Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Frontswap frontend
  3 *
  4 * This code provides the generic "frontend" layer to call a matching
  5 * "backend" driver implementation of frontswap.  See
  6 * Documentation/vm/frontswap.txt for more information.
  7 *
  8 * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
  9 * Author: Dan Magenheimer
 10 *
 11 * This work is licensed under the terms of the GNU GPL, version 2.
 12 */
 13
 14#include <linux/mman.h>
 15#include <linux/swap.h>
 16#include <linux/swapops.h>
 17#include <linux/security.h>
 18#include <linux/module.h>
 19#include <linux/debugfs.h>
 20#include <linux/frontswap.h>
 21#include <linux/swapfile.h>
 22
 23DEFINE_STATIC_KEY_FALSE(frontswap_enabled_key);
 24
 25/*
 26 * frontswap_ops are added by frontswap_register_ops, and provide the
 27 * frontswap "backend" implementation functions.  Multiple implementations
 28 * may be registered, but implementations can never deregister.  This
 29 * is a simple singly-linked list of all registered implementations.
 30 */
 31static struct frontswap_ops *frontswap_ops __read_mostly;
 32
 33#define for_each_frontswap_ops(ops)		\
 34	for ((ops) = frontswap_ops; (ops); (ops) = (ops)->next)
 35
 36/*
 37 * If enabled, frontswap_store will return failure even on success.  As
 38 * a result, the swap subsystem will always write the page to swap, in
 39 * effect converting frontswap into a writethrough cache.  In this mode,
 40 * there is no direct reduction in swap writes, but a frontswap backend
 41 * can unilaterally "reclaim" any pages in use with no data loss, thus
 42 * providing increases control over maximum memory usage due to frontswap.
 43 */
 44static bool frontswap_writethrough_enabled __read_mostly;
 45
 46/*
 47 * If enabled, the underlying tmem implementation is capable of doing
 48 * exclusive gets, so frontswap_load, on a successful tmem_get must
 49 * mark the page as no longer in frontswap AND mark it dirty.
 50 */
 51static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
 52
 53#ifdef CONFIG_DEBUG_FS
 54/*
 55 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
 56 * properly configured).  These are for information only so are not protected
 57 * against increment races.
 58 */
 59static u64 frontswap_loads;
 60static u64 frontswap_succ_stores;
 61static u64 frontswap_failed_stores;
 62static u64 frontswap_invalidates;
 63
 64static inline void inc_frontswap_loads(void) {
 65	frontswap_loads++;
 
 66}
 67static inline void inc_frontswap_succ_stores(void) {
 68	frontswap_succ_stores++;
 
 69}
 70static inline void inc_frontswap_failed_stores(void) {
 71	frontswap_failed_stores++;
 
 72}
 73static inline void inc_frontswap_invalidates(void) {
 74	frontswap_invalidates++;
 
 75}
 76#else
 77static inline void inc_frontswap_loads(void) { }
 78static inline void inc_frontswap_succ_stores(void) { }
 79static inline void inc_frontswap_failed_stores(void) { }
 80static inline void inc_frontswap_invalidates(void) { }
 81#endif
 82
 83/*
 84 * Due to the asynchronous nature of the backends loading potentially
 85 * _after_ the swap system has been activated, we have chokepoints
 86 * on all frontswap functions to not call the backend until the backend
 87 * has registered.
 88 *
 89 * This would not guards us against the user deciding to call swapoff right as
 90 * we are calling the backend to initialize (so swapon is in action).
 91 * Fortunatly for us, the swapon_mutex has been taked by the callee so we are
 92 * OK. The other scenario where calls to frontswap_store (called via
 93 * swap_writepage) is racing with frontswap_invalidate_area (called via
 94 * swapoff) is again guarded by the swap subsystem.
 95 *
 96 * While no backend is registered all calls to frontswap_[store|load|
 97 * invalidate_area|invalidate_page] are ignored or fail.
 98 *
 99 * The time between the backend being registered and the swap file system
100 * calling the backend (via the frontswap_* functions) is indeterminate as
101 * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
102 * That is OK as we are comfortable missing some of these calls to the newly
103 * registered backend.
104 *
105 * Obviously the opposite (unloading the backend) must be done after all
106 * the frontswap_[store|load|invalidate_area|invalidate_page] start
107 * ignoring or failing the requests.  However, there is currently no way
108 * to unload a backend once it is registered.
109 */
110
111/*
112 * Register operations for frontswap
113 */
114void frontswap_register_ops(struct frontswap_ops *ops)
115{
116	DECLARE_BITMAP(a, MAX_SWAPFILES);
117	DECLARE_BITMAP(b, MAX_SWAPFILES);
118	struct swap_info_struct *si;
119	unsigned int i;
120
121	bitmap_zero(a, MAX_SWAPFILES);
122	bitmap_zero(b, MAX_SWAPFILES);
123
124	spin_lock(&swap_lock);
125	plist_for_each_entry(si, &swap_active_head, list) {
126		if (!WARN_ON(!si->frontswap_map))
127			set_bit(si->type, a);
128	}
129	spin_unlock(&swap_lock);
130
131	/* the new ops needs to know the currently active swap devices */
132	for_each_set_bit(i, a, MAX_SWAPFILES)
133		ops->init(i);
134
135	/*
136	 * Setting frontswap_ops must happen after the ops->init() calls
137	 * above; cmpxchg implies smp_mb() which will ensure the init is
138	 * complete at this point.
139	 */
140	do {
141		ops->next = frontswap_ops;
142	} while (cmpxchg(&frontswap_ops, ops->next, ops) != ops->next);
143
 
144	static_branch_inc(&frontswap_enabled_key);
145
146	spin_lock(&swap_lock);
147	plist_for_each_entry(si, &swap_active_head, list) {
148		if (si->frontswap_map)
149			set_bit(si->type, b);
150	}
151	spin_unlock(&swap_lock);
152
153	/*
154	 * On the very unlikely chance that a swap device was added or
155	 * removed between setting the "a" list bits and the ops init
156	 * calls, we re-check and do init or invalidate for any changed
157	 * bits.
158	 */
159	if (unlikely(!bitmap_equal(a, b, MAX_SWAPFILES))) {
160		for (i = 0; i < MAX_SWAPFILES; i++) {
161			if (!test_bit(i, a) && test_bit(i, b))
162				ops->init(i);
163			else if (test_bit(i, a) && !test_bit(i, b))
164				ops->invalidate_area(i);
165		}
166	}
167}
168EXPORT_SYMBOL(frontswap_register_ops);
169
170/*
171 * Enable/disable frontswap writethrough (see above).
172 */
173void frontswap_writethrough(bool enable)
174{
175	frontswap_writethrough_enabled = enable;
176}
177EXPORT_SYMBOL(frontswap_writethrough);
178
179/*
180 * Enable/disable frontswap exclusive gets (see above).
181 */
182void frontswap_tmem_exclusive_gets(bool enable)
183{
184	frontswap_tmem_exclusive_gets_enabled = enable;
185}
186EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
187
188/*
189 * Called when a swap device is swapon'd.
190 */
191void __frontswap_init(unsigned type, unsigned long *map)
192{
193	struct swap_info_struct *sis = swap_info[type];
194	struct frontswap_ops *ops;
195
196	VM_BUG_ON(sis == NULL);
197
198	/*
199	 * p->frontswap is a bitmap that we MUST have to figure out which page
200	 * has gone in frontswap. Without it there is no point of continuing.
201	 */
202	if (WARN_ON(!map))
203		return;
204	/*
205	 * Irregardless of whether the frontswap backend has been loaded
206	 * before this function or it will be later, we _MUST_ have the
207	 * p->frontswap set to something valid to work properly.
208	 */
209	frontswap_map_set(sis, map);
210
211	for_each_frontswap_ops(ops)
212		ops->init(type);
 
213}
214EXPORT_SYMBOL(__frontswap_init);
215
216bool __frontswap_test(struct swap_info_struct *sis,
217				pgoff_t offset)
218{
219	if (sis->frontswap_map)
220		return test_bit(offset, sis->frontswap_map);
221	return false;
222}
223EXPORT_SYMBOL(__frontswap_test);
224
225static inline void __frontswap_set(struct swap_info_struct *sis,
226				   pgoff_t offset)
227{
228	set_bit(offset, sis->frontswap_map);
229	atomic_inc(&sis->frontswap_pages);
230}
231
232static inline void __frontswap_clear(struct swap_info_struct *sis,
233				     pgoff_t offset)
234{
235	clear_bit(offset, sis->frontswap_map);
236	atomic_dec(&sis->frontswap_pages);
237}
238
239/*
240 * "Store" data from a page to frontswap and associate it with the page's
241 * swaptype and offset.  Page must be locked and in the swap cache.
242 * If frontswap already contains a page with matching swaptype and
243 * offset, the frontswap implementation may either overwrite the data and
244 * return success or invalidate the page from frontswap and return failure.
245 */
246int __frontswap_store(struct page *page)
247{
248	int ret = -1;
249	swp_entry_t entry = { .val = page_private(page), };
250	int type = swp_type(entry);
251	struct swap_info_struct *sis = swap_info[type];
252	pgoff_t offset = swp_offset(entry);
253	struct frontswap_ops *ops;
254
255	VM_BUG_ON(!frontswap_ops);
256	VM_BUG_ON(!PageLocked(page));
257	VM_BUG_ON(sis == NULL);
258
259	/*
260	 * If a dup, we must remove the old page first; we can't leave the
261	 * old page no matter if the store of the new page succeeds or fails,
262	 * and we can't rely on the new page replacing the old page as we may
263	 * not store to the same implementation that contains the old page.
264	 */
265	if (__frontswap_test(sis, offset)) {
266		__frontswap_clear(sis, offset);
267		for_each_frontswap_ops(ops)
268			ops->invalidate_page(type, offset);
269	}
270
271	/* Try to store in each implementation, until one succeeds. */
272	for_each_frontswap_ops(ops) {
273		ret = ops->store(type, offset, page);
274		if (!ret) /* successful store */
275			break;
276	}
277	if (ret == 0) {
278		__frontswap_set(sis, offset);
279		inc_frontswap_succ_stores();
280	} else {
281		inc_frontswap_failed_stores();
282	}
283	if (frontswap_writethrough_enabled)
284		/* report failure so swap also writes to swap device */
285		ret = -1;
286	return ret;
287}
288EXPORT_SYMBOL(__frontswap_store);
289
290/*
291 * "Get" data from frontswap associated with swaptype and offset that were
292 * specified when the data was put to frontswap and use it to fill the
293 * specified page with data. Page must be locked and in the swap cache.
294 */
295int __frontswap_load(struct page *page)
296{
297	int ret = -1;
298	swp_entry_t entry = { .val = page_private(page), };
299	int type = swp_type(entry);
300	struct swap_info_struct *sis = swap_info[type];
301	pgoff_t offset = swp_offset(entry);
302	struct frontswap_ops *ops;
303
304	VM_BUG_ON(!frontswap_ops);
305	VM_BUG_ON(!PageLocked(page));
306	VM_BUG_ON(sis == NULL);
307
308	if (!__frontswap_test(sis, offset))
309		return -1;
310
311	/* Try loading from each implementation, until one succeeds. */
312	for_each_frontswap_ops(ops) {
313		ret = ops->load(type, offset, page);
314		if (!ret) /* successful load */
315			break;
316	}
317	if (ret == 0) {
318		inc_frontswap_loads();
319		if (frontswap_tmem_exclusive_gets_enabled) {
320			SetPageDirty(page);
321			__frontswap_clear(sis, offset);
322		}
323	}
324	return ret;
325}
326EXPORT_SYMBOL(__frontswap_load);
327
328/*
329 * Invalidate any data from frontswap associated with the specified swaptype
330 * and offset so that a subsequent "get" will fail.
331 */
332void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
333{
334	struct swap_info_struct *sis = swap_info[type];
335	struct frontswap_ops *ops;
336
337	VM_BUG_ON(!frontswap_ops);
338	VM_BUG_ON(sis == NULL);
339
340	if (!__frontswap_test(sis, offset))
341		return;
342
343	for_each_frontswap_ops(ops)
344		ops->invalidate_page(type, offset);
345	__frontswap_clear(sis, offset);
346	inc_frontswap_invalidates();
347}
348EXPORT_SYMBOL(__frontswap_invalidate_page);
349
350/*
351 * Invalidate all data from frontswap associated with all offsets for the
352 * specified swaptype.
353 */
354void __frontswap_invalidate_area(unsigned type)
355{
356	struct swap_info_struct *sis = swap_info[type];
357	struct frontswap_ops *ops;
358
359	VM_BUG_ON(!frontswap_ops);
360	VM_BUG_ON(sis == NULL);
361
362	if (sis->frontswap_map == NULL)
363		return;
364
365	for_each_frontswap_ops(ops)
366		ops->invalidate_area(type);
367	atomic_set(&sis->frontswap_pages, 0);
368	bitmap_zero(sis->frontswap_map, sis->max);
369}
370EXPORT_SYMBOL(__frontswap_invalidate_area);
371
372static unsigned long __frontswap_curr_pages(void)
373{
374	unsigned long totalpages = 0;
375	struct swap_info_struct *si = NULL;
376
377	assert_spin_locked(&swap_lock);
378	plist_for_each_entry(si, &swap_active_head, list)
379		totalpages += atomic_read(&si->frontswap_pages);
380	return totalpages;
381}
382
383static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
384					int *swapid)
385{
386	int ret = -EINVAL;
387	struct swap_info_struct *si = NULL;
388	int si_frontswap_pages;
389	unsigned long total_pages_to_unuse = total;
390	unsigned long pages = 0, pages_to_unuse = 0;
391
392	assert_spin_locked(&swap_lock);
393	plist_for_each_entry(si, &swap_active_head, list) {
394		si_frontswap_pages = atomic_read(&si->frontswap_pages);
395		if (total_pages_to_unuse < si_frontswap_pages) {
396			pages = pages_to_unuse = total_pages_to_unuse;
397		} else {
398			pages = si_frontswap_pages;
399			pages_to_unuse = 0; /* unuse all */
400		}
401		/* ensure there is enough RAM to fetch pages from frontswap */
402		if (security_vm_enough_memory_mm(current->mm, pages)) {
403			ret = -ENOMEM;
404			continue;
405		}
406		vm_unacct_memory(pages);
407		*unused = pages_to_unuse;
408		*swapid = si->type;
409		ret = 0;
410		break;
411	}
412
413	return ret;
414}
415
416/*
417 * Used to check if it's necessory and feasible to unuse pages.
418 * Return 1 when nothing to do, 0 when need to shink pages,
419 * error code when there is an error.
420 */
421static int __frontswap_shrink(unsigned long target_pages,
422				unsigned long *pages_to_unuse,
423				int *type)
424{
425	unsigned long total_pages = 0, total_pages_to_unuse;
426
427	assert_spin_locked(&swap_lock);
428
429	total_pages = __frontswap_curr_pages();
430	if (total_pages <= target_pages) {
431		/* Nothing to do */
432		*pages_to_unuse = 0;
433		return 1;
434	}
435	total_pages_to_unuse = total_pages - target_pages;
436	return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
437}
438
439/*
440 * Frontswap, like a true swap device, may unnecessarily retain pages
441 * under certain circumstances; "shrink" frontswap is essentially a
442 * "partial swapoff" and works by calling try_to_unuse to attempt to
443 * unuse enough frontswap pages to attempt to -- subject to memory
444 * constraints -- reduce the number of pages in frontswap to the
445 * number given in the parameter target_pages.
446 */
447void frontswap_shrink(unsigned long target_pages)
448{
449	unsigned long pages_to_unuse = 0;
450	int uninitialized_var(type), ret;
451
452	/*
453	 * we don't want to hold swap_lock while doing a very
454	 * lengthy try_to_unuse, but swap_list may change
455	 * so restart scan from swap_active_head each time
456	 */
457	spin_lock(&swap_lock);
458	ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
459	spin_unlock(&swap_lock);
460	if (ret == 0)
461		try_to_unuse(type, true, pages_to_unuse);
462	return;
463}
464EXPORT_SYMBOL(frontswap_shrink);
465
466/*
467 * Count and return the number of frontswap pages across all
468 * swap devices.  This is exported so that backend drivers can
469 * determine current usage without reading debugfs.
470 */
471unsigned long frontswap_curr_pages(void)
472{
473	unsigned long totalpages = 0;
474
475	spin_lock(&swap_lock);
476	totalpages = __frontswap_curr_pages();
477	spin_unlock(&swap_lock);
478
479	return totalpages;
480}
481EXPORT_SYMBOL(frontswap_curr_pages);
482
483static int __init init_frontswap(void)
484{
485#ifdef CONFIG_DEBUG_FS
486	struct dentry *root = debugfs_create_dir("frontswap", NULL);
487	if (root == NULL)
488		return -ENXIO;
489	debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads);
490	debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores);
491	debugfs_create_u64("failed_stores", S_IRUGO, root,
492				&frontswap_failed_stores);
493	debugfs_create_u64("invalidates", S_IRUGO,
494				root, &frontswap_invalidates);
495#endif
496	return 0;
497}
498
499module_init(init_frontswap);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Frontswap frontend
  4 *
  5 * This code provides the generic "frontend" layer to call a matching
  6 * "backend" driver implementation of frontswap.  See
  7 * Documentation/mm/frontswap.rst for more information.
  8 *
  9 * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
 10 * Author: Dan Magenheimer
 
 
 11 */
 12
 13#include <linux/mman.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 16#include <linux/security.h>
 17#include <linux/module.h>
 18#include <linux/debugfs.h>
 19#include <linux/frontswap.h>
 20#include <linux/swapfile.h>
 21
 22DEFINE_STATIC_KEY_FALSE(frontswap_enabled_key);
 23
 24/*
 25 * frontswap_ops are added by frontswap_register_ops, and provide the
 26 * frontswap "backend" implementation functions.  Multiple implementations
 27 * may be registered, but implementations can never deregister.  This
 28 * is a simple singly-linked list of all registered implementations.
 29 */
 30static const struct frontswap_ops *frontswap_ops __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31
 32#ifdef CONFIG_DEBUG_FS
 33/*
 34 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
 35 * properly configured).  These are for information only so are not protected
 36 * against increment races.
 37 */
 38static u64 frontswap_loads;
 39static u64 frontswap_succ_stores;
 40static u64 frontswap_failed_stores;
 41static u64 frontswap_invalidates;
 42
 43static inline void inc_frontswap_loads(void)
 44{
 45	data_race(frontswap_loads++);
 46}
 47static inline void inc_frontswap_succ_stores(void)
 48{
 49	data_race(frontswap_succ_stores++);
 50}
 51static inline void inc_frontswap_failed_stores(void)
 52{
 53	data_race(frontswap_failed_stores++);
 54}
 55static inline void inc_frontswap_invalidates(void)
 56{
 57	data_race(frontswap_invalidates++);
 58}
 59#else
 60static inline void inc_frontswap_loads(void) { }
 61static inline void inc_frontswap_succ_stores(void) { }
 62static inline void inc_frontswap_failed_stores(void) { }
 63static inline void inc_frontswap_invalidates(void) { }
 64#endif
 65
 66/*
 67 * Due to the asynchronous nature of the backends loading potentially
 68 * _after_ the swap system has been activated, we have chokepoints
 69 * on all frontswap functions to not call the backend until the backend
 70 * has registered.
 71 *
 72 * This would not guards us against the user deciding to call swapoff right as
 73 * we are calling the backend to initialize (so swapon is in action).
 74 * Fortunately for us, the swapon_mutex has been taken by the callee so we are
 75 * OK. The other scenario where calls to frontswap_store (called via
 76 * swap_writepage) is racing with frontswap_invalidate_area (called via
 77 * swapoff) is again guarded by the swap subsystem.
 78 *
 79 * While no backend is registered all calls to frontswap_[store|load|
 80 * invalidate_area|invalidate_page] are ignored or fail.
 81 *
 82 * The time between the backend being registered and the swap file system
 83 * calling the backend (via the frontswap_* functions) is indeterminate as
 84 * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
 85 * That is OK as we are comfortable missing some of these calls to the newly
 86 * registered backend.
 87 *
 88 * Obviously the opposite (unloading the backend) must be done after all
 89 * the frontswap_[store|load|invalidate_area|invalidate_page] start
 90 * ignoring or failing the requests.  However, there is currently no way
 91 * to unload a backend once it is registered.
 92 */
 93
 94/*
 95 * Register operations for frontswap
 96 */
 97int frontswap_register_ops(const struct frontswap_ops *ops)
 98{
 99	if (frontswap_ops)
100		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
102	frontswap_ops = ops;
103	static_branch_inc(&frontswap_enabled_key);
104	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
107/*
108 * Called when a swap device is swapon'd.
109 */
110void frontswap_init(unsigned type, unsigned long *map)
111{
112	struct swap_info_struct *sis = swap_info[type];
 
113
114	VM_BUG_ON(sis == NULL);
115
116	/*
117	 * p->frontswap is a bitmap that we MUST have to figure out which page
118	 * has gone in frontswap. Without it there is no point of continuing.
119	 */
120	if (WARN_ON(!map))
121		return;
122	/*
123	 * Irregardless of whether the frontswap backend has been loaded
124	 * before this function or it will be later, we _MUST_ have the
125	 * p->frontswap set to something valid to work properly.
126	 */
127	frontswap_map_set(sis, map);
128
129	if (!frontswap_enabled())
130		return;
131	frontswap_ops->init(type);
132}
 
133
134static bool __frontswap_test(struct swap_info_struct *sis,
135				pgoff_t offset)
136{
137	if (sis->frontswap_map)
138		return test_bit(offset, sis->frontswap_map);
139	return false;
140}
 
141
142static inline void __frontswap_set(struct swap_info_struct *sis,
143				   pgoff_t offset)
144{
145	set_bit(offset, sis->frontswap_map);
146	atomic_inc(&sis->frontswap_pages);
147}
148
149static inline void __frontswap_clear(struct swap_info_struct *sis,
150				     pgoff_t offset)
151{
152	clear_bit(offset, sis->frontswap_map);
153	atomic_dec(&sis->frontswap_pages);
154}
155
156/*
157 * "Store" data from a page to frontswap and associate it with the page's
158 * swaptype and offset.  Page must be locked and in the swap cache.
159 * If frontswap already contains a page with matching swaptype and
160 * offset, the frontswap implementation may either overwrite the data and
161 * return success or invalidate the page from frontswap and return failure.
162 */
163int __frontswap_store(struct page *page)
164{
165	int ret = -1;
166	swp_entry_t entry = { .val = page_private(page), };
167	int type = swp_type(entry);
168	struct swap_info_struct *sis = swap_info[type];
169	pgoff_t offset = swp_offset(entry);
 
170
171	VM_BUG_ON(!frontswap_ops);
172	VM_BUG_ON(!PageLocked(page));
173	VM_BUG_ON(sis == NULL);
174
175	/*
176	 * If a dup, we must remove the old page first; we can't leave the
177	 * old page no matter if the store of the new page succeeds or fails,
178	 * and we can't rely on the new page replacing the old page as we may
179	 * not store to the same implementation that contains the old page.
180	 */
181	if (__frontswap_test(sis, offset)) {
182		__frontswap_clear(sis, offset);
183		frontswap_ops->invalidate_page(type, offset);
 
184	}
185
186	ret = frontswap_ops->store(type, offset, page);
 
 
 
 
 
187	if (ret == 0) {
188		__frontswap_set(sis, offset);
189		inc_frontswap_succ_stores();
190	} else {
191		inc_frontswap_failed_stores();
192	}
193
 
 
194	return ret;
195}
 
196
197/*
198 * "Get" data from frontswap associated with swaptype and offset that were
199 * specified when the data was put to frontswap and use it to fill the
200 * specified page with data. Page must be locked and in the swap cache.
201 */
202int __frontswap_load(struct page *page)
203{
204	int ret = -1;
205	swp_entry_t entry = { .val = page_private(page), };
206	int type = swp_type(entry);
207	struct swap_info_struct *sis = swap_info[type];
208	pgoff_t offset = swp_offset(entry);
 
209
210	VM_BUG_ON(!frontswap_ops);
211	VM_BUG_ON(!PageLocked(page));
212	VM_BUG_ON(sis == NULL);
213
214	if (!__frontswap_test(sis, offset))
215		return -1;
216
217	/* Try loading from each implementation, until one succeeds. */
218	ret = frontswap_ops->load(type, offset, page);
219	if (ret == 0)
 
 
 
 
220		inc_frontswap_loads();
 
 
 
 
 
221	return ret;
222}
 
223
224/*
225 * Invalidate any data from frontswap associated with the specified swaptype
226 * and offset so that a subsequent "get" will fail.
227 */
228void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
229{
230	struct swap_info_struct *sis = swap_info[type];
 
231
232	VM_BUG_ON(!frontswap_ops);
233	VM_BUG_ON(sis == NULL);
234
235	if (!__frontswap_test(sis, offset))
236		return;
237
238	frontswap_ops->invalidate_page(type, offset);
 
239	__frontswap_clear(sis, offset);
240	inc_frontswap_invalidates();
241}
 
242
243/*
244 * Invalidate all data from frontswap associated with all offsets for the
245 * specified swaptype.
246 */
247void __frontswap_invalidate_area(unsigned type)
248{
249	struct swap_info_struct *sis = swap_info[type];
 
250
251	VM_BUG_ON(!frontswap_ops);
252	VM_BUG_ON(sis == NULL);
253
254	if (sis->frontswap_map == NULL)
255		return;
256
257	frontswap_ops->invalidate_area(type);
 
258	atomic_set(&sis->frontswap_pages, 0);
259	bitmap_zero(sis->frontswap_map, sis->max);
260}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261
262static int __init init_frontswap(void)
263{
264#ifdef CONFIG_DEBUG_FS
265	struct dentry *root = debugfs_create_dir("frontswap", NULL);
266	if (root == NULL)
267		return -ENXIO;
268	debugfs_create_u64("loads", 0444, root, &frontswap_loads);
269	debugfs_create_u64("succ_stores", 0444, root, &frontswap_succ_stores);
270	debugfs_create_u64("failed_stores", 0444, root,
271			   &frontswap_failed_stores);
272	debugfs_create_u64("invalidates", 0444, root, &frontswap_invalidates);
 
273#endif
274	return 0;
275}
276
277module_init(init_frontswap);