Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Functions to sequence PREFLUSH and FUA writes.
  3 *
  4 * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
  5 * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
  6 *
  7 * This file is released under the GPLv2.
  8 *
  9 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
 10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
 11 * properties and hardware capability.
 12 *
 13 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
 14 * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
 15 * that the device cache should be flushed before the data is executed, and
 16 * REQ_FUA means that the data must be on non-volatile media on request
 17 * completion.
 18 *
 19 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
 20 * difference.  The requests are either completed immediately if there's no data
 21 * or executed as normal requests otherwise.
 22 *
 23 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
 24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
 25 *
 26 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
 27 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
 28 *
 29 * The actual execution of flush is double buffered.  Whenever a request
 30 * needs to execute PRE or POSTFLUSH, it queues at
 31 * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
 32 * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
 33 * completes, all the requests which were pending are proceeded to the next
 34 * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
 35 * requests.
 36 *
 37 * Currently, the following conditions are used to determine when to issue
 38 * flush.
 39 *
 40 * C1. At any given time, only one flush shall be in progress.  This makes
 41 *     double buffering sufficient.
 42 *
 43 * C2. Flush is deferred if any request is executing DATA of its sequence.
 44 *     This avoids issuing separate POSTFLUSHes for requests which shared
 45 *     PREFLUSH.
 46 *
 47 * C3. The second condition is ignored if there is a request which has
 48 *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
 49 *     starvation in the unlikely case where there are continuous stream of
 50 *     FUA (without PREFLUSH) requests.
 51 *
 52 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
 53 * is beneficial.
 54 *
 55 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
 56 * Once while executing DATA and again after the whole sequence is
 57 * complete.  The first completion updates the contained bio but doesn't
 58 * finish it so that the bio submitter is notified only after the whole
 59 * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
 60 * req_bio_endio().
 61 *
 62 * The above peculiarity requires that each PREFLUSH/FUA request has only one
 63 * bio attached to it, which is guaranteed as they aren't allowed to be
 64 * merged in the usual way.
 65 */
 66
 67#include <linux/kernel.h>
 68#include <linux/module.h>
 69#include <linux/bio.h>
 70#include <linux/blkdev.h>
 71#include <linux/gfp.h>
 72#include <linux/blk-mq.h>
 73
 74#include "blk.h"
 75#include "blk-mq.h"
 76#include "blk-mq-tag.h"
 77#include "blk-mq-sched.h"
 78
 79/* PREFLUSH/FUA sequences */
 80enum {
 81	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
 82	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
 83	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
 84	REQ_FSEQ_DONE		= (1 << 3),
 85
 86	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
 87				  REQ_FSEQ_POSTFLUSH,
 88
 89	/*
 90	 * If flush has been pending longer than the following timeout,
 91	 * it's issued even if flush_data requests are still in flight.
 92	 */
 93	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
 94};
 95
 96static bool blk_kick_flush(struct request_queue *q,
 97			   struct blk_flush_queue *fq);
 
 
 
 
 
 
 98
 99static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
100{
101	unsigned int policy = 0;
102
103	if (blk_rq_sectors(rq))
104		policy |= REQ_FSEQ_DATA;
105
106	if (fflags & (1UL << QUEUE_FLAG_WC)) {
107		if (rq->cmd_flags & REQ_PREFLUSH)
108			policy |= REQ_FSEQ_PREFLUSH;
109		if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
110		    (rq->cmd_flags & REQ_FUA))
111			policy |= REQ_FSEQ_POSTFLUSH;
112	}
113	return policy;
114}
115
116static unsigned int blk_flush_cur_seq(struct request *rq)
117{
118	return 1 << ffz(rq->flush.seq);
119}
120
121static void blk_flush_restore_request(struct request *rq)
122{
123	/*
124	 * After flush data completion, @rq->bio is %NULL but we need to
125	 * complete the bio again.  @rq->biotail is guaranteed to equal the
126	 * original @rq->bio.  Restore it.
127	 */
128	rq->bio = rq->biotail;
129
130	/* make @rq a normal request */
131	rq->rq_flags &= ~RQF_FLUSH_SEQ;
132	rq->end_io = rq->flush.saved_end_io;
133}
134
135static bool blk_flush_queue_rq(struct request *rq, bool add_front)
136{
137	if (rq->q->mq_ops) {
138		blk_mq_add_to_requeue_list(rq, add_front, true);
139		return false;
140	} else {
141		if (add_front)
142			list_add(&rq->queuelist, &rq->q->queue_head);
143		else
144			list_add_tail(&rq->queuelist, &rq->q->queue_head);
145		return true;
146	}
147}
148
149/**
150 * blk_flush_complete_seq - complete flush sequence
151 * @rq: PREFLUSH/FUA request being sequenced
152 * @fq: flush queue
153 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
154 * @error: whether an error occurred
155 *
156 * @rq just completed @seq part of its flush sequence, record the
157 * completion and trigger the next step.
158 *
159 * CONTEXT:
160 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
161 *
162 * RETURNS:
163 * %true if requests were added to the dispatch queue, %false otherwise.
164 */
165static bool blk_flush_complete_seq(struct request *rq,
166				   struct blk_flush_queue *fq,
167				   unsigned int seq, blk_status_t error)
168{
169	struct request_queue *q = rq->q;
170	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
171	bool queued = false, kicked;
172
173	BUG_ON(rq->flush.seq & seq);
174	rq->flush.seq |= seq;
 
175
176	if (likely(!error))
177		seq = blk_flush_cur_seq(rq);
178	else
179		seq = REQ_FSEQ_DONE;
180
181	switch (seq) {
182	case REQ_FSEQ_PREFLUSH:
183	case REQ_FSEQ_POSTFLUSH:
184		/* queue for flush */
185		if (list_empty(pending))
186			fq->flush_pending_since = jiffies;
187		list_move_tail(&rq->flush.list, pending);
188		break;
189
190	case REQ_FSEQ_DATA:
191		list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
192		queued = blk_flush_queue_rq(rq, true);
 
 
 
193		break;
194
195	case REQ_FSEQ_DONE:
196		/*
197		 * @rq was previously adjusted by blk_flush_issue() for
198		 * flush sequencing and may already have gone through the
199		 * flush data request completion path.  Restore @rq for
200		 * normal completion and end it.
201		 */
202		BUG_ON(!list_empty(&rq->queuelist));
203		list_del_init(&rq->flush.list);
204		blk_flush_restore_request(rq);
205		if (q->mq_ops)
206			blk_mq_end_request(rq, error);
207		else
208			__blk_end_request_all(rq, error);
209		break;
210
211	default:
212		BUG();
213	}
214
215	kicked = blk_kick_flush(q, fq);
216	return kicked | queued;
217}
218
219static void flush_end_io(struct request *flush_rq, blk_status_t error)
 
220{
221	struct request_queue *q = flush_rq->q;
222	struct list_head *running;
223	bool queued = false;
224	struct request *rq, *n;
225	unsigned long flags = 0;
226	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
227
228	if (q->mq_ops) {
229		struct blk_mq_hw_ctx *hctx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230
231		/* release the tag's ownership to the req cloned from */
232		spin_lock_irqsave(&fq->mq_flush_lock, flags);
233		hctx = blk_mq_map_queue(q, flush_rq->mq_ctx->cpu);
234		if (!q->elevator) {
235			blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
236			flush_rq->tag = -1;
237		} else {
238			blk_mq_put_driver_tag_hctx(hctx, flush_rq);
239			flush_rq->internal_tag = -1;
240		}
241	}
242
243	running = &fq->flush_queue[fq->flush_running_idx];
244	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
245
246	/* account completion of the flush request */
247	fq->flush_running_idx ^= 1;
248
249	if (!q->mq_ops)
250		elv_completed_request(q, flush_rq);
251
252	/* and push the waiting requests to the next stage */
253	list_for_each_entry_safe(rq, n, running, flush.list) {
254		unsigned int seq = blk_flush_cur_seq(rq);
255
256		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
257		queued |= blk_flush_complete_seq(rq, fq, seq, error);
258	}
259
260	/*
261	 * Kick the queue to avoid stall for two cases:
262	 * 1. Moving a request silently to empty queue_head may stall the
263	 * queue.
264	 * 2. When flush request is running in non-queueable queue, the
265	 * queue is hold. Restart the queue after flush request is finished
266	 * to avoid stall.
267	 * This function is called from request completion path and calling
268	 * directly into request_fn may confuse the driver.  Always use
269	 * kblockd.
270	 */
271	if (queued || fq->flush_queue_delayed) {
272		WARN_ON(q->mq_ops);
273		blk_run_queue_async(q);
274	}
275	fq->flush_queue_delayed = 0;
276	if (q->mq_ops)
277		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
278}
279
280/**
281 * blk_kick_flush - consider issuing flush request
282 * @q: request_queue being kicked
283 * @fq: flush queue
 
284 *
285 * Flush related states of @q have changed, consider issuing flush request.
286 * Please read the comment at the top of this file for more info.
287 *
288 * CONTEXT:
289 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
290 *
291 * RETURNS:
292 * %true if flush was issued, %false otherwise.
293 */
294static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq)
 
295{
296	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
297	struct request *first_rq =
298		list_first_entry(pending, struct request, flush.list);
299	struct request *flush_rq = fq->flush_rq;
300
301	/* C1 described at the top of this file */
302	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
303		return false;
304
305	/* C2 and C3
306	 *
307	 * For blk-mq + scheduling, we can risk having all driver tags
308	 * assigned to empty flushes, and we deadlock if we are expecting
309	 * other requests to make progress. Don't defer for that case.
310	 */
311	if (!list_empty(&fq->flush_data_in_flight) &&
312	    !(q->mq_ops && q->elevator) &&
313	    time_before(jiffies,
314			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
315		return false;
316
317	/*
318	 * Issue flush and toggle pending_idx.  This makes pending_idx
319	 * different from running_idx, which means flush is in flight.
320	 */
321	fq->flush_pending_idx ^= 1;
322
323	blk_rq_init(q, flush_rq);
324
325	/*
326	 * In case of none scheduler, borrow tag from the first request
327	 * since they can't be in flight at the same time. And acquire
328	 * the tag's ownership for flush req.
329	 *
330	 * In case of IO scheduler, flush rq need to borrow scheduler tag
331	 * just for cheating put/get driver tag.
332	 */
333	if (q->mq_ops) {
334		struct blk_mq_hw_ctx *hctx;
335
336		flush_rq->mq_ctx = first_rq->mq_ctx;
337
338		if (!q->elevator) {
339			fq->orig_rq = first_rq;
340			flush_rq->tag = first_rq->tag;
341			hctx = blk_mq_map_queue(q, first_rq->mq_ctx->cpu);
342			blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq);
343		} else {
344			flush_rq->internal_tag = first_rq->internal_tag;
345		}
346	}
347
348	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
 
349	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
350	flush_rq->rq_disk = first_rq->rq_disk;
351	flush_rq->end_io = flush_end_io;
352
353	return blk_flush_queue_rq(flush_rq, false);
354}
355
356static void flush_data_end_io(struct request *rq, blk_status_t error)
357{
358	struct request_queue *q = rq->q;
359	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
360
361	lockdep_assert_held(q->queue_lock);
362
363	/*
364	 * Updating q->in_flight[] here for making this tag usable
365	 * early. Because in blk_queue_start_tag(),
366	 * q->in_flight[BLK_RW_ASYNC] is used to limit async I/O and
367	 * reserve tags for sync I/O.
368	 *
369	 * More importantly this way can avoid the following I/O
370	 * deadlock:
371	 *
372	 * - suppose there are 40 fua requests comming to flush queue
373	 *   and queue depth is 31
374	 * - 30 rqs are scheduled then blk_queue_start_tag() can't alloc
375	 *   tag for async I/O any more
376	 * - all the 30 rqs are completed before FLUSH_PENDING_TIMEOUT
377	 *   and flush_data_end_io() is called
378	 * - the other rqs still can't go ahead if not updating
379	 *   q->in_flight[BLK_RW_ASYNC] here, meantime these rqs
380	 *   are held in flush data queue and make no progress of
381	 *   handling post flush rq
382	 * - only after the post flush rq is handled, all these rqs
383	 *   can be completed
384	 */
 
 
385
386	elv_completed_request(q, rq);
 
 
387
388	/* for avoiding double accounting */
389	rq->rq_flags &= ~RQF_STARTED;
390
391	/*
392	 * After populating an empty queue, kick it to avoid stall.  Read
393	 * the comment in flush_end_io().
394	 */
395	if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
396		blk_run_queue_async(q);
397}
398
399static void mq_flush_data_end_io(struct request *rq, blk_status_t error)
 
400{
401	struct request_queue *q = rq->q;
402	struct blk_mq_hw_ctx *hctx;
403	struct blk_mq_ctx *ctx = rq->mq_ctx;
404	unsigned long flags;
405	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
406
407	hctx = blk_mq_map_queue(q, ctx->cpu);
408
409	if (q->elevator) {
410		WARN_ON(rq->tag < 0);
411		blk_mq_put_driver_tag_hctx(hctx, rq);
412	}
413
414	/*
415	 * After populating an empty queue, kick it to avoid stall.  Read
416	 * the comment in flush_end_io().
417	 */
418	spin_lock_irqsave(&fq->mq_flush_lock, flags);
 
 
 
 
 
 
419	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
420	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
421
422	blk_mq_run_hw_queue(hctx, true);
 
423}
424
425/**
426 * blk_insert_flush - insert a new PREFLUSH/FUA request
427 * @rq: request to insert
428 *
429 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
430 * or __blk_mq_run_hw_queue() to dispatch request.
431 * @rq is being submitted.  Analyze what needs to be done and put it on the
432 * right queue.
 
 
 
 
433 */
434void blk_insert_flush(struct request *rq)
435{
436	struct request_queue *q = rq->q;
437	unsigned long fflags = q->queue_flags;	/* may change, cache */
438	unsigned int policy = blk_flush_policy(fflags, rq);
439	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
440
441	if (!q->mq_ops)
442		lockdep_assert_held(q->queue_lock);
443
444	/*
445	 * @policy now records what operations need to be done.  Adjust
446	 * REQ_PREFLUSH and FUA for the driver.
447	 */
448	rq->cmd_flags &= ~REQ_PREFLUSH;
449	if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
450		rq->cmd_flags &= ~REQ_FUA;
451
452	/*
453	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
454	 * of those flags, we have to set REQ_SYNC to avoid skewing
455	 * the request accounting.
456	 */
457	rq->cmd_flags |= REQ_SYNC;
458
459	/*
460	 * An empty flush handed down from a stacking driver may
461	 * translate into nothing if the underlying device does not
462	 * advertise a write-back cache.  In this case, simply
463	 * complete the request.
464	 */
465	if (!policy) {
466		if (q->mq_ops)
467			blk_mq_end_request(rq, 0);
468		else
469			__blk_end_request(rq, 0, 0);
470		return;
471	}
472
473	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
474
475	/*
476	 * If there's data but flush is not necessary, the request can be
477	 * processed directly without going through flush machinery.  Queue
478	 * for normal execution.
479	 */
480	if ((policy & REQ_FSEQ_DATA) &&
481	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
482		if (q->mq_ops)
483			blk_mq_request_bypass_insert(rq, false);
484		else
485			list_add_tail(&rq->queuelist, &q->queue_head);
486		return;
487	}
488
489	/*
490	 * @rq should go through flush machinery.  Mark it part of flush
491	 * sequence and submit for further processing.
492	 */
493	memset(&rq->flush, 0, sizeof(rq->flush));
494	INIT_LIST_HEAD(&rq->flush.list);
495	rq->rq_flags |= RQF_FLUSH_SEQ;
496	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
497	if (q->mq_ops) {
498		rq->end_io = mq_flush_data_end_io;
499
500		spin_lock_irq(&fq->mq_flush_lock);
501		blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
502		spin_unlock_irq(&fq->mq_flush_lock);
503		return;
504	}
505	rq->end_io = flush_data_end_io;
506
507	blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
508}
509
510/**
511 * blkdev_issue_flush - queue a flush
512 * @bdev:	blockdev to issue flush for
513 * @gfp_mask:	memory allocation flags (for bio_alloc)
514 * @error_sector:	error sector
515 *
516 * Description:
517 *    Issue a flush for the block device in question. Caller can supply
518 *    room for storing the error offset in case of a flush error, if they
519 *    wish to.
520 */
521int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
522		sector_t *error_sector)
523{
524	struct request_queue *q;
525	struct bio *bio;
526	int ret = 0;
527
528	if (bdev->bd_disk == NULL)
529		return -ENXIO;
530
531	q = bdev_get_queue(bdev);
532	if (!q)
533		return -ENXIO;
534
535	/*
536	 * some block devices may not have their queue correctly set up here
537	 * (e.g. loop device without a backing file) and so issuing a flush
538	 * here will panic. Ensure there is a request function before issuing
539	 * the flush.
540	 */
541	if (!q->make_request_fn)
542		return -ENXIO;
543
544	bio = bio_alloc(gfp_mask, 0);
545	bio_set_dev(bio, bdev);
546	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
547
548	ret = submit_bio_wait(bio);
549
550	/*
551	 * The driver must store the error location in ->bi_sector, if
552	 * it supports it. For non-stacked drivers, this should be
553	 * copied from blk_rq_pos(rq).
554	 */
555	if (error_sector)
556		*error_sector = bio->bi_iter.bi_sector;
557
558	bio_put(bio);
559	return ret;
560}
561EXPORT_SYMBOL(blkdev_issue_flush);
562
563struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
564		int node, int cmd_size)
565{
566	struct blk_flush_queue *fq;
567	int rq_sz = sizeof(struct request);
568
569	fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node);
570	if (!fq)
571		goto fail;
572
573	if (q->mq_ops)
574		spin_lock_init(&fq->mq_flush_lock);
575
576	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
577	fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node);
578	if (!fq->flush_rq)
579		goto fail_rq;
580
581	INIT_LIST_HEAD(&fq->flush_queue[0]);
582	INIT_LIST_HEAD(&fq->flush_queue[1]);
583	INIT_LIST_HEAD(&fq->flush_data_in_flight);
584
585	return fq;
586
587 fail_rq:
588	kfree(fq);
589 fail:
590	return NULL;
591}
592
593void blk_free_flush_queue(struct blk_flush_queue *fq)
594{
595	/* bio based request queue hasn't flush queue */
596	if (!fq)
597		return;
598
599	kfree(fq->flush_rq);
600	kfree(fq);
601}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Functions to sequence PREFLUSH and FUA writes.
  4 *
  5 * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
  6 * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
  7 *
 
 
  8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
  9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
 10 * properties and hardware capability.
 11 *
 12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
 13 * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
 14 * that the device cache should be flushed before the data is executed, and
 15 * REQ_FUA means that the data must be on non-volatile media on request
 16 * completion.
 17 *
 18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
 19 * difference.  The requests are either completed immediately if there's no data
 20 * or executed as normal requests otherwise.
 21 *
 22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
 23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
 24 *
 25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
 26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
 27 *
 28 * The actual execution of flush is double buffered.  Whenever a request
 29 * needs to execute PRE or POSTFLUSH, it queues at
 30 * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
 31 * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
 32 * completes, all the requests which were pending are proceeded to the next
 33 * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
 34 * requests.
 35 *
 36 * Currently, the following conditions are used to determine when to issue
 37 * flush.
 38 *
 39 * C1. At any given time, only one flush shall be in progress.  This makes
 40 *     double buffering sufficient.
 41 *
 42 * C2. Flush is deferred if any request is executing DATA of its sequence.
 43 *     This avoids issuing separate POSTFLUSHes for requests which shared
 44 *     PREFLUSH.
 45 *
 46 * C3. The second condition is ignored if there is a request which has
 47 *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
 48 *     starvation in the unlikely case where there are continuous stream of
 49 *     FUA (without PREFLUSH) requests.
 50 *
 51 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
 52 * is beneficial.
 53 *
 54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
 55 * Once while executing DATA and again after the whole sequence is
 56 * complete.  The first completion updates the contained bio but doesn't
 57 * finish it so that the bio submitter is notified only after the whole
 58 * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
 59 * req_bio_endio().
 60 *
 61 * The above peculiarity requires that each PREFLUSH/FUA request has only one
 62 * bio attached to it, which is guaranteed as they aren't allowed to be
 63 * merged in the usual way.
 64 */
 65
 66#include <linux/kernel.h>
 67#include <linux/module.h>
 68#include <linux/bio.h>
 69#include <linux/blkdev.h>
 70#include <linux/gfp.h>
 71#include <linux/part_stat.h>
 72
 73#include "blk.h"
 74#include "blk-mq.h"
 
 75#include "blk-mq-sched.h"
 76
 77/* PREFLUSH/FUA sequences */
 78enum {
 79	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
 80	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
 81	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
 82	REQ_FSEQ_DONE		= (1 << 3),
 83
 84	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
 85				  REQ_FSEQ_POSTFLUSH,
 86
 87	/*
 88	 * If flush has been pending longer than the following timeout,
 89	 * it's issued even if flush_data requests are still in flight.
 90	 */
 91	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
 92};
 93
 94static void blk_kick_flush(struct request_queue *q,
 95			   struct blk_flush_queue *fq, blk_opf_t flags);
 96
 97static inline struct blk_flush_queue *
 98blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
 99{
100	return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
101}
102
103static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
104{
105	unsigned int policy = 0;
106
107	if (blk_rq_sectors(rq))
108		policy |= REQ_FSEQ_DATA;
109
110	if (fflags & (1UL << QUEUE_FLAG_WC)) {
111		if (rq->cmd_flags & REQ_PREFLUSH)
112			policy |= REQ_FSEQ_PREFLUSH;
113		if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
114		    (rq->cmd_flags & REQ_FUA))
115			policy |= REQ_FSEQ_POSTFLUSH;
116	}
117	return policy;
118}
119
120static unsigned int blk_flush_cur_seq(struct request *rq)
121{
122	return 1 << ffz(rq->flush.seq);
123}
124
125static void blk_flush_restore_request(struct request *rq)
126{
127	/*
128	 * After flush data completion, @rq->bio is %NULL but we need to
129	 * complete the bio again.  @rq->biotail is guaranteed to equal the
130	 * original @rq->bio.  Restore it.
131	 */
132	rq->bio = rq->biotail;
133
134	/* make @rq a normal request */
135	rq->rq_flags &= ~RQF_FLUSH_SEQ;
136	rq->end_io = rq->flush.saved_end_io;
137}
138
139static void blk_account_io_flush(struct request *rq)
140{
141	struct block_device *part = rq->q->disk->part0;
142
143	part_stat_lock();
144	part_stat_inc(part, ios[STAT_FLUSH]);
145	part_stat_add(part, nsecs[STAT_FLUSH],
146		      ktime_get_ns() - rq->start_time_ns);
147	part_stat_unlock();
 
 
 
148}
149
150/**
151 * blk_flush_complete_seq - complete flush sequence
152 * @rq: PREFLUSH/FUA request being sequenced
153 * @fq: flush queue
154 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
155 * @error: whether an error occurred
156 *
157 * @rq just completed @seq part of its flush sequence, record the
158 * completion and trigger the next step.
159 *
160 * CONTEXT:
161 * spin_lock_irq(fq->mq_flush_lock)
 
 
 
162 */
163static void blk_flush_complete_seq(struct request *rq,
164				   struct blk_flush_queue *fq,
165				   unsigned int seq, blk_status_t error)
166{
167	struct request_queue *q = rq->q;
168	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
169	blk_opf_t cmd_flags;
170
171	BUG_ON(rq->flush.seq & seq);
172	rq->flush.seq |= seq;
173	cmd_flags = rq->cmd_flags;
174
175	if (likely(!error))
176		seq = blk_flush_cur_seq(rq);
177	else
178		seq = REQ_FSEQ_DONE;
179
180	switch (seq) {
181	case REQ_FSEQ_PREFLUSH:
182	case REQ_FSEQ_POSTFLUSH:
183		/* queue for flush */
184		if (list_empty(pending))
185			fq->flush_pending_since = jiffies;
186		list_move_tail(&rq->queuelist, pending);
187		break;
188
189	case REQ_FSEQ_DATA:
190		fq->flush_data_in_flight++;
191		spin_lock(&q->requeue_lock);
192		list_move(&rq->queuelist, &q->requeue_list);
193		spin_unlock(&q->requeue_lock);
194		blk_mq_kick_requeue_list(q);
195		break;
196
197	case REQ_FSEQ_DONE:
198		/*
199		 * @rq was previously adjusted by blk_insert_flush() for
200		 * flush sequencing and may already have gone through the
201		 * flush data request completion path.  Restore @rq for
202		 * normal completion and end it.
203		 */
204		list_del_init(&rq->queuelist);
 
205		blk_flush_restore_request(rq);
206		blk_mq_end_request(rq, error);
 
 
 
207		break;
208
209	default:
210		BUG();
211	}
212
213	blk_kick_flush(q, fq, cmd_flags);
 
214}
215
216static enum rq_end_io_ret flush_end_io(struct request *flush_rq,
217				       blk_status_t error)
218{
219	struct request_queue *q = flush_rq->q;
220	struct list_head *running;
 
221	struct request *rq, *n;
222	unsigned long flags = 0;
223	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
224
225	/* release the tag's ownership to the req cloned from */
226	spin_lock_irqsave(&fq->mq_flush_lock, flags);
227
228	if (!req_ref_put_and_test(flush_rq)) {
229		fq->rq_status = error;
230		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
231		return RQ_END_IO_NONE;
232	}
233
234	blk_account_io_flush(flush_rq);
235	/*
236	 * Flush request has to be marked as IDLE when it is really ended
237	 * because its .end_io() is called from timeout code path too for
238	 * avoiding use-after-free.
239	 */
240	WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE);
241	if (fq->rq_status != BLK_STS_OK) {
242		error = fq->rq_status;
243		fq->rq_status = BLK_STS_OK;
244	}
245
246	if (!q->elevator) {
247		flush_rq->tag = BLK_MQ_NO_TAG;
248	} else {
249		blk_mq_put_driver_tag(flush_rq);
250		flush_rq->internal_tag = BLK_MQ_NO_TAG;
 
 
 
 
 
251	}
252
253	running = &fq->flush_queue[fq->flush_running_idx];
254	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
255
256	/* account completion of the flush request */
257	fq->flush_running_idx ^= 1;
258
 
 
 
259	/* and push the waiting requests to the next stage */
260	list_for_each_entry_safe(rq, n, running, queuelist) {
261		unsigned int seq = blk_flush_cur_seq(rq);
262
263		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
264		blk_flush_complete_seq(rq, fq, seq, error);
265	}
266
267	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
268	return RQ_END_IO_NONE;
269}
270
271bool is_flush_rq(struct request *rq)
272{
273	return rq->end_io == flush_end_io;
 
 
 
 
 
 
 
 
 
 
 
274}
275
276/**
277 * blk_kick_flush - consider issuing flush request
278 * @q: request_queue being kicked
279 * @fq: flush queue
280 * @flags: cmd_flags of the original request
281 *
282 * Flush related states of @q have changed, consider issuing flush request.
283 * Please read the comment at the top of this file for more info.
284 *
285 * CONTEXT:
286 * spin_lock_irq(fq->mq_flush_lock)
287 *
 
 
288 */
289static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
290			   blk_opf_t flags)
291{
292	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
293	struct request *first_rq =
294		list_first_entry(pending, struct request, queuelist);
295	struct request *flush_rq = fq->flush_rq;
296
297	/* C1 described at the top of this file */
298	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
299		return;
300
301	/* C2 and C3 */
302	if (fq->flush_data_in_flight &&
 
 
 
 
 
 
303	    time_before(jiffies,
304			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
305		return;
306
307	/*
308	 * Issue flush and toggle pending_idx.  This makes pending_idx
309	 * different from running_idx, which means flush is in flight.
310	 */
311	fq->flush_pending_idx ^= 1;
312
313	blk_rq_init(q, flush_rq);
314
315	/*
316	 * In case of none scheduler, borrow tag from the first request
317	 * since they can't be in flight at the same time. And acquire
318	 * the tag's ownership for flush req.
319	 *
320	 * In case of IO scheduler, flush rq need to borrow scheduler tag
321	 * just for cheating put/get driver tag.
322	 */
323	flush_rq->mq_ctx = first_rq->mq_ctx;
324	flush_rq->mq_hctx = first_rq->mq_hctx;
 
 
325
326	if (!q->elevator)
327		flush_rq->tag = first_rq->tag;
328	else
329		flush_rq->internal_tag = first_rq->internal_tag;
 
 
 
 
 
330
331	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
332	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
333	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
 
334	flush_rq->end_io = flush_end_io;
 
 
 
 
 
 
 
 
 
 
 
335	/*
336	 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one
337	 * implied in refcount_inc_not_zero() called from
338	 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref
339	 * and READ flush_rq->end_io
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340	 */
341	smp_wmb();
342	req_ref_set(flush_rq, 1);
343
344	spin_lock(&q->requeue_lock);
345	list_add_tail(&flush_rq->queuelist, &q->flush_list);
346	spin_unlock(&q->requeue_lock);
347
348	blk_mq_kick_requeue_list(q);
 
 
 
 
 
 
 
 
349}
350
351static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq,
352					       blk_status_t error)
353{
354	struct request_queue *q = rq->q;
355	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
356	struct blk_mq_ctx *ctx = rq->mq_ctx;
357	unsigned long flags;
358	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
359
 
 
360	if (q->elevator) {
361		WARN_ON(rq->tag < 0);
362		blk_mq_put_driver_tag(rq);
363	}
364
365	/*
366	 * After populating an empty queue, kick it to avoid stall.  Read
367	 * the comment in flush_end_io().
368	 */
369	spin_lock_irqsave(&fq->mq_flush_lock, flags);
370	fq->flush_data_in_flight--;
371	/*
372	 * May have been corrupted by rq->rq_next reuse, we need to
373	 * re-initialize rq->queuelist before reusing it here.
374	 */
375	INIT_LIST_HEAD(&rq->queuelist);
376	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
377	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
378
379	blk_mq_sched_restart(hctx);
380	return RQ_END_IO_NONE;
381}
382
383static void blk_rq_init_flush(struct request *rq)
384{
385	rq->flush.seq = 0;
386	rq->rq_flags |= RQF_FLUSH_SEQ;
387	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
388	rq->end_io = mq_flush_data_end_io;
389}
390
391/*
392 * Insert a PREFLUSH/FUA request into the flush state machine.
393 * Returns true if the request has been consumed by the flush state machine,
394 * or false if the caller should continue to process it.
395 */
396bool blk_insert_flush(struct request *rq)
397{
398	struct request_queue *q = rq->q;
399	unsigned long fflags = q->queue_flags;	/* may change, cache */
400	unsigned int policy = blk_flush_policy(fflags, rq);
401	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
402
403	/* FLUSH/FUA request must never be merged */
404	WARN_ON_ONCE(rq->bio != rq->biotail);
405
406	/*
407	 * @policy now records what operations need to be done.  Adjust
408	 * REQ_PREFLUSH and FUA for the driver.
409	 */
410	rq->cmd_flags &= ~REQ_PREFLUSH;
411	if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
412		rq->cmd_flags &= ~REQ_FUA;
413
414	/*
415	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
416	 * of those flags, we have to set REQ_SYNC to avoid skewing
417	 * the request accounting.
418	 */
419	rq->cmd_flags |= REQ_SYNC;
420
421	switch (policy) {
422	case 0:
423		/*
424		 * An empty flush handed down from a stacking driver may
425		 * translate into nothing if the underlying device does not
426		 * advertise a write-back cache.  In this case, simply
427		 * complete the request.
428		 */
429		blk_mq_end_request(rq, 0);
430		return true;
431	case REQ_FSEQ_DATA:
432		/*
433		 * If there's data, but no flush is necessary, the request can
434		 * be processed directly without going through flush machinery.
435		 * Queue for normal execution.
436		 */
437		return false;
438	case REQ_FSEQ_DATA | REQ_FSEQ_POSTFLUSH:
439		/*
440		 * Initialize the flush fields and completion handler to trigger
441		 * the post flush, and then just pass the command on.
442		 */
443		blk_rq_init_flush(rq);
444		rq->flush.seq |= REQ_FSEQ_PREFLUSH;
445		spin_lock_irq(&fq->mq_flush_lock);
446		fq->flush_data_in_flight++;
447		spin_unlock_irq(&fq->mq_flush_lock);
448		return false;
449	default:
450		/*
451		 * Mark the request as part of a flush sequence and submit it
452		 * for further processing to the flush state machine.
453		 */
454		blk_rq_init_flush(rq);
 
 
 
 
 
 
 
455		spin_lock_irq(&fq->mq_flush_lock);
456		blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
457		spin_unlock_irq(&fq->mq_flush_lock);
458		return true;
459	}
 
 
 
460}
461
462/**
463 * blkdev_issue_flush - queue a flush
464 * @bdev:	blockdev to issue flush for
 
 
465 *
466 * Description:
467 *    Issue a flush for the block device in question.
 
 
468 */
469int blkdev_issue_flush(struct block_device *bdev)
 
470{
471	struct bio bio;
 
 
 
 
 
 
 
 
 
472
473	bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH);
474	return submit_bio_wait(&bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
475}
476EXPORT_SYMBOL(blkdev_issue_flush);
477
478struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
479					      gfp_t flags)
480{
481	struct blk_flush_queue *fq;
482	int rq_sz = sizeof(struct request);
483
484	fq = kzalloc_node(sizeof(*fq), flags, node);
485	if (!fq)
486		goto fail;
487
488	spin_lock_init(&fq->mq_flush_lock);
 
489
490	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
491	fq->flush_rq = kzalloc_node(rq_sz, flags, node);
492	if (!fq->flush_rq)
493		goto fail_rq;
494
495	INIT_LIST_HEAD(&fq->flush_queue[0]);
496	INIT_LIST_HEAD(&fq->flush_queue[1]);
 
497
498	return fq;
499
500 fail_rq:
501	kfree(fq);
502 fail:
503	return NULL;
504}
505
506void blk_free_flush_queue(struct blk_flush_queue *fq)
507{
508	/* bio based request queue hasn't flush queue */
509	if (!fq)
510		return;
511
512	kfree(fq->flush_rq);
513	kfree(fq);
514}
515
516/*
517 * Allow driver to set its own lock class to fq->mq_flush_lock for
518 * avoiding lockdep complaint.
519 *
520 * flush_end_io() may be called recursively from some driver, such as
521 * nvme-loop, so lockdep may complain 'possible recursive locking' because
522 * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class
523 * key. We need to assign different lock class for these driver's
524 * fq->mq_flush_lock for avoiding the lockdep warning.
525 *
526 * Use dynamically allocated lock class key for each 'blk_flush_queue'
527 * instance is over-kill, and more worse it introduces horrible boot delay
528 * issue because synchronize_rcu() is implied in lockdep_unregister_key which
529 * is called for each hctx release. SCSI probing may synchronously create and
530 * destroy lots of MQ request_queues for non-existent devices, and some robot
531 * test kernel always enable lockdep option. It is observed that more than half
532 * an hour is taken during SCSI MQ probe with per-fq lock class.
533 */
534void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
535		struct lock_class_key *key)
536{
537	lockdep_set_class(&hctx->fq->mq_flush_lock, key);
538}
539EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class);