Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Copyright (C) 2014 Imagination Technologies
  3 * Author: Paul Burton <paul.burton@mips.com>
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms of the GNU General Public License as published by the
  7 * Free Software Foundation;  either version 2 of the  License, or (at your
  8 * option) any later version.
  9 */
 10
 11#include <linux/binfmts.h>
 12#include <linux/elf.h>
 13#include <linux/export.h>
 14#include <linux/sched.h>
 15
 16#include <asm/cpu-features.h>
 17#include <asm/cpu-info.h>
 
 
 
 18
 19/* Whether to accept legacy-NaN and 2008-NaN user binaries.  */
 20bool mips_use_nan_legacy;
 21bool mips_use_nan_2008;
 22
 23/* FPU modes */
 24enum {
 25	FP_FRE,
 26	FP_FR0,
 27	FP_FR1,
 28};
 29
 30/**
 31 * struct mode_req - ABI FPU mode requirements
 32 * @single:	The program being loaded needs an FPU but it will only issue
 33 *		single precision instructions meaning that it can execute in
 34 *		either FR0 or FR1.
 35 * @soft:	The soft(-float) requirement means that the program being
 36 *		loaded needs has no FPU dependency at all (i.e. it has no
 37 *		FPU instructions).
 38 * @fr1:	The program being loaded depends on FPU being in FR=1 mode.
 39 * @frdefault:	The program being loaded depends on the default FPU mode.
 40 *		That is FR0 for O32 and FR1 for N32/N64.
 41 * @fre:	The program being loaded depends on FPU with FRE=1. This mode is
 42 *		a bridge which uses FR=1 whilst still being able to maintain
 43 *		full compatibility with pre-existing code using the O32 FP32
 44 *		ABI.
 45 *
 46 * More information about the FP ABIs can be found here:
 47 *
 48 * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up
 49 *
 50 */
 51
 52struct mode_req {
 53	bool single;
 54	bool soft;
 55	bool fr1;
 56	bool frdefault;
 57	bool fre;
 58};
 59
 60static const struct mode_req fpu_reqs[] = {
 61	[MIPS_ABI_FP_ANY]    = { true,  true,  true,  true,  true  },
 62	[MIPS_ABI_FP_DOUBLE] = { false, false, false, true,  true  },
 63	[MIPS_ABI_FP_SINGLE] = { true,  false, false, false, false },
 64	[MIPS_ABI_FP_SOFT]   = { false, true,  false, false, false },
 65	[MIPS_ABI_FP_OLD_64] = { false, false, false, false, false },
 66	[MIPS_ABI_FP_XX]     = { false, false, true,  true,  true  },
 67	[MIPS_ABI_FP_64]     = { false, false, true,  false, false },
 68	[MIPS_ABI_FP_64A]    = { false, false, true,  false, true  }
 69};
 70
 71/*
 72 * Mode requirements when .MIPS.abiflags is not present in the ELF.
 73 * Not present means that everything is acceptable except FR1.
 74 */
 75static struct mode_req none_req = { true, true, false, true, true };
 76
 77int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf,
 78		     bool is_interp, struct arch_elf_state *state)
 79{
 80	union {
 81		struct elf32_hdr e32;
 82		struct elf64_hdr e64;
 83	} *ehdr = _ehdr;
 84	struct elf32_phdr *phdr32 = _phdr;
 85	struct elf64_phdr *phdr64 = _phdr;
 86	struct mips_elf_abiflags_v0 abiflags;
 87	bool elf32;
 88	u32 flags;
 89	int ret;
 90	loff_t pos;
 91
 92	elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
 93	flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
 94
 95	/* Let's see if this is an O32 ELF */
 96	if (elf32) {
 97		if (flags & EF_MIPS_FP64) {
 98			/*
 99			 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it
100			 * later if needed
101			 */
102			if (is_interp)
103				state->interp_fp_abi = MIPS_ABI_FP_OLD_64;
104			else
105				state->fp_abi = MIPS_ABI_FP_OLD_64;
106		}
107		if (phdr32->p_type != PT_MIPS_ABIFLAGS)
108			return 0;
109
110		if (phdr32->p_filesz < sizeof(abiflags))
111			return -EINVAL;
112		pos = phdr32->p_offset;
113	} else {
114		if (phdr64->p_type != PT_MIPS_ABIFLAGS)
115			return 0;
116		if (phdr64->p_filesz < sizeof(abiflags))
117			return -EINVAL;
118		pos = phdr64->p_offset;
119	}
120
121	ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos);
122	if (ret < 0)
123		return ret;
124	if (ret != sizeof(abiflags))
125		return -EIO;
126
127	/* Record the required FP ABIs for use by mips_check_elf */
128	if (is_interp)
129		state->interp_fp_abi = abiflags.fp_abi;
130	else
131		state->fp_abi = abiflags.fp_abi;
132
133	return 0;
134}
135
136int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr,
137		   struct arch_elf_state *state)
138{
139	union {
140		struct elf32_hdr e32;
141		struct elf64_hdr e64;
142	} *ehdr = _ehdr;
143	union {
144		struct elf32_hdr e32;
145		struct elf64_hdr e64;
146	} *iehdr = _interp_ehdr;
147	struct mode_req prog_req, interp_req;
148	int fp_abi, interp_fp_abi, abi0, abi1, max_abi;
149	bool elf32;
150	u32 flags;
151
152	elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
153	flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
154
155	/*
156	 * Determine the NaN personality, reject the binary if not allowed.
157	 * Also ensure that any interpreter matches the executable.
158	 */
159	if (flags & EF_MIPS_NAN2008) {
160		if (mips_use_nan_2008)
161			state->nan_2008 = 1;
162		else
163			return -ENOEXEC;
164	} else {
165		if (mips_use_nan_legacy)
166			state->nan_2008 = 0;
167		else
168			return -ENOEXEC;
169	}
170	if (has_interpreter) {
171		bool ielf32;
172		u32 iflags;
173
174		ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
175		iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags;
176
177		if ((flags ^ iflags) & EF_MIPS_NAN2008)
178			return -ELIBBAD;
179	}
180
181	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
182		return 0;
183
184	fp_abi = state->fp_abi;
185
186	if (has_interpreter) {
187		interp_fp_abi = state->interp_fp_abi;
188
189		abi0 = min(fp_abi, interp_fp_abi);
190		abi1 = max(fp_abi, interp_fp_abi);
191	} else {
192		abi0 = abi1 = fp_abi;
193	}
194
195	if (elf32 && !(flags & EF_MIPS_ABI2)) {
196		/* Default to a mode capable of running code expecting FR=0 */
197		state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0;
198
199		/* Allow all ABIs we know about */
200		max_abi = MIPS_ABI_FP_64A;
201	} else {
202		/* MIPS64 code always uses FR=1, thus the default is easy */
203		state->overall_fp_mode = FP_FR1;
204
205		/* Disallow access to the various FPXX & FP64 ABIs */
206		max_abi = MIPS_ABI_FP_SOFT;
207	}
208
209	if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) ||
210	    (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN))
211		return -ELIBBAD;
212
213	/* It's time to determine the FPU mode requirements */
214	prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0];
215	interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1];
216
217	/*
218	 * Check whether the program's and interp's ABIs have a matching FPU
219	 * mode requirement.
220	 */
221	prog_req.single = interp_req.single && prog_req.single;
222	prog_req.soft = interp_req.soft && prog_req.soft;
223	prog_req.fr1 = interp_req.fr1 && prog_req.fr1;
224	prog_req.frdefault = interp_req.frdefault && prog_req.frdefault;
225	prog_req.fre = interp_req.fre && prog_req.fre;
226
227	/*
228	 * Determine the desired FPU mode
229	 *
230	 * Decision making:
231	 *
232	 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This
233	 *   means that we have a combination of program and interpreter
234	 *   that inherently require the hybrid FP mode.
235	 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or
236	 *   fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU
237	 *   instructions so we don't care about the mode. We will simply use
238	 *   the one preferred by the hardware. In fpxx case, that ABI can
239	 *   handle both FR=1 and FR=0, so, again, we simply choose the one
240	 *   preferred by the hardware. Next, if we only use single-precision
241	 *   FPU instructions, and the default ABI FPU mode is not good
242	 *   (ie single + any ABI combination), we set again the FPU mode to the
243	 *   one is preferred by the hardware. Next, if we know that the code
244	 *   will only use single-precision instructions, shown by single being
245	 *   true but frdefault being false, then we again set the FPU mode to
246	 *   the one that is preferred by the hardware.
247	 * - We want FP_FR1 if that's the only matching mode and the default one
248	 *   is not good.
249	 * - Return with -ELIBADD if we can't find a matching FPU mode.
250	 */
251	if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1)
252		state->overall_fp_mode = FP_FRE;
253	else if ((prog_req.fr1 && prog_req.frdefault) ||
254		 (prog_req.single && !prog_req.frdefault))
255		/* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */
256		state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) &&
257					  cpu_has_mips_r2_r6) ?
258					  FP_FR1 : FP_FR0;
259	else if (prog_req.fr1)
260		state->overall_fp_mode = FP_FR1;
261	else  if (!prog_req.fre && !prog_req.frdefault &&
262		  !prog_req.fr1 && !prog_req.single && !prog_req.soft)
263		return -ELIBBAD;
264
265	return 0;
266}
267
268static inline void set_thread_fp_mode(int hybrid, int regs32)
269{
270	if (hybrid)
271		set_thread_flag(TIF_HYBRID_FPREGS);
272	else
273		clear_thread_flag(TIF_HYBRID_FPREGS);
274	if (regs32)
275		set_thread_flag(TIF_32BIT_FPREGS);
276	else
277		clear_thread_flag(TIF_32BIT_FPREGS);
278}
279
280void mips_set_personality_fp(struct arch_elf_state *state)
281{
282	/*
283	 * This function is only ever called for O32 ELFs so we should
284	 * not be worried about N32/N64 binaries.
285	 */
286
287	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
288		return;
289
290	switch (state->overall_fp_mode) {
291	case FP_FRE:
292		set_thread_fp_mode(1, 0);
293		break;
294	case FP_FR0:
295		set_thread_fp_mode(0, 1);
296		break;
297	case FP_FR1:
298		set_thread_fp_mode(0, 0);
299		break;
300	default:
301		BUG();
302	}
303}
304
305/*
306 * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
307 * in FCSR according to the ELF NaN personality.
308 */
309void mips_set_personality_nan(struct arch_elf_state *state)
310{
311	struct cpuinfo_mips *c = &boot_cpu_data;
312	struct task_struct *t = current;
313
 
 
 
 
 
314	t->thread.fpu.fcr31 = c->fpu_csr31;
315	switch (state->nan_2008) {
316	case 0:
317		break;
318	case 1:
319		if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
320			t->thread.fpu.fcr31 |= FPU_CSR_NAN2008;
321		if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
322			t->thread.fpu.fcr31 |= FPU_CSR_ABS2008;
323		break;
324	default:
325		BUG();
326	}
327}
328
 
 
329int mips_elf_read_implies_exec(void *elf_ex, int exstack)
330{
331	if (exstack != EXSTACK_DISABLE_X) {
332		/* The binary doesn't request a non-executable stack */
333		return 1;
334	}
335
336	if (!cpu_has_rixi) {
337		/* The CPU doesn't support non-executable memory */
338		return 1;
339	}
340
341	return 0;
342}
343EXPORT_SYMBOL(mips_elf_read_implies_exec);
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2014 Imagination Technologies
  4 * Author: Paul Burton <paul.burton@mips.com>
 
 
 
 
 
  5 */
  6
  7#include <linux/binfmts.h>
  8#include <linux/elf.h>
  9#include <linux/export.h>
 10#include <linux/sched.h>
 11
 12#include <asm/cpu-features.h>
 13#include <asm/cpu-info.h>
 14#include <asm/fpu.h>
 15
 16#ifdef CONFIG_MIPS_FP_SUPPORT
 17
 18/* Whether to accept legacy-NaN and 2008-NaN user binaries.  */
 19bool mips_use_nan_legacy;
 20bool mips_use_nan_2008;
 21
 22/* FPU modes */
 23enum {
 24	FP_FRE,
 25	FP_FR0,
 26	FP_FR1,
 27};
 28
 29/**
 30 * struct mode_req - ABI FPU mode requirements
 31 * @single:	The program being loaded needs an FPU but it will only issue
 32 *		single precision instructions meaning that it can execute in
 33 *		either FR0 or FR1.
 34 * @soft:	The soft(-float) requirement means that the program being
 35 *		loaded needs has no FPU dependency at all (i.e. it has no
 36 *		FPU instructions).
 37 * @fr1:	The program being loaded depends on FPU being in FR=1 mode.
 38 * @frdefault:	The program being loaded depends on the default FPU mode.
 39 *		That is FR0 for O32 and FR1 for N32/N64.
 40 * @fre:	The program being loaded depends on FPU with FRE=1. This mode is
 41 *		a bridge which uses FR=1 whilst still being able to maintain
 42 *		full compatibility with pre-existing code using the O32 FP32
 43 *		ABI.
 44 *
 45 * More information about the FP ABIs can be found here:
 46 *
 47 * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up
 48 *
 49 */
 50
 51struct mode_req {
 52	bool single;
 53	bool soft;
 54	bool fr1;
 55	bool frdefault;
 56	bool fre;
 57};
 58
 59static const struct mode_req fpu_reqs[] = {
 60	[MIPS_ABI_FP_ANY]    = { true,  true,  true,  true,  true  },
 61	[MIPS_ABI_FP_DOUBLE] = { false, false, false, true,  true  },
 62	[MIPS_ABI_FP_SINGLE] = { true,  false, false, false, false },
 63	[MIPS_ABI_FP_SOFT]   = { false, true,  false, false, false },
 64	[MIPS_ABI_FP_OLD_64] = { false, false, false, false, false },
 65	[MIPS_ABI_FP_XX]     = { false, false, true,  true,  true  },
 66	[MIPS_ABI_FP_64]     = { false, false, true,  false, false },
 67	[MIPS_ABI_FP_64A]    = { false, false, true,  false, true  }
 68};
 69
 70/*
 71 * Mode requirements when .MIPS.abiflags is not present in the ELF.
 72 * Not present means that everything is acceptable except FR1.
 73 */
 74static struct mode_req none_req = { true, true, false, true, true };
 75
 76int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf,
 77		     bool is_interp, struct arch_elf_state *state)
 78{
 79	union {
 80		struct elf32_hdr e32;
 81		struct elf64_hdr e64;
 82	} *ehdr = _ehdr;
 83	struct elf32_phdr *phdr32 = _phdr;
 84	struct elf64_phdr *phdr64 = _phdr;
 85	struct mips_elf_abiflags_v0 abiflags;
 86	bool elf32;
 87	u32 flags;
 88	int ret;
 89	loff_t pos;
 90
 91	elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
 92	flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
 93
 94	/* Let's see if this is an O32 ELF */
 95	if (elf32) {
 96		if (flags & EF_MIPS_FP64) {
 97			/*
 98			 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it
 99			 * later if needed
100			 */
101			if (is_interp)
102				state->interp_fp_abi = MIPS_ABI_FP_OLD_64;
103			else
104				state->fp_abi = MIPS_ABI_FP_OLD_64;
105		}
106		if (phdr32->p_type != PT_MIPS_ABIFLAGS)
107			return 0;
108
109		if (phdr32->p_filesz < sizeof(abiflags))
110			return -EINVAL;
111		pos = phdr32->p_offset;
112	} else {
113		if (phdr64->p_type != PT_MIPS_ABIFLAGS)
114			return 0;
115		if (phdr64->p_filesz < sizeof(abiflags))
116			return -EINVAL;
117		pos = phdr64->p_offset;
118	}
119
120	ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos);
121	if (ret < 0)
122		return ret;
123	if (ret != sizeof(abiflags))
124		return -EIO;
125
126	/* Record the required FP ABIs for use by mips_check_elf */
127	if (is_interp)
128		state->interp_fp_abi = abiflags.fp_abi;
129	else
130		state->fp_abi = abiflags.fp_abi;
131
132	return 0;
133}
134
135int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr,
136		   struct arch_elf_state *state)
137{
138	union {
139		struct elf32_hdr e32;
140		struct elf64_hdr e64;
141	} *ehdr = _ehdr;
142	union {
143		struct elf32_hdr e32;
144		struct elf64_hdr e64;
145	} *iehdr = _interp_ehdr;
146	struct mode_req prog_req, interp_req;
147	int fp_abi, interp_fp_abi, abi0, abi1, max_abi;
148	bool elf32;
149	u32 flags;
150
151	elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
152	flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
153
154	/*
155	 * Determine the NaN personality, reject the binary if not allowed.
156	 * Also ensure that any interpreter matches the executable.
157	 */
158	if (flags & EF_MIPS_NAN2008) {
159		if (mips_use_nan_2008)
160			state->nan_2008 = 1;
161		else
162			return -ENOEXEC;
163	} else {
164		if (mips_use_nan_legacy)
165			state->nan_2008 = 0;
166		else
167			return -ENOEXEC;
168	}
169	if (has_interpreter) {
170		bool ielf32;
171		u32 iflags;
172
173		ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
174		iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags;
175
176		if ((flags ^ iflags) & EF_MIPS_NAN2008)
177			return -ELIBBAD;
178	}
179
180	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
181		return 0;
182
183	fp_abi = state->fp_abi;
184
185	if (has_interpreter) {
186		interp_fp_abi = state->interp_fp_abi;
187
188		abi0 = min(fp_abi, interp_fp_abi);
189		abi1 = max(fp_abi, interp_fp_abi);
190	} else {
191		abi0 = abi1 = fp_abi;
192	}
193
194	if (elf32 && !(flags & EF_MIPS_ABI2)) {
195		/* Default to a mode capable of running code expecting FR=0 */
196		state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0;
197
198		/* Allow all ABIs we know about */
199		max_abi = MIPS_ABI_FP_64A;
200	} else {
201		/* MIPS64 code always uses FR=1, thus the default is easy */
202		state->overall_fp_mode = FP_FR1;
203
204		/* Disallow access to the various FPXX & FP64 ABIs */
205		max_abi = MIPS_ABI_FP_SOFT;
206	}
207
208	if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) ||
209	    (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN))
210		return -ELIBBAD;
211
212	/* It's time to determine the FPU mode requirements */
213	prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0];
214	interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1];
215
216	/*
217	 * Check whether the program's and interp's ABIs have a matching FPU
218	 * mode requirement.
219	 */
220	prog_req.single = interp_req.single && prog_req.single;
221	prog_req.soft = interp_req.soft && prog_req.soft;
222	prog_req.fr1 = interp_req.fr1 && prog_req.fr1;
223	prog_req.frdefault = interp_req.frdefault && prog_req.frdefault;
224	prog_req.fre = interp_req.fre && prog_req.fre;
225
226	/*
227	 * Determine the desired FPU mode
228	 *
229	 * Decision making:
230	 *
231	 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This
232	 *   means that we have a combination of program and interpreter
233	 *   that inherently require the hybrid FP mode.
234	 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or
235	 *   fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU
236	 *   instructions so we don't care about the mode. We will simply use
237	 *   the one preferred by the hardware. In fpxx case, that ABI can
238	 *   handle both FR=1 and FR=0, so, again, we simply choose the one
239	 *   preferred by the hardware. Next, if we only use single-precision
240	 *   FPU instructions, and the default ABI FPU mode is not good
241	 *   (ie single + any ABI combination), we set again the FPU mode to the
242	 *   one is preferred by the hardware. Next, if we know that the code
243	 *   will only use single-precision instructions, shown by single being
244	 *   true but frdefault being false, then we again set the FPU mode to
245	 *   the one that is preferred by the hardware.
246	 * - We want FP_FR1 if that's the only matching mode and the default one
247	 *   is not good.
248	 * - Return with -ELIBADD if we can't find a matching FPU mode.
249	 */
250	if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1)
251		state->overall_fp_mode = FP_FRE;
252	else if ((prog_req.fr1 && prog_req.frdefault) ||
253		 (prog_req.single && !prog_req.frdefault))
254		/* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */
255		state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) &&
256					  cpu_has_mips_r2_r6) ?
257					  FP_FR1 : FP_FR0;
258	else if (prog_req.fr1)
259		state->overall_fp_mode = FP_FR1;
260	else  if (!prog_req.fre && !prog_req.frdefault &&
261		  !prog_req.fr1 && !prog_req.single && !prog_req.soft)
262		return -ELIBBAD;
263
264	return 0;
265}
266
267static inline void set_thread_fp_mode(int hybrid, int regs32)
268{
269	if (hybrid)
270		set_thread_flag(TIF_HYBRID_FPREGS);
271	else
272		clear_thread_flag(TIF_HYBRID_FPREGS);
273	if (regs32)
274		set_thread_flag(TIF_32BIT_FPREGS);
275	else
276		clear_thread_flag(TIF_32BIT_FPREGS);
277}
278
279void mips_set_personality_fp(struct arch_elf_state *state)
280{
281	/*
282	 * This function is only ever called for O32 ELFs so we should
283	 * not be worried about N32/N64 binaries.
284	 */
285
286	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
287		return;
288
289	switch (state->overall_fp_mode) {
290	case FP_FRE:
291		set_thread_fp_mode(1, 0);
292		break;
293	case FP_FR0:
294		set_thread_fp_mode(0, 1);
295		break;
296	case FP_FR1:
297		set_thread_fp_mode(0, 0);
298		break;
299	default:
300		BUG();
301	}
302}
303
304/*
305 * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
306 * in FCSR according to the ELF NaN personality.
307 */
308void mips_set_personality_nan(struct arch_elf_state *state)
309{
310	struct cpuinfo_mips *c = &boot_cpu_data;
311	struct task_struct *t = current;
312
313	/* Do this early so t->thread.fpu.fcr31 won't be clobbered in case
314	 * we are preempted before the lose_fpu(0) in start_thread.
315	 */
316	lose_fpu(0);
317
318	t->thread.fpu.fcr31 = c->fpu_csr31;
319	switch (state->nan_2008) {
320	case 0:
321		break;
322	case 1:
323		if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
324			t->thread.fpu.fcr31 |= FPU_CSR_NAN2008;
325		if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
326			t->thread.fpu.fcr31 |= FPU_CSR_ABS2008;
327		break;
328	default:
329		BUG();
330	}
331}
332
333#endif /* CONFIG_MIPS_FP_SUPPORT */
334
335int mips_elf_read_implies_exec(void *elf_ex, int exstack)
336{
337	/*
338	 * Set READ_IMPLIES_EXEC only on non-NX systems that
339	 * do not request a specific state via PT_GNU_STACK.
340	 */
341	return (!cpu_has_rixi && exstack == EXSTACK_DEFAULT);
 
 
 
 
 
 
342}
343EXPORT_SYMBOL(mips_elf_read_implies_exec);