 * @inode:		file inode
1222 * @goal:		given target block(filesystem wide)
1223 * @count:		target number of blocks to allocate
1224 * @errp:		error code
 
1225 *
1226 * ext2_new_blocks uses a goal block to assist allocation.  If the goal is
1227 * free, or there is a free block within 32 blocks of the goal, that block
1228 * is allocated.  Otherwise a forward search is made for a free block; within 
1229 * each block group the search first looks for an entire free byte in the block
1230 * bitmap, and then for any free bit if that fails.
1231 * This function also updates quota and i_blocks field.
1232 */
1233ext2_fsblk_t ext2_new_blocks(struct inode *inode, ext2_fsblk_t goal,
1234		    unsigned long *count, int *errp)
1235{
1236	struct buffer_head *bitmap_bh = NULL;
1237	struct buffer_head *gdp_bh;
1238	int group_no;
1239	int goal_group;
1240	ext2_grpblk_t grp_target_blk;	/* blockgroup relative goal block */
1241	ext2_grpblk_t grp_alloc_blk;	/* blockgroup-relative allocated block*/
1242	ext2_fsblk_t ret_block;		/* filesyetem-wide allocated block */
1243	int bgi;			/* blockgroup iteration index */
1244	int performed_allocation = 0;
1245	ext2_grpblk_t free_blocks;	/* number of free blocks in a group */
1246	struct super_block *sb;
1247	struct ext2_group_desc *gdp;
1248	struct ext2_super_block *es;
1249	struct ext2_sb_info *sbi;
1250	struct ext2_reserve_window_node *my_rsv = NULL;
1251	struct ext2_block_alloc_info *block_i;
1252	unsigned short windowsz = 0;
1253	unsigned long ngroups;
1254	unsigned long num = *count;
1255	int ret;
1256
1257	*errp = -ENOSPC;
1258	sb = inode->i_sb;
1259
1260	/*
1261	 * Check quota for allocation of this block.
1262	 */
1263	ret = dquot_alloc_block(inode, num);
1264	if (ret) {
1265		*errp = ret;
1266		return 0;
1267	}
1268
1269	sbi = EXT2_SB(sb);
1270	es = EXT2_SB(sb)->s_es;
1271	ext2_debug("goal=%lu.\n", goal);
1272	/*
1273	 * Allocate a block from reservation only when
1274	 * filesystem is mounted with reservation(default,-o reservation), and
1275	 * it's a regular file, and
1276	 * the desired window size is greater than 0 (One could use ioctl
1277	 * command EXT2_IOC_SETRSVSZ to set the window size to 0 to turn off
1278	 * reservation on that particular file)
1279	 */
1280	block_i = EXT2_I(inode)->i_block_alloc_info;
1281	if (block_i) {
1282		windowsz = block_i->rsv_window_node.rsv_goal_size;
1283		if (windowsz > 0)
1284			my_rsv = &block_i->rsv_window_node;
1285	}
1286
1287	if (!ext2_has_free_blocks(sbi)) {
1288		*errp = -ENOSPC;
1289		goto out;
1290	}
1291
1292	/*
1293	 * First, test whether the goal block is free.
1294	 */
1295	if (goal < le32_to_cpu(es->s_first_data_block) ||
1296	    goal >= le32_to_cpu(es->s_blocks_count))
1297		goal = le32_to_cpu(es->s_first_data_block);
1298	group_no = (goal - le32_to_cpu(es->s_first_data_block)) /
1299			EXT2_BLOCKS_PER_GROUP(sb);
1300	goal_group = group_no;
1301retry_alloc:
1302	gdp = ext2_get_group_desc(sb, group_no, &gdp_bh);
1303	if (!gdp)
1304		goto io_error;
1305
1306	free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1307	/*
1308	 * if there is not enough free blocks to make a new resevation
1309	 * turn off reservation for this allocation
1310	 */
1311	if (my_rsv && (free_blocks < windowsz)
1312		&& (free_blocks > 0)
1313		&& (rsv_is_empty(&my_rsv->rsv_window)))
1314		my_rsv = NULL;
1315
1316	if (free_blocks > 0) {
1317		grp_target_blk = ((goal - le32_to_cpu(es->s_first_data_block)) %
1318				EXT2_BLOCKS_PER_GROUP(sb));
 
 
 
 
 
 
 
1319		bitmap_bh = read_block_bitmap(sb, group_no);
1320		if (!bitmap_bh)
1321			goto io_error;
1322		grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no,
1323					bitmap_bh, grp_target_blk,
1324					my_rsv, &num);
1325		if (grp_alloc_blk >= 0)
1326			goto allocated;
1327	}
1328
1329	ngroups = EXT2_SB(sb)->s_groups_count;
1330	smp_rmb();
1331
1332	/*
1333	 * Now search the rest of the groups.  We assume that
1334	 * group_no and gdp correctly point to the last group visited.
1335	 */
1336	for (bgi = 0; bgi < ngroups; bgi++) {
1337		group_no++;
1338		if (group_no >= ngroups)
1339			group_no = 0;
1340		gdp = ext2_get_group_desc(sb, group_no, &gdp_bh);
1341		if (!gdp)
1342			goto io_error;
1343
1344		free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1345		/*
1346		 * skip this group (and avoid loading bitmap) if there
1347		 * are no free blocks
1348		 */
1349		if (!free_blocks)
1350			continue;
1351		/*
1352		 * skip this group if the number of
1353		 * free blocks is less than half of the reservation
1354		 * window size.
1355		 */
1356		if (my_rsv && (free_blocks <= (windowsz/2)))
1357			continue;
1358
1359		brelse(bitmap_bh);
1360		bitmap_bh = read_block_bitmap(sb, group_no);
1361		if (!bitmap_bh)
1362			goto io_error;
1363		/*
1364		 * try to allocate block(s) from this group, without a goal(-1).
1365		 */
1366		grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no,
1367					bitmap_bh, -1, my_rsv, &num);
1368		if (grp_alloc_blk >= 0)
1369			goto allocated;
1370	}
1371	/*
1372	 * We may end up a bogus earlier ENOSPC error due to
1373	 * filesystem is "full" of reservations, but
1374	 * there maybe indeed free blocks available on disk
1375	 * In this case, we just forget about the reservations
1376	 * just do block allocation as without reservations.
1377	 */
1378	if (my_rsv) {
1379		my_rsv = NULL;
1380		windowsz = 0;
1381		group_no = goal_group;
1382		goto retry_alloc;
1383	}
1384	/* No space left on the device */
1385	*errp = -ENOSPC;
1386	goto out;
1387
1388allocated:
1389
1390	ext2_debug("using block group %d(%d)\n",
1391			group_no, gdp->bg_free_blocks_count);
1392
1393	ret_block = grp_alloc_blk + ext2_group_first_block_no(sb, group_no);
1394
1395	if (in_range(le32_to_cpu(gdp->bg_block_bitmap), ret_block, num) ||
1396	    in_range(le32_to_cpu(gdp->bg_inode_bitmap), ret_block, num) ||
1397	    in_range(ret_block, le32_to_cpu(gdp->bg_inode_table),
1398		      EXT2_SB(sb)->s_itb_per_group) ||
1399	    in_range(ret_block + num - 1, le32_to_cpu(gdp->bg_inode_table),
1400		      EXT2_SB(sb)->s_itb_per_group)) {
1401		ext2_error(sb, "ext2_new_blocks",
1402			    "Allocating block in system zone - "
1403			    "blocks from "E2FSBLK", length %lu",
1404			    ret_block, num);
1405		/*
1406		 * ext2_try_to_allocate marked the blocks we allocated as in
1407		 * use.  So we may want to selectively mark some of the blocks
1408		 * as free
1409		 */
 
1410		goto retry_alloc;
1411	}
1412
1413	performed_allocation = 1;
1414
1415	if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) {
1416		ext2_error(sb, "ext2_new_blocks",
1417			    "block("E2FSBLK") >= blocks count(%d) - "
1418			    "block_group = %d, es == %p ", ret_block,
1419			le32_to_cpu(es->s_blocks_count), group_no, es);
1420		goto out;
1421	}
1422
1423	group_adjust_blocks(sb, group_no, gdp, gdp_bh, -num);
1424	percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1425
1426	mark_buffer_dirty(bitmap_bh);
1427	if (sb->s_flags & SB_SYNCHRONOUS)
1428		sync_dirty_buffer(bitmap_bh);
1429
1430	*errp = 0;
1431	brelse(bitmap_bh);
1432	if (num < *count) {
1433		dquot_free_block_nodirty(inode, *count-num);
1434		mark_inode_dirty(inode);
1435		*count = num;
1436	}
1437	return ret_block;
1438
1439io_error:
1440	*errp = -EIO;
1441out:
1442	/*
1443	 * Undo the block allocation
1444	 */
1445	if (!performed_allocation) {
1446		dquot_free_block_nodirty(inode, *count);
1447		mark_inode_dirty(inode);
1448	}
1449	brelse(bitmap_bh);
1450	return 0;
1451}
1452
1453ext2_fsblk_t ext2_new_block(struct inode *inode, unsigned long goal, int *errp)
1454{
1455	unsigned long count = 1;
1456
1457	return ext2_new_blocks(inode, goal, &count, errp);
1458}
1459
1460#ifdef EXT2FS_DEBUG
1461
1462unsigned long ext2_count_free(struct buffer_head *map, unsigned int numchars)
1463{
1464	return numchars * BITS_PER_BYTE - memweight(map->b_data, numchars);
1465}
1466
1467#endif  /*  EXT2FS_DEBUG  */
1468
1469unsigned long ext2_count_free_blocks (struct super_block * sb)
1470{
1471	struct ext2_group_desc * desc;
1472	unsigned long desc_count = 0;
1473	int i;
1474#ifdef EXT2FS_DEBUG
1475	unsigned long bitmap_count, x;
1476	struct ext2_super_block *es;
1477
1478	es = EXT2_SB(sb)->s_es;
1479	desc_count = 0;
1480	bitmap_count = 0;
1481	desc = NULL;
1482	for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) {
1483		struct buffer_head *bitmap_bh;
1484		desc = ext2_get_group_desc (sb, i, NULL);
1485		if (!desc)
1486			continue;
1487		desc_count += le16_to_cpu(desc->bg_free_blocks_count);
1488		bitmap_bh = read_block_bitmap(sb, i);
1489		if (!bitmap_bh)
1490			continue;
1491		
1492		x = ext2_count_free(bitmap_bh, sb->s_blocksize);
1493		printk ("group %d: stored = %d, counted = %lu\n",
1494			i, le16_to_cpu(desc->bg_free_blocks_count), x);
1495		bitmap_count += x;
1496		brelse(bitmap_bh);
1497	}
1498	printk("ext2_count_free_blocks: stored = %lu, computed = %lu, %lu\n",
1499		(long)le32_to_cpu(es->s_free_blocks_count),
1500		desc_count, bitmap_count);
1501	return bitmap_count;
1502#else
1503        for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) {
1504                desc = ext2_get_group_desc (sb, i, NULL);
1505                if (!desc)
1506                        continue;
1507                desc_count += le16_to_cpu(desc->bg_free_blocks_count);
1508	}
1509	return desc_count;
1510#endif
1511}
1512
1513static inline int test_root(int a, int b)
1514{
1515	int num = b;
1516
1517	while (a > num)
1518		num *= b;
1519	return num == a;
1520}
1521
1522static int ext2_group_sparse(int group)
1523{
1524	if (group <= 1)
1525		return 1;
1526	return (test_root(group, 3) || test_root(group, 5) ||
1527		test_root(group, 7));
1528}
1529
1530/**
1531 *	ext2_bg_has_super - number of blocks used by the superblock in group
1532 *	@sb: superblock for filesystem
1533 *	@group: group number to check
1534 *
1535 *	Return the number of blocks used by the superblock (primary or backup)
1536 *	in this group.  Currently this will be only 0 or 1.
1537 */
1538int ext2_bg_has_super(struct super_block *sb, int group)
1539{
1540	if (EXT2_HAS_RO_COMPAT_FEATURE(sb,EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER)&&
1541	    !ext2_group_sparse(group))
1542		return 0;
1543	return 1;
1544}
1545
1546/**
1547 *	ext2_bg_num_gdb - number of blocks used by the group table in group
1548 *	@sb: superblock for filesystem
1549 *	@group: group number to check
1550 *
1551 *	Return the number of blocks used by the group descriptor table
1552 *	(primary or backup) in this group.  In the future there may be a
1553 *	different number of descriptor blocks in each group.
1554 */
1555unsigned long ext2_bg_num_gdb(struct super_block *sb, int group)
1556{
1557	return ext2_bg_has_super(sb, group) ? EXT2_SB(sb)->s_gdb_count : 0;
1558}
1559
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext2/balloc.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
  11 *  Big-endian to little-endian byte-swapping/bitmaps by
  12 *        David S. Miller (davem@caip.rutgers.edu), 1995
  13 */
  14
  15#include "ext2.h"
  16#include <linux/quotaops.h>
  17#include <linux/slab.h>
  18#include <linux/sched.h>
  19#include <linux/cred.h>
  20#include <linux/buffer_head.h>
  21#include <linux/capability.h>
  22
  23/*
  24 * balloc.c contains the blocks allocation and deallocation routines
  25 */
  26
  27/*
  28 * The free blocks are managed by bitmaps.  A file system contains several
  29 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
  30 * block for inodes, N blocks for the inode table and data blocks.
  31 *
  32 * The file system contains group descriptors which are located after the
  33 * super block.  Each descriptor contains the number of the bitmap block and
  34 * the free blocks count in the block.  The descriptors are loaded in memory
  35 * when a file system is mounted (see ext2_fill_super).
  36 */
  37
  38
 
 
  39struct ext2_group_desc * ext2_get_group_desc(struct super_block * sb,
  40					     unsigned int block_group,
  41					     struct buffer_head ** bh)
  42{
  43	unsigned long group_desc;
  44	unsigned long offset;
  45	struct ext2_group_desc * desc;
  46	struct ext2_sb_info *sbi = EXT2_SB(sb);
  47
  48	if (block_group >= sbi->s_groups_count) {
  49		WARN(1, "block_group >= groups_count - "
  50		     "block_group = %d, groups_count = %lu",
  51		     block_group, sbi->s_groups_count);
 
  52
  53		return NULL;
  54	}
  55
  56	group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(sb);
  57	offset = block_group & (EXT2_DESC_PER_BLOCK(sb) - 1);
  58	if (!sbi->s_group_desc[group_desc]) {
  59		WARN(1, "Group descriptor not loaded - "
  60		     "block_group = %d, group_desc = %lu, desc = %lu",
  61		      block_group, group_desc, offset);
 
  62		return NULL;
  63	}
  64
  65	desc = (struct ext2_group_desc *) sbi->s_group_desc[group_desc]->b_data;
  66	if (bh)
  67		*bh = sbi->s_group_desc[group_desc];
  68	return desc + offset;
  69}
  70
  71static int ext2_valid_block_bitmap(struct super_block *sb,
  72					struct ext2_group_desc *desc,
  73					unsigned int block_group,
  74					struct buffer_head *bh)
  75{
  76	ext2_grpblk_t offset;
  77	ext2_grpblk_t next_zero_bit;
  78	ext2_fsblk_t bitmap_blk;
  79	ext2_fsblk_t group_first_block;
  80
  81	group_first_block = ext2_group_first_block_no(sb, block_group);
  82
  83	/* check whether block bitmap block number is set */
  84	bitmap_blk = le32_to_cpu(desc->bg_block_bitmap);
  85	offset = bitmap_blk - group_first_block;
  86	if (!ext2_test_bit(offset, bh->b_data))
  87		/* bad block bitmap */
  88		goto err_out;
  89
  90	/* check whether the inode bitmap block number is set */
  91	bitmap_blk = le32_to_cpu(desc->bg_inode_bitmap);
  92	offset = bitmap_blk - group_first_block;
  93	if (!ext2_test_bit(offset, bh->b_data))
  94		/* bad block bitmap */
  95		goto err_out;
  96
  97	/* check whether the inode table block number is set */
  98	bitmap_blk = le32_to_cpu(desc->bg_inode_table);
  99	offset = bitmap_blk - group_first_block;
 100	next_zero_bit = ext2_find_next_zero_bit(bh->b_data,
 101				offset + EXT2_SB(sb)->s_itb_per_group,
 102				offset);
 103	if (next_zero_bit >= offset + EXT2_SB(sb)->s_itb_per_group)
 104		/* good bitmap for inode tables */
 105		return 1;
 106
 107err_out:
 108	ext2_error(sb, __func__,
 109			"Invalid block bitmap - "
 110			"block_group = %d, block = %lu",
 111			block_group, bitmap_blk);
 112	return 0;
 113}
 114
 115/*
 116 * Read the bitmap for a given block_group,and validate the
 117 * bits for block/inode/inode tables are set in the bitmaps
 118 *
 119 * Return buffer_head on success or NULL in case of failure.
 120 */
 121static struct buffer_head *
 122read_block_bitmap(struct super_block *sb, unsigned int block_group)
 123{
 124	struct ext2_group_desc * desc;
 125	struct buffer_head * bh = NULL;
 126	ext2_fsblk_t bitmap_blk;
 127	int ret;
 128
 129	desc = ext2_get_group_desc(sb, block_group, NULL);
 130	if (!desc)
 131		return NULL;
 132	bitmap_blk = le32_to_cpu(desc->bg_block_bitmap);
 133	bh = sb_getblk(sb, bitmap_blk);
 134	if (unlikely(!bh)) {
 135		ext2_error(sb, __func__,
 136			    "Cannot read block bitmap - "
 137			    "block_group = %d, block_bitmap = %u",
 138			    block_group, le32_to_cpu(desc->bg_block_bitmap));
 139		return NULL;
 140	}
 141	ret = bh_read(bh, 0);
 142	if (ret > 0)
 143		return bh;
 144	if (ret < 0) {
 
 145		brelse(bh);
 146		ext2_error(sb, __func__,
 147			    "Cannot read block bitmap - "
 148			    "block_group = %d, block_bitmap = %u",
 149			    block_group, le32_to_cpu(desc->bg_block_bitmap));
 150		return NULL;
 151	}
 152
 153	ext2_valid_block_bitmap(sb, desc, block_group, bh);
 154	/*
 155	 * file system mounted not to panic on error, continue with corrupt
 156	 * bitmap
 157	 */
 158	return bh;
 159}
 160
 161static void group_adjust_blocks(struct super_block *sb, int group_no,
 162	struct ext2_group_desc *desc, struct buffer_head *bh, int count)
 163{
 164	if (count) {
 165		struct ext2_sb_info *sbi = EXT2_SB(sb);
 166		unsigned free_blocks;
 167
 168		spin_lock(sb_bgl_lock(sbi, group_no));
 169		free_blocks = le16_to_cpu(desc->bg_free_blocks_count);
 170		desc->bg_free_blocks_count = cpu_to_le16(free_blocks + count);
 171		spin_unlock(sb_bgl_lock(sbi, group_no));
 172		mark_buffer_dirty(bh);
 173	}
 174}
 175
 176/*
 177 * The reservation window structure operations
 178 * --------------------------------------------
 179 * Operations include:
 180 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
 181 *
 182 * We use a red-black tree to represent per-filesystem reservation
 183 * windows.
 184 *
 185 */
 186
 187/**
 188 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
 189 * @root:		root of per-filesystem reservation rb tree
 190 * @verbose:		verbose mode
 191 * @fn:			function which wishes to dump the reservation map
 192 *
 193 * If verbose is turned on, it will print the whole block reservation
 194 * windows(start, end). Otherwise, it will only print out the "bad" windows,
 195 * those windows that overlap with their immediate neighbors.
 196 */
 197#if 1
 198static void __rsv_window_dump(struct rb_root *root, int verbose,
 199			      const char *fn)
 200{
 201	struct rb_node *n;
 202	struct ext2_reserve_window_node *rsv, *prev;
 203	int bad;
 204
 205restart:
 206	n = rb_first(root);
 207	bad = 0;
 208	prev = NULL;
 209
 210	printk("Block Allocation Reservation Windows Map (%s):\n", fn);
 211	while (n) {
 212		rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node);
 213		if (verbose)
 214			printk("reservation window 0x%p "
 215				"start: %lu, end: %lu\n",
 216				rsv, rsv->rsv_start, rsv->rsv_end);
 217		if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
 218			printk("Bad reservation %p (start >= end)\n",
 219			       rsv);
 220			bad = 1;
 221		}
 222		if (prev && prev->rsv_end >= rsv->rsv_start) {
 223			printk("Bad reservation %p (prev->end >= start)\n",
 224			       rsv);
 225			bad = 1;
 226		}
 227		if (bad) {
 228			if (!verbose) {
 229				printk("Restarting reservation walk in verbose mode\n");
 230				verbose = 1;
 231				goto restart;
 232			}
 233		}
 234		n = rb_next(n);
 235		prev = rsv;
 236	}
 237	printk("Window map complete.\n");
 238	BUG_ON(bad);
 239}
 240#define rsv_window_dump(root, verbose) \
 241	__rsv_window_dump((root), (verbose), __func__)
 242#else
 243#define rsv_window_dump(root, verbose) do {} while (0)
 244#endif
 245
 246/**
 247 * goal_in_my_reservation()
 248 * @rsv:		inode's reservation window
 249 * @grp_goal:		given goal block relative to the allocation block group
 250 * @group:		the current allocation block group
 251 * @sb:			filesystem super block
 252 *
 253 * Test if the given goal block (group relative) is within the file's
 254 * own block reservation window range.
 255 *
 256 * If the reservation window is outside the goal allocation group, return 0;
 257 * grp_goal (given goal block) could be -1, which means no specific
 258 * goal block. In this case, always return 1.
 259 * If the goal block is within the reservation window, return 1;
 260 * otherwise, return 0;
 261 */
 262static int
 263goal_in_my_reservation(struct ext2_reserve_window *rsv, ext2_grpblk_t grp_goal,
 264			unsigned int group, struct super_block * sb)
 265{
 266	ext2_fsblk_t group_first_block, group_last_block;
 267
 268	group_first_block = ext2_group_first_block_no(sb, group);
 269	group_last_block = ext2_group_last_block_no(sb, group);
 270
 271	if ((rsv->_rsv_start > group_last_block) ||
 272	    (rsv->_rsv_end < group_first_block))
 273		return 0;
 274	if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
 275		|| (grp_goal + group_first_block > rsv->_rsv_end)))
 276		return 0;
 277	return 1;
 278}
 279
 280/**
 281 * search_reserve_window()
 282 * @root:		root of reservation tree
 283 * @goal:		target allocation block
 284 *
 285 * Find the reserved window which includes the goal, or the previous one
 286 * if the goal is not in any window.
 287 * Returns NULL if there are no windows or if all windows start after the goal.
 288 */
 289static struct ext2_reserve_window_node *
 290search_reserve_window(struct rb_root *root, ext2_fsblk_t goal)
 291{
 292	struct rb_node *n = root->rb_node;
 293	struct ext2_reserve_window_node *rsv;
 294
 295	if (!n)
 296		return NULL;
 297
 298	do {
 299		rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node);
 300
 301		if (goal < rsv->rsv_start)
 302			n = n->rb_left;
 303		else if (goal > rsv->rsv_end)
 304			n = n->rb_right;
 305		else
 306			return rsv;
 307	} while (n);
 308	/*
 309	 * We've fallen off the end of the tree: the goal wasn't inside
 310	 * any particular node.  OK, the previous node must be to one
 311	 * side of the interval containing the goal.  If it's the RHS,
 312	 * we need to back up one.
 313	 */
 314	if (rsv->rsv_start > goal) {
 315		n = rb_prev(&rsv->rsv_node);
 316		rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node);
 317	}
 318	return rsv;
 319}
 320
 321/*
 322 * ext2_rsv_window_add() -- Insert a window to the block reservation rb tree.
 323 * @sb:			super block
 324 * @rsv:		reservation window to add
 325 *
 326 * Must be called with rsv_lock held.
 327 */
 328void ext2_rsv_window_add(struct super_block *sb,
 329		    struct ext2_reserve_window_node *rsv)
 330{
 331	struct rb_root *root = &EXT2_SB(sb)->s_rsv_window_root;
 332	struct rb_node *node = &rsv->rsv_node;
 333	ext2_fsblk_t start = rsv->rsv_start;
 334
 335	struct rb_node ** p = &root->rb_node;
 336	struct rb_node * parent = NULL;
 337	struct ext2_reserve_window_node *this;
 338
 339	while (*p)
 340	{
 341		parent = *p;
 342		this = rb_entry(parent, struct ext2_reserve_window_node, rsv_node);
 343
 344		if (start < this->rsv_start)
 345			p = &(*p)->rb_left;
 346		else if (start > this->rsv_end)
 347			p = &(*p)->rb_right;
 348		else {
 349			rsv_window_dump(root, 1);
 350			BUG();
 351		}
 352	}
 353
 354	rb_link_node(node, parent, p);
 355	rb_insert_color(node, root);
 356}
 357
 358/**
 359 * rsv_window_remove() -- unlink a window from the reservation rb tree
 360 * @sb:			super block
 361 * @rsv:		reservation window to remove
 362 *
 363 * Mark the block reservation window as not allocated, and unlink it
 364 * from the filesystem reservation window rb tree. Must be called with
 365 * rsv_lock held.
 366 */
 367static void rsv_window_remove(struct super_block *sb,
 368			      struct ext2_reserve_window_node *rsv)
 369{
 370	rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 371	rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 372	rsv->rsv_alloc_hit = 0;
 373	rb_erase(&rsv->rsv_node, &EXT2_SB(sb)->s_rsv_window_root);
 374}
 375
 376/*
 377 * rsv_is_empty() -- Check if the reservation window is allocated.
 378 * @rsv:		given reservation window to check
 379 *
 380 * returns 1 if the end block is EXT2_RESERVE_WINDOW_NOT_ALLOCATED.
 381 */
 382static inline int rsv_is_empty(struct ext2_reserve_window *rsv)
 383{
 384	/* a valid reservation end block could not be 0 */
 385	return (rsv->_rsv_end == EXT2_RESERVE_WINDOW_NOT_ALLOCATED);
 386}
 387
 388/**
 389 * ext2_init_block_alloc_info()
 390 * @inode:		file inode structure
 391 *
 392 * Allocate and initialize the  reservation window structure, and
 393 * link the window to the ext2 inode structure at last
 394 *
 395 * The reservation window structure is only dynamically allocated
 396 * and linked to ext2 inode the first time the open file
 397 * needs a new block. So, before every ext2_new_block(s) call, for
 398 * regular files, we should check whether the reservation window
 399 * structure exists or not. In the latter case, this function is called.
 400 * Fail to do so will result in block reservation being turned off for that
 401 * open file.
 402 *
 403 * This function is called from ext2_get_blocks_handle(), also called
 404 * when setting the reservation window size through ioctl before the file
 405 * is open for write (needs block allocation).
 406 *
 407 * Needs truncate_mutex protection prior to calling this function.
 408 */
 409void ext2_init_block_alloc_info(struct inode *inode)
 410{
 411	struct ext2_inode_info *ei = EXT2_I(inode);
 412	struct ext2_block_alloc_info *block_i;
 413	struct super_block *sb = inode->i_sb;
 414
 415	block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
 416	if (block_i) {
 417		struct ext2_reserve_window_node *rsv = &block_i->rsv_window_node;
 418
 419		rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 420		rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 421
 422	 	/*
 423		 * if filesystem is mounted with NORESERVATION, the goal
 424		 * reservation window size is set to zero to indicate
 425		 * block reservation is off
 426		 */
 427		if (!test_opt(sb, RESERVATION))
 428			rsv->rsv_goal_size = 0;
 429		else
 430			rsv->rsv_goal_size = EXT2_DEFAULT_RESERVE_BLOCKS;
 431		rsv->rsv_alloc_hit = 0;
 432		block_i->last_alloc_logical_block = 0;
 433		block_i->last_alloc_physical_block = 0;
 434	}
 435	ei->i_block_alloc_info = block_i;
 436}
 437
 438/**
 439 * ext2_discard_reservation()
 440 * @inode:		inode
 441 *
 442 * Discard(free) block reservation window on last file close, or truncate
 443 * or at last iput().
 444 *
 445 * It is being called in three cases:
 446 * 	ext2_release_file(): last writer closes the file
 447 * 	ext2_clear_inode(): last iput(), when nobody links to this file.
 448 * 	ext2_truncate(): when the block indirect map is about to change.
 449 */
 450void ext2_discard_reservation(struct inode *inode)
 451{
 452	struct ext2_inode_info *ei = EXT2_I(inode);
 453	struct ext2_block_alloc_info *block_i = ei->i_block_alloc_info;
 454	struct ext2_reserve_window_node *rsv;
 455	spinlock_t *rsv_lock = &EXT2_SB(inode->i_sb)->s_rsv_window_lock;
 456
 457	if (!block_i)
 458		return;
 459
 460	rsv = &block_i->rsv_window_node;
 461	if (!rsv_is_empty(&rsv->rsv_window)) {
 462		spin_lock(rsv_lock);
 463		if (!rsv_is_empty(&rsv->rsv_window))
 464			rsv_window_remove(inode->i_sb, rsv);
 465		spin_unlock(rsv_lock);
 466	}
 467}
 468
 469/**
 470 * ext2_free_blocks() -- Free given blocks and update quota and i_blocks
 471 * @inode:		inode
 472 * @block:		start physical block to free
 473 * @count:		number of blocks to free
 474 */
 475void ext2_free_blocks(struct inode * inode, ext2_fsblk_t block,
 476		      unsigned long count)
 477{
 478	struct buffer_head *bitmap_bh = NULL;
 479	struct buffer_head * bh2;
 480	unsigned long block_group;
 481	unsigned long bit;
 482	unsigned long i;
 483	unsigned long overflow;
 484	struct super_block * sb = inode->i_sb;
 485	struct ext2_sb_info * sbi = EXT2_SB(sb);
 486	struct ext2_group_desc * desc;
 487	struct ext2_super_block * es = sbi->s_es;
 488	unsigned freed = 0, group_freed;
 489
 490	if (!ext2_data_block_valid(sbi, block, count)) {
 
 
 491		ext2_error (sb, "ext2_free_blocks",
 492			    "Freeing blocks not in datazone - "
 493			    "block = %lu, count = %lu", block, count);
 494		goto error_return;
 495	}
 496
 497	ext2_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1);
 498
 499do_more:
 500	overflow = 0;
 501	block_group = (block - le32_to_cpu(es->s_first_data_block)) /
 502		      EXT2_BLOCKS_PER_GROUP(sb);
 503	bit = (block - le32_to_cpu(es->s_first_data_block)) %
 504		      EXT2_BLOCKS_PER_GROUP(sb);
 505	/*
 506	 * Check to see if we are freeing blocks across a group
 507	 * boundary.
 508	 */
 509	if (bit + count > EXT2_BLOCKS_PER_GROUP(sb)) {
 510		overflow = bit + count - EXT2_BLOCKS_PER_GROUP(sb);
 511		count -= overflow;
 512	}
 513	brelse(bitmap_bh);
 514	bitmap_bh = read_block_bitmap(sb, block_group);
 515	if (!bitmap_bh)
 516		goto error_return;
 517
 518	desc = ext2_get_group_desc (sb, block_group, &bh2);
 519	if (!desc)
 520		goto error_return;
 521
 522	if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) ||
 523	    in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) ||
 524	    in_range (block, le32_to_cpu(desc->bg_inode_table),
 525		      sbi->s_itb_per_group) ||
 526	    in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table),
 527		      sbi->s_itb_per_group)) {
 528		ext2_error (sb, "ext2_free_blocks",
 529			    "Freeing blocks in system zones - "
 530			    "Block = %lu, count = %lu",
 531			    block, count);
 532		goto error_return;
 533	}
 534
 535	for (i = 0, group_freed = 0; i < count; i++) {
 536		if (!ext2_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
 537						bit + i, bitmap_bh->b_data)) {
 538			ext2_error(sb, __func__,
 539				"bit already cleared for block %lu", block + i);
 540		} else {
 541			group_freed++;
 542		}
 543	}
 544
 545	mark_buffer_dirty(bitmap_bh);
 546	if (sb->s_flags & SB_SYNCHRONOUS)
 547		sync_dirty_buffer(bitmap_bh);
 548
 549	group_adjust_blocks(sb, block_group, desc, bh2, group_freed);
 550	freed += group_freed;
 551
 552	if (overflow) {
 553		block += count;
 554		count = overflow;
 555		goto do_more;
 556	}
 557error_return:
 558	brelse(bitmap_bh);
 559	if (freed) {
 560		percpu_counter_add(&sbi->s_freeblocks_counter, freed);
 561		dquot_free_block_nodirty(inode, freed);
 562		mark_inode_dirty(inode);
 563	}
 564}
 565
 566/**
 567 * bitmap_search_next_usable_block()
 568 * @start:		the starting block (group relative) of the search
 569 * @bh:			bufferhead contains the block group bitmap
 570 * @maxblocks:		the ending block (group relative) of the reservation
 571 *
 572 * The bitmap search --- search forward through the actual bitmap on disk until
 573 * we find a bit free.
 574 */
 575static ext2_grpblk_t
 576bitmap_search_next_usable_block(ext2_grpblk_t start, struct buffer_head *bh,
 577					ext2_grpblk_t maxblocks)
 578{
 579	ext2_grpblk_t next;
 580
 581	next = ext2_find_next_zero_bit(bh->b_data, maxblocks, start);
 582	if (next >= maxblocks)
 583		return -1;
 584	return next;
 585}
 586
 587/**
 588 * find_next_usable_block()
 589 * @start:		the starting block (group relative) to find next
 590 * 			allocatable block in bitmap.
 591 * @bh:			bufferhead contains the block group bitmap
 592 * @maxblocks:		the ending block (group relative) for the search
 593 *
 594 * Find an allocatable block in a bitmap.  We perform the "most
 595 * appropriate allocation" algorithm of looking for a free block near
 596 * the initial goal; then for a free byte somewhere in the bitmap;
 597 * then for any free bit in the bitmap.
 598 */
 599static ext2_grpblk_t
 600find_next_usable_block(int start, struct buffer_head *bh, int maxblocks)
 601{
 602	ext2_grpblk_t here, next;
 603	char *p, *r;
 604
 605	if (start > 0) {
 606		/*
 607		 * The goal was occupied; search forward for a free 
 608		 * block within the next XX blocks.
 609		 *
 610		 * end_goal is more or less random, but it has to be
 611		 * less than EXT2_BLOCKS_PER_GROUP. Aligning up to the
 612		 * next 64-bit boundary is simple..
 613		 */
 614		ext2_grpblk_t end_goal = (start + 63) & ~63;
 615		if (end_goal > maxblocks)
 616			end_goal = maxblocks;
 617		here = ext2_find_next_zero_bit(bh->b_data, end_goal, start);
 618		if (here < end_goal)
 619			return here;
 620		ext2_debug("Bit not found near goal\n");
 621	}
 622
 623	here = start;
 624	if (here < 0)
 625		here = 0;
 626
 627	p = ((char *)bh->b_data) + (here >> 3);
 628	r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
 629	next = (r - ((char *)bh->b_data)) << 3;
 630
 631	if (next < maxblocks && next >= here)
 632		return next;
 633
 634	here = bitmap_search_next_usable_block(here, bh, maxblocks);
 635	return here;
 636}
 637
 638/**
 639 * ext2_try_to_allocate()
 640 * @sb:			superblock
 641 * @group:		given allocation block group
 642 * @bitmap_bh:		bufferhead holds the block bitmap
 643 * @grp_goal:		given target block within the group
 644 * @count:		target number of blocks to allocate
 645 * @my_rsv:		reservation window
 646 *
 647 * Attempt to allocate blocks within a give range. Set the range of allocation
 648 * first, then find the first free bit(s) from the bitmap (within the range),
 649 * and at last, allocate the blocks by claiming the found free bit as allocated.
 650 *
 651 * To set the range of this allocation:
 652 * 	if there is a reservation window, only try to allocate block(s)
 653 * 	from the file's own reservation window;
 654 * 	Otherwise, the allocation range starts from the give goal block,
 655 * 	ends at the block group's last block.
 656 *
 657 * If we failed to allocate the desired block then we may end up crossing to a
 658 * new bitmap.
 659 */
 660static int
 661ext2_try_to_allocate(struct super_block *sb, int group,
 662			struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal,
 663			unsigned long *count,
 664			struct ext2_reserve_window *my_rsv)
 665{
 666	ext2_fsblk_t group_first_block = ext2_group_first_block_no(sb, group);
 667	ext2_fsblk_t group_last_block = ext2_group_last_block_no(sb, group);
 668	ext2_grpblk_t start, end;
 669	unsigned long num = 0;
 670
 671	start = 0;
 672	end = group_last_block - group_first_block + 1;
 673	/* we do allocation within the reservation window if we have a window */
 674	if (my_rsv) {
 
 675		if (my_rsv->_rsv_start >= group_first_block)
 676			start = my_rsv->_rsv_start - group_first_block;
 677		if (my_rsv->_rsv_end < group_last_block)
 678			end = my_rsv->_rsv_end - group_first_block + 1;
 679		if (grp_goal < start || grp_goal >= end)
 
 
 
 
 
 
 
 680			grp_goal = -1;
 
 
 
 
 
 
 681	}
 
 682	BUG_ON(start > EXT2_BLOCKS_PER_GROUP(sb));
 683
 
 684	if (grp_goal < 0) {
 685		grp_goal = find_next_usable_block(start, bitmap_bh, end);
 686		if (grp_goal < 0)
 687			goto fail_access;
 688		if (!my_rsv) {
 689			int i;
 690
 691			for (i = 0; i < 7 && grp_goal > start &&
 692					!ext2_test_bit(grp_goal - 1,
 693					     		bitmap_bh->b_data);
 694			     		i++, grp_goal--)
 695				;
 696		}
 697	}
 
 698
 699	for (; num < *count && grp_goal < end; grp_goal++) {
 700		if (ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 701					grp_goal, bitmap_bh->b_data)) {
 702			if (num == 0)
 703				continue;
 704			break;
 705		}
 706		num++;
 
 707	}
 708
 709	if (num == 0)
 710		goto fail_access;
 711
 712	*count = num;
 713	return grp_goal - num;
 714fail_access:
 
 715	return -1;
 716}
 717
 718/**
 719 * find_next_reservable_window - Find a reservable space within the given range.
 720 * @search_head: The list to search.
 721 * @my_rsv: The reservation we're currently using.
 722 * @sb: The super block.
 723 * @start_block: The first block we consider to start the real search from
 724 * @last_block: The maximum block number that our goal reservable space
 725 *	could start from.
 726 *
 727 * It does not allocate the reservation window: alloc_new_reservation()
 728 * will do the work later.
 729 *
 730 * We search the given range, rather than the whole reservation double
 731 * linked list, (start_block, last_block) to find a free region that is
 732 * of my size and has not been reserved.
 733 *
 734 * @search_head is not necessarily the list head of the whole filesystem.
 735 * We have both head and @start_block to assist the search for the
 736 * reservable space. The list starts from head, but we will shift to
 737 * the place where start_block is, then start from there, when looking
 738 * for a reservable space.
 739 *
 740 * @last_block is normally the last block in this group. The search will end
 741 * when we found the start of next possible reservable space is out
 742 * of this boundary.  This could handle the cross boundary reservation
 743 * window request.
 
 
 
 
 
 744 *
 745 * Return: -1 if we could not find a range of sufficient size.  If we could,
 746 * return 0 and fill in @my_rsv with the range information.
 747 */
 748static int find_next_reservable_window(
 749				struct ext2_reserve_window_node *search_head,
 750				struct ext2_reserve_window_node *my_rsv,
 751				struct super_block * sb,
 752				ext2_fsblk_t start_block,
 753				ext2_fsblk_t last_block)
 754{
 755	struct rb_node *next;
 756	struct ext2_reserve_window_node *rsv, *prev;
 757	ext2_fsblk_t cur;
 758	int size = my_rsv->rsv_goal_size;
 759
 760	/* TODO: make the start of the reservation window byte-aligned */
 761	/* cur = *start_block & ~7;*/
 762	cur = start_block;
 763	rsv = search_head;
 764	if (!rsv)
 765		return -1;
 766
 767	while (1) {
 768		if (cur <= rsv->rsv_end)
 769			cur = rsv->rsv_end + 1;
 770
 771		/* TODO?
 772		 * in the case we could not find a reservable space
 773		 * that is what is expected, during the re-search, we could
 774		 * remember what's the largest reservable space we could have
 775		 * and return that one.
 776		 *
 777		 * For now it will fail if we could not find the reservable
 778		 * space with expected-size (or more)...
 779		 */
 780		if (cur > last_block)
 781			return -1;		/* fail */
 782
 783		prev = rsv;
 784		next = rb_next(&rsv->rsv_node);
 785		rsv = rb_entry(next,struct ext2_reserve_window_node,rsv_node);
 786
 787		/*
 788		 * Reached the last reservation, we can just append to the
 789		 * previous one.
 790		 */
 791		if (!next)
 792			break;
 793
 794		if (cur + size <= rsv->rsv_start) {
 795			/*
 796			 * Found a reserveable space big enough.  We could
 797			 * have a reservation across the group boundary here
 798		 	 */
 799			break;
 800		}
 801	}
 802	/*
 803	 * we come here either :
 804	 * when we reach the end of the whole list,
 805	 * and there is empty reservable space after last entry in the list.
 806	 * append it to the end of the list.
 807	 *
 808	 * or we found one reservable space in the middle of the list,
 809	 * return the reservation window that we could append to.
 810	 * succeed.
 811	 */
 812
 813	if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
 814		rsv_window_remove(sb, my_rsv);
 815
 816	/*
 817	 * Let's book the whole available window for now.  We will check the
 818	 * disk bitmap later and then, if there are free blocks then we adjust
 819	 * the window size if it's larger than requested.
 820	 * Otherwise, we will remove this node from the tree next time
 821	 * call find_next_reservable_window.
 822	 */
 823	my_rsv->rsv_start = cur;
 824	my_rsv->rsv_end = cur + size - 1;
 825	my_rsv->rsv_alloc_hit = 0;
 826
 827	if (prev != my_rsv)
 828		ext2_rsv_window_add(sb, my_rsv);
 829
 830	return 0;
 831}
 832
 833/**
 834 * alloc_new_reservation - Allocate a new reservation window.
 835 * @my_rsv: The reservation we're currently using.
 836 * @grp_goal: The goal block relative to the start of the group.
 837 * @sb: The super block.
 838 * @group: The group we are trying to allocate in.
 839 * @bitmap_bh: The block group block bitmap.
 840 *
 841 * To make a new reservation, we search part of the filesystem reservation
 842 * list (the list inside the group). We try to allocate a new
 843 * reservation window near @grp_goal, or the beginning of the
 844 * group, if @grp_goal is negative.
 845 *
 846 * We first find a reservable space after the goal, then from there,
 847 * we check the bitmap for the first free block after it. If there is
 848 * no free block until the end of group, then the whole group is full,
 849 * we failed. Otherwise, check if the free block is inside the expected
 850 * reservable space, if so, we succeed.
 851 *
 852 * If the first free block is outside the reservable space, then start
 853 * from the first free block, we search for next available space, and
 854 * go on.
 855 *
 856 * on succeed, a new reservation will be found and inserted into the
 857 * list. It contains at least one free block, and it does not overlap
 858 * with other reservation windows.
 
 
 
 
 
 
 
 
 
 859 *
 860 * Return: 0 on success, -1 if we failed to find a reservation window
 861 * in this group
 862 */
 863static int alloc_new_reservation(struct ext2_reserve_window_node *my_rsv,
 864		ext2_grpblk_t grp_goal, struct super_block *sb,
 865		unsigned int group, struct buffer_head *bitmap_bh)
 866{
 867	struct ext2_reserve_window_node *search_head;
 868	ext2_fsblk_t group_first_block, group_end_block, start_block;
 869	ext2_grpblk_t first_free_block;
 870	struct rb_root *fs_rsv_root = &EXT2_SB(sb)->s_rsv_window_root;
 871	unsigned long size;
 872	int ret;
 873	spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock;
 874
 875	group_first_block = ext2_group_first_block_no(sb, group);
 876	group_end_block = ext2_group_last_block_no(sb, group);
 877
 878	if (grp_goal < 0)
 879		start_block = group_first_block;
 880	else
 881		start_block = grp_goal + group_first_block;
 882
 883	size = my_rsv->rsv_goal_size;
 884
 885	if (!rsv_is_empty(&my_rsv->rsv_window)) {
 886		/*
 887		 * if the old reservation is cross group boundary
 888		 * and if the goal is inside the old reservation window,
 889		 * we will come here when we just failed to allocate from
 890		 * the first part of the window. We still have another part
 891		 * that belongs to the next group. In this case, there is no
 892		 * point to discard our window and try to allocate a new one
 893		 * in this group(which will fail). we should
 894		 * keep the reservation window, just simply move on.
 895		 *
 896		 * Maybe we could shift the start block of the reservation
 897		 * window to the first block of next group.
 898		 */
 899
 900		if ((my_rsv->rsv_start <= group_end_block) &&
 901				(my_rsv->rsv_end > group_end_block) &&
 902				(start_block >= my_rsv->rsv_start))
 903			return -1;
 904
 905		if ((my_rsv->rsv_alloc_hit >
 906		     (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
 907			/*
 908			 * if the previously allocation hit ratio is
 909			 * greater than 1/2, then we double the size of
 910			 * the reservation window the next time,
 911			 * otherwise we keep the same size window
 912			 */
 913			size = size * 2;
 914			if (size > EXT2_MAX_RESERVE_BLOCKS)
 915				size = EXT2_MAX_RESERVE_BLOCKS;
 916			my_rsv->rsv_goal_size= size;
 917		}
 918	}
 919
 920	spin_lock(rsv_lock);
 921	/*
 922	 * shift the search start to the window near the goal block
 923	 */
 924	search_head = search_reserve_window(fs_rsv_root, start_block);
 925
 926	/*
 927	 * find_next_reservable_window() simply finds a reservable window
 928	 * inside the given range(start_block, group_end_block).
 929	 *
 930	 * To make sure the reservation window has a free bit inside it, we
 931	 * need to check the bitmap after we found a reservable window.
 932	 */
 933retry:
 934	ret = find_next_reservable_window(search_head, my_rsv, sb,
 935						start_block, group_end_block);
 936
 937	if (ret == -1) {
 938		if (!rsv_is_empty(&my_rsv->rsv_window))
 939			rsv_window_remove(sb, my_rsv);
 940		spin_unlock(rsv_lock);
 941		return -1;
 942	}
 943
 944	/*
 945	 * On success, find_next_reservable_window() returns the
 946	 * reservation window where there is a reservable space after it.
 947	 * Before we reserve this reservable space, we need
 948	 * to make sure there is at least a free block inside this region.
 949	 *
 950	 * Search the first free bit on the block bitmap.  Search starts from
 951	 * the start block of the reservable space we just found.
 952	 */
 953	spin_unlock(rsv_lock);
 954	first_free_block = bitmap_search_next_usable_block(
 955			my_rsv->rsv_start - group_first_block,
 956			bitmap_bh, group_end_block - group_first_block + 1);
 957
 958	if (first_free_block < 0) {
 959		/*
 960		 * no free block left on the bitmap, no point
 961		 * to reserve the space. return failed.
 962		 */
 963		spin_lock(rsv_lock);
 964		if (!rsv_is_empty(&my_rsv->rsv_window))
 965			rsv_window_remove(sb, my_rsv);
 966		spin_unlock(rsv_lock);
 967		return -1;		/* failed */
 968	}
 969
 970	start_block = first_free_block + group_first_block;
 971	/*
 972	 * check if the first free block is within the
 973	 * free space we just reserved
 974	 */
 975	if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
 976		return 0;		/* success */
 977	/*
 978	 * if the first free bit we found is out of the reservable space
 979	 * continue search for next reservable space,
 980	 * start from where the free block is,
 981	 * we also shift the list head to where we stopped last time
 982	 */
 983	search_head = my_rsv;
 984	spin_lock(rsv_lock);
 985	goto retry;
 986}
 987
 988/**
 989 * try_to_extend_reservation()
 990 * @my_rsv:		given reservation window
 991 * @sb:			super block
 992 * @size:		the delta to extend
 993 *
 994 * Attempt to expand the reservation window large enough to have
 995 * required number of free blocks
 996 *
 997 * Since ext2_try_to_allocate() will always allocate blocks within
 998 * the reservation window range, if the window size is too small,
 999 * multiple blocks allocation has to stop at the end of the reservation
1000 * window. To make this more efficient, given the total number of
1001 * blocks needed and the current size of the window, we try to
1002 * expand the reservation window size if necessary on a best-effort
1003 * basis before ext2_new_blocks() tries to allocate blocks.
1004 */
1005static void try_to_extend_reservation(struct ext2_reserve_window_node *my_rsv,
1006			struct super_block *sb, int size)
1007{
1008	struct ext2_reserve_window_node *next_rsv;
1009	struct rb_node *next;
1010	spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock;
1011
1012	if (!spin_trylock(rsv_lock))
1013		return;
1014
1015	next = rb_next(&my_rsv->rsv_node);
1016
1017	if (!next)
1018		my_rsv->rsv_end += size;
1019	else {
1020		next_rsv = rb_entry(next, struct ext2_reserve_window_node, rsv_node);
1021
1022		if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1023			my_rsv->rsv_end += size;
1024		else
1025			my_rsv->rsv_end = next_rsv->rsv_start - 1;
1026	}
1027	spin_unlock(rsv_lock);
1028}
1029
1030/**
1031 * ext2_try_to_allocate_with_rsv()
1032 * @sb:			superblock
1033 * @group:		given allocation block group
1034 * @bitmap_bh:		bufferhead holds the block bitmap
1035 * @grp_goal:		given target block within the group
1036 * @count:		target number of blocks to allocate
1037 * @my_rsv:		reservation window
1038 *
1039 * This is the main function used to allocate a new block and its reservation
1040 * window.
1041 *
1042 * Each time when a new block allocation is need, first try to allocate from
1043 * its own reservation.  If it does not have a reservation window, instead of
1044 * looking for a free bit on bitmap first, then look up the reservation list to
1045 * see if it is inside somebody else's reservation window, we try to allocate a
1046 * reservation window for it starting from the goal first. Then do the block
1047 * allocation within the reservation window.
1048 *
1049 * This will avoid keeping on searching the reservation list again and
1050 * again when somebody is looking for a free block (without
1051 * reservation), and there are lots of free blocks, but they are all
1052 * being reserved.
1053 *
1054 * We use a red-black tree for the per-filesystem reservation list.
1055 */
1056static ext2_grpblk_t
1057ext2_try_to_allocate_with_rsv(struct super_block *sb, unsigned int group,
1058			struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal,
1059			struct ext2_reserve_window_node * my_rsv,
1060			unsigned long *count)
1061{
1062	ext2_fsblk_t group_first_block, group_last_block;
1063	ext2_grpblk_t ret = 0;
1064	unsigned long num = *count;
1065
1066	/*
1067	 * we don't deal with reservation when
1068	 * filesystem is mounted without reservation
1069	 * or the file is not a regular file
1070	 * or last attempt to allocate a block with reservation turned on failed
1071	 */
1072	if (my_rsv == NULL) {
1073		return ext2_try_to_allocate(sb, group, bitmap_bh,
1074						grp_goal, count, NULL);
1075	}
1076	/*
1077	 * grp_goal is a group relative block number (if there is a goal)
1078	 * 0 <= grp_goal < EXT2_BLOCKS_PER_GROUP(sb)
1079	 * first block is a filesystem wide block number
1080	 * first block is the block number of the first block in this group
1081	 */
1082	group_first_block = ext2_group_first_block_no(sb, group);
1083	group_last_block = ext2_group_last_block_no(sb, group);
1084
1085	/*
1086	 * Basically we will allocate a new block from inode's reservation
1087	 * window.
1088	 *
1089	 * We need to allocate a new reservation window, if:
1090	 * a) inode does not have a reservation window; or
1091	 * b) last attempt to allocate a block from existing reservation
1092	 *    failed; or
1093	 * c) we come here with a goal and with a reservation window
1094	 *
1095	 * We do not need to allocate a new reservation window if we come here
1096	 * at the beginning with a goal and the goal is inside the window, or
1097	 * we don't have a goal but already have a reservation window.
1098	 * then we could go to allocate from the reservation window directly.
1099	 */
1100	while (1) {
1101		if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1102			!goal_in_my_reservation(&my_rsv->rsv_window,
1103						grp_goal, group, sb)) {
1104			if (my_rsv->rsv_goal_size < *count)
1105				my_rsv->rsv_goal_size = *count;
1106			ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1107							group, bitmap_bh);
1108			if (ret < 0)
1109				break;			/* failed */
1110
1111			if (!goal_in_my_reservation(&my_rsv->rsv_window,
1112							grp_goal, group, sb))
1113				grp_goal = -1;
1114		} else if (grp_goal >= 0) {
1115			int curr = my_rsv->rsv_end -
1116					(grp_goal + group_first_block) + 1;
1117
1118			if (curr < *count)
1119				try_to_extend_reservation(my_rsv, sb,
1120							*count - curr);
1121		}
1122
1123		if ((my_rsv->rsv_start > group_last_block) ||
1124				(my_rsv->rsv_end < group_first_block)) {
1125			ext2_error(sb, __func__,
1126				   "Reservation out of group %u range goal %d fsb[%lu,%lu] rsv[%lu, %lu]",
1127				   group, grp_goal, group_first_block,
1128				   group_last_block, my_rsv->rsv_start,
1129				   my_rsv->rsv_end);
1130			rsv_window_dump(&EXT2_SB(sb)->s_rsv_window_root, 1);
1131			return -1;
1132		}
1133		ret = ext2_try_to_allocate(sb, group, bitmap_bh, grp_goal,
1134					   &num, &my_rsv->rsv_window);
1135		if (ret >= 0) {
1136			my_rsv->rsv_alloc_hit += num;
1137			*count = num;
1138			break;				/* succeed */
1139		}
1140		num = *count;
1141	}
1142	return ret;
1143}
1144
1145/**
1146 * ext2_has_free_blocks()
1147 * @sbi:		in-core super block structure.
1148 *
1149 * Check if filesystem has at least 1 free block available for allocation.
1150 */
1151static int ext2_has_free_blocks(struct ext2_sb_info *sbi)
1152{
1153	ext2_fsblk_t free_blocks, root_blocks;
1154
1155	free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1156	root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count);
1157	if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1158		!uid_eq(sbi->s_resuid, current_fsuid()) &&
1159		(gid_eq(sbi->s_resgid, GLOBAL_ROOT_GID) ||
1160		 !in_group_p (sbi->s_resgid))) {
1161		return 0;
1162	}
1163	return 1;
1164}
1165
1166/*
1167 * Returns 1 if the passed-in block region is valid; 0 if some part overlaps
1168 * with filesystem metadata blocks.
1169 */
1170int ext2_data_block_valid(struct ext2_sb_info *sbi, ext2_fsblk_t start_blk,
1171			  unsigned int count)
1172{
1173	if ((start_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
1174	    (start_blk + count - 1 < start_blk) ||
1175	    (start_blk + count - 1 >= le32_to_cpu(sbi->s_es->s_blocks_count)))
1176		return 0;
1177
1178	/* Ensure we do not step over superblock */
1179	if ((start_blk <= sbi->s_sb_block) &&
1180	    (start_blk + count - 1 >= sbi->s_sb_block))
1181		return 0;
1182
 
1183	return 1;
1184}
1185
1186/*
1187 * ext2_new_blocks() -- core block(s) allocation function
1188 * @inode:		file inode
1189 * @goal:		given target block(filesystem wide)
1190 * @count:		target number of blocks to allocate
1191 * @errp:		error code
1192 * @flags:		allocate flags
1193 *
1194 * ext2_new_blocks uses a goal block to assist allocation.  If the goal is
1195 * free, or there is a free block within 32 blocks of the goal, that block
1196 * is allocated.  Otherwise a forward search is made for a free block; within 
1197 * each block group the search first looks for an entire free byte in the block
1198 * bitmap, and then for any free bit if that fails.
1199 * This function also updates quota and i_blocks field.
1200 */
1201ext2_fsblk_t ext2_new_blocks(struct inode *inode, ext2_fsblk_t goal,
1202		    unsigned long *count, int *errp, unsigned int flags)
1203{
1204	struct buffer_head *bitmap_bh = NULL;
1205	struct buffer_head *gdp_bh;
1206	int group_no;
1207	int goal_group;
1208	ext2_grpblk_t grp_target_blk;	/* blockgroup relative goal block */
1209	ext2_grpblk_t grp_alloc_blk;	/* blockgroup-relative allocated block*/
1210	ext2_fsblk_t ret_block;		/* filesyetem-wide allocated block */
1211	int bgi;			/* blockgroup iteration index */
1212	int performed_allocation = 0;
1213	ext2_grpblk_t free_blocks;	/* number of free blocks in a group */
1214	struct super_block *sb;
1215	struct ext2_group_desc *gdp;
1216	struct ext2_super_block *es;
1217	struct ext2_sb_info *sbi;
1218	struct ext2_reserve_window_node *my_rsv = NULL;
1219	struct ext2_block_alloc_info *block_i;
1220	unsigned short windowsz = 0;
1221	unsigned long ngroups;
1222	unsigned long num = *count;
1223	int ret;
1224
1225	*errp = -ENOSPC;
1226	sb = inode->i_sb;
1227
1228	/*
1229	 * Check quota for allocation of this block.
1230	 */
1231	ret = dquot_alloc_block(inode, num);
1232	if (ret) {
1233		*errp = ret;
1234		return 0;
1235	}
1236
1237	sbi = EXT2_SB(sb);
1238	es = EXT2_SB(sb)->s_es;
1239	ext2_debug("goal=%lu.\n", goal);
1240	/*
1241	 * Allocate a block from reservation only when the filesystem is
1242	 * mounted with reservation(default,-o reservation), and it's a regular
1243	 * file, and the desired window size is greater than 0 (One could use
1244	 * ioctl command EXT2_IOC_SETRSVSZ to set the window size to 0 to turn
1245	 * off reservation on that particular file). Also do not use the
1246	 * reservation window if the caller asked us not to do it.
1247	 */
1248	block_i = EXT2_I(inode)->i_block_alloc_info;
1249	if (!(flags & EXT2_ALLOC_NORESERVE) && block_i) {
1250		windowsz = block_i->rsv_window_node.rsv_goal_size;
1251		if (windowsz > 0)
1252			my_rsv = &block_i->rsv_window_node;
1253	}
1254
1255	if (!ext2_has_free_blocks(sbi)) {
1256		*errp = -ENOSPC;
1257		goto out;
1258	}
1259
1260	/*
1261	 * First, test whether the goal block is free.
1262	 */
1263	if (goal < le32_to_cpu(es->s_first_data_block) ||
1264	    goal >= le32_to_cpu(es->s_blocks_count))
1265		goal = le32_to_cpu(es->s_first_data_block);
1266	group_no = (goal - le32_to_cpu(es->s_first_data_block)) /
1267			EXT2_BLOCKS_PER_GROUP(sb);
1268	goal_group = group_no;
1269retry_alloc:
1270	gdp = ext2_get_group_desc(sb, group_no, &gdp_bh);
1271	if (!gdp)
1272		goto io_error;
1273
1274	free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1275	/*
1276	 * if there is not enough free blocks to make a new resevation
1277	 * turn off reservation for this allocation
1278	 */
1279	if (my_rsv && (free_blocks < windowsz)
1280		&& (free_blocks > 0)
1281		&& (rsv_is_empty(&my_rsv->rsv_window)))
1282		my_rsv = NULL;
1283
1284	if (free_blocks > 0) {
1285		grp_target_blk = ((goal - le32_to_cpu(es->s_first_data_block)) %
1286				EXT2_BLOCKS_PER_GROUP(sb));
1287		/*
1288		 * In case we retry allocation (due to fs reservation not
1289		 * working out or fs corruption), the bitmap_bh is non-null
1290		 * pointer and we have to release it before calling
1291		 * read_block_bitmap().
1292		 */
1293		brelse(bitmap_bh);
1294		bitmap_bh = read_block_bitmap(sb, group_no);
1295		if (!bitmap_bh)
1296			goto io_error;
1297		grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no,
1298					bitmap_bh, grp_target_blk,
1299					my_rsv, &num);
1300		if (grp_alloc_blk >= 0)
1301			goto allocated;
1302	}
1303
1304	ngroups = EXT2_SB(sb)->s_groups_count;
1305	smp_rmb();
1306
1307	/*
1308	 * Now search the rest of the groups.  We assume that
1309	 * group_no and gdp correctly point to the last group visited.
1310	 */
1311	for (bgi = 0; bgi < ngroups; bgi++) {
1312		group_no++;
1313		if (group_no >= ngroups)
1314			group_no = 0;
1315		gdp = ext2_get_group_desc(sb, group_no, &gdp_bh);
1316		if (!gdp)
1317			goto io_error;
1318
1319		free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1320		/*
1321		 * skip this group (and avoid loading bitmap) if there
1322		 * are no free blocks
1323		 */
1324		if (!free_blocks)
1325			continue;
1326		/*
1327		 * skip this group if the number of
1328		 * free blocks is less than half of the reservation
1329		 * window size.
1330		 */
1331		if (my_rsv && (free_blocks <= (windowsz/2)))
1332			continue;
1333
1334		brelse(bitmap_bh);
1335		bitmap_bh = read_block_bitmap(sb, group_no);
1336		if (!bitmap_bh)
1337			goto io_error;
1338		/*
1339		 * try to allocate block(s) from this group, without a goal(-1).
1340		 */
1341		grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no,
1342					bitmap_bh, -1, my_rsv, &num);
1343		if (grp_alloc_blk >= 0)
1344			goto allocated;
1345	}
1346	/*
1347	 * We may end up a bogus earlier ENOSPC error due to
1348	 * filesystem is "full" of reservations, but
1349	 * there maybe indeed free blocks available on disk
1350	 * In this case, we just forget about the reservations
1351	 * just do block allocation as without reservations.
1352	 */
1353	if (my_rsv) {
1354		my_rsv = NULL;
1355		windowsz = 0;
1356		group_no = goal_group;
1357		goto retry_alloc;
1358	}
1359	/* No space left on the device */
1360	*errp = -ENOSPC;
1361	goto out;
1362
1363allocated:
1364
1365	ext2_debug("using block group %d(%d)\n",
1366			group_no, gdp->bg_free_blocks_count);
1367
1368	ret_block = grp_alloc_blk + ext2_group_first_block_no(sb, group_no);
1369
1370	if (in_range(le32_to_cpu(gdp->bg_block_bitmap), ret_block, num) ||
1371	    in_range(le32_to_cpu(gdp->bg_inode_bitmap), ret_block, num) ||
1372	    in_range(ret_block, le32_to_cpu(gdp->bg_inode_table),
1373		      EXT2_SB(sb)->s_itb_per_group) ||
1374	    in_range(ret_block + num - 1, le32_to_cpu(gdp->bg_inode_table),
1375		      EXT2_SB(sb)->s_itb_per_group)) {
1376		ext2_error(sb, "ext2_new_blocks",
1377			    "Allocating block in system zone - "
1378			    "blocks from "E2FSBLK", length %lu",
1379			    ret_block, num);
1380		/*
1381		 * ext2_try_to_allocate marked the blocks we allocated as in
1382		 * use.  So we may want to selectively mark some of the blocks
1383		 * as free
1384		 */
1385		num = *count;
1386		goto retry_alloc;
1387	}
1388
1389	performed_allocation = 1;
1390
1391	if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) {
1392		ext2_error(sb, "ext2_new_blocks",
1393			    "block("E2FSBLK") >= blocks count(%d) - "
1394			    "block_group = %d, es == %p ", ret_block,
1395			le32_to_cpu(es->s_blocks_count), group_no, es);
1396		goto out;
1397	}
1398
1399	group_adjust_blocks(sb, group_no, gdp, gdp_bh, -num);
1400	percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1401
1402	mark_buffer_dirty(bitmap_bh);
1403	if (sb->s_flags & SB_SYNCHRONOUS)
1404		sync_dirty_buffer(bitmap_bh);
1405
1406	*errp = 0;
1407	brelse(bitmap_bh);
1408	if (num < *count) {
1409		dquot_free_block_nodirty(inode, *count-num);
1410		mark_inode_dirty(inode);
1411		*count = num;
1412	}
1413	return ret_block;
1414
1415io_error:
1416	*errp = -EIO;
1417out:
1418	/*
1419	 * Undo the block allocation
1420	 */
1421	if (!performed_allocation) {
1422		dquot_free_block_nodirty(inode, *count);
1423		mark_inode_dirty(inode);
1424	}
1425	brelse(bitmap_bh);
1426	return 0;
1427}
1428
 
 
 
 
 
 
 
1429#ifdef EXT2FS_DEBUG
1430
1431unsigned long ext2_count_free(struct buffer_head *map, unsigned int numchars)
1432{
1433	return numchars * BITS_PER_BYTE - memweight(map->b_data, numchars);
1434}
1435
1436#endif  /*  EXT2FS_DEBUG  */
1437
1438unsigned long ext2_count_free_blocks (struct super_block * sb)
1439{
1440	struct ext2_group_desc * desc;
1441	unsigned long desc_count = 0;
1442	int i;
1443#ifdef EXT2FS_DEBUG
1444	unsigned long bitmap_count, x;
1445	struct ext2_super_block *es;
1446
1447	es = EXT2_SB(sb)->s_es;
1448	desc_count = 0;
1449	bitmap_count = 0;
1450	desc = NULL;
1451	for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) {
1452		struct buffer_head *bitmap_bh;
1453		desc = ext2_get_group_desc (sb, i, NULL);
1454		if (!desc)
1455			continue;
1456		desc_count += le16_to_cpu(desc->bg_free_blocks_count);
1457		bitmap_bh = read_block_bitmap(sb, i);
1458		if (!bitmap_bh)
1459			continue;
1460		
1461		x = ext2_count_free(bitmap_bh, sb->s_blocksize);
1462		printk ("group %d: stored = %d, counted = %lu\n",
1463			i, le16_to_cpu(desc->bg_free_blocks_count), x);
1464		bitmap_count += x;
1465		brelse(bitmap_bh);
1466	}
1467	printk("ext2_count_free_blocks: stored = %lu, computed = %lu, %lu\n",
1468		(long)le32_to_cpu(es->s_free_blocks_count),
1469		desc_count, bitmap_count);
1470	return bitmap_count;
1471#else
1472	for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) {
1473		desc = ext2_get_group_desc(sb, i, NULL);
1474		if (!desc)
1475			continue;
1476		desc_count += le16_to_cpu(desc->bg_free_blocks_count);
1477	}
1478	return desc_count;
1479#endif
1480}
1481
1482static inline int test_root(int a, int b)
1483{
1484	int num = b;
1485
1486	while (a > num)
1487		num *= b;
1488	return num == a;
1489}
1490
1491static int ext2_group_sparse(int group)
1492{
1493	if (group <= 1)
1494		return 1;
1495	return (test_root(group, 3) || test_root(group, 5) ||
1496		test_root(group, 7));
1497}
1498
1499/**
1500 *	ext2_bg_has_super - number of blocks used by the superblock in group
1501 *	@sb: superblock for filesystem
1502 *	@group: group number to check
1503 *
1504 *	Return the number of blocks used by the superblock (primary or backup)
1505 *	in this group.  Currently this will be only 0 or 1.
1506 */
1507int ext2_bg_has_super(struct super_block *sb, int group)
1508{
1509	if (EXT2_HAS_RO_COMPAT_FEATURE(sb,EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER)&&
1510	    !ext2_group_sparse(group))
1511		return 0;
1512	return 1;
1513}
1514
1515/**
1516 *	ext2_bg_num_gdb - number of blocks used by the group table in group
1517 *	@sb: superblock for filesystem
1518 *	@group: group number to check
1519 *
1520 *	Return the number of blocks used by the group descriptor table
1521 *	(primary or backup) in this group.  In the future there may be a
1522 *	different number of descriptor blocks in each group.
1523 */
1524unsigned long ext2_bg_num_gdb(struct super_block *sb, int group)
1525{
1526	return ext2_bg_has_super(sb, group) ? EXT2_SB(sb)->s_gdb_count : 0;
1527}
1528