Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
 
  31#include <linux/mm.h>
 
  32#include <linux/sched/signal.h>
  33#include <linux/export.h>
  34#include <linux/swap.h>
  35#include <linux/uio.h>
  36#include <linux/khugepaged.h>
  37#include <linux/hugetlb.h>
  38
  39#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
 
 
  40
  41static struct vfsmount *shm_mnt;
  42
  43#ifdef CONFIG_SHMEM
  44/*
  45 * This virtual memory filesystem is heavily based on the ramfs. It
  46 * extends ramfs by the ability to use swap and honor resource limits
  47 * which makes it a completely usable filesystem.
  48 */
  49
  50#include <linux/xattr.h>
  51#include <linux/exportfs.h>
  52#include <linux/posix_acl.h>
  53#include <linux/posix_acl_xattr.h>
  54#include <linux/mman.h>
  55#include <linux/string.h>
  56#include <linux/slab.h>
  57#include <linux/backing-dev.h>
  58#include <linux/shmem_fs.h>
  59#include <linux/writeback.h>
  60#include <linux/blkdev.h>
  61#include <linux/pagevec.h>
  62#include <linux/percpu_counter.h>
  63#include <linux/falloc.h>
  64#include <linux/splice.h>
  65#include <linux/security.h>
  66#include <linux/swapops.h>
  67#include <linux/mempolicy.h>
  68#include <linux/namei.h>
  69#include <linux/ctype.h>
  70#include <linux/migrate.h>
  71#include <linux/highmem.h>
  72#include <linux/seq_file.h>
  73#include <linux/magic.h>
  74#include <linux/syscalls.h>
  75#include <linux/fcntl.h>
  76#include <uapi/linux/memfd.h>
  77#include <linux/userfaultfd_k.h>
  78#include <linux/rmap.h>
  79#include <linux/uuid.h>
  80
  81#include <linux/uaccess.h>
  82#include <asm/pgtable.h>
  83
  84#include "internal.h"
  85
  86#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  87#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  88
  89/* Pretend that each entry is of this size in directory's i_size */
  90#define BOGO_DIRENT_SIZE 20
  91
  92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  93#define SHORT_SYMLINK_LEN 128
  94
  95/*
  96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  97 * inode->i_private (with i_mutex making sure that it has only one user at
  98 * a time): we would prefer not to enlarge the shmem inode just for that.
  99 */
 100struct shmem_falloc {
 101	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 102	pgoff_t start;		/* start of range currently being fallocated */
 103	pgoff_t next;		/* the next page offset to be fallocated */
 104	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
 105	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
 106};
 107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108#ifdef CONFIG_TMPFS
 109static unsigned long shmem_default_max_blocks(void)
 110{
 111	return totalram_pages / 2;
 112}
 113
 114static unsigned long shmem_default_max_inodes(void)
 115{
 116	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 
 
 117}
 118#endif
 119
 120static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 121static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 122				struct shmem_inode_info *info, pgoff_t index);
 123static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 124		struct page **pagep, enum sgp_type sgp,
 125		gfp_t gfp, struct vm_area_struct *vma,
 126		struct vm_fault *vmf, int *fault_type);
 127
 128int shmem_getpage(struct inode *inode, pgoff_t index,
 129		struct page **pagep, enum sgp_type sgp)
 130{
 131	return shmem_getpage_gfp(inode, index, pagep, sgp,
 132		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
 133}
 134
 135static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 136{
 137	return sb->s_fs_info;
 138}
 139
 140/*
 141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 142 * for shared memory and for shared anonymous (/dev/zero) mappings
 143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 144 * consistent with the pre-accounting of private mappings ...
 145 */
 146static inline int shmem_acct_size(unsigned long flags, loff_t size)
 147{
 148	return (flags & VM_NORESERVE) ?
 149		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 150}
 151
 152static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 153{
 154	if (!(flags & VM_NORESERVE))
 155		vm_unacct_memory(VM_ACCT(size));
 156}
 157
 158static inline int shmem_reacct_size(unsigned long flags,
 159		loff_t oldsize, loff_t newsize)
 160{
 161	if (!(flags & VM_NORESERVE)) {
 162		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 163			return security_vm_enough_memory_mm(current->mm,
 164					VM_ACCT(newsize) - VM_ACCT(oldsize));
 165		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 166			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 167	}
 168	return 0;
 169}
 170
 171/*
 172 * ... whereas tmpfs objects are accounted incrementally as
 173 * pages are allocated, in order to allow large sparse files.
 174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 176 */
 177static inline int shmem_acct_block(unsigned long flags, long pages)
 178{
 179	if (!(flags & VM_NORESERVE))
 180		return 0;
 181
 182	return security_vm_enough_memory_mm(current->mm,
 183			pages * VM_ACCT(PAGE_SIZE));
 184}
 185
 186static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 187{
 188	if (flags & VM_NORESERVE)
 189		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 190}
 191
 192static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 193{
 194	struct shmem_inode_info *info = SHMEM_I(inode);
 195	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 196
 197	if (shmem_acct_block(info->flags, pages))
 198		return false;
 199
 200	if (sbinfo->max_blocks) {
 201		if (percpu_counter_compare(&sbinfo->used_blocks,
 202					   sbinfo->max_blocks - pages) > 0)
 203			goto unacct;
 204		percpu_counter_add(&sbinfo->used_blocks, pages);
 205	}
 206
 207	return true;
 208
 209unacct:
 210	shmem_unacct_blocks(info->flags, pages);
 211	return false;
 212}
 213
 214static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 215{
 216	struct shmem_inode_info *info = SHMEM_I(inode);
 217	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 218
 219	if (sbinfo->max_blocks)
 220		percpu_counter_sub(&sbinfo->used_blocks, pages);
 221	shmem_unacct_blocks(info->flags, pages);
 222}
 223
 224static const struct super_operations shmem_ops;
 225static const struct address_space_operations shmem_aops;
 226static const struct file_operations shmem_file_operations;
 227static const struct inode_operations shmem_inode_operations;
 228static const struct inode_operations shmem_dir_inode_operations;
 229static const struct inode_operations shmem_special_inode_operations;
 230static const struct vm_operations_struct shmem_vm_ops;
 
 231static struct file_system_type shmem_fs_type;
 232
 
 
 
 
 
 233bool vma_is_shmem(struct vm_area_struct *vma)
 234{
 235	return vma->vm_ops == &shmem_vm_ops;
 236}
 237
 238static LIST_HEAD(shmem_swaplist);
 239static DEFINE_MUTEX(shmem_swaplist_mutex);
 240
 241static int shmem_reserve_inode(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 242{
 243	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 244	if (sbinfo->max_inodes) {
 245		spin_lock(&sbinfo->stat_lock);
 246		if (!sbinfo->free_inodes) {
 247			spin_unlock(&sbinfo->stat_lock);
 248			return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249		}
 250		sbinfo->free_inodes--;
 251		spin_unlock(&sbinfo->stat_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252	}
 
 253	return 0;
 254}
 255
 256static void shmem_free_inode(struct super_block *sb)
 257{
 258	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 259	if (sbinfo->max_inodes) {
 260		spin_lock(&sbinfo->stat_lock);
 261		sbinfo->free_inodes++;
 262		spin_unlock(&sbinfo->stat_lock);
 263	}
 264}
 265
 266/**
 267 * shmem_recalc_inode - recalculate the block usage of an inode
 268 * @inode: inode to recalc
 269 *
 270 * We have to calculate the free blocks since the mm can drop
 271 * undirtied hole pages behind our back.
 272 *
 273 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 275 *
 276 * It has to be called with the spinlock held.
 277 */
 278static void shmem_recalc_inode(struct inode *inode)
 279{
 280	struct shmem_inode_info *info = SHMEM_I(inode);
 281	long freed;
 282
 283	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 284	if (freed > 0) {
 285		info->alloced -= freed;
 286		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 287		shmem_inode_unacct_blocks(inode, freed);
 288	}
 289}
 290
 291bool shmem_charge(struct inode *inode, long pages)
 292{
 293	struct shmem_inode_info *info = SHMEM_I(inode);
 294	unsigned long flags;
 295
 296	if (!shmem_inode_acct_block(inode, pages))
 297		return false;
 298
 
 
 
 299	spin_lock_irqsave(&info->lock, flags);
 300	info->alloced += pages;
 301	inode->i_blocks += pages * BLOCKS_PER_PAGE;
 302	shmem_recalc_inode(inode);
 303	spin_unlock_irqrestore(&info->lock, flags);
 304	inode->i_mapping->nrpages += pages;
 305
 306	return true;
 307}
 308
 309void shmem_uncharge(struct inode *inode, long pages)
 310{
 311	struct shmem_inode_info *info = SHMEM_I(inode);
 312	unsigned long flags;
 313
 
 
 314	spin_lock_irqsave(&info->lock, flags);
 315	info->alloced -= pages;
 316	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 317	shmem_recalc_inode(inode);
 318	spin_unlock_irqrestore(&info->lock, flags);
 319
 320	shmem_inode_unacct_blocks(inode, pages);
 321}
 322
 323/*
 324 * Replace item expected in radix tree by a new item, while holding tree lock.
 325 */
 326static int shmem_radix_tree_replace(struct address_space *mapping,
 327			pgoff_t index, void *expected, void *replacement)
 328{
 329	struct radix_tree_node *node;
 330	void **pslot;
 331	void *item;
 332
 333	VM_BUG_ON(!expected);
 334	VM_BUG_ON(!replacement);
 335	item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
 336	if (!item)
 337		return -ENOENT;
 338	if (item != expected)
 339		return -ENOENT;
 340	__radix_tree_replace(&mapping->i_pages, node, pslot,
 341			     replacement, NULL);
 342	return 0;
 343}
 344
 345/*
 346 * Sometimes, before we decide whether to proceed or to fail, we must check
 347 * that an entry was not already brought back from swap by a racing thread.
 348 *
 349 * Checking page is not enough: by the time a SwapCache page is locked, it
 350 * might be reused, and again be SwapCache, using the same swap as before.
 351 */
 352static bool shmem_confirm_swap(struct address_space *mapping,
 353			       pgoff_t index, swp_entry_t swap)
 354{
 355	void *item;
 356
 357	rcu_read_lock();
 358	item = radix_tree_lookup(&mapping->i_pages, index);
 359	rcu_read_unlock();
 360	return item == swp_to_radix_entry(swap);
 361}
 362
 363/*
 364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 365 *
 366 * SHMEM_HUGE_NEVER:
 367 *	disables huge pages for the mount;
 368 * SHMEM_HUGE_ALWAYS:
 369 *	enables huge pages for the mount;
 370 * SHMEM_HUGE_WITHIN_SIZE:
 371 *	only allocate huge pages if the page will be fully within i_size,
 372 *	also respect fadvise()/madvise() hints;
 373 * SHMEM_HUGE_ADVISE:
 374 *	only allocate huge pages if requested with fadvise()/madvise();
 375 */
 376
 377#define SHMEM_HUGE_NEVER	0
 378#define SHMEM_HUGE_ALWAYS	1
 379#define SHMEM_HUGE_WITHIN_SIZE	2
 380#define SHMEM_HUGE_ADVISE	3
 381
 382/*
 383 * Special values.
 384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 385 *
 386 * SHMEM_HUGE_DENY:
 387 *	disables huge on shm_mnt and all mounts, for emergency use;
 388 * SHMEM_HUGE_FORCE:
 389 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 390 *
 391 */
 392#define SHMEM_HUGE_DENY		(-1)
 393#define SHMEM_HUGE_FORCE	(-2)
 394
 395#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 396/* ifdef here to avoid bloating shmem.o when not necessary */
 397
 398int shmem_huge __read_mostly;
 399
 400#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 401static int shmem_parse_huge(const char *str)
 402{
 403	if (!strcmp(str, "never"))
 404		return SHMEM_HUGE_NEVER;
 405	if (!strcmp(str, "always"))
 406		return SHMEM_HUGE_ALWAYS;
 407	if (!strcmp(str, "within_size"))
 408		return SHMEM_HUGE_WITHIN_SIZE;
 409	if (!strcmp(str, "advise"))
 410		return SHMEM_HUGE_ADVISE;
 411	if (!strcmp(str, "deny"))
 412		return SHMEM_HUGE_DENY;
 413	if (!strcmp(str, "force"))
 414		return SHMEM_HUGE_FORCE;
 415	return -EINVAL;
 416}
 
 417
 
 418static const char *shmem_format_huge(int huge)
 419{
 420	switch (huge) {
 421	case SHMEM_HUGE_NEVER:
 422		return "never";
 423	case SHMEM_HUGE_ALWAYS:
 424		return "always";
 425	case SHMEM_HUGE_WITHIN_SIZE:
 426		return "within_size";
 427	case SHMEM_HUGE_ADVISE:
 428		return "advise";
 429	case SHMEM_HUGE_DENY:
 430		return "deny";
 431	case SHMEM_HUGE_FORCE:
 432		return "force";
 433	default:
 434		VM_BUG_ON(1);
 435		return "bad_val";
 436	}
 437}
 438#endif
 439
 440static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 441		struct shrink_control *sc, unsigned long nr_to_split)
 442{
 443	LIST_HEAD(list), *pos, *next;
 444	LIST_HEAD(to_remove);
 445	struct inode *inode;
 446	struct shmem_inode_info *info;
 447	struct page *page;
 448	unsigned long batch = sc ? sc->nr_to_scan : 128;
 449	int removed = 0, split = 0;
 450
 451	if (list_empty(&sbinfo->shrinklist))
 452		return SHRINK_STOP;
 453
 454	spin_lock(&sbinfo->shrinklist_lock);
 455	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 456		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 457
 458		/* pin the inode */
 459		inode = igrab(&info->vfs_inode);
 460
 461		/* inode is about to be evicted */
 462		if (!inode) {
 463			list_del_init(&info->shrinklist);
 464			removed++;
 465			goto next;
 466		}
 467
 468		/* Check if there's anything to gain */
 469		if (round_up(inode->i_size, PAGE_SIZE) ==
 470				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 471			list_move(&info->shrinklist, &to_remove);
 472			removed++;
 473			goto next;
 474		}
 475
 476		list_move(&info->shrinklist, &list);
 477next:
 
 478		if (!--batch)
 479			break;
 480	}
 481	spin_unlock(&sbinfo->shrinklist_lock);
 482
 483	list_for_each_safe(pos, next, &to_remove) {
 484		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 485		inode = &info->vfs_inode;
 486		list_del_init(&info->shrinklist);
 487		iput(inode);
 488	}
 489
 490	list_for_each_safe(pos, next, &list) {
 491		int ret;
 
 492
 493		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 494		inode = &info->vfs_inode;
 495
 496		if (nr_to_split && split >= nr_to_split)
 497			goto leave;
 498
 499		page = find_get_page(inode->i_mapping,
 500				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
 501		if (!page)
 502			goto drop;
 503
 504		/* No huge page at the end of the file: nothing to split */
 505		if (!PageTransHuge(page)) {
 506			put_page(page);
 507			goto drop;
 508		}
 509
 510		/*
 511		 * Leave the inode on the list if we failed to lock
 512		 * the page at this time.
 513		 *
 514		 * Waiting for the lock may lead to deadlock in the
 515		 * reclaim path.
 516		 */
 517		if (!trylock_page(page)) {
 518			put_page(page);
 519			goto leave;
 520		}
 521
 522		ret = split_huge_page(page);
 523		unlock_page(page);
 524		put_page(page);
 525
 526		/* If split failed leave the inode on the list */
 527		if (ret)
 528			goto leave;
 529
 530		split++;
 531drop:
 532		list_del_init(&info->shrinklist);
 533		removed++;
 534leave:
 
 
 
 
 
 
 
 
 
 
 
 535		iput(inode);
 536	}
 537
 538	spin_lock(&sbinfo->shrinklist_lock);
 539	list_splice_tail(&list, &sbinfo->shrinklist);
 540	sbinfo->shrinklist_len -= removed;
 541	spin_unlock(&sbinfo->shrinklist_lock);
 542
 543	return split;
 544}
 545
 546static long shmem_unused_huge_scan(struct super_block *sb,
 547		struct shrink_control *sc)
 548{
 549	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 550
 551	if (!READ_ONCE(sbinfo->shrinklist_len))
 552		return SHRINK_STOP;
 553
 554	return shmem_unused_huge_shrink(sbinfo, sc, 0);
 555}
 556
 557static long shmem_unused_huge_count(struct super_block *sb,
 558		struct shrink_control *sc)
 559{
 560	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 561	return READ_ONCE(sbinfo->shrinklist_len);
 562}
 563#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 564
 565#define shmem_huge SHMEM_HUGE_DENY
 566
 
 
 
 
 
 
 567static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 568		struct shrink_control *sc, unsigned long nr_to_split)
 569{
 570	return 0;
 571}
 572#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 573
 574/*
 575 * Like add_to_page_cache_locked, but error if expected item has gone.
 576 */
 577static int shmem_add_to_page_cache(struct page *page,
 578				   struct address_space *mapping,
 579				   pgoff_t index, void *expected)
 
 580{
 581	int error, nr = hpage_nr_pages(page);
 582
 583	VM_BUG_ON_PAGE(PageTail(page), page);
 584	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
 585	VM_BUG_ON_PAGE(!PageLocked(page), page);
 586	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 587	VM_BUG_ON(expected && PageTransHuge(page));
 588
 589	page_ref_add(page, nr);
 590	page->mapping = mapping;
 591	page->index = index;
 592
 593	xa_lock_irq(&mapping->i_pages);
 594	if (PageTransHuge(page)) {
 595		void __rcu **results;
 596		pgoff_t idx;
 597		int i;
 598
 599		error = 0;
 600		if (radix_tree_gang_lookup_slot(&mapping->i_pages,
 601					&results, &idx, index, 1) &&
 602				idx < index + HPAGE_PMD_NR) {
 603			error = -EEXIST;
 604		}
 
 
 605
 606		if (!error) {
 607			for (i = 0; i < HPAGE_PMD_NR; i++) {
 608				error = radix_tree_insert(&mapping->i_pages,
 609						index + i, page + i);
 610				VM_BUG_ON(error);
 
 611			}
 612			count_vm_event(THP_FILE_ALLOC);
 613		}
 614	} else if (!expected) {
 615		error = radix_tree_insert(&mapping->i_pages, index, page);
 616	} else {
 617		error = shmem_radix_tree_replace(mapping, index, expected,
 618								 page);
 619	}
 
 620
 621	if (!error) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622		mapping->nrpages += nr;
 623		if (PageTransHuge(page))
 624			__inc_node_page_state(page, NR_SHMEM_THPS);
 625		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
 626		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
 627		xa_unlock_irq(&mapping->i_pages);
 628	} else {
 629		page->mapping = NULL;
 630		xa_unlock_irq(&mapping->i_pages);
 631		page_ref_sub(page, nr);
 632	}
 
 
 
 
 
 633	return error;
 634}
 635
 636/*
 637 * Like delete_from_page_cache, but substitutes swap for page.
 638 */
 639static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 640{
 641	struct address_space *mapping = page->mapping;
 
 642	int error;
 643
 644	VM_BUG_ON_PAGE(PageCompound(page), page);
 645
 646	xa_lock_irq(&mapping->i_pages);
 647	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 648	page->mapping = NULL;
 649	mapping->nrpages--;
 650	__dec_node_page_state(page, NR_FILE_PAGES);
 651	__dec_node_page_state(page, NR_SHMEM);
 652	xa_unlock_irq(&mapping->i_pages);
 653	put_page(page);
 654	BUG_ON(error);
 655}
 656
 657/*
 658 * Remove swap entry from radix tree, free the swap and its page cache.
 659 */
 660static int shmem_free_swap(struct address_space *mapping,
 661			   pgoff_t index, void *radswap)
 662{
 663	void *old;
 664
 665	xa_lock_irq(&mapping->i_pages);
 666	old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
 667	xa_unlock_irq(&mapping->i_pages);
 668	if (old != radswap)
 669		return -ENOENT;
 670	free_swap_and_cache(radix_to_swp_entry(radswap));
 671	return 0;
 672}
 673
 674/*
 675 * Determine (in bytes) how many of the shmem object's pages mapped by the
 676 * given offsets are swapped out.
 677 *
 678 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 679 * as long as the inode doesn't go away and racy results are not a problem.
 680 */
 681unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 682						pgoff_t start, pgoff_t end)
 683{
 684	struct radix_tree_iter iter;
 685	void **slot;
 686	struct page *page;
 687	unsigned long swapped = 0;
 688
 689	rcu_read_lock();
 690
 691	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
 692		if (iter.index >= end)
 693			break;
 694
 695		page = radix_tree_deref_slot(slot);
 696
 697		if (radix_tree_deref_retry(page)) {
 698			slot = radix_tree_iter_retry(&iter);
 699			continue;
 700		}
 701
 702		if (radix_tree_exceptional_entry(page))
 703			swapped++;
 704
 705		if (need_resched()) {
 706			slot = radix_tree_iter_resume(slot, &iter);
 707			cond_resched_rcu();
 708		}
 709	}
 710
 711	rcu_read_unlock();
 712
 713	return swapped << PAGE_SHIFT;
 714}
 715
 716/*
 717 * Determine (in bytes) how many of the shmem object's pages mapped by the
 718 * given vma is swapped out.
 719 *
 720 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 721 * as long as the inode doesn't go away and racy results are not a problem.
 722 */
 723unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 724{
 725	struct inode *inode = file_inode(vma->vm_file);
 726	struct shmem_inode_info *info = SHMEM_I(inode);
 727	struct address_space *mapping = inode->i_mapping;
 728	unsigned long swapped;
 729
 730	/* Be careful as we don't hold info->lock */
 731	swapped = READ_ONCE(info->swapped);
 732
 733	/*
 734	 * The easier cases are when the shmem object has nothing in swap, or
 735	 * the vma maps it whole. Then we can simply use the stats that we
 736	 * already track.
 737	 */
 738	if (!swapped)
 739		return 0;
 740
 741	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 742		return swapped << PAGE_SHIFT;
 743
 744	/* Here comes the more involved part */
 745	return shmem_partial_swap_usage(mapping,
 746			linear_page_index(vma, vma->vm_start),
 747			linear_page_index(vma, vma->vm_end));
 748}
 749
 750/*
 751 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 752 */
 753void shmem_unlock_mapping(struct address_space *mapping)
 754{
 755	struct pagevec pvec;
 756	pgoff_t indices[PAGEVEC_SIZE];
 757	pgoff_t index = 0;
 758
 759	pagevec_init(&pvec);
 760	/*
 761	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 762	 */
 763	while (!mapping_unevictable(mapping)) {
 764		/*
 765		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 766		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 767		 */
 768		pvec.nr = find_get_entries(mapping, index,
 769					   PAGEVEC_SIZE, pvec.pages, indices);
 770		if (!pvec.nr)
 771			break;
 772		index = indices[pvec.nr - 1] + 1;
 773		pagevec_remove_exceptionals(&pvec);
 774		check_move_unevictable_pages(pvec.pages, pvec.nr);
 775		pagevec_release(&pvec);
 776		cond_resched();
 777	}
 778}
 779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780/*
 781 * Remove range of pages and swap entries from radix tree, and free them.
 782 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 783 */
 784static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 785								 bool unfalloc)
 786{
 787	struct address_space *mapping = inode->i_mapping;
 788	struct shmem_inode_info *info = SHMEM_I(inode);
 789	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 790	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 791	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 792	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 793	struct pagevec pvec;
 794	pgoff_t indices[PAGEVEC_SIZE];
 
 
 795	long nr_swaps_freed = 0;
 796	pgoff_t index;
 797	int i;
 798
 799	if (lend == -1)
 800		end = -1;	/* unsigned, so actually very big */
 801
 802	pagevec_init(&pvec);
 803	index = start;
 804	while (index < end) {
 805		pvec.nr = find_get_entries(mapping, index,
 806			min(end - index, (pgoff_t)PAGEVEC_SIZE),
 807			pvec.pages, indices);
 808		if (!pvec.nr)
 809			break;
 810		for (i = 0; i < pagevec_count(&pvec); i++) {
 811			struct page *page = pvec.pages[i];
 812
 813			index = indices[i];
 814			if (index >= end)
 815				break;
 
 
 
 816
 817			if (radix_tree_exceptional_entry(page)) {
 818				if (unfalloc)
 819					continue;
 820				nr_swaps_freed += !shmem_free_swap(mapping,
 821								index, page);
 822				continue;
 823			}
 824
 825			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
 826
 827			if (!trylock_page(page))
 828				continue;
 829
 830			if (PageTransTail(page)) {
 831				/* Middle of THP: zero out the page */
 832				clear_highpage(page);
 833				unlock_page(page);
 834				continue;
 835			} else if (PageTransHuge(page)) {
 836				if (index == round_down(end, HPAGE_PMD_NR)) {
 837					/*
 838					 * Range ends in the middle of THP:
 839					 * zero out the page
 840					 */
 841					clear_highpage(page);
 842					unlock_page(page);
 843					continue;
 844				}
 845				index += HPAGE_PMD_NR - 1;
 846				i += HPAGE_PMD_NR - 1;
 847			}
 848
 849			if (!unfalloc || !PageUptodate(page)) {
 850				VM_BUG_ON_PAGE(PageTail(page), page);
 851				if (page_mapping(page) == mapping) {
 852					VM_BUG_ON_PAGE(PageWriteback(page), page);
 853					truncate_inode_page(mapping, page);
 854				}
 855			}
 856			unlock_page(page);
 857		}
 858		pagevec_remove_exceptionals(&pvec);
 859		pagevec_release(&pvec);
 860		cond_resched();
 861		index++;
 862	}
 863
 864	if (partial_start) {
 865		struct page *page = NULL;
 866		shmem_getpage(inode, start - 1, &page, SGP_READ);
 867		if (page) {
 868			unsigned int top = PAGE_SIZE;
 869			if (start > end) {
 870				top = partial_end;
 871				partial_end = 0;
 872			}
 873			zero_user_segment(page, partial_start, top);
 874			set_page_dirty(page);
 875			unlock_page(page);
 876			put_page(page);
 877		}
 878	}
 879	if (partial_end) {
 880		struct page *page = NULL;
 881		shmem_getpage(inode, end, &page, SGP_READ);
 882		if (page) {
 883			zero_user_segment(page, 0, partial_end);
 884			set_page_dirty(page);
 885			unlock_page(page);
 886			put_page(page);
 887		}
 
 
 
 
 
 
 
 
 888	}
 889	if (start >= end)
 890		return;
 891
 892	index = start;
 893	while (index < end) {
 894		cond_resched();
 895
 896		pvec.nr = find_get_entries(mapping, index,
 897				min(end - index, (pgoff_t)PAGEVEC_SIZE),
 898				pvec.pages, indices);
 899		if (!pvec.nr) {
 900			/* If all gone or hole-punch or unfalloc, we're done */
 901			if (index == start || end != -1)
 902				break;
 903			/* But if truncating, restart to make sure all gone */
 904			index = start;
 905			continue;
 906		}
 907		for (i = 0; i < pagevec_count(&pvec); i++) {
 908			struct page *page = pvec.pages[i];
 909
 910			index = indices[i];
 911			if (index >= end)
 912				break;
 913
 914			if (radix_tree_exceptional_entry(page)) {
 915				if (unfalloc)
 916					continue;
 917				if (shmem_free_swap(mapping, index, page)) {
 918					/* Swap was replaced by page: retry */
 919					index--;
 920					break;
 921				}
 922				nr_swaps_freed++;
 923				continue;
 924			}
 925
 926			lock_page(page);
 927
 928			if (PageTransTail(page)) {
 929				/* Middle of THP: zero out the page */
 930				clear_highpage(page);
 931				unlock_page(page);
 932				/*
 933				 * Partial thp truncate due 'start' in middle
 934				 * of THP: don't need to look on these pages
 935				 * again on !pvec.nr restart.
 936				 */
 937				if (index != round_down(end, HPAGE_PMD_NR))
 938					start++;
 939				continue;
 940			} else if (PageTransHuge(page)) {
 941				if (index == round_down(end, HPAGE_PMD_NR)) {
 942					/*
 943					 * Range ends in the middle of THP:
 944					 * zero out the page
 945					 */
 946					clear_highpage(page);
 947					unlock_page(page);
 948					continue;
 949				}
 950				index += HPAGE_PMD_NR - 1;
 951				i += HPAGE_PMD_NR - 1;
 952			}
 953
 954			if (!unfalloc || !PageUptodate(page)) {
 955				VM_BUG_ON_PAGE(PageTail(page), page);
 956				if (page_mapping(page) == mapping) {
 957					VM_BUG_ON_PAGE(PageWriteback(page), page);
 958					truncate_inode_page(mapping, page);
 959				} else {
 960					/* Page was replaced by swap: retry */
 961					unlock_page(page);
 962					index--;
 963					break;
 964				}
 
 
 
 965			}
 966			unlock_page(page);
 967		}
 968		pagevec_remove_exceptionals(&pvec);
 969		pagevec_release(&pvec);
 970		index++;
 971	}
 972
 973	spin_lock_irq(&info->lock);
 974	info->swapped -= nr_swaps_freed;
 975	shmem_recalc_inode(inode);
 976	spin_unlock_irq(&info->lock);
 977}
 978
 979void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 980{
 981	shmem_undo_range(inode, lstart, lend, false);
 982	inode->i_ctime = inode->i_mtime = current_time(inode);
 
 983}
 984EXPORT_SYMBOL_GPL(shmem_truncate_range);
 985
 986static int shmem_getattr(const struct path *path, struct kstat *stat,
 
 987			 u32 request_mask, unsigned int query_flags)
 988{
 989	struct inode *inode = path->dentry->d_inode;
 990	struct shmem_inode_info *info = SHMEM_I(inode);
 991
 992	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
 993		spin_lock_irq(&info->lock);
 994		shmem_recalc_inode(inode);
 995		spin_unlock_irq(&info->lock);
 996	}
 997	generic_fillattr(inode, stat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998	return 0;
 999}
1000
1001static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 
1002{
1003	struct inode *inode = d_inode(dentry);
1004	struct shmem_inode_info *info = SHMEM_I(inode);
1005	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1006	int error;
 
 
1007
1008	error = setattr_prepare(dentry, attr);
1009	if (error)
1010		return error;
1011
1012	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1013		loff_t oldsize = inode->i_size;
1014		loff_t newsize = attr->ia_size;
1015
1016		/* protected by i_mutex */
1017		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1018		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1019			return -EPERM;
1020
1021		if (newsize != oldsize) {
1022			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1023					oldsize, newsize);
1024			if (error)
1025				return error;
1026			i_size_write(inode, newsize);
1027			inode->i_ctime = inode->i_mtime = current_time(inode);
 
 
1028		}
1029		if (newsize <= oldsize) {
1030			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1031			if (oldsize > holebegin)
1032				unmap_mapping_range(inode->i_mapping,
1033							holebegin, 0, 1);
1034			if (info->alloced)
1035				shmem_truncate_range(inode,
1036							newsize, (loff_t)-1);
1037			/* unmap again to remove racily COWed private pages */
1038			if (oldsize > holebegin)
1039				unmap_mapping_range(inode->i_mapping,
1040							holebegin, 0, 1);
1041
1042			/*
1043			 * Part of the huge page can be beyond i_size: subject
1044			 * to shrink under memory pressure.
1045			 */
1046			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1047				spin_lock(&sbinfo->shrinklist_lock);
1048				/*
1049				 * _careful to defend against unlocked access to
1050				 * ->shrink_list in shmem_unused_huge_shrink()
1051				 */
1052				if (list_empty_careful(&info->shrinklist)) {
1053					list_add_tail(&info->shrinklist,
1054							&sbinfo->shrinklist);
1055					sbinfo->shrinklist_len++;
1056				}
1057				spin_unlock(&sbinfo->shrinklist_lock);
1058			}
1059		}
1060	}
1061
1062	setattr_copy(inode, attr);
1063	if (attr->ia_valid & ATTR_MODE)
1064		error = posix_acl_chmod(inode, inode->i_mode);
 
 
 
 
 
 
1065	return error;
1066}
1067
1068static void shmem_evict_inode(struct inode *inode)
1069{
1070	struct shmem_inode_info *info = SHMEM_I(inode);
1071	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1072
1073	if (inode->i_mapping->a_ops == &shmem_aops) {
1074		shmem_unacct_size(info->flags, inode->i_size);
1075		inode->i_size = 0;
 
1076		shmem_truncate_range(inode, 0, (loff_t)-1);
1077		if (!list_empty(&info->shrinklist)) {
1078			spin_lock(&sbinfo->shrinklist_lock);
1079			if (!list_empty(&info->shrinklist)) {
1080				list_del_init(&info->shrinklist);
1081				sbinfo->shrinklist_len--;
1082			}
1083			spin_unlock(&sbinfo->shrinklist_lock);
1084		}
1085		if (!list_empty(&info->swaplist)) {
 
 
 
1086			mutex_lock(&shmem_swaplist_mutex);
1087			list_del_init(&info->swaplist);
 
 
1088			mutex_unlock(&shmem_swaplist_mutex);
1089		}
1090	}
1091
1092	simple_xattrs_free(&info->xattrs);
1093	WARN_ON(inode->i_blocks);
1094	shmem_free_inode(inode->i_sb);
1095	clear_inode(inode);
1096}
1097
1098static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1099{
1100	struct radix_tree_iter iter;
1101	void **slot;
1102	unsigned long found = -1;
1103	unsigned int checked = 0;
 
1104
1105	rcu_read_lock();
1106	radix_tree_for_each_slot(slot, root, &iter, 0) {
1107		if (*slot == item) {
1108			found = iter.index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109			break;
 
 
 
 
1110		}
1111		checked++;
1112		if ((checked % 4096) != 0)
1113			continue;
1114		slot = radix_tree_iter_resume(slot, &iter);
1115		cond_resched_rcu();
1116	}
1117
1118	rcu_read_unlock();
1119	return found;
 
1120}
1121
1122/*
1123 * If swap found in inode, free it and move page from swapcache to filecache.
 
1124 */
1125static int shmem_unuse_inode(struct shmem_inode_info *info,
1126			     swp_entry_t swap, struct page **pagep)
1127{
1128	struct address_space *mapping = info->vfs_inode.i_mapping;
1129	void *radswap;
1130	pgoff_t index;
1131	gfp_t gfp;
1132	int error = 0;
 
1133
1134	radswap = swp_to_radix_entry(swap);
1135	index = find_swap_entry(&mapping->i_pages, radswap);
1136	if (index == -1)
1137		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1138
1139	/*
1140	 * Move _head_ to start search for next from here.
1141	 * But be careful: shmem_evict_inode checks list_empty without taking
1142	 * mutex, and there's an instant in list_move_tail when info->swaplist
1143	 * would appear empty, if it were the only one on shmem_swaplist.
1144	 */
1145	if (shmem_swaplist.next != &info->swaplist)
1146		list_move_tail(&shmem_swaplist, &info->swaplist);
1147
1148	gfp = mapping_gfp_mask(mapping);
1149	if (shmem_should_replace_page(*pagep, gfp)) {
1150		mutex_unlock(&shmem_swaplist_mutex);
1151		error = shmem_replace_page(pagep, gfp, info, index);
1152		mutex_lock(&shmem_swaplist_mutex);
1153		/*
1154		 * We needed to drop mutex to make that restrictive page
1155		 * allocation, but the inode might have been freed while we
1156		 * dropped it: although a racing shmem_evict_inode() cannot
1157		 * complete without emptying the radix_tree, our page lock
1158		 * on this swapcache page is not enough to prevent that -
1159		 * free_swap_and_cache() of our swap entry will only
1160		 * trylock_page(), removing swap from radix_tree whatever.
1161		 *
1162		 * We must not proceed to shmem_add_to_page_cache() if the
1163		 * inode has been freed, but of course we cannot rely on
1164		 * inode or mapping or info to check that.  However, we can
1165		 * safely check if our swap entry is still in use (and here
1166		 * it can't have got reused for another page): if it's still
1167		 * in use, then the inode cannot have been freed yet, and we
1168		 * can safely proceed (if it's no longer in use, that tells
1169		 * nothing about the inode, but we don't need to unuse swap).
1170		 */
1171		if (!page_swapcount(*pagep))
1172			error = -ENOENT;
1173	}
 
 
1174
1175	/*
1176	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1177	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1178	 * beneath us (pagelock doesn't help until the page is in pagecache).
1179	 */
1180	if (!error)
1181		error = shmem_add_to_page_cache(*pagep, mapping, index,
1182						radswap);
1183	if (error != -ENOMEM) {
1184		/*
1185		 * Truncation and eviction use free_swap_and_cache(), which
1186		 * only does trylock page: if we raced, best clean up here.
1187		 */
1188		delete_from_swap_cache(*pagep);
1189		set_page_dirty(*pagep);
1190		if (!error) {
1191			spin_lock_irq(&info->lock);
1192			info->swapped--;
1193			spin_unlock_irq(&info->lock);
1194			swap_free(swap);
1195		}
1196	}
1197	return error;
 
 
 
 
 
 
 
1198}
1199
1200/*
1201 * Search through swapped inodes to find and replace swap by page.
 
 
1202 */
1203int shmem_unuse(swp_entry_t swap, struct page *page)
1204{
1205	struct list_head *this, *next;
1206	struct shmem_inode_info *info;
1207	struct mem_cgroup *memcg;
1208	int error = 0;
1209
1210	/*
1211	 * There's a faint possibility that swap page was replaced before
1212	 * caller locked it: caller will come back later with the right page.
1213	 */
1214	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1215		goto out;
1216
1217	/*
1218	 * Charge page using GFP_KERNEL while we can wait, before taking
1219	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1220	 * Charged back to the user (not to caller) when swap account is used.
1221	 */
1222	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1223			false);
1224	if (error)
1225		goto out;
1226	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1227	error = -EAGAIN;
1228
1229	mutex_lock(&shmem_swaplist_mutex);
1230	list_for_each_safe(this, next, &shmem_swaplist) {
1231		info = list_entry(this, struct shmem_inode_info, swaplist);
1232		if (info->swapped)
1233			error = shmem_unuse_inode(info, swap, &page);
1234		else
1235			list_del_init(&info->swaplist);
 
 
 
 
 
 
 
 
 
 
 
 
1236		cond_resched();
1237		if (error != -EAGAIN)
 
 
 
 
 
 
 
1238			break;
1239		/* found nothing in this: move on to search the next */
1240	}
1241	mutex_unlock(&shmem_swaplist_mutex);
1242
1243	if (error) {
1244		if (error != -ENOMEM)
1245			error = 0;
1246		mem_cgroup_cancel_charge(page, memcg, false);
1247	} else
1248		mem_cgroup_commit_charge(page, memcg, true, false);
1249out:
1250	unlock_page(page);
1251	put_page(page);
1252	return error;
1253}
1254
1255/*
1256 * Move the page from the page cache to the swap cache.
1257 */
1258static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1259{
 
1260	struct shmem_inode_info *info;
1261	struct address_space *mapping;
1262	struct inode *inode;
1263	swp_entry_t swap;
1264	pgoff_t index;
1265
1266	VM_BUG_ON_PAGE(PageCompound(page), page);
1267	BUG_ON(!PageLocked(page));
1268	mapping = page->mapping;
1269	index = page->index;
 
 
 
 
 
 
 
 
 
 
 
 
 
1270	inode = mapping->host;
1271	info = SHMEM_I(inode);
1272	if (info->flags & VM_LOCKED)
1273		goto redirty;
1274	if (!total_swap_pages)
1275		goto redirty;
1276
1277	/*
1278	 * Our capabilities prevent regular writeback or sync from ever calling
1279	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1280	 * its underlying filesystem, in which case tmpfs should write out to
1281	 * swap only in response to memory pressure, and not for the writeback
1282	 * threads or sync.
1283	 */
1284	if (!wbc->for_reclaim) {
1285		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1286		goto redirty;
1287	}
1288
1289	/*
1290	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1291	 * value into swapfile.c, the only way we can correctly account for a
1292	 * fallocated page arriving here is now to initialize it and write it.
1293	 *
1294	 * That's okay for a page already fallocated earlier, but if we have
1295	 * not yet completed the fallocation, then (a) we want to keep track
1296	 * of this page in case we have to undo it, and (b) it may not be a
1297	 * good idea to continue anyway, once we're pushing into swap.  So
1298	 * reactivate the page, and let shmem_fallocate() quit when too many.
1299	 */
1300	if (!PageUptodate(page)) {
1301		if (inode->i_private) {
1302			struct shmem_falloc *shmem_falloc;
1303			spin_lock(&inode->i_lock);
1304			shmem_falloc = inode->i_private;
1305			if (shmem_falloc &&
1306			    !shmem_falloc->waitq &&
1307			    index >= shmem_falloc->start &&
1308			    index < shmem_falloc->next)
1309				shmem_falloc->nr_unswapped++;
1310			else
1311				shmem_falloc = NULL;
1312			spin_unlock(&inode->i_lock);
1313			if (shmem_falloc)
1314				goto redirty;
1315		}
1316		clear_highpage(page);
1317		flush_dcache_page(page);
1318		SetPageUptodate(page);
1319	}
1320
1321	swap = get_swap_page(page);
1322	if (!swap.val)
1323		goto redirty;
1324
1325	if (mem_cgroup_try_charge_swap(page, swap))
1326		goto free_swap;
1327
1328	/*
1329	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1330	 * if it's not already there.  Do it now before the page is
1331	 * moved to swap cache, when its pagelock no longer protects
1332	 * the inode from eviction.  But don't unlock the mutex until
1333	 * we've incremented swapped, because shmem_unuse_inode() will
1334	 * prune a !swapped inode from the swaplist under this mutex.
1335	 */
1336	mutex_lock(&shmem_swaplist_mutex);
1337	if (list_empty(&info->swaplist))
1338		list_add_tail(&info->swaplist, &shmem_swaplist);
1339
1340	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 
 
1341		spin_lock_irq(&info->lock);
1342		shmem_recalc_inode(inode);
1343		info->swapped++;
1344		spin_unlock_irq(&info->lock);
1345
1346		swap_shmem_alloc(swap);
1347		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1348
1349		mutex_unlock(&shmem_swaplist_mutex);
1350		BUG_ON(page_mapped(page));
1351		swap_writepage(page, wbc);
1352		return 0;
1353	}
1354
1355	mutex_unlock(&shmem_swaplist_mutex);
1356free_swap:
1357	put_swap_page(page, swap);
1358redirty:
1359	set_page_dirty(page);
1360	if (wbc->for_reclaim)
1361		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1362	unlock_page(page);
1363	return 0;
1364}
1365
1366#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1367static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1368{
1369	char buffer[64];
1370
1371	if (!mpol || mpol->mode == MPOL_DEFAULT)
1372		return;		/* show nothing */
1373
1374	mpol_to_str(buffer, sizeof(buffer), mpol);
1375
1376	seq_printf(seq, ",mpol=%s", buffer);
1377}
1378
1379static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1380{
1381	struct mempolicy *mpol = NULL;
1382	if (sbinfo->mpol) {
1383		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1384		mpol = sbinfo->mpol;
1385		mpol_get(mpol);
1386		spin_unlock(&sbinfo->stat_lock);
1387	}
1388	return mpol;
1389}
1390#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1391static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1392{
1393}
1394static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1395{
1396	return NULL;
1397}
1398#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1399#ifndef CONFIG_NUMA
1400#define vm_policy vm_private_data
1401#endif
1402
1403static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1404		struct shmem_inode_info *info, pgoff_t index)
1405{
1406	/* Create a pseudo vma that just contains the policy */
1407	vma->vm_start = 0;
1408	/* Bias interleave by inode number to distribute better across nodes */
1409	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1410	vma->vm_ops = NULL;
1411	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1412}
1413
1414static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1415{
1416	/* Drop reference taken by mpol_shared_policy_lookup() */
1417	mpol_cond_put(vma->vm_policy);
1418}
1419
1420static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1421			struct shmem_inode_info *info, pgoff_t index)
1422{
1423	struct vm_area_struct pvma;
1424	struct page *page;
1425	struct vm_fault vmf;
 
 
1426
1427	shmem_pseudo_vma_init(&pvma, info, index);
1428	vmf.vma = &pvma;
1429	vmf.address = 0;
1430	page = swap_cluster_readahead(swap, gfp, &vmf);
1431	shmem_pseudo_vma_destroy(&pvma);
1432
1433	return page;
 
 
1434}
1435
1436static struct page *shmem_alloc_hugepage(gfp_t gfp,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437		struct shmem_inode_info *info, pgoff_t index)
1438{
1439	struct vm_area_struct pvma;
1440	struct inode *inode = &info->vfs_inode;
1441	struct address_space *mapping = inode->i_mapping;
1442	pgoff_t idx, hindex;
1443	void __rcu **results;
1444	struct page *page;
1445
1446	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1447		return NULL;
1448
1449	hindex = round_down(index, HPAGE_PMD_NR);
1450	rcu_read_lock();
1451	if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1452				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1453		rcu_read_unlock();
1454		return NULL;
1455	}
1456	rcu_read_unlock();
1457
1458	shmem_pseudo_vma_init(&pvma, info, hindex);
1459	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1460			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1461	shmem_pseudo_vma_destroy(&pvma);
1462	if (page)
1463		prep_transhuge_page(page);
1464	return page;
1465}
1466
1467static struct page *shmem_alloc_page(gfp_t gfp,
1468			struct shmem_inode_info *info, pgoff_t index)
1469{
1470	struct vm_area_struct pvma;
1471	struct page *page;
1472
1473	shmem_pseudo_vma_init(&pvma, info, index);
1474	page = alloc_page_vma(gfp, &pvma, 0);
1475	shmem_pseudo_vma_destroy(&pvma);
1476
1477	return page;
1478}
1479
1480static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1481		struct inode *inode,
1482		pgoff_t index, bool huge)
1483{
1484	struct shmem_inode_info *info = SHMEM_I(inode);
1485	struct page *page;
1486	int nr;
1487	int err = -ENOSPC;
1488
1489	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1490		huge = false;
1491	nr = huge ? HPAGE_PMD_NR : 1;
1492
1493	if (!shmem_inode_acct_block(inode, nr))
1494		goto failed;
1495
1496	if (huge)
1497		page = shmem_alloc_hugepage(gfp, info, index);
1498	else
1499		page = shmem_alloc_page(gfp, info, index);
1500	if (page) {
1501		__SetPageLocked(page);
1502		__SetPageSwapBacked(page);
1503		return page;
1504	}
1505
1506	err = -ENOMEM;
1507	shmem_inode_unacct_blocks(inode, nr);
1508failed:
1509	return ERR_PTR(err);
1510}
1511
1512/*
1513 * When a page is moved from swapcache to shmem filecache (either by the
1514 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1515 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1516 * ignorance of the mapping it belongs to.  If that mapping has special
1517 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1518 * we may need to copy to a suitable page before moving to filecache.
1519 *
1520 * In a future release, this may well be extended to respect cpuset and
1521 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1522 * but for now it is a simple matter of zone.
1523 */
1524static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1525{
1526	return page_zonenum(page) > gfp_zone(gfp);
1527}
1528
1529static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1530				struct shmem_inode_info *info, pgoff_t index)
1531{
1532	struct page *oldpage, *newpage;
1533	struct address_space *swap_mapping;
 
1534	pgoff_t swap_index;
1535	int error;
1536
1537	oldpage = *pagep;
1538	swap_index = page_private(oldpage);
1539	swap_mapping = page_mapping(oldpage);
 
1540
1541	/*
1542	 * We have arrived here because our zones are constrained, so don't
1543	 * limit chance of success by further cpuset and node constraints.
1544	 */
1545	gfp &= ~GFP_CONSTRAINT_MASK;
1546	newpage = shmem_alloc_page(gfp, info, index);
1547	if (!newpage)
 
1548		return -ENOMEM;
1549
1550	get_page(newpage);
1551	copy_highpage(newpage, oldpage);
1552	flush_dcache_page(newpage);
1553
1554	__SetPageLocked(newpage);
1555	__SetPageSwapBacked(newpage);
1556	SetPageUptodate(newpage);
1557	set_page_private(newpage, swap_index);
1558	SetPageSwapCache(newpage);
1559
1560	/*
1561	 * Our caller will very soon move newpage out of swapcache, but it's
1562	 * a nice clean interface for us to replace oldpage by newpage there.
1563	 */
1564	xa_lock_irq(&swap_mapping->i_pages);
1565	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1566								   newpage);
1567	if (!error) {
1568		__inc_node_page_state(newpage, NR_FILE_PAGES);
1569		__dec_node_page_state(oldpage, NR_FILE_PAGES);
 
 
 
1570	}
1571	xa_unlock_irq(&swap_mapping->i_pages);
1572
1573	if (unlikely(error)) {
1574		/*
1575		 * Is this possible?  I think not, now that our callers check
1576		 * both PageSwapCache and page_private after getting page lock;
1577		 * but be defensive.  Reverse old to newpage for clear and free.
1578		 */
1579		oldpage = newpage;
1580	} else {
1581		mem_cgroup_migrate(oldpage, newpage);
1582		lru_cache_add_anon(newpage);
1583		*pagep = newpage;
1584	}
1585
1586	ClearPageSwapCache(oldpage);
1587	set_page_private(oldpage, 0);
1588
1589	unlock_page(oldpage);
1590	put_page(oldpage);
1591	put_page(oldpage);
1592	return error;
1593}
1594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595/*
1596 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1597 *
1598 * If we allocate a new one we do not mark it dirty. That's up to the
1599 * vm. If we swap it in we mark it dirty since we also free the swap
1600 * entry since a page cannot live in both the swap and page cache.
1601 *
1602 * fault_mm and fault_type are only supplied by shmem_fault:
1603 * otherwise they are NULL.
1604 */
1605static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1606	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1607	struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
 
1608{
1609	struct address_space *mapping = inode->i_mapping;
1610	struct shmem_inode_info *info = SHMEM_I(inode);
1611	struct shmem_sb_info *sbinfo;
1612	struct mm_struct *charge_mm;
1613	struct mem_cgroup *memcg;
1614	struct page *page;
1615	swp_entry_t swap;
1616	enum sgp_type sgp_huge = sgp;
1617	pgoff_t hindex = index;
1618	int error;
1619	int once = 0;
1620	int alloced = 0;
1621
1622	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1623		return -EFBIG;
1624	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1625		sgp = SGP_CACHE;
1626repeat:
1627	swap.val = 0;
1628	page = find_lock_entry(mapping, index);
1629	if (radix_tree_exceptional_entry(page)) {
1630		swap = radix_to_swp_entry(page);
1631		page = NULL;
1632	}
1633
1634	if (sgp <= SGP_CACHE &&
1635	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1636		error = -EINVAL;
1637		goto unlock;
1638	}
1639
1640	if (page && sgp == SGP_WRITE)
1641		mark_page_accessed(page);
1642
1643	/* fallocated page? */
1644	if (page && !PageUptodate(page)) {
1645		if (sgp != SGP_READ)
1646			goto clear;
1647		unlock_page(page);
1648		put_page(page);
1649		page = NULL;
1650	}
1651	if (page || (sgp == SGP_READ && !swap.val)) {
1652		*pagep = page;
1653		return 0;
1654	}
1655
1656	/*
1657	 * Fast cache lookup did not find it:
1658	 * bring it back from swap or allocate.
1659	 */
1660	sbinfo = SHMEM_SB(inode->i_sb);
1661	charge_mm = vma ? vma->vm_mm : current->mm;
1662
1663	if (swap.val) {
1664		/* Look it up and read it in.. */
1665		page = lookup_swap_cache(swap, NULL, 0);
1666		if (!page) {
1667			/* Or update major stats only when swapin succeeds?? */
1668			if (fault_type) {
1669				*fault_type |= VM_FAULT_MAJOR;
1670				count_vm_event(PGMAJFAULT);
1671				count_memcg_event_mm(charge_mm, PGMAJFAULT);
1672			}
1673			/* Here we actually start the io */
1674			page = shmem_swapin(swap, gfp, info, index);
1675			if (!page) {
1676				error = -ENOMEM;
1677				goto failed;
1678			}
1679		}
1680
1681		/* We have to do this with page locked to prevent races */
1682		lock_page(page);
1683		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1684		    !shmem_confirm_swap(mapping, index, swap)) {
1685			error = -EEXIST;	/* try again */
1686			goto unlock;
1687		}
1688		if (!PageUptodate(page)) {
1689			error = -EIO;
1690			goto failed;
1691		}
1692		wait_on_page_writeback(page);
1693
1694		if (shmem_should_replace_page(page, gfp)) {
1695			error = shmem_replace_page(&page, gfp, info, index);
1696			if (error)
1697				goto failed;
1698		}
 
 
 
 
 
 
1699
1700		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1701				false);
1702		if (!error) {
1703			error = shmem_add_to_page_cache(page, mapping, index,
1704						swp_to_radix_entry(swap));
1705			/*
1706			 * We already confirmed swap under page lock, and make
1707			 * no memory allocation here, so usually no possibility
1708			 * of error; but free_swap_and_cache() only trylocks a
1709			 * page, so it is just possible that the entry has been
1710			 * truncated or holepunched since swap was confirmed.
1711			 * shmem_undo_range() will have done some of the
1712			 * unaccounting, now delete_from_swap_cache() will do
1713			 * the rest.
1714			 * Reset swap.val? No, leave it so "failed" goes back to
1715			 * "repeat": reading a hole and writing should succeed.
1716			 */
1717			if (error) {
1718				mem_cgroup_cancel_charge(page, memcg, false);
1719				delete_from_swap_cache(page);
1720			}
1721		}
1722		if (error)
1723			goto failed;
1724
1725		mem_cgroup_commit_charge(page, memcg, true, false);
 
 
1726
1727		spin_lock_irq(&info->lock);
1728		info->swapped--;
1729		shmem_recalc_inode(inode);
1730		spin_unlock_irq(&info->lock);
1731
1732		if (sgp == SGP_WRITE)
1733			mark_page_accessed(page);
1734
1735		delete_from_swap_cache(page);
1736		set_page_dirty(page);
1737		swap_free(swap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1738
1739	} else {
1740		if (vma && userfaultfd_missing(vma)) {
1741			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1742			return 0;
1743		}
1744
1745		/* shmem_symlink() */
1746		if (mapping->a_ops != &shmem_aops)
1747			goto alloc_nohuge;
1748		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1749			goto alloc_nohuge;
1750		if (shmem_huge == SHMEM_HUGE_FORCE)
1751			goto alloc_huge;
1752		switch (sbinfo->huge) {
1753			loff_t i_size;
1754			pgoff_t off;
1755		case SHMEM_HUGE_NEVER:
1756			goto alloc_nohuge;
1757		case SHMEM_HUGE_WITHIN_SIZE:
1758			off = round_up(index, HPAGE_PMD_NR);
1759			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1760			if (i_size >= HPAGE_PMD_SIZE &&
1761					i_size >> PAGE_SHIFT >= off)
1762				goto alloc_huge;
1763			/* fallthrough */
1764		case SHMEM_HUGE_ADVISE:
1765			if (sgp_huge == SGP_HUGE)
1766				goto alloc_huge;
1767			/* TODO: implement fadvise() hints */
1768			goto alloc_nohuge;
1769		}
1770
1771alloc_huge:
1772		page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1773		if (IS_ERR(page)) {
1774alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, inode,
1775					index, false);
1776		}
1777		if (IS_ERR(page)) {
1778			int retry = 5;
1779			error = PTR_ERR(page);
1780			page = NULL;
1781			if (error != -ENOSPC)
1782				goto failed;
1783			/*
1784			 * Try to reclaim some spece by splitting a huge page
1785			 * beyond i_size on the filesystem.
1786			 */
1787			while (retry--) {
1788				int ret;
1789				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1790				if (ret == SHRINK_STOP)
1791					break;
1792				if (ret)
1793					goto alloc_nohuge;
1794			}
1795			goto failed;
1796		}
 
 
1797
1798		if (PageTransHuge(page))
1799			hindex = round_down(index, HPAGE_PMD_NR);
1800		else
1801			hindex = index;
1802
1803		if (sgp == SGP_WRITE)
1804			__SetPageReferenced(page);
1805
1806		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1807				PageTransHuge(page));
1808		if (error)
1809			goto unacct;
1810		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1811				compound_order(page));
1812		if (!error) {
1813			error = shmem_add_to_page_cache(page, mapping, hindex,
1814							NULL);
1815			radix_tree_preload_end();
1816		}
1817		if (error) {
1818			mem_cgroup_cancel_charge(page, memcg,
1819					PageTransHuge(page));
1820			goto unacct;
1821		}
1822		mem_cgroup_commit_charge(page, memcg, false,
1823				PageTransHuge(page));
1824		lru_cache_add_anon(page);
1825
1826		spin_lock_irq(&info->lock);
1827		info->alloced += 1 << compound_order(page);
1828		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1829		shmem_recalc_inode(inode);
1830		spin_unlock_irq(&info->lock);
1831		alloced = true;
1832
1833		if (PageTransHuge(page) &&
1834				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1835				hindex + HPAGE_PMD_NR - 1) {
1836			/*
1837			 * Part of the huge page is beyond i_size: subject
1838			 * to shrink under memory pressure.
1839			 */
1840			spin_lock(&sbinfo->shrinklist_lock);
1841			/*
1842			 * _careful to defend against unlocked access to
1843			 * ->shrink_list in shmem_unused_huge_shrink()
1844			 */
1845			if (list_empty_careful(&info->shrinklist)) {
1846				list_add_tail(&info->shrinklist,
1847						&sbinfo->shrinklist);
1848				sbinfo->shrinklist_len++;
1849			}
1850			spin_unlock(&sbinfo->shrinklist_lock);
1851		}
1852
 
 
 
1853		/*
1854		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
 
1855		 */
1856		if (sgp == SGP_FALLOC)
1857			sgp = SGP_WRITE;
1858clear:
1859		/*
1860		 * Let SGP_WRITE caller clear ends if write does not fill page;
1861		 * but SGP_FALLOC on a page fallocated earlier must initialize
1862		 * it now, lest undo on failure cancel our earlier guarantee.
1863		 */
1864		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1865			struct page *head = compound_head(page);
1866			int i;
1867
1868			for (i = 0; i < (1 << compound_order(head)); i++) {
1869				clear_highpage(head + i);
1870				flush_dcache_page(head + i);
1871			}
1872			SetPageUptodate(head);
1873		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874	}
1875
1876	/* Perhaps the file has been truncated since we checked */
1877	if (sgp <= SGP_CACHE &&
1878	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1879		if (alloced) {
1880			ClearPageDirty(page);
1881			delete_from_page_cache(page);
1882			spin_lock_irq(&info->lock);
1883			shmem_recalc_inode(inode);
1884			spin_unlock_irq(&info->lock);
1885		}
1886		error = -EINVAL;
1887		goto unlock;
1888	}
1889	*pagep = page + index - hindex;
 
1890	return 0;
1891
1892	/*
1893	 * Error recovery.
1894	 */
1895unacct:
1896	shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1897
1898	if (PageTransHuge(page)) {
1899		unlock_page(page);
1900		put_page(page);
1901		goto alloc_nohuge;
1902	}
1903failed:
1904	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1905		error = -EEXIST;
1906unlock:
1907	if (page) {
1908		unlock_page(page);
1909		put_page(page);
1910	}
1911	if (error == -ENOSPC && !once++) {
1912		spin_lock_irq(&info->lock);
1913		shmem_recalc_inode(inode);
1914		spin_unlock_irq(&info->lock);
1915		goto repeat;
1916	}
1917	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1918		goto repeat;
1919	return error;
1920}
1921
 
 
 
 
 
 
 
1922/*
1923 * This is like autoremove_wake_function, but it removes the wait queue
1924 * entry unconditionally - even if something else had already woken the
1925 * target.
1926 */
1927static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1928{
1929	int ret = default_wake_function(wait, mode, sync, key);
1930	list_del_init(&wait->entry);
1931	return ret;
1932}
1933
1934static int shmem_fault(struct vm_fault *vmf)
1935{
1936	struct vm_area_struct *vma = vmf->vma;
1937	struct inode *inode = file_inode(vma->vm_file);
1938	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1939	enum sgp_type sgp;
1940	int error;
1941	int ret = VM_FAULT_LOCKED;
1942
1943	/*
1944	 * Trinity finds that probing a hole which tmpfs is punching can
1945	 * prevent the hole-punch from ever completing: which in turn
1946	 * locks writers out with its hold on i_mutex.  So refrain from
1947	 * faulting pages into the hole while it's being punched.  Although
1948	 * shmem_undo_range() does remove the additions, it may be unable to
1949	 * keep up, as each new page needs its own unmap_mapping_range() call,
1950	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1951	 *
1952	 * It does not matter if we sometimes reach this check just before the
1953	 * hole-punch begins, so that one fault then races with the punch:
1954	 * we just need to make racing faults a rare case.
1955	 *
1956	 * The implementation below would be much simpler if we just used a
1957	 * standard mutex or completion: but we cannot take i_mutex in fault,
1958	 * and bloating every shmem inode for this unlikely case would be sad.
1959	 */
1960	if (unlikely(inode->i_private)) {
1961		struct shmem_falloc *shmem_falloc;
1962
1963		spin_lock(&inode->i_lock);
1964		shmem_falloc = inode->i_private;
1965		if (shmem_falloc &&
1966		    shmem_falloc->waitq &&
1967		    vmf->pgoff >= shmem_falloc->start &&
1968		    vmf->pgoff < shmem_falloc->next) {
 
1969			wait_queue_head_t *shmem_falloc_waitq;
1970			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1971
1972			ret = VM_FAULT_NOPAGE;
1973			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1974			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1975				/* It's polite to up mmap_sem if we can */
1976				up_read(&vma->vm_mm->mmap_sem);
1977				ret = VM_FAULT_RETRY;
1978			}
1979
1980			shmem_falloc_waitq = shmem_falloc->waitq;
1981			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1982					TASK_UNINTERRUPTIBLE);
1983			spin_unlock(&inode->i_lock);
1984			schedule();
1985
1986			/*
1987			 * shmem_falloc_waitq points into the shmem_fallocate()
1988			 * stack of the hole-punching task: shmem_falloc_waitq
1989			 * is usually invalid by the time we reach here, but
1990			 * finish_wait() does not dereference it in that case;
1991			 * though i_lock needed lest racing with wake_up_all().
1992			 */
1993			spin_lock(&inode->i_lock);
1994			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1995			spin_unlock(&inode->i_lock);
 
 
 
1996			return ret;
1997		}
1998		spin_unlock(&inode->i_lock);
1999	}
2000
2001	sgp = SGP_CACHE;
2002
2003	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2004	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2005		sgp = SGP_NOHUGE;
2006	else if (vma->vm_flags & VM_HUGEPAGE)
2007		sgp = SGP_HUGE;
2008
2009	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2010				  gfp, vma, vmf, &ret);
2011	if (error)
2012		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
 
 
2013	return ret;
2014}
2015
2016unsigned long shmem_get_unmapped_area(struct file *file,
2017				      unsigned long uaddr, unsigned long len,
2018				      unsigned long pgoff, unsigned long flags)
2019{
2020	unsigned long (*get_area)(struct file *,
2021		unsigned long, unsigned long, unsigned long, unsigned long);
2022	unsigned long addr;
2023	unsigned long offset;
2024	unsigned long inflated_len;
2025	unsigned long inflated_addr;
2026	unsigned long inflated_offset;
2027
2028	if (len > TASK_SIZE)
2029		return -ENOMEM;
2030
2031	get_area = current->mm->get_unmapped_area;
2032	addr = get_area(file, uaddr, len, pgoff, flags);
2033
2034	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2035		return addr;
2036	if (IS_ERR_VALUE(addr))
2037		return addr;
2038	if (addr & ~PAGE_MASK)
2039		return addr;
2040	if (addr > TASK_SIZE - len)
2041		return addr;
2042
2043	if (shmem_huge == SHMEM_HUGE_DENY)
2044		return addr;
2045	if (len < HPAGE_PMD_SIZE)
2046		return addr;
2047	if (flags & MAP_FIXED)
2048		return addr;
2049	/*
2050	 * Our priority is to support MAP_SHARED mapped hugely;
2051	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2052	 * But if caller specified an address hint, respect that as before.
 
2053	 */
2054	if (uaddr)
2055		return addr;
2056
2057	if (shmem_huge != SHMEM_HUGE_FORCE) {
2058		struct super_block *sb;
2059
2060		if (file) {
2061			VM_BUG_ON(file->f_op != &shmem_file_operations);
2062			sb = file_inode(file)->i_sb;
2063		} else {
2064			/*
2065			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2066			 * for "/dev/zero", to create a shared anonymous object.
2067			 */
2068			if (IS_ERR(shm_mnt))
2069				return addr;
2070			sb = shm_mnt->mnt_sb;
2071		}
2072		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2073			return addr;
2074	}
2075
2076	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2077	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2078		return addr;
2079	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2080		return addr;
2081
2082	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2083	if (inflated_len > TASK_SIZE)
2084		return addr;
2085	if (inflated_len < len)
2086		return addr;
2087
2088	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2089	if (IS_ERR_VALUE(inflated_addr))
2090		return addr;
2091	if (inflated_addr & ~PAGE_MASK)
2092		return addr;
2093
2094	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2095	inflated_addr += offset - inflated_offset;
2096	if (inflated_offset > offset)
2097		inflated_addr += HPAGE_PMD_SIZE;
2098
2099	if (inflated_addr > TASK_SIZE - len)
2100		return addr;
2101	return inflated_addr;
2102}
2103
2104#ifdef CONFIG_NUMA
2105static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2106{
2107	struct inode *inode = file_inode(vma->vm_file);
2108	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2109}
2110
2111static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2112					  unsigned long addr)
2113{
2114	struct inode *inode = file_inode(vma->vm_file);
2115	pgoff_t index;
2116
2117	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2118	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2119}
2120#endif
2121
2122int shmem_lock(struct file *file, int lock, struct user_struct *user)
2123{
2124	struct inode *inode = file_inode(file);
2125	struct shmem_inode_info *info = SHMEM_I(inode);
2126	int retval = -ENOMEM;
2127
2128	spin_lock_irq(&info->lock);
 
 
 
 
2129	if (lock && !(info->flags & VM_LOCKED)) {
2130		if (!user_shm_lock(inode->i_size, user))
2131			goto out_nomem;
2132		info->flags |= VM_LOCKED;
2133		mapping_set_unevictable(file->f_mapping);
2134	}
2135	if (!lock && (info->flags & VM_LOCKED) && user) {
2136		user_shm_unlock(inode->i_size, user);
2137		info->flags &= ~VM_LOCKED;
2138		mapping_clear_unevictable(file->f_mapping);
2139	}
2140	retval = 0;
2141
2142out_nomem:
2143	spin_unlock_irq(&info->lock);
2144	return retval;
2145}
2146
2147static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2148{
 
 
 
 
 
 
 
 
 
 
 
2149	file_accessed(file);
2150	vma->vm_ops = &shmem_vm_ops;
2151	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2152			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2153			(vma->vm_end & HPAGE_PMD_MASK)) {
2154		khugepaged_enter(vma, vma->vm_flags);
2155	}
2156	return 0;
2157}
2158
2159static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2160				     umode_t mode, dev_t dev, unsigned long flags)
2161{
2162	struct inode *inode;
2163	struct shmem_inode_info *info;
2164	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 
2165
2166	if (shmem_reserve_inode(sb))
2167		return NULL;
2168
2169	inode = new_inode(sb);
2170	if (inode) {
2171		inode->i_ino = get_next_ino();
2172		inode_init_owner(inode, dir, mode);
2173		inode->i_blocks = 0;
2174		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2175		inode->i_generation = get_seconds();
2176		info = SHMEM_I(inode);
2177		memset(info, 0, (char *)inode - (char *)info);
2178		spin_lock_init(&info->lock);
 
2179		info->seals = F_SEAL_SEAL;
2180		info->flags = flags & VM_NORESERVE;
 
 
 
 
 
2181		INIT_LIST_HEAD(&info->shrinklist);
2182		INIT_LIST_HEAD(&info->swaplist);
2183		simple_xattrs_init(&info->xattrs);
2184		cache_no_acl(inode);
 
2185
2186		switch (mode & S_IFMT) {
2187		default:
2188			inode->i_op = &shmem_special_inode_operations;
2189			init_special_inode(inode, mode, dev);
2190			break;
2191		case S_IFREG:
2192			inode->i_mapping->a_ops = &shmem_aops;
2193			inode->i_op = &shmem_inode_operations;
2194			inode->i_fop = &shmem_file_operations;
2195			mpol_shared_policy_init(&info->policy,
2196						 shmem_get_sbmpol(sbinfo));
2197			break;
2198		case S_IFDIR:
2199			inc_nlink(inode);
2200			/* Some things misbehave if size == 0 on a directory */
2201			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2202			inode->i_op = &shmem_dir_inode_operations;
2203			inode->i_fop = &simple_dir_operations;
2204			break;
2205		case S_IFLNK:
2206			/*
2207			 * Must not load anything in the rbtree,
2208			 * mpol_free_shared_policy will not be called.
2209			 */
2210			mpol_shared_policy_init(&info->policy, NULL);
2211			break;
2212		}
 
 
2213	} else
2214		shmem_free_inode(sb);
2215	return inode;
2216}
2217
2218bool shmem_mapping(struct address_space *mapping)
2219{
2220	return mapping->a_ops == &shmem_aops;
2221}
2222
2223static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2224				  pmd_t *dst_pmd,
2225				  struct vm_area_struct *dst_vma,
2226				  unsigned long dst_addr,
2227				  unsigned long src_addr,
2228				  bool zeropage,
2229				  struct page **pagep)
2230{
2231	struct inode *inode = file_inode(dst_vma->vm_file);
2232	struct shmem_inode_info *info = SHMEM_I(inode);
2233	struct address_space *mapping = inode->i_mapping;
2234	gfp_t gfp = mapping_gfp_mask(mapping);
2235	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2236	struct mem_cgroup *memcg;
2237	spinlock_t *ptl;
2238	void *page_kaddr;
2239	struct page *page;
2240	pte_t _dst_pte, *dst_pte;
2241	int ret;
 
2242
2243	ret = -ENOMEM;
2244	if (!shmem_inode_acct_block(inode, 1))
2245		goto out;
 
 
 
 
 
 
 
 
 
2246
2247	if (!*pagep) {
2248		page = shmem_alloc_page(gfp, info, pgoff);
2249		if (!page)
 
2250			goto out_unacct_blocks;
2251
2252		if (!zeropage) {	/* mcopy_atomic */
2253			page_kaddr = kmap_atomic(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2254			ret = copy_from_user(page_kaddr,
2255					     (const void __user *)src_addr,
2256					     PAGE_SIZE);
2257			kunmap_atomic(page_kaddr);
 
2258
2259			/* fallback to copy_from_user outside mmap_sem */
2260			if (unlikely(ret)) {
2261				*pagep = page;
2262				shmem_inode_unacct_blocks(inode, 1);
2263				/* don't free the page */
2264				return -EFAULT;
2265			}
2266		} else {		/* mfill_zeropage_atomic */
2267			clear_highpage(page);
 
 
2268		}
2269	} else {
2270		page = *pagep;
 
2271		*pagep = NULL;
2272	}
2273
2274	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2275	__SetPageLocked(page);
2276	__SetPageSwapBacked(page);
2277	__SetPageUptodate(page);
 
 
 
 
 
 
2278
2279	ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
 
2280	if (ret)
2281		goto out_release;
2282
2283	ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2284	if (!ret) {
2285		ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2286		radix_tree_preload_end();
2287	}
2288	if (ret)
2289		goto out_release_uncharge;
2290
2291	mem_cgroup_commit_charge(page, memcg, false, false);
2292
2293	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2294	if (dst_vma->vm_flags & VM_WRITE)
2295		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2296
2297	ret = -EEXIST;
2298	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2299	if (!pte_none(*dst_pte))
2300		goto out_release_uncharge_unlock;
2301
2302	lru_cache_add_anon(page);
2303
2304	spin_lock(&info->lock);
2305	info->alloced++;
2306	inode->i_blocks += BLOCKS_PER_PAGE;
2307	shmem_recalc_inode(inode);
2308	spin_unlock(&info->lock);
2309
2310	inc_mm_counter(dst_mm, mm_counter_file(page));
2311	page_add_file_rmap(page, false);
2312	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2313
2314	/* No need to invalidate - it was non-present before */
2315	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2316	unlock_page(page);
2317	pte_unmap_unlock(dst_pte, ptl);
2318	ret = 0;
2319out:
2320	return ret;
2321out_release_uncharge_unlock:
2322	pte_unmap_unlock(dst_pte, ptl);
2323out_release_uncharge:
2324	mem_cgroup_cancel_charge(page, memcg, false);
2325out_release:
2326	unlock_page(page);
2327	put_page(page);
2328out_unacct_blocks:
2329	shmem_inode_unacct_blocks(inode, 1);
2330	goto out;
2331}
2332
2333int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2334			   pmd_t *dst_pmd,
2335			   struct vm_area_struct *dst_vma,
2336			   unsigned long dst_addr,
2337			   unsigned long src_addr,
2338			   struct page **pagep)
2339{
2340	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2341				      dst_addr, src_addr, false, pagep);
2342}
2343
2344int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2345			     pmd_t *dst_pmd,
2346			     struct vm_area_struct *dst_vma,
2347			     unsigned long dst_addr)
2348{
2349	struct page *page = NULL;
2350
2351	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2352				      dst_addr, 0, true, &page);
2353}
 
2354
2355#ifdef CONFIG_TMPFS
2356static const struct inode_operations shmem_symlink_inode_operations;
2357static const struct inode_operations shmem_short_symlink_operations;
2358
2359#ifdef CONFIG_TMPFS_XATTR
2360static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2361#else
2362#define shmem_initxattrs NULL
2363#endif
2364
2365static int
2366shmem_write_begin(struct file *file, struct address_space *mapping,
2367			loff_t pos, unsigned len, unsigned flags,
2368			struct page **pagep, void **fsdata)
2369{
2370	struct inode *inode = mapping->host;
2371	struct shmem_inode_info *info = SHMEM_I(inode);
2372	pgoff_t index = pos >> PAGE_SHIFT;
 
 
2373
2374	/* i_mutex is held by caller */
2375	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2376		if (info->seals & F_SEAL_WRITE)
 
2377			return -EPERM;
2378		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2379			return -EPERM;
2380	}
2381
2382	return shmem_getpage(inode, index, pagep, SGP_WRITE);
 
 
 
 
 
 
 
 
 
 
 
 
 
2383}
2384
2385static int
2386shmem_write_end(struct file *file, struct address_space *mapping,
2387			loff_t pos, unsigned len, unsigned copied,
2388			struct page *page, void *fsdata)
2389{
2390	struct inode *inode = mapping->host;
2391
2392	if (pos + copied > inode->i_size)
2393		i_size_write(inode, pos + copied);
2394
2395	if (!PageUptodate(page)) {
2396		struct page *head = compound_head(page);
2397		if (PageTransCompound(page)) {
2398			int i;
2399
2400			for (i = 0; i < HPAGE_PMD_NR; i++) {
2401				if (head + i == page)
2402					continue;
2403				clear_highpage(head + i);
2404				flush_dcache_page(head + i);
2405			}
2406		}
2407		if (copied < PAGE_SIZE) {
2408			unsigned from = pos & (PAGE_SIZE - 1);
2409			zero_user_segments(page, 0, from,
2410					from + copied, PAGE_SIZE);
2411		}
2412		SetPageUptodate(head);
2413	}
2414	set_page_dirty(page);
2415	unlock_page(page);
2416	put_page(page);
2417
2418	return copied;
2419}
2420
2421static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2422{
2423	struct file *file = iocb->ki_filp;
2424	struct inode *inode = file_inode(file);
2425	struct address_space *mapping = inode->i_mapping;
2426	pgoff_t index;
2427	unsigned long offset;
2428	enum sgp_type sgp = SGP_READ;
2429	int error = 0;
2430	ssize_t retval = 0;
2431	loff_t *ppos = &iocb->ki_pos;
2432
2433	/*
2434	 * Might this read be for a stacking filesystem?  Then when reading
2435	 * holes of a sparse file, we actually need to allocate those pages,
2436	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2437	 */
2438	if (!iter_is_iovec(to))
2439		sgp = SGP_CACHE;
2440
2441	index = *ppos >> PAGE_SHIFT;
2442	offset = *ppos & ~PAGE_MASK;
2443
2444	for (;;) {
 
2445		struct page *page = NULL;
2446		pgoff_t end_index;
2447		unsigned long nr, ret;
2448		loff_t i_size = i_size_read(inode);
2449
2450		end_index = i_size >> PAGE_SHIFT;
2451		if (index > end_index)
2452			break;
2453		if (index == end_index) {
2454			nr = i_size & ~PAGE_MASK;
2455			if (nr <= offset)
2456				break;
2457		}
2458
2459		error = shmem_getpage(inode, index, &page, sgp);
2460		if (error) {
2461			if (error == -EINVAL)
2462				error = 0;
2463			break;
2464		}
2465		if (page) {
2466			if (sgp == SGP_CACHE)
2467				set_page_dirty(page);
2468			unlock_page(page);
 
 
 
 
 
2469		}
2470
2471		/*
2472		 * We must evaluate after, since reads (unlike writes)
2473		 * are called without i_mutex protection against truncate
2474		 */
2475		nr = PAGE_SIZE;
2476		i_size = i_size_read(inode);
2477		end_index = i_size >> PAGE_SHIFT;
2478		if (index == end_index) {
2479			nr = i_size & ~PAGE_MASK;
2480			if (nr <= offset) {
2481				if (page)
2482					put_page(page);
2483				break;
2484			}
2485		}
2486		nr -= offset;
2487
2488		if (page) {
2489			/*
2490			 * If users can be writing to this page using arbitrary
2491			 * virtual addresses, take care about potential aliasing
2492			 * before reading the page on the kernel side.
2493			 */
2494			if (mapping_writably_mapped(mapping))
2495				flush_dcache_page(page);
2496			/*
2497			 * Mark the page accessed if we read the beginning.
2498			 */
2499			if (!offset)
2500				mark_page_accessed(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2501		} else {
2502			page = ZERO_PAGE(0);
2503			get_page(page);
 
 
 
 
2504		}
2505
2506		/*
2507		 * Ok, we have the page, and it's up-to-date, so
2508		 * now we can copy it to user space...
2509		 */
2510		ret = copy_page_to_iter(page, offset, nr, to);
2511		retval += ret;
2512		offset += ret;
2513		index += offset >> PAGE_SHIFT;
2514		offset &= ~PAGE_MASK;
2515
2516		put_page(page);
2517		if (!iov_iter_count(to))
2518			break;
2519		if (ret < nr) {
2520			error = -EFAULT;
2521			break;
2522		}
2523		cond_resched();
2524	}
2525
2526	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2527	file_accessed(file);
2528	return retval ? retval : error;
2529}
2530
2531/*
2532 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2533 */
2534static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2535				    pgoff_t index, pgoff_t end, int whence)
2536{
2537	struct page *page;
2538	struct pagevec pvec;
2539	pgoff_t indices[PAGEVEC_SIZE];
2540	bool done = false;
2541	int i;
2542
2543	pagevec_init(&pvec);
2544	pvec.nr = 1;		/* start small: we may be there already */
2545	while (!done) {
2546		pvec.nr = find_get_entries(mapping, index,
2547					pvec.nr, pvec.pages, indices);
2548		if (!pvec.nr) {
2549			if (whence == SEEK_DATA)
2550				index = end;
2551			break;
2552		}
2553		for (i = 0; i < pvec.nr; i++, index++) {
2554			if (index < indices[i]) {
2555				if (whence == SEEK_HOLE) {
2556					done = true;
2557					break;
2558				}
2559				index = indices[i];
2560			}
2561			page = pvec.pages[i];
2562			if (page && !radix_tree_exceptional_entry(page)) {
2563				if (!PageUptodate(page))
2564					page = NULL;
2565			}
2566			if (index >= end ||
2567			    (page && whence == SEEK_DATA) ||
2568			    (!page && whence == SEEK_HOLE)) {
2569				done = true;
2570				break;
2571			}
2572		}
2573		pagevec_remove_exceptionals(&pvec);
2574		pagevec_release(&pvec);
2575		pvec.nr = PAGEVEC_SIZE;
2576		cond_resched();
2577	}
2578	return index;
2579}
2580
2581static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2582{
2583	struct address_space *mapping = file->f_mapping;
2584	struct inode *inode = mapping->host;
2585	pgoff_t start, end;
2586	loff_t new_offset;
2587
2588	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2589		return generic_file_llseek_size(file, offset, whence,
2590					MAX_LFS_FILESIZE, i_size_read(inode));
2591	inode_lock(inode);
2592	/* We're holding i_mutex so we can access i_size directly */
2593
2594	if (offset < 0)
2595		offset = -EINVAL;
2596	else if (offset >= inode->i_size)
2597		offset = -ENXIO;
2598	else {
2599		start = offset >> PAGE_SHIFT;
2600		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2601		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2602		new_offset <<= PAGE_SHIFT;
2603		if (new_offset > offset) {
2604			if (new_offset < inode->i_size)
2605				offset = new_offset;
2606			else if (whence == SEEK_DATA)
2607				offset = -ENXIO;
2608			else
2609				offset = inode->i_size;
2610		}
2611	}
2612
 
 
 
2613	if (offset >= 0)
2614		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2615	inode_unlock(inode);
2616	return offset;
2617}
2618
2619/*
2620 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2621 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2622 */
2623#define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2624#define LAST_SCAN               4       /* about 150ms max */
2625
2626static void shmem_tag_pins(struct address_space *mapping)
2627{
2628	struct radix_tree_iter iter;
2629	void **slot;
2630	pgoff_t start;
2631	struct page *page;
2632
2633	lru_add_drain();
2634	start = 0;
2635	rcu_read_lock();
2636
2637	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
2638		page = radix_tree_deref_slot(slot);
2639		if (!page || radix_tree_exception(page)) {
2640			if (radix_tree_deref_retry(page)) {
2641				slot = radix_tree_iter_retry(&iter);
2642				continue;
2643			}
2644		} else if (page_count(page) - page_mapcount(page) > 1) {
2645			xa_lock_irq(&mapping->i_pages);
2646			radix_tree_tag_set(&mapping->i_pages, iter.index,
2647					   SHMEM_TAG_PINNED);
2648			xa_unlock_irq(&mapping->i_pages);
2649		}
2650
2651		if (need_resched()) {
2652			slot = radix_tree_iter_resume(slot, &iter);
2653			cond_resched_rcu();
2654		}
2655	}
2656	rcu_read_unlock();
2657}
2658
2659/*
2660 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2661 * via get_user_pages(), drivers might have some pending I/O without any active
2662 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2663 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2664 * them to be dropped.
2665 * The caller must guarantee that no new user will acquire writable references
2666 * to those pages to avoid races.
2667 */
2668static int shmem_wait_for_pins(struct address_space *mapping)
2669{
2670	struct radix_tree_iter iter;
2671	void **slot;
2672	pgoff_t start;
2673	struct page *page;
2674	int error, scan;
2675
2676	shmem_tag_pins(mapping);
2677
2678	error = 0;
2679	for (scan = 0; scan <= LAST_SCAN; scan++) {
2680		if (!radix_tree_tagged(&mapping->i_pages, SHMEM_TAG_PINNED))
2681			break;
2682
2683		if (!scan)
2684			lru_add_drain_all();
2685		else if (schedule_timeout_killable((HZ << scan) / 200))
2686			scan = LAST_SCAN;
2687
2688		start = 0;
2689		rcu_read_lock();
2690		radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter,
2691					   start, SHMEM_TAG_PINNED) {
2692
2693			page = radix_tree_deref_slot(slot);
2694			if (radix_tree_exception(page)) {
2695				if (radix_tree_deref_retry(page)) {
2696					slot = radix_tree_iter_retry(&iter);
2697					continue;
2698				}
2699
2700				page = NULL;
2701			}
2702
2703			if (page &&
2704			    page_count(page) - page_mapcount(page) != 1) {
2705				if (scan < LAST_SCAN)
2706					goto continue_resched;
2707
2708				/*
2709				 * On the last scan, we clean up all those tags
2710				 * we inserted; but make a note that we still
2711				 * found pages pinned.
2712				 */
2713				error = -EBUSY;
2714			}
2715
2716			xa_lock_irq(&mapping->i_pages);
2717			radix_tree_tag_clear(&mapping->i_pages,
2718					     iter.index, SHMEM_TAG_PINNED);
2719			xa_unlock_irq(&mapping->i_pages);
2720continue_resched:
2721			if (need_resched()) {
2722				slot = radix_tree_iter_resume(slot, &iter);
2723				cond_resched_rcu();
2724			}
2725		}
2726		rcu_read_unlock();
2727	}
2728
2729	return error;
2730}
2731
2732static unsigned int *memfd_file_seals_ptr(struct file *file)
2733{
2734	if (file->f_op == &shmem_file_operations)
2735		return &SHMEM_I(file_inode(file))->seals;
2736
2737#ifdef CONFIG_HUGETLBFS
2738	if (file->f_op == &hugetlbfs_file_operations)
2739		return &HUGETLBFS_I(file_inode(file))->seals;
2740#endif
2741
2742	return NULL;
2743}
2744
2745#define F_ALL_SEALS (F_SEAL_SEAL | \
2746		     F_SEAL_SHRINK | \
2747		     F_SEAL_GROW | \
2748		     F_SEAL_WRITE)
2749
2750static int memfd_add_seals(struct file *file, unsigned int seals)
2751{
2752	struct inode *inode = file_inode(file);
2753	unsigned int *file_seals;
2754	int error;
2755
2756	/*
2757	 * SEALING
2758	 * Sealing allows multiple parties to share a shmem-file but restrict
2759	 * access to a specific subset of file operations. Seals can only be
2760	 * added, but never removed. This way, mutually untrusted parties can
2761	 * share common memory regions with a well-defined policy. A malicious
2762	 * peer can thus never perform unwanted operations on a shared object.
2763	 *
2764	 * Seals are only supported on special shmem-files and always affect
2765	 * the whole underlying inode. Once a seal is set, it may prevent some
2766	 * kinds of access to the file. Currently, the following seals are
2767	 * defined:
2768	 *   SEAL_SEAL: Prevent further seals from being set on this file
2769	 *   SEAL_SHRINK: Prevent the file from shrinking
2770	 *   SEAL_GROW: Prevent the file from growing
2771	 *   SEAL_WRITE: Prevent write access to the file
2772	 *
2773	 * As we don't require any trust relationship between two parties, we
2774	 * must prevent seals from being removed. Therefore, sealing a file
2775	 * only adds a given set of seals to the file, it never touches
2776	 * existing seals. Furthermore, the "setting seals"-operation can be
2777	 * sealed itself, which basically prevents any further seal from being
2778	 * added.
2779	 *
2780	 * Semantics of sealing are only defined on volatile files. Only
2781	 * anonymous shmem files support sealing. More importantly, seals are
2782	 * never written to disk. Therefore, there's no plan to support it on
2783	 * other file types.
2784	 */
2785
2786	if (!(file->f_mode & FMODE_WRITE))
2787		return -EPERM;
2788	if (seals & ~(unsigned int)F_ALL_SEALS)
2789		return -EINVAL;
2790
2791	inode_lock(inode);
2792
2793	file_seals = memfd_file_seals_ptr(file);
2794	if (!file_seals) {
2795		error = -EINVAL;
2796		goto unlock;
2797	}
2798
2799	if (*file_seals & F_SEAL_SEAL) {
2800		error = -EPERM;
2801		goto unlock;
2802	}
2803
2804	if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) {
2805		error = mapping_deny_writable(file->f_mapping);
2806		if (error)
2807			goto unlock;
2808
2809		error = shmem_wait_for_pins(file->f_mapping);
2810		if (error) {
2811			mapping_allow_writable(file->f_mapping);
2812			goto unlock;
2813		}
2814	}
2815
2816	*file_seals |= seals;
2817	error = 0;
2818
2819unlock:
2820	inode_unlock(inode);
2821	return error;
2822}
2823
2824static int memfd_get_seals(struct file *file)
2825{
2826	unsigned int *seals = memfd_file_seals_ptr(file);
2827
2828	return seals ? *seals : -EINVAL;
2829}
2830
2831long memfd_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2832{
2833	long error;
2834
2835	switch (cmd) {
2836	case F_ADD_SEALS:
2837		/* disallow upper 32bit */
2838		if (arg > UINT_MAX)
2839			return -EINVAL;
2840
2841		error = memfd_add_seals(file, arg);
2842		break;
2843	case F_GET_SEALS:
2844		error = memfd_get_seals(file);
2845		break;
2846	default:
2847		error = -EINVAL;
2848		break;
2849	}
2850
2851	return error;
2852}
2853
2854static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2855							 loff_t len)
2856{
2857	struct inode *inode = file_inode(file);
2858	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2859	struct shmem_inode_info *info = SHMEM_I(inode);
2860	struct shmem_falloc shmem_falloc;
2861	pgoff_t start, index, end;
2862	int error;
2863
2864	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2865		return -EOPNOTSUPP;
2866
2867	inode_lock(inode);
2868
2869	if (mode & FALLOC_FL_PUNCH_HOLE) {
2870		struct address_space *mapping = file->f_mapping;
2871		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2872		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2873		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2874
2875		/* protected by i_mutex */
2876		if (info->seals & F_SEAL_WRITE) {
2877			error = -EPERM;
2878			goto out;
2879		}
2880
2881		shmem_falloc.waitq = &shmem_falloc_waitq;
2882		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2883		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2884		spin_lock(&inode->i_lock);
2885		inode->i_private = &shmem_falloc;
2886		spin_unlock(&inode->i_lock);
2887
2888		if ((u64)unmap_end > (u64)unmap_start)
2889			unmap_mapping_range(mapping, unmap_start,
2890					    1 + unmap_end - unmap_start, 0);
2891		shmem_truncate_range(inode, offset, offset + len - 1);
2892		/* No need to unmap again: hole-punching leaves COWed pages */
2893
2894		spin_lock(&inode->i_lock);
2895		inode->i_private = NULL;
2896		wake_up_all(&shmem_falloc_waitq);
2897		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2898		spin_unlock(&inode->i_lock);
2899		error = 0;
2900		goto out;
2901	}
2902
2903	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2904	error = inode_newsize_ok(inode, offset + len);
2905	if (error)
2906		goto out;
2907
2908	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2909		error = -EPERM;
2910		goto out;
2911	}
2912
2913	start = offset >> PAGE_SHIFT;
2914	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2915	/* Try to avoid a swapstorm if len is impossible to satisfy */
2916	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2917		error = -ENOSPC;
2918		goto out;
2919	}
2920
2921	shmem_falloc.waitq = NULL;
2922	shmem_falloc.start = start;
2923	shmem_falloc.next  = start;
2924	shmem_falloc.nr_falloced = 0;
2925	shmem_falloc.nr_unswapped = 0;
2926	spin_lock(&inode->i_lock);
2927	inode->i_private = &shmem_falloc;
2928	spin_unlock(&inode->i_lock);
2929
2930	for (index = start; index < end; index++) {
2931		struct page *page;
 
 
 
 
 
 
 
 
 
2932
2933		/*
2934		 * Good, the fallocate(2) manpage permits EINTR: we may have
2935		 * been interrupted because we are using up too much memory.
2936		 */
2937		if (signal_pending(current))
2938			error = -EINTR;
2939		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2940			error = -ENOMEM;
2941		else
2942			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
 
2943		if (error) {
2944			/* Remove the !PageUptodate pages we added */
 
2945			if (index > start) {
2946				shmem_undo_range(inode,
2947				    (loff_t)start << PAGE_SHIFT,
2948				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2949			}
2950			goto undone;
2951		}
2952
2953		/*
 
 
 
 
 
 
 
 
 
 
2954		 * Inform shmem_writepage() how far we have reached.
2955		 * No need for lock or barrier: we have the page lock.
2956		 */
2957		shmem_falloc.next++;
2958		if (!PageUptodate(page))
2959			shmem_falloc.nr_falloced++;
2960
2961		/*
2962		 * If !PageUptodate, leave it that way so that freeable pages
2963		 * can be recognized if we need to rollback on error later.
2964		 * But set_page_dirty so that memory pressure will swap rather
2965		 * than free the pages we are allocating (and SGP_CACHE pages
2966		 * might still be clean: we now need to mark those dirty too).
2967		 */
2968		set_page_dirty(page);
2969		unlock_page(page);
2970		put_page(page);
2971		cond_resched();
2972	}
2973
2974	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2975		i_size_write(inode, offset + len);
2976	inode->i_ctime = current_time(inode);
2977undone:
2978	spin_lock(&inode->i_lock);
2979	inode->i_private = NULL;
2980	spin_unlock(&inode->i_lock);
2981out:
 
 
2982	inode_unlock(inode);
2983	return error;
2984}
2985
2986static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2987{
2988	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2989
2990	buf->f_type = TMPFS_MAGIC;
2991	buf->f_bsize = PAGE_SIZE;
2992	buf->f_namelen = NAME_MAX;
2993	if (sbinfo->max_blocks) {
2994		buf->f_blocks = sbinfo->max_blocks;
2995		buf->f_bavail =
2996		buf->f_bfree  = sbinfo->max_blocks -
2997				percpu_counter_sum(&sbinfo->used_blocks);
2998	}
2999	if (sbinfo->max_inodes) {
3000		buf->f_files = sbinfo->max_inodes;
3001		buf->f_ffree = sbinfo->free_inodes;
3002	}
3003	/* else leave those fields 0 like simple_statfs */
 
 
 
3004	return 0;
3005}
3006
3007/*
3008 * File creation. Allocate an inode, and we're done..
3009 */
3010static int
3011shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 
3012{
3013	struct inode *inode;
3014	int error = -ENOSPC;
3015
3016	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3017	if (inode) {
3018		error = simple_acl_create(dir, inode);
3019		if (error)
3020			goto out_iput;
3021		error = security_inode_init_security(inode, dir,
3022						     &dentry->d_name,
3023						     shmem_initxattrs, NULL);
3024		if (error && error != -EOPNOTSUPP)
3025			goto out_iput;
3026
3027		error = 0;
3028		dir->i_size += BOGO_DIRENT_SIZE;
3029		dir->i_ctime = dir->i_mtime = current_time(dir);
 
3030		d_instantiate(dentry, inode);
3031		dget(dentry); /* Extra count - pin the dentry in core */
3032	}
3033	return error;
3034out_iput:
3035	iput(inode);
3036	return error;
3037}
3038
3039static int
3040shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
 
3041{
3042	struct inode *inode;
3043	int error = -ENOSPC;
3044
3045	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3046	if (inode) {
3047		error = security_inode_init_security(inode, dir,
3048						     NULL,
3049						     shmem_initxattrs, NULL);
3050		if (error && error != -EOPNOTSUPP)
3051			goto out_iput;
3052		error = simple_acl_create(dir, inode);
3053		if (error)
3054			goto out_iput;
3055		d_tmpfile(dentry, inode);
3056	}
3057	return error;
3058out_iput:
3059	iput(inode);
3060	return error;
3061}
3062
3063static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 
3064{
3065	int error;
3066
3067	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
 
3068		return error;
3069	inc_nlink(dir);
3070	return 0;
3071}
3072
3073static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3074		bool excl)
3075{
3076	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3077}
3078
3079/*
3080 * Link a file..
3081 */
3082static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3083{
3084	struct inode *inode = d_inode(old_dentry);
3085	int ret;
3086
3087	/*
3088	 * No ordinary (disk based) filesystem counts links as inodes;
3089	 * but each new link needs a new dentry, pinning lowmem, and
3090	 * tmpfs dentries cannot be pruned until they are unlinked.
 
 
3091	 */
3092	ret = shmem_reserve_inode(inode->i_sb);
3093	if (ret)
3094		goto out;
 
 
3095
3096	dir->i_size += BOGO_DIRENT_SIZE;
3097	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 
3098	inc_nlink(inode);
3099	ihold(inode);	/* New dentry reference */
3100	dget(dentry);		/* Extra pinning count for the created dentry */
3101	d_instantiate(dentry, inode);
3102out:
3103	return ret;
3104}
3105
3106static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3107{
3108	struct inode *inode = d_inode(dentry);
3109
3110	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3111		shmem_free_inode(inode->i_sb);
3112
3113	dir->i_size -= BOGO_DIRENT_SIZE;
3114	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 
3115	drop_nlink(inode);
3116	dput(dentry);	/* Undo the count from "create" - this does all the work */
3117	return 0;
3118}
3119
3120static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3121{
3122	if (!simple_empty(dentry))
3123		return -ENOTEMPTY;
3124
3125	drop_nlink(d_inode(dentry));
3126	drop_nlink(dir);
3127	return shmem_unlink(dir, dentry);
3128}
3129
3130static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3131{
3132	bool old_is_dir = d_is_dir(old_dentry);
3133	bool new_is_dir = d_is_dir(new_dentry);
3134
3135	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3136		if (old_is_dir) {
3137			drop_nlink(old_dir);
3138			inc_nlink(new_dir);
3139		} else {
3140			drop_nlink(new_dir);
3141			inc_nlink(old_dir);
3142		}
3143	}
3144	old_dir->i_ctime = old_dir->i_mtime =
3145	new_dir->i_ctime = new_dir->i_mtime =
3146	d_inode(old_dentry)->i_ctime =
3147	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3148
3149	return 0;
3150}
3151
3152static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3153{
3154	struct dentry *whiteout;
3155	int error;
3156
3157	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3158	if (!whiteout)
3159		return -ENOMEM;
3160
3161	error = shmem_mknod(old_dir, whiteout,
3162			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3163	dput(whiteout);
3164	if (error)
3165		return error;
3166
3167	/*
3168	 * Cheat and hash the whiteout while the old dentry is still in
3169	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3170	 *
3171	 * d_lookup() will consistently find one of them at this point,
3172	 * not sure which one, but that isn't even important.
3173	 */
3174	d_rehash(whiteout);
3175	return 0;
3176}
3177
3178/*
3179 * The VFS layer already does all the dentry stuff for rename,
3180 * we just have to decrement the usage count for the target if
3181 * it exists so that the VFS layer correctly free's it when it
3182 * gets overwritten.
3183 */
3184static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
 
 
 
3185{
3186	struct inode *inode = d_inode(old_dentry);
3187	int they_are_dirs = S_ISDIR(inode->i_mode);
3188
3189	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3190		return -EINVAL;
3191
3192	if (flags & RENAME_EXCHANGE)
3193		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3194
3195	if (!simple_empty(new_dentry))
3196		return -ENOTEMPTY;
3197
3198	if (flags & RENAME_WHITEOUT) {
3199		int error;
3200
3201		error = shmem_whiteout(old_dir, old_dentry);
3202		if (error)
3203			return error;
3204	}
3205
3206	if (d_really_is_positive(new_dentry)) {
3207		(void) shmem_unlink(new_dir, new_dentry);
3208		if (they_are_dirs) {
3209			drop_nlink(d_inode(new_dentry));
3210			drop_nlink(old_dir);
3211		}
3212	} else if (they_are_dirs) {
3213		drop_nlink(old_dir);
3214		inc_nlink(new_dir);
3215	}
3216
3217	old_dir->i_size -= BOGO_DIRENT_SIZE;
3218	new_dir->i_size += BOGO_DIRENT_SIZE;
3219	old_dir->i_ctime = old_dir->i_mtime =
3220	new_dir->i_ctime = new_dir->i_mtime =
3221	inode->i_ctime = current_time(old_dir);
 
 
3222	return 0;
3223}
3224
3225static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
 
3226{
3227	int error;
3228	int len;
3229	struct inode *inode;
3230	struct page *page;
3231
3232	len = strlen(symname) + 1;
3233	if (len > PAGE_SIZE)
3234		return -ENAMETOOLONG;
3235
3236	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
 
3237	if (!inode)
3238		return -ENOSPC;
3239
3240	error = security_inode_init_security(inode, dir, &dentry->d_name,
3241					     shmem_initxattrs, NULL);
3242	if (error) {
3243		if (error != -EOPNOTSUPP) {
3244			iput(inode);
3245			return error;
3246		}
3247		error = 0;
3248	}
3249
3250	inode->i_size = len-1;
3251	if (len <= SHORT_SYMLINK_LEN) {
3252		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3253		if (!inode->i_link) {
3254			iput(inode);
3255			return -ENOMEM;
3256		}
3257		inode->i_op = &shmem_short_symlink_operations;
3258	} else {
3259		inode_nohighmem(inode);
3260		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3261		if (error) {
3262			iput(inode);
3263			return error;
3264		}
3265		inode->i_mapping->a_ops = &shmem_aops;
3266		inode->i_op = &shmem_symlink_inode_operations;
3267		memcpy(page_address(page), symname, len);
3268		SetPageUptodate(page);
3269		set_page_dirty(page);
3270		unlock_page(page);
3271		put_page(page);
3272	}
3273	dir->i_size += BOGO_DIRENT_SIZE;
3274	dir->i_ctime = dir->i_mtime = current_time(dir);
 
3275	d_instantiate(dentry, inode);
3276	dget(dentry);
3277	return 0;
3278}
3279
3280static void shmem_put_link(void *arg)
3281{
3282	mark_page_accessed(arg);
3283	put_page(arg);
3284}
3285
3286static const char *shmem_get_link(struct dentry *dentry,
3287				  struct inode *inode,
3288				  struct delayed_call *done)
3289{
3290	struct page *page = NULL;
3291	int error;
 
3292	if (!dentry) {
3293		page = find_get_page(inode->i_mapping, 0);
3294		if (!page)
3295			return ERR_PTR(-ECHILD);
3296		if (!PageUptodate(page)) {
3297			put_page(page);
 
3298			return ERR_PTR(-ECHILD);
3299		}
3300	} else {
3301		error = shmem_getpage(inode, 0, &page, SGP_READ);
3302		if (error)
3303			return ERR_PTR(error);
3304		unlock_page(page);
 
 
 
 
 
 
 
3305	}
3306	set_delayed_call(done, shmem_put_link, page);
3307	return page_address(page);
3308}
3309
3310#ifdef CONFIG_TMPFS_XATTR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3311/*
3312 * Superblocks without xattr inode operations may get some security.* xattr
3313 * support from the LSM "for free". As soon as we have any other xattrs
3314 * like ACLs, we also need to implement the security.* handlers at
3315 * filesystem level, though.
3316 */
3317
3318/*
3319 * Callback for security_inode_init_security() for acquiring xattrs.
3320 */
3321static int shmem_initxattrs(struct inode *inode,
3322			    const struct xattr *xattr_array,
3323			    void *fs_info)
3324{
3325	struct shmem_inode_info *info = SHMEM_I(inode);
3326	const struct xattr *xattr;
3327	struct simple_xattr *new_xattr;
3328	size_t len;
3329
3330	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3331		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3332		if (!new_xattr)
3333			return -ENOMEM;
3334
3335		len = strlen(xattr->name) + 1;
3336		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3337					  GFP_KERNEL);
3338		if (!new_xattr->name) {
3339			kfree(new_xattr);
3340			return -ENOMEM;
3341		}
3342
3343		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3344		       XATTR_SECURITY_PREFIX_LEN);
3345		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3346		       xattr->name, len);
3347
3348		simple_xattr_list_add(&info->xattrs, new_xattr);
3349	}
3350
3351	return 0;
3352}
3353
3354static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3355				   struct dentry *unused, struct inode *inode,
3356				   const char *name, void *buffer, size_t size)
3357{
3358	struct shmem_inode_info *info = SHMEM_I(inode);
3359
3360	name = xattr_full_name(handler, name);
3361	return simple_xattr_get(&info->xattrs, name, buffer, size);
3362}
3363
3364static int shmem_xattr_handler_set(const struct xattr_handler *handler,
 
3365				   struct dentry *unused, struct inode *inode,
3366				   const char *name, const void *value,
3367				   size_t size, int flags)
3368{
3369	struct shmem_inode_info *info = SHMEM_I(inode);
 
3370
3371	name = xattr_full_name(handler, name);
3372	return simple_xattr_set(&info->xattrs, name, value, size, flags);
 
 
 
 
 
3373}
3374
3375static const struct xattr_handler shmem_security_xattr_handler = {
3376	.prefix = XATTR_SECURITY_PREFIX,
3377	.get = shmem_xattr_handler_get,
3378	.set = shmem_xattr_handler_set,
3379};
3380
3381static const struct xattr_handler shmem_trusted_xattr_handler = {
3382	.prefix = XATTR_TRUSTED_PREFIX,
3383	.get = shmem_xattr_handler_get,
3384	.set = shmem_xattr_handler_set,
3385};
3386
3387static const struct xattr_handler *shmem_xattr_handlers[] = {
3388#ifdef CONFIG_TMPFS_POSIX_ACL
3389	&posix_acl_access_xattr_handler,
3390	&posix_acl_default_xattr_handler,
3391#endif
3392	&shmem_security_xattr_handler,
3393	&shmem_trusted_xattr_handler,
3394	NULL
3395};
3396
3397static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3398{
3399	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3400	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3401}
3402#endif /* CONFIG_TMPFS_XATTR */
3403
3404static const struct inode_operations shmem_short_symlink_operations = {
 
3405	.get_link	= simple_get_link,
3406#ifdef CONFIG_TMPFS_XATTR
3407	.listxattr	= shmem_listxattr,
3408#endif
3409};
3410
3411static const struct inode_operations shmem_symlink_inode_operations = {
 
3412	.get_link	= shmem_get_link,
3413#ifdef CONFIG_TMPFS_XATTR
3414	.listxattr	= shmem_listxattr,
3415#endif
3416};
3417
3418static struct dentry *shmem_get_parent(struct dentry *child)
3419{
3420	return ERR_PTR(-ESTALE);
3421}
3422
3423static int shmem_match(struct inode *ino, void *vfh)
3424{
3425	__u32 *fh = vfh;
3426	__u64 inum = fh[2];
3427	inum = (inum << 32) | fh[1];
3428	return ino->i_ino == inum && fh[0] == ino->i_generation;
3429}
3430
 
 
 
 
 
 
 
 
 
3431static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3432		struct fid *fid, int fh_len, int fh_type)
3433{
3434	struct inode *inode;
3435	struct dentry *dentry = NULL;
3436	u64 inum;
3437
3438	if (fh_len < 3)
3439		return NULL;
3440
3441	inum = fid->raw[2];
3442	inum = (inum << 32) | fid->raw[1];
3443
3444	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3445			shmem_match, fid->raw);
3446	if (inode) {
3447		dentry = d_find_alias(inode);
3448		iput(inode);
3449	}
3450
3451	return dentry;
3452}
3453
3454static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3455				struct inode *parent)
3456{
3457	if (*len < 3) {
3458		*len = 3;
3459		return FILEID_INVALID;
3460	}
3461
3462	if (inode_unhashed(inode)) {
3463		/* Unfortunately insert_inode_hash is not idempotent,
3464		 * so as we hash inodes here rather than at creation
3465		 * time, we need a lock to ensure we only try
3466		 * to do it once
3467		 */
3468		static DEFINE_SPINLOCK(lock);
3469		spin_lock(&lock);
3470		if (inode_unhashed(inode))
3471			__insert_inode_hash(inode,
3472					    inode->i_ino + inode->i_generation);
3473		spin_unlock(&lock);
3474	}
3475
3476	fh[0] = inode->i_generation;
3477	fh[1] = inode->i_ino;
3478	fh[2] = ((__u64)inode->i_ino) >> 32;
3479
3480	*len = 3;
3481	return 1;
3482}
3483
3484static const struct export_operations shmem_export_ops = {
3485	.get_parent     = shmem_get_parent,
3486	.encode_fh      = shmem_encode_fh,
3487	.fh_to_dentry	= shmem_fh_to_dentry,
3488};
3489
3490static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3491			       bool remount)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3492{
3493	char *this_char, *value, *rest;
3494	struct mempolicy *mpol = NULL;
3495	uid_t uid;
3496	gid_t gid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3497
3498	while (options != NULL) {
3499		this_char = options;
3500		for (;;) {
3501			/*
3502			 * NUL-terminate this option: unfortunately,
3503			 * mount options form a comma-separated list,
3504			 * but mpol's nodelist may also contain commas.
3505			 */
3506			options = strchr(options, ',');
3507			if (options == NULL)
3508				break;
3509			options++;
3510			if (!isdigit(*options)) {
3511				options[-1] = '\0';
3512				break;
3513			}
3514		}
3515		if (!*this_char)
3516			continue;
3517		if ((value = strchr(this_char,'=')) != NULL) {
3518			*value++ = 0;
3519		} else {
3520			pr_err("tmpfs: No value for mount option '%s'\n",
3521			       this_char);
3522			goto error;
3523		}
3524
3525		if (!strcmp(this_char,"size")) {
3526			unsigned long long size;
3527			size = memparse(value,&rest);
3528			if (*rest == '%') {
3529				size <<= PAGE_SHIFT;
3530				size *= totalram_pages;
3531				do_div(size, 100);
3532				rest++;
3533			}
3534			if (*rest)
3535				goto bad_val;
3536			sbinfo->max_blocks =
3537				DIV_ROUND_UP(size, PAGE_SIZE);
3538		} else if (!strcmp(this_char,"nr_blocks")) {
3539			sbinfo->max_blocks = memparse(value, &rest);
3540			if (*rest)
3541				goto bad_val;
3542		} else if (!strcmp(this_char,"nr_inodes")) {
3543			sbinfo->max_inodes = memparse(value, &rest);
3544			if (*rest)
3545				goto bad_val;
3546		} else if (!strcmp(this_char,"mode")) {
3547			if (remount)
3548				continue;
3549			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3550			if (*rest)
3551				goto bad_val;
3552		} else if (!strcmp(this_char,"uid")) {
3553			if (remount)
3554				continue;
3555			uid = simple_strtoul(value, &rest, 0);
3556			if (*rest)
3557				goto bad_val;
3558			sbinfo->uid = make_kuid(current_user_ns(), uid);
3559			if (!uid_valid(sbinfo->uid))
3560				goto bad_val;
3561		} else if (!strcmp(this_char,"gid")) {
3562			if (remount)
3563				continue;
3564			gid = simple_strtoul(value, &rest, 0);
3565			if (*rest)
3566				goto bad_val;
3567			sbinfo->gid = make_kgid(current_user_ns(), gid);
3568			if (!gid_valid(sbinfo->gid))
3569				goto bad_val;
3570#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3571		} else if (!strcmp(this_char, "huge")) {
3572			int huge;
3573			huge = shmem_parse_huge(value);
3574			if (huge < 0)
3575				goto bad_val;
3576			if (!has_transparent_hugepage() &&
3577					huge != SHMEM_HUGE_NEVER)
3578				goto bad_val;
3579			sbinfo->huge = huge;
3580#endif
3581#ifdef CONFIG_NUMA
3582		} else if (!strcmp(this_char,"mpol")) {
3583			mpol_put(mpol);
3584			mpol = NULL;
3585			if (mpol_parse_str(value, &mpol))
3586				goto bad_val;
3587#endif
3588		} else {
3589			pr_err("tmpfs: Bad mount option %s\n", this_char);
3590			goto error;
3591		}
3592	}
3593	sbinfo->mpol = mpol;
3594	return 0;
3595
3596bad_val:
3597	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3598	       value, this_char);
3599error:
3600	mpol_put(mpol);
3601	return 1;
3602
3603}
3604
3605static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
 
 
 
 
 
 
 
3606{
3607	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3608	struct shmem_sb_info config = *sbinfo;
3609	unsigned long inodes;
3610	int error = -EINVAL;
3611
3612	config.mpol = NULL;
3613	if (shmem_parse_options(data, &config, true))
3614		return error;
3615
3616	spin_lock(&sbinfo->stat_lock);
3617	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3618	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3619		goto out;
3620	if (config.max_inodes < inodes)
3621		goto out;
3622	/*
3623	 * Those tests disallow limited->unlimited while any are in use;
3624	 * but we must separately disallow unlimited->limited, because
3625	 * in that case we have no record of how much is already in use.
3626	 */
3627	if (config.max_blocks && !sbinfo->max_blocks)
3628		goto out;
3629	if (config.max_inodes && !sbinfo->max_inodes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3630		goto out;
 
3631
3632	error = 0;
3633	sbinfo->huge = config.huge;
3634	sbinfo->max_blocks  = config.max_blocks;
3635	sbinfo->max_inodes  = config.max_inodes;
3636	sbinfo->free_inodes = config.max_inodes - inodes;
 
 
 
 
 
3637
3638	/*
3639	 * Preserve previous mempolicy unless mpol remount option was specified.
3640	 */
3641	if (config.mpol) {
3642		mpol_put(sbinfo->mpol);
3643		sbinfo->mpol = config.mpol;	/* transfers initial ref */
 
3644	}
 
 
 
3645out:
3646	spin_unlock(&sbinfo->stat_lock);
3647	return error;
3648}
3649
3650static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3651{
3652	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3653
3654	if (sbinfo->max_blocks != shmem_default_max_blocks())
3655		seq_printf(seq, ",size=%luk",
3656			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3657	if (sbinfo->max_inodes != shmem_default_max_inodes())
3658		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3659	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3660		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3661	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3662		seq_printf(seq, ",uid=%u",
3663				from_kuid_munged(&init_user_ns, sbinfo->uid));
3664	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3665		seq_printf(seq, ",gid=%u",
3666				from_kgid_munged(&init_user_ns, sbinfo->gid));
3667#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3668	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3669	if (sbinfo->huge)
3670		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3671#endif
3672	shmem_show_mpol(seq, sbinfo->mpol);
3673	return 0;
3674}
3675
3676#define MFD_NAME_PREFIX "memfd:"
3677#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3678#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3679
3680#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3681
3682SYSCALL_DEFINE2(memfd_create,
3683		const char __user *, uname,
3684		unsigned int, flags)
3685{
3686	unsigned int *file_seals;
3687	struct file *file;
3688	int fd, error;
3689	char *name;
3690	long len;
3691
3692	if (!(flags & MFD_HUGETLB)) {
3693		if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3694			return -EINVAL;
3695	} else {
3696		/* Allow huge page size encoding in flags. */
3697		if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3698				(MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3699			return -EINVAL;
3700	}
3701
3702	/* length includes terminating zero */
3703	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3704	if (len <= 0)
3705		return -EFAULT;
3706	if (len > MFD_NAME_MAX_LEN + 1)
3707		return -EINVAL;
3708
3709	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3710	if (!name)
3711		return -ENOMEM;
3712
3713	strcpy(name, MFD_NAME_PREFIX);
3714	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3715		error = -EFAULT;
3716		goto err_name;
3717	}
3718
3719	/* terminating-zero may have changed after strnlen_user() returned */
3720	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3721		error = -EFAULT;
3722		goto err_name;
3723	}
3724
3725	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3726	if (fd < 0) {
3727		error = fd;
3728		goto err_name;
3729	}
3730
3731	if (flags & MFD_HUGETLB) {
3732		struct user_struct *user = NULL;
3733
3734		file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3735					HUGETLB_ANONHUGE_INODE,
3736					(flags >> MFD_HUGE_SHIFT) &
3737					MFD_HUGE_MASK);
3738	} else
3739		file = shmem_file_setup(name, 0, VM_NORESERVE);
3740	if (IS_ERR(file)) {
3741		error = PTR_ERR(file);
3742		goto err_fd;
3743	}
3744	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3745	file->f_flags |= O_RDWR | O_LARGEFILE;
3746
3747	if (flags & MFD_ALLOW_SEALING) {
3748		file_seals = memfd_file_seals_ptr(file);
3749		*file_seals &= ~F_SEAL_SEAL;
3750	}
3751
3752	fd_install(fd, file);
3753	kfree(name);
3754	return fd;
3755
3756err_fd:
3757	put_unused_fd(fd);
3758err_name:
3759	kfree(name);
3760	return error;
3761}
3762
3763#endif /* CONFIG_TMPFS */
3764
3765static void shmem_put_super(struct super_block *sb)
3766{
3767	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3768
 
3769	percpu_counter_destroy(&sbinfo->used_blocks);
3770	mpol_put(sbinfo->mpol);
3771	kfree(sbinfo);
3772	sb->s_fs_info = NULL;
3773}
3774
3775int shmem_fill_super(struct super_block *sb, void *data, int silent)
3776{
 
3777	struct inode *inode;
3778	struct shmem_sb_info *sbinfo;
3779	int err = -ENOMEM;
3780
3781	/* Round up to L1_CACHE_BYTES to resist false sharing */
3782	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3783				L1_CACHE_BYTES), GFP_KERNEL);
3784	if (!sbinfo)
3785		return -ENOMEM;
3786
3787	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3788	sbinfo->uid = current_fsuid();
3789	sbinfo->gid = current_fsgid();
3790	sb->s_fs_info = sbinfo;
3791
3792#ifdef CONFIG_TMPFS
3793	/*
3794	 * Per default we only allow half of the physical ram per
3795	 * tmpfs instance, limiting inodes to one per page of lowmem;
3796	 * but the internal instance is left unlimited.
3797	 */
3798	if (!(sb->s_flags & SB_KERNMOUNT)) {
3799		sbinfo->max_blocks = shmem_default_max_blocks();
3800		sbinfo->max_inodes = shmem_default_max_inodes();
3801		if (shmem_parse_options(data, sbinfo, false)) {
3802			err = -EINVAL;
3803			goto failed;
3804		}
3805	} else {
3806		sb->s_flags |= SB_NOUSER;
3807	}
3808	sb->s_export_op = &shmem_export_ops;
3809	sb->s_flags |= SB_NOSEC;
3810#else
3811	sb->s_flags |= SB_NOUSER;
3812#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3813
3814	spin_lock_init(&sbinfo->stat_lock);
3815	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3816		goto failed;
3817	sbinfo->free_inodes = sbinfo->max_inodes;
3818	spin_lock_init(&sbinfo->shrinklist_lock);
3819	INIT_LIST_HEAD(&sbinfo->shrinklist);
3820
3821	sb->s_maxbytes = MAX_LFS_FILESIZE;
3822	sb->s_blocksize = PAGE_SIZE;
3823	sb->s_blocksize_bits = PAGE_SHIFT;
3824	sb->s_magic = TMPFS_MAGIC;
3825	sb->s_op = &shmem_ops;
3826	sb->s_time_gran = 1;
3827#ifdef CONFIG_TMPFS_XATTR
3828	sb->s_xattr = shmem_xattr_handlers;
3829#endif
3830#ifdef CONFIG_TMPFS_POSIX_ACL
3831	sb->s_flags |= SB_POSIXACL;
3832#endif
3833	uuid_gen(&sb->s_uuid);
3834
3835	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3836	if (!inode)
3837		goto failed;
3838	inode->i_uid = sbinfo->uid;
3839	inode->i_gid = sbinfo->gid;
3840	sb->s_root = d_make_root(inode);
3841	if (!sb->s_root)
3842		goto failed;
3843	return 0;
3844
3845failed:
3846	shmem_put_super(sb);
3847	return err;
3848}
3849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3850static struct kmem_cache *shmem_inode_cachep;
3851
3852static struct inode *shmem_alloc_inode(struct super_block *sb)
3853{
3854	struct shmem_inode_info *info;
3855	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3856	if (!info)
3857		return NULL;
3858	return &info->vfs_inode;
3859}
3860
3861static void shmem_destroy_callback(struct rcu_head *head)
3862{
3863	struct inode *inode = container_of(head, struct inode, i_rcu);
3864	if (S_ISLNK(inode->i_mode))
3865		kfree(inode->i_link);
3866	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3867}
3868
3869static void shmem_destroy_inode(struct inode *inode)
3870{
3871	if (S_ISREG(inode->i_mode))
3872		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3873	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3874}
3875
3876static void shmem_init_inode(void *foo)
3877{
3878	struct shmem_inode_info *info = foo;
3879	inode_init_once(&info->vfs_inode);
3880}
3881
3882static void shmem_init_inodecache(void)
3883{
3884	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3885				sizeof(struct shmem_inode_info),
3886				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3887}
3888
3889static void shmem_destroy_inodecache(void)
3890{
3891	kmem_cache_destroy(shmem_inode_cachep);
3892}
3893
3894static const struct address_space_operations shmem_aops = {
 
 
 
 
 
 
 
3895	.writepage	= shmem_writepage,
3896	.set_page_dirty	= __set_page_dirty_no_writeback,
3897#ifdef CONFIG_TMPFS
3898	.write_begin	= shmem_write_begin,
3899	.write_end	= shmem_write_end,
3900#endif
3901#ifdef CONFIG_MIGRATION
3902	.migratepage	= migrate_page,
3903#endif
3904	.error_remove_page = generic_error_remove_page,
3905};
 
3906
3907static const struct file_operations shmem_file_operations = {
3908	.mmap		= shmem_mmap,
 
3909	.get_unmapped_area = shmem_get_unmapped_area,
3910#ifdef CONFIG_TMPFS
3911	.llseek		= shmem_file_llseek,
3912	.read_iter	= shmem_file_read_iter,
3913	.write_iter	= generic_file_write_iter,
3914	.fsync		= noop_fsync,
3915	.splice_read	= generic_file_splice_read,
3916	.splice_write	= iter_file_splice_write,
3917	.fallocate	= shmem_fallocate,
3918#endif
3919};
3920
3921static const struct inode_operations shmem_inode_operations = {
3922	.getattr	= shmem_getattr,
3923	.setattr	= shmem_setattr,
3924#ifdef CONFIG_TMPFS_XATTR
3925	.listxattr	= shmem_listxattr,
3926	.set_acl	= simple_set_acl,
 
 
3927#endif
3928};
3929
3930static const struct inode_operations shmem_dir_inode_operations = {
3931#ifdef CONFIG_TMPFS
 
3932	.create		= shmem_create,
3933	.lookup		= simple_lookup,
3934	.link		= shmem_link,
3935	.unlink		= shmem_unlink,
3936	.symlink	= shmem_symlink,
3937	.mkdir		= shmem_mkdir,
3938	.rmdir		= shmem_rmdir,
3939	.mknod		= shmem_mknod,
3940	.rename		= shmem_rename2,
3941	.tmpfile	= shmem_tmpfile,
3942#endif
3943#ifdef CONFIG_TMPFS_XATTR
3944	.listxattr	= shmem_listxattr,
 
 
3945#endif
3946#ifdef CONFIG_TMPFS_POSIX_ACL
3947	.setattr	= shmem_setattr,
3948	.set_acl	= simple_set_acl,
3949#endif
3950};
3951
3952static const struct inode_operations shmem_special_inode_operations = {
 
3953#ifdef CONFIG_TMPFS_XATTR
3954	.listxattr	= shmem_listxattr,
3955#endif
3956#ifdef CONFIG_TMPFS_POSIX_ACL
3957	.setattr	= shmem_setattr,
3958	.set_acl	= simple_set_acl,
3959#endif
3960};
3961
3962static const struct super_operations shmem_ops = {
3963	.alloc_inode	= shmem_alloc_inode,
 
3964	.destroy_inode	= shmem_destroy_inode,
3965#ifdef CONFIG_TMPFS
3966	.statfs		= shmem_statfs,
3967	.remount_fs	= shmem_remount_fs,
3968	.show_options	= shmem_show_options,
3969#endif
3970	.evict_inode	= shmem_evict_inode,
3971	.drop_inode	= generic_delete_inode,
3972	.put_super	= shmem_put_super,
3973#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3974	.nr_cached_objects	= shmem_unused_huge_count,
3975	.free_cached_objects	= shmem_unused_huge_scan,
3976#endif
3977};
3978
3979static const struct vm_operations_struct shmem_vm_ops = {
3980	.fault		= shmem_fault,
3981	.map_pages	= filemap_map_pages,
3982#ifdef CONFIG_NUMA
3983	.set_policy     = shmem_set_policy,
3984	.get_policy     = shmem_get_policy,
3985#endif
3986};
3987
3988static struct dentry *shmem_mount(struct file_system_type *fs_type,
3989	int flags, const char *dev_name, void *data)
 
 
 
 
 
 
 
 
3990{
3991	return mount_nodev(fs_type, flags, data, shmem_fill_super);
 
 
 
 
 
 
 
 
 
 
 
 
3992}
3993
3994static struct file_system_type shmem_fs_type = {
3995	.owner		= THIS_MODULE,
3996	.name		= "tmpfs",
3997	.mount		= shmem_mount,
 
 
 
3998	.kill_sb	= kill_litter_super,
3999	.fs_flags	= FS_USERNS_MOUNT,
4000};
4001
4002int __init shmem_init(void)
4003{
4004	int error;
4005
4006	/* If rootfs called this, don't re-init */
4007	if (shmem_inode_cachep)
4008		return 0;
4009
4010	shmem_init_inodecache();
4011
4012	error = register_filesystem(&shmem_fs_type);
4013	if (error) {
4014		pr_err("Could not register tmpfs\n");
4015		goto out2;
4016	}
4017
4018	shm_mnt = kern_mount(&shmem_fs_type);
4019	if (IS_ERR(shm_mnt)) {
4020		error = PTR_ERR(shm_mnt);
4021		pr_err("Could not kern_mount tmpfs\n");
4022		goto out1;
4023	}
4024
4025#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4026	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4027		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4028	else
4029		shmem_huge = 0; /* just in case it was patched */
4030#endif
4031	return 0;
4032
4033out1:
4034	unregister_filesystem(&shmem_fs_type);
4035out2:
4036	shmem_destroy_inodecache();
4037	shm_mnt = ERR_PTR(error);
4038	return error;
4039}
4040
4041#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4042static ssize_t shmem_enabled_show(struct kobject *kobj,
4043		struct kobj_attribute *attr, char *buf)
4044{
4045	int values[] = {
4046		SHMEM_HUGE_ALWAYS,
4047		SHMEM_HUGE_WITHIN_SIZE,
4048		SHMEM_HUGE_ADVISE,
4049		SHMEM_HUGE_NEVER,
4050		SHMEM_HUGE_DENY,
4051		SHMEM_HUGE_FORCE,
4052	};
4053	int i, count;
4054
4055	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4056		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4057
4058		count += sprintf(buf + count, fmt,
4059				shmem_format_huge(values[i]));
 
 
 
4060	}
4061	buf[count - 1] = '\n';
4062	return count;
 
 
4063}
4064
4065static ssize_t shmem_enabled_store(struct kobject *kobj,
4066		struct kobj_attribute *attr, const char *buf, size_t count)
4067{
4068	char tmp[16];
4069	int huge;
4070
4071	if (count + 1 > sizeof(tmp))
4072		return -EINVAL;
4073	memcpy(tmp, buf, count);
4074	tmp[count] = '\0';
4075	if (count && tmp[count - 1] == '\n')
4076		tmp[count - 1] = '\0';
4077
4078	huge = shmem_parse_huge(tmp);
4079	if (huge == -EINVAL)
4080		return -EINVAL;
4081	if (!has_transparent_hugepage() &&
4082			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4083		return -EINVAL;
4084
4085	shmem_huge = huge;
4086	if (shmem_huge > SHMEM_HUGE_DENY)
4087		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4088	return count;
4089}
4090
4091struct kobj_attribute shmem_enabled_attr =
4092	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4093#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4094
4095#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4096bool shmem_huge_enabled(struct vm_area_struct *vma)
4097{
4098	struct inode *inode = file_inode(vma->vm_file);
4099	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4100	loff_t i_size;
4101	pgoff_t off;
4102
4103	if (shmem_huge == SHMEM_HUGE_FORCE)
4104		return true;
4105	if (shmem_huge == SHMEM_HUGE_DENY)
4106		return false;
4107	switch (sbinfo->huge) {
4108		case SHMEM_HUGE_NEVER:
4109			return false;
4110		case SHMEM_HUGE_ALWAYS:
4111			return true;
4112		case SHMEM_HUGE_WITHIN_SIZE:
4113			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4114			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4115			if (i_size >= HPAGE_PMD_SIZE &&
4116					i_size >> PAGE_SHIFT >= off)
4117				return true;
4118			/* fall through */
4119		case SHMEM_HUGE_ADVISE:
4120			/* TODO: implement fadvise() hints */
4121			return (vma->vm_flags & VM_HUGEPAGE);
4122		default:
4123			VM_BUG_ON(1);
4124			return false;
4125	}
4126}
4127#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4128
4129#else /* !CONFIG_SHMEM */
4130
4131/*
4132 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4133 *
4134 * This is intended for small system where the benefits of the full
4135 * shmem code (swap-backed and resource-limited) are outweighed by
4136 * their complexity. On systems without swap this code should be
4137 * effectively equivalent, but much lighter weight.
4138 */
4139
4140static struct file_system_type shmem_fs_type = {
4141	.name		= "tmpfs",
4142	.mount		= ramfs_mount,
 
4143	.kill_sb	= kill_litter_super,
4144	.fs_flags	= FS_USERNS_MOUNT,
4145};
4146
4147int __init shmem_init(void)
4148{
4149	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4150
4151	shm_mnt = kern_mount(&shmem_fs_type);
4152	BUG_ON(IS_ERR(shm_mnt));
4153
4154	return 0;
4155}
4156
4157int shmem_unuse(swp_entry_t swap, struct page *page)
4158{
4159	return 0;
4160}
4161
4162int shmem_lock(struct file *file, int lock, struct user_struct *user)
4163{
4164	return 0;
4165}
4166
4167void shmem_unlock_mapping(struct address_space *mapping)
4168{
4169}
4170
4171#ifdef CONFIG_MMU
4172unsigned long shmem_get_unmapped_area(struct file *file,
4173				      unsigned long addr, unsigned long len,
4174				      unsigned long pgoff, unsigned long flags)
4175{
4176	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4177}
4178#endif
4179
4180void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4181{
4182	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4183}
4184EXPORT_SYMBOL_GPL(shmem_truncate_range);
4185
4186#define shmem_vm_ops				generic_file_vm_ops
 
4187#define shmem_file_operations			ramfs_file_operations
4188#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4189#define shmem_acct_size(flags, size)		0
4190#define shmem_unacct_size(flags, size)		do {} while (0)
4191
4192#endif /* CONFIG_SHMEM */
4193
4194/* common code */
4195
4196static const struct dentry_operations anon_ops = {
4197	.d_dname = simple_dname
4198};
4199
4200static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4201				       unsigned long flags, unsigned int i_flags)
4202{
4203	struct file *res;
4204	struct inode *inode;
4205	struct path path;
4206	struct super_block *sb;
4207	struct qstr this;
4208
4209	if (IS_ERR(mnt))
4210		return ERR_CAST(mnt);
4211
4212	if (size < 0 || size > MAX_LFS_FILESIZE)
4213		return ERR_PTR(-EINVAL);
4214
4215	if (shmem_acct_size(flags, size))
4216		return ERR_PTR(-ENOMEM);
4217
4218	res = ERR_PTR(-ENOMEM);
4219	this.name = name;
4220	this.len = strlen(name);
4221	this.hash = 0; /* will go */
4222	sb = mnt->mnt_sb;
4223	path.mnt = mntget(mnt);
4224	path.dentry = d_alloc_pseudo(sb, &this);
4225	if (!path.dentry)
4226		goto put_memory;
4227	d_set_d_op(path.dentry, &anon_ops);
4228
4229	res = ERR_PTR(-ENOSPC);
4230	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4231	if (!inode)
4232		goto put_memory;
4233
4234	inode->i_flags |= i_flags;
4235	d_instantiate(path.dentry, inode);
4236	inode->i_size = size;
4237	clear_nlink(inode);	/* It is unlinked */
4238	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
 
 
 
4239	if (IS_ERR(res))
4240		goto put_path;
4241
4242	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4243		  &shmem_file_operations);
4244	if (IS_ERR(res))
4245		goto put_path;
4246
4247	return res;
4248
4249put_memory:
4250	shmem_unacct_size(flags, size);
4251put_path:
4252	path_put(&path);
4253	return res;
4254}
4255
4256/**
4257 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4258 * 	kernel internal.  There will be NO LSM permission checks against the
4259 * 	underlying inode.  So users of this interface must do LSM checks at a
4260 *	higher layer.  The users are the big_key and shm implementations.  LSM
4261 *	checks are provided at the key or shm level rather than the inode.
4262 * @name: name for dentry (to be seen in /proc/<pid>/maps
4263 * @size: size to be set for the file
4264 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4265 */
4266struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4267{
4268	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4269}
4270
4271/**
4272 * shmem_file_setup - get an unlinked file living in tmpfs
4273 * @name: name for dentry (to be seen in /proc/<pid>/maps
4274 * @size: size to be set for the file
4275 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4276 */
4277struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4278{
4279	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4280}
4281EXPORT_SYMBOL_GPL(shmem_file_setup);
4282
4283/**
4284 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4285 * @mnt: the tmpfs mount where the file will be created
4286 * @name: name for dentry (to be seen in /proc/<pid>/maps
4287 * @size: size to be set for the file
4288 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4289 */
4290struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4291				       loff_t size, unsigned long flags)
4292{
4293	return __shmem_file_setup(mnt, name, size, flags, 0);
4294}
4295EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4296
4297/**
4298 * shmem_zero_setup - setup a shared anonymous mapping
4299 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4300 */
4301int shmem_zero_setup(struct vm_area_struct *vma)
4302{
4303	struct file *file;
4304	loff_t size = vma->vm_end - vma->vm_start;
4305
4306	/*
4307	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4308	 * between XFS directory reading and selinux: since this file is only
4309	 * accessible to the user through its mapping, use S_PRIVATE flag to
4310	 * bypass file security, in the same way as shmem_kernel_file_setup().
4311	 */
4312	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4313	if (IS_ERR(file))
4314		return PTR_ERR(file);
4315
4316	if (vma->vm_file)
4317		fput(vma->vm_file);
4318	vma->vm_file = file;
4319	vma->vm_ops = &shmem_vm_ops;
4320
4321	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4322			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4323			(vma->vm_end & HPAGE_PMD_MASK)) {
4324		khugepaged_enter(vma, vma->vm_flags);
4325	}
4326
4327	return 0;
4328}
4329
4330/**
4331 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4332 * @mapping:	the page's address_space
4333 * @index:	the page index
4334 * @gfp:	the page allocator flags to use if allocating
4335 *
4336 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4337 * with any new page allocations done using the specified allocation flags.
4338 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4339 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4340 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4341 *
4342 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4343 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4344 */
4345struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4346					 pgoff_t index, gfp_t gfp)
4347{
4348#ifdef CONFIG_SHMEM
4349	struct inode *inode = mapping->host;
 
4350	struct page *page;
4351	int error;
4352
4353	BUG_ON(mapping->a_ops != &shmem_aops);
4354	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4355				  gfp, NULL, NULL, NULL);
4356	if (error)
4357		page = ERR_PTR(error);
4358	else
4359		unlock_page(page);
 
 
 
 
 
 
4360	return page;
4361#else
4362	/*
4363	 * The tiny !SHMEM case uses ramfs without swap
4364	 */
4365	return read_cache_page_gfp(mapping, index, gfp);
4366#endif
4367}
4368EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
v6.2
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/fileattr.h>
  32#include <linux/mm.h>
  33#include <linux/random.h>
  34#include <linux/sched/signal.h>
  35#include <linux/export.h>
  36#include <linux/swap.h>
  37#include <linux/uio.h>
 
  38#include <linux/hugetlb.h>
  39#include <linux/fs_parser.h>
  40#include <linux/swapfile.h>
  41#include <linux/iversion.h>
  42#include "swap.h"
  43
  44static struct vfsmount *shm_mnt;
  45
  46#ifdef CONFIG_SHMEM
  47/*
  48 * This virtual memory filesystem is heavily based on the ramfs. It
  49 * extends ramfs by the ability to use swap and honor resource limits
  50 * which makes it a completely usable filesystem.
  51 */
  52
  53#include <linux/xattr.h>
  54#include <linux/exportfs.h>
  55#include <linux/posix_acl.h>
  56#include <linux/posix_acl_xattr.h>
  57#include <linux/mman.h>
  58#include <linux/string.h>
  59#include <linux/slab.h>
  60#include <linux/backing-dev.h>
  61#include <linux/shmem_fs.h>
  62#include <linux/writeback.h>
 
  63#include <linux/pagevec.h>
  64#include <linux/percpu_counter.h>
  65#include <linux/falloc.h>
  66#include <linux/splice.h>
  67#include <linux/security.h>
  68#include <linux/swapops.h>
  69#include <linux/mempolicy.h>
  70#include <linux/namei.h>
  71#include <linux/ctype.h>
  72#include <linux/migrate.h>
  73#include <linux/highmem.h>
  74#include <linux/seq_file.h>
  75#include <linux/magic.h>
  76#include <linux/syscalls.h>
  77#include <linux/fcntl.h>
  78#include <uapi/linux/memfd.h>
  79#include <linux/userfaultfd_k.h>
  80#include <linux/rmap.h>
  81#include <linux/uuid.h>
  82
  83#include <linux/uaccess.h>
 
  84
  85#include "internal.h"
  86
  87#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  88#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  89
  90/* Pretend that each entry is of this size in directory's i_size */
  91#define BOGO_DIRENT_SIZE 20
  92
  93/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  94#define SHORT_SYMLINK_LEN 128
  95
  96/*
  97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  98 * inode->i_private (with i_rwsem making sure that it has only one user at
  99 * a time): we would prefer not to enlarge the shmem inode just for that.
 100 */
 101struct shmem_falloc {
 102	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 103	pgoff_t start;		/* start of range currently being fallocated */
 104	pgoff_t next;		/* the next page offset to be fallocated */
 105	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
 106	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
 107};
 108
 109struct shmem_options {
 110	unsigned long long blocks;
 111	unsigned long long inodes;
 112	struct mempolicy *mpol;
 113	kuid_t uid;
 114	kgid_t gid;
 115	umode_t mode;
 116	bool full_inums;
 117	int huge;
 118	int seen;
 119#define SHMEM_SEEN_BLOCKS 1
 120#define SHMEM_SEEN_INODES 2
 121#define SHMEM_SEEN_HUGE 4
 122#define SHMEM_SEEN_INUMS 8
 123};
 124
 125#ifdef CONFIG_TMPFS
 126static unsigned long shmem_default_max_blocks(void)
 127{
 128	return totalram_pages() / 2;
 129}
 130
 131static unsigned long shmem_default_max_inodes(void)
 132{
 133	unsigned long nr_pages = totalram_pages();
 134
 135	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
 136}
 137#endif
 138
 139static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
 140			     struct folio **foliop, enum sgp_type sgp,
 141			     gfp_t gfp, struct vm_area_struct *vma,
 142			     vm_fault_t *fault_type);
 
 
 
 
 
 
 
 
 
 
 143
 144static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 145{
 146	return sb->s_fs_info;
 147}
 148
 149/*
 150 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 151 * for shared memory and for shared anonymous (/dev/zero) mappings
 152 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 153 * consistent with the pre-accounting of private mappings ...
 154 */
 155static inline int shmem_acct_size(unsigned long flags, loff_t size)
 156{
 157	return (flags & VM_NORESERVE) ?
 158		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 159}
 160
 161static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 162{
 163	if (!(flags & VM_NORESERVE))
 164		vm_unacct_memory(VM_ACCT(size));
 165}
 166
 167static inline int shmem_reacct_size(unsigned long flags,
 168		loff_t oldsize, loff_t newsize)
 169{
 170	if (!(flags & VM_NORESERVE)) {
 171		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 172			return security_vm_enough_memory_mm(current->mm,
 173					VM_ACCT(newsize) - VM_ACCT(oldsize));
 174		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 175			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 176	}
 177	return 0;
 178}
 179
 180/*
 181 * ... whereas tmpfs objects are accounted incrementally as
 182 * pages are allocated, in order to allow large sparse files.
 183 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 184 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 185 */
 186static inline int shmem_acct_block(unsigned long flags, long pages)
 187{
 188	if (!(flags & VM_NORESERVE))
 189		return 0;
 190
 191	return security_vm_enough_memory_mm(current->mm,
 192			pages * VM_ACCT(PAGE_SIZE));
 193}
 194
 195static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 196{
 197	if (flags & VM_NORESERVE)
 198		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 199}
 200
 201static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 202{
 203	struct shmem_inode_info *info = SHMEM_I(inode);
 204	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 205
 206	if (shmem_acct_block(info->flags, pages))
 207		return false;
 208
 209	if (sbinfo->max_blocks) {
 210		if (percpu_counter_compare(&sbinfo->used_blocks,
 211					   sbinfo->max_blocks - pages) > 0)
 212			goto unacct;
 213		percpu_counter_add(&sbinfo->used_blocks, pages);
 214	}
 215
 216	return true;
 217
 218unacct:
 219	shmem_unacct_blocks(info->flags, pages);
 220	return false;
 221}
 222
 223static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 224{
 225	struct shmem_inode_info *info = SHMEM_I(inode);
 226	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 227
 228	if (sbinfo->max_blocks)
 229		percpu_counter_sub(&sbinfo->used_blocks, pages);
 230	shmem_unacct_blocks(info->flags, pages);
 231}
 232
 233static const struct super_operations shmem_ops;
 234const struct address_space_operations shmem_aops;
 235static const struct file_operations shmem_file_operations;
 236static const struct inode_operations shmem_inode_operations;
 237static const struct inode_operations shmem_dir_inode_operations;
 238static const struct inode_operations shmem_special_inode_operations;
 239static const struct vm_operations_struct shmem_vm_ops;
 240static const struct vm_operations_struct shmem_anon_vm_ops;
 241static struct file_system_type shmem_fs_type;
 242
 243bool vma_is_anon_shmem(struct vm_area_struct *vma)
 244{
 245	return vma->vm_ops == &shmem_anon_vm_ops;
 246}
 247
 248bool vma_is_shmem(struct vm_area_struct *vma)
 249{
 250	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
 251}
 252
 253static LIST_HEAD(shmem_swaplist);
 254static DEFINE_MUTEX(shmem_swaplist_mutex);
 255
 256/*
 257 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
 258 * produces a novel ino for the newly allocated inode.
 259 *
 260 * It may also be called when making a hard link to permit the space needed by
 261 * each dentry. However, in that case, no new inode number is needed since that
 262 * internally draws from another pool of inode numbers (currently global
 263 * get_next_ino()). This case is indicated by passing NULL as inop.
 264 */
 265#define SHMEM_INO_BATCH 1024
 266static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
 267{
 268	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 269	ino_t ino;
 270
 271	if (!(sb->s_flags & SB_KERNMOUNT)) {
 272		raw_spin_lock(&sbinfo->stat_lock);
 273		if (sbinfo->max_inodes) {
 274			if (!sbinfo->free_inodes) {
 275				raw_spin_unlock(&sbinfo->stat_lock);
 276				return -ENOSPC;
 277			}
 278			sbinfo->free_inodes--;
 279		}
 280		if (inop) {
 281			ino = sbinfo->next_ino++;
 282			if (unlikely(is_zero_ino(ino)))
 283				ino = sbinfo->next_ino++;
 284			if (unlikely(!sbinfo->full_inums &&
 285				     ino > UINT_MAX)) {
 286				/*
 287				 * Emulate get_next_ino uint wraparound for
 288				 * compatibility
 289				 */
 290				if (IS_ENABLED(CONFIG_64BIT))
 291					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
 292						__func__, MINOR(sb->s_dev));
 293				sbinfo->next_ino = 1;
 294				ino = sbinfo->next_ino++;
 295			}
 296			*inop = ino;
 297		}
 298		raw_spin_unlock(&sbinfo->stat_lock);
 299	} else if (inop) {
 300		/*
 301		 * __shmem_file_setup, one of our callers, is lock-free: it
 302		 * doesn't hold stat_lock in shmem_reserve_inode since
 303		 * max_inodes is always 0, and is called from potentially
 304		 * unknown contexts. As such, use a per-cpu batched allocator
 305		 * which doesn't require the per-sb stat_lock unless we are at
 306		 * the batch boundary.
 307		 *
 308		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
 309		 * shmem mounts are not exposed to userspace, so we don't need
 310		 * to worry about things like glibc compatibility.
 311		 */
 312		ino_t *next_ino;
 313
 314		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
 315		ino = *next_ino;
 316		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
 317			raw_spin_lock(&sbinfo->stat_lock);
 318			ino = sbinfo->next_ino;
 319			sbinfo->next_ino += SHMEM_INO_BATCH;
 320			raw_spin_unlock(&sbinfo->stat_lock);
 321			if (unlikely(is_zero_ino(ino)))
 322				ino++;
 323		}
 324		*inop = ino;
 325		*next_ino = ++ino;
 326		put_cpu();
 327	}
 328
 329	return 0;
 330}
 331
 332static void shmem_free_inode(struct super_block *sb)
 333{
 334	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 335	if (sbinfo->max_inodes) {
 336		raw_spin_lock(&sbinfo->stat_lock);
 337		sbinfo->free_inodes++;
 338		raw_spin_unlock(&sbinfo->stat_lock);
 339	}
 340}
 341
 342/**
 343 * shmem_recalc_inode - recalculate the block usage of an inode
 344 * @inode: inode to recalc
 345 *
 346 * We have to calculate the free blocks since the mm can drop
 347 * undirtied hole pages behind our back.
 348 *
 349 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 350 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 351 *
 352 * It has to be called with the spinlock held.
 353 */
 354static void shmem_recalc_inode(struct inode *inode)
 355{
 356	struct shmem_inode_info *info = SHMEM_I(inode);
 357	long freed;
 358
 359	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 360	if (freed > 0) {
 361		info->alloced -= freed;
 362		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 363		shmem_inode_unacct_blocks(inode, freed);
 364	}
 365}
 366
 367bool shmem_charge(struct inode *inode, long pages)
 368{
 369	struct shmem_inode_info *info = SHMEM_I(inode);
 370	unsigned long flags;
 371
 372	if (!shmem_inode_acct_block(inode, pages))
 373		return false;
 374
 375	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
 376	inode->i_mapping->nrpages += pages;
 377
 378	spin_lock_irqsave(&info->lock, flags);
 379	info->alloced += pages;
 380	inode->i_blocks += pages * BLOCKS_PER_PAGE;
 381	shmem_recalc_inode(inode);
 382	spin_unlock_irqrestore(&info->lock, flags);
 
 383
 384	return true;
 385}
 386
 387void shmem_uncharge(struct inode *inode, long pages)
 388{
 389	struct shmem_inode_info *info = SHMEM_I(inode);
 390	unsigned long flags;
 391
 392	/* nrpages adjustment done by __filemap_remove_folio() or caller */
 393
 394	spin_lock_irqsave(&info->lock, flags);
 395	info->alloced -= pages;
 396	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 397	shmem_recalc_inode(inode);
 398	spin_unlock_irqrestore(&info->lock, flags);
 399
 400	shmem_inode_unacct_blocks(inode, pages);
 401}
 402
 403/*
 404 * Replace item expected in xarray by a new item, while holding xa_lock.
 405 */
 406static int shmem_replace_entry(struct address_space *mapping,
 407			pgoff_t index, void *expected, void *replacement)
 408{
 409	XA_STATE(xas, &mapping->i_pages, index);
 
 410	void *item;
 411
 412	VM_BUG_ON(!expected);
 413	VM_BUG_ON(!replacement);
 414	item = xas_load(&xas);
 
 
 415	if (item != expected)
 416		return -ENOENT;
 417	xas_store(&xas, replacement);
 
 418	return 0;
 419}
 420
 421/*
 422 * Sometimes, before we decide whether to proceed or to fail, we must check
 423 * that an entry was not already brought back from swap by a racing thread.
 424 *
 425 * Checking page is not enough: by the time a SwapCache page is locked, it
 426 * might be reused, and again be SwapCache, using the same swap as before.
 427 */
 428static bool shmem_confirm_swap(struct address_space *mapping,
 429			       pgoff_t index, swp_entry_t swap)
 430{
 431	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
 
 
 
 
 
 432}
 433
 434/*
 435 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 436 *
 437 * SHMEM_HUGE_NEVER:
 438 *	disables huge pages for the mount;
 439 * SHMEM_HUGE_ALWAYS:
 440 *	enables huge pages for the mount;
 441 * SHMEM_HUGE_WITHIN_SIZE:
 442 *	only allocate huge pages if the page will be fully within i_size,
 443 *	also respect fadvise()/madvise() hints;
 444 * SHMEM_HUGE_ADVISE:
 445 *	only allocate huge pages if requested with fadvise()/madvise();
 446 */
 447
 448#define SHMEM_HUGE_NEVER	0
 449#define SHMEM_HUGE_ALWAYS	1
 450#define SHMEM_HUGE_WITHIN_SIZE	2
 451#define SHMEM_HUGE_ADVISE	3
 452
 453/*
 454 * Special values.
 455 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 456 *
 457 * SHMEM_HUGE_DENY:
 458 *	disables huge on shm_mnt and all mounts, for emergency use;
 459 * SHMEM_HUGE_FORCE:
 460 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 461 *
 462 */
 463#define SHMEM_HUGE_DENY		(-1)
 464#define SHMEM_HUGE_FORCE	(-2)
 465
 466#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 467/* ifdef here to avoid bloating shmem.o when not necessary */
 468
 469static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
 470
 471bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
 472		   pgoff_t index, bool shmem_huge_force)
 473{
 474	loff_t i_size;
 475
 476	if (!S_ISREG(inode->i_mode))
 477		return false;
 478	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
 479	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
 480		return false;
 481	if (shmem_huge == SHMEM_HUGE_DENY)
 482		return false;
 483	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
 484		return true;
 485
 486	switch (SHMEM_SB(inode->i_sb)->huge) {
 487	case SHMEM_HUGE_ALWAYS:
 488		return true;
 489	case SHMEM_HUGE_WITHIN_SIZE:
 490		index = round_up(index + 1, HPAGE_PMD_NR);
 491		i_size = round_up(i_size_read(inode), PAGE_SIZE);
 492		if (i_size >> PAGE_SHIFT >= index)
 493			return true;
 494		fallthrough;
 495	case SHMEM_HUGE_ADVISE:
 496		if (vma && (vma->vm_flags & VM_HUGEPAGE))
 497			return true;
 498		fallthrough;
 499	default:
 500		return false;
 501	}
 502}
 503
 504#if defined(CONFIG_SYSFS)
 505static int shmem_parse_huge(const char *str)
 506{
 507	if (!strcmp(str, "never"))
 508		return SHMEM_HUGE_NEVER;
 509	if (!strcmp(str, "always"))
 510		return SHMEM_HUGE_ALWAYS;
 511	if (!strcmp(str, "within_size"))
 512		return SHMEM_HUGE_WITHIN_SIZE;
 513	if (!strcmp(str, "advise"))
 514		return SHMEM_HUGE_ADVISE;
 515	if (!strcmp(str, "deny"))
 516		return SHMEM_HUGE_DENY;
 517	if (!strcmp(str, "force"))
 518		return SHMEM_HUGE_FORCE;
 519	return -EINVAL;
 520}
 521#endif
 522
 523#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 524static const char *shmem_format_huge(int huge)
 525{
 526	switch (huge) {
 527	case SHMEM_HUGE_NEVER:
 528		return "never";
 529	case SHMEM_HUGE_ALWAYS:
 530		return "always";
 531	case SHMEM_HUGE_WITHIN_SIZE:
 532		return "within_size";
 533	case SHMEM_HUGE_ADVISE:
 534		return "advise";
 535	case SHMEM_HUGE_DENY:
 536		return "deny";
 537	case SHMEM_HUGE_FORCE:
 538		return "force";
 539	default:
 540		VM_BUG_ON(1);
 541		return "bad_val";
 542	}
 543}
 544#endif
 545
 546static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 547		struct shrink_control *sc, unsigned long nr_to_split)
 548{
 549	LIST_HEAD(list), *pos, *next;
 550	LIST_HEAD(to_remove);
 551	struct inode *inode;
 552	struct shmem_inode_info *info;
 553	struct folio *folio;
 554	unsigned long batch = sc ? sc->nr_to_scan : 128;
 555	int split = 0;
 556
 557	if (list_empty(&sbinfo->shrinklist))
 558		return SHRINK_STOP;
 559
 560	spin_lock(&sbinfo->shrinklist_lock);
 561	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 562		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 563
 564		/* pin the inode */
 565		inode = igrab(&info->vfs_inode);
 566
 567		/* inode is about to be evicted */
 568		if (!inode) {
 569			list_del_init(&info->shrinklist);
 
 570			goto next;
 571		}
 572
 573		/* Check if there's anything to gain */
 574		if (round_up(inode->i_size, PAGE_SIZE) ==
 575				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 576			list_move(&info->shrinklist, &to_remove);
 
 577			goto next;
 578		}
 579
 580		list_move(&info->shrinklist, &list);
 581next:
 582		sbinfo->shrinklist_len--;
 583		if (!--batch)
 584			break;
 585	}
 586	spin_unlock(&sbinfo->shrinklist_lock);
 587
 588	list_for_each_safe(pos, next, &to_remove) {
 589		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 590		inode = &info->vfs_inode;
 591		list_del_init(&info->shrinklist);
 592		iput(inode);
 593	}
 594
 595	list_for_each_safe(pos, next, &list) {
 596		int ret;
 597		pgoff_t index;
 598
 599		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 600		inode = &info->vfs_inode;
 601
 602		if (nr_to_split && split >= nr_to_split)
 603			goto move_back;
 604
 605		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
 606		folio = filemap_get_folio(inode->i_mapping, index);
 607		if (!folio)
 608			goto drop;
 609
 610		/* No huge page at the end of the file: nothing to split */
 611		if (!folio_test_large(folio)) {
 612			folio_put(folio);
 613			goto drop;
 614		}
 615
 616		/*
 617		 * Move the inode on the list back to shrinklist if we failed
 618		 * to lock the page at this time.
 619		 *
 620		 * Waiting for the lock may lead to deadlock in the
 621		 * reclaim path.
 622		 */
 623		if (!folio_trylock(folio)) {
 624			folio_put(folio);
 625			goto move_back;
 626		}
 627
 628		ret = split_folio(folio);
 629		folio_unlock(folio);
 630		folio_put(folio);
 631
 632		/* If split failed move the inode on the list back to shrinklist */
 633		if (ret)
 634			goto move_back;
 635
 636		split++;
 637drop:
 638		list_del_init(&info->shrinklist);
 639		goto put;
 640move_back:
 641		/*
 642		 * Make sure the inode is either on the global list or deleted
 643		 * from any local list before iput() since it could be deleted
 644		 * in another thread once we put the inode (then the local list
 645		 * is corrupted).
 646		 */
 647		spin_lock(&sbinfo->shrinklist_lock);
 648		list_move(&info->shrinklist, &sbinfo->shrinklist);
 649		sbinfo->shrinklist_len++;
 650		spin_unlock(&sbinfo->shrinklist_lock);
 651put:
 652		iput(inode);
 653	}
 654
 
 
 
 
 
 655	return split;
 656}
 657
 658static long shmem_unused_huge_scan(struct super_block *sb,
 659		struct shrink_control *sc)
 660{
 661	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 662
 663	if (!READ_ONCE(sbinfo->shrinklist_len))
 664		return SHRINK_STOP;
 665
 666	return shmem_unused_huge_shrink(sbinfo, sc, 0);
 667}
 668
 669static long shmem_unused_huge_count(struct super_block *sb,
 670		struct shrink_control *sc)
 671{
 672	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 673	return READ_ONCE(sbinfo->shrinklist_len);
 674}
 675#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
 676
 677#define shmem_huge SHMEM_HUGE_DENY
 678
 679bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
 680		   pgoff_t index, bool shmem_huge_force)
 681{
 682	return false;
 683}
 684
 685static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 686		struct shrink_control *sc, unsigned long nr_to_split)
 687{
 688	return 0;
 689}
 690#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 691
 692/*
 693 * Like filemap_add_folio, but error if expected item has gone.
 694 */
 695static int shmem_add_to_page_cache(struct folio *folio,
 696				   struct address_space *mapping,
 697				   pgoff_t index, void *expected, gfp_t gfp,
 698				   struct mm_struct *charge_mm)
 699{
 700	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
 701	long nr = folio_nr_pages(folio);
 702	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703
 704	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
 705	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 706	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
 707	VM_BUG_ON(expected && folio_test_large(folio));
 708
 709	folio_ref_add(folio, nr);
 710	folio->mapping = mapping;
 711	folio->index = index;
 712
 713	if (!folio_test_swapcache(folio)) {
 714		error = mem_cgroup_charge(folio, charge_mm, gfp);
 715		if (error) {
 716			if (folio_test_pmd_mappable(folio)) {
 717				count_vm_event(THP_FILE_FALLBACK);
 718				count_vm_event(THP_FILE_FALLBACK_CHARGE);
 719			}
 720			goto error;
 721		}
 
 
 
 
 
 722	}
 723	folio_throttle_swaprate(folio, gfp);
 724
 725	do {
 726		xas_lock_irq(&xas);
 727		if (expected != xas_find_conflict(&xas)) {
 728			xas_set_err(&xas, -EEXIST);
 729			goto unlock;
 730		}
 731		if (expected && xas_find_conflict(&xas)) {
 732			xas_set_err(&xas, -EEXIST);
 733			goto unlock;
 734		}
 735		xas_store(&xas, folio);
 736		if (xas_error(&xas))
 737			goto unlock;
 738		if (folio_test_pmd_mappable(folio)) {
 739			count_vm_event(THP_FILE_ALLOC);
 740			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
 741		}
 742		mapping->nrpages += nr;
 743		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 744		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
 745unlock:
 746		xas_unlock_irq(&xas);
 747	} while (xas_nomem(&xas, gfp));
 748
 749	if (xas_error(&xas)) {
 750		error = xas_error(&xas);
 751		goto error;
 752	}
 753
 754	return 0;
 755error:
 756	folio->mapping = NULL;
 757	folio_ref_sub(folio, nr);
 758	return error;
 759}
 760
 761/*
 762 * Like delete_from_page_cache, but substitutes swap for @folio.
 763 */
 764static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
 765{
 766	struct address_space *mapping = folio->mapping;
 767	long nr = folio_nr_pages(folio);
 768	int error;
 769
 
 
 770	xa_lock_irq(&mapping->i_pages);
 771	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
 772	folio->mapping = NULL;
 773	mapping->nrpages -= nr;
 774	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 775	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
 776	xa_unlock_irq(&mapping->i_pages);
 777	folio_put(folio);
 778	BUG_ON(error);
 779}
 780
 781/*
 782 * Remove swap entry from page cache, free the swap and its page cache.
 783 */
 784static int shmem_free_swap(struct address_space *mapping,
 785			   pgoff_t index, void *radswap)
 786{
 787	void *old;
 788
 789	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
 
 
 790	if (old != radswap)
 791		return -ENOENT;
 792	free_swap_and_cache(radix_to_swp_entry(radswap));
 793	return 0;
 794}
 795
 796/*
 797 * Determine (in bytes) how many of the shmem object's pages mapped by the
 798 * given offsets are swapped out.
 799 *
 800 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
 801 * as long as the inode doesn't go away and racy results are not a problem.
 802 */
 803unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 804						pgoff_t start, pgoff_t end)
 805{
 806	XA_STATE(xas, &mapping->i_pages, start);
 
 807	struct page *page;
 808	unsigned long swapped = 0;
 809
 810	rcu_read_lock();
 811	xas_for_each(&xas, page, end - 1) {
 812		if (xas_retry(&xas, page))
 
 
 
 
 
 
 
 813			continue;
 814		if (xa_is_value(page))
 
 
 815			swapped++;
 816
 817		if (need_resched()) {
 818			xas_pause(&xas);
 819			cond_resched_rcu();
 820		}
 821	}
 822
 823	rcu_read_unlock();
 824
 825	return swapped << PAGE_SHIFT;
 826}
 827
 828/*
 829 * Determine (in bytes) how many of the shmem object's pages mapped by the
 830 * given vma is swapped out.
 831 *
 832 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
 833 * as long as the inode doesn't go away and racy results are not a problem.
 834 */
 835unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 836{
 837	struct inode *inode = file_inode(vma->vm_file);
 838	struct shmem_inode_info *info = SHMEM_I(inode);
 839	struct address_space *mapping = inode->i_mapping;
 840	unsigned long swapped;
 841
 842	/* Be careful as we don't hold info->lock */
 843	swapped = READ_ONCE(info->swapped);
 844
 845	/*
 846	 * The easier cases are when the shmem object has nothing in swap, or
 847	 * the vma maps it whole. Then we can simply use the stats that we
 848	 * already track.
 849	 */
 850	if (!swapped)
 851		return 0;
 852
 853	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 854		return swapped << PAGE_SHIFT;
 855
 856	/* Here comes the more involved part */
 857	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
 858					vma->vm_pgoff + vma_pages(vma));
 
 859}
 860
 861/*
 862 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 863 */
 864void shmem_unlock_mapping(struct address_space *mapping)
 865{
 866	struct folio_batch fbatch;
 
 867	pgoff_t index = 0;
 868
 869	folio_batch_init(&fbatch);
 870	/*
 871	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 872	 */
 873	while (!mapping_unevictable(mapping) &&
 874	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
 875		check_move_unevictable_folios(&fbatch);
 876		folio_batch_release(&fbatch);
 
 
 
 
 
 
 
 
 
 877		cond_resched();
 878	}
 879}
 880
 881static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
 882{
 883	struct folio *folio;
 884
 885	/*
 886	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
 887	 * beyond i_size, and reports fallocated pages as holes.
 888	 */
 889	folio = __filemap_get_folio(inode->i_mapping, index,
 890					FGP_ENTRY | FGP_LOCK, 0);
 891	if (!xa_is_value(folio))
 892		return folio;
 893	/*
 894	 * But read a page back from swap if any of it is within i_size
 895	 * (although in some cases this is just a waste of time).
 896	 */
 897	folio = NULL;
 898	shmem_get_folio(inode, index, &folio, SGP_READ);
 899	return folio;
 900}
 901
 902/*
 903 * Remove range of pages and swap entries from page cache, and free them.
 904 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 905 */
 906static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 907								 bool unfalloc)
 908{
 909	struct address_space *mapping = inode->i_mapping;
 910	struct shmem_inode_info *info = SHMEM_I(inode);
 911	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 912	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 913	struct folio_batch fbatch;
 
 
 914	pgoff_t indices[PAGEVEC_SIZE];
 915	struct folio *folio;
 916	bool same_folio;
 917	long nr_swaps_freed = 0;
 918	pgoff_t index;
 919	int i;
 920
 921	if (lend == -1)
 922		end = -1;	/* unsigned, so actually very big */
 923
 924	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
 925		info->fallocend = start;
 
 
 
 
 
 
 
 
 926
 927	folio_batch_init(&fbatch);
 928	index = start;
 929	while (index < end && find_lock_entries(mapping, &index, end - 1,
 930			&fbatch, indices)) {
 931		for (i = 0; i < folio_batch_count(&fbatch); i++) {
 932			folio = fbatch.folios[i];
 933
 934			if (xa_is_value(folio)) {
 935				if (unfalloc)
 936					continue;
 937				nr_swaps_freed += !shmem_free_swap(mapping,
 938							indices[i], folio);
 939				continue;
 940			}
 941
 942			if (!unfalloc || !folio_test_uptodate(folio))
 943				truncate_inode_folio(mapping, folio);
 944			folio_unlock(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945		}
 946		folio_batch_remove_exceptionals(&fbatch);
 947		folio_batch_release(&fbatch);
 948		cond_resched();
 
 949	}
 950
 951	/*
 952	 * When undoing a failed fallocate, we want none of the partial folio
 953	 * zeroing and splitting below, but shall want to truncate the whole
 954	 * folio when !uptodate indicates that it was added by this fallocate,
 955	 * even when [lstart, lend] covers only a part of the folio.
 956	 */
 957	if (unfalloc)
 958		goto whole_folios;
 959
 960	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
 961	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
 962	if (folio) {
 963		same_folio = lend < folio_pos(folio) + folio_size(folio);
 964		folio_mark_dirty(folio);
 965		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
 966			start = folio->index + folio_nr_pages(folio);
 967			if (same_folio)
 968				end = folio->index;
 969		}
 970		folio_unlock(folio);
 971		folio_put(folio);
 972		folio = NULL;
 973	}
 974
 975	if (!same_folio)
 976		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
 977	if (folio) {
 978		folio_mark_dirty(folio);
 979		if (!truncate_inode_partial_folio(folio, lstart, lend))
 980			end = folio->index;
 981		folio_unlock(folio);
 982		folio_put(folio);
 983	}
 984
 985whole_folios:
 986
 987	index = start;
 988	while (index < end) {
 989		cond_resched();
 990
 991		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
 992				indices)) {
 
 
 993			/* If all gone or hole-punch or unfalloc, we're done */
 994			if (index == start || end != -1)
 995				break;
 996			/* But if truncating, restart to make sure all gone */
 997			index = start;
 998			continue;
 999		}
1000		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1001			folio = fbatch.folios[i];
 
 
 
 
1002
1003			if (xa_is_value(folio)) {
1004				if (unfalloc)
1005					continue;
1006				if (shmem_free_swap(mapping, indices[i], folio)) {
1007					/* Swap was replaced by page: retry */
1008					index = indices[i];
1009					break;
1010				}
1011				nr_swaps_freed++;
1012				continue;
1013			}
1014
1015			folio_lock(folio);
1016
1017			if (!unfalloc || !folio_test_uptodate(folio)) {
1018				if (folio_mapping(folio) != mapping) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019					/* Page was replaced by swap: retry */
1020					folio_unlock(folio);
1021					index = indices[i];
1022					break;
1023				}
1024				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025						folio);
1026				truncate_inode_folio(mapping, folio);
1027			}
1028			folio_unlock(folio);
1029		}
1030		folio_batch_remove_exceptionals(&fbatch);
1031		folio_batch_release(&fbatch);
 
1032	}
1033
1034	spin_lock_irq(&info->lock);
1035	info->swapped -= nr_swaps_freed;
1036	shmem_recalc_inode(inode);
1037	spin_unlock_irq(&info->lock);
1038}
1039
1040void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1041{
1042	shmem_undo_range(inode, lstart, lend, false);
1043	inode->i_ctime = inode->i_mtime = current_time(inode);
1044	inode_inc_iversion(inode);
1045}
1046EXPORT_SYMBOL_GPL(shmem_truncate_range);
1047
1048static int shmem_getattr(struct user_namespace *mnt_userns,
1049			 const struct path *path, struct kstat *stat,
1050			 u32 request_mask, unsigned int query_flags)
1051{
1052	struct inode *inode = path->dentry->d_inode;
1053	struct shmem_inode_info *info = SHMEM_I(inode);
1054
1055	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1056		spin_lock_irq(&info->lock);
1057		shmem_recalc_inode(inode);
1058		spin_unlock_irq(&info->lock);
1059	}
1060	if (info->fsflags & FS_APPEND_FL)
1061		stat->attributes |= STATX_ATTR_APPEND;
1062	if (info->fsflags & FS_IMMUTABLE_FL)
1063		stat->attributes |= STATX_ATTR_IMMUTABLE;
1064	if (info->fsflags & FS_NODUMP_FL)
1065		stat->attributes |= STATX_ATTR_NODUMP;
1066	stat->attributes_mask |= (STATX_ATTR_APPEND |
1067			STATX_ATTR_IMMUTABLE |
1068			STATX_ATTR_NODUMP);
1069	generic_fillattr(&init_user_ns, inode, stat);
1070
1071	if (shmem_is_huge(NULL, inode, 0, false))
1072		stat->blksize = HPAGE_PMD_SIZE;
1073
1074	if (request_mask & STATX_BTIME) {
1075		stat->result_mask |= STATX_BTIME;
1076		stat->btime.tv_sec = info->i_crtime.tv_sec;
1077		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1078	}
1079
1080	return 0;
1081}
1082
1083static int shmem_setattr(struct user_namespace *mnt_userns,
1084			 struct dentry *dentry, struct iattr *attr)
1085{
1086	struct inode *inode = d_inode(dentry);
1087	struct shmem_inode_info *info = SHMEM_I(inode);
 
1088	int error;
1089	bool update_mtime = false;
1090	bool update_ctime = true;
1091
1092	error = setattr_prepare(&init_user_ns, dentry, attr);
1093	if (error)
1094		return error;
1095
1096	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1097		loff_t oldsize = inode->i_size;
1098		loff_t newsize = attr->ia_size;
1099
1100		/* protected by i_rwsem */
1101		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1102		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1103			return -EPERM;
1104
1105		if (newsize != oldsize) {
1106			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1107					oldsize, newsize);
1108			if (error)
1109				return error;
1110			i_size_write(inode, newsize);
1111			update_mtime = true;
1112		} else {
1113			update_ctime = false;
1114		}
1115		if (newsize <= oldsize) {
1116			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1117			if (oldsize > holebegin)
1118				unmap_mapping_range(inode->i_mapping,
1119							holebegin, 0, 1);
1120			if (info->alloced)
1121				shmem_truncate_range(inode,
1122							newsize, (loff_t)-1);
1123			/* unmap again to remove racily COWed private pages */
1124			if (oldsize > holebegin)
1125				unmap_mapping_range(inode->i_mapping,
1126							holebegin, 0, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127		}
1128	}
1129
1130	setattr_copy(&init_user_ns, inode, attr);
1131	if (attr->ia_valid & ATTR_MODE)
1132		error = posix_acl_chmod(&init_user_ns, dentry, inode->i_mode);
1133	if (!error && update_ctime) {
1134		inode->i_ctime = current_time(inode);
1135		if (update_mtime)
1136			inode->i_mtime = inode->i_ctime;
1137		inode_inc_iversion(inode);
1138	}
1139	return error;
1140}
1141
1142static void shmem_evict_inode(struct inode *inode)
1143{
1144	struct shmem_inode_info *info = SHMEM_I(inode);
1145	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1146
1147	if (shmem_mapping(inode->i_mapping)) {
1148		shmem_unacct_size(info->flags, inode->i_size);
1149		inode->i_size = 0;
1150		mapping_set_exiting(inode->i_mapping);
1151		shmem_truncate_range(inode, 0, (loff_t)-1);
1152		if (!list_empty(&info->shrinklist)) {
1153			spin_lock(&sbinfo->shrinklist_lock);
1154			if (!list_empty(&info->shrinklist)) {
1155				list_del_init(&info->shrinklist);
1156				sbinfo->shrinklist_len--;
1157			}
1158			spin_unlock(&sbinfo->shrinklist_lock);
1159		}
1160		while (!list_empty(&info->swaplist)) {
1161			/* Wait while shmem_unuse() is scanning this inode... */
1162			wait_var_event(&info->stop_eviction,
1163				       !atomic_read(&info->stop_eviction));
1164			mutex_lock(&shmem_swaplist_mutex);
1165			/* ...but beware of the race if we peeked too early */
1166			if (!atomic_read(&info->stop_eviction))
1167				list_del_init(&info->swaplist);
1168			mutex_unlock(&shmem_swaplist_mutex);
1169		}
1170	}
1171
1172	simple_xattrs_free(&info->xattrs);
1173	WARN_ON(inode->i_blocks);
1174	shmem_free_inode(inode->i_sb);
1175	clear_inode(inode);
1176}
1177
1178static int shmem_find_swap_entries(struct address_space *mapping,
1179				   pgoff_t start, struct folio_batch *fbatch,
1180				   pgoff_t *indices, unsigned int type)
1181{
1182	XA_STATE(xas, &mapping->i_pages, start);
1183	struct folio *folio;
1184	swp_entry_t entry;
1185
1186	rcu_read_lock();
1187	xas_for_each(&xas, folio, ULONG_MAX) {
1188		if (xas_retry(&xas, folio))
1189			continue;
1190
1191		if (!xa_is_value(folio))
1192			continue;
1193
1194		entry = radix_to_swp_entry(folio);
1195		/*
1196		 * swapin error entries can be found in the mapping. But they're
1197		 * deliberately ignored here as we've done everything we can do.
1198		 */
1199		if (swp_type(entry) != type)
1200			continue;
1201
1202		indices[folio_batch_count(fbatch)] = xas.xa_index;
1203		if (!folio_batch_add(fbatch, folio))
1204			break;
1205
1206		if (need_resched()) {
1207			xas_pause(&xas);
1208			cond_resched_rcu();
1209		}
 
 
 
 
 
1210	}
 
1211	rcu_read_unlock();
1212
1213	return xas.xa_index;
1214}
1215
1216/*
1217 * Move the swapped pages for an inode to page cache. Returns the count
1218 * of pages swapped in, or the error in case of failure.
1219 */
1220static int shmem_unuse_swap_entries(struct inode *inode,
1221		struct folio_batch *fbatch, pgoff_t *indices)
1222{
1223	int i = 0;
1224	int ret = 0;
 
 
1225	int error = 0;
1226	struct address_space *mapping = inode->i_mapping;
1227
1228	for (i = 0; i < folio_batch_count(fbatch); i++) {
1229		struct folio *folio = fbatch->folios[i];
 
 
1230
1231		if (!xa_is_value(folio))
1232			continue;
1233		error = shmem_swapin_folio(inode, indices[i],
1234					  &folio, SGP_CACHE,
1235					  mapping_gfp_mask(mapping),
1236					  NULL, NULL);
1237		if (error == 0) {
1238			folio_unlock(folio);
1239			folio_put(folio);
1240			ret++;
1241		}
1242		if (error == -ENOMEM)
1243			break;
1244		error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1245	}
1246	return error ? error : ret;
1247}
1248
1249/*
1250 * If swap found in inode, free it and move page from swapcache to filecache.
1251 */
1252static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1253{
1254	struct address_space *mapping = inode->i_mapping;
1255	pgoff_t start = 0;
1256	struct folio_batch fbatch;
1257	pgoff_t indices[PAGEVEC_SIZE];
1258	int ret = 0;
1259
1260	do {
1261		folio_batch_init(&fbatch);
1262		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1263		if (folio_batch_count(&fbatch) == 0) {
1264			ret = 0;
1265			break;
 
 
 
1266		}
1267
1268		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1269		if (ret < 0)
1270			break;
1271
1272		start = indices[folio_batch_count(&fbatch) - 1];
1273	} while (true);
1274
1275	return ret;
1276}
1277
1278/*
1279 * Read all the shared memory data that resides in the swap
1280 * device 'type' back into memory, so the swap device can be
1281 * unused.
1282 */
1283int shmem_unuse(unsigned int type)
1284{
1285	struct shmem_inode_info *info, *next;
 
 
1286	int error = 0;
1287
1288	if (list_empty(&shmem_swaplist))
1289		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1290
1291	mutex_lock(&shmem_swaplist_mutex);
1292	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1293		if (!info->swapped) {
 
 
 
1294			list_del_init(&info->swaplist);
1295			continue;
1296		}
1297		/*
1298		 * Drop the swaplist mutex while searching the inode for swap;
1299		 * but before doing so, make sure shmem_evict_inode() will not
1300		 * remove placeholder inode from swaplist, nor let it be freed
1301		 * (igrab() would protect from unlink, but not from unmount).
1302		 */
1303		atomic_inc(&info->stop_eviction);
1304		mutex_unlock(&shmem_swaplist_mutex);
1305
1306		error = shmem_unuse_inode(&info->vfs_inode, type);
1307		cond_resched();
1308
1309		mutex_lock(&shmem_swaplist_mutex);
1310		next = list_next_entry(info, swaplist);
1311		if (!info->swapped)
1312			list_del_init(&info->swaplist);
1313		if (atomic_dec_and_test(&info->stop_eviction))
1314			wake_up_var(&info->stop_eviction);
1315		if (error)
1316			break;
 
1317	}
1318	mutex_unlock(&shmem_swaplist_mutex);
1319
 
 
 
 
 
 
 
 
 
1320	return error;
1321}
1322
1323/*
1324 * Move the page from the page cache to the swap cache.
1325 */
1326static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1327{
1328	struct folio *folio = page_folio(page);
1329	struct shmem_inode_info *info;
1330	struct address_space *mapping;
1331	struct inode *inode;
1332	swp_entry_t swap;
1333	pgoff_t index;
1334
1335	/*
1336	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1337	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1338	 * and its shmem_writeback() needs them to be split when swapping.
1339	 */
1340	if (folio_test_large(folio)) {
1341		/* Ensure the subpages are still dirty */
1342		folio_test_set_dirty(folio);
1343		if (split_huge_page(page) < 0)
1344			goto redirty;
1345		folio = page_folio(page);
1346		folio_clear_dirty(folio);
1347	}
1348
1349	BUG_ON(!folio_test_locked(folio));
1350	mapping = folio->mapping;
1351	index = folio->index;
1352	inode = mapping->host;
1353	info = SHMEM_I(inode);
1354	if (info->flags & VM_LOCKED)
1355		goto redirty;
1356	if (!total_swap_pages)
1357		goto redirty;
1358
1359	/*
1360	 * Our capabilities prevent regular writeback or sync from ever calling
1361	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1362	 * its underlying filesystem, in which case tmpfs should write out to
1363	 * swap only in response to memory pressure, and not for the writeback
1364	 * threads or sync.
1365	 */
1366	if (!wbc->for_reclaim) {
1367		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1368		goto redirty;
1369	}
1370
1371	/*
1372	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1373	 * value into swapfile.c, the only way we can correctly account for a
1374	 * fallocated folio arriving here is now to initialize it and write it.
1375	 *
1376	 * That's okay for a folio already fallocated earlier, but if we have
1377	 * not yet completed the fallocation, then (a) we want to keep track
1378	 * of this folio in case we have to undo it, and (b) it may not be a
1379	 * good idea to continue anyway, once we're pushing into swap.  So
1380	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1381	 */
1382	if (!folio_test_uptodate(folio)) {
1383		if (inode->i_private) {
1384			struct shmem_falloc *shmem_falloc;
1385			spin_lock(&inode->i_lock);
1386			shmem_falloc = inode->i_private;
1387			if (shmem_falloc &&
1388			    !shmem_falloc->waitq &&
1389			    index >= shmem_falloc->start &&
1390			    index < shmem_falloc->next)
1391				shmem_falloc->nr_unswapped++;
1392			else
1393				shmem_falloc = NULL;
1394			spin_unlock(&inode->i_lock);
1395			if (shmem_falloc)
1396				goto redirty;
1397		}
1398		folio_zero_range(folio, 0, folio_size(folio));
1399		flush_dcache_folio(folio);
1400		folio_mark_uptodate(folio);
1401	}
1402
1403	swap = folio_alloc_swap(folio);
1404	if (!swap.val)
1405		goto redirty;
1406
 
 
 
1407	/*
1408	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1409	 * if it's not already there.  Do it now before the folio is
1410	 * moved to swap cache, when its pagelock no longer protects
1411	 * the inode from eviction.  But don't unlock the mutex until
1412	 * we've incremented swapped, because shmem_unuse_inode() will
1413	 * prune a !swapped inode from the swaplist under this mutex.
1414	 */
1415	mutex_lock(&shmem_swaplist_mutex);
1416	if (list_empty(&info->swaplist))
1417		list_add(&info->swaplist, &shmem_swaplist);
1418
1419	if (add_to_swap_cache(folio, swap,
1420			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1421			NULL) == 0) {
1422		spin_lock_irq(&info->lock);
1423		shmem_recalc_inode(inode);
1424		info->swapped++;
1425		spin_unlock_irq(&info->lock);
1426
1427		swap_shmem_alloc(swap);
1428		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1429
1430		mutex_unlock(&shmem_swaplist_mutex);
1431		BUG_ON(folio_mapped(folio));
1432		swap_writepage(&folio->page, wbc);
1433		return 0;
1434	}
1435
1436	mutex_unlock(&shmem_swaplist_mutex);
1437	put_swap_folio(folio, swap);
 
1438redirty:
1439	folio_mark_dirty(folio);
1440	if (wbc->for_reclaim)
1441		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1442	folio_unlock(folio);
1443	return 0;
1444}
1445
1446#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1447static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1448{
1449	char buffer[64];
1450
1451	if (!mpol || mpol->mode == MPOL_DEFAULT)
1452		return;		/* show nothing */
1453
1454	mpol_to_str(buffer, sizeof(buffer), mpol);
1455
1456	seq_printf(seq, ",mpol=%s", buffer);
1457}
1458
1459static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1460{
1461	struct mempolicy *mpol = NULL;
1462	if (sbinfo->mpol) {
1463		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1464		mpol = sbinfo->mpol;
1465		mpol_get(mpol);
1466		raw_spin_unlock(&sbinfo->stat_lock);
1467	}
1468	return mpol;
1469}
1470#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1471static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1472{
1473}
1474static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1475{
1476	return NULL;
1477}
1478#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1479#ifndef CONFIG_NUMA
1480#define vm_policy vm_private_data
1481#endif
1482
1483static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1484		struct shmem_inode_info *info, pgoff_t index)
1485{
1486	/* Create a pseudo vma that just contains the policy */
1487	vma_init(vma, NULL);
1488	/* Bias interleave by inode number to distribute better across nodes */
1489	vma->vm_pgoff = index + info->vfs_inode.i_ino;
 
1490	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1491}
1492
1493static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1494{
1495	/* Drop reference taken by mpol_shared_policy_lookup() */
1496	mpol_cond_put(vma->vm_policy);
1497}
1498
1499static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1500			struct shmem_inode_info *info, pgoff_t index)
1501{
1502	struct vm_area_struct pvma;
1503	struct page *page;
1504	struct vm_fault vmf = {
1505		.vma = &pvma,
1506	};
1507
1508	shmem_pseudo_vma_init(&pvma, info, index);
 
 
1509	page = swap_cluster_readahead(swap, gfp, &vmf);
1510	shmem_pseudo_vma_destroy(&pvma);
1511
1512	if (!page)
1513		return NULL;
1514	return page_folio(page);
1515}
1516
1517/*
1518 * Make sure huge_gfp is always more limited than limit_gfp.
1519 * Some of the flags set permissions, while others set limitations.
1520 */
1521static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1522{
1523	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1524	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1525	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1526	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1527
1528	/* Allow allocations only from the originally specified zones. */
1529	result |= zoneflags;
1530
1531	/*
1532	 * Minimize the result gfp by taking the union with the deny flags,
1533	 * and the intersection of the allow flags.
1534	 */
1535	result |= (limit_gfp & denyflags);
1536	result |= (huge_gfp & limit_gfp) & allowflags;
1537
1538	return result;
1539}
1540
1541static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1542		struct shmem_inode_info *info, pgoff_t index)
1543{
1544	struct vm_area_struct pvma;
1545	struct address_space *mapping = info->vfs_inode.i_mapping;
1546	pgoff_t hindex;
1547	struct folio *folio;
 
 
 
 
 
1548
1549	hindex = round_down(index, HPAGE_PMD_NR);
1550	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1551								XA_PRESENT))
 
 
1552		return NULL;
 
 
1553
1554	shmem_pseudo_vma_init(&pvma, info, hindex);
1555	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
 
1556	shmem_pseudo_vma_destroy(&pvma);
1557	if (!folio)
1558		count_vm_event(THP_FILE_FALLBACK);
1559	return folio;
1560}
1561
1562static struct folio *shmem_alloc_folio(gfp_t gfp,
1563			struct shmem_inode_info *info, pgoff_t index)
1564{
1565	struct vm_area_struct pvma;
1566	struct folio *folio;
1567
1568	shmem_pseudo_vma_init(&pvma, info, index);
1569	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1570	shmem_pseudo_vma_destroy(&pvma);
1571
1572	return folio;
1573}
1574
1575static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
 
1576		pgoff_t index, bool huge)
1577{
1578	struct shmem_inode_info *info = SHMEM_I(inode);
1579	struct folio *folio;
1580	int nr;
1581	int err = -ENOSPC;
1582
1583	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1584		huge = false;
1585	nr = huge ? HPAGE_PMD_NR : 1;
1586
1587	if (!shmem_inode_acct_block(inode, nr))
1588		goto failed;
1589
1590	if (huge)
1591		folio = shmem_alloc_hugefolio(gfp, info, index);
1592	else
1593		folio = shmem_alloc_folio(gfp, info, index);
1594	if (folio) {
1595		__folio_set_locked(folio);
1596		__folio_set_swapbacked(folio);
1597		return folio;
1598	}
1599
1600	err = -ENOMEM;
1601	shmem_inode_unacct_blocks(inode, nr);
1602failed:
1603	return ERR_PTR(err);
1604}
1605
1606/*
1607 * When a page is moved from swapcache to shmem filecache (either by the
1608 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1609 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1610 * ignorance of the mapping it belongs to.  If that mapping has special
1611 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1612 * we may need to copy to a suitable page before moving to filecache.
1613 *
1614 * In a future release, this may well be extended to respect cpuset and
1615 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1616 * but for now it is a simple matter of zone.
1617 */
1618static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1619{
1620	return folio_zonenum(folio) > gfp_zone(gfp);
1621}
1622
1623static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1624				struct shmem_inode_info *info, pgoff_t index)
1625{
1626	struct folio *old, *new;
1627	struct address_space *swap_mapping;
1628	swp_entry_t entry;
1629	pgoff_t swap_index;
1630	int error;
1631
1632	old = *foliop;
1633	entry = folio_swap_entry(old);
1634	swap_index = swp_offset(entry);
1635	swap_mapping = swap_address_space(entry);
1636
1637	/*
1638	 * We have arrived here because our zones are constrained, so don't
1639	 * limit chance of success by further cpuset and node constraints.
1640	 */
1641	gfp &= ~GFP_CONSTRAINT_MASK;
1642	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1643	new = shmem_alloc_folio(gfp, info, index);
1644	if (!new)
1645		return -ENOMEM;
1646
1647	folio_get(new);
1648	folio_copy(new, old);
1649	flush_dcache_folio(new);
1650
1651	__folio_set_locked(new);
1652	__folio_set_swapbacked(new);
1653	folio_mark_uptodate(new);
1654	folio_set_swap_entry(new, entry);
1655	folio_set_swapcache(new);
1656
1657	/*
1658	 * Our caller will very soon move newpage out of swapcache, but it's
1659	 * a nice clean interface for us to replace oldpage by newpage there.
1660	 */
1661	xa_lock_irq(&swap_mapping->i_pages);
1662	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
 
1663	if (!error) {
1664		mem_cgroup_migrate(old, new);
1665		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1666		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1667		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1668		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1669	}
1670	xa_unlock_irq(&swap_mapping->i_pages);
1671
1672	if (unlikely(error)) {
1673		/*
1674		 * Is this possible?  I think not, now that our callers check
1675		 * both PageSwapCache and page_private after getting page lock;
1676		 * but be defensive.  Reverse old to newpage for clear and free.
1677		 */
1678		old = new;
1679	} else {
1680		folio_add_lru(new);
1681		*foliop = new;
 
1682	}
1683
1684	folio_clear_swapcache(old);
1685	old->private = NULL;
1686
1687	folio_unlock(old);
1688	folio_put_refs(old, 2);
 
1689	return error;
1690}
1691
1692static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1693					 struct folio *folio, swp_entry_t swap)
1694{
1695	struct address_space *mapping = inode->i_mapping;
1696	struct shmem_inode_info *info = SHMEM_I(inode);
1697	swp_entry_t swapin_error;
1698	void *old;
1699
1700	swapin_error = make_swapin_error_entry();
1701	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1702			     swp_to_radix_entry(swap),
1703			     swp_to_radix_entry(swapin_error), 0);
1704	if (old != swp_to_radix_entry(swap))
1705		return;
1706
1707	folio_wait_writeback(folio);
1708	delete_from_swap_cache(folio);
1709	spin_lock_irq(&info->lock);
1710	/*
1711	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1712	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1713	 * shmem_evict_inode.
1714	 */
1715	info->alloced--;
1716	info->swapped--;
1717	shmem_recalc_inode(inode);
1718	spin_unlock_irq(&info->lock);
1719	swap_free(swap);
1720}
1721
1722/*
1723 * Swap in the folio pointed to by *foliop.
1724 * Caller has to make sure that *foliop contains a valid swapped folio.
1725 * Returns 0 and the folio in foliop if success. On failure, returns the
1726 * error code and NULL in *foliop.
1727 */
1728static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1729			     struct folio **foliop, enum sgp_type sgp,
1730			     gfp_t gfp, struct vm_area_struct *vma,
1731			     vm_fault_t *fault_type)
1732{
1733	struct address_space *mapping = inode->i_mapping;
1734	struct shmem_inode_info *info = SHMEM_I(inode);
1735	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1736	struct folio *folio = NULL;
1737	swp_entry_t swap;
1738	int error;
1739
1740	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1741	swap = radix_to_swp_entry(*foliop);
1742	*foliop = NULL;
1743
1744	if (is_swapin_error_entry(swap))
1745		return -EIO;
1746
1747	/* Look it up and read it in.. */
1748	folio = swap_cache_get_folio(swap, NULL, 0);
1749	if (!folio) {
1750		/* Or update major stats only when swapin succeeds?? */
1751		if (fault_type) {
1752			*fault_type |= VM_FAULT_MAJOR;
1753			count_vm_event(PGMAJFAULT);
1754			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1755		}
1756		/* Here we actually start the io */
1757		folio = shmem_swapin(swap, gfp, info, index);
1758		if (!folio) {
1759			error = -ENOMEM;
1760			goto failed;
1761		}
1762	}
1763
1764	/* We have to do this with folio locked to prevent races */
1765	folio_lock(folio);
1766	if (!folio_test_swapcache(folio) ||
1767	    folio_swap_entry(folio).val != swap.val ||
1768	    !shmem_confirm_swap(mapping, index, swap)) {
1769		error = -EEXIST;
1770		goto unlock;
1771	}
1772	if (!folio_test_uptodate(folio)) {
1773		error = -EIO;
1774		goto failed;
1775	}
1776	folio_wait_writeback(folio);
1777
1778	/*
1779	 * Some architectures may have to restore extra metadata to the
1780	 * folio after reading from swap.
1781	 */
1782	arch_swap_restore(swap, folio);
1783
1784	if (shmem_should_replace_folio(folio, gfp)) {
1785		error = shmem_replace_folio(&folio, gfp, info, index);
1786		if (error)
1787			goto failed;
1788	}
1789
1790	error = shmem_add_to_page_cache(folio, mapping, index,
1791					swp_to_radix_entry(swap), gfp,
1792					charge_mm);
1793	if (error)
1794		goto failed;
1795
1796	spin_lock_irq(&info->lock);
1797	info->swapped--;
1798	shmem_recalc_inode(inode);
1799	spin_unlock_irq(&info->lock);
1800
1801	if (sgp == SGP_WRITE)
1802		folio_mark_accessed(folio);
1803
1804	delete_from_swap_cache(folio);
1805	folio_mark_dirty(folio);
1806	swap_free(swap);
1807
1808	*foliop = folio;
1809	return 0;
1810failed:
1811	if (!shmem_confirm_swap(mapping, index, swap))
1812		error = -EEXIST;
1813	if (error == -EIO)
1814		shmem_set_folio_swapin_error(inode, index, folio, swap);
1815unlock:
1816	if (folio) {
1817		folio_unlock(folio);
1818		folio_put(folio);
1819	}
1820
1821	return error;
1822}
1823
1824/*
1825 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1826 *
1827 * If we allocate a new one we do not mark it dirty. That's up to the
1828 * vm. If we swap it in we mark it dirty since we also free the swap
1829 * entry since a page cannot live in both the swap and page cache.
1830 *
1831 * vma, vmf, and fault_type are only supplied by shmem_fault:
1832 * otherwise they are NULL.
1833 */
1834static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1835		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1836		struct vm_area_struct *vma, struct vm_fault *vmf,
1837		vm_fault_t *fault_type)
1838{
1839	struct address_space *mapping = inode->i_mapping;
1840	struct shmem_inode_info *info = SHMEM_I(inode);
1841	struct shmem_sb_info *sbinfo;
1842	struct mm_struct *charge_mm;
1843	struct folio *folio;
1844	pgoff_t hindex;
1845	gfp_t huge_gfp;
 
 
1846	int error;
1847	int once = 0;
1848	int alloced = 0;
1849
1850	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1851		return -EFBIG;
 
 
1852repeat:
 
 
 
 
 
 
 
1853	if (sgp <= SGP_CACHE &&
1854	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1855		return -EINVAL;
 
1856	}
1857
1858	sbinfo = SHMEM_SB(inode->i_sb);
1859	charge_mm = vma ? vma->vm_mm : NULL;
1860
1861	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1862	if (folio && vma && userfaultfd_minor(vma)) {
1863		if (!xa_is_value(folio)) {
1864			folio_unlock(folio);
1865			folio_put(folio);
1866		}
1867		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
 
 
 
1868		return 0;
1869	}
1870
1871	if (xa_is_value(folio)) {
1872		error = shmem_swapin_folio(inode, index, &folio,
1873					  sgp, gfp, vma, fault_type);
1874		if (error == -EEXIST)
1875			goto repeat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1876
1877		*foliop = folio;
1878		return error;
1879	}
 
 
 
 
 
 
 
 
 
1880
1881	if (folio) {
1882		if (sgp == SGP_WRITE)
1883			folio_mark_accessed(folio);
1884		if (folio_test_uptodate(folio))
1885			goto out;
1886		/* fallocated folio */
1887		if (sgp != SGP_READ)
1888			goto clear;
1889		folio_unlock(folio);
1890		folio_put(folio);
1891	}
1892
1893	/*
1894	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1895	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1896	 */
1897	*foliop = NULL;
1898	if (sgp == SGP_READ)
1899		return 0;
1900	if (sgp == SGP_NOALLOC)
1901		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1902
1903	/*
1904	 * Fast cache lookup and swap lookup did not find it: allocate.
1905	 */
1906
1907	if (vma && userfaultfd_missing(vma)) {
1908		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1909		return 0;
1910	}
1911
1912	if (!shmem_is_huge(vma, inode, index, false))
1913		goto alloc_nohuge;
1914
1915	huge_gfp = vma_thp_gfp_mask(vma);
1916	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1917	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1918	if (IS_ERR(folio)) {
1919alloc_nohuge:
1920		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1921	}
1922	if (IS_ERR(folio)) {
1923		int retry = 5;
1924
1925		error = PTR_ERR(folio);
1926		folio = NULL;
1927		if (error != -ENOSPC)
1928			goto unlock;
1929		/*
1930		 * Try to reclaim some space by splitting a large folio
1931		 * beyond i_size on the filesystem.
1932		 */
1933		while (retry--) {
1934			int ret;
1935
1936			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1937			if (ret == SHRINK_STOP)
1938				break;
1939			if (ret)
1940				goto alloc_nohuge;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1941		}
1942		goto unlock;
1943	}
1944
1945	hindex = round_down(index, folio_nr_pages(folio));
 
 
 
1946
1947	if (sgp == SGP_WRITE)
1948		__folio_set_referenced(folio);
1949
1950	error = shmem_add_to_page_cache(folio, mapping, hindex,
1951					NULL, gfp & GFP_RECLAIM_MASK,
1952					charge_mm);
1953	if (error)
1954		goto unacct;
1955	folio_add_lru(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1956
1957	spin_lock_irq(&info->lock);
1958	info->alloced += folio_nr_pages(folio);
1959	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1960	shmem_recalc_inode(inode);
1961	spin_unlock_irq(&info->lock);
1962	alloced = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
1963
1964	if (folio_test_pmd_mappable(folio) &&
1965	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1966					folio_next_index(folio) - 1) {
1967		/*
1968		 * Part of the large folio is beyond i_size: subject
1969		 * to shrink under memory pressure.
1970		 */
1971		spin_lock(&sbinfo->shrinklist_lock);
 
 
1972		/*
1973		 * _careful to defend against unlocked access to
1974		 * ->shrink_list in shmem_unused_huge_shrink()
 
1975		 */
1976		if (list_empty_careful(&info->shrinklist)) {
1977			list_add_tail(&info->shrinklist,
1978				      &sbinfo->shrinklist);
1979			sbinfo->shrinklist_len++;
 
 
 
 
 
1980		}
1981		spin_unlock(&sbinfo->shrinklist_lock);
1982	}
1983
1984	/*
1985	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
1986	 */
1987	if (sgp == SGP_FALLOC)
1988		sgp = SGP_WRITE;
1989clear:
1990	/*
1991	 * Let SGP_WRITE caller clear ends if write does not fill folio;
1992	 * but SGP_FALLOC on a folio fallocated earlier must initialize
1993	 * it now, lest undo on failure cancel our earlier guarantee.
1994	 */
1995	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1996		long i, n = folio_nr_pages(folio);
1997
1998		for (i = 0; i < n; i++)
1999			clear_highpage(folio_page(folio, i));
2000		flush_dcache_folio(folio);
2001		folio_mark_uptodate(folio);
2002	}
2003
2004	/* Perhaps the file has been truncated since we checked */
2005	if (sgp <= SGP_CACHE &&
2006	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2007		if (alloced) {
2008			folio_clear_dirty(folio);
2009			filemap_remove_folio(folio);
2010			spin_lock_irq(&info->lock);
2011			shmem_recalc_inode(inode);
2012			spin_unlock_irq(&info->lock);
2013		}
2014		error = -EINVAL;
2015		goto unlock;
2016	}
2017out:
2018	*foliop = folio;
2019	return 0;
2020
2021	/*
2022	 * Error recovery.
2023	 */
2024unacct:
2025	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2026
2027	if (folio_test_large(folio)) {
2028		folio_unlock(folio);
2029		folio_put(folio);
2030		goto alloc_nohuge;
2031	}
 
 
 
2032unlock:
2033	if (folio) {
2034		folio_unlock(folio);
2035		folio_put(folio);
2036	}
2037	if (error == -ENOSPC && !once++) {
2038		spin_lock_irq(&info->lock);
2039		shmem_recalc_inode(inode);
2040		spin_unlock_irq(&info->lock);
2041		goto repeat;
2042	}
2043	if (error == -EEXIST)
2044		goto repeat;
2045	return error;
2046}
2047
2048int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2049		enum sgp_type sgp)
2050{
2051	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2052			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2053}
2054
2055/*
2056 * This is like autoremove_wake_function, but it removes the wait queue
2057 * entry unconditionally - even if something else had already woken the
2058 * target.
2059 */
2060static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2061{
2062	int ret = default_wake_function(wait, mode, sync, key);
2063	list_del_init(&wait->entry);
2064	return ret;
2065}
2066
2067static vm_fault_t shmem_fault(struct vm_fault *vmf)
2068{
2069	struct vm_area_struct *vma = vmf->vma;
2070	struct inode *inode = file_inode(vma->vm_file);
2071	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2072	struct folio *folio = NULL;
2073	int err;
2074	vm_fault_t ret = VM_FAULT_LOCKED;
2075
2076	/*
2077	 * Trinity finds that probing a hole which tmpfs is punching can
2078	 * prevent the hole-punch from ever completing: which in turn
2079	 * locks writers out with its hold on i_rwsem.  So refrain from
2080	 * faulting pages into the hole while it's being punched.  Although
2081	 * shmem_undo_range() does remove the additions, it may be unable to
2082	 * keep up, as each new page needs its own unmap_mapping_range() call,
2083	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2084	 *
2085	 * It does not matter if we sometimes reach this check just before the
2086	 * hole-punch begins, so that one fault then races with the punch:
2087	 * we just need to make racing faults a rare case.
2088	 *
2089	 * The implementation below would be much simpler if we just used a
2090	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2091	 * and bloating every shmem inode for this unlikely case would be sad.
2092	 */
2093	if (unlikely(inode->i_private)) {
2094		struct shmem_falloc *shmem_falloc;
2095
2096		spin_lock(&inode->i_lock);
2097		shmem_falloc = inode->i_private;
2098		if (shmem_falloc &&
2099		    shmem_falloc->waitq &&
2100		    vmf->pgoff >= shmem_falloc->start &&
2101		    vmf->pgoff < shmem_falloc->next) {
2102			struct file *fpin;
2103			wait_queue_head_t *shmem_falloc_waitq;
2104			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2105
2106			ret = VM_FAULT_NOPAGE;
2107			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2108			if (fpin)
 
 
2109				ret = VM_FAULT_RETRY;
 
2110
2111			shmem_falloc_waitq = shmem_falloc->waitq;
2112			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2113					TASK_UNINTERRUPTIBLE);
2114			spin_unlock(&inode->i_lock);
2115			schedule();
2116
2117			/*
2118			 * shmem_falloc_waitq points into the shmem_fallocate()
2119			 * stack of the hole-punching task: shmem_falloc_waitq
2120			 * is usually invalid by the time we reach here, but
2121			 * finish_wait() does not dereference it in that case;
2122			 * though i_lock needed lest racing with wake_up_all().
2123			 */
2124			spin_lock(&inode->i_lock);
2125			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2126			spin_unlock(&inode->i_lock);
2127
2128			if (fpin)
2129				fput(fpin);
2130			return ret;
2131		}
2132		spin_unlock(&inode->i_lock);
2133	}
2134
2135	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
 
 
 
 
 
 
 
 
2136				  gfp, vma, vmf, &ret);
2137	if (err)
2138		return vmf_error(err);
2139	if (folio)
2140		vmf->page = folio_file_page(folio, vmf->pgoff);
2141	return ret;
2142}
2143
2144unsigned long shmem_get_unmapped_area(struct file *file,
2145				      unsigned long uaddr, unsigned long len,
2146				      unsigned long pgoff, unsigned long flags)
2147{
2148	unsigned long (*get_area)(struct file *,
2149		unsigned long, unsigned long, unsigned long, unsigned long);
2150	unsigned long addr;
2151	unsigned long offset;
2152	unsigned long inflated_len;
2153	unsigned long inflated_addr;
2154	unsigned long inflated_offset;
2155
2156	if (len > TASK_SIZE)
2157		return -ENOMEM;
2158
2159	get_area = current->mm->get_unmapped_area;
2160	addr = get_area(file, uaddr, len, pgoff, flags);
2161
2162	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2163		return addr;
2164	if (IS_ERR_VALUE(addr))
2165		return addr;
2166	if (addr & ~PAGE_MASK)
2167		return addr;
2168	if (addr > TASK_SIZE - len)
2169		return addr;
2170
2171	if (shmem_huge == SHMEM_HUGE_DENY)
2172		return addr;
2173	if (len < HPAGE_PMD_SIZE)
2174		return addr;
2175	if (flags & MAP_FIXED)
2176		return addr;
2177	/*
2178	 * Our priority is to support MAP_SHARED mapped hugely;
2179	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2180	 * But if caller specified an address hint and we allocated area there
2181	 * successfully, respect that as before.
2182	 */
2183	if (uaddr == addr)
2184		return addr;
2185
2186	if (shmem_huge != SHMEM_HUGE_FORCE) {
2187		struct super_block *sb;
2188
2189		if (file) {
2190			VM_BUG_ON(file->f_op != &shmem_file_operations);
2191			sb = file_inode(file)->i_sb;
2192		} else {
2193			/*
2194			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2195			 * for "/dev/zero", to create a shared anonymous object.
2196			 */
2197			if (IS_ERR(shm_mnt))
2198				return addr;
2199			sb = shm_mnt->mnt_sb;
2200		}
2201		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2202			return addr;
2203	}
2204
2205	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2206	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2207		return addr;
2208	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2209		return addr;
2210
2211	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2212	if (inflated_len > TASK_SIZE)
2213		return addr;
2214	if (inflated_len < len)
2215		return addr;
2216
2217	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2218	if (IS_ERR_VALUE(inflated_addr))
2219		return addr;
2220	if (inflated_addr & ~PAGE_MASK)
2221		return addr;
2222
2223	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2224	inflated_addr += offset - inflated_offset;
2225	if (inflated_offset > offset)
2226		inflated_addr += HPAGE_PMD_SIZE;
2227
2228	if (inflated_addr > TASK_SIZE - len)
2229		return addr;
2230	return inflated_addr;
2231}
2232
2233#ifdef CONFIG_NUMA
2234static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2235{
2236	struct inode *inode = file_inode(vma->vm_file);
2237	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2238}
2239
2240static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2241					  unsigned long addr)
2242{
2243	struct inode *inode = file_inode(vma->vm_file);
2244	pgoff_t index;
2245
2246	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2247	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2248}
2249#endif
2250
2251int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2252{
2253	struct inode *inode = file_inode(file);
2254	struct shmem_inode_info *info = SHMEM_I(inode);
2255	int retval = -ENOMEM;
2256
2257	/*
2258	 * What serializes the accesses to info->flags?
2259	 * ipc_lock_object() when called from shmctl_do_lock(),
2260	 * no serialization needed when called from shm_destroy().
2261	 */
2262	if (lock && !(info->flags & VM_LOCKED)) {
2263		if (!user_shm_lock(inode->i_size, ucounts))
2264			goto out_nomem;
2265		info->flags |= VM_LOCKED;
2266		mapping_set_unevictable(file->f_mapping);
2267	}
2268	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2269		user_shm_unlock(inode->i_size, ucounts);
2270		info->flags &= ~VM_LOCKED;
2271		mapping_clear_unevictable(file->f_mapping);
2272	}
2273	retval = 0;
2274
2275out_nomem:
 
2276	return retval;
2277}
2278
2279static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2280{
2281	struct inode *inode = file_inode(file);
2282	struct shmem_inode_info *info = SHMEM_I(inode);
2283	int ret;
2284
2285	ret = seal_check_future_write(info->seals, vma);
2286	if (ret)
2287		return ret;
2288
2289	/* arm64 - allow memory tagging on RAM-based files */
2290	vma->vm_flags |= VM_MTE_ALLOWED;
2291
2292	file_accessed(file);
2293	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2294	if (inode->i_nlink)
2295		vma->vm_ops = &shmem_vm_ops;
2296	else
2297		vma->vm_ops = &shmem_anon_vm_ops;
 
2298	return 0;
2299}
2300
2301#ifdef CONFIG_TMPFS_XATTR
2302static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2303
2304/*
2305 * chattr's fsflags are unrelated to extended attributes,
2306 * but tmpfs has chosen to enable them under the same config option.
2307 */
2308static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2309{
2310	unsigned int i_flags = 0;
2311
2312	if (fsflags & FS_NOATIME_FL)
2313		i_flags |= S_NOATIME;
2314	if (fsflags & FS_APPEND_FL)
2315		i_flags |= S_APPEND;
2316	if (fsflags & FS_IMMUTABLE_FL)
2317		i_flags |= S_IMMUTABLE;
2318	/*
2319	 * But FS_NODUMP_FL does not require any action in i_flags.
2320	 */
2321	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2322}
2323#else
2324static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2325{
2326}
2327#define shmem_initxattrs NULL
2328#endif
2329
2330static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2331				     umode_t mode, dev_t dev, unsigned long flags)
2332{
2333	struct inode *inode;
2334	struct shmem_inode_info *info;
2335	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2336	ino_t ino;
2337
2338	if (shmem_reserve_inode(sb, &ino))
2339		return NULL;
2340
2341	inode = new_inode(sb);
2342	if (inode) {
2343		inode->i_ino = ino;
2344		inode_init_owner(&init_user_ns, inode, dir, mode);
2345		inode->i_blocks = 0;
2346		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2347		inode->i_generation = get_random_u32();
2348		info = SHMEM_I(inode);
2349		memset(info, 0, (char *)inode - (char *)info);
2350		spin_lock_init(&info->lock);
2351		atomic_set(&info->stop_eviction, 0);
2352		info->seals = F_SEAL_SEAL;
2353		info->flags = flags & VM_NORESERVE;
2354		info->i_crtime = inode->i_mtime;
2355		info->fsflags = (dir == NULL) ? 0 :
2356			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2357		if (info->fsflags)
2358			shmem_set_inode_flags(inode, info->fsflags);
2359		INIT_LIST_HEAD(&info->shrinklist);
2360		INIT_LIST_HEAD(&info->swaplist);
2361		simple_xattrs_init(&info->xattrs);
2362		cache_no_acl(inode);
2363		mapping_set_large_folios(inode->i_mapping);
2364
2365		switch (mode & S_IFMT) {
2366		default:
2367			inode->i_op = &shmem_special_inode_operations;
2368			init_special_inode(inode, mode, dev);
2369			break;
2370		case S_IFREG:
2371			inode->i_mapping->a_ops = &shmem_aops;
2372			inode->i_op = &shmem_inode_operations;
2373			inode->i_fop = &shmem_file_operations;
2374			mpol_shared_policy_init(&info->policy,
2375						 shmem_get_sbmpol(sbinfo));
2376			break;
2377		case S_IFDIR:
2378			inc_nlink(inode);
2379			/* Some things misbehave if size == 0 on a directory */
2380			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2381			inode->i_op = &shmem_dir_inode_operations;
2382			inode->i_fop = &simple_dir_operations;
2383			break;
2384		case S_IFLNK:
2385			/*
2386			 * Must not load anything in the rbtree,
2387			 * mpol_free_shared_policy will not be called.
2388			 */
2389			mpol_shared_policy_init(&info->policy, NULL);
2390			break;
2391		}
2392
2393		lockdep_annotate_inode_mutex_key(inode);
2394	} else
2395		shmem_free_inode(sb);
2396	return inode;
2397}
2398
2399#ifdef CONFIG_USERFAULTFD
2400int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2401			   pmd_t *dst_pmd,
2402			   struct vm_area_struct *dst_vma,
2403			   unsigned long dst_addr,
2404			   unsigned long src_addr,
2405			   bool zeropage, bool wp_copy,
2406			   struct page **pagep)
 
 
 
 
2407{
2408	struct inode *inode = file_inode(dst_vma->vm_file);
2409	struct shmem_inode_info *info = SHMEM_I(inode);
2410	struct address_space *mapping = inode->i_mapping;
2411	gfp_t gfp = mapping_gfp_mask(mapping);
2412	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
 
 
2413	void *page_kaddr;
2414	struct folio *folio;
 
2415	int ret;
2416	pgoff_t max_off;
2417
2418	if (!shmem_inode_acct_block(inode, 1)) {
2419		/*
2420		 * We may have got a page, returned -ENOENT triggering a retry,
2421		 * and now we find ourselves with -ENOMEM. Release the page, to
2422		 * avoid a BUG_ON in our caller.
2423		 */
2424		if (unlikely(*pagep)) {
2425			put_page(*pagep);
2426			*pagep = NULL;
2427		}
2428		return -ENOMEM;
2429	}
2430
2431	if (!*pagep) {
2432		ret = -ENOMEM;
2433		folio = shmem_alloc_folio(gfp, info, pgoff);
2434		if (!folio)
2435			goto out_unacct_blocks;
2436
2437		if (!zeropage) {	/* COPY */
2438			page_kaddr = kmap_local_folio(folio, 0);
2439			/*
2440			 * The read mmap_lock is held here.  Despite the
2441			 * mmap_lock being read recursive a deadlock is still
2442			 * possible if a writer has taken a lock.  For example:
2443			 *
2444			 * process A thread 1 takes read lock on own mmap_lock
2445			 * process A thread 2 calls mmap, blocks taking write lock
2446			 * process B thread 1 takes page fault, read lock on own mmap lock
2447			 * process B thread 2 calls mmap, blocks taking write lock
2448			 * process A thread 1 blocks taking read lock on process B
2449			 * process B thread 1 blocks taking read lock on process A
2450			 *
2451			 * Disable page faults to prevent potential deadlock
2452			 * and retry the copy outside the mmap_lock.
2453			 */
2454			pagefault_disable();
2455			ret = copy_from_user(page_kaddr,
2456					     (const void __user *)src_addr,
2457					     PAGE_SIZE);
2458			pagefault_enable();
2459			kunmap_local(page_kaddr);
2460
2461			/* fallback to copy_from_user outside mmap_lock */
2462			if (unlikely(ret)) {
2463				*pagep = &folio->page;
2464				ret = -ENOENT;
2465				/* don't free the page */
2466				goto out_unacct_blocks;
2467			}
2468
2469			flush_dcache_folio(folio);
2470		} else {		/* ZEROPAGE */
2471			clear_user_highpage(&folio->page, dst_addr);
2472		}
2473	} else {
2474		folio = page_folio(*pagep);
2475		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2476		*pagep = NULL;
2477	}
2478
2479	VM_BUG_ON(folio_test_locked(folio));
2480	VM_BUG_ON(folio_test_swapbacked(folio));
2481	__folio_set_locked(folio);
2482	__folio_set_swapbacked(folio);
2483	__folio_mark_uptodate(folio);
2484
2485	ret = -EFAULT;
2486	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2487	if (unlikely(pgoff >= max_off))
2488		goto out_release;
2489
2490	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2491				      gfp & GFP_RECLAIM_MASK, dst_mm);
2492	if (ret)
2493		goto out_release;
2494
2495	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2496				       &folio->page, true, wp_copy);
 
 
 
2497	if (ret)
2498		goto out_delete_from_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
2499
2500	spin_lock_irq(&info->lock);
2501	info->alloced++;
2502	inode->i_blocks += BLOCKS_PER_PAGE;
2503	shmem_recalc_inode(inode);
2504	spin_unlock_irq(&info->lock);
 
 
 
 
2505
2506	folio_unlock(folio);
2507	return 0;
2508out_delete_from_cache:
2509	filemap_remove_folio(folio);
 
 
 
 
 
 
 
2510out_release:
2511	folio_unlock(folio);
2512	folio_put(folio);
2513out_unacct_blocks:
2514	shmem_inode_unacct_blocks(inode, 1);
2515	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2516}
2517#endif /* CONFIG_USERFAULTFD */
2518
2519#ifdef CONFIG_TMPFS
2520static const struct inode_operations shmem_symlink_inode_operations;
2521static const struct inode_operations shmem_short_symlink_operations;
2522
 
 
 
 
 
 
2523static int
2524shmem_write_begin(struct file *file, struct address_space *mapping,
2525			loff_t pos, unsigned len,
2526			struct page **pagep, void **fsdata)
2527{
2528	struct inode *inode = mapping->host;
2529	struct shmem_inode_info *info = SHMEM_I(inode);
2530	pgoff_t index = pos >> PAGE_SHIFT;
2531	struct folio *folio;
2532	int ret = 0;
2533
2534	/* i_rwsem is held by caller */
2535	if (unlikely(info->seals & (F_SEAL_GROW |
2536				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2537		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2538			return -EPERM;
2539		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2540			return -EPERM;
2541	}
2542
2543	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2544
2545	if (ret)
2546		return ret;
2547
2548	*pagep = folio_file_page(folio, index);
2549	if (PageHWPoison(*pagep)) {
2550		folio_unlock(folio);
2551		folio_put(folio);
2552		*pagep = NULL;
2553		return -EIO;
2554	}
2555
2556	return 0;
2557}
2558
2559static int
2560shmem_write_end(struct file *file, struct address_space *mapping,
2561			loff_t pos, unsigned len, unsigned copied,
2562			struct page *page, void *fsdata)
2563{
2564	struct inode *inode = mapping->host;
2565
2566	if (pos + copied > inode->i_size)
2567		i_size_write(inode, pos + copied);
2568
2569	if (!PageUptodate(page)) {
2570		struct page *head = compound_head(page);
2571		if (PageTransCompound(page)) {
2572			int i;
2573
2574			for (i = 0; i < HPAGE_PMD_NR; i++) {
2575				if (head + i == page)
2576					continue;
2577				clear_highpage(head + i);
2578				flush_dcache_page(head + i);
2579			}
2580		}
2581		if (copied < PAGE_SIZE) {
2582			unsigned from = pos & (PAGE_SIZE - 1);
2583			zero_user_segments(page, 0, from,
2584					from + copied, PAGE_SIZE);
2585		}
2586		SetPageUptodate(head);
2587	}
2588	set_page_dirty(page);
2589	unlock_page(page);
2590	put_page(page);
2591
2592	return copied;
2593}
2594
2595static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2596{
2597	struct file *file = iocb->ki_filp;
2598	struct inode *inode = file_inode(file);
2599	struct address_space *mapping = inode->i_mapping;
2600	pgoff_t index;
2601	unsigned long offset;
 
2602	int error = 0;
2603	ssize_t retval = 0;
2604	loff_t *ppos = &iocb->ki_pos;
2605
 
 
 
 
 
 
 
 
2606	index = *ppos >> PAGE_SHIFT;
2607	offset = *ppos & ~PAGE_MASK;
2608
2609	for (;;) {
2610		struct folio *folio = NULL;
2611		struct page *page = NULL;
2612		pgoff_t end_index;
2613		unsigned long nr, ret;
2614		loff_t i_size = i_size_read(inode);
2615
2616		end_index = i_size >> PAGE_SHIFT;
2617		if (index > end_index)
2618			break;
2619		if (index == end_index) {
2620			nr = i_size & ~PAGE_MASK;
2621			if (nr <= offset)
2622				break;
2623		}
2624
2625		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2626		if (error) {
2627			if (error == -EINVAL)
2628				error = 0;
2629			break;
2630		}
2631		if (folio) {
2632			folio_unlock(folio);
2633
2634			page = folio_file_page(folio, index);
2635			if (PageHWPoison(page)) {
2636				folio_put(folio);
2637				error = -EIO;
2638				break;
2639			}
2640		}
2641
2642		/*
2643		 * We must evaluate after, since reads (unlike writes)
2644		 * are called without i_rwsem protection against truncate
2645		 */
2646		nr = PAGE_SIZE;
2647		i_size = i_size_read(inode);
2648		end_index = i_size >> PAGE_SHIFT;
2649		if (index == end_index) {
2650			nr = i_size & ~PAGE_MASK;
2651			if (nr <= offset) {
2652				if (folio)
2653					folio_put(folio);
2654				break;
2655			}
2656		}
2657		nr -= offset;
2658
2659		if (folio) {
2660			/*
2661			 * If users can be writing to this page using arbitrary
2662			 * virtual addresses, take care about potential aliasing
2663			 * before reading the page on the kernel side.
2664			 */
2665			if (mapping_writably_mapped(mapping))
2666				flush_dcache_page(page);
2667			/*
2668			 * Mark the page accessed if we read the beginning.
2669			 */
2670			if (!offset)
2671				folio_mark_accessed(folio);
2672			/*
2673			 * Ok, we have the page, and it's up-to-date, so
2674			 * now we can copy it to user space...
2675			 */
2676			ret = copy_page_to_iter(page, offset, nr, to);
2677			folio_put(folio);
2678
2679		} else if (user_backed_iter(to)) {
2680			/*
2681			 * Copy to user tends to be so well optimized, but
2682			 * clear_user() not so much, that it is noticeably
2683			 * faster to copy the zero page instead of clearing.
2684			 */
2685			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2686		} else {
2687			/*
2688			 * But submitting the same page twice in a row to
2689			 * splice() - or others? - can result in confusion:
2690			 * so don't attempt that optimization on pipes etc.
2691			 */
2692			ret = iov_iter_zero(nr, to);
2693		}
2694
 
 
 
 
 
2695		retval += ret;
2696		offset += ret;
2697		index += offset >> PAGE_SHIFT;
2698		offset &= ~PAGE_MASK;
2699
 
2700		if (!iov_iter_count(to))
2701			break;
2702		if (ret < nr) {
2703			error = -EFAULT;
2704			break;
2705		}
2706		cond_resched();
2707	}
2708
2709	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2710	file_accessed(file);
2711	return retval ? retval : error;
2712}
2713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2714static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2715{
2716	struct address_space *mapping = file->f_mapping;
2717	struct inode *inode = mapping->host;
 
 
2718
2719	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2720		return generic_file_llseek_size(file, offset, whence,
2721					MAX_LFS_FILESIZE, i_size_read(inode));
 
 
 
2722	if (offset < 0)
2723		return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2724
2725	inode_lock(inode);
2726	/* We're holding i_rwsem so we can access i_size directly */
2727	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2728	if (offset >= 0)
2729		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2730	inode_unlock(inode);
2731	return offset;
2732}
2733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2734static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2735							 loff_t len)
2736{
2737	struct inode *inode = file_inode(file);
2738	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2739	struct shmem_inode_info *info = SHMEM_I(inode);
2740	struct shmem_falloc shmem_falloc;
2741	pgoff_t start, index, end, undo_fallocend;
2742	int error;
2743
2744	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2745		return -EOPNOTSUPP;
2746
2747	inode_lock(inode);
2748
2749	if (mode & FALLOC_FL_PUNCH_HOLE) {
2750		struct address_space *mapping = file->f_mapping;
2751		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2752		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2753		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2754
2755		/* protected by i_rwsem */
2756		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2757			error = -EPERM;
2758			goto out;
2759		}
2760
2761		shmem_falloc.waitq = &shmem_falloc_waitq;
2762		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2763		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2764		spin_lock(&inode->i_lock);
2765		inode->i_private = &shmem_falloc;
2766		spin_unlock(&inode->i_lock);
2767
2768		if ((u64)unmap_end > (u64)unmap_start)
2769			unmap_mapping_range(mapping, unmap_start,
2770					    1 + unmap_end - unmap_start, 0);
2771		shmem_truncate_range(inode, offset, offset + len - 1);
2772		/* No need to unmap again: hole-punching leaves COWed pages */
2773
2774		spin_lock(&inode->i_lock);
2775		inode->i_private = NULL;
2776		wake_up_all(&shmem_falloc_waitq);
2777		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2778		spin_unlock(&inode->i_lock);
2779		error = 0;
2780		goto out;
2781	}
2782
2783	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2784	error = inode_newsize_ok(inode, offset + len);
2785	if (error)
2786		goto out;
2787
2788	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2789		error = -EPERM;
2790		goto out;
2791	}
2792
2793	start = offset >> PAGE_SHIFT;
2794	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2795	/* Try to avoid a swapstorm if len is impossible to satisfy */
2796	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2797		error = -ENOSPC;
2798		goto out;
2799	}
2800
2801	shmem_falloc.waitq = NULL;
2802	shmem_falloc.start = start;
2803	shmem_falloc.next  = start;
2804	shmem_falloc.nr_falloced = 0;
2805	shmem_falloc.nr_unswapped = 0;
2806	spin_lock(&inode->i_lock);
2807	inode->i_private = &shmem_falloc;
2808	spin_unlock(&inode->i_lock);
2809
2810	/*
2811	 * info->fallocend is only relevant when huge pages might be
2812	 * involved: to prevent split_huge_page() freeing fallocated
2813	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2814	 */
2815	undo_fallocend = info->fallocend;
2816	if (info->fallocend < end)
2817		info->fallocend = end;
2818
2819	for (index = start; index < end; ) {
2820		struct folio *folio;
2821
2822		/*
2823		 * Good, the fallocate(2) manpage permits EINTR: we may have
2824		 * been interrupted because we are using up too much memory.
2825		 */
2826		if (signal_pending(current))
2827			error = -EINTR;
2828		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2829			error = -ENOMEM;
2830		else
2831			error = shmem_get_folio(inode, index, &folio,
2832						SGP_FALLOC);
2833		if (error) {
2834			info->fallocend = undo_fallocend;
2835			/* Remove the !uptodate folios we added */
2836			if (index > start) {
2837				shmem_undo_range(inode,
2838				    (loff_t)start << PAGE_SHIFT,
2839				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2840			}
2841			goto undone;
2842		}
2843
2844		/*
2845		 * Here is a more important optimization than it appears:
2846		 * a second SGP_FALLOC on the same large folio will clear it,
2847		 * making it uptodate and un-undoable if we fail later.
2848		 */
2849		index = folio_next_index(folio);
2850		/* Beware 32-bit wraparound */
2851		if (!index)
2852			index--;
2853
2854		/*
2855		 * Inform shmem_writepage() how far we have reached.
2856		 * No need for lock or barrier: we have the page lock.
2857		 */
2858		if (!folio_test_uptodate(folio))
2859			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2860		shmem_falloc.next = index;
2861
2862		/*
2863		 * If !uptodate, leave it that way so that freeable folios
2864		 * can be recognized if we need to rollback on error later.
2865		 * But mark it dirty so that memory pressure will swap rather
2866		 * than free the folios we are allocating (and SGP_CACHE folios
2867		 * might still be clean: we now need to mark those dirty too).
2868		 */
2869		folio_mark_dirty(folio);
2870		folio_unlock(folio);
2871		folio_put(folio);
2872		cond_resched();
2873	}
2874
2875	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2876		i_size_write(inode, offset + len);
 
2877undone:
2878	spin_lock(&inode->i_lock);
2879	inode->i_private = NULL;
2880	spin_unlock(&inode->i_lock);
2881out:
2882	if (!error)
2883		file_modified(file);
2884	inode_unlock(inode);
2885	return error;
2886}
2887
2888static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2889{
2890	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2891
2892	buf->f_type = TMPFS_MAGIC;
2893	buf->f_bsize = PAGE_SIZE;
2894	buf->f_namelen = NAME_MAX;
2895	if (sbinfo->max_blocks) {
2896		buf->f_blocks = sbinfo->max_blocks;
2897		buf->f_bavail =
2898		buf->f_bfree  = sbinfo->max_blocks -
2899				percpu_counter_sum(&sbinfo->used_blocks);
2900	}
2901	if (sbinfo->max_inodes) {
2902		buf->f_files = sbinfo->max_inodes;
2903		buf->f_ffree = sbinfo->free_inodes;
2904	}
2905	/* else leave those fields 0 like simple_statfs */
2906
2907	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2908
2909	return 0;
2910}
2911
2912/*
2913 * File creation. Allocate an inode, and we're done..
2914 */
2915static int
2916shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2917	    struct dentry *dentry, umode_t mode, dev_t dev)
2918{
2919	struct inode *inode;
2920	int error = -ENOSPC;
2921
2922	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2923	if (inode) {
2924		error = simple_acl_create(dir, inode);
2925		if (error)
2926			goto out_iput;
2927		error = security_inode_init_security(inode, dir,
2928						     &dentry->d_name,
2929						     shmem_initxattrs, NULL);
2930		if (error && error != -EOPNOTSUPP)
2931			goto out_iput;
2932
2933		error = 0;
2934		dir->i_size += BOGO_DIRENT_SIZE;
2935		dir->i_ctime = dir->i_mtime = current_time(dir);
2936		inode_inc_iversion(dir);
2937		d_instantiate(dentry, inode);
2938		dget(dentry); /* Extra count - pin the dentry in core */
2939	}
2940	return error;
2941out_iput:
2942	iput(inode);
2943	return error;
2944}
2945
2946static int
2947shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2948	      struct file *file, umode_t mode)
2949{
2950	struct inode *inode;
2951	int error = -ENOSPC;
2952
2953	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2954	if (inode) {
2955		error = security_inode_init_security(inode, dir,
2956						     NULL,
2957						     shmem_initxattrs, NULL);
2958		if (error && error != -EOPNOTSUPP)
2959			goto out_iput;
2960		error = simple_acl_create(dir, inode);
2961		if (error)
2962			goto out_iput;
2963		d_tmpfile(file, inode);
2964	}
2965	return finish_open_simple(file, error);
2966out_iput:
2967	iput(inode);
2968	return error;
2969}
2970
2971static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2972		       struct dentry *dentry, umode_t mode)
2973{
2974	int error;
2975
2976	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2977				 mode | S_IFDIR, 0)))
2978		return error;
2979	inc_nlink(dir);
2980	return 0;
2981}
2982
2983static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2984			struct dentry *dentry, umode_t mode, bool excl)
2985{
2986	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2987}
2988
2989/*
2990 * Link a file..
2991 */
2992static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2993{
2994	struct inode *inode = d_inode(old_dentry);
2995	int ret = 0;
2996
2997	/*
2998	 * No ordinary (disk based) filesystem counts links as inodes;
2999	 * but each new link needs a new dentry, pinning lowmem, and
3000	 * tmpfs dentries cannot be pruned until they are unlinked.
3001	 * But if an O_TMPFILE file is linked into the tmpfs, the
3002	 * first link must skip that, to get the accounting right.
3003	 */
3004	if (inode->i_nlink) {
3005		ret = shmem_reserve_inode(inode->i_sb, NULL);
3006		if (ret)
3007			goto out;
3008	}
3009
3010	dir->i_size += BOGO_DIRENT_SIZE;
3011	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3012	inode_inc_iversion(dir);
3013	inc_nlink(inode);
3014	ihold(inode);	/* New dentry reference */
3015	dget(dentry);		/* Extra pinning count for the created dentry */
3016	d_instantiate(dentry, inode);
3017out:
3018	return ret;
3019}
3020
3021static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3022{
3023	struct inode *inode = d_inode(dentry);
3024
3025	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3026		shmem_free_inode(inode->i_sb);
3027
3028	dir->i_size -= BOGO_DIRENT_SIZE;
3029	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3030	inode_inc_iversion(dir);
3031	drop_nlink(inode);
3032	dput(dentry);	/* Undo the count from "create" - this does all the work */
3033	return 0;
3034}
3035
3036static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3037{
3038	if (!simple_empty(dentry))
3039		return -ENOTEMPTY;
3040
3041	drop_nlink(d_inode(dentry));
3042	drop_nlink(dir);
3043	return shmem_unlink(dir, dentry);
3044}
3045
3046static int shmem_whiteout(struct user_namespace *mnt_userns,
3047			  struct inode *old_dir, struct dentry *old_dentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048{
3049	struct dentry *whiteout;
3050	int error;
3051
3052	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3053	if (!whiteout)
3054		return -ENOMEM;
3055
3056	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3057			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3058	dput(whiteout);
3059	if (error)
3060		return error;
3061
3062	/*
3063	 * Cheat and hash the whiteout while the old dentry is still in
3064	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3065	 *
3066	 * d_lookup() will consistently find one of them at this point,
3067	 * not sure which one, but that isn't even important.
3068	 */
3069	d_rehash(whiteout);
3070	return 0;
3071}
3072
3073/*
3074 * The VFS layer already does all the dentry stuff for rename,
3075 * we just have to decrement the usage count for the target if
3076 * it exists so that the VFS layer correctly free's it when it
3077 * gets overwritten.
3078 */
3079static int shmem_rename2(struct user_namespace *mnt_userns,
3080			 struct inode *old_dir, struct dentry *old_dentry,
3081			 struct inode *new_dir, struct dentry *new_dentry,
3082			 unsigned int flags)
3083{
3084	struct inode *inode = d_inode(old_dentry);
3085	int they_are_dirs = S_ISDIR(inode->i_mode);
3086
3087	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3088		return -EINVAL;
3089
3090	if (flags & RENAME_EXCHANGE)
3091		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3092
3093	if (!simple_empty(new_dentry))
3094		return -ENOTEMPTY;
3095
3096	if (flags & RENAME_WHITEOUT) {
3097		int error;
3098
3099		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3100		if (error)
3101			return error;
3102	}
3103
3104	if (d_really_is_positive(new_dentry)) {
3105		(void) shmem_unlink(new_dir, new_dentry);
3106		if (they_are_dirs) {
3107			drop_nlink(d_inode(new_dentry));
3108			drop_nlink(old_dir);
3109		}
3110	} else if (they_are_dirs) {
3111		drop_nlink(old_dir);
3112		inc_nlink(new_dir);
3113	}
3114
3115	old_dir->i_size -= BOGO_DIRENT_SIZE;
3116	new_dir->i_size += BOGO_DIRENT_SIZE;
3117	old_dir->i_ctime = old_dir->i_mtime =
3118	new_dir->i_ctime = new_dir->i_mtime =
3119	inode->i_ctime = current_time(old_dir);
3120	inode_inc_iversion(old_dir);
3121	inode_inc_iversion(new_dir);
3122	return 0;
3123}
3124
3125static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3126			 struct dentry *dentry, const char *symname)
3127{
3128	int error;
3129	int len;
3130	struct inode *inode;
3131	struct folio *folio;
3132
3133	len = strlen(symname) + 1;
3134	if (len > PAGE_SIZE)
3135		return -ENAMETOOLONG;
3136
3137	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3138				VM_NORESERVE);
3139	if (!inode)
3140		return -ENOSPC;
3141
3142	error = security_inode_init_security(inode, dir, &dentry->d_name,
3143					     shmem_initxattrs, NULL);
3144	if (error && error != -EOPNOTSUPP) {
3145		iput(inode);
3146		return error;
 
 
 
3147	}
3148
3149	inode->i_size = len-1;
3150	if (len <= SHORT_SYMLINK_LEN) {
3151		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3152		if (!inode->i_link) {
3153			iput(inode);
3154			return -ENOMEM;
3155		}
3156		inode->i_op = &shmem_short_symlink_operations;
3157	} else {
3158		inode_nohighmem(inode);
3159		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3160		if (error) {
3161			iput(inode);
3162			return error;
3163		}
3164		inode->i_mapping->a_ops = &shmem_aops;
3165		inode->i_op = &shmem_symlink_inode_operations;
3166		memcpy(folio_address(folio), symname, len);
3167		folio_mark_uptodate(folio);
3168		folio_mark_dirty(folio);
3169		folio_unlock(folio);
3170		folio_put(folio);
3171	}
3172	dir->i_size += BOGO_DIRENT_SIZE;
3173	dir->i_ctime = dir->i_mtime = current_time(dir);
3174	inode_inc_iversion(dir);
3175	d_instantiate(dentry, inode);
3176	dget(dentry);
3177	return 0;
3178}
3179
3180static void shmem_put_link(void *arg)
3181{
3182	folio_mark_accessed(arg);
3183	folio_put(arg);
3184}
3185
3186static const char *shmem_get_link(struct dentry *dentry,
3187				  struct inode *inode,
3188				  struct delayed_call *done)
3189{
3190	struct folio *folio = NULL;
3191	int error;
3192
3193	if (!dentry) {
3194		folio = filemap_get_folio(inode->i_mapping, 0);
3195		if (!folio)
3196			return ERR_PTR(-ECHILD);
3197		if (PageHWPoison(folio_page(folio, 0)) ||
3198		    !folio_test_uptodate(folio)) {
3199			folio_put(folio);
3200			return ERR_PTR(-ECHILD);
3201		}
3202	} else {
3203		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3204		if (error)
3205			return ERR_PTR(error);
3206		if (!folio)
3207			return ERR_PTR(-ECHILD);
3208		if (PageHWPoison(folio_page(folio, 0))) {
3209			folio_unlock(folio);
3210			folio_put(folio);
3211			return ERR_PTR(-ECHILD);
3212		}
3213		folio_unlock(folio);
3214	}
3215	set_delayed_call(done, shmem_put_link, folio);
3216	return folio_address(folio);
3217}
3218
3219#ifdef CONFIG_TMPFS_XATTR
3220
3221static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3222{
3223	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3224
3225	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3226
3227	return 0;
3228}
3229
3230static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3231			      struct dentry *dentry, struct fileattr *fa)
3232{
3233	struct inode *inode = d_inode(dentry);
3234	struct shmem_inode_info *info = SHMEM_I(inode);
3235
3236	if (fileattr_has_fsx(fa))
3237		return -EOPNOTSUPP;
3238	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3239		return -EOPNOTSUPP;
3240
3241	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3242		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3243
3244	shmem_set_inode_flags(inode, info->fsflags);
3245	inode->i_ctime = current_time(inode);
3246	inode_inc_iversion(inode);
3247	return 0;
3248}
3249
3250/*
3251 * Superblocks without xattr inode operations may get some security.* xattr
3252 * support from the LSM "for free". As soon as we have any other xattrs
3253 * like ACLs, we also need to implement the security.* handlers at
3254 * filesystem level, though.
3255 */
3256
3257/*
3258 * Callback for security_inode_init_security() for acquiring xattrs.
3259 */
3260static int shmem_initxattrs(struct inode *inode,
3261			    const struct xattr *xattr_array,
3262			    void *fs_info)
3263{
3264	struct shmem_inode_info *info = SHMEM_I(inode);
3265	const struct xattr *xattr;
3266	struct simple_xattr *new_xattr;
3267	size_t len;
3268
3269	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3270		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3271		if (!new_xattr)
3272			return -ENOMEM;
3273
3274		len = strlen(xattr->name) + 1;
3275		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3276					  GFP_KERNEL);
3277		if (!new_xattr->name) {
3278			kvfree(new_xattr);
3279			return -ENOMEM;
3280		}
3281
3282		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3283		       XATTR_SECURITY_PREFIX_LEN);
3284		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3285		       xattr->name, len);
3286
3287		simple_xattr_add(&info->xattrs, new_xattr);
3288	}
3289
3290	return 0;
3291}
3292
3293static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3294				   struct dentry *unused, struct inode *inode,
3295				   const char *name, void *buffer, size_t size)
3296{
3297	struct shmem_inode_info *info = SHMEM_I(inode);
3298
3299	name = xattr_full_name(handler, name);
3300	return simple_xattr_get(&info->xattrs, name, buffer, size);
3301}
3302
3303static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3304				   struct user_namespace *mnt_userns,
3305				   struct dentry *unused, struct inode *inode,
3306				   const char *name, const void *value,
3307				   size_t size, int flags)
3308{
3309	struct shmem_inode_info *info = SHMEM_I(inode);
3310	int err;
3311
3312	name = xattr_full_name(handler, name);
3313	err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3314	if (!err) {
3315		inode->i_ctime = current_time(inode);
3316		inode_inc_iversion(inode);
3317	}
3318	return err;
3319}
3320
3321static const struct xattr_handler shmem_security_xattr_handler = {
3322	.prefix = XATTR_SECURITY_PREFIX,
3323	.get = shmem_xattr_handler_get,
3324	.set = shmem_xattr_handler_set,
3325};
3326
3327static const struct xattr_handler shmem_trusted_xattr_handler = {
3328	.prefix = XATTR_TRUSTED_PREFIX,
3329	.get = shmem_xattr_handler_get,
3330	.set = shmem_xattr_handler_set,
3331};
3332
3333static const struct xattr_handler *shmem_xattr_handlers[] = {
3334#ifdef CONFIG_TMPFS_POSIX_ACL
3335	&posix_acl_access_xattr_handler,
3336	&posix_acl_default_xattr_handler,
3337#endif
3338	&shmem_security_xattr_handler,
3339	&shmem_trusted_xattr_handler,
3340	NULL
3341};
3342
3343static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3344{
3345	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3346	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3347}
3348#endif /* CONFIG_TMPFS_XATTR */
3349
3350static const struct inode_operations shmem_short_symlink_operations = {
3351	.getattr	= shmem_getattr,
3352	.get_link	= simple_get_link,
3353#ifdef CONFIG_TMPFS_XATTR
3354	.listxattr	= shmem_listxattr,
3355#endif
3356};
3357
3358static const struct inode_operations shmem_symlink_inode_operations = {
3359	.getattr	= shmem_getattr,
3360	.get_link	= shmem_get_link,
3361#ifdef CONFIG_TMPFS_XATTR
3362	.listxattr	= shmem_listxattr,
3363#endif
3364};
3365
3366static struct dentry *shmem_get_parent(struct dentry *child)
3367{
3368	return ERR_PTR(-ESTALE);
3369}
3370
3371static int shmem_match(struct inode *ino, void *vfh)
3372{
3373	__u32 *fh = vfh;
3374	__u64 inum = fh[2];
3375	inum = (inum << 32) | fh[1];
3376	return ino->i_ino == inum && fh[0] == ino->i_generation;
3377}
3378
3379/* Find any alias of inode, but prefer a hashed alias */
3380static struct dentry *shmem_find_alias(struct inode *inode)
3381{
3382	struct dentry *alias = d_find_alias(inode);
3383
3384	return alias ?: d_find_any_alias(inode);
3385}
3386
3387
3388static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3389		struct fid *fid, int fh_len, int fh_type)
3390{
3391	struct inode *inode;
3392	struct dentry *dentry = NULL;
3393	u64 inum;
3394
3395	if (fh_len < 3)
3396		return NULL;
3397
3398	inum = fid->raw[2];
3399	inum = (inum << 32) | fid->raw[1];
3400
3401	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3402			shmem_match, fid->raw);
3403	if (inode) {
3404		dentry = shmem_find_alias(inode);
3405		iput(inode);
3406	}
3407
3408	return dentry;
3409}
3410
3411static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3412				struct inode *parent)
3413{
3414	if (*len < 3) {
3415		*len = 3;
3416		return FILEID_INVALID;
3417	}
3418
3419	if (inode_unhashed(inode)) {
3420		/* Unfortunately insert_inode_hash is not idempotent,
3421		 * so as we hash inodes here rather than at creation
3422		 * time, we need a lock to ensure we only try
3423		 * to do it once
3424		 */
3425		static DEFINE_SPINLOCK(lock);
3426		spin_lock(&lock);
3427		if (inode_unhashed(inode))
3428			__insert_inode_hash(inode,
3429					    inode->i_ino + inode->i_generation);
3430		spin_unlock(&lock);
3431	}
3432
3433	fh[0] = inode->i_generation;
3434	fh[1] = inode->i_ino;
3435	fh[2] = ((__u64)inode->i_ino) >> 32;
3436
3437	*len = 3;
3438	return 1;
3439}
3440
3441static const struct export_operations shmem_export_ops = {
3442	.get_parent     = shmem_get_parent,
3443	.encode_fh      = shmem_encode_fh,
3444	.fh_to_dentry	= shmem_fh_to_dentry,
3445};
3446
3447enum shmem_param {
3448	Opt_gid,
3449	Opt_huge,
3450	Opt_mode,
3451	Opt_mpol,
3452	Opt_nr_blocks,
3453	Opt_nr_inodes,
3454	Opt_size,
3455	Opt_uid,
3456	Opt_inode32,
3457	Opt_inode64,
3458};
3459
3460static const struct constant_table shmem_param_enums_huge[] = {
3461	{"never",	SHMEM_HUGE_NEVER },
3462	{"always",	SHMEM_HUGE_ALWAYS },
3463	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3464	{"advise",	SHMEM_HUGE_ADVISE },
3465	{}
3466};
3467
3468const struct fs_parameter_spec shmem_fs_parameters[] = {
3469	fsparam_u32   ("gid",		Opt_gid),
3470	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3471	fsparam_u32oct("mode",		Opt_mode),
3472	fsparam_string("mpol",		Opt_mpol),
3473	fsparam_string("nr_blocks",	Opt_nr_blocks),
3474	fsparam_string("nr_inodes",	Opt_nr_inodes),
3475	fsparam_string("size",		Opt_size),
3476	fsparam_u32   ("uid",		Opt_uid),
3477	fsparam_flag  ("inode32",	Opt_inode32),
3478	fsparam_flag  ("inode64",	Opt_inode64),
3479	{}
3480};
3481
3482static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3483{
3484	struct shmem_options *ctx = fc->fs_private;
3485	struct fs_parse_result result;
3486	unsigned long long size;
3487	char *rest;
3488	int opt;
3489
3490	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3491	if (opt < 0)
3492		return opt;
3493
3494	switch (opt) {
3495	case Opt_size:
3496		size = memparse(param->string, &rest);
3497		if (*rest == '%') {
3498			size <<= PAGE_SHIFT;
3499			size *= totalram_pages();
3500			do_div(size, 100);
3501			rest++;
3502		}
3503		if (*rest)
3504			goto bad_value;
3505		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3506		ctx->seen |= SHMEM_SEEN_BLOCKS;
3507		break;
3508	case Opt_nr_blocks:
3509		ctx->blocks = memparse(param->string, &rest);
3510		if (*rest || ctx->blocks > S64_MAX)
3511			goto bad_value;
3512		ctx->seen |= SHMEM_SEEN_BLOCKS;
3513		break;
3514	case Opt_nr_inodes:
3515		ctx->inodes = memparse(param->string, &rest);
3516		if (*rest)
3517			goto bad_value;
3518		ctx->seen |= SHMEM_SEEN_INODES;
3519		break;
3520	case Opt_mode:
3521		ctx->mode = result.uint_32 & 07777;
3522		break;
3523	case Opt_uid:
3524		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3525		if (!uid_valid(ctx->uid))
3526			goto bad_value;
3527		break;
3528	case Opt_gid:
3529		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3530		if (!gid_valid(ctx->gid))
3531			goto bad_value;
3532		break;
3533	case Opt_huge:
3534		ctx->huge = result.uint_32;
3535		if (ctx->huge != SHMEM_HUGE_NEVER &&
3536		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3537		      has_transparent_hugepage()))
3538			goto unsupported_parameter;
3539		ctx->seen |= SHMEM_SEEN_HUGE;
3540		break;
3541	case Opt_mpol:
3542		if (IS_ENABLED(CONFIG_NUMA)) {
3543			mpol_put(ctx->mpol);
3544			ctx->mpol = NULL;
3545			if (mpol_parse_str(param->string, &ctx->mpol))
3546				goto bad_value;
3547			break;
3548		}
3549		goto unsupported_parameter;
3550	case Opt_inode32:
3551		ctx->full_inums = false;
3552		ctx->seen |= SHMEM_SEEN_INUMS;
3553		break;
3554	case Opt_inode64:
3555		if (sizeof(ino_t) < 8) {
3556			return invalfc(fc,
3557				       "Cannot use inode64 with <64bit inums in kernel\n");
3558		}
3559		ctx->full_inums = true;
3560		ctx->seen |= SHMEM_SEEN_INUMS;
3561		break;
3562	}
3563	return 0;
3564
3565unsupported_parameter:
3566	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3567bad_value:
3568	return invalfc(fc, "Bad value for '%s'", param->key);
3569}
3570
3571static int shmem_parse_options(struct fs_context *fc, void *data)
3572{
3573	char *options = data;
3574
3575	if (options) {
3576		int err = security_sb_eat_lsm_opts(options, &fc->security);
3577		if (err)
3578			return err;
3579	}
3580
3581	while (options != NULL) {
3582		char *this_char = options;
3583		for (;;) {
3584			/*
3585			 * NUL-terminate this option: unfortunately,
3586			 * mount options form a comma-separated list,
3587			 * but mpol's nodelist may also contain commas.
3588			 */
3589			options = strchr(options, ',');
3590			if (options == NULL)
3591				break;
3592			options++;
3593			if (!isdigit(*options)) {
3594				options[-1] = '\0';
3595				break;
3596			}
3597		}
3598		if (*this_char) {
3599			char *value = strchr(this_char, '=');
3600			size_t len = 0;
3601			int err;
3602
3603			if (value) {
3604				*value++ = '\0';
3605				len = strlen(value);
 
 
 
 
 
 
 
 
 
 
3606			}
3607			err = vfs_parse_fs_string(fc, this_char, value, len);
3608			if (err < 0)
3609				return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3610		}
3611	}
 
3612	return 0;
 
 
 
 
 
 
 
 
3613}
3614
3615/*
3616 * Reconfigure a shmem filesystem.
3617 *
3618 * Note that we disallow change from limited->unlimited blocks/inodes while any
3619 * are in use; but we must separately disallow unlimited->limited, because in
3620 * that case we have no record of how much is already in use.
3621 */
3622static int shmem_reconfigure(struct fs_context *fc)
3623{
3624	struct shmem_options *ctx = fc->fs_private;
3625	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3626	unsigned long inodes;
3627	struct mempolicy *mpol = NULL;
3628	const char *err;
 
 
 
3629
3630	raw_spin_lock(&sbinfo->stat_lock);
3631	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3632
3633	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3634		if (!sbinfo->max_blocks) {
3635			err = "Cannot retroactively limit size";
3636			goto out;
3637		}
3638		if (percpu_counter_compare(&sbinfo->used_blocks,
3639					   ctx->blocks) > 0) {
3640			err = "Too small a size for current use";
3641			goto out;
3642		}
3643	}
3644	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3645		if (!sbinfo->max_inodes) {
3646			err = "Cannot retroactively limit inodes";
3647			goto out;
3648		}
3649		if (ctx->inodes < inodes) {
3650			err = "Too few inodes for current use";
3651			goto out;
3652		}
3653	}
3654
3655	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3656	    sbinfo->next_ino > UINT_MAX) {
3657		err = "Current inum too high to switch to 32-bit inums";
3658		goto out;
3659	}
3660
3661	if (ctx->seen & SHMEM_SEEN_HUGE)
3662		sbinfo->huge = ctx->huge;
3663	if (ctx->seen & SHMEM_SEEN_INUMS)
3664		sbinfo->full_inums = ctx->full_inums;
3665	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3666		sbinfo->max_blocks  = ctx->blocks;
3667	if (ctx->seen & SHMEM_SEEN_INODES) {
3668		sbinfo->max_inodes  = ctx->inodes;
3669		sbinfo->free_inodes = ctx->inodes - inodes;
3670	}
3671
3672	/*
3673	 * Preserve previous mempolicy unless mpol remount option was specified.
3674	 */
3675	if (ctx->mpol) {
3676		mpol = sbinfo->mpol;
3677		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3678		ctx->mpol = NULL;
3679	}
3680	raw_spin_unlock(&sbinfo->stat_lock);
3681	mpol_put(mpol);
3682	return 0;
3683out:
3684	raw_spin_unlock(&sbinfo->stat_lock);
3685	return invalfc(fc, "%s", err);
3686}
3687
3688static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3689{
3690	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3691
3692	if (sbinfo->max_blocks != shmem_default_max_blocks())
3693		seq_printf(seq, ",size=%luk",
3694			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3695	if (sbinfo->max_inodes != shmem_default_max_inodes())
3696		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3697	if (sbinfo->mode != (0777 | S_ISVTX))
3698		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3699	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3700		seq_printf(seq, ",uid=%u",
3701				from_kuid_munged(&init_user_ns, sbinfo->uid));
3702	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3703		seq_printf(seq, ",gid=%u",
3704				from_kgid_munged(&init_user_ns, sbinfo->gid));
3705
3706	/*
3707	 * Showing inode{64,32} might be useful even if it's the system default,
3708	 * since then people don't have to resort to checking both here and
3709	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3710	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3711	 *
3712	 * We hide it when inode64 isn't the default and we are using 32-bit
3713	 * inodes, since that probably just means the feature isn't even under
3714	 * consideration.
3715	 *
3716	 * As such:
3717	 *
3718	 *                     +-----------------+-----------------+
3719	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3720	 *  +------------------+-----------------+-----------------+
3721	 *  | full_inums=true  | show            | show            |
3722	 *  | full_inums=false | show            | hide            |
3723	 *  +------------------+-----------------+-----------------+
3724	 *
3725	 */
3726	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3727		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3728#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3729	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3730	if (sbinfo->huge)
3731		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3732#endif
3733	shmem_show_mpol(seq, sbinfo->mpol);
3734	return 0;
3735}
3736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3737#endif /* CONFIG_TMPFS */
3738
3739static void shmem_put_super(struct super_block *sb)
3740{
3741	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3742
3743	free_percpu(sbinfo->ino_batch);
3744	percpu_counter_destroy(&sbinfo->used_blocks);
3745	mpol_put(sbinfo->mpol);
3746	kfree(sbinfo);
3747	sb->s_fs_info = NULL;
3748}
3749
3750static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3751{
3752	struct shmem_options *ctx = fc->fs_private;
3753	struct inode *inode;
3754	struct shmem_sb_info *sbinfo;
 
3755
3756	/* Round up to L1_CACHE_BYTES to resist false sharing */
3757	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3758				L1_CACHE_BYTES), GFP_KERNEL);
3759	if (!sbinfo)
3760		return -ENOMEM;
3761
 
 
 
3762	sb->s_fs_info = sbinfo;
3763
3764#ifdef CONFIG_TMPFS
3765	/*
3766	 * Per default we only allow half of the physical ram per
3767	 * tmpfs instance, limiting inodes to one per page of lowmem;
3768	 * but the internal instance is left unlimited.
3769	 */
3770	if (!(sb->s_flags & SB_KERNMOUNT)) {
3771		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3772			ctx->blocks = shmem_default_max_blocks();
3773		if (!(ctx->seen & SHMEM_SEEN_INODES))
3774			ctx->inodes = shmem_default_max_inodes();
3775		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3776			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3777	} else {
3778		sb->s_flags |= SB_NOUSER;
3779	}
3780	sb->s_export_op = &shmem_export_ops;
3781	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3782#else
3783	sb->s_flags |= SB_NOUSER;
3784#endif
3785	sbinfo->max_blocks = ctx->blocks;
3786	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3787	if (sb->s_flags & SB_KERNMOUNT) {
3788		sbinfo->ino_batch = alloc_percpu(ino_t);
3789		if (!sbinfo->ino_batch)
3790			goto failed;
3791	}
3792	sbinfo->uid = ctx->uid;
3793	sbinfo->gid = ctx->gid;
3794	sbinfo->full_inums = ctx->full_inums;
3795	sbinfo->mode = ctx->mode;
3796	sbinfo->huge = ctx->huge;
3797	sbinfo->mpol = ctx->mpol;
3798	ctx->mpol = NULL;
3799
3800	raw_spin_lock_init(&sbinfo->stat_lock);
3801	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3802		goto failed;
 
3803	spin_lock_init(&sbinfo->shrinklist_lock);
3804	INIT_LIST_HEAD(&sbinfo->shrinklist);
3805
3806	sb->s_maxbytes = MAX_LFS_FILESIZE;
3807	sb->s_blocksize = PAGE_SIZE;
3808	sb->s_blocksize_bits = PAGE_SHIFT;
3809	sb->s_magic = TMPFS_MAGIC;
3810	sb->s_op = &shmem_ops;
3811	sb->s_time_gran = 1;
3812#ifdef CONFIG_TMPFS_XATTR
3813	sb->s_xattr = shmem_xattr_handlers;
3814#endif
3815#ifdef CONFIG_TMPFS_POSIX_ACL
3816	sb->s_flags |= SB_POSIXACL;
3817#endif
3818	uuid_gen(&sb->s_uuid);
3819
3820	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3821	if (!inode)
3822		goto failed;
3823	inode->i_uid = sbinfo->uid;
3824	inode->i_gid = sbinfo->gid;
3825	sb->s_root = d_make_root(inode);
3826	if (!sb->s_root)
3827		goto failed;
3828	return 0;
3829
3830failed:
3831	shmem_put_super(sb);
3832	return -ENOMEM;
3833}
3834
3835static int shmem_get_tree(struct fs_context *fc)
3836{
3837	return get_tree_nodev(fc, shmem_fill_super);
3838}
3839
3840static void shmem_free_fc(struct fs_context *fc)
3841{
3842	struct shmem_options *ctx = fc->fs_private;
3843
3844	if (ctx) {
3845		mpol_put(ctx->mpol);
3846		kfree(ctx);
3847	}
3848}
3849
3850static const struct fs_context_operations shmem_fs_context_ops = {
3851	.free			= shmem_free_fc,
3852	.get_tree		= shmem_get_tree,
3853#ifdef CONFIG_TMPFS
3854	.parse_monolithic	= shmem_parse_options,
3855	.parse_param		= shmem_parse_one,
3856	.reconfigure		= shmem_reconfigure,
3857#endif
3858};
3859
3860static struct kmem_cache *shmem_inode_cachep;
3861
3862static struct inode *shmem_alloc_inode(struct super_block *sb)
3863{
3864	struct shmem_inode_info *info;
3865	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3866	if (!info)
3867		return NULL;
3868	return &info->vfs_inode;
3869}
3870
3871static void shmem_free_in_core_inode(struct inode *inode)
3872{
 
3873	if (S_ISLNK(inode->i_mode))
3874		kfree(inode->i_link);
3875	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3876}
3877
3878static void shmem_destroy_inode(struct inode *inode)
3879{
3880	if (S_ISREG(inode->i_mode))
3881		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
 
3882}
3883
3884static void shmem_init_inode(void *foo)
3885{
3886	struct shmem_inode_info *info = foo;
3887	inode_init_once(&info->vfs_inode);
3888}
3889
3890static void shmem_init_inodecache(void)
3891{
3892	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3893				sizeof(struct shmem_inode_info),
3894				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3895}
3896
3897static void shmem_destroy_inodecache(void)
3898{
3899	kmem_cache_destroy(shmem_inode_cachep);
3900}
3901
3902/* Keep the page in page cache instead of truncating it */
3903static int shmem_error_remove_page(struct address_space *mapping,
3904				   struct page *page)
3905{
3906	return 0;
3907}
3908
3909const struct address_space_operations shmem_aops = {
3910	.writepage	= shmem_writepage,
3911	.dirty_folio	= noop_dirty_folio,
3912#ifdef CONFIG_TMPFS
3913	.write_begin	= shmem_write_begin,
3914	.write_end	= shmem_write_end,
3915#endif
3916#ifdef CONFIG_MIGRATION
3917	.migrate_folio	= migrate_folio,
3918#endif
3919	.error_remove_page = shmem_error_remove_page,
3920};
3921EXPORT_SYMBOL(shmem_aops);
3922
3923static const struct file_operations shmem_file_operations = {
3924	.mmap		= shmem_mmap,
3925	.open		= generic_file_open,
3926	.get_unmapped_area = shmem_get_unmapped_area,
3927#ifdef CONFIG_TMPFS
3928	.llseek		= shmem_file_llseek,
3929	.read_iter	= shmem_file_read_iter,
3930	.write_iter	= generic_file_write_iter,
3931	.fsync		= noop_fsync,
3932	.splice_read	= generic_file_splice_read,
3933	.splice_write	= iter_file_splice_write,
3934	.fallocate	= shmem_fallocate,
3935#endif
3936};
3937
3938static const struct inode_operations shmem_inode_operations = {
3939	.getattr	= shmem_getattr,
3940	.setattr	= shmem_setattr,
3941#ifdef CONFIG_TMPFS_XATTR
3942	.listxattr	= shmem_listxattr,
3943	.set_acl	= simple_set_acl,
3944	.fileattr_get	= shmem_fileattr_get,
3945	.fileattr_set	= shmem_fileattr_set,
3946#endif
3947};
3948
3949static const struct inode_operations shmem_dir_inode_operations = {
3950#ifdef CONFIG_TMPFS
3951	.getattr	= shmem_getattr,
3952	.create		= shmem_create,
3953	.lookup		= simple_lookup,
3954	.link		= shmem_link,
3955	.unlink		= shmem_unlink,
3956	.symlink	= shmem_symlink,
3957	.mkdir		= shmem_mkdir,
3958	.rmdir		= shmem_rmdir,
3959	.mknod		= shmem_mknod,
3960	.rename		= shmem_rename2,
3961	.tmpfile	= shmem_tmpfile,
3962#endif
3963#ifdef CONFIG_TMPFS_XATTR
3964	.listxattr	= shmem_listxattr,
3965	.fileattr_get	= shmem_fileattr_get,
3966	.fileattr_set	= shmem_fileattr_set,
3967#endif
3968#ifdef CONFIG_TMPFS_POSIX_ACL
3969	.setattr	= shmem_setattr,
3970	.set_acl	= simple_set_acl,
3971#endif
3972};
3973
3974static const struct inode_operations shmem_special_inode_operations = {
3975	.getattr	= shmem_getattr,
3976#ifdef CONFIG_TMPFS_XATTR
3977	.listxattr	= shmem_listxattr,
3978#endif
3979#ifdef CONFIG_TMPFS_POSIX_ACL
3980	.setattr	= shmem_setattr,
3981	.set_acl	= simple_set_acl,
3982#endif
3983};
3984
3985static const struct super_operations shmem_ops = {
3986	.alloc_inode	= shmem_alloc_inode,
3987	.free_inode	= shmem_free_in_core_inode,
3988	.destroy_inode	= shmem_destroy_inode,
3989#ifdef CONFIG_TMPFS
3990	.statfs		= shmem_statfs,
 
3991	.show_options	= shmem_show_options,
3992#endif
3993	.evict_inode	= shmem_evict_inode,
3994	.drop_inode	= generic_delete_inode,
3995	.put_super	= shmem_put_super,
3996#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3997	.nr_cached_objects	= shmem_unused_huge_count,
3998	.free_cached_objects	= shmem_unused_huge_scan,
3999#endif
4000};
4001
4002static const struct vm_operations_struct shmem_vm_ops = {
4003	.fault		= shmem_fault,
4004	.map_pages	= filemap_map_pages,
4005#ifdef CONFIG_NUMA
4006	.set_policy     = shmem_set_policy,
4007	.get_policy     = shmem_get_policy,
4008#endif
4009};
4010
4011static const struct vm_operations_struct shmem_anon_vm_ops = {
4012	.fault		= shmem_fault,
4013	.map_pages	= filemap_map_pages,
4014#ifdef CONFIG_NUMA
4015	.set_policy     = shmem_set_policy,
4016	.get_policy     = shmem_get_policy,
4017#endif
4018};
4019
4020int shmem_init_fs_context(struct fs_context *fc)
4021{
4022	struct shmem_options *ctx;
4023
4024	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4025	if (!ctx)
4026		return -ENOMEM;
4027
4028	ctx->mode = 0777 | S_ISVTX;
4029	ctx->uid = current_fsuid();
4030	ctx->gid = current_fsgid();
4031
4032	fc->fs_private = ctx;
4033	fc->ops = &shmem_fs_context_ops;
4034	return 0;
4035}
4036
4037static struct file_system_type shmem_fs_type = {
4038	.owner		= THIS_MODULE,
4039	.name		= "tmpfs",
4040	.init_fs_context = shmem_init_fs_context,
4041#ifdef CONFIG_TMPFS
4042	.parameters	= shmem_fs_parameters,
4043#endif
4044	.kill_sb	= kill_litter_super,
4045	.fs_flags	= FS_USERNS_MOUNT,
4046};
4047
4048void __init shmem_init(void)
4049{
4050	int error;
4051
 
 
 
 
4052	shmem_init_inodecache();
4053
4054	error = register_filesystem(&shmem_fs_type);
4055	if (error) {
4056		pr_err("Could not register tmpfs\n");
4057		goto out2;
4058	}
4059
4060	shm_mnt = kern_mount(&shmem_fs_type);
4061	if (IS_ERR(shm_mnt)) {
4062		error = PTR_ERR(shm_mnt);
4063		pr_err("Could not kern_mount tmpfs\n");
4064		goto out1;
4065	}
4066
4067#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4068	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4069		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4070	else
4071		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4072#endif
4073	return;
4074
4075out1:
4076	unregister_filesystem(&shmem_fs_type);
4077out2:
4078	shmem_destroy_inodecache();
4079	shm_mnt = ERR_PTR(error);
 
4080}
4081
4082#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4083static ssize_t shmem_enabled_show(struct kobject *kobj,
4084				  struct kobj_attribute *attr, char *buf)
4085{
4086	static const int values[] = {
4087		SHMEM_HUGE_ALWAYS,
4088		SHMEM_HUGE_WITHIN_SIZE,
4089		SHMEM_HUGE_ADVISE,
4090		SHMEM_HUGE_NEVER,
4091		SHMEM_HUGE_DENY,
4092		SHMEM_HUGE_FORCE,
4093	};
4094	int len = 0;
4095	int i;
 
 
4096
4097	for (i = 0; i < ARRAY_SIZE(values); i++) {
4098		len += sysfs_emit_at(buf, len,
4099				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4100				     i ? " " : "",
4101				     shmem_format_huge(values[i]));
4102	}
4103
4104	len += sysfs_emit_at(buf, len, "\n");
4105
4106	return len;
4107}
4108
4109static ssize_t shmem_enabled_store(struct kobject *kobj,
4110		struct kobj_attribute *attr, const char *buf, size_t count)
4111{
4112	char tmp[16];
4113	int huge;
4114
4115	if (count + 1 > sizeof(tmp))
4116		return -EINVAL;
4117	memcpy(tmp, buf, count);
4118	tmp[count] = '\0';
4119	if (count && tmp[count - 1] == '\n')
4120		tmp[count - 1] = '\0';
4121
4122	huge = shmem_parse_huge(tmp);
4123	if (huge == -EINVAL)
4124		return -EINVAL;
4125	if (!has_transparent_hugepage() &&
4126			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4127		return -EINVAL;
4128
4129	shmem_huge = huge;
4130	if (shmem_huge > SHMEM_HUGE_DENY)
4131		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4132	return count;
4133}
4134
4135struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4136#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4137
4138#else /* !CONFIG_SHMEM */
4139
4140/*
4141 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4142 *
4143 * This is intended for small system where the benefits of the full
4144 * shmem code (swap-backed and resource-limited) are outweighed by
4145 * their complexity. On systems without swap this code should be
4146 * effectively equivalent, but much lighter weight.
4147 */
4148
4149static struct file_system_type shmem_fs_type = {
4150	.name		= "tmpfs",
4151	.init_fs_context = ramfs_init_fs_context,
4152	.parameters	= ramfs_fs_parameters,
4153	.kill_sb	= kill_litter_super,
4154	.fs_flags	= FS_USERNS_MOUNT,
4155};
4156
4157void __init shmem_init(void)
4158{
4159	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4160
4161	shm_mnt = kern_mount(&shmem_fs_type);
4162	BUG_ON(IS_ERR(shm_mnt));
 
 
4163}
4164
4165int shmem_unuse(unsigned int type)
4166{
4167	return 0;
4168}
4169
4170int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4171{
4172	return 0;
4173}
4174
4175void shmem_unlock_mapping(struct address_space *mapping)
4176{
4177}
4178
4179#ifdef CONFIG_MMU
4180unsigned long shmem_get_unmapped_area(struct file *file,
4181				      unsigned long addr, unsigned long len,
4182				      unsigned long pgoff, unsigned long flags)
4183{
4184	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4185}
4186#endif
4187
4188void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4189{
4190	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4191}
4192EXPORT_SYMBOL_GPL(shmem_truncate_range);
4193
4194#define shmem_vm_ops				generic_file_vm_ops
4195#define shmem_anon_vm_ops			generic_file_vm_ops
4196#define shmem_file_operations			ramfs_file_operations
4197#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4198#define shmem_acct_size(flags, size)		0
4199#define shmem_unacct_size(flags, size)		do {} while (0)
4200
4201#endif /* CONFIG_SHMEM */
4202
4203/* common code */
4204
 
 
 
 
4205static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4206				       unsigned long flags, unsigned int i_flags)
4207{
 
4208	struct inode *inode;
4209	struct file *res;
 
 
4210
4211	if (IS_ERR(mnt))
4212		return ERR_CAST(mnt);
4213
4214	if (size < 0 || size > MAX_LFS_FILESIZE)
4215		return ERR_PTR(-EINVAL);
4216
4217	if (shmem_acct_size(flags, size))
4218		return ERR_PTR(-ENOMEM);
4219
4220	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4221				flags);
4222	if (unlikely(!inode)) {
4223		shmem_unacct_size(flags, size);
4224		return ERR_PTR(-ENOSPC);
4225	}
 
 
 
 
 
 
 
 
 
 
4226	inode->i_flags |= i_flags;
 
4227	inode->i_size = size;
4228	clear_nlink(inode);	/* It is unlinked */
4229	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4230	if (!IS_ERR(res))
4231		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4232				&shmem_file_operations);
4233	if (IS_ERR(res))
4234		iput(inode);
 
 
 
 
 
 
 
 
 
 
 
 
4235	return res;
4236}
4237
4238/**
4239 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4240 * 	kernel internal.  There will be NO LSM permission checks against the
4241 * 	underlying inode.  So users of this interface must do LSM checks at a
4242 *	higher layer.  The users are the big_key and shm implementations.  LSM
4243 *	checks are provided at the key or shm level rather than the inode.
4244 * @name: name for dentry (to be seen in /proc/<pid>/maps
4245 * @size: size to be set for the file
4246 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4247 */
4248struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4249{
4250	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4251}
4252
4253/**
4254 * shmem_file_setup - get an unlinked file living in tmpfs
4255 * @name: name for dentry (to be seen in /proc/<pid>/maps
4256 * @size: size to be set for the file
4257 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4258 */
4259struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4260{
4261	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4262}
4263EXPORT_SYMBOL_GPL(shmem_file_setup);
4264
4265/**
4266 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4267 * @mnt: the tmpfs mount where the file will be created
4268 * @name: name for dentry (to be seen in /proc/<pid>/maps
4269 * @size: size to be set for the file
4270 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4271 */
4272struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4273				       loff_t size, unsigned long flags)
4274{
4275	return __shmem_file_setup(mnt, name, size, flags, 0);
4276}
4277EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4278
4279/**
4280 * shmem_zero_setup - setup a shared anonymous mapping
4281 * @vma: the vma to be mmapped is prepared by do_mmap
4282 */
4283int shmem_zero_setup(struct vm_area_struct *vma)
4284{
4285	struct file *file;
4286	loff_t size = vma->vm_end - vma->vm_start;
4287
4288	/*
4289	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4290	 * between XFS directory reading and selinux: since this file is only
4291	 * accessible to the user through its mapping, use S_PRIVATE flag to
4292	 * bypass file security, in the same way as shmem_kernel_file_setup().
4293	 */
4294	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4295	if (IS_ERR(file))
4296		return PTR_ERR(file);
4297
4298	if (vma->vm_file)
4299		fput(vma->vm_file);
4300	vma->vm_file = file;
4301	vma->vm_ops = &shmem_anon_vm_ops;
 
 
 
 
 
 
4302
4303	return 0;
4304}
4305
4306/**
4307 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4308 * @mapping:	the page's address_space
4309 * @index:	the page index
4310 * @gfp:	the page allocator flags to use if allocating
4311 *
4312 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4313 * with any new page allocations done using the specified allocation flags.
4314 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4315 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4316 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4317 *
4318 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4319 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4320 */
4321struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4322					 pgoff_t index, gfp_t gfp)
4323{
4324#ifdef CONFIG_SHMEM
4325	struct inode *inode = mapping->host;
4326	struct folio *folio;
4327	struct page *page;
4328	int error;
4329
4330	BUG_ON(!shmem_mapping(mapping));
4331	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4332				  gfp, NULL, NULL, NULL);
4333	if (error)
4334		return ERR_PTR(error);
4335
4336	folio_unlock(folio);
4337	page = folio_file_page(folio, index);
4338	if (PageHWPoison(page)) {
4339		folio_put(folio);
4340		return ERR_PTR(-EIO);
4341	}
4342
4343	return page;
4344#else
4345	/*
4346	 * The tiny !SHMEM case uses ramfs without swap
4347	 */
4348	return read_cache_page_gfp(mapping, index, gfp);
4349#endif
4350}
4351EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);