Linux Audio

Check our new training course

Loading...
  1/* AFS superblock handling
  2 *
  3 * Copyright (c) 2002, 2007 Red Hat, Inc. All rights reserved.
  4 *
  5 * This software may be freely redistributed under the terms of the
  6 * GNU General Public License.
  7 *
  8 * You should have received a copy of the GNU General Public License
  9 * along with this program; if not, write to the Free Software
 10 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 11 *
 12 * Authors: David Howells <dhowells@redhat.com>
 13 *          David Woodhouse <dwmw2@infradead.org>
 14 *
 15 */
 16
 17#include <linux/kernel.h>
 18#include <linux/module.h>
 19#include <linux/mount.h>
 20#include <linux/init.h>
 21#include <linux/slab.h>
 22#include <linux/fs.h>
 23#include <linux/pagemap.h>
 24#include <linux/parser.h>
 25#include <linux/statfs.h>
 26#include <linux/sched.h>
 27#include <linux/nsproxy.h>
 28#include <linux/magic.h>
 29#include <net/net_namespace.h>
 30#include "internal.h"
 31
 32static void afs_i_init_once(void *foo);
 33static struct dentry *afs_mount(struct file_system_type *fs_type,
 34		      int flags, const char *dev_name, void *data);
 35static void afs_kill_super(struct super_block *sb);
 36static struct inode *afs_alloc_inode(struct super_block *sb);
 37static void afs_destroy_inode(struct inode *inode);
 
 38static int afs_statfs(struct dentry *dentry, struct kstatfs *buf);
 39static int afs_show_devname(struct seq_file *m, struct dentry *root);
 40static int afs_show_options(struct seq_file *m, struct dentry *root);
 
 
 41
 42struct file_system_type afs_fs_type = {
 43	.owner		= THIS_MODULE,
 44	.name		= "afs",
 45	.mount		= afs_mount,
 46	.kill_sb	= afs_kill_super,
 47	.fs_flags	= 0,
 
 48};
 49MODULE_ALIAS_FS("afs");
 50
 
 
 51static const struct super_operations afs_super_ops = {
 52	.statfs		= afs_statfs,
 53	.alloc_inode	= afs_alloc_inode,
 
 54	.drop_inode	= afs_drop_inode,
 55	.destroy_inode	= afs_destroy_inode,
 
 56	.evict_inode	= afs_evict_inode,
 57	.show_devname	= afs_show_devname,
 58	.show_options	= afs_show_options,
 59};
 60
 61static struct kmem_cache *afs_inode_cachep;
 62static atomic_t afs_count_active_inodes;
 63
 64enum {
 65	afs_no_opt,
 66	afs_opt_cell,
 67	afs_opt_dyn,
 68	afs_opt_rwpath,
 69	afs_opt_vol,
 70	afs_opt_autocell,
 
 
 
 
 
 
 71};
 72
 73static const match_table_t afs_options_list = {
 74	{ afs_opt_cell,		"cell=%s"	},
 75	{ afs_opt_dyn,		"dyn"		},
 76	{ afs_opt_rwpath,	"rwpath"	},
 77	{ afs_opt_vol,		"vol=%s"	},
 78	{ afs_opt_autocell,	"autocell"	},
 79	{ afs_no_opt,		NULL		},
 80};
 81
 82/*
 83 * initialise the filesystem
 84 */
 85int __init afs_fs_init(void)
 86{
 87	int ret;
 88
 89	_enter("");
 90
 91	/* create ourselves an inode cache */
 92	atomic_set(&afs_count_active_inodes, 0);
 93
 94	ret = -ENOMEM;
 95	afs_inode_cachep = kmem_cache_create("afs_inode_cache",
 96					     sizeof(struct afs_vnode),
 97					     0,
 98					     SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT,
 99					     afs_i_init_once);
100	if (!afs_inode_cachep) {
101		printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n");
102		return ret;
103	}
104
105	/* now export our filesystem to lesser mortals */
106	ret = register_filesystem(&afs_fs_type);
107	if (ret < 0) {
108		kmem_cache_destroy(afs_inode_cachep);
109		_leave(" = %d", ret);
110		return ret;
111	}
112
113	_leave(" = 0");
114	return 0;
115}
116
117/*
118 * clean up the filesystem
119 */
120void __exit afs_fs_exit(void)
121{
122	_enter("");
123
124	afs_mntpt_kill_timer();
125	unregister_filesystem(&afs_fs_type);
126
127	if (atomic_read(&afs_count_active_inodes) != 0) {
128		printk("kAFS: %d active inode objects still present\n",
129		       atomic_read(&afs_count_active_inodes));
130		BUG();
131	}
132
133	/*
134	 * Make sure all delayed rcu free inodes are flushed before we
135	 * destroy cache.
136	 */
137	rcu_barrier();
138	kmem_cache_destroy(afs_inode_cachep);
139	_leave("");
140}
141
142/*
143 * Display the mount device name in /proc/mounts.
144 */
145static int afs_show_devname(struct seq_file *m, struct dentry *root)
146{
147	struct afs_super_info *as = AFS_FS_S(root->d_sb);
148	struct afs_volume *volume = as->volume;
149	struct afs_cell *cell = as->cell;
150	const char *suf = "";
151	char pref = '%';
152
153	if (as->dyn_root) {
154		seq_puts(m, "none");
155		return 0;
156	}
157
158	switch (volume->type) {
159	case AFSVL_RWVOL:
160		break;
161	case AFSVL_ROVOL:
162		pref = '#';
163		if (volume->type_force)
164			suf = ".readonly";
165		break;
166	case AFSVL_BACKVOL:
167		pref = '#';
168		suf = ".backup";
169		break;
170	}
171
172	seq_printf(m, "%c%s:%s%s", pref, cell->name, volume->name, suf);
173	return 0;
174}
175
176/*
177 * Display the mount options in /proc/mounts.
178 */
179static int afs_show_options(struct seq_file *m, struct dentry *root)
180{
181	struct afs_super_info *as = AFS_FS_S(root->d_sb);
 
182
183	if (as->dyn_root)
184		seq_puts(m, ",dyn");
185	if (test_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(d_inode(root))->flags))
186		seq_puts(m, ",autocell");
187	return 0;
188}
189
190/*
191 * parse the mount options
192 * - this function has been shamelessly adapted from the ext3 fs which
193 *   shamelessly adapted it from the msdos fs
194 */
195static int afs_parse_options(struct afs_mount_params *params,
196			     char *options, const char **devname)
197{
198	struct afs_cell *cell;
199	substring_t args[MAX_OPT_ARGS];
200	char *p;
201	int token;
202
203	_enter("%s", options);
204
205	options[PAGE_SIZE - 1] = 0;
206
207	while ((p = strsep(&options, ","))) {
208		if (!*p)
209			continue;
210
211		token = match_token(p, afs_options_list, args);
212		switch (token) {
213		case afs_opt_cell:
214			rcu_read_lock();
215			cell = afs_lookup_cell_rcu(params->net,
216						   args[0].from,
217						   args[0].to - args[0].from);
218			rcu_read_unlock();
219			if (IS_ERR(cell))
220				return PTR_ERR(cell);
221			afs_put_cell(params->net, params->cell);
222			params->cell = cell;
223			break;
224
225		case afs_opt_rwpath:
226			params->rwpath = true;
227			break;
228
229		case afs_opt_vol:
230			*devname = args[0].from;
231			break;
232
233		case afs_opt_autocell:
234			params->autocell = true;
235			break;
236
237		case afs_opt_dyn:
238			params->dyn_root = true;
239			break;
240
241		default:
242			printk(KERN_ERR "kAFS:"
243			       " Unknown or invalid mount option: '%s'\n", p);
244			return -EINVAL;
245		}
246	}
 
 
247
248	_leave(" = 0");
249	return 0;
250}
251
252/*
253 * parse a device name to get cell name, volume name, volume type and R/W
254 * selector
255 * - this can be one of the following:
 
256 *	"%[cell:]volume[.]"		R/W volume
257 *	"#[cell:]volume[.]"		R/O or R/W volume (rwpath=0),
258 *					 or R/W (rwpath=1) volume
259 *	"%[cell:]volume.readonly"	R/O volume
260 *	"#[cell:]volume.readonly"	R/O volume
261 *	"%[cell:]volume.backup"		Backup volume
262 *	"#[cell:]volume.backup"		Backup volume
263 */
264static int afs_parse_device_name(struct afs_mount_params *params,
265				 const char *name)
266{
 
267	struct afs_cell *cell;
268	const char *cellname, *suffix;
269	int cellnamesz;
270
271	_enter(",%s", name);
272
 
 
 
273	if (!name) {
274		printk(KERN_ERR "kAFS: no volume name specified\n");
275		return -EINVAL;
276	}
277
278	if ((name[0] != '%' && name[0] != '#') || !name[1]) {
 
 
 
 
 
279		printk(KERN_ERR "kAFS: unparsable volume name\n");
280		return -EINVAL;
281	}
282
283	/* determine the type of volume we're looking for */
284	params->type = AFSVL_ROVOL;
285	params->force = false;
286	if (params->rwpath || name[0] == '%') {
287		params->type = AFSVL_RWVOL;
288		params->force = true;
289	}
290	name++;
291
292	/* split the cell name out if there is one */
293	params->volname = strchr(name, ':');
294	if (params->volname) {
295		cellname = name;
296		cellnamesz = params->volname - name;
297		params->volname++;
298	} else {
299		params->volname = name;
300		cellname = NULL;
301		cellnamesz = 0;
302	}
303
304	/* the volume type is further affected by a possible suffix */
305	suffix = strrchr(params->volname, '.');
306	if (suffix) {
307		if (strcmp(suffix, ".readonly") == 0) {
308			params->type = AFSVL_ROVOL;
309			params->force = true;
310		} else if (strcmp(suffix, ".backup") == 0) {
311			params->type = AFSVL_BACKVOL;
312			params->force = true;
313		} else if (suffix[1] == 0) {
314		} else {
315			suffix = NULL;
316		}
317	}
318
319	params->volnamesz = suffix ?
320		suffix - params->volname : strlen(params->volname);
321
322	_debug("cell %*.*s [%p]",
323	       cellnamesz, cellnamesz, cellname ?: "", params->cell);
324
325	/* lookup the cell record */
326	if (cellname || !params->cell) {
327		cell = afs_lookup_cell(params->net, cellname, cellnamesz,
328				       NULL, false);
329		if (IS_ERR(cell)) {
330			printk(KERN_ERR "kAFS: unable to lookup cell '%*.*s'\n",
331			       cellnamesz, cellnamesz, cellname ?: "");
332			return PTR_ERR(cell);
333		}
334		afs_put_cell(params->net, params->cell);
335		params->cell = cell;
 
336	}
337
338	_debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s",
339	       params->cell->name, params->cell,
340	       params->volnamesz, params->volnamesz, params->volname,
341	       suffix ?: "-", params->type, params->force ? " FORCE" : "");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342
343	return 0;
344}
345
346/*
347 * check a superblock to see if it's the one we're looking for
348 */
349static int afs_test_super(struct super_block *sb, void *data)
350{
351	struct afs_super_info *as1 = data;
352	struct afs_super_info *as = AFS_FS_S(sb);
353
354	return (as->net == as1->net &&
355		as->volume &&
356		as->volume->vid == as1->volume->vid);
 
 
357}
358
359static int afs_dynroot_test_super(struct super_block *sb, void *data)
360{
361	return false;
 
 
 
362}
363
364static int afs_set_super(struct super_block *sb, void *data)
365{
366	struct afs_super_info *as = data;
367
368	sb->s_fs_info = as;
369	return set_anon_super(sb, NULL);
370}
371
372/*
373 * fill in the superblock
374 */
375static int afs_fill_super(struct super_block *sb,
376			  struct afs_mount_params *params)
377{
378	struct afs_super_info *as = AFS_FS_S(sb);
379	struct afs_fid fid;
380	struct inode *inode = NULL;
381	int ret;
382
383	_enter("");
384
385	/* fill in the superblock */
386	sb->s_blocksize		= PAGE_SIZE;
387	sb->s_blocksize_bits	= PAGE_SHIFT;
 
388	sb->s_magic		= AFS_FS_MAGIC;
389	sb->s_op		= &afs_super_ops;
390	if (!as->dyn_root)
391		sb->s_xattr	= afs_xattr_handlers;
392	ret = super_setup_bdi(sb);
393	if (ret)
394		return ret;
395	sb->s_bdi->ra_pages	= VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
396
397	/* allocate the root inode and dentry */
398	if (as->dyn_root) {
399		inode = afs_iget_pseudo_dir(sb, true);
400		sb->s_flags	|= SB_RDONLY;
401	} else {
402		sprintf(sb->s_id, "%u", as->volume->vid);
403		afs_activate_volume(as->volume);
404		fid.vid		= as->volume->vid;
405		fid.vnode	= 1;
406		fid.unique	= 1;
407		inode = afs_iget(sb, params->key, &fid, NULL, NULL, NULL);
408	}
409
410	if (IS_ERR(inode))
411		return PTR_ERR(inode);
412
413	if (params->autocell || params->dyn_root)
414		set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags);
415
416	ret = -ENOMEM;
417	sb->s_root = d_make_root(inode);
418	if (!sb->s_root)
419		goto error;
420
421	if (params->dyn_root)
422		sb->s_d_op = &afs_dynroot_dentry_operations;
423	else
 
 
 
424		sb->s_d_op = &afs_fs_dentry_operations;
 
 
425
426	_leave(" = 0");
427	return 0;
428
429error:
430	_leave(" = %d", ret);
431	return ret;
432}
433
434static struct afs_super_info *afs_alloc_sbi(struct afs_mount_params *params)
435{
 
436	struct afs_super_info *as;
437
438	as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
439	if (as) {
440		as->net = afs_get_net(params->net);
441		if (params->dyn_root)
 
442			as->dyn_root = true;
443		else
444			as->cell = afs_get_cell(params->cell);
 
 
 
445	}
446	return as;
447}
448
449static void afs_destroy_sbi(struct afs_super_info *as)
450{
451	if (as) {
452		afs_put_volume(as->cell, as->volume);
453		afs_put_cell(as->net, as->cell);
454		afs_put_net(as->net);
 
455		kfree(as);
456	}
457}
458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459/*
460 * get an AFS superblock
461 */
462static struct dentry *afs_mount(struct file_system_type *fs_type,
463				int flags, const char *dev_name, void *options)
464{
465	struct afs_mount_params params;
466	struct super_block *sb;
467	struct afs_volume *candidate;
468	struct key *key;
469	struct afs_super_info *as;
470	int ret;
471
472	_enter(",,%s,%p", dev_name, options);
473
474	memset(&params, 0, sizeof(params));
475	params.net = &__afs_net;
476
477	ret = -EINVAL;
478	if (current->nsproxy->net_ns != &init_net)
479		goto error;
480
481	/* parse the options and device name */
482	if (options) {
483		ret = afs_parse_options(&params, options, &dev_name);
484		if (ret < 0)
485			goto error;
486	}
487
488	if (!params.dyn_root) {
489		ret = afs_parse_device_name(&params, dev_name);
490		if (ret < 0)
491			goto error;
492
493		/* try and do the mount securely */
494		key = afs_request_key(params.cell);
495		if (IS_ERR(key)) {
496			_leave(" = %ld [key]", PTR_ERR(key));
497			ret = PTR_ERR(key);
498			goto error;
499		}
500		params.key = key;
501	}
502
503	/* allocate a superblock info record */
504	ret = -ENOMEM;
505	as = afs_alloc_sbi(&params);
506	if (!as)
507		goto error_key;
508
509	if (!params.dyn_root) {
510		/* Assume we're going to need a volume record; at the very
511		 * least we can use it to update the volume record if we have
512		 * one already.  This checks that the volume exists within the
513		 * cell.
514		 */
515		candidate = afs_create_volume(&params);
516		if (IS_ERR(candidate)) {
517			ret = PTR_ERR(candidate);
518			goto error_as;
519		}
520
521		as->volume = candidate;
522	}
523
524	/* allocate a deviceless superblock */
525	sb = sget(fs_type,
526		  as->dyn_root ? afs_dynroot_test_super : afs_test_super,
527		  afs_set_super, flags, as);
528	if (IS_ERR(sb)) {
529		ret = PTR_ERR(sb);
530		goto error_as;
531	}
532
533	if (!sb->s_root) {
534		/* initial superblock/root creation */
535		_debug("create");
536		ret = afs_fill_super(sb, &params);
537		if (ret < 0)
538			goto error_sb;
539		as = NULL;
540		sb->s_flags |= SB_ACTIVE;
541	} else {
542		_debug("reuse");
543		ASSERTCMP(sb->s_flags, &, SB_ACTIVE);
544		afs_destroy_sbi(as);
545		as = NULL;
546	}
547
548	afs_put_cell(params.net, params.cell);
549	key_put(params.key);
550	_leave(" = 0 [%p]", sb);
551	return dget(sb->s_root);
552
553error_sb:
554	deactivate_locked_super(sb);
555	goto error_key;
556error_as:
557	afs_destroy_sbi(as);
558error_key:
559	key_put(params.key);
560error:
561	afs_put_cell(params.net, params.cell);
562	_leave(" = %d", ret);
563	return ERR_PTR(ret);
564}
565
566static void afs_kill_super(struct super_block *sb)
567{
568	struct afs_super_info *as = AFS_FS_S(sb);
569
570	/* Clear the callback interests (which will do ilookup5) before
571	 * deactivating the superblock.
572	 */
573	if (as->volume)
574		afs_clear_callback_interests(as->net, as->volume->servers);
575	kill_anon_super(sb);
576	if (as->volume)
577		afs_deactivate_volume(as->volume);
578	afs_destroy_sbi(as);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
579}
580
581/*
582 * Initialise an inode cache slab element prior to any use.  Note that
583 * afs_alloc_inode() *must* reset anything that could incorrectly leak from one
584 * inode to another.
585 */
586static void afs_i_init_once(void *_vnode)
587{
588	struct afs_vnode *vnode = _vnode;
589
590	memset(vnode, 0, sizeof(*vnode));
591	inode_init_once(&vnode->vfs_inode);
592	mutex_init(&vnode->io_lock);
593	init_rwsem(&vnode->validate_lock);
594	spin_lock_init(&vnode->wb_lock);
595	spin_lock_init(&vnode->lock);
596	INIT_LIST_HEAD(&vnode->wb_keys);
597	INIT_LIST_HEAD(&vnode->pending_locks);
598	INIT_LIST_HEAD(&vnode->granted_locks);
599	INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work);
 
600	seqlock_init(&vnode->cb_lock);
601}
602
603/*
604 * allocate an AFS inode struct from our slab cache
605 */
606static struct inode *afs_alloc_inode(struct super_block *sb)
607{
608	struct afs_vnode *vnode;
609
610	vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL);
611	if (!vnode)
612		return NULL;
613
614	atomic_inc(&afs_count_active_inodes);
615
616	/* Reset anything that shouldn't leak from one inode to the next. */
617	memset(&vnode->fid, 0, sizeof(vnode->fid));
618	memset(&vnode->status, 0, sizeof(vnode->status));
 
619
620	vnode->volume		= NULL;
621	vnode->lock_key		= NULL;
622	vnode->permit_cache	= NULL;
623	vnode->cb_interest	= NULL;
624#ifdef CONFIG_AFS_FSCACHE
625	vnode->cache		= NULL;
626#endif
627
628	vnode->flags		= 1 << AFS_VNODE_UNSET;
629	vnode->cb_type		= 0;
630	vnode->lock_state	= AFS_VNODE_LOCK_NONE;
631
632	_leave(" = %p", &vnode->vfs_inode);
633	return &vnode->vfs_inode;
 
 
 
634}
635
636static void afs_i_callback(struct rcu_head *head)
637{
638	struct inode *inode = container_of(head, struct inode, i_rcu);
639	struct afs_vnode *vnode = AFS_FS_I(inode);
640	kmem_cache_free(afs_inode_cachep, vnode);
641}
642
643/*
644 * destroy an AFS inode struct
645 */
646static void afs_destroy_inode(struct inode *inode)
647{
648	struct afs_vnode *vnode = AFS_FS_I(inode);
649
650	_enter("%p{%x:%u}", inode, vnode->fid.vid, vnode->fid.vnode);
651
652	_debug("DESTROY INODE %p", inode);
653
654	ASSERTCMP(vnode->cb_interest, ==, NULL);
655
656	call_rcu(&inode->i_rcu, afs_i_callback);
657	atomic_dec(&afs_count_active_inodes);
658}
659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660/*
661 * return information about an AFS volume
662 */
663static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
664{
665	struct afs_super_info *as = AFS_FS_S(dentry->d_sb);
666	struct afs_fs_cursor fc;
667	struct afs_volume_status vs;
668	struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
669	struct key *key;
670	int ret;
671
672	buf->f_type	= dentry->d_sb->s_magic;
673	buf->f_bsize	= AFS_BLOCK_SIZE;
674	buf->f_namelen	= AFSNAMEMAX - 1;
675
676	if (as->dyn_root) {
677		buf->f_blocks	= 1;
678		buf->f_bavail	= 0;
679		buf->f_bfree	= 0;
680		return 0;
681	}
682
683	key = afs_request_key(vnode->volume->cell);
684	if (IS_ERR(key))
685		return PTR_ERR(key);
686
687	ret = -ERESTARTSYS;
688	if (afs_begin_vnode_operation(&fc, vnode, key)) {
689		fc.flags |= AFS_FS_CURSOR_NO_VSLEEP;
690		while (afs_select_fileserver(&fc)) {
691			fc.cb_break = afs_calc_vnode_cb_break(vnode);
692			afs_fs_get_volume_status(&fc, &vs);
693		}
694
695		afs_check_for_remote_deletion(&fc, fc.vnode);
696		afs_vnode_commit_status(&fc, vnode, fc.cb_break);
697		ret = afs_end_vnode_operation(&fc);
698	}
699
700	key_put(key);
701
702	if (ret == 0) {
703		if (vs.max_quota == 0)
704			buf->f_blocks = vs.part_max_blocks;
705		else
706			buf->f_blocks = vs.max_quota;
707		buf->f_bavail = buf->f_bfree = buf->f_blocks - vs.blocks_in_use;
708	}
709
710	return ret;
711}
  1/* AFS superblock handling
  2 *
  3 * Copyright (c) 2002, 2007, 2018 Red Hat, Inc. All rights reserved.
  4 *
  5 * This software may be freely redistributed under the terms of the
  6 * GNU General Public License.
  7 *
  8 * You should have received a copy of the GNU General Public License
  9 * along with this program; if not, write to the Free Software
 10 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 11 *
 12 * Authors: David Howells <dhowells@redhat.com>
 13 *          David Woodhouse <dwmw2@infradead.org>
 14 *
 15 */
 16
 17#include <linux/kernel.h>
 18#include <linux/module.h>
 19#include <linux/mount.h>
 20#include <linux/init.h>
 21#include <linux/slab.h>
 22#include <linux/fs.h>
 23#include <linux/pagemap.h>
 24#include <linux/fs_parser.h>
 25#include <linux/statfs.h>
 26#include <linux/sched.h>
 27#include <linux/nsproxy.h>
 28#include <linux/magic.h>
 29#include <net/net_namespace.h>
 30#include "internal.h"
 31
 32static void afs_i_init_once(void *foo);
 
 
 33static void afs_kill_super(struct super_block *sb);
 34static struct inode *afs_alloc_inode(struct super_block *sb);
 35static void afs_destroy_inode(struct inode *inode);
 36static void afs_free_inode(struct inode *inode);
 37static int afs_statfs(struct dentry *dentry, struct kstatfs *buf);
 38static int afs_show_devname(struct seq_file *m, struct dentry *root);
 39static int afs_show_options(struct seq_file *m, struct dentry *root);
 40static int afs_init_fs_context(struct fs_context *fc);
 41static const struct fs_parameter_spec afs_fs_parameters[];
 42
 43struct file_system_type afs_fs_type = {
 44	.owner			= THIS_MODULE,
 45	.name			= "afs",
 46	.init_fs_context	= afs_init_fs_context,
 47	.parameters		= afs_fs_parameters,
 48	.kill_sb		= afs_kill_super,
 49	.fs_flags		= FS_RENAME_DOES_D_MOVE,
 50};
 51MODULE_ALIAS_FS("afs");
 52
 53int afs_net_id;
 54
 55static const struct super_operations afs_super_ops = {
 56	.statfs		= afs_statfs,
 57	.alloc_inode	= afs_alloc_inode,
 58	.write_inode	= netfs_unpin_writeback,
 59	.drop_inode	= afs_drop_inode,
 60	.destroy_inode	= afs_destroy_inode,
 61	.free_inode	= afs_free_inode,
 62	.evict_inode	= afs_evict_inode,
 63	.show_devname	= afs_show_devname,
 64	.show_options	= afs_show_options,
 65};
 66
 67static struct kmem_cache *afs_inode_cachep;
 68static atomic_t afs_count_active_inodes;
 69
 70enum afs_param {
 71	Opt_autocell,
 72	Opt_dyn,
 73	Opt_flock,
 74	Opt_source,
 75};
 76
 77static const struct constant_table afs_param_flock[] = {
 78	{"local",	afs_flock_mode_local },
 79	{"openafs",	afs_flock_mode_openafs },
 80	{"strict",	afs_flock_mode_strict },
 81	{"write",	afs_flock_mode_write },
 82	{}
 83};
 84
 85static const struct fs_parameter_spec afs_fs_parameters[] = {
 86	fsparam_flag  ("autocell",	Opt_autocell),
 87	fsparam_flag  ("dyn",		Opt_dyn),
 88	fsparam_enum  ("flock",		Opt_flock, afs_param_flock),
 89	fsparam_string("source",	Opt_source),
 90	{}
 
 91};
 92
 93/*
 94 * initialise the filesystem
 95 */
 96int __init afs_fs_init(void)
 97{
 98	int ret;
 99
100	_enter("");
101
102	/* create ourselves an inode cache */
103	atomic_set(&afs_count_active_inodes, 0);
104
105	ret = -ENOMEM;
106	afs_inode_cachep = kmem_cache_create("afs_inode_cache",
107					     sizeof(struct afs_vnode),
108					     0,
109					     SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT,
110					     afs_i_init_once);
111	if (!afs_inode_cachep) {
112		printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n");
113		return ret;
114	}
115
116	/* now export our filesystem to lesser mortals */
117	ret = register_filesystem(&afs_fs_type);
118	if (ret < 0) {
119		kmem_cache_destroy(afs_inode_cachep);
120		_leave(" = %d", ret);
121		return ret;
122	}
123
124	_leave(" = 0");
125	return 0;
126}
127
128/*
129 * clean up the filesystem
130 */
131void afs_fs_exit(void)
132{
133	_enter("");
134
135	afs_mntpt_kill_timer();
136	unregister_filesystem(&afs_fs_type);
137
138	if (atomic_read(&afs_count_active_inodes) != 0) {
139		printk("kAFS: %d active inode objects still present\n",
140		       atomic_read(&afs_count_active_inodes));
141		BUG();
142	}
143
144	/*
145	 * Make sure all delayed rcu free inodes are flushed before we
146	 * destroy cache.
147	 */
148	rcu_barrier();
149	kmem_cache_destroy(afs_inode_cachep);
150	_leave("");
151}
152
153/*
154 * Display the mount device name in /proc/mounts.
155 */
156static int afs_show_devname(struct seq_file *m, struct dentry *root)
157{
158	struct afs_super_info *as = AFS_FS_S(root->d_sb);
159	struct afs_volume *volume = as->volume;
160	struct afs_cell *cell = as->cell;
161	const char *suf = "";
162	char pref = '%';
163
164	if (as->dyn_root) {
165		seq_puts(m, "none");
166		return 0;
167	}
168
169	switch (volume->type) {
170	case AFSVL_RWVOL:
171		break;
172	case AFSVL_ROVOL:
173		pref = '#';
174		if (volume->type_force)
175			suf = ".readonly";
176		break;
177	case AFSVL_BACKVOL:
178		pref = '#';
179		suf = ".backup";
180		break;
181	}
182
183	seq_printf(m, "%c%s:%s%s", pref, cell->name, volume->name, suf);
184	return 0;
185}
186
187/*
188 * Display the mount options in /proc/mounts.
189 */
190static int afs_show_options(struct seq_file *m, struct dentry *root)
191{
192	struct afs_super_info *as = AFS_FS_S(root->d_sb);
193	const char *p = NULL;
194
195	if (as->dyn_root)
196		seq_puts(m, ",dyn");
197	if (test_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(d_inode(root))->flags))
198		seq_puts(m, ",autocell");
199	switch (as->flock_mode) {
200	case afs_flock_mode_unset:	break;
201	case afs_flock_mode_local:	p = "local";	break;
202	case afs_flock_mode_openafs:	p = "openafs";	break;
203	case afs_flock_mode_strict:	p = "strict";	break;
204	case afs_flock_mode_write:	p = "write";	break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205	}
206	if (p)
207		seq_printf(m, ",flock=%s", p);
208
 
209	return 0;
210}
211
212/*
213 * Parse the source name to get cell name, volume name, volume type and R/W
214 * selector.
215 *
216 * This can be one of the following:
217 *	"%[cell:]volume[.]"		R/W volume
218 *	"#[cell:]volume[.]"		R/O or R/W volume (R/O parent),
219 *					 or R/W (R/W parent) volume
220 *	"%[cell:]volume.readonly"	R/O volume
221 *	"#[cell:]volume.readonly"	R/O volume
222 *	"%[cell:]volume.backup"		Backup volume
223 *	"#[cell:]volume.backup"		Backup volume
224 */
225static int afs_parse_source(struct fs_context *fc, struct fs_parameter *param)
 
226{
227	struct afs_fs_context *ctx = fc->fs_private;
228	struct afs_cell *cell;
229	const char *cellname, *suffix, *name = param->string;
230	int cellnamesz;
231
232	_enter(",%s", name);
233
234	if (fc->source)
235		return invalf(fc, "kAFS: Multiple sources not supported");
236
237	if (!name) {
238		printk(KERN_ERR "kAFS: no volume name specified\n");
239		return -EINVAL;
240	}
241
242	if ((name[0] != '%' && name[0] != '#') || !name[1]) {
243		/* To use dynroot, we don't want to have to provide a source */
244		if (strcmp(name, "none") == 0) {
245			ctx->no_cell = true;
246			return 0;
247		}
248		printk(KERN_ERR "kAFS: unparsable volume name\n");
249		return -EINVAL;
250	}
251
252	/* determine the type of volume we're looking for */
253	if (name[0] == '%') {
254		ctx->type = AFSVL_RWVOL;
255		ctx->force = true;
 
 
256	}
257	name++;
258
259	/* split the cell name out if there is one */
260	ctx->volname = strchr(name, ':');
261	if (ctx->volname) {
262		cellname = name;
263		cellnamesz = ctx->volname - name;
264		ctx->volname++;
265	} else {
266		ctx->volname = name;
267		cellname = NULL;
268		cellnamesz = 0;
269	}
270
271	/* the volume type is further affected by a possible suffix */
272	suffix = strrchr(ctx->volname, '.');
273	if (suffix) {
274		if (strcmp(suffix, ".readonly") == 0) {
275			ctx->type = AFSVL_ROVOL;
276			ctx->force = true;
277		} else if (strcmp(suffix, ".backup") == 0) {
278			ctx->type = AFSVL_BACKVOL;
279			ctx->force = true;
280		} else if (suffix[1] == 0) {
281		} else {
282			suffix = NULL;
283		}
284	}
285
286	ctx->volnamesz = suffix ?
287		suffix - ctx->volname : strlen(ctx->volname);
288
289	_debug("cell %*.*s [%p]",
290	       cellnamesz, cellnamesz, cellname ?: "", ctx->cell);
291
292	/* lookup the cell record */
293	if (cellname) {
294		cell = afs_lookup_cell(ctx->net, cellname, cellnamesz,
295				       NULL, false);
296		if (IS_ERR(cell)) {
297			pr_err("kAFS: unable to lookup cell '%*.*s'\n",
298			       cellnamesz, cellnamesz, cellname ?: "");
299			return PTR_ERR(cell);
300		}
301		afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_parse);
302		afs_see_cell(cell, afs_cell_trace_see_source);
303		ctx->cell = cell;
304	}
305
306	_debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s",
307	       ctx->cell->name, ctx->cell,
308	       ctx->volnamesz, ctx->volnamesz, ctx->volname,
309	       suffix ?: "-", ctx->type, ctx->force ? " FORCE" : "");
310
311	fc->source = param->string;
312	param->string = NULL;
313	return 0;
314}
315
316/*
317 * Parse a single mount parameter.
318 */
319static int afs_parse_param(struct fs_context *fc, struct fs_parameter *param)
320{
321	struct fs_parse_result result;
322	struct afs_fs_context *ctx = fc->fs_private;
323	int opt;
324
325	opt = fs_parse(fc, afs_fs_parameters, param, &result);
326	if (opt < 0)
327		return opt;
328
329	switch (opt) {
330	case Opt_source:
331		return afs_parse_source(fc, param);
332
333	case Opt_autocell:
334		ctx->autocell = true;
335		break;
336
337	case Opt_dyn:
338		ctx->dyn_root = true;
339		break;
340
341	case Opt_flock:
342		ctx->flock_mode = result.uint_32;
343		break;
344
345	default:
346		return -EINVAL;
347	}
348
349	_leave(" = 0");
350	return 0;
351}
352
353/*
354 * Validate the options, get the cell key and look up the volume.
355 */
356static int afs_validate_fc(struct fs_context *fc)
357{
358	struct afs_fs_context *ctx = fc->fs_private;
359	struct afs_volume *volume;
360	struct afs_cell *cell;
361	struct key *key;
362	int ret;
363
364	if (!ctx->dyn_root) {
365		if (ctx->no_cell) {
366			pr_warn("kAFS: Can only specify source 'none' with -o dyn\n");
367			return -EINVAL;
368		}
369
370		if (!ctx->cell) {
371			pr_warn("kAFS: No cell specified\n");
372			return -EDESTADDRREQ;
373		}
374
375	reget_key:
376		/* We try to do the mount securely. */
377		key = afs_request_key(ctx->cell);
378		if (IS_ERR(key))
379			return PTR_ERR(key);
380
381		ctx->key = key;
382
383		if (ctx->volume) {
384			afs_put_volume(ctx->volume, afs_volume_trace_put_validate_fc);
385			ctx->volume = NULL;
386		}
387
388		if (test_bit(AFS_CELL_FL_CHECK_ALIAS, &ctx->cell->flags)) {
389			ret = afs_cell_detect_alias(ctx->cell, key);
390			if (ret < 0)
391				return ret;
392			if (ret == 1) {
393				_debug("switch to alias");
394				key_put(ctx->key);
395				ctx->key = NULL;
396				cell = afs_use_cell(ctx->cell->alias_of,
397						    afs_cell_trace_use_fc_alias);
398				afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_fc);
399				ctx->cell = cell;
400				goto reget_key;
401			}
402		}
403
404		volume = afs_create_volume(ctx);
405		if (IS_ERR(volume))
406			return PTR_ERR(volume);
407
408		ctx->volume = volume;
409		if (volume->type != AFSVL_RWVOL) {
410			ctx->flock_mode = afs_flock_mode_local;
411			fc->sb_flags |= SB_RDONLY;
412		}
413	}
414
415	return 0;
416}
417
418/*
419 * check a superblock to see if it's the one we're looking for
420 */
421static int afs_test_super(struct super_block *sb, struct fs_context *fc)
422{
423	struct afs_fs_context *ctx = fc->fs_private;
424	struct afs_super_info *as = AFS_FS_S(sb);
425
426	return (as->net_ns == fc->net_ns &&
427		as->volume &&
428		as->volume->vid == ctx->volume->vid &&
429		as->cell == ctx->cell &&
430		!as->dyn_root);
431}
432
433static int afs_dynroot_test_super(struct super_block *sb, struct fs_context *fc)
434{
435	struct afs_super_info *as = AFS_FS_S(sb);
436
437	return (as->net_ns == fc->net_ns &&
438		as->dyn_root);
439}
440
441static int afs_set_super(struct super_block *sb, struct fs_context *fc)
442{
 
 
 
443	return set_anon_super(sb, NULL);
444}
445
446/*
447 * fill in the superblock
448 */
449static int afs_fill_super(struct super_block *sb, struct afs_fs_context *ctx)
 
450{
451	struct afs_super_info *as = AFS_FS_S(sb);
 
452	struct inode *inode = NULL;
453	int ret;
454
455	_enter("");
456
457	/* fill in the superblock */
458	sb->s_blocksize		= PAGE_SIZE;
459	sb->s_blocksize_bits	= PAGE_SHIFT;
460	sb->s_maxbytes		= MAX_LFS_FILESIZE;
461	sb->s_magic		= AFS_FS_MAGIC;
462	sb->s_op		= &afs_super_ops;
463	if (!as->dyn_root)
464		sb->s_xattr	= afs_xattr_handlers;
465	ret = super_setup_bdi(sb);
466	if (ret)
467		return ret;
 
468
469	/* allocate the root inode and dentry */
470	if (as->dyn_root) {
471		inode = afs_iget_pseudo_dir(sb, true);
 
472	} else {
473		sprintf(sb->s_id, "%llu", as->volume->vid);
474		afs_activate_volume(as->volume);
475		inode = afs_root_iget(sb, ctx->key);
 
 
 
476	}
477
478	if (IS_ERR(inode))
479		return PTR_ERR(inode);
480
481	if (ctx->autocell || as->dyn_root)
482		set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags);
483
484	ret = -ENOMEM;
485	sb->s_root = d_make_root(inode);
486	if (!sb->s_root)
487		goto error;
488
489	if (as->dyn_root) {
490		sb->s_d_op = &afs_dynroot_dentry_operations;
491		ret = afs_dynroot_populate(sb);
492		if (ret < 0)
493			goto error;
494	} else {
495		sb->s_d_op = &afs_fs_dentry_operations;
496		rcu_assign_pointer(as->volume->sb, sb);
497	}
498
499	_leave(" = 0");
500	return 0;
501
502error:
503	_leave(" = %d", ret);
504	return ret;
505}
506
507static struct afs_super_info *afs_alloc_sbi(struct fs_context *fc)
508{
509	struct afs_fs_context *ctx = fc->fs_private;
510	struct afs_super_info *as;
511
512	as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
513	if (as) {
514		as->net_ns = get_net(fc->net_ns);
515		as->flock_mode = ctx->flock_mode;
516		if (ctx->dyn_root) {
517			as->dyn_root = true;
518		} else {
519			as->cell = afs_use_cell(ctx->cell, afs_cell_trace_use_sbi);
520			as->volume = afs_get_volume(ctx->volume,
521						    afs_volume_trace_get_alloc_sbi);
522		}
523	}
524	return as;
525}
526
527static void afs_destroy_sbi(struct afs_super_info *as)
528{
529	if (as) {
530		struct afs_net *net = afs_net(as->net_ns);
531		afs_put_volume(as->volume, afs_volume_trace_put_destroy_sbi);
532		afs_unuse_cell(net, as->cell, afs_cell_trace_unuse_sbi);
533		put_net(as->net_ns);
534		kfree(as);
535	}
536}
537
538static void afs_kill_super(struct super_block *sb)
539{
540	struct afs_super_info *as = AFS_FS_S(sb);
541
542	if (as->dyn_root)
543		afs_dynroot_depopulate(sb);
544
545	/* Clear the callback interests (which will do ilookup5) before
546	 * deactivating the superblock.
547	 */
548	if (as->volume)
549		rcu_assign_pointer(as->volume->sb, NULL);
550	kill_anon_super(sb);
551	if (as->volume)
552		afs_deactivate_volume(as->volume);
553	afs_destroy_sbi(as);
554}
555
556/*
557 * Get an AFS superblock and root directory.
558 */
559static int afs_get_tree(struct fs_context *fc)
 
560{
561	struct afs_fs_context *ctx = fc->fs_private;
562	struct super_block *sb;
 
 
563	struct afs_super_info *as;
564	int ret;
565
566	ret = afs_validate_fc(fc);
567	if (ret)
 
 
 
 
 
568		goto error;
569
570	_enter("");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
571
572	/* allocate a superblock info record */
573	ret = -ENOMEM;
574	as = afs_alloc_sbi(fc);
575	if (!as)
576		goto error;
577	fc->s_fs_info = as;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
578
579	/* allocate a deviceless superblock */
580	sb = sget_fc(fc,
581		     as->dyn_root ? afs_dynroot_test_super : afs_test_super,
582		     afs_set_super);
583	if (IS_ERR(sb)) {
584		ret = PTR_ERR(sb);
585		goto error;
586	}
587
588	if (!sb->s_root) {
589		/* initial superblock/root creation */
590		_debug("create");
591		ret = afs_fill_super(sb, ctx);
592		if (ret < 0)
593			goto error_sb;
 
594		sb->s_flags |= SB_ACTIVE;
595	} else {
596		_debug("reuse");
597		ASSERTCMP(sb->s_flags, &, SB_ACTIVE);
 
 
598	}
599
600	fc->root = dget(sb->s_root);
601	trace_afs_get_tree(as->cell, as->volume);
602	_leave(" = 0 [%p]", sb);
603	return 0;
604
605error_sb:
606	deactivate_locked_super(sb);
 
 
 
 
 
607error:
 
608	_leave(" = %d", ret);
609	return ret;
610}
611
612static void afs_free_fc(struct fs_context *fc)
613{
614	struct afs_fs_context *ctx = fc->fs_private;
615
616	afs_destroy_sbi(fc->s_fs_info);
617	afs_put_volume(ctx->volume, afs_volume_trace_put_free_fc);
618	afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_fc);
619	key_put(ctx->key);
620	kfree(ctx);
621}
622
623static const struct fs_context_operations afs_context_ops = {
624	.free		= afs_free_fc,
625	.parse_param	= afs_parse_param,
626	.get_tree	= afs_get_tree,
627};
628
629/*
630 * Set up the filesystem mount context.
631 */
632static int afs_init_fs_context(struct fs_context *fc)
633{
634	struct afs_fs_context *ctx;
635	struct afs_cell *cell;
636
637	ctx = kzalloc(sizeof(struct afs_fs_context), GFP_KERNEL);
638	if (!ctx)
639		return -ENOMEM;
640
641	ctx->type = AFSVL_ROVOL;
642	ctx->net = afs_net(fc->net_ns);
643
644	/* Default to the workstation cell. */
645	cell = afs_find_cell(ctx->net, NULL, 0, afs_cell_trace_use_fc);
646	if (IS_ERR(cell))
647		cell = NULL;
648	ctx->cell = cell;
649
650	fc->fs_private = ctx;
651	fc->ops = &afs_context_ops;
652	return 0;
653}
654
655/*
656 * Initialise an inode cache slab element prior to any use.  Note that
657 * afs_alloc_inode() *must* reset anything that could incorrectly leak from one
658 * inode to another.
659 */
660static void afs_i_init_once(void *_vnode)
661{
662	struct afs_vnode *vnode = _vnode;
663
664	memset(vnode, 0, sizeof(*vnode));
665	inode_init_once(&vnode->netfs.inode);
666	mutex_init(&vnode->io_lock);
667	init_rwsem(&vnode->validate_lock);
668	spin_lock_init(&vnode->wb_lock);
669	spin_lock_init(&vnode->lock);
670	INIT_LIST_HEAD(&vnode->wb_keys);
671	INIT_LIST_HEAD(&vnode->pending_locks);
672	INIT_LIST_HEAD(&vnode->granted_locks);
673	INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work);
674	INIT_LIST_HEAD(&vnode->cb_mmap_link);
675	seqlock_init(&vnode->cb_lock);
676}
677
678/*
679 * allocate an AFS inode struct from our slab cache
680 */
681static struct inode *afs_alloc_inode(struct super_block *sb)
682{
683	struct afs_vnode *vnode;
684
685	vnode = alloc_inode_sb(sb, afs_inode_cachep, GFP_KERNEL);
686	if (!vnode)
687		return NULL;
688
689	atomic_inc(&afs_count_active_inodes);
690
691	/* Reset anything that shouldn't leak from one inode to the next. */
692	memset(&vnode->fid, 0, sizeof(vnode->fid));
693	memset(&vnode->status, 0, sizeof(vnode->status));
694	afs_vnode_set_cache(vnode, NULL);
695
696	vnode->volume		= NULL;
697	vnode->lock_key		= NULL;
698	vnode->permit_cache	= NULL;
 
 
 
 
699
700	vnode->flags		= 1 << AFS_VNODE_UNSET;
 
701	vnode->lock_state	= AFS_VNODE_LOCK_NONE;
702
703	init_rwsem(&vnode->rmdir_lock);
704	INIT_WORK(&vnode->cb_work, afs_invalidate_mmap_work);
705
706	_leave(" = %p", &vnode->netfs.inode);
707	return &vnode->netfs.inode;
708}
709
710static void afs_free_inode(struct inode *inode)
711{
712	kmem_cache_free(afs_inode_cachep, AFS_FS_I(inode));
 
 
713}
714
715/*
716 * destroy an AFS inode struct
717 */
718static void afs_destroy_inode(struct inode *inode)
719{
720	struct afs_vnode *vnode = AFS_FS_I(inode);
721
722	_enter("%p{%llx:%llu}", inode, vnode->fid.vid, vnode->fid.vnode);
723
724	_debug("DESTROY INODE %p", inode);
725
 
 
 
726	atomic_dec(&afs_count_active_inodes);
727}
728
729static void afs_get_volume_status_success(struct afs_operation *op)
730{
731	struct afs_volume_status *vs = &op->volstatus.vs;
732	struct kstatfs *buf = op->volstatus.buf;
733
734	if (vs->max_quota == 0)
735		buf->f_blocks = vs->part_max_blocks;
736	else
737		buf->f_blocks = vs->max_quota;
738
739	if (buf->f_blocks > vs->blocks_in_use)
740		buf->f_bavail = buf->f_bfree =
741			buf->f_blocks - vs->blocks_in_use;
742}
743
744static const struct afs_operation_ops afs_get_volume_status_operation = {
745	.issue_afs_rpc	= afs_fs_get_volume_status,
746	.issue_yfs_rpc	= yfs_fs_get_volume_status,
747	.success	= afs_get_volume_status_success,
748};
749
750/*
751 * return information about an AFS volume
752 */
753static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
754{
755	struct afs_super_info *as = AFS_FS_S(dentry->d_sb);
756	struct afs_operation *op;
 
757	struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
 
 
758
759	buf->f_type	= dentry->d_sb->s_magic;
760	buf->f_bsize	= AFS_BLOCK_SIZE;
761	buf->f_namelen	= AFSNAMEMAX - 1;
762
763	if (as->dyn_root) {
764		buf->f_blocks	= 1;
765		buf->f_bavail	= 0;
766		buf->f_bfree	= 0;
767		return 0;
768	}
769
770	op = afs_alloc_operation(NULL, as->volume);
771	if (IS_ERR(op))
772		return PTR_ERR(op);
773
774	afs_op_set_vnode(op, 0, vnode);
775	op->nr_files		= 1;
776	op->volstatus.buf	= buf;
777	op->ops			= &afs_get_volume_status_operation;
778	return afs_do_sync_operation(op);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
779}