Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/slab.h>
  3#include <linux/lockdep.h>
  4#include <linux/sysfs.h>
  5#include <linux/kobject.h>
  6#include <linux/memory.h>
  7#include <linux/memory-tiers.h>
  8
  9#include "internal.h"
 10
 11struct memory_tier {
 12	/* hierarchy of memory tiers */
 13	struct list_head list;
 14	/* list of all memory types part of this tier */
 15	struct list_head memory_types;
 16	/*
 17	 * start value of abstract distance. memory tier maps
 18	 * an abstract distance  range,
 19	 * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
 20	 */
 21	int adistance_start;
 22	struct device dev;
 23	/* All the nodes that are part of all the lower memory tiers. */
 24	nodemask_t lower_tier_mask;
 25};
 26
 27struct demotion_nodes {
 28	nodemask_t preferred;
 29};
 30
 31struct node_memory_type_map {
 32	struct memory_dev_type *memtype;
 33	int map_count;
 34};
 35
 36static DEFINE_MUTEX(memory_tier_lock);
 37static LIST_HEAD(memory_tiers);
 38static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
 39static struct memory_dev_type *default_dram_type;
 40
 41static struct bus_type memory_tier_subsys = {
 42	.name = "memory_tiering",
 43	.dev_name = "memory_tier",
 44};
 45
 46#ifdef CONFIG_MIGRATION
 47static int top_tier_adistance;
 48/*
 49 * node_demotion[] examples:
 50 *
 51 * Example 1:
 52 *
 53 * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
 54 *
 55 * node distances:
 56 * node   0    1    2    3
 57 *    0  10   20   30   40
 58 *    1  20   10   40   30
 59 *    2  30   40   10   40
 60 *    3  40   30   40   10
 61 *
 62 * memory_tiers0 = 0-1
 63 * memory_tiers1 = 2-3
 64 *
 65 * node_demotion[0].preferred = 2
 66 * node_demotion[1].preferred = 3
 67 * node_demotion[2].preferred = <empty>
 68 * node_demotion[3].preferred = <empty>
 69 *
 70 * Example 2:
 71 *
 72 * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
 73 *
 74 * node distances:
 75 * node   0    1    2
 76 *    0  10   20   30
 77 *    1  20   10   30
 78 *    2  30   30   10
 79 *
 80 * memory_tiers0 = 0-2
 81 *
 82 * node_demotion[0].preferred = <empty>
 83 * node_demotion[1].preferred = <empty>
 84 * node_demotion[2].preferred = <empty>
 85 *
 86 * Example 3:
 87 *
 88 * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
 89 *
 90 * node distances:
 91 * node   0    1    2
 92 *    0  10   20   30
 93 *    1  20   10   40
 94 *    2  30   40   10
 95 *
 96 * memory_tiers0 = 1
 97 * memory_tiers1 = 0
 98 * memory_tiers2 = 2
 99 *
100 * node_demotion[0].preferred = 2
101 * node_demotion[1].preferred = 0
102 * node_demotion[2].preferred = <empty>
103 *
104 */
105static struct demotion_nodes *node_demotion __read_mostly;
106#endif /* CONFIG_MIGRATION */
107
108static inline struct memory_tier *to_memory_tier(struct device *device)
109{
110	return container_of(device, struct memory_tier, dev);
111}
112
113static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
114{
115	nodemask_t nodes = NODE_MASK_NONE;
116	struct memory_dev_type *memtype;
117
118	list_for_each_entry(memtype, &memtier->memory_types, tier_sibiling)
119		nodes_or(nodes, nodes, memtype->nodes);
120
121	return nodes;
122}
123
124static void memory_tier_device_release(struct device *dev)
125{
126	struct memory_tier *tier = to_memory_tier(dev);
127	/*
128	 * synchronize_rcu in clear_node_memory_tier makes sure
129	 * we don't have rcu access to this memory tier.
130	 */
131	kfree(tier);
132}
133
134static ssize_t nodelist_show(struct device *dev,
135			     struct device_attribute *attr, char *buf)
136{
137	int ret;
138	nodemask_t nmask;
139
140	mutex_lock(&memory_tier_lock);
141	nmask = get_memtier_nodemask(to_memory_tier(dev));
142	ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
143	mutex_unlock(&memory_tier_lock);
144	return ret;
145}
146static DEVICE_ATTR_RO(nodelist);
147
148static struct attribute *memtier_dev_attrs[] = {
149	&dev_attr_nodelist.attr,
150	NULL
151};
152
153static const struct attribute_group memtier_dev_group = {
154	.attrs = memtier_dev_attrs,
155};
156
157static const struct attribute_group *memtier_dev_groups[] = {
158	&memtier_dev_group,
159	NULL
160};
161
162static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
163{
164	int ret;
165	bool found_slot = false;
166	struct memory_tier *memtier, *new_memtier;
167	int adistance = memtype->adistance;
168	unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
169
170	lockdep_assert_held_once(&memory_tier_lock);
171
172	adistance = round_down(adistance, memtier_adistance_chunk_size);
173	/*
174	 * If the memtype is already part of a memory tier,
175	 * just return that.
176	 */
177	if (!list_empty(&memtype->tier_sibiling)) {
178		list_for_each_entry(memtier, &memory_tiers, list) {
179			if (adistance == memtier->adistance_start)
180				return memtier;
181		}
182		WARN_ON(1);
183		return ERR_PTR(-EINVAL);
184	}
185
186	list_for_each_entry(memtier, &memory_tiers, list) {
187		if (adistance == memtier->adistance_start) {
188			goto link_memtype;
189		} else if (adistance < memtier->adistance_start) {
190			found_slot = true;
191			break;
192		}
193	}
194
195	new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
196	if (!new_memtier)
197		return ERR_PTR(-ENOMEM);
198
199	new_memtier->adistance_start = adistance;
200	INIT_LIST_HEAD(&new_memtier->list);
201	INIT_LIST_HEAD(&new_memtier->memory_types);
202	if (found_slot)
203		list_add_tail(&new_memtier->list, &memtier->list);
204	else
205		list_add_tail(&new_memtier->list, &memory_tiers);
206
207	new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
208	new_memtier->dev.bus = &memory_tier_subsys;
209	new_memtier->dev.release = memory_tier_device_release;
210	new_memtier->dev.groups = memtier_dev_groups;
211
212	ret = device_register(&new_memtier->dev);
213	if (ret) {
214		list_del(&memtier->list);
215		put_device(&memtier->dev);
216		return ERR_PTR(ret);
217	}
218	memtier = new_memtier;
219
220link_memtype:
221	list_add(&memtype->tier_sibiling, &memtier->memory_types);
222	return memtier;
223}
224
225static struct memory_tier *__node_get_memory_tier(int node)
226{
227	pg_data_t *pgdat;
228
229	pgdat = NODE_DATA(node);
230	if (!pgdat)
231		return NULL;
232	/*
233	 * Since we hold memory_tier_lock, we can avoid
234	 * RCU read locks when accessing the details. No
235	 * parallel updates are possible here.
236	 */
237	return rcu_dereference_check(pgdat->memtier,
238				     lockdep_is_held(&memory_tier_lock));
239}
240
241#ifdef CONFIG_MIGRATION
242bool node_is_toptier(int node)
243{
244	bool toptier;
245	pg_data_t *pgdat;
246	struct memory_tier *memtier;
247
248	pgdat = NODE_DATA(node);
249	if (!pgdat)
250		return false;
251
252	rcu_read_lock();
253	memtier = rcu_dereference(pgdat->memtier);
254	if (!memtier) {
255		toptier = true;
256		goto out;
257	}
258	if (memtier->adistance_start <= top_tier_adistance)
259		toptier = true;
260	else
261		toptier = false;
262out:
263	rcu_read_unlock();
264	return toptier;
265}
266
267void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
268{
269	struct memory_tier *memtier;
270
271	/*
272	 * pg_data_t.memtier updates includes a synchronize_rcu()
273	 * which ensures that we either find NULL or a valid memtier
274	 * in NODE_DATA. protect the access via rcu_read_lock();
275	 */
276	rcu_read_lock();
277	memtier = rcu_dereference(pgdat->memtier);
278	if (memtier)
279		*targets = memtier->lower_tier_mask;
280	else
281		*targets = NODE_MASK_NONE;
282	rcu_read_unlock();
283}
284
285/**
286 * next_demotion_node() - Get the next node in the demotion path
287 * @node: The starting node to lookup the next node
288 *
289 * Return: node id for next memory node in the demotion path hierarchy
290 * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
291 * @node online or guarantee that it *continues* to be the next demotion
292 * target.
293 */
294int next_demotion_node(int node)
295{
296	struct demotion_nodes *nd;
297	int target;
298
299	if (!node_demotion)
300		return NUMA_NO_NODE;
301
302	nd = &node_demotion[node];
303
304	/*
305	 * node_demotion[] is updated without excluding this
306	 * function from running.
307	 *
308	 * Make sure to use RCU over entire code blocks if
309	 * node_demotion[] reads need to be consistent.
310	 */
311	rcu_read_lock();
312	/*
313	 * If there are multiple target nodes, just select one
314	 * target node randomly.
315	 *
316	 * In addition, we can also use round-robin to select
317	 * target node, but we should introduce another variable
318	 * for node_demotion[] to record last selected target node,
319	 * that may cause cache ping-pong due to the changing of
320	 * last target node. Or introducing per-cpu data to avoid
321	 * caching issue, which seems more complicated. So selecting
322	 * target node randomly seems better until now.
323	 */
324	target = node_random(&nd->preferred);
325	rcu_read_unlock();
326
327	return target;
328}
329
330static void disable_all_demotion_targets(void)
331{
332	struct memory_tier *memtier;
333	int node;
334
335	for_each_node_state(node, N_MEMORY) {
336		node_demotion[node].preferred = NODE_MASK_NONE;
337		/*
338		 * We are holding memory_tier_lock, it is safe
339		 * to access pgda->memtier.
340		 */
341		memtier = __node_get_memory_tier(node);
342		if (memtier)
343			memtier->lower_tier_mask = NODE_MASK_NONE;
344	}
345	/*
346	 * Ensure that the "disable" is visible across the system.
347	 * Readers will see either a combination of before+disable
348	 * state or disable+after.  They will never see before and
349	 * after state together.
350	 */
351	synchronize_rcu();
352}
353
354/*
355 * Find an automatic demotion target for all memory
356 * nodes. Failing here is OK.  It might just indicate
357 * being at the end of a chain.
358 */
359static void establish_demotion_targets(void)
360{
361	struct memory_tier *memtier;
362	struct demotion_nodes *nd;
363	int target = NUMA_NO_NODE, node;
364	int distance, best_distance;
365	nodemask_t tier_nodes, lower_tier;
366
367	lockdep_assert_held_once(&memory_tier_lock);
368
369	if (!node_demotion || !IS_ENABLED(CONFIG_MIGRATION))
370		return;
371
372	disable_all_demotion_targets();
373
374	for_each_node_state(node, N_MEMORY) {
375		best_distance = -1;
376		nd = &node_demotion[node];
377
378		memtier = __node_get_memory_tier(node);
379		if (!memtier || list_is_last(&memtier->list, &memory_tiers))
380			continue;
381		/*
382		 * Get the lower memtier to find the  demotion node list.
383		 */
384		memtier = list_next_entry(memtier, list);
385		tier_nodes = get_memtier_nodemask(memtier);
386		/*
387		 * find_next_best_node, use 'used' nodemask as a skip list.
388		 * Add all memory nodes except the selected memory tier
389		 * nodelist to skip list so that we find the best node from the
390		 * memtier nodelist.
391		 */
392		nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
393
394		/*
395		 * Find all the nodes in the memory tier node list of same best distance.
396		 * add them to the preferred mask. We randomly select between nodes
397		 * in the preferred mask when allocating pages during demotion.
398		 */
399		do {
400			target = find_next_best_node(node, &tier_nodes);
401			if (target == NUMA_NO_NODE)
402				break;
403
404			distance = node_distance(node, target);
405			if (distance == best_distance || best_distance == -1) {
406				best_distance = distance;
407				node_set(target, nd->preferred);
408			} else {
409				break;
410			}
411		} while (1);
412	}
413	/*
414	 * Promotion is allowed from a memory tier to higher
415	 * memory tier only if the memory tier doesn't include
416	 * compute. We want to skip promotion from a memory tier,
417	 * if any node that is part of the memory tier have CPUs.
418	 * Once we detect such a memory tier, we consider that tier
419	 * as top tiper from which promotion is not allowed.
420	 */
421	list_for_each_entry_reverse(memtier, &memory_tiers, list) {
422		tier_nodes = get_memtier_nodemask(memtier);
423		nodes_and(tier_nodes, node_states[N_CPU], tier_nodes);
424		if (!nodes_empty(tier_nodes)) {
425			/*
426			 * abstract distance below the max value of this memtier
427			 * is considered toptier.
428			 */
429			top_tier_adistance = memtier->adistance_start +
430						MEMTIER_CHUNK_SIZE - 1;
431			break;
432		}
433	}
434	/*
435	 * Now build the lower_tier mask for each node collecting node mask from
436	 * all memory tier below it. This allows us to fallback demotion page
437	 * allocation to a set of nodes that is closer the above selected
438	 * perferred node.
439	 */
440	lower_tier = node_states[N_MEMORY];
441	list_for_each_entry(memtier, &memory_tiers, list) {
442		/*
443		 * Keep removing current tier from lower_tier nodes,
444		 * This will remove all nodes in current and above
445		 * memory tier from the lower_tier mask.
446		 */
447		tier_nodes = get_memtier_nodemask(memtier);
448		nodes_andnot(lower_tier, lower_tier, tier_nodes);
449		memtier->lower_tier_mask = lower_tier;
450	}
451}
452
453#else
454static inline void disable_all_demotion_targets(void) {}
455static inline void establish_demotion_targets(void) {}
456#endif /* CONFIG_MIGRATION */
457
458static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
459{
460	if (!node_memory_types[node].memtype)
461		node_memory_types[node].memtype = memtype;
462	/*
463	 * for each device getting added in the same NUMA node
464	 * with this specific memtype, bump the map count. We
465	 * Only take memtype device reference once, so that
466	 * changing a node memtype can be done by droping the
467	 * only reference count taken here.
468	 */
469
470	if (node_memory_types[node].memtype == memtype) {
471		if (!node_memory_types[node].map_count++)
472			kref_get(&memtype->kref);
473	}
474}
475
476static struct memory_tier *set_node_memory_tier(int node)
477{
478	struct memory_tier *memtier;
479	struct memory_dev_type *memtype;
480	pg_data_t *pgdat = NODE_DATA(node);
481
482
483	lockdep_assert_held_once(&memory_tier_lock);
484
485	if (!node_state(node, N_MEMORY))
486		return ERR_PTR(-EINVAL);
487
488	__init_node_memory_type(node, default_dram_type);
489
490	memtype = node_memory_types[node].memtype;
491	node_set(node, memtype->nodes);
492	memtier = find_create_memory_tier(memtype);
493	if (!IS_ERR(memtier))
494		rcu_assign_pointer(pgdat->memtier, memtier);
495	return memtier;
496}
497
498static void destroy_memory_tier(struct memory_tier *memtier)
499{
500	list_del(&memtier->list);
501	device_unregister(&memtier->dev);
502}
503
504static bool clear_node_memory_tier(int node)
505{
506	bool cleared = false;
507	pg_data_t *pgdat;
508	struct memory_tier *memtier;
509
510	pgdat = NODE_DATA(node);
511	if (!pgdat)
512		return false;
513
514	/*
515	 * Make sure that anybody looking at NODE_DATA who finds
516	 * a valid memtier finds memory_dev_types with nodes still
517	 * linked to the memtier. We achieve this by waiting for
518	 * rcu read section to finish using synchronize_rcu.
519	 * This also enables us to free the destroyed memory tier
520	 * with kfree instead of kfree_rcu
521	 */
522	memtier = __node_get_memory_tier(node);
523	if (memtier) {
524		struct memory_dev_type *memtype;
525
526		rcu_assign_pointer(pgdat->memtier, NULL);
527		synchronize_rcu();
528		memtype = node_memory_types[node].memtype;
529		node_clear(node, memtype->nodes);
530		if (nodes_empty(memtype->nodes)) {
531			list_del_init(&memtype->tier_sibiling);
532			if (list_empty(&memtier->memory_types))
533				destroy_memory_tier(memtier);
534		}
535		cleared = true;
536	}
537	return cleared;
538}
539
540static void release_memtype(struct kref *kref)
541{
542	struct memory_dev_type *memtype;
543
544	memtype = container_of(kref, struct memory_dev_type, kref);
545	kfree(memtype);
546}
547
548struct memory_dev_type *alloc_memory_type(int adistance)
549{
550	struct memory_dev_type *memtype;
551
552	memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
553	if (!memtype)
554		return ERR_PTR(-ENOMEM);
555
556	memtype->adistance = adistance;
557	INIT_LIST_HEAD(&memtype->tier_sibiling);
558	memtype->nodes  = NODE_MASK_NONE;
559	kref_init(&memtype->kref);
560	return memtype;
561}
562EXPORT_SYMBOL_GPL(alloc_memory_type);
563
564void destroy_memory_type(struct memory_dev_type *memtype)
565{
566	kref_put(&memtype->kref, release_memtype);
567}
568EXPORT_SYMBOL_GPL(destroy_memory_type);
569
570void init_node_memory_type(int node, struct memory_dev_type *memtype)
571{
572
573	mutex_lock(&memory_tier_lock);
574	__init_node_memory_type(node, memtype);
575	mutex_unlock(&memory_tier_lock);
576}
577EXPORT_SYMBOL_GPL(init_node_memory_type);
578
579void clear_node_memory_type(int node, struct memory_dev_type *memtype)
580{
581	mutex_lock(&memory_tier_lock);
582	if (node_memory_types[node].memtype == memtype)
583		node_memory_types[node].map_count--;
584	/*
585	 * If we umapped all the attached devices to this node,
586	 * clear the node memory type.
587	 */
588	if (!node_memory_types[node].map_count) {
589		node_memory_types[node].memtype = NULL;
590		kref_put(&memtype->kref, release_memtype);
591	}
592	mutex_unlock(&memory_tier_lock);
593}
594EXPORT_SYMBOL_GPL(clear_node_memory_type);
595
596static int __meminit memtier_hotplug_callback(struct notifier_block *self,
597					      unsigned long action, void *_arg)
598{
599	struct memory_tier *memtier;
600	struct memory_notify *arg = _arg;
601
602	/*
603	 * Only update the node migration order when a node is
604	 * changing status, like online->offline.
605	 */
606	if (arg->status_change_nid < 0)
607		return notifier_from_errno(0);
608
609	switch (action) {
610	case MEM_OFFLINE:
611		mutex_lock(&memory_tier_lock);
612		if (clear_node_memory_tier(arg->status_change_nid))
613			establish_demotion_targets();
614		mutex_unlock(&memory_tier_lock);
615		break;
616	case MEM_ONLINE:
617		mutex_lock(&memory_tier_lock);
618		memtier = set_node_memory_tier(arg->status_change_nid);
619		if (!IS_ERR(memtier))
620			establish_demotion_targets();
621		mutex_unlock(&memory_tier_lock);
622		break;
623	}
624
625	return notifier_from_errno(0);
626}
627
628static int __init memory_tier_init(void)
629{
630	int ret, node;
631	struct memory_tier *memtier;
632
633	ret = subsys_virtual_register(&memory_tier_subsys, NULL);
634	if (ret)
635		panic("%s() failed to register memory tier subsystem\n", __func__);
636
637#ifdef CONFIG_MIGRATION
638	node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
639				GFP_KERNEL);
640	WARN_ON(!node_demotion);
641#endif
642	mutex_lock(&memory_tier_lock);
643	/*
644	 * For now we can have 4 faster memory tiers with smaller adistance
645	 * than default DRAM tier.
646	 */
647	default_dram_type = alloc_memory_type(MEMTIER_ADISTANCE_DRAM);
648	if (IS_ERR(default_dram_type))
649		panic("%s() failed to allocate default DRAM tier\n", __func__);
650
651	/*
652	 * Look at all the existing N_MEMORY nodes and add them to
653	 * default memory tier or to a tier if we already have memory
654	 * types assigned.
655	 */
656	for_each_node_state(node, N_MEMORY) {
657		memtier = set_node_memory_tier(node);
658		if (IS_ERR(memtier))
659			/*
660			 * Continue with memtiers we are able to setup
661			 */
662			break;
663	}
664	establish_demotion_targets();
665	mutex_unlock(&memory_tier_lock);
666
667	hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI);
668	return 0;
669}
670subsys_initcall(memory_tier_init);
671
672bool numa_demotion_enabled = false;
673
674#ifdef CONFIG_MIGRATION
675#ifdef CONFIG_SYSFS
676static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
677					  struct kobj_attribute *attr, char *buf)
678{
679	return sysfs_emit(buf, "%s\n",
680			  numa_demotion_enabled ? "true" : "false");
681}
682
683static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
684					   struct kobj_attribute *attr,
685					   const char *buf, size_t count)
686{
687	ssize_t ret;
688
689	ret = kstrtobool(buf, &numa_demotion_enabled);
690	if (ret)
691		return ret;
692
693	return count;
694}
695
696static struct kobj_attribute numa_demotion_enabled_attr =
697	__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
698	       numa_demotion_enabled_store);
699
700static struct attribute *numa_attrs[] = {
701	&numa_demotion_enabled_attr.attr,
702	NULL,
703};
704
705static const struct attribute_group numa_attr_group = {
706	.attrs = numa_attrs,
707};
708
709static int __init numa_init_sysfs(void)
710{
711	int err;
712	struct kobject *numa_kobj;
713
714	numa_kobj = kobject_create_and_add("numa", mm_kobj);
715	if (!numa_kobj) {
716		pr_err("failed to create numa kobject\n");
717		return -ENOMEM;
718	}
719	err = sysfs_create_group(numa_kobj, &numa_attr_group);
720	if (err) {
721		pr_err("failed to register numa group\n");
722		goto delete_obj;
723	}
724	return 0;
725
726delete_obj:
727	kobject_put(numa_kobj);
728	return err;
729}
730subsys_initcall(numa_init_sysfs);
731#endif /* CONFIG_SYSFS */
732#endif