Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*******************************************************************************
3
4 Intel(R) 82576 Virtual Function Linux driver
5 Copyright(c) 2009 - 2012 Intel Corporation.
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, see <http://www.gnu.org/licenses/>.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include "vf.h"
29
30static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
31static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
32 u16 *duplex);
33static s32 e1000_init_hw_vf(struct e1000_hw *hw);
34static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
35
36static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
37 u32, u32, u32);
38static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
39static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
40static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr);
41static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
42
43/**
44 * e1000_init_mac_params_vf - Inits MAC params
45 * @hw: pointer to the HW structure
46 **/
47static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
48{
49 struct e1000_mac_info *mac = &hw->mac;
50
51 /* VF's have no MTA Registers - PF feature only */
52 mac->mta_reg_count = 128;
53 /* VF's have no access to RAR entries */
54 mac->rar_entry_count = 1;
55
56 /* Function pointers */
57 /* reset */
58 mac->ops.reset_hw = e1000_reset_hw_vf;
59 /* hw initialization */
60 mac->ops.init_hw = e1000_init_hw_vf;
61 /* check for link */
62 mac->ops.check_for_link = e1000_check_for_link_vf;
63 /* link info */
64 mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
65 /* multicast address update */
66 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
67 /* set mac address */
68 mac->ops.rar_set = e1000_rar_set_vf;
69 /* read mac address */
70 mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
71 /* set mac filter */
72 mac->ops.set_uc_addr = e1000_set_uc_addr_vf;
73 /* set vlan filter table array */
74 mac->ops.set_vfta = e1000_set_vfta_vf;
75
76 return E1000_SUCCESS;
77}
78
79/**
80 * e1000_init_function_pointers_vf - Inits function pointers
81 * @hw: pointer to the HW structure
82 **/
83void e1000_init_function_pointers_vf(struct e1000_hw *hw)
84{
85 hw->mac.ops.init_params = e1000_init_mac_params_vf;
86 hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
87}
88
89/**
90 * e1000_get_link_up_info_vf - Gets link info.
91 * @hw: pointer to the HW structure
92 * @speed: pointer to 16 bit value to store link speed.
93 * @duplex: pointer to 16 bit value to store duplex.
94 *
95 * Since we cannot read the PHY and get accurate link info, we must rely upon
96 * the status register's data which is often stale and inaccurate.
97 **/
98static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
99 u16 *duplex)
100{
101 s32 status;
102
103 status = er32(STATUS);
104 if (status & E1000_STATUS_SPEED_1000)
105 *speed = SPEED_1000;
106 else if (status & E1000_STATUS_SPEED_100)
107 *speed = SPEED_100;
108 else
109 *speed = SPEED_10;
110
111 if (status & E1000_STATUS_FD)
112 *duplex = FULL_DUPLEX;
113 else
114 *duplex = HALF_DUPLEX;
115
116 return E1000_SUCCESS;
117}
118
119/**
120 * e1000_reset_hw_vf - Resets the HW
121 * @hw: pointer to the HW structure
122 *
123 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
124 * This is all the reset we can perform on a VF.
125 **/
126static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
127{
128 struct e1000_mbx_info *mbx = &hw->mbx;
129 u32 timeout = E1000_VF_INIT_TIMEOUT;
130 u32 ret_val = -E1000_ERR_MAC_INIT;
131 u32 msgbuf[3];
132 u8 *addr = (u8 *)(&msgbuf[1]);
133 u32 ctrl;
134
135 /* assert VF queue/interrupt reset */
136 ctrl = er32(CTRL);
137 ew32(CTRL, ctrl | E1000_CTRL_RST);
138
139 /* we cannot initialize while the RSTI / RSTD bits are asserted */
140 while (!mbx->ops.check_for_rst(hw) && timeout) {
141 timeout--;
142 udelay(5);
143 }
144
145 if (timeout) {
146 /* mailbox timeout can now become active */
147 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
148
149 /* notify PF of VF reset completion */
150 msgbuf[0] = E1000_VF_RESET;
151 mbx->ops.write_posted(hw, msgbuf, 1);
152
153 mdelay(10);
154
155 /* set our "perm_addr" based on info provided by PF */
156 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
157 if (!ret_val) {
158 if (msgbuf[0] == (E1000_VF_RESET |
159 E1000_VT_MSGTYPE_ACK))
160 memcpy(hw->mac.perm_addr, addr, ETH_ALEN);
161 else
162 ret_val = -E1000_ERR_MAC_INIT;
163 }
164 }
165
166 return ret_val;
167}
168
169/**
170 * e1000_init_hw_vf - Inits the HW
171 * @hw: pointer to the HW structure
172 *
173 * Not much to do here except clear the PF Reset indication if there is one.
174 **/
175static s32 e1000_init_hw_vf(struct e1000_hw *hw)
176{
177 /* attempt to set and restore our mac address */
178 e1000_rar_set_vf(hw, hw->mac.addr, 0);
179
180 return E1000_SUCCESS;
181}
182
183/**
184 * e1000_hash_mc_addr_vf - Generate a multicast hash value
185 * @hw: pointer to the HW structure
186 * @mc_addr: pointer to a multicast address
187 *
188 * Generates a multicast address hash value which is used to determine
189 * the multicast filter table array address and new table value. See
190 * e1000_mta_set_generic()
191 **/
192static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
193{
194 u32 hash_value, hash_mask;
195 u8 bit_shift = 0;
196
197 /* Register count multiplied by bits per register */
198 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
199
200 /* The bit_shift is the number of left-shifts
201 * where 0xFF would still fall within the hash mask.
202 */
203 while (hash_mask >> bit_shift != 0xFF)
204 bit_shift++;
205
206 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
207 (((u16)mc_addr[5]) << bit_shift)));
208
209 return hash_value;
210}
211
212/**
213 * e1000_update_mc_addr_list_vf - Update Multicast addresses
214 * @hw: pointer to the HW structure
215 * @mc_addr_list: array of multicast addresses to program
216 * @mc_addr_count: number of multicast addresses to program
217 * @rar_used_count: the first RAR register free to program
218 * @rar_count: total number of supported Receive Address Registers
219 *
220 * Updates the Receive Address Registers and Multicast Table Array.
221 * The caller must have a packed mc_addr_list of multicast addresses.
222 * The parameter rar_count will usually be hw->mac.rar_entry_count
223 * unless there are workarounds that change this.
224 **/
225static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
226 u8 *mc_addr_list, u32 mc_addr_count,
227 u32 rar_used_count, u32 rar_count)
228{
229 struct e1000_mbx_info *mbx = &hw->mbx;
230 u32 msgbuf[E1000_VFMAILBOX_SIZE];
231 u16 *hash_list = (u16 *)&msgbuf[1];
232 u32 hash_value;
233 u32 cnt, i;
234 s32 ret_val;
235
236 /* Each entry in the list uses 1 16 bit word. We have 30
237 * 16 bit words available in our HW msg buffer (minus 1 for the
238 * msg type). That's 30 hash values if we pack 'em right. If
239 * there are more than 30 MC addresses to add then punt the
240 * extras for now and then add code to handle more than 30 later.
241 * It would be unusual for a server to request that many multi-cast
242 * addresses except for in large enterprise network environments.
243 */
244
245 cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
246 msgbuf[0] = E1000_VF_SET_MULTICAST;
247 msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
248
249 for (i = 0; i < cnt; i++) {
250 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
251 hash_list[i] = hash_value & 0x0FFFF;
252 mc_addr_list += ETH_ALEN;
253 }
254
255 ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
256 if (!ret_val)
257 mbx->ops.read_posted(hw, msgbuf, 1);
258}
259
260/**
261 * e1000_set_vfta_vf - Set/Unset vlan filter table address
262 * @hw: pointer to the HW structure
263 * @vid: determines the vfta register and bit to set/unset
264 * @set: if true then set bit, else clear bit
265 **/
266static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
267{
268 struct e1000_mbx_info *mbx = &hw->mbx;
269 u32 msgbuf[2];
270 s32 err;
271
272 msgbuf[0] = E1000_VF_SET_VLAN;
273 msgbuf[1] = vid;
274 /* Setting the 8 bit field MSG INFO to true indicates "add" */
275 if (set)
276 msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT);
277
278 mbx->ops.write_posted(hw, msgbuf, 2);
279
280 err = mbx->ops.read_posted(hw, msgbuf, 2);
281
282 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
283
284 /* if nacked the vlan was rejected */
285 if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
286 err = -E1000_ERR_MAC_INIT;
287
288 return err;
289}
290
291/**
292 * e1000_rlpml_set_vf - Set the maximum receive packet length
293 * @hw: pointer to the HW structure
294 * @max_size: value to assign to max frame size
295 **/
296void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
297{
298 struct e1000_mbx_info *mbx = &hw->mbx;
299 u32 msgbuf[2];
300 s32 ret_val;
301
302 msgbuf[0] = E1000_VF_SET_LPE;
303 msgbuf[1] = max_size;
304
305 ret_val = mbx->ops.write_posted(hw, msgbuf, 2);
306 if (!ret_val)
307 mbx->ops.read_posted(hw, msgbuf, 1);
308}
309
310/**
311 * e1000_rar_set_vf - set device MAC address
312 * @hw: pointer to the HW structure
313 * @addr: pointer to the receive address
314 * @index: receive address array register
315 **/
316static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index)
317{
318 struct e1000_mbx_info *mbx = &hw->mbx;
319 u32 msgbuf[3];
320 u8 *msg_addr = (u8 *)(&msgbuf[1]);
321 s32 ret_val;
322
323 memset(msgbuf, 0, 12);
324 msgbuf[0] = E1000_VF_SET_MAC_ADDR;
325 memcpy(msg_addr, addr, ETH_ALEN);
326 ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
327
328 if (!ret_val)
329 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
330
331 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
332
333 /* if nacked the address was rejected, use "perm_addr" */
334 if (!ret_val &&
335 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
336 e1000_read_mac_addr_vf(hw);
337}
338
339/**
340 * e1000_read_mac_addr_vf - Read device MAC address
341 * @hw: pointer to the HW structure
342 **/
343static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
344{
345 memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
346
347 return E1000_SUCCESS;
348}
349
350/**
351 * e1000_set_uc_addr_vf - Set or clear unicast filters
352 * @hw: pointer to the HW structure
353 * @sub_cmd: add or clear filters
354 * @addr: pointer to the filter MAC address
355 **/
356static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr)
357{
358 struct e1000_mbx_info *mbx = &hw->mbx;
359 u32 msgbuf[3], msgbuf_chk;
360 u8 *msg_addr = (u8 *)(&msgbuf[1]);
361 s32 ret_val;
362
363 memset(msgbuf, 0, sizeof(msgbuf));
364 msgbuf[0] |= sub_cmd;
365 msgbuf[0] |= E1000_VF_SET_MAC_ADDR;
366 msgbuf_chk = msgbuf[0];
367
368 if (addr)
369 memcpy(msg_addr, addr, ETH_ALEN);
370
371 ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
372
373 if (!ret_val)
374 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
375
376 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
377
378 if (!ret_val) {
379 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
380
381 if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK))
382 return -ENOSPC;
383 }
384
385 return ret_val;
386}
387
388/**
389 * e1000_check_for_link_vf - Check for link for a virtual interface
390 * @hw: pointer to the HW structure
391 *
392 * Checks to see if the underlying PF is still talking to the VF and
393 * if it is then it reports the link state to the hardware, otherwise
394 * it reports link down and returns an error.
395 **/
396static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
397{
398 struct e1000_mbx_info *mbx = &hw->mbx;
399 struct e1000_mac_info *mac = &hw->mac;
400 s32 ret_val = E1000_SUCCESS;
401 u32 in_msg = 0;
402
403 /* We only want to run this if there has been a rst asserted.
404 * in this case that could mean a link change, device reset,
405 * or a virtual function reset
406 */
407
408 /* If we were hit with a reset or timeout drop the link */
409 if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
410 mac->get_link_status = true;
411
412 if (!mac->get_link_status)
413 goto out;
414
415 /* if link status is down no point in checking to see if PF is up */
416 if (!(er32(STATUS) & E1000_STATUS_LU))
417 goto out;
418
419 /* if the read failed it could just be a mailbox collision, best wait
420 * until we are called again and don't report an error
421 */
422 if (mbx->ops.read(hw, &in_msg, 1))
423 goto out;
424
425 /* if incoming message isn't clear to send we are waiting on response */
426 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
427 /* msg is not CTS and is NACK we must have lost CTS status */
428 if (in_msg & E1000_VT_MSGTYPE_NACK)
429 ret_val = -E1000_ERR_MAC_INIT;
430 goto out;
431 }
432
433 /* the PF is talking, if we timed out in the past we reinit */
434 if (!mbx->timeout) {
435 ret_val = -E1000_ERR_MAC_INIT;
436 goto out;
437 }
438
439 /* if we passed all the tests above then the link is up and we no
440 * longer need to check for link
441 */
442 mac->get_link_status = false;
443
444out:
445 return ret_val;
446}
447
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4#include <linux/etherdevice.h>
5
6#include "vf.h"
7
8static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
9static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
10 u16 *duplex);
11static s32 e1000_init_hw_vf(struct e1000_hw *hw);
12static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
13
14static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
15 u32, u32, u32);
16static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
17static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
18static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr);
19static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
20
21/**
22 * e1000_init_mac_params_vf - Inits MAC params
23 * @hw: pointer to the HW structure
24 **/
25static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
26{
27 struct e1000_mac_info *mac = &hw->mac;
28
29 /* VF's have no MTA Registers - PF feature only */
30 mac->mta_reg_count = 128;
31 /* VF's have no access to RAR entries */
32 mac->rar_entry_count = 1;
33
34 /* Function pointers */
35 /* reset */
36 mac->ops.reset_hw = e1000_reset_hw_vf;
37 /* hw initialization */
38 mac->ops.init_hw = e1000_init_hw_vf;
39 /* check for link */
40 mac->ops.check_for_link = e1000_check_for_link_vf;
41 /* link info */
42 mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
43 /* multicast address update */
44 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
45 /* set mac address */
46 mac->ops.rar_set = e1000_rar_set_vf;
47 /* read mac address */
48 mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
49 /* set mac filter */
50 mac->ops.set_uc_addr = e1000_set_uc_addr_vf;
51 /* set vlan filter table array */
52 mac->ops.set_vfta = e1000_set_vfta_vf;
53
54 return E1000_SUCCESS;
55}
56
57/**
58 * e1000_init_function_pointers_vf - Inits function pointers
59 * @hw: pointer to the HW structure
60 **/
61void e1000_init_function_pointers_vf(struct e1000_hw *hw)
62{
63 hw->mac.ops.init_params = e1000_init_mac_params_vf;
64 hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
65}
66
67/**
68 * e1000_get_link_up_info_vf - Gets link info.
69 * @hw: pointer to the HW structure
70 * @speed: pointer to 16 bit value to store link speed.
71 * @duplex: pointer to 16 bit value to store duplex.
72 *
73 * Since we cannot read the PHY and get accurate link info, we must rely upon
74 * the status register's data which is often stale and inaccurate.
75 **/
76static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
77 u16 *duplex)
78{
79 s32 status;
80
81 status = er32(STATUS);
82 if (status & E1000_STATUS_SPEED_1000)
83 *speed = SPEED_1000;
84 else if (status & E1000_STATUS_SPEED_100)
85 *speed = SPEED_100;
86 else
87 *speed = SPEED_10;
88
89 if (status & E1000_STATUS_FD)
90 *duplex = FULL_DUPLEX;
91 else
92 *duplex = HALF_DUPLEX;
93
94 return E1000_SUCCESS;
95}
96
97/**
98 * e1000_reset_hw_vf - Resets the HW
99 * @hw: pointer to the HW structure
100 *
101 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
102 * This is all the reset we can perform on a VF.
103 **/
104static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
105{
106 struct e1000_mbx_info *mbx = &hw->mbx;
107 u32 timeout = E1000_VF_INIT_TIMEOUT;
108 u32 ret_val = -E1000_ERR_MAC_INIT;
109 u32 msgbuf[3];
110 u8 *addr = (u8 *)(&msgbuf[1]);
111 u32 ctrl;
112
113 /* assert VF queue/interrupt reset */
114 ctrl = er32(CTRL);
115 ew32(CTRL, ctrl | E1000_CTRL_RST);
116
117 /* we cannot initialize while the RSTI / RSTD bits are asserted */
118 while (!mbx->ops.check_for_rst(hw) && timeout) {
119 timeout--;
120 udelay(5);
121 }
122
123 if (timeout) {
124 /* mailbox timeout can now become active */
125 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
126
127 /* notify PF of VF reset completion */
128 msgbuf[0] = E1000_VF_RESET;
129 mbx->ops.write_posted(hw, msgbuf, 1);
130
131 mdelay(10);
132
133 /* set our "perm_addr" based on info provided by PF */
134 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
135 if (!ret_val) {
136 switch (msgbuf[0]) {
137 case E1000_VF_RESET | E1000_VT_MSGTYPE_ACK:
138 memcpy(hw->mac.perm_addr, addr, ETH_ALEN);
139 break;
140 case E1000_VF_RESET | E1000_VT_MSGTYPE_NACK:
141 eth_zero_addr(hw->mac.perm_addr);
142 break;
143 default:
144 ret_val = -E1000_ERR_MAC_INIT;
145 }
146 }
147 }
148
149 return ret_val;
150}
151
152/**
153 * e1000_init_hw_vf - Inits the HW
154 * @hw: pointer to the HW structure
155 *
156 * Not much to do here except clear the PF Reset indication if there is one.
157 **/
158static s32 e1000_init_hw_vf(struct e1000_hw *hw)
159{
160 /* attempt to set and restore our mac address */
161 e1000_rar_set_vf(hw, hw->mac.addr, 0);
162
163 return E1000_SUCCESS;
164}
165
166/**
167 * e1000_hash_mc_addr_vf - Generate a multicast hash value
168 * @hw: pointer to the HW structure
169 * @mc_addr: pointer to a multicast address
170 *
171 * Generates a multicast address hash value which is used to determine
172 * the multicast filter table array address and new table value. See
173 * e1000_mta_set_generic()
174 **/
175static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
176{
177 u32 hash_value, hash_mask;
178 u8 bit_shift = 0;
179
180 /* Register count multiplied by bits per register */
181 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
182
183 /* The bit_shift is the number of left-shifts
184 * where 0xFF would still fall within the hash mask.
185 */
186 while (hash_mask >> bit_shift != 0xFF)
187 bit_shift++;
188
189 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
190 (((u16)mc_addr[5]) << bit_shift)));
191
192 return hash_value;
193}
194
195/**
196 * e1000_update_mc_addr_list_vf - Update Multicast addresses
197 * @hw: pointer to the HW structure
198 * @mc_addr_list: array of multicast addresses to program
199 * @mc_addr_count: number of multicast addresses to program
200 * @rar_used_count: the first RAR register free to program
201 * @rar_count: total number of supported Receive Address Registers
202 *
203 * Updates the Receive Address Registers and Multicast Table Array.
204 * The caller must have a packed mc_addr_list of multicast addresses.
205 * The parameter rar_count will usually be hw->mac.rar_entry_count
206 * unless there are workarounds that change this.
207 **/
208static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
209 u8 *mc_addr_list, u32 mc_addr_count,
210 u32 rar_used_count, u32 rar_count)
211{
212 struct e1000_mbx_info *mbx = &hw->mbx;
213 u32 msgbuf[E1000_VFMAILBOX_SIZE];
214 u16 *hash_list = (u16 *)&msgbuf[1];
215 u32 hash_value;
216 u32 cnt, i;
217 s32 ret_val;
218
219 /* Each entry in the list uses 1 16 bit word. We have 30
220 * 16 bit words available in our HW msg buffer (minus 1 for the
221 * msg type). That's 30 hash values if we pack 'em right. If
222 * there are more than 30 MC addresses to add then punt the
223 * extras for now and then add code to handle more than 30 later.
224 * It would be unusual for a server to request that many multi-cast
225 * addresses except for in large enterprise network environments.
226 */
227
228 cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
229 msgbuf[0] = E1000_VF_SET_MULTICAST;
230 msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
231
232 for (i = 0; i < cnt; i++) {
233 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
234 hash_list[i] = hash_value & 0x0FFFF;
235 mc_addr_list += ETH_ALEN;
236 }
237
238 ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
239 if (!ret_val)
240 mbx->ops.read_posted(hw, msgbuf, 1);
241}
242
243/**
244 * e1000_set_vfta_vf - Set/Unset vlan filter table address
245 * @hw: pointer to the HW structure
246 * @vid: determines the vfta register and bit to set/unset
247 * @set: if true then set bit, else clear bit
248 **/
249static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
250{
251 struct e1000_mbx_info *mbx = &hw->mbx;
252 u32 msgbuf[2];
253 s32 err;
254
255 msgbuf[0] = E1000_VF_SET_VLAN;
256 msgbuf[1] = vid;
257 /* Setting the 8 bit field MSG INFO to true indicates "add" */
258 if (set)
259 msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT);
260
261 mbx->ops.write_posted(hw, msgbuf, 2);
262
263 err = mbx->ops.read_posted(hw, msgbuf, 2);
264
265 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
266
267 /* if nacked the vlan was rejected */
268 if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
269 err = -E1000_ERR_MAC_INIT;
270
271 return err;
272}
273
274/**
275 * e1000_rlpml_set_vf - Set the maximum receive packet length
276 * @hw: pointer to the HW structure
277 * @max_size: value to assign to max frame size
278 **/
279void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
280{
281 struct e1000_mbx_info *mbx = &hw->mbx;
282 u32 msgbuf[2];
283 s32 ret_val;
284
285 msgbuf[0] = E1000_VF_SET_LPE;
286 msgbuf[1] = max_size;
287
288 ret_val = mbx->ops.write_posted(hw, msgbuf, 2);
289 if (!ret_val)
290 mbx->ops.read_posted(hw, msgbuf, 1);
291}
292
293/**
294 * e1000_rar_set_vf - set device MAC address
295 * @hw: pointer to the HW structure
296 * @addr: pointer to the receive address
297 * @index: receive address array register
298 **/
299static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index)
300{
301 struct e1000_mbx_info *mbx = &hw->mbx;
302 u32 msgbuf[3];
303 u8 *msg_addr = (u8 *)(&msgbuf[1]);
304 s32 ret_val;
305
306 memset(msgbuf, 0, 12);
307 msgbuf[0] = E1000_VF_SET_MAC_ADDR;
308 memcpy(msg_addr, addr, ETH_ALEN);
309 ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
310
311 if (!ret_val)
312 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
313
314 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
315
316 /* if nacked the address was rejected, use "perm_addr" */
317 if (!ret_val &&
318 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
319 e1000_read_mac_addr_vf(hw);
320}
321
322/**
323 * e1000_read_mac_addr_vf - Read device MAC address
324 * @hw: pointer to the HW structure
325 **/
326static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
327{
328 memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
329
330 return E1000_SUCCESS;
331}
332
333/**
334 * e1000_set_uc_addr_vf - Set or clear unicast filters
335 * @hw: pointer to the HW structure
336 * @sub_cmd: add or clear filters
337 * @addr: pointer to the filter MAC address
338 **/
339static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr)
340{
341 struct e1000_mbx_info *mbx = &hw->mbx;
342 u32 msgbuf[3], msgbuf_chk;
343 u8 *msg_addr = (u8 *)(&msgbuf[1]);
344 s32 ret_val;
345
346 memset(msgbuf, 0, sizeof(msgbuf));
347 msgbuf[0] |= sub_cmd;
348 msgbuf[0] |= E1000_VF_SET_MAC_ADDR;
349 msgbuf_chk = msgbuf[0];
350
351 if (addr)
352 memcpy(msg_addr, addr, ETH_ALEN);
353
354 ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
355
356 if (!ret_val)
357 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
358
359 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
360
361 if (!ret_val) {
362 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
363
364 if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK))
365 return -ENOSPC;
366 }
367
368 return ret_val;
369}
370
371/**
372 * e1000_check_for_link_vf - Check for link for a virtual interface
373 * @hw: pointer to the HW structure
374 *
375 * Checks to see if the underlying PF is still talking to the VF and
376 * if it is then it reports the link state to the hardware, otherwise
377 * it reports link down and returns an error.
378 **/
379static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
380{
381 struct e1000_mbx_info *mbx = &hw->mbx;
382 struct e1000_mac_info *mac = &hw->mac;
383 s32 ret_val = E1000_SUCCESS;
384 u32 in_msg = 0;
385
386 /* We only want to run this if there has been a rst asserted.
387 * in this case that could mean a link change, device reset,
388 * or a virtual function reset
389 */
390
391 /* If we were hit with a reset or timeout drop the link */
392 if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
393 mac->get_link_status = true;
394
395 if (!mac->get_link_status)
396 goto out;
397
398 /* if link status is down no point in checking to see if PF is up */
399 if (!(er32(STATUS) & E1000_STATUS_LU))
400 goto out;
401
402 /* if the read failed it could just be a mailbox collision, best wait
403 * until we are called again and don't report an error
404 */
405 if (mbx->ops.read(hw, &in_msg, 1))
406 goto out;
407
408 /* if incoming message isn't clear to send we are waiting on response */
409 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
410 /* msg is not CTS and is NACK we must have lost CTS status */
411 if (in_msg & E1000_VT_MSGTYPE_NACK)
412 ret_val = -E1000_ERR_MAC_INIT;
413 goto out;
414 }
415
416 /* the PF is talking, if we timed out in the past we reinit */
417 if (!mbx->timeout) {
418 ret_val = -E1000_ERR_MAC_INIT;
419 goto out;
420 }
421
422 /* if we passed all the tests above then the link is up and we no
423 * longer need to check for link
424 */
425 mac->get_link_status = false;
426
427out:
428 return ret_val;
429}
430