Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010 Red Hat, Inc.
   4 * Copyright (C) 2016-2019 Christoph Hellwig.
   5 */
   6#include <linux/module.h>
   7#include <linux/compiler.h>
   8#include <linux/fs.h>
   9#include <linux/iomap.h>
  10#include <linux/pagemap.h>
  11#include <linux/uio.h>
  12#include <linux/buffer_head.h>
  13#include <linux/dax.h>
  14#include <linux/writeback.h>
  15#include <linux/list_sort.h>
  16#include <linux/swap.h>
  17#include <linux/bio.h>
  18#include <linux/sched/signal.h>
  19#include <linux/migrate.h>
  20#include "trace.h"
  21
  22#include "../internal.h"
  23
  24#define IOEND_BATCH_SIZE	4096
  25
  26/*
  27 * Structure allocated for each folio when block size < folio size
  28 * to track sub-folio uptodate status and I/O completions.
  29 */
  30struct iomap_page {
  31	atomic_t		read_bytes_pending;
  32	atomic_t		write_bytes_pending;
  33	spinlock_t		uptodate_lock;
  34	unsigned long		uptodate[];
  35};
  36
  37static inline struct iomap_page *to_iomap_page(struct folio *folio)
  38{
  39	if (folio_test_private(folio))
  40		return folio_get_private(folio);
  41	return NULL;
  42}
  43
  44static struct bio_set iomap_ioend_bioset;
  45
  46static struct iomap_page *
  47iomap_page_create(struct inode *inode, struct folio *folio, unsigned int flags)
  48{
  49	struct iomap_page *iop = to_iomap_page(folio);
  50	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
  51	gfp_t gfp;
  52
  53	if (iop || nr_blocks <= 1)
  54		return iop;
  55
  56	if (flags & IOMAP_NOWAIT)
  57		gfp = GFP_NOWAIT;
  58	else
  59		gfp = GFP_NOFS | __GFP_NOFAIL;
  60
  61	iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
  62		      gfp);
  63	if (iop) {
  64		spin_lock_init(&iop->uptodate_lock);
  65		if (folio_test_uptodate(folio))
  66			bitmap_fill(iop->uptodate, nr_blocks);
  67		folio_attach_private(folio, iop);
  68	}
  69	return iop;
  70}
  71
  72static void iomap_page_release(struct folio *folio)
  73{
  74	struct iomap_page *iop = folio_detach_private(folio);
  75	struct inode *inode = folio->mapping->host;
  76	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
  77
  78	if (!iop)
  79		return;
  80	WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
  81	WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
  82	WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
  83			folio_test_uptodate(folio));
  84	kfree(iop);
  85}
  86
  87/*
  88 * Calculate the range inside the folio that we actually need to read.
  89 */
  90static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
  91		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
  92{
  93	struct iomap_page *iop = to_iomap_page(folio);
  94	loff_t orig_pos = *pos;
  95	loff_t isize = i_size_read(inode);
  96	unsigned block_bits = inode->i_blkbits;
  97	unsigned block_size = (1 << block_bits);
  98	size_t poff = offset_in_folio(folio, *pos);
  99	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
 100	unsigned first = poff >> block_bits;
 101	unsigned last = (poff + plen - 1) >> block_bits;
 102
 103	/*
 104	 * If the block size is smaller than the page size, we need to check the
 105	 * per-block uptodate status and adjust the offset and length if needed
 106	 * to avoid reading in already uptodate ranges.
 107	 */
 108	if (iop) {
 109		unsigned int i;
 110
 111		/* move forward for each leading block marked uptodate */
 112		for (i = first; i <= last; i++) {
 113			if (!test_bit(i, iop->uptodate))
 114				break;
 115			*pos += block_size;
 116			poff += block_size;
 117			plen -= block_size;
 118			first++;
 119		}
 120
 121		/* truncate len if we find any trailing uptodate block(s) */
 122		for ( ; i <= last; i++) {
 123			if (test_bit(i, iop->uptodate)) {
 124				plen -= (last - i + 1) * block_size;
 125				last = i - 1;
 126				break;
 127			}
 128		}
 129	}
 130
 131	/*
 132	 * If the extent spans the block that contains the i_size, we need to
 133	 * handle both halves separately so that we properly zero data in the
 134	 * page cache for blocks that are entirely outside of i_size.
 135	 */
 136	if (orig_pos <= isize && orig_pos + length > isize) {
 137		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
 138
 139		if (first <= end && last > end)
 140			plen -= (last - end) * block_size;
 141	}
 142
 143	*offp = poff;
 144	*lenp = plen;
 145}
 146
 147static void iomap_iop_set_range_uptodate(struct folio *folio,
 148		struct iomap_page *iop, size_t off, size_t len)
 149{
 150	struct inode *inode = folio->mapping->host;
 151	unsigned first = off >> inode->i_blkbits;
 152	unsigned last = (off + len - 1) >> inode->i_blkbits;
 153	unsigned long flags;
 154
 155	spin_lock_irqsave(&iop->uptodate_lock, flags);
 156	bitmap_set(iop->uptodate, first, last - first + 1);
 157	if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio)))
 158		folio_mark_uptodate(folio);
 159	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
 160}
 161
 162static void iomap_set_range_uptodate(struct folio *folio,
 163		struct iomap_page *iop, size_t off, size_t len)
 164{
 165	if (iop)
 166		iomap_iop_set_range_uptodate(folio, iop, off, len);
 167	else
 168		folio_mark_uptodate(folio);
 169}
 170
 171static void iomap_finish_folio_read(struct folio *folio, size_t offset,
 172		size_t len, int error)
 173{
 174	struct iomap_page *iop = to_iomap_page(folio);
 175
 176	if (unlikely(error)) {
 177		folio_clear_uptodate(folio);
 178		folio_set_error(folio);
 179	} else {
 180		iomap_set_range_uptodate(folio, iop, offset, len);
 181	}
 182
 183	if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending))
 184		folio_unlock(folio);
 185}
 186
 187static void iomap_read_end_io(struct bio *bio)
 188{
 189	int error = blk_status_to_errno(bio->bi_status);
 190	struct folio_iter fi;
 191
 192	bio_for_each_folio_all(fi, bio)
 193		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
 194	bio_put(bio);
 195}
 196
 197struct iomap_readpage_ctx {
 198	struct folio		*cur_folio;
 199	bool			cur_folio_in_bio;
 200	struct bio		*bio;
 201	struct readahead_control *rac;
 202};
 203
 204/**
 205 * iomap_read_inline_data - copy inline data into the page cache
 206 * @iter: iteration structure
 207 * @folio: folio to copy to
 208 *
 209 * Copy the inline data in @iter into @folio and zero out the rest of the folio.
 210 * Only a single IOMAP_INLINE extent is allowed at the end of each file.
 211 * Returns zero for success to complete the read, or the usual negative errno.
 212 */
 213static int iomap_read_inline_data(const struct iomap_iter *iter,
 214		struct folio *folio)
 215{
 216	struct iomap_page *iop;
 217	const struct iomap *iomap = iomap_iter_srcmap(iter);
 218	size_t size = i_size_read(iter->inode) - iomap->offset;
 219	size_t poff = offset_in_page(iomap->offset);
 220	size_t offset = offset_in_folio(folio, iomap->offset);
 221	void *addr;
 222
 223	if (folio_test_uptodate(folio))
 224		return 0;
 225
 226	if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
 227		return -EIO;
 228	if (WARN_ON_ONCE(size > PAGE_SIZE -
 229			 offset_in_page(iomap->inline_data)))
 230		return -EIO;
 231	if (WARN_ON_ONCE(size > iomap->length))
 232		return -EIO;
 233	if (offset > 0)
 234		iop = iomap_page_create(iter->inode, folio, iter->flags);
 235	else
 236		iop = to_iomap_page(folio);
 237
 238	addr = kmap_local_folio(folio, offset);
 239	memcpy(addr, iomap->inline_data, size);
 240	memset(addr + size, 0, PAGE_SIZE - poff - size);
 241	kunmap_local(addr);
 242	iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff);
 243	return 0;
 244}
 245
 246static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
 247		loff_t pos)
 248{
 249	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 250
 251	return srcmap->type != IOMAP_MAPPED ||
 252		(srcmap->flags & IOMAP_F_NEW) ||
 253		pos >= i_size_read(iter->inode);
 254}
 255
 256static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
 257		struct iomap_readpage_ctx *ctx, loff_t offset)
 258{
 259	const struct iomap *iomap = &iter->iomap;
 260	loff_t pos = iter->pos + offset;
 261	loff_t length = iomap_length(iter) - offset;
 262	struct folio *folio = ctx->cur_folio;
 263	struct iomap_page *iop;
 264	loff_t orig_pos = pos;
 265	size_t poff, plen;
 266	sector_t sector;
 267
 268	if (iomap->type == IOMAP_INLINE)
 269		return iomap_read_inline_data(iter, folio);
 270
 271	/* zero post-eof blocks as the page may be mapped */
 272	iop = iomap_page_create(iter->inode, folio, iter->flags);
 273	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
 274	if (plen == 0)
 275		goto done;
 276
 277	if (iomap_block_needs_zeroing(iter, pos)) {
 278		folio_zero_range(folio, poff, plen);
 279		iomap_set_range_uptodate(folio, iop, poff, plen);
 280		goto done;
 281	}
 282
 283	ctx->cur_folio_in_bio = true;
 284	if (iop)
 285		atomic_add(plen, &iop->read_bytes_pending);
 286
 287	sector = iomap_sector(iomap, pos);
 288	if (!ctx->bio ||
 289	    bio_end_sector(ctx->bio) != sector ||
 290	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
 291		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
 292		gfp_t orig_gfp = gfp;
 293		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
 294
 295		if (ctx->bio)
 296			submit_bio(ctx->bio);
 297
 298		if (ctx->rac) /* same as readahead_gfp_mask */
 299			gfp |= __GFP_NORETRY | __GFP_NOWARN;
 300		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
 301				     REQ_OP_READ, gfp);
 302		/*
 303		 * If the bio_alloc fails, try it again for a single page to
 304		 * avoid having to deal with partial page reads.  This emulates
 305		 * what do_mpage_read_folio does.
 306		 */
 307		if (!ctx->bio) {
 308			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
 309					     orig_gfp);
 310		}
 311		if (ctx->rac)
 312			ctx->bio->bi_opf |= REQ_RAHEAD;
 313		ctx->bio->bi_iter.bi_sector = sector;
 314		ctx->bio->bi_end_io = iomap_read_end_io;
 315		bio_add_folio(ctx->bio, folio, plen, poff);
 316	}
 317
 318done:
 319	/*
 320	 * Move the caller beyond our range so that it keeps making progress.
 321	 * For that, we have to include any leading non-uptodate ranges, but
 322	 * we can skip trailing ones as they will be handled in the next
 323	 * iteration.
 324	 */
 325	return pos - orig_pos + plen;
 326}
 327
 328int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
 329{
 330	struct iomap_iter iter = {
 331		.inode		= folio->mapping->host,
 332		.pos		= folio_pos(folio),
 333		.len		= folio_size(folio),
 334	};
 335	struct iomap_readpage_ctx ctx = {
 336		.cur_folio	= folio,
 337	};
 338	int ret;
 339
 340	trace_iomap_readpage(iter.inode, 1);
 341
 342	while ((ret = iomap_iter(&iter, ops)) > 0)
 343		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
 344
 345	if (ret < 0)
 346		folio_set_error(folio);
 347
 348	if (ctx.bio) {
 349		submit_bio(ctx.bio);
 350		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
 351	} else {
 352		WARN_ON_ONCE(ctx.cur_folio_in_bio);
 353		folio_unlock(folio);
 354	}
 355
 356	/*
 357	 * Just like mpage_readahead and block_read_full_folio, we always
 358	 * return 0 and just set the folio error flag on errors.  This
 359	 * should be cleaned up throughout the stack eventually.
 360	 */
 361	return 0;
 362}
 363EXPORT_SYMBOL_GPL(iomap_read_folio);
 364
 365static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
 366		struct iomap_readpage_ctx *ctx)
 367{
 368	loff_t length = iomap_length(iter);
 369	loff_t done, ret;
 370
 371	for (done = 0; done < length; done += ret) {
 372		if (ctx->cur_folio &&
 373		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
 374			if (!ctx->cur_folio_in_bio)
 375				folio_unlock(ctx->cur_folio);
 376			ctx->cur_folio = NULL;
 377		}
 378		if (!ctx->cur_folio) {
 379			ctx->cur_folio = readahead_folio(ctx->rac);
 380			ctx->cur_folio_in_bio = false;
 381		}
 382		ret = iomap_readpage_iter(iter, ctx, done);
 383		if (ret <= 0)
 384			return ret;
 385	}
 386
 387	return done;
 388}
 389
 390/**
 391 * iomap_readahead - Attempt to read pages from a file.
 392 * @rac: Describes the pages to be read.
 393 * @ops: The operations vector for the filesystem.
 394 *
 395 * This function is for filesystems to call to implement their readahead
 396 * address_space operation.
 397 *
 398 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
 399 * blocks from disc), and may wait for it.  The caller may be trying to
 400 * access a different page, and so sleeping excessively should be avoided.
 401 * It may allocate memory, but should avoid costly allocations.  This
 402 * function is called with memalloc_nofs set, so allocations will not cause
 403 * the filesystem to be reentered.
 404 */
 405void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
 406{
 407	struct iomap_iter iter = {
 408		.inode	= rac->mapping->host,
 409		.pos	= readahead_pos(rac),
 410		.len	= readahead_length(rac),
 411	};
 412	struct iomap_readpage_ctx ctx = {
 413		.rac	= rac,
 414	};
 415
 416	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
 417
 418	while (iomap_iter(&iter, ops) > 0)
 419		iter.processed = iomap_readahead_iter(&iter, &ctx);
 420
 421	if (ctx.bio)
 422		submit_bio(ctx.bio);
 423	if (ctx.cur_folio) {
 424		if (!ctx.cur_folio_in_bio)
 425			folio_unlock(ctx.cur_folio);
 426	}
 427}
 428EXPORT_SYMBOL_GPL(iomap_readahead);
 429
 430/*
 431 * iomap_is_partially_uptodate checks whether blocks within a folio are
 432 * uptodate or not.
 433 *
 434 * Returns true if all blocks which correspond to the specified part
 435 * of the folio are uptodate.
 436 */
 437bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
 438{
 439	struct iomap_page *iop = to_iomap_page(folio);
 440	struct inode *inode = folio->mapping->host;
 441	unsigned first, last, i;
 442
 443	if (!iop)
 444		return false;
 445
 446	/* Caller's range may extend past the end of this folio */
 447	count = min(folio_size(folio) - from, count);
 448
 449	/* First and last blocks in range within folio */
 450	first = from >> inode->i_blkbits;
 451	last = (from + count - 1) >> inode->i_blkbits;
 452
 453	for (i = first; i <= last; i++)
 454		if (!test_bit(i, iop->uptodate))
 455			return false;
 456	return true;
 457}
 458EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
 459
 460bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
 461{
 462	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
 463			folio_size(folio));
 464
 465	/*
 466	 * mm accommodates an old ext3 case where clean folios might
 467	 * not have had the dirty bit cleared.  Thus, it can send actual
 468	 * dirty folios to ->release_folio() via shrink_active_list();
 469	 * skip those here.
 470	 */
 471	if (folio_test_dirty(folio) || folio_test_writeback(folio))
 472		return false;
 473	iomap_page_release(folio);
 474	return true;
 475}
 476EXPORT_SYMBOL_GPL(iomap_release_folio);
 477
 478void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
 479{
 480	trace_iomap_invalidate_folio(folio->mapping->host,
 481					folio_pos(folio) + offset, len);
 482
 483	/*
 484	 * If we're invalidating the entire folio, clear the dirty state
 485	 * from it and release it to avoid unnecessary buildup of the LRU.
 486	 */
 487	if (offset == 0 && len == folio_size(folio)) {
 488		WARN_ON_ONCE(folio_test_writeback(folio));
 489		folio_cancel_dirty(folio);
 490		iomap_page_release(folio);
 491	} else if (folio_test_large(folio)) {
 492		/* Must release the iop so the page can be split */
 493		WARN_ON_ONCE(!folio_test_uptodate(folio) &&
 494			     folio_test_dirty(folio));
 495		iomap_page_release(folio);
 496	}
 497}
 498EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
 499
 500static void
 501iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
 502{
 503	loff_t i_size = i_size_read(inode);
 504
 505	/*
 506	 * Only truncate newly allocated pages beyoned EOF, even if the
 507	 * write started inside the existing inode size.
 508	 */
 509	if (pos + len > i_size)
 510		truncate_pagecache_range(inode, max(pos, i_size),
 511					 pos + len - 1);
 512}
 513
 514static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
 515		size_t poff, size_t plen, const struct iomap *iomap)
 516{
 517	struct bio_vec bvec;
 518	struct bio bio;
 519
 520	bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
 521	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
 522	bio_add_folio(&bio, folio, plen, poff);
 523	return submit_bio_wait(&bio);
 524}
 525
 526static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
 527		size_t len, struct folio *folio)
 528{
 529	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 530	struct iomap_page *iop;
 531	loff_t block_size = i_blocksize(iter->inode);
 532	loff_t block_start = round_down(pos, block_size);
 533	loff_t block_end = round_up(pos + len, block_size);
 534	unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
 535	size_t from = offset_in_folio(folio, pos), to = from + len;
 536	size_t poff, plen;
 537
 538	if (folio_test_uptodate(folio))
 539		return 0;
 540	folio_clear_error(folio);
 541
 542	iop = iomap_page_create(iter->inode, folio, iter->flags);
 543	if ((iter->flags & IOMAP_NOWAIT) && !iop && nr_blocks > 1)
 544		return -EAGAIN;
 545
 546	do {
 547		iomap_adjust_read_range(iter->inode, folio, &block_start,
 548				block_end - block_start, &poff, &plen);
 549		if (plen == 0)
 550			break;
 551
 552		if (!(iter->flags & IOMAP_UNSHARE) &&
 553		    (from <= poff || from >= poff + plen) &&
 554		    (to <= poff || to >= poff + plen))
 555			continue;
 556
 557		if (iomap_block_needs_zeroing(iter, block_start)) {
 558			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
 559				return -EIO;
 560			folio_zero_segments(folio, poff, from, to, poff + plen);
 561		} else {
 562			int status;
 563
 564			if (iter->flags & IOMAP_NOWAIT)
 565				return -EAGAIN;
 566
 567			status = iomap_read_folio_sync(block_start, folio,
 568					poff, plen, srcmap);
 569			if (status)
 570				return status;
 571		}
 572		iomap_set_range_uptodate(folio, iop, poff, plen);
 573	} while ((block_start += plen) < block_end);
 574
 575	return 0;
 576}
 577
 578static int iomap_write_begin_inline(const struct iomap_iter *iter,
 579		struct folio *folio)
 580{
 581	/* needs more work for the tailpacking case; disable for now */
 582	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
 583		return -EIO;
 584	return iomap_read_inline_data(iter, folio);
 585}
 586
 587static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
 588		size_t len, struct folio **foliop)
 589{
 590	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
 591	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 592	struct folio *folio;
 593	unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS;
 594	int status = 0;
 595
 596	if (iter->flags & IOMAP_NOWAIT)
 597		fgp |= FGP_NOWAIT;
 598
 599	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
 600	if (srcmap != &iter->iomap)
 601		BUG_ON(pos + len > srcmap->offset + srcmap->length);
 602
 603	if (fatal_signal_pending(current))
 604		return -EINTR;
 605
 606	if (!mapping_large_folio_support(iter->inode->i_mapping))
 607		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
 608
 609	if (page_ops && page_ops->page_prepare) {
 610		status = page_ops->page_prepare(iter->inode, pos, len);
 611		if (status)
 612			return status;
 613	}
 614
 615	folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
 616			fgp, mapping_gfp_mask(iter->inode->i_mapping));
 617	if (!folio) {
 618		status = (iter->flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOMEM;
 619		goto out_no_page;
 620	}
 621
 622	/*
 623	 * Now we have a locked folio, before we do anything with it we need to
 624	 * check that the iomap we have cached is not stale. The inode extent
 625	 * mapping can change due to concurrent IO in flight (e.g.
 626	 * IOMAP_UNWRITTEN state can change and memory reclaim could have
 627	 * reclaimed a previously partially written page at this index after IO
 628	 * completion before this write reaches this file offset) and hence we
 629	 * could do the wrong thing here (zero a page range incorrectly or fail
 630	 * to zero) and corrupt data.
 631	 */
 632	if (page_ops && page_ops->iomap_valid) {
 633		bool iomap_valid = page_ops->iomap_valid(iter->inode,
 634							&iter->iomap);
 635		if (!iomap_valid) {
 636			iter->iomap.flags |= IOMAP_F_STALE;
 637			status = 0;
 638			goto out_unlock;
 639		}
 640	}
 641
 642	if (pos + len > folio_pos(folio) + folio_size(folio))
 643		len = folio_pos(folio) + folio_size(folio) - pos;
 644
 645	if (srcmap->type == IOMAP_INLINE)
 646		status = iomap_write_begin_inline(iter, folio);
 647	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
 648		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
 649	else
 650		status = __iomap_write_begin(iter, pos, len, folio);
 651
 652	if (unlikely(status))
 653		goto out_unlock;
 654
 655	*foliop = folio;
 656	return 0;
 657
 658out_unlock:
 659	folio_unlock(folio);
 660	folio_put(folio);
 661	iomap_write_failed(iter->inode, pos, len);
 662
 663out_no_page:
 664	if (page_ops && page_ops->page_done)
 665		page_ops->page_done(iter->inode, pos, 0, NULL);
 666	return status;
 667}
 668
 669static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
 670		size_t copied, struct folio *folio)
 671{
 672	struct iomap_page *iop = to_iomap_page(folio);
 673	flush_dcache_folio(folio);
 674
 675	/*
 676	 * The blocks that were entirely written will now be uptodate, so we
 677	 * don't have to worry about a read_folio reading them and overwriting a
 678	 * partial write.  However, if we've encountered a short write and only
 679	 * partially written into a block, it will not be marked uptodate, so a
 680	 * read_folio might come in and destroy our partial write.
 681	 *
 682	 * Do the simplest thing and just treat any short write to a
 683	 * non-uptodate page as a zero-length write, and force the caller to
 684	 * redo the whole thing.
 685	 */
 686	if (unlikely(copied < len && !folio_test_uptodate(folio)))
 687		return 0;
 688	iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len);
 689	filemap_dirty_folio(inode->i_mapping, folio);
 690	return copied;
 691}
 692
 693static size_t iomap_write_end_inline(const struct iomap_iter *iter,
 694		struct folio *folio, loff_t pos, size_t copied)
 695{
 696	const struct iomap *iomap = &iter->iomap;
 697	void *addr;
 698
 699	WARN_ON_ONCE(!folio_test_uptodate(folio));
 700	BUG_ON(!iomap_inline_data_valid(iomap));
 701
 702	flush_dcache_folio(folio);
 703	addr = kmap_local_folio(folio, pos);
 704	memcpy(iomap_inline_data(iomap, pos), addr, copied);
 705	kunmap_local(addr);
 706
 707	mark_inode_dirty(iter->inode);
 708	return copied;
 709}
 710
 711/* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
 712static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
 713		size_t copied, struct folio *folio)
 714{
 715	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
 716	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 717	loff_t old_size = iter->inode->i_size;
 718	size_t ret;
 719
 720	if (srcmap->type == IOMAP_INLINE) {
 721		ret = iomap_write_end_inline(iter, folio, pos, copied);
 722	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
 723		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
 724				copied, &folio->page, NULL);
 725	} else {
 726		ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
 727	}
 728
 729	/*
 730	 * Update the in-memory inode size after copying the data into the page
 731	 * cache.  It's up to the file system to write the updated size to disk,
 732	 * preferably after I/O completion so that no stale data is exposed.
 733	 */
 734	if (pos + ret > old_size) {
 735		i_size_write(iter->inode, pos + ret);
 736		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
 737	}
 738	folio_unlock(folio);
 739
 740	if (old_size < pos)
 741		pagecache_isize_extended(iter->inode, old_size, pos);
 742	if (page_ops && page_ops->page_done)
 743		page_ops->page_done(iter->inode, pos, ret, &folio->page);
 744	folio_put(folio);
 745
 746	if (ret < len)
 747		iomap_write_failed(iter->inode, pos + ret, len - ret);
 748	return ret;
 749}
 750
 751static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
 752{
 753	loff_t length = iomap_length(iter);
 754	loff_t pos = iter->pos;
 755	ssize_t written = 0;
 756	long status = 0;
 757	struct address_space *mapping = iter->inode->i_mapping;
 758	unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
 759
 760	do {
 761		struct folio *folio;
 762		struct page *page;
 763		unsigned long offset;	/* Offset into pagecache page */
 764		unsigned long bytes;	/* Bytes to write to page */
 765		size_t copied;		/* Bytes copied from user */
 766
 767		offset = offset_in_page(pos);
 768		bytes = min_t(unsigned long, PAGE_SIZE - offset,
 769						iov_iter_count(i));
 770again:
 771		status = balance_dirty_pages_ratelimited_flags(mapping,
 772							       bdp_flags);
 773		if (unlikely(status))
 774			break;
 775
 776		if (bytes > length)
 777			bytes = length;
 778
 779		/*
 780		 * Bring in the user page that we'll copy from _first_.
 781		 * Otherwise there's a nasty deadlock on copying from the
 782		 * same page as we're writing to, without it being marked
 783		 * up-to-date.
 784		 *
 785		 * For async buffered writes the assumption is that the user
 786		 * page has already been faulted in. This can be optimized by
 787		 * faulting the user page.
 788		 */
 789		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
 790			status = -EFAULT;
 791			break;
 792		}
 793
 794		status = iomap_write_begin(iter, pos, bytes, &folio);
 795		if (unlikely(status))
 796			break;
 797		if (iter->iomap.flags & IOMAP_F_STALE)
 798			break;
 799
 800		page = folio_file_page(folio, pos >> PAGE_SHIFT);
 801		if (mapping_writably_mapped(mapping))
 802			flush_dcache_page(page);
 803
 804		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
 805
 806		status = iomap_write_end(iter, pos, bytes, copied, folio);
 807
 808		if (unlikely(copied != status))
 809			iov_iter_revert(i, copied - status);
 810
 811		cond_resched();
 812		if (unlikely(status == 0)) {
 813			/*
 814			 * A short copy made iomap_write_end() reject the
 815			 * thing entirely.  Might be memory poisoning
 816			 * halfway through, might be a race with munmap,
 817			 * might be severe memory pressure.
 818			 */
 819			if (copied)
 820				bytes = copied;
 821			goto again;
 822		}
 823		pos += status;
 824		written += status;
 825		length -= status;
 826	} while (iov_iter_count(i) && length);
 827
 828	if (status == -EAGAIN) {
 829		iov_iter_revert(i, written);
 830		return -EAGAIN;
 831	}
 832	return written ? written : status;
 833}
 834
 835ssize_t
 836iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
 837		const struct iomap_ops *ops)
 838{
 839	struct iomap_iter iter = {
 840		.inode		= iocb->ki_filp->f_mapping->host,
 841		.pos		= iocb->ki_pos,
 842		.len		= iov_iter_count(i),
 843		.flags		= IOMAP_WRITE,
 844	};
 845	int ret;
 846
 847	if (iocb->ki_flags & IOCB_NOWAIT)
 848		iter.flags |= IOMAP_NOWAIT;
 849
 850	while ((ret = iomap_iter(&iter, ops)) > 0)
 851		iter.processed = iomap_write_iter(&iter, i);
 852	if (iter.pos == iocb->ki_pos)
 853		return ret;
 854	return iter.pos - iocb->ki_pos;
 855}
 856EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
 857
 858/*
 859 * Scan the data range passed to us for dirty page cache folios. If we find a
 860 * dirty folio, punch out the preceeding range and update the offset from which
 861 * the next punch will start from.
 862 *
 863 * We can punch out storage reservations under clean pages because they either
 864 * contain data that has been written back - in which case the delalloc punch
 865 * over that range is a no-op - or they have been read faults in which case they
 866 * contain zeroes and we can remove the delalloc backing range and any new
 867 * writes to those pages will do the normal hole filling operation...
 868 *
 869 * This makes the logic simple: we only need to keep the delalloc extents only
 870 * over the dirty ranges of the page cache.
 871 *
 872 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
 873 * simplify range iterations.
 874 */
 875static int iomap_write_delalloc_scan(struct inode *inode,
 876		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
 877		int (*punch)(struct inode *inode, loff_t offset, loff_t length))
 878{
 879	while (start_byte < end_byte) {
 880		struct folio	*folio;
 881
 882		/* grab locked page */
 883		folio = filemap_lock_folio(inode->i_mapping,
 884				start_byte >> PAGE_SHIFT);
 885		if (!folio) {
 886			start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
 887					PAGE_SIZE;
 888			continue;
 889		}
 890
 891		/* if dirty, punch up to offset */
 892		if (folio_test_dirty(folio)) {
 893			if (start_byte > *punch_start_byte) {
 894				int	error;
 895
 896				error = punch(inode, *punch_start_byte,
 897						start_byte - *punch_start_byte);
 898				if (error) {
 899					folio_unlock(folio);
 900					folio_put(folio);
 901					return error;
 902				}
 903			}
 904
 905			/*
 906			 * Make sure the next punch start is correctly bound to
 907			 * the end of this data range, not the end of the folio.
 908			 */
 909			*punch_start_byte = min_t(loff_t, end_byte,
 910					folio_next_index(folio) << PAGE_SHIFT);
 911		}
 912
 913		/* move offset to start of next folio in range */
 914		start_byte = folio_next_index(folio) << PAGE_SHIFT;
 915		folio_unlock(folio);
 916		folio_put(folio);
 917	}
 918	return 0;
 919}
 920
 921/*
 922 * Punch out all the delalloc blocks in the range given except for those that
 923 * have dirty data still pending in the page cache - those are going to be
 924 * written and so must still retain the delalloc backing for writeback.
 925 *
 926 * As we are scanning the page cache for data, we don't need to reimplement the
 927 * wheel - mapping_seek_hole_data() does exactly what we need to identify the
 928 * start and end of data ranges correctly even for sub-folio block sizes. This
 929 * byte range based iteration is especially convenient because it means we
 930 * don't have to care about variable size folios, nor where the start or end of
 931 * the data range lies within a folio, if they lie within the same folio or even
 932 * if there are multiple discontiguous data ranges within the folio.
 933 *
 934 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
 935 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
 936 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
 937 * date. A write page fault can then mark it dirty. If we then fail a write()
 938 * beyond EOF into that up to date cached range, we allocate a delalloc block
 939 * beyond EOF and then have to punch it out. Because the range is up to date,
 940 * mapping_seek_hole_data() will return it, and we will skip the punch because
 941 * the folio is dirty. THis is incorrect - we always need to punch out delalloc
 942 * beyond EOF in this case as writeback will never write back and covert that
 943 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
 944 * resulting in always punching out the range from the EOF to the end of the
 945 * range the iomap spans.
 946 *
 947 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
 948 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
 949 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
 950 * returns the end of the data range (data_end). Using closed intervals would
 951 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
 952 * the code to subtle off-by-one bugs....
 953 */
 954static int iomap_write_delalloc_release(struct inode *inode,
 955		loff_t start_byte, loff_t end_byte,
 956		int (*punch)(struct inode *inode, loff_t pos, loff_t length))
 957{
 958	loff_t punch_start_byte = start_byte;
 959	loff_t scan_end_byte = min(i_size_read(inode), end_byte);
 960	int error = 0;
 961
 962	/*
 963	 * Lock the mapping to avoid races with page faults re-instantiating
 964	 * folios and dirtying them via ->page_mkwrite whilst we walk the
 965	 * cache and perform delalloc extent removal. Failing to do this can
 966	 * leave dirty pages with no space reservation in the cache.
 967	 */
 968	filemap_invalidate_lock(inode->i_mapping);
 969	while (start_byte < scan_end_byte) {
 970		loff_t		data_end;
 971
 972		start_byte = mapping_seek_hole_data(inode->i_mapping,
 973				start_byte, scan_end_byte, SEEK_DATA);
 974		/*
 975		 * If there is no more data to scan, all that is left is to
 976		 * punch out the remaining range.
 977		 */
 978		if (start_byte == -ENXIO || start_byte == scan_end_byte)
 979			break;
 980		if (start_byte < 0) {
 981			error = start_byte;
 982			goto out_unlock;
 983		}
 984		WARN_ON_ONCE(start_byte < punch_start_byte);
 985		WARN_ON_ONCE(start_byte > scan_end_byte);
 986
 987		/*
 988		 * We find the end of this contiguous cached data range by
 989		 * seeking from start_byte to the beginning of the next hole.
 990		 */
 991		data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
 992				scan_end_byte, SEEK_HOLE);
 993		if (data_end < 0) {
 994			error = data_end;
 995			goto out_unlock;
 996		}
 997		WARN_ON_ONCE(data_end <= start_byte);
 998		WARN_ON_ONCE(data_end > scan_end_byte);
 999
1000		error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1001				start_byte, data_end, punch);
1002		if (error)
1003			goto out_unlock;
1004
1005		/* The next data search starts at the end of this one. */
1006		start_byte = data_end;
1007	}
1008
1009	if (punch_start_byte < end_byte)
1010		error = punch(inode, punch_start_byte,
1011				end_byte - punch_start_byte);
1012out_unlock:
1013	filemap_invalidate_unlock(inode->i_mapping);
1014	return error;
1015}
1016
1017/*
1018 * When a short write occurs, the filesystem may need to remove reserved space
1019 * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1020 * filesystems that use delayed allocation, we need to punch out delalloc
1021 * extents from the range that are not dirty in the page cache. As the write can
1022 * race with page faults, there can be dirty pages over the delalloc extent
1023 * outside the range of a short write but still within the delalloc extent
1024 * allocated for this iomap.
1025 *
1026 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1027 * simplify range iterations.
1028 *
1029 * The punch() callback *must* only punch delalloc extents in the range passed
1030 * to it. It must skip over all other types of extents in the range and leave
1031 * them completely unchanged. It must do this punch atomically with respect to
1032 * other extent modifications.
1033 *
1034 * The punch() callback may be called with a folio locked to prevent writeback
1035 * extent allocation racing at the edge of the range we are currently punching.
1036 * The locked folio may or may not cover the range being punched, so it is not
1037 * safe for the punch() callback to lock folios itself.
1038 *
1039 * Lock order is:
1040 *
1041 * inode->i_rwsem (shared or exclusive)
1042 *   inode->i_mapping->invalidate_lock (exclusive)
1043 *     folio_lock()
1044 *       ->punch
1045 *         internal filesystem allocation lock
1046 */
1047int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1048		struct iomap *iomap, loff_t pos, loff_t length,
1049		ssize_t written,
1050		int (*punch)(struct inode *inode, loff_t pos, loff_t length))
1051{
1052	loff_t			start_byte;
1053	loff_t			end_byte;
1054	int			blocksize = i_blocksize(inode);
1055
1056	if (iomap->type != IOMAP_DELALLOC)
1057		return 0;
1058
1059	/* If we didn't reserve the blocks, we're not allowed to punch them. */
1060	if (!(iomap->flags & IOMAP_F_NEW))
1061		return 0;
1062
1063	/*
1064	 * start_byte refers to the first unused block after a short write. If
1065	 * nothing was written, round offset down to point at the first block in
1066	 * the range.
1067	 */
1068	if (unlikely(!written))
1069		start_byte = round_down(pos, blocksize);
1070	else
1071		start_byte = round_up(pos + written, blocksize);
1072	end_byte = round_up(pos + length, blocksize);
1073
1074	/* Nothing to do if we've written the entire delalloc extent */
1075	if (start_byte >= end_byte)
1076		return 0;
1077
1078	return iomap_write_delalloc_release(inode, start_byte, end_byte,
1079					punch);
1080}
1081EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1082
1083static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1084{
1085	struct iomap *iomap = &iter->iomap;
1086	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1087	loff_t pos = iter->pos;
1088	loff_t length = iomap_length(iter);
1089	long status = 0;
1090	loff_t written = 0;
1091
1092	/* don't bother with blocks that are not shared to start with */
1093	if (!(iomap->flags & IOMAP_F_SHARED))
1094		return length;
1095	/* don't bother with holes or unwritten extents */
1096	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1097		return length;
1098
1099	do {
1100		unsigned long offset = offset_in_page(pos);
1101		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
1102		struct folio *folio;
1103
1104		status = iomap_write_begin(iter, pos, bytes, &folio);
1105		if (unlikely(status))
1106			return status;
1107		if (iter->iomap.flags & IOMAP_F_STALE)
1108			break;
1109
1110		status = iomap_write_end(iter, pos, bytes, bytes, folio);
1111		if (WARN_ON_ONCE(status == 0))
1112			return -EIO;
1113
1114		cond_resched();
1115
1116		pos += status;
1117		written += status;
1118		length -= status;
1119
1120		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1121	} while (length);
1122
1123	return written;
1124}
1125
1126int
1127iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1128		const struct iomap_ops *ops)
1129{
1130	struct iomap_iter iter = {
1131		.inode		= inode,
1132		.pos		= pos,
1133		.len		= len,
1134		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
1135	};
1136	int ret;
1137
1138	while ((ret = iomap_iter(&iter, ops)) > 0)
1139		iter.processed = iomap_unshare_iter(&iter);
1140	return ret;
1141}
1142EXPORT_SYMBOL_GPL(iomap_file_unshare);
1143
1144static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1145{
1146	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1147	loff_t pos = iter->pos;
1148	loff_t length = iomap_length(iter);
1149	loff_t written = 0;
1150
1151	/* already zeroed?  we're done. */
1152	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1153		return length;
1154
1155	do {
1156		struct folio *folio;
1157		int status;
1158		size_t offset;
1159		size_t bytes = min_t(u64, SIZE_MAX, length);
1160
1161		status = iomap_write_begin(iter, pos, bytes, &folio);
1162		if (status)
1163			return status;
1164		if (iter->iomap.flags & IOMAP_F_STALE)
1165			break;
1166
1167		offset = offset_in_folio(folio, pos);
1168		if (bytes > folio_size(folio) - offset)
1169			bytes = folio_size(folio) - offset;
1170
1171		folio_zero_range(folio, offset, bytes);
1172		folio_mark_accessed(folio);
1173
1174		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1175		if (WARN_ON_ONCE(bytes == 0))
1176			return -EIO;
1177
1178		pos += bytes;
1179		length -= bytes;
1180		written += bytes;
1181	} while (length > 0);
1182
1183	if (did_zero)
1184		*did_zero = true;
1185	return written;
1186}
1187
1188int
1189iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1190		const struct iomap_ops *ops)
1191{
1192	struct iomap_iter iter = {
1193		.inode		= inode,
1194		.pos		= pos,
1195		.len		= len,
1196		.flags		= IOMAP_ZERO,
1197	};
1198	int ret;
1199
1200	while ((ret = iomap_iter(&iter, ops)) > 0)
1201		iter.processed = iomap_zero_iter(&iter, did_zero);
1202	return ret;
1203}
1204EXPORT_SYMBOL_GPL(iomap_zero_range);
1205
1206int
1207iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1208		const struct iomap_ops *ops)
1209{
1210	unsigned int blocksize = i_blocksize(inode);
1211	unsigned int off = pos & (blocksize - 1);
1212
1213	/* Block boundary? Nothing to do */
1214	if (!off)
1215		return 0;
1216	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1217}
1218EXPORT_SYMBOL_GPL(iomap_truncate_page);
1219
1220static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1221		struct folio *folio)
1222{
1223	loff_t length = iomap_length(iter);
1224	int ret;
1225
1226	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1227		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1228					      &iter->iomap);
1229		if (ret)
1230			return ret;
1231		block_commit_write(&folio->page, 0, length);
1232	} else {
1233		WARN_ON_ONCE(!folio_test_uptodate(folio));
1234		folio_mark_dirty(folio);
1235	}
1236
1237	return length;
1238}
1239
1240vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1241{
1242	struct iomap_iter iter = {
1243		.inode		= file_inode(vmf->vma->vm_file),
1244		.flags		= IOMAP_WRITE | IOMAP_FAULT,
1245	};
1246	struct folio *folio = page_folio(vmf->page);
1247	ssize_t ret;
1248
1249	folio_lock(folio);
1250	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1251	if (ret < 0)
1252		goto out_unlock;
1253	iter.pos = folio_pos(folio);
1254	iter.len = ret;
1255	while ((ret = iomap_iter(&iter, ops)) > 0)
1256		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1257
1258	if (ret < 0)
1259		goto out_unlock;
1260	folio_wait_stable(folio);
1261	return VM_FAULT_LOCKED;
1262out_unlock:
1263	folio_unlock(folio);
1264	return block_page_mkwrite_return(ret);
1265}
1266EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1267
1268static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1269		size_t len, int error)
1270{
1271	struct iomap_page *iop = to_iomap_page(folio);
1272
1273	if (error) {
1274		folio_set_error(folio);
1275		mapping_set_error(inode->i_mapping, error);
1276	}
1277
1278	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop);
1279	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1280
1281	if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1282		folio_end_writeback(folio);
1283}
1284
1285/*
1286 * We're now finished for good with this ioend structure.  Update the page
1287 * state, release holds on bios, and finally free up memory.  Do not use the
1288 * ioend after this.
1289 */
1290static u32
1291iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1292{
1293	struct inode *inode = ioend->io_inode;
1294	struct bio *bio = &ioend->io_inline_bio;
1295	struct bio *last = ioend->io_bio, *next;
1296	u64 start = bio->bi_iter.bi_sector;
1297	loff_t offset = ioend->io_offset;
1298	bool quiet = bio_flagged(bio, BIO_QUIET);
1299	u32 folio_count = 0;
1300
1301	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1302		struct folio_iter fi;
1303
1304		/*
1305		 * For the last bio, bi_private points to the ioend, so we
1306		 * need to explicitly end the iteration here.
1307		 */
1308		if (bio == last)
1309			next = NULL;
1310		else
1311			next = bio->bi_private;
1312
1313		/* walk all folios in bio, ending page IO on them */
1314		bio_for_each_folio_all(fi, bio) {
1315			iomap_finish_folio_write(inode, fi.folio, fi.length,
1316					error);
1317			folio_count++;
1318		}
1319		bio_put(bio);
1320	}
1321	/* The ioend has been freed by bio_put() */
1322
1323	if (unlikely(error && !quiet)) {
1324		printk_ratelimited(KERN_ERR
1325"%s: writeback error on inode %lu, offset %lld, sector %llu",
1326			inode->i_sb->s_id, inode->i_ino, offset, start);
1327	}
1328	return folio_count;
1329}
1330
1331/*
1332 * Ioend completion routine for merged bios. This can only be called from task
1333 * contexts as merged ioends can be of unbound length. Hence we have to break up
1334 * the writeback completions into manageable chunks to avoid long scheduler
1335 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1336 * good batch processing throughput without creating adverse scheduler latency
1337 * conditions.
1338 */
1339void
1340iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1341{
1342	struct list_head tmp;
1343	u32 completions;
1344
1345	might_sleep();
1346
1347	list_replace_init(&ioend->io_list, &tmp);
1348	completions = iomap_finish_ioend(ioend, error);
1349
1350	while (!list_empty(&tmp)) {
1351		if (completions > IOEND_BATCH_SIZE * 8) {
1352			cond_resched();
1353			completions = 0;
1354		}
1355		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1356		list_del_init(&ioend->io_list);
1357		completions += iomap_finish_ioend(ioend, error);
1358	}
1359}
1360EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1361
1362/*
1363 * We can merge two adjacent ioends if they have the same set of work to do.
1364 */
1365static bool
1366iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1367{
1368	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1369		return false;
1370	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1371	    (next->io_flags & IOMAP_F_SHARED))
1372		return false;
1373	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1374	    (next->io_type == IOMAP_UNWRITTEN))
1375		return false;
1376	if (ioend->io_offset + ioend->io_size != next->io_offset)
1377		return false;
1378	/*
1379	 * Do not merge physically discontiguous ioends. The filesystem
1380	 * completion functions will have to iterate the physical
1381	 * discontiguities even if we merge the ioends at a logical level, so
1382	 * we don't gain anything by merging physical discontiguities here.
1383	 *
1384	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1385	 * submission so does not point to the start sector of the bio at
1386	 * completion.
1387	 */
1388	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1389		return false;
1390	return true;
1391}
1392
1393void
1394iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1395{
1396	struct iomap_ioend *next;
1397
1398	INIT_LIST_HEAD(&ioend->io_list);
1399
1400	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1401			io_list))) {
1402		if (!iomap_ioend_can_merge(ioend, next))
1403			break;
1404		list_move_tail(&next->io_list, &ioend->io_list);
1405		ioend->io_size += next->io_size;
1406	}
1407}
1408EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1409
1410static int
1411iomap_ioend_compare(void *priv, const struct list_head *a,
1412		const struct list_head *b)
1413{
1414	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1415	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1416
1417	if (ia->io_offset < ib->io_offset)
1418		return -1;
1419	if (ia->io_offset > ib->io_offset)
1420		return 1;
1421	return 0;
1422}
1423
1424void
1425iomap_sort_ioends(struct list_head *ioend_list)
1426{
1427	list_sort(NULL, ioend_list, iomap_ioend_compare);
1428}
1429EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1430
1431static void iomap_writepage_end_bio(struct bio *bio)
1432{
1433	struct iomap_ioend *ioend = bio->bi_private;
1434
1435	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1436}
1437
1438/*
1439 * Submit the final bio for an ioend.
1440 *
1441 * If @error is non-zero, it means that we have a situation where some part of
1442 * the submission process has failed after we've marked pages for writeback
1443 * and unlocked them.  In this situation, we need to fail the bio instead of
1444 * submitting it.  This typically only happens on a filesystem shutdown.
1445 */
1446static int
1447iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1448		int error)
1449{
1450	ioend->io_bio->bi_private = ioend;
1451	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1452
1453	if (wpc->ops->prepare_ioend)
1454		error = wpc->ops->prepare_ioend(ioend, error);
1455	if (error) {
1456		/*
1457		 * If we're failing the IO now, just mark the ioend with an
1458		 * error and finish it.  This will run IO completion immediately
1459		 * as there is only one reference to the ioend at this point in
1460		 * time.
1461		 */
1462		ioend->io_bio->bi_status = errno_to_blk_status(error);
1463		bio_endio(ioend->io_bio);
1464		return error;
1465	}
1466
1467	submit_bio(ioend->io_bio);
1468	return 0;
1469}
1470
1471static struct iomap_ioend *
1472iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1473		loff_t offset, sector_t sector, struct writeback_control *wbc)
1474{
1475	struct iomap_ioend *ioend;
1476	struct bio *bio;
1477
1478	bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1479			       REQ_OP_WRITE | wbc_to_write_flags(wbc),
1480			       GFP_NOFS, &iomap_ioend_bioset);
1481	bio->bi_iter.bi_sector = sector;
1482	wbc_init_bio(wbc, bio);
1483
1484	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1485	INIT_LIST_HEAD(&ioend->io_list);
1486	ioend->io_type = wpc->iomap.type;
1487	ioend->io_flags = wpc->iomap.flags;
1488	ioend->io_inode = inode;
1489	ioend->io_size = 0;
1490	ioend->io_folios = 0;
1491	ioend->io_offset = offset;
1492	ioend->io_bio = bio;
1493	ioend->io_sector = sector;
1494	return ioend;
1495}
1496
1497/*
1498 * Allocate a new bio, and chain the old bio to the new one.
1499 *
1500 * Note that we have to perform the chaining in this unintuitive order
1501 * so that the bi_private linkage is set up in the right direction for the
1502 * traversal in iomap_finish_ioend().
1503 */
1504static struct bio *
1505iomap_chain_bio(struct bio *prev)
1506{
1507	struct bio *new;
1508
1509	new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
1510	bio_clone_blkg_association(new, prev);
1511	new->bi_iter.bi_sector = bio_end_sector(prev);
1512
1513	bio_chain(prev, new);
1514	bio_get(prev);		/* for iomap_finish_ioend */
1515	submit_bio(prev);
1516	return new;
1517}
1518
1519static bool
1520iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1521		sector_t sector)
1522{
1523	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1524	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1525		return false;
1526	if (wpc->iomap.type != wpc->ioend->io_type)
1527		return false;
1528	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1529		return false;
1530	if (sector != bio_end_sector(wpc->ioend->io_bio))
1531		return false;
1532	/*
1533	 * Limit ioend bio chain lengths to minimise IO completion latency. This
1534	 * also prevents long tight loops ending page writeback on all the
1535	 * folios in the ioend.
1536	 */
1537	if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1538		return false;
1539	return true;
1540}
1541
1542/*
1543 * Test to see if we have an existing ioend structure that we could append to
1544 * first; otherwise finish off the current ioend and start another.
1545 */
1546static void
1547iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1548		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1549		struct writeback_control *wbc, struct list_head *iolist)
1550{
1551	sector_t sector = iomap_sector(&wpc->iomap, pos);
1552	unsigned len = i_blocksize(inode);
1553	size_t poff = offset_in_folio(folio, pos);
1554
1555	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1556		if (wpc->ioend)
1557			list_add(&wpc->ioend->io_list, iolist);
1558		wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1559	}
1560
1561	if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1562		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1563		bio_add_folio(wpc->ioend->io_bio, folio, len, poff);
1564	}
1565
1566	if (iop)
1567		atomic_add(len, &iop->write_bytes_pending);
1568	wpc->ioend->io_size += len;
1569	wbc_account_cgroup_owner(wbc, &folio->page, len);
1570}
1571
1572/*
1573 * We implement an immediate ioend submission policy here to avoid needing to
1574 * chain multiple ioends and hence nest mempool allocations which can violate
1575 * the forward progress guarantees we need to provide. The current ioend we're
1576 * adding blocks to is cached in the writepage context, and if the new block
1577 * doesn't append to the cached ioend, it will create a new ioend and cache that
1578 * instead.
1579 *
1580 * If a new ioend is created and cached, the old ioend is returned and queued
1581 * locally for submission once the entire page is processed or an error has been
1582 * detected.  While ioends are submitted immediately after they are completed,
1583 * batching optimisations are provided by higher level block plugging.
1584 *
1585 * At the end of a writeback pass, there will be a cached ioend remaining on the
1586 * writepage context that the caller will need to submit.
1587 */
1588static int
1589iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1590		struct writeback_control *wbc, struct inode *inode,
1591		struct folio *folio, u64 end_pos)
1592{
1593	struct iomap_page *iop = iomap_page_create(inode, folio, 0);
1594	struct iomap_ioend *ioend, *next;
1595	unsigned len = i_blocksize(inode);
1596	unsigned nblocks = i_blocks_per_folio(inode, folio);
1597	u64 pos = folio_pos(folio);
1598	int error = 0, count = 0, i;
1599	LIST_HEAD(submit_list);
1600
1601	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1602
1603	/*
1604	 * Walk through the folio to find areas to write back. If we
1605	 * run off the end of the current map or find the current map
1606	 * invalid, grab a new one.
1607	 */
1608	for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1609		if (iop && !test_bit(i, iop->uptodate))
1610			continue;
1611
1612		error = wpc->ops->map_blocks(wpc, inode, pos);
1613		if (error)
1614			break;
1615		trace_iomap_writepage_map(inode, &wpc->iomap);
1616		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1617			continue;
1618		if (wpc->iomap.type == IOMAP_HOLE)
1619			continue;
1620		iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc,
1621				 &submit_list);
1622		count++;
1623	}
1624	if (count)
1625		wpc->ioend->io_folios++;
1626
1627	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1628	WARN_ON_ONCE(!folio_test_locked(folio));
1629	WARN_ON_ONCE(folio_test_writeback(folio));
1630	WARN_ON_ONCE(folio_test_dirty(folio));
1631
1632	/*
1633	 * We cannot cancel the ioend directly here on error.  We may have
1634	 * already set other pages under writeback and hence we have to run I/O
1635	 * completion to mark the error state of the pages under writeback
1636	 * appropriately.
1637	 */
1638	if (unlikely(error)) {
1639		/*
1640		 * Let the filesystem know what portion of the current page
1641		 * failed to map. If the page hasn't been added to ioend, it
1642		 * won't be affected by I/O completion and we must unlock it
1643		 * now.
1644		 */
1645		if (wpc->ops->discard_folio)
1646			wpc->ops->discard_folio(folio, pos);
1647		if (!count) {
1648			folio_unlock(folio);
1649			goto done;
1650		}
1651	}
1652
1653	folio_start_writeback(folio);
1654	folio_unlock(folio);
1655
1656	/*
1657	 * Preserve the original error if there was one; catch
1658	 * submission errors here and propagate into subsequent ioend
1659	 * submissions.
1660	 */
1661	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1662		int error2;
1663
1664		list_del_init(&ioend->io_list);
1665		error2 = iomap_submit_ioend(wpc, ioend, error);
1666		if (error2 && !error)
1667			error = error2;
1668	}
1669
1670	/*
1671	 * We can end up here with no error and nothing to write only if we race
1672	 * with a partial page truncate on a sub-page block sized filesystem.
1673	 */
1674	if (!count)
1675		folio_end_writeback(folio);
1676done:
1677	mapping_set_error(inode->i_mapping, error);
1678	return error;
1679}
1680
1681/*
1682 * Write out a dirty page.
1683 *
1684 * For delalloc space on the page, we need to allocate space and flush it.
1685 * For unwritten space on the page, we need to start the conversion to
1686 * regular allocated space.
1687 */
1688static int
1689iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1690{
1691	struct folio *folio = page_folio(page);
1692	struct iomap_writepage_ctx *wpc = data;
1693	struct inode *inode = folio->mapping->host;
1694	u64 end_pos, isize;
1695
1696	trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1697
1698	/*
1699	 * Refuse to write the folio out if we're called from reclaim context.
1700	 *
1701	 * This avoids stack overflows when called from deeply used stacks in
1702	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1703	 * allow reclaim from kswapd as the stack usage there is relatively low.
1704	 *
1705	 * This should never happen except in the case of a VM regression so
1706	 * warn about it.
1707	 */
1708	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1709			PF_MEMALLOC))
1710		goto redirty;
1711
1712	/*
1713	 * Is this folio beyond the end of the file?
1714	 *
1715	 * The folio index is less than the end_index, adjust the end_pos
1716	 * to the highest offset that this folio should represent.
1717	 * -----------------------------------------------------
1718	 * |			file mapping	       | <EOF> |
1719	 * -----------------------------------------------------
1720	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1721	 * ^--------------------------------^----------|--------
1722	 * |     desired writeback range    |      see else    |
1723	 * ---------------------------------^------------------|
1724	 */
1725	isize = i_size_read(inode);
1726	end_pos = folio_pos(folio) + folio_size(folio);
1727	if (end_pos > isize) {
1728		/*
1729		 * Check whether the page to write out is beyond or straddles
1730		 * i_size or not.
1731		 * -------------------------------------------------------
1732		 * |		file mapping		        | <EOF>  |
1733		 * -------------------------------------------------------
1734		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1735		 * ^--------------------------------^-----------|---------
1736		 * |				    |      Straddles     |
1737		 * ---------------------------------^-----------|--------|
1738		 */
1739		size_t poff = offset_in_folio(folio, isize);
1740		pgoff_t end_index = isize >> PAGE_SHIFT;
1741
1742		/*
1743		 * Skip the page if it's fully outside i_size, e.g.
1744		 * due to a truncate operation that's in progress.  We've
1745		 * cleaned this page and truncate will finish things off for
1746		 * us.
1747		 *
1748		 * Note that the end_index is unsigned long.  If the given
1749		 * offset is greater than 16TB on a 32-bit system then if we
1750		 * checked if the page is fully outside i_size with
1751		 * "if (page->index >= end_index + 1)", "end_index + 1" would
1752		 * overflow and evaluate to 0.  Hence this page would be
1753		 * redirtied and written out repeatedly, which would result in
1754		 * an infinite loop; the user program performing this operation
1755		 * would hang.  Instead, we can detect this situation by
1756		 * checking if the page is totally beyond i_size or if its
1757		 * offset is just equal to the EOF.
1758		 */
1759		if (folio->index > end_index ||
1760		    (folio->index == end_index && poff == 0))
1761			goto unlock;
1762
1763		/*
1764		 * The page straddles i_size.  It must be zeroed out on each
1765		 * and every writepage invocation because it may be mmapped.
1766		 * "A file is mapped in multiples of the page size.  For a file
1767		 * that is not a multiple of the page size, the remaining
1768		 * memory is zeroed when mapped, and writes to that region are
1769		 * not written out to the file."
1770		 */
1771		folio_zero_segment(folio, poff, folio_size(folio));
1772		end_pos = isize;
1773	}
1774
1775	return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1776
1777redirty:
1778	folio_redirty_for_writepage(wbc, folio);
1779unlock:
1780	folio_unlock(folio);
1781	return 0;
1782}
1783
1784int
1785iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1786		struct iomap_writepage_ctx *wpc,
1787		const struct iomap_writeback_ops *ops)
1788{
1789	int			ret;
1790
1791	wpc->ops = ops;
1792	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1793	if (!wpc->ioend)
1794		return ret;
1795	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1796}
1797EXPORT_SYMBOL_GPL(iomap_writepages);
1798
1799static int __init iomap_init(void)
1800{
1801	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1802			   offsetof(struct iomap_ioend, io_inline_bio),
1803			   BIOSET_NEED_BVECS);
1804}
1805fs_initcall(iomap_init);