Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * DMA Pool allocator
  3 *
  4 * Copyright 2001 David Brownell
  5 * Copyright 2007 Intel Corporation
  6 *   Author: Matthew Wilcox <willy@linux.intel.com>
  7 *
  8 * This software may be redistributed and/or modified under the terms of
  9 * the GNU General Public License ("GPL") version 2 as published by the
 10 * Free Software Foundation.
 11 *
 12 * This allocator returns small blocks of a given size which are DMA-able by
 13 * the given device.  It uses the dma_alloc_coherent page allocator to get
 14 * new pages, then splits them up into blocks of the required size.
 15 * Many older drivers still have their own code to do this.
 16 *
 17 * The current design of this allocator is fairly simple.  The pool is
 18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
 19 * allocated pages.  Each page in the page_list is split into blocks of at
 20 * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
 21 * list of free blocks within the page.  Used blocks aren't tracked, but we
 22 * keep a count of how many are currently allocated from each page.
 23 */
 24
 25#include <linux/device.h>
 26#include <linux/dma-mapping.h>
 27#include <linux/dmapool.h>
 28#include <linux/kernel.h>
 29#include <linux/list.h>
 30#include <linux/export.h>
 31#include <linux/mutex.h>
 32#include <linux/poison.h>
 33#include <linux/sched.h>
 
 34#include <linux/slab.h>
 35#include <linux/stat.h>
 36#include <linux/spinlock.h>
 37#include <linux/string.h>
 38#include <linux/types.h>
 39#include <linux/wait.h>
 40
 41#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
 42#define DMAPOOL_DEBUG 1
 43#endif
 44
 45struct dma_pool {		/* the pool */
 46	struct list_head page_list;
 47	spinlock_t lock;
 48	size_t size;
 49	struct device *dev;
 50	size_t allocation;
 51	size_t boundary;
 52	char name[32];
 53	struct list_head pools;
 54};
 55
 56struct dma_page {		/* cacheable header for 'allocation' bytes */
 57	struct list_head page_list;
 58	void *vaddr;
 59	dma_addr_t dma;
 60	unsigned int in_use;
 61	unsigned int offset;
 62};
 63
 64static DEFINE_MUTEX(pools_lock);
 65static DEFINE_MUTEX(pools_reg_lock);
 66
 67static ssize_t
 68show_pools(struct device *dev, struct device_attribute *attr, char *buf)
 69{
 70	unsigned temp;
 71	unsigned size;
 72	char *next;
 73	struct dma_page *page;
 74	struct dma_pool *pool;
 75
 76	next = buf;
 77	size = PAGE_SIZE;
 78
 79	temp = scnprintf(next, size, "poolinfo - 0.1\n");
 80	size -= temp;
 81	next += temp;
 82
 83	mutex_lock(&pools_lock);
 84	list_for_each_entry(pool, &dev->dma_pools, pools) {
 85		unsigned pages = 0;
 86		unsigned blocks = 0;
 87
 88		spin_lock_irq(&pool->lock);
 89		list_for_each_entry(page, &pool->page_list, page_list) {
 90			pages++;
 91			blocks += page->in_use;
 92		}
 93		spin_unlock_irq(&pool->lock);
 94
 95		/* per-pool info, no real statistics yet */
 96		temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n",
 97				 pool->name, blocks,
 98				 pages * (pool->allocation / pool->size),
 99				 pool->size, pages);
100		size -= temp;
101		next += temp;
102	}
103	mutex_unlock(&pools_lock);
104
105	return PAGE_SIZE - size;
106}
107
108static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
109
110/**
111 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
112 * @name: name of pool, for diagnostics
113 * @dev: device that will be doing the DMA
114 * @size: size of the blocks in this pool.
115 * @align: alignment requirement for blocks; must be a power of two
116 * @boundary: returned blocks won't cross this power of two boundary
117 * Context: !in_interrupt()
118 *
119 * Returns a dma allocation pool with the requested characteristics, or
120 * null if one can't be created.  Given one of these pools, dma_pool_alloc()
121 * may be used to allocate memory.  Such memory will all have "consistent"
122 * DMA mappings, accessible by the device and its driver without using
123 * cache flushing primitives.  The actual size of blocks allocated may be
124 * larger than requested because of alignment.
125 *
126 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
127 * cross that size boundary.  This is useful for devices which have
128 * addressing restrictions on individual DMA transfers, such as not crossing
129 * boundaries of 4KBytes.
 
 
 
130 */
131struct dma_pool *dma_pool_create(const char *name, struct device *dev,
132				 size_t size, size_t align, size_t boundary)
133{
134	struct dma_pool *retval;
135	size_t allocation;
136	bool empty = false;
137
138	if (align == 0)
139		align = 1;
140	else if (align & (align - 1))
141		return NULL;
142
143	if (size == 0)
144		return NULL;
145	else if (size < 4)
146		size = 4;
147
148	if ((size % align) != 0)
149		size = ALIGN(size, align);
150
151	allocation = max_t(size_t, size, PAGE_SIZE);
152
153	if (!boundary)
154		boundary = allocation;
155	else if ((boundary < size) || (boundary & (boundary - 1)))
156		return NULL;
157
158	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
159	if (!retval)
160		return retval;
161
162	strlcpy(retval->name, name, sizeof(retval->name));
163
164	retval->dev = dev;
165
166	INIT_LIST_HEAD(&retval->page_list);
167	spin_lock_init(&retval->lock);
168	retval->size = size;
169	retval->boundary = boundary;
170	retval->allocation = allocation;
171
172	INIT_LIST_HEAD(&retval->pools);
173
174	/*
175	 * pools_lock ensures that the ->dma_pools list does not get corrupted.
176	 * pools_reg_lock ensures that there is not a race between
177	 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
178	 * when the first invocation of dma_pool_create() failed on
179	 * device_create_file() and the second assumes that it has been done (I
180	 * know it is a short window).
181	 */
182	mutex_lock(&pools_reg_lock);
183	mutex_lock(&pools_lock);
184	if (list_empty(&dev->dma_pools))
185		empty = true;
186	list_add(&retval->pools, &dev->dma_pools);
187	mutex_unlock(&pools_lock);
188	if (empty) {
189		int err;
190
191		err = device_create_file(dev, &dev_attr_pools);
192		if (err) {
193			mutex_lock(&pools_lock);
194			list_del(&retval->pools);
195			mutex_unlock(&pools_lock);
196			mutex_unlock(&pools_reg_lock);
197			kfree(retval);
198			return NULL;
199		}
200	}
201	mutex_unlock(&pools_reg_lock);
202	return retval;
203}
204EXPORT_SYMBOL(dma_pool_create);
205
206static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
207{
208	unsigned int offset = 0;
209	unsigned int next_boundary = pool->boundary;
210
211	do {
212		unsigned int next = offset + pool->size;
213		if (unlikely((next + pool->size) >= next_boundary)) {
214			next = next_boundary;
215			next_boundary += pool->boundary;
216		}
217		*(int *)(page->vaddr + offset) = next;
218		offset = next;
219	} while (offset < pool->allocation);
220}
221
222static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
223{
224	struct dma_page *page;
225
226	page = kmalloc(sizeof(*page), mem_flags);
227	if (!page)
228		return NULL;
229	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
230					 &page->dma, mem_flags);
231	if (page->vaddr) {
232#ifdef	DMAPOOL_DEBUG
233		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
234#endif
235		pool_initialise_page(pool, page);
236		page->in_use = 0;
237		page->offset = 0;
238	} else {
239		kfree(page);
240		page = NULL;
241	}
242	return page;
243}
244
245static inline bool is_page_busy(struct dma_page *page)
246{
247	return page->in_use != 0;
248}
249
250static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
251{
252	dma_addr_t dma = page->dma;
253
254#ifdef	DMAPOOL_DEBUG
255	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
256#endif
257	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
258	list_del(&page->page_list);
259	kfree(page);
260}
261
262/**
263 * dma_pool_destroy - destroys a pool of dma memory blocks.
264 * @pool: dma pool that will be destroyed
265 * Context: !in_interrupt()
266 *
267 * Caller guarantees that no more memory from the pool is in use,
268 * and that nothing will try to use the pool after this call.
269 */
270void dma_pool_destroy(struct dma_pool *pool)
271{
 
272	bool empty = false;
273
274	if (unlikely(!pool))
275		return;
276
277	mutex_lock(&pools_reg_lock);
278	mutex_lock(&pools_lock);
279	list_del(&pool->pools);
280	if (pool->dev && list_empty(&pool->dev->dma_pools))
281		empty = true;
282	mutex_unlock(&pools_lock);
283	if (empty)
284		device_remove_file(pool->dev, &dev_attr_pools);
285	mutex_unlock(&pools_reg_lock);
286
287	while (!list_empty(&pool->page_list)) {
288		struct dma_page *page;
289		page = list_entry(pool->page_list.next,
290				  struct dma_page, page_list);
291		if (is_page_busy(page)) {
292			if (pool->dev)
293				dev_err(pool->dev,
294					"dma_pool_destroy %s, %p busy\n",
295					pool->name, page->vaddr);
296			else
297				pr_err("dma_pool_destroy %s, %p busy\n",
298				       pool->name, page->vaddr);
299			/* leak the still-in-use consistent memory */
300			list_del(&page->page_list);
301			kfree(page);
302		} else
303			pool_free_page(pool, page);
304	}
305
306	kfree(pool);
307}
308EXPORT_SYMBOL(dma_pool_destroy);
309
310/**
311 * dma_pool_alloc - get a block of consistent memory
312 * @pool: dma pool that will produce the block
313 * @mem_flags: GFP_* bitmask
314 * @handle: pointer to dma address of block
315 *
316 * This returns the kernel virtual address of a currently unused block,
317 * and reports its dma address through the handle.
318 * If such a memory block can't be allocated, %NULL is returned.
319 */
320void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
321		     dma_addr_t *handle)
322{
323	unsigned long flags;
324	struct dma_page *page;
325	size_t offset;
326	void *retval;
327
328	might_sleep_if(gfpflags_allow_blocking(mem_flags));
329
330	spin_lock_irqsave(&pool->lock, flags);
331	list_for_each_entry(page, &pool->page_list, page_list) {
332		if (page->offset < pool->allocation)
333			goto ready;
334	}
335
336	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
337	spin_unlock_irqrestore(&pool->lock, flags);
338
339	page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
340	if (!page)
341		return NULL;
342
343	spin_lock_irqsave(&pool->lock, flags);
344
345	list_add(&page->page_list, &pool->page_list);
346 ready:
347	page->in_use++;
348	offset = page->offset;
349	page->offset = *(int *)(page->vaddr + offset);
350	retval = offset + page->vaddr;
351	*handle = offset + page->dma;
352#ifdef	DMAPOOL_DEBUG
353	{
354		int i;
355		u8 *data = retval;
356		/* page->offset is stored in first 4 bytes */
357		for (i = sizeof(page->offset); i < pool->size; i++) {
358			if (data[i] == POOL_POISON_FREED)
359				continue;
360			if (pool->dev)
361				dev_err(pool->dev,
362					"dma_pool_alloc %s, %p (corrupted)\n",
363					pool->name, retval);
364			else
365				pr_err("dma_pool_alloc %s, %p (corrupted)\n",
366					pool->name, retval);
367
368			/*
369			 * Dump the first 4 bytes even if they are not
370			 * POOL_POISON_FREED
371			 */
372			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
373					data, pool->size, 1);
374			break;
375		}
376	}
377	if (!(mem_flags & __GFP_ZERO))
378		memset(retval, POOL_POISON_ALLOCATED, pool->size);
379#endif
380	spin_unlock_irqrestore(&pool->lock, flags);
381
382	if (mem_flags & __GFP_ZERO)
383		memset(retval, 0, pool->size);
384
385	return retval;
386}
387EXPORT_SYMBOL(dma_pool_alloc);
388
389static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
390{
391	struct dma_page *page;
392
393	list_for_each_entry(page, &pool->page_list, page_list) {
394		if (dma < page->dma)
395			continue;
396		if ((dma - page->dma) < pool->allocation)
397			return page;
398	}
399	return NULL;
400}
401
402/**
403 * dma_pool_free - put block back into dma pool
404 * @pool: the dma pool holding the block
405 * @vaddr: virtual address of block
406 * @dma: dma address of block
407 *
408 * Caller promises neither device nor driver will again touch this block
409 * unless it is first re-allocated.
410 */
411void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
412{
413	struct dma_page *page;
414	unsigned long flags;
415	unsigned int offset;
416
417	spin_lock_irqsave(&pool->lock, flags);
418	page = pool_find_page(pool, dma);
419	if (!page) {
420		spin_unlock_irqrestore(&pool->lock, flags);
421		if (pool->dev)
422			dev_err(pool->dev,
423				"dma_pool_free %s, %p/%lx (bad dma)\n",
424				pool->name, vaddr, (unsigned long)dma);
425		else
426			pr_err("dma_pool_free %s, %p/%lx (bad dma)\n",
427			       pool->name, vaddr, (unsigned long)dma);
428		return;
429	}
430
431	offset = vaddr - page->vaddr;
 
 
432#ifdef	DMAPOOL_DEBUG
433	if ((dma - page->dma) != offset) {
434		spin_unlock_irqrestore(&pool->lock, flags);
435		if (pool->dev)
436			dev_err(pool->dev,
437				"dma_pool_free %s, %p (bad vaddr)/%pad\n",
438				pool->name, vaddr, &dma);
439		else
440			pr_err("dma_pool_free %s, %p (bad vaddr)/%pad\n",
441			       pool->name, vaddr, &dma);
442		return;
443	}
444	{
445		unsigned int chain = page->offset;
446		while (chain < pool->allocation) {
447			if (chain != offset) {
448				chain = *(int *)(page->vaddr + chain);
449				continue;
450			}
451			spin_unlock_irqrestore(&pool->lock, flags);
452			if (pool->dev)
453				dev_err(pool->dev, "dma_pool_free %s, dma %pad already free\n",
454					pool->name, &dma);
455			else
456				pr_err("dma_pool_free %s, dma %pad already free\n",
457				       pool->name, &dma);
458			return;
459		}
460	}
461	memset(vaddr, POOL_POISON_FREED, pool->size);
462#endif
463
464	page->in_use--;
465	*(int *)vaddr = page->offset;
466	page->offset = offset;
467	/*
468	 * Resist a temptation to do
469	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
470	 * Better have a few empty pages hang around.
471	 */
472	spin_unlock_irqrestore(&pool->lock, flags);
473}
474EXPORT_SYMBOL(dma_pool_free);
475
476/*
477 * Managed DMA pool
478 */
479static void dmam_pool_release(struct device *dev, void *res)
480{
481	struct dma_pool *pool = *(struct dma_pool **)res;
482
483	dma_pool_destroy(pool);
484}
485
486static int dmam_pool_match(struct device *dev, void *res, void *match_data)
487{
488	return *(struct dma_pool **)res == match_data;
489}
490
491/**
492 * dmam_pool_create - Managed dma_pool_create()
493 * @name: name of pool, for diagnostics
494 * @dev: device that will be doing the DMA
495 * @size: size of the blocks in this pool.
496 * @align: alignment requirement for blocks; must be a power of two
497 * @allocation: returned blocks won't cross this boundary (or zero)
498 *
499 * Managed dma_pool_create().  DMA pool created with this function is
500 * automatically destroyed on driver detach.
 
 
 
501 */
502struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
503				  size_t size, size_t align, size_t allocation)
504{
505	struct dma_pool **ptr, *pool;
506
507	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
508	if (!ptr)
509		return NULL;
510
511	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
512	if (pool)
513		devres_add(dev, ptr);
514	else
515		devres_free(ptr);
516
517	return pool;
518}
519EXPORT_SYMBOL(dmam_pool_create);
520
521/**
522 * dmam_pool_destroy - Managed dma_pool_destroy()
523 * @pool: dma pool that will be destroyed
524 *
525 * Managed dma_pool_destroy().
526 */
527void dmam_pool_destroy(struct dma_pool *pool)
528{
529	struct device *dev = pool->dev;
530
531	WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
532}
533EXPORT_SYMBOL(dmam_pool_destroy);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * DMA Pool allocator
  4 *
  5 * Copyright 2001 David Brownell
  6 * Copyright 2007 Intel Corporation
  7 *   Author: Matthew Wilcox <willy@linux.intel.com>
  8 *
 
 
 
 
  9 * This allocator returns small blocks of a given size which are DMA-able by
 10 * the given device.  It uses the dma_alloc_coherent page allocator to get
 11 * new pages, then splits them up into blocks of the required size.
 12 * Many older drivers still have their own code to do this.
 13 *
 14 * The current design of this allocator is fairly simple.  The pool is
 15 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
 16 * allocated pages.  Each page in the page_list is split into blocks of at
 17 * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
 18 * list of free blocks within the page.  Used blocks aren't tracked, but we
 19 * keep a count of how many are currently allocated from each page.
 20 */
 21
 22#include <linux/device.h>
 23#include <linux/dma-mapping.h>
 24#include <linux/dmapool.h>
 25#include <linux/kernel.h>
 26#include <linux/list.h>
 27#include <linux/export.h>
 28#include <linux/mutex.h>
 29#include <linux/poison.h>
 30#include <linux/sched.h>
 31#include <linux/sched/mm.h>
 32#include <linux/slab.h>
 33#include <linux/stat.h>
 34#include <linux/spinlock.h>
 35#include <linux/string.h>
 36#include <linux/types.h>
 37#include <linux/wait.h>
 38
 39#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
 40#define DMAPOOL_DEBUG 1
 41#endif
 42
 43struct dma_pool {		/* the pool */
 44	struct list_head page_list;
 45	spinlock_t lock;
 46	size_t size;
 47	struct device *dev;
 48	size_t allocation;
 49	size_t boundary;
 50	char name[32];
 51	struct list_head pools;
 52};
 53
 54struct dma_page {		/* cacheable header for 'allocation' bytes */
 55	struct list_head page_list;
 56	void *vaddr;
 57	dma_addr_t dma;
 58	unsigned int in_use;
 59	unsigned int offset;
 60};
 61
 62static DEFINE_MUTEX(pools_lock);
 63static DEFINE_MUTEX(pools_reg_lock);
 64
 65static ssize_t pools_show(struct device *dev, struct device_attribute *attr, char *buf)
 
 66{
 67	unsigned temp;
 68	unsigned size;
 69	char *next;
 70	struct dma_page *page;
 71	struct dma_pool *pool;
 72
 73	next = buf;
 74	size = PAGE_SIZE;
 75
 76	temp = scnprintf(next, size, "poolinfo - 0.1\n");
 77	size -= temp;
 78	next += temp;
 79
 80	mutex_lock(&pools_lock);
 81	list_for_each_entry(pool, &dev->dma_pools, pools) {
 82		unsigned pages = 0;
 83		unsigned blocks = 0;
 84
 85		spin_lock_irq(&pool->lock);
 86		list_for_each_entry(page, &pool->page_list, page_list) {
 87			pages++;
 88			blocks += page->in_use;
 89		}
 90		spin_unlock_irq(&pool->lock);
 91
 92		/* per-pool info, no real statistics yet */
 93		temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n",
 94				 pool->name, blocks,
 95				 pages * (pool->allocation / pool->size),
 96				 pool->size, pages);
 97		size -= temp;
 98		next += temp;
 99	}
100	mutex_unlock(&pools_lock);
101
102	return PAGE_SIZE - size;
103}
104
105static DEVICE_ATTR_RO(pools);
106
107/**
108 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
109 * @name: name of pool, for diagnostics
110 * @dev: device that will be doing the DMA
111 * @size: size of the blocks in this pool.
112 * @align: alignment requirement for blocks; must be a power of two
113 * @boundary: returned blocks won't cross this power of two boundary
114 * Context: not in_interrupt()
115 *
116 * Given one of these pools, dma_pool_alloc()
 
117 * may be used to allocate memory.  Such memory will all have "consistent"
118 * DMA mappings, accessible by the device and its driver without using
119 * cache flushing primitives.  The actual size of blocks allocated may be
120 * larger than requested because of alignment.
121 *
122 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
123 * cross that size boundary.  This is useful for devices which have
124 * addressing restrictions on individual DMA transfers, such as not crossing
125 * boundaries of 4KBytes.
126 *
127 * Return: a dma allocation pool with the requested characteristics, or
128 * %NULL if one can't be created.
129 */
130struct dma_pool *dma_pool_create(const char *name, struct device *dev,
131				 size_t size, size_t align, size_t boundary)
132{
133	struct dma_pool *retval;
134	size_t allocation;
135	bool empty = false;
136
137	if (align == 0)
138		align = 1;
139	else if (align & (align - 1))
140		return NULL;
141
142	if (size == 0)
143		return NULL;
144	else if (size < 4)
145		size = 4;
146
147	size = ALIGN(size, align);
 
 
148	allocation = max_t(size_t, size, PAGE_SIZE);
149
150	if (!boundary)
151		boundary = allocation;
152	else if ((boundary < size) || (boundary & (boundary - 1)))
153		return NULL;
154
155	retval = kmalloc(sizeof(*retval), GFP_KERNEL);
156	if (!retval)
157		return retval;
158
159	strscpy(retval->name, name, sizeof(retval->name));
160
161	retval->dev = dev;
162
163	INIT_LIST_HEAD(&retval->page_list);
164	spin_lock_init(&retval->lock);
165	retval->size = size;
166	retval->boundary = boundary;
167	retval->allocation = allocation;
168
169	INIT_LIST_HEAD(&retval->pools);
170
171	/*
172	 * pools_lock ensures that the ->dma_pools list does not get corrupted.
173	 * pools_reg_lock ensures that there is not a race between
174	 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
175	 * when the first invocation of dma_pool_create() failed on
176	 * device_create_file() and the second assumes that it has been done (I
177	 * know it is a short window).
178	 */
179	mutex_lock(&pools_reg_lock);
180	mutex_lock(&pools_lock);
181	if (list_empty(&dev->dma_pools))
182		empty = true;
183	list_add(&retval->pools, &dev->dma_pools);
184	mutex_unlock(&pools_lock);
185	if (empty) {
186		int err;
187
188		err = device_create_file(dev, &dev_attr_pools);
189		if (err) {
190			mutex_lock(&pools_lock);
191			list_del(&retval->pools);
192			mutex_unlock(&pools_lock);
193			mutex_unlock(&pools_reg_lock);
194			kfree(retval);
195			return NULL;
196		}
197	}
198	mutex_unlock(&pools_reg_lock);
199	return retval;
200}
201EXPORT_SYMBOL(dma_pool_create);
202
203static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
204{
205	unsigned int offset = 0;
206	unsigned int next_boundary = pool->boundary;
207
208	do {
209		unsigned int next = offset + pool->size;
210		if (unlikely((next + pool->size) >= next_boundary)) {
211			next = next_boundary;
212			next_boundary += pool->boundary;
213		}
214		*(int *)(page->vaddr + offset) = next;
215		offset = next;
216	} while (offset < pool->allocation);
217}
218
219static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
220{
221	struct dma_page *page;
222
223	page = kmalloc(sizeof(*page), mem_flags);
224	if (!page)
225		return NULL;
226	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
227					 &page->dma, mem_flags);
228	if (page->vaddr) {
229#ifdef	DMAPOOL_DEBUG
230		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
231#endif
232		pool_initialise_page(pool, page);
233		page->in_use = 0;
234		page->offset = 0;
235	} else {
236		kfree(page);
237		page = NULL;
238	}
239	return page;
240}
241
242static inline bool is_page_busy(struct dma_page *page)
243{
244	return page->in_use != 0;
245}
246
247static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
248{
249	dma_addr_t dma = page->dma;
250
251#ifdef	DMAPOOL_DEBUG
252	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
253#endif
254	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
255	list_del(&page->page_list);
256	kfree(page);
257}
258
259/**
260 * dma_pool_destroy - destroys a pool of dma memory blocks.
261 * @pool: dma pool that will be destroyed
262 * Context: !in_interrupt()
263 *
264 * Caller guarantees that no more memory from the pool is in use,
265 * and that nothing will try to use the pool after this call.
266 */
267void dma_pool_destroy(struct dma_pool *pool)
268{
269	struct dma_page *page, *tmp;
270	bool empty = false;
271
272	if (unlikely(!pool))
273		return;
274
275	mutex_lock(&pools_reg_lock);
276	mutex_lock(&pools_lock);
277	list_del(&pool->pools);
278	if (pool->dev && list_empty(&pool->dev->dma_pools))
279		empty = true;
280	mutex_unlock(&pools_lock);
281	if (empty)
282		device_remove_file(pool->dev, &dev_attr_pools);
283	mutex_unlock(&pools_reg_lock);
284
285	list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) {
 
 
 
286		if (is_page_busy(page)) {
287			if (pool->dev)
288				dev_err(pool->dev, "%s %s, %p busy\n", __func__,
 
289					pool->name, page->vaddr);
290			else
291				pr_err("%s %s, %p busy\n", __func__,
292				       pool->name, page->vaddr);
293			/* leak the still-in-use consistent memory */
294			list_del(&page->page_list);
295			kfree(page);
296		} else
297			pool_free_page(pool, page);
298	}
299
300	kfree(pool);
301}
302EXPORT_SYMBOL(dma_pool_destroy);
303
304/**
305 * dma_pool_alloc - get a block of consistent memory
306 * @pool: dma pool that will produce the block
307 * @mem_flags: GFP_* bitmask
308 * @handle: pointer to dma address of block
309 *
310 * Return: the kernel virtual address of a currently unused block,
311 * and reports its dma address through the handle.
312 * If such a memory block can't be allocated, %NULL is returned.
313 */
314void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
315		     dma_addr_t *handle)
316{
317	unsigned long flags;
318	struct dma_page *page;
319	size_t offset;
320	void *retval;
321
322	might_alloc(mem_flags);
323
324	spin_lock_irqsave(&pool->lock, flags);
325	list_for_each_entry(page, &pool->page_list, page_list) {
326		if (page->offset < pool->allocation)
327			goto ready;
328	}
329
330	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
331	spin_unlock_irqrestore(&pool->lock, flags);
332
333	page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
334	if (!page)
335		return NULL;
336
337	spin_lock_irqsave(&pool->lock, flags);
338
339	list_add(&page->page_list, &pool->page_list);
340 ready:
341	page->in_use++;
342	offset = page->offset;
343	page->offset = *(int *)(page->vaddr + offset);
344	retval = offset + page->vaddr;
345	*handle = offset + page->dma;
346#ifdef	DMAPOOL_DEBUG
347	{
348		int i;
349		u8 *data = retval;
350		/* page->offset is stored in first 4 bytes */
351		for (i = sizeof(page->offset); i < pool->size; i++) {
352			if (data[i] == POOL_POISON_FREED)
353				continue;
354			if (pool->dev)
355				dev_err(pool->dev, "%s %s, %p (corrupted)\n",
356					__func__, pool->name, retval);
 
357			else
358				pr_err("%s %s, %p (corrupted)\n",
359					__func__, pool->name, retval);
360
361			/*
362			 * Dump the first 4 bytes even if they are not
363			 * POOL_POISON_FREED
364			 */
365			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
366					data, pool->size, 1);
367			break;
368		}
369	}
370	if (!(mem_flags & __GFP_ZERO))
371		memset(retval, POOL_POISON_ALLOCATED, pool->size);
372#endif
373	spin_unlock_irqrestore(&pool->lock, flags);
374
375	if (want_init_on_alloc(mem_flags))
376		memset(retval, 0, pool->size);
377
378	return retval;
379}
380EXPORT_SYMBOL(dma_pool_alloc);
381
382static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
383{
384	struct dma_page *page;
385
386	list_for_each_entry(page, &pool->page_list, page_list) {
387		if (dma < page->dma)
388			continue;
389		if ((dma - page->dma) < pool->allocation)
390			return page;
391	}
392	return NULL;
393}
394
395/**
396 * dma_pool_free - put block back into dma pool
397 * @pool: the dma pool holding the block
398 * @vaddr: virtual address of block
399 * @dma: dma address of block
400 *
401 * Caller promises neither device nor driver will again touch this block
402 * unless it is first re-allocated.
403 */
404void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
405{
406	struct dma_page *page;
407	unsigned long flags;
408	unsigned int offset;
409
410	spin_lock_irqsave(&pool->lock, flags);
411	page = pool_find_page(pool, dma);
412	if (!page) {
413		spin_unlock_irqrestore(&pool->lock, flags);
414		if (pool->dev)
415			dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n",
416				__func__, pool->name, vaddr, &dma);
 
417		else
418			pr_err("%s %s, %p/%pad (bad dma)\n",
419			       __func__, pool->name, vaddr, &dma);
420		return;
421	}
422
423	offset = vaddr - page->vaddr;
424	if (want_init_on_free())
425		memset(vaddr, 0, pool->size);
426#ifdef	DMAPOOL_DEBUG
427	if ((dma - page->dma) != offset) {
428		spin_unlock_irqrestore(&pool->lock, flags);
429		if (pool->dev)
430			dev_err(pool->dev, "%s %s, %p (bad vaddr)/%pad\n",
431				__func__, pool->name, vaddr, &dma);
 
432		else
433			pr_err("%s %s, %p (bad vaddr)/%pad\n",
434			       __func__, pool->name, vaddr, &dma);
435		return;
436	}
437	{
438		unsigned int chain = page->offset;
439		while (chain < pool->allocation) {
440			if (chain != offset) {
441				chain = *(int *)(page->vaddr + chain);
442				continue;
443			}
444			spin_unlock_irqrestore(&pool->lock, flags);
445			if (pool->dev)
446				dev_err(pool->dev, "%s %s, dma %pad already free\n",
447					__func__, pool->name, &dma);
448			else
449				pr_err("%s %s, dma %pad already free\n",
450				       __func__, pool->name, &dma);
451			return;
452		}
453	}
454	memset(vaddr, POOL_POISON_FREED, pool->size);
455#endif
456
457	page->in_use--;
458	*(int *)vaddr = page->offset;
459	page->offset = offset;
460	/*
461	 * Resist a temptation to do
462	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
463	 * Better have a few empty pages hang around.
464	 */
465	spin_unlock_irqrestore(&pool->lock, flags);
466}
467EXPORT_SYMBOL(dma_pool_free);
468
469/*
470 * Managed DMA pool
471 */
472static void dmam_pool_release(struct device *dev, void *res)
473{
474	struct dma_pool *pool = *(struct dma_pool **)res;
475
476	dma_pool_destroy(pool);
477}
478
479static int dmam_pool_match(struct device *dev, void *res, void *match_data)
480{
481	return *(struct dma_pool **)res == match_data;
482}
483
484/**
485 * dmam_pool_create - Managed dma_pool_create()
486 * @name: name of pool, for diagnostics
487 * @dev: device that will be doing the DMA
488 * @size: size of the blocks in this pool.
489 * @align: alignment requirement for blocks; must be a power of two
490 * @allocation: returned blocks won't cross this boundary (or zero)
491 *
492 * Managed dma_pool_create().  DMA pool created with this function is
493 * automatically destroyed on driver detach.
494 *
495 * Return: a managed dma allocation pool with the requested
496 * characteristics, or %NULL if one can't be created.
497 */
498struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
499				  size_t size, size_t align, size_t allocation)
500{
501	struct dma_pool **ptr, *pool;
502
503	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
504	if (!ptr)
505		return NULL;
506
507	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
508	if (pool)
509		devres_add(dev, ptr);
510	else
511		devres_free(ptr);
512
513	return pool;
514}
515EXPORT_SYMBOL(dmam_pool_create);
516
517/**
518 * dmam_pool_destroy - Managed dma_pool_destroy()
519 * @pool: dma pool that will be destroyed
520 *
521 * Managed dma_pool_destroy().
522 */
523void dmam_pool_destroy(struct dma_pool *pool)
524{
525	struct device *dev = pool->dev;
526
527	WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
528}
529EXPORT_SYMBOL(dmam_pool_destroy);