Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 *  Driver for AMBA serial ports
   4 *
   5 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   6 *
   7 *  Copyright 1999 ARM Limited
   8 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   9 *  Copyright (C) 2010 ST-Ericsson SA
  10 *
  11 * This is a generic driver for ARM AMBA-type serial ports.  They
  12 * have a lot of 16550-like features, but are not register compatible.
  13 * Note that although they do have CTS, DCD and DSR inputs, they do
  14 * not have an RI input, nor do they have DTR or RTS outputs.  If
  15 * required, these have to be supplied via some other means (eg, GPIO)
  16 * and hooked into this driver.
  17 */
  18
  19
  20#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  21#define SUPPORT_SYSRQ
  22#endif
  23
  24#include <linux/module.h>
  25#include <linux/ioport.h>
  26#include <linux/init.h>
  27#include <linux/console.h>
  28#include <linux/sysrq.h>
  29#include <linux/device.h>
  30#include <linux/tty.h>
  31#include <linux/tty_flip.h>
  32#include <linux/serial_core.h>
  33#include <linux/serial.h>
  34#include <linux/amba/bus.h>
  35#include <linux/amba/serial.h>
  36#include <linux/clk.h>
  37#include <linux/slab.h>
  38#include <linux/dmaengine.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/scatterlist.h>
  41#include <linux/delay.h>
  42#include <linux/types.h>
  43#include <linux/of.h>
  44#include <linux/of_device.h>
  45#include <linux/pinctrl/consumer.h>
  46#include <linux/sizes.h>
  47#include <linux/io.h>
  48#include <linux/acpi.h>
  49
  50#include "amba-pl011.h"
  51
  52#define UART_NR			14
  53
  54#define SERIAL_AMBA_MAJOR	204
  55#define SERIAL_AMBA_MINOR	64
  56#define SERIAL_AMBA_NR		UART_NR
  57
  58#define AMBA_ISR_PASS_LIMIT	256
  59
  60#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  61#define UART_DUMMY_DR_RX	(1 << 16)
  62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
  64	[REG_DR] = UART01x_DR,
  65	[REG_FR] = UART01x_FR,
  66	[REG_LCRH_RX] = UART011_LCRH,
  67	[REG_LCRH_TX] = UART011_LCRH,
  68	[REG_IBRD] = UART011_IBRD,
  69	[REG_FBRD] = UART011_FBRD,
  70	[REG_CR] = UART011_CR,
  71	[REG_IFLS] = UART011_IFLS,
  72	[REG_IMSC] = UART011_IMSC,
  73	[REG_RIS] = UART011_RIS,
  74	[REG_MIS] = UART011_MIS,
  75	[REG_ICR] = UART011_ICR,
  76	[REG_DMACR] = UART011_DMACR,
  77};
  78
  79/* There is by now at least one vendor with differing details, so handle it */
  80struct vendor_data {
  81	const u16		*reg_offset;
  82	unsigned int		ifls;
  83	unsigned int		fr_busy;
  84	unsigned int		fr_dsr;
  85	unsigned int		fr_cts;
  86	unsigned int		fr_ri;
  87	unsigned int		inv_fr;
  88	bool			access_32b;
  89	bool			oversampling;
  90	bool			dma_threshold;
  91	bool			cts_event_workaround;
  92	bool			always_enabled;
  93	bool			fixed_options;
  94
  95	unsigned int (*get_fifosize)(struct amba_device *dev);
  96};
  97
  98static unsigned int get_fifosize_arm(struct amba_device *dev)
  99{
 100	return amba_rev(dev) < 3 ? 16 : 32;
 101}
 102
 103static struct vendor_data vendor_arm = {
 104	.reg_offset		= pl011_std_offsets,
 105	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 106	.fr_busy		= UART01x_FR_BUSY,
 107	.fr_dsr			= UART01x_FR_DSR,
 108	.fr_cts			= UART01x_FR_CTS,
 109	.fr_ri			= UART011_FR_RI,
 110	.oversampling		= false,
 111	.dma_threshold		= false,
 112	.cts_event_workaround	= false,
 113	.always_enabled		= false,
 114	.fixed_options		= false,
 115	.get_fifosize		= get_fifosize_arm,
 116};
 117
 118static const struct vendor_data vendor_sbsa = {
 119	.reg_offset		= pl011_std_offsets,
 120	.fr_busy		= UART01x_FR_BUSY,
 121	.fr_dsr			= UART01x_FR_DSR,
 122	.fr_cts			= UART01x_FR_CTS,
 123	.fr_ri			= UART011_FR_RI,
 124	.access_32b		= true,
 125	.oversampling		= false,
 126	.dma_threshold		= false,
 127	.cts_event_workaround	= false,
 128	.always_enabled		= true,
 129	.fixed_options		= true,
 130};
 131
 132#ifdef CONFIG_ACPI_SPCR_TABLE
 133static const struct vendor_data vendor_qdt_qdf2400_e44 = {
 134	.reg_offset		= pl011_std_offsets,
 135	.fr_busy		= UART011_FR_TXFE,
 136	.fr_dsr			= UART01x_FR_DSR,
 137	.fr_cts			= UART01x_FR_CTS,
 138	.fr_ri			= UART011_FR_RI,
 139	.inv_fr			= UART011_FR_TXFE,
 140	.access_32b		= true,
 141	.oversampling		= false,
 142	.dma_threshold		= false,
 143	.cts_event_workaround	= false,
 144	.always_enabled		= true,
 145	.fixed_options		= true,
 146};
 147#endif
 148
 149static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
 150	[REG_DR] = UART01x_DR,
 151	[REG_ST_DMAWM] = ST_UART011_DMAWM,
 152	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
 153	[REG_FR] = UART01x_FR,
 154	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
 155	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
 156	[REG_IBRD] = UART011_IBRD,
 157	[REG_FBRD] = UART011_FBRD,
 158	[REG_CR] = UART011_CR,
 159	[REG_IFLS] = UART011_IFLS,
 160	[REG_IMSC] = UART011_IMSC,
 161	[REG_RIS] = UART011_RIS,
 162	[REG_MIS] = UART011_MIS,
 163	[REG_ICR] = UART011_ICR,
 164	[REG_DMACR] = UART011_DMACR,
 165	[REG_ST_XFCR] = ST_UART011_XFCR,
 166	[REG_ST_XON1] = ST_UART011_XON1,
 167	[REG_ST_XON2] = ST_UART011_XON2,
 168	[REG_ST_XOFF1] = ST_UART011_XOFF1,
 169	[REG_ST_XOFF2] = ST_UART011_XOFF2,
 170	[REG_ST_ITCR] = ST_UART011_ITCR,
 171	[REG_ST_ITIP] = ST_UART011_ITIP,
 172	[REG_ST_ABCR] = ST_UART011_ABCR,
 173	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
 174};
 175
 176static unsigned int get_fifosize_st(struct amba_device *dev)
 177{
 178	return 64;
 179}
 180
 181static struct vendor_data vendor_st = {
 182	.reg_offset		= pl011_st_offsets,
 183	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 184	.fr_busy		= UART01x_FR_BUSY,
 185	.fr_dsr			= UART01x_FR_DSR,
 186	.fr_cts			= UART01x_FR_CTS,
 187	.fr_ri			= UART011_FR_RI,
 188	.oversampling		= true,
 189	.dma_threshold		= true,
 190	.cts_event_workaround	= true,
 191	.always_enabled		= false,
 192	.fixed_options		= false,
 193	.get_fifosize		= get_fifosize_st,
 194};
 195
 196static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
 197	[REG_DR] = ZX_UART011_DR,
 198	[REG_FR] = ZX_UART011_FR,
 199	[REG_LCRH_RX] = ZX_UART011_LCRH,
 200	[REG_LCRH_TX] = ZX_UART011_LCRH,
 201	[REG_IBRD] = ZX_UART011_IBRD,
 202	[REG_FBRD] = ZX_UART011_FBRD,
 203	[REG_CR] = ZX_UART011_CR,
 204	[REG_IFLS] = ZX_UART011_IFLS,
 205	[REG_IMSC] = ZX_UART011_IMSC,
 206	[REG_RIS] = ZX_UART011_RIS,
 207	[REG_MIS] = ZX_UART011_MIS,
 208	[REG_ICR] = ZX_UART011_ICR,
 209	[REG_DMACR] = ZX_UART011_DMACR,
 210};
 211
 212static unsigned int get_fifosize_zte(struct amba_device *dev)
 213{
 214	return 16;
 215}
 216
 217static struct vendor_data vendor_zte = {
 218	.reg_offset		= pl011_zte_offsets,
 219	.access_32b		= true,
 220	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 221	.fr_busy		= ZX_UART01x_FR_BUSY,
 222	.fr_dsr			= ZX_UART01x_FR_DSR,
 223	.fr_cts			= ZX_UART01x_FR_CTS,
 224	.fr_ri			= ZX_UART011_FR_RI,
 225	.get_fifosize		= get_fifosize_zte,
 226};
 227
 228/* Deals with DMA transactions */
 229
 230struct pl011_sgbuf {
 231	struct scatterlist sg;
 232	char *buf;
 233};
 234
 235struct pl011_dmarx_data {
 236	struct dma_chan		*chan;
 237	struct completion	complete;
 238	bool			use_buf_b;
 239	struct pl011_sgbuf	sgbuf_a;
 240	struct pl011_sgbuf	sgbuf_b;
 241	dma_cookie_t		cookie;
 242	bool			running;
 243	struct timer_list	timer;
 244	unsigned int last_residue;
 245	unsigned long last_jiffies;
 246	bool auto_poll_rate;
 247	unsigned int poll_rate;
 248	unsigned int poll_timeout;
 249};
 250
 251struct pl011_dmatx_data {
 252	struct dma_chan		*chan;
 253	struct scatterlist	sg;
 254	char			*buf;
 255	bool			queued;
 256};
 257
 258/*
 259 * We wrap our port structure around the generic uart_port.
 260 */
 261struct uart_amba_port {
 262	struct uart_port	port;
 263	const u16		*reg_offset;
 264	struct clk		*clk;
 265	const struct vendor_data *vendor;
 266	unsigned int		dmacr;		/* dma control reg */
 267	unsigned int		im;		/* interrupt mask */
 268	unsigned int		old_status;
 269	unsigned int		fifosize;	/* vendor-specific */
 270	unsigned int		old_cr;		/* state during shutdown */
 271	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
 272	char			type[12];
 
 
 273#ifdef CONFIG_DMA_ENGINE
 274	/* DMA stuff */
 275	bool			using_tx_dma;
 276	bool			using_rx_dma;
 277	struct pl011_dmarx_data dmarx;
 278	struct pl011_dmatx_data	dmatx;
 279	bool			dma_probed;
 280#endif
 281};
 282
 
 
 283static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
 284	unsigned int reg)
 285{
 286	return uap->reg_offset[reg];
 287}
 288
 289static unsigned int pl011_read(const struct uart_amba_port *uap,
 290	unsigned int reg)
 291{
 292	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 293
 294	return (uap->port.iotype == UPIO_MEM32) ?
 295		readl_relaxed(addr) : readw_relaxed(addr);
 296}
 297
 298static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
 299	unsigned int reg)
 300{
 301	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 302
 303	if (uap->port.iotype == UPIO_MEM32)
 304		writel_relaxed(val, addr);
 305	else
 306		writew_relaxed(val, addr);
 307}
 308
 309/*
 310 * Reads up to 256 characters from the FIFO or until it's empty and
 311 * inserts them into the TTY layer. Returns the number of characters
 312 * read from the FIFO.
 313 */
 314static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 315{
 316	u16 status;
 317	unsigned int ch, flag, fifotaken;
 
 
 318
 319	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
 320		status = pl011_read(uap, REG_FR);
 321		if (status & UART01x_FR_RXFE)
 322			break;
 323
 324		/* Take chars from the FIFO and update status */
 325		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
 326		flag = TTY_NORMAL;
 327		uap->port.icount.rx++;
 328
 329		if (unlikely(ch & UART_DR_ERROR)) {
 330			if (ch & UART011_DR_BE) {
 331				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 332				uap->port.icount.brk++;
 333				if (uart_handle_break(&uap->port))
 334					continue;
 335			} else if (ch & UART011_DR_PE)
 336				uap->port.icount.parity++;
 337			else if (ch & UART011_DR_FE)
 338				uap->port.icount.frame++;
 339			if (ch & UART011_DR_OE)
 340				uap->port.icount.overrun++;
 341
 342			ch &= uap->port.read_status_mask;
 343
 344			if (ch & UART011_DR_BE)
 345				flag = TTY_BREAK;
 346			else if (ch & UART011_DR_PE)
 347				flag = TTY_PARITY;
 348			else if (ch & UART011_DR_FE)
 349				flag = TTY_FRAME;
 350		}
 351
 352		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 353			continue;
 
 354
 355		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 
 356	}
 357
 358	return fifotaken;
 359}
 360
 361
 362/*
 363 * All the DMA operation mode stuff goes inside this ifdef.
 364 * This assumes that you have a generic DMA device interface,
 365 * no custom DMA interfaces are supported.
 366 */
 367#ifdef CONFIG_DMA_ENGINE
 368
 369#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 370
 371static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 372	enum dma_data_direction dir)
 373{
 374	dma_addr_t dma_addr;
 375
 376	sg->buf = dma_alloc_coherent(chan->device->dev,
 377		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
 378	if (!sg->buf)
 379		return -ENOMEM;
 380
 381	sg_init_table(&sg->sg, 1);
 382	sg_set_page(&sg->sg, phys_to_page(dma_addr),
 383		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
 384	sg_dma_address(&sg->sg) = dma_addr;
 385	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
 386
 387	return 0;
 388}
 389
 390static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 391	enum dma_data_direction dir)
 392{
 393	if (sg->buf) {
 394		dma_free_coherent(chan->device->dev,
 395			PL011_DMA_BUFFER_SIZE, sg->buf,
 396			sg_dma_address(&sg->sg));
 397	}
 398}
 399
 400static void pl011_dma_probe(struct uart_amba_port *uap)
 401{
 402	/* DMA is the sole user of the platform data right now */
 403	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 404	struct device *dev = uap->port.dev;
 405	struct dma_slave_config tx_conf = {
 406		.dst_addr = uap->port.mapbase +
 407				 pl011_reg_to_offset(uap, REG_DR),
 408		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 409		.direction = DMA_MEM_TO_DEV,
 410		.dst_maxburst = uap->fifosize >> 1,
 411		.device_fc = false,
 412	};
 413	struct dma_chan *chan;
 414	dma_cap_mask_t mask;
 415
 416	uap->dma_probed = true;
 417	chan = dma_request_slave_channel_reason(dev, "tx");
 418	if (IS_ERR(chan)) {
 419		if (PTR_ERR(chan) == -EPROBE_DEFER) {
 420			uap->dma_probed = false;
 421			return;
 422		}
 423
 424		/* We need platform data */
 425		if (!plat || !plat->dma_filter) {
 426			dev_info(uap->port.dev, "no DMA platform data\n");
 427			return;
 428		}
 429
 430		/* Try to acquire a generic DMA engine slave TX channel */
 431		dma_cap_zero(mask);
 432		dma_cap_set(DMA_SLAVE, mask);
 433
 434		chan = dma_request_channel(mask, plat->dma_filter,
 435						plat->dma_tx_param);
 436		if (!chan) {
 437			dev_err(uap->port.dev, "no TX DMA channel!\n");
 438			return;
 439		}
 440	}
 441
 442	dmaengine_slave_config(chan, &tx_conf);
 443	uap->dmatx.chan = chan;
 444
 445	dev_info(uap->port.dev, "DMA channel TX %s\n",
 446		 dma_chan_name(uap->dmatx.chan));
 447
 448	/* Optionally make use of an RX channel as well */
 449	chan = dma_request_slave_channel(dev, "rx");
 450
 451	if (!chan && plat && plat->dma_rx_param) {
 452		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 453
 454		if (!chan) {
 455			dev_err(uap->port.dev, "no RX DMA channel!\n");
 456			return;
 457		}
 458	}
 459
 460	if (chan) {
 461		struct dma_slave_config rx_conf = {
 462			.src_addr = uap->port.mapbase +
 463				pl011_reg_to_offset(uap, REG_DR),
 464			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 465			.direction = DMA_DEV_TO_MEM,
 466			.src_maxburst = uap->fifosize >> 2,
 467			.device_fc = false,
 468		};
 469		struct dma_slave_caps caps;
 470
 471		/*
 472		 * Some DMA controllers provide information on their capabilities.
 473		 * If the controller does, check for suitable residue processing
 474		 * otherwise assime all is well.
 475		 */
 476		if (0 == dma_get_slave_caps(chan, &caps)) {
 477			if (caps.residue_granularity ==
 478					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
 479				dma_release_channel(chan);
 480				dev_info(uap->port.dev,
 481					"RX DMA disabled - no residue processing\n");
 482				return;
 483			}
 484		}
 485		dmaengine_slave_config(chan, &rx_conf);
 486		uap->dmarx.chan = chan;
 487
 488		uap->dmarx.auto_poll_rate = false;
 489		if (plat && plat->dma_rx_poll_enable) {
 490			/* Set poll rate if specified. */
 491			if (plat->dma_rx_poll_rate) {
 492				uap->dmarx.auto_poll_rate = false;
 493				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 494			} else {
 495				/*
 496				 * 100 ms defaults to poll rate if not
 497				 * specified. This will be adjusted with
 498				 * the baud rate at set_termios.
 499				 */
 500				uap->dmarx.auto_poll_rate = true;
 501				uap->dmarx.poll_rate =  100;
 502			}
 503			/* 3 secs defaults poll_timeout if not specified. */
 504			if (plat->dma_rx_poll_timeout)
 505				uap->dmarx.poll_timeout =
 506					plat->dma_rx_poll_timeout;
 507			else
 508				uap->dmarx.poll_timeout = 3000;
 509		} else if (!plat && dev->of_node) {
 510			uap->dmarx.auto_poll_rate = of_property_read_bool(
 511						dev->of_node, "auto-poll");
 512			if (uap->dmarx.auto_poll_rate) {
 513				u32 x;
 514
 515				if (0 == of_property_read_u32(dev->of_node,
 516						"poll-rate-ms", &x))
 517					uap->dmarx.poll_rate = x;
 518				else
 519					uap->dmarx.poll_rate = 100;
 520				if (0 == of_property_read_u32(dev->of_node,
 521						"poll-timeout-ms", &x))
 522					uap->dmarx.poll_timeout = x;
 523				else
 524					uap->dmarx.poll_timeout = 3000;
 525			}
 526		}
 527		dev_info(uap->port.dev, "DMA channel RX %s\n",
 528			 dma_chan_name(uap->dmarx.chan));
 529	}
 530}
 531
 532static void pl011_dma_remove(struct uart_amba_port *uap)
 533{
 534	if (uap->dmatx.chan)
 535		dma_release_channel(uap->dmatx.chan);
 536	if (uap->dmarx.chan)
 537		dma_release_channel(uap->dmarx.chan);
 538}
 539
 540/* Forward declare these for the refill routine */
 541static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 542static void pl011_start_tx_pio(struct uart_amba_port *uap);
 543
 544/*
 545 * The current DMA TX buffer has been sent.
 546 * Try to queue up another DMA buffer.
 547 */
 548static void pl011_dma_tx_callback(void *data)
 549{
 550	struct uart_amba_port *uap = data;
 551	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 552	unsigned long flags;
 553	u16 dmacr;
 554
 555	spin_lock_irqsave(&uap->port.lock, flags);
 556	if (uap->dmatx.queued)
 557		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 558			     DMA_TO_DEVICE);
 559
 560	dmacr = uap->dmacr;
 561	uap->dmacr = dmacr & ~UART011_TXDMAE;
 562	pl011_write(uap->dmacr, uap, REG_DMACR);
 563
 564	/*
 565	 * If TX DMA was disabled, it means that we've stopped the DMA for
 566	 * some reason (eg, XOFF received, or we want to send an X-char.)
 567	 *
 568	 * Note: we need to be careful here of a potential race between DMA
 569	 * and the rest of the driver - if the driver disables TX DMA while
 570	 * a TX buffer completing, we must update the tx queued status to
 571	 * get further refills (hence we check dmacr).
 572	 */
 573	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 574	    uart_circ_empty(&uap->port.state->xmit)) {
 575		uap->dmatx.queued = false;
 576		spin_unlock_irqrestore(&uap->port.lock, flags);
 577		return;
 578	}
 579
 580	if (pl011_dma_tx_refill(uap) <= 0)
 581		/*
 582		 * We didn't queue a DMA buffer for some reason, but we
 583		 * have data pending to be sent.  Re-enable the TX IRQ.
 584		 */
 585		pl011_start_tx_pio(uap);
 586
 587	spin_unlock_irqrestore(&uap->port.lock, flags);
 588}
 589
 590/*
 591 * Try to refill the TX DMA buffer.
 592 * Locking: called with port lock held and IRQs disabled.
 593 * Returns:
 594 *   1 if we queued up a TX DMA buffer.
 595 *   0 if we didn't want to handle this by DMA
 596 *  <0 on error
 597 */
 598static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 599{
 600	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 601	struct dma_chan *chan = dmatx->chan;
 602	struct dma_device *dma_dev = chan->device;
 603	struct dma_async_tx_descriptor *desc;
 604	struct circ_buf *xmit = &uap->port.state->xmit;
 605	unsigned int count;
 606
 607	/*
 608	 * Try to avoid the overhead involved in using DMA if the
 609	 * transaction fits in the first half of the FIFO, by using
 610	 * the standard interrupt handling.  This ensures that we
 611	 * issue a uart_write_wakeup() at the appropriate time.
 612	 */
 613	count = uart_circ_chars_pending(xmit);
 614	if (count < (uap->fifosize >> 1)) {
 615		uap->dmatx.queued = false;
 616		return 0;
 617	}
 618
 619	/*
 620	 * Bodge: don't send the last character by DMA, as this
 621	 * will prevent XON from notifying us to restart DMA.
 622	 */
 623	count -= 1;
 624
 625	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 626	if (count > PL011_DMA_BUFFER_SIZE)
 627		count = PL011_DMA_BUFFER_SIZE;
 628
 629	if (xmit->tail < xmit->head)
 630		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 631	else {
 632		size_t first = UART_XMIT_SIZE - xmit->tail;
 633		size_t second;
 634
 635		if (first > count)
 636			first = count;
 637		second = count - first;
 638
 639		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 640		if (second)
 641			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 642	}
 643
 644	dmatx->sg.length = count;
 645
 646	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 647		uap->dmatx.queued = false;
 648		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 649		return -EBUSY;
 650	}
 651
 652	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
 653					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 654	if (!desc) {
 655		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 656		uap->dmatx.queued = false;
 657		/*
 658		 * If DMA cannot be used right now, we complete this
 659		 * transaction via IRQ and let the TTY layer retry.
 660		 */
 661		dev_dbg(uap->port.dev, "TX DMA busy\n");
 662		return -EBUSY;
 663	}
 664
 665	/* Some data to go along to the callback */
 666	desc->callback = pl011_dma_tx_callback;
 667	desc->callback_param = uap;
 668
 669	/* All errors should happen at prepare time */
 670	dmaengine_submit(desc);
 671
 672	/* Fire the DMA transaction */
 673	dma_dev->device_issue_pending(chan);
 674
 675	uap->dmacr |= UART011_TXDMAE;
 676	pl011_write(uap->dmacr, uap, REG_DMACR);
 677	uap->dmatx.queued = true;
 678
 679	/*
 680	 * Now we know that DMA will fire, so advance the ring buffer
 681	 * with the stuff we just dispatched.
 682	 */
 683	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 684	uap->port.icount.tx += count;
 685
 686	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 687		uart_write_wakeup(&uap->port);
 688
 689	return 1;
 690}
 691
 692/*
 693 * We received a transmit interrupt without a pending X-char but with
 694 * pending characters.
 695 * Locking: called with port lock held and IRQs disabled.
 696 * Returns:
 697 *   false if we want to use PIO to transmit
 698 *   true if we queued a DMA buffer
 699 */
 700static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 701{
 702	if (!uap->using_tx_dma)
 703		return false;
 704
 705	/*
 706	 * If we already have a TX buffer queued, but received a
 707	 * TX interrupt, it will be because we've just sent an X-char.
 708	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 709	 */
 710	if (uap->dmatx.queued) {
 711		uap->dmacr |= UART011_TXDMAE;
 712		pl011_write(uap->dmacr, uap, REG_DMACR);
 713		uap->im &= ~UART011_TXIM;
 714		pl011_write(uap->im, uap, REG_IMSC);
 715		return true;
 716	}
 717
 718	/*
 719	 * We don't have a TX buffer queued, so try to queue one.
 720	 * If we successfully queued a buffer, mask the TX IRQ.
 721	 */
 722	if (pl011_dma_tx_refill(uap) > 0) {
 723		uap->im &= ~UART011_TXIM;
 724		pl011_write(uap->im, uap, REG_IMSC);
 725		return true;
 726	}
 727	return false;
 728}
 729
 730/*
 731 * Stop the DMA transmit (eg, due to received XOFF).
 732 * Locking: called with port lock held and IRQs disabled.
 733 */
 734static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 735{
 736	if (uap->dmatx.queued) {
 737		uap->dmacr &= ~UART011_TXDMAE;
 738		pl011_write(uap->dmacr, uap, REG_DMACR);
 739	}
 740}
 741
 742/*
 743 * Try to start a DMA transmit, or in the case of an XON/OFF
 744 * character queued for send, try to get that character out ASAP.
 745 * Locking: called with port lock held and IRQs disabled.
 746 * Returns:
 747 *   false if we want the TX IRQ to be enabled
 748 *   true if we have a buffer queued
 749 */
 750static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 751{
 752	u16 dmacr;
 753
 754	if (!uap->using_tx_dma)
 755		return false;
 756
 757	if (!uap->port.x_char) {
 758		/* no X-char, try to push chars out in DMA mode */
 759		bool ret = true;
 760
 761		if (!uap->dmatx.queued) {
 762			if (pl011_dma_tx_refill(uap) > 0) {
 763				uap->im &= ~UART011_TXIM;
 764				pl011_write(uap->im, uap, REG_IMSC);
 765			} else
 766				ret = false;
 767		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 768			uap->dmacr |= UART011_TXDMAE;
 769			pl011_write(uap->dmacr, uap, REG_DMACR);
 770		}
 771		return ret;
 772	}
 773
 774	/*
 775	 * We have an X-char to send.  Disable DMA to prevent it loading
 776	 * the TX fifo, and then see if we can stuff it into the FIFO.
 777	 */
 778	dmacr = uap->dmacr;
 779	uap->dmacr &= ~UART011_TXDMAE;
 780	pl011_write(uap->dmacr, uap, REG_DMACR);
 781
 782	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
 783		/*
 784		 * No space in the FIFO, so enable the transmit interrupt
 785		 * so we know when there is space.  Note that once we've
 786		 * loaded the character, we should just re-enable DMA.
 787		 */
 788		return false;
 789	}
 790
 791	pl011_write(uap->port.x_char, uap, REG_DR);
 792	uap->port.icount.tx++;
 793	uap->port.x_char = 0;
 794
 795	/* Success - restore the DMA state */
 796	uap->dmacr = dmacr;
 797	pl011_write(dmacr, uap, REG_DMACR);
 798
 799	return true;
 800}
 801
 802/*
 803 * Flush the transmit buffer.
 804 * Locking: called with port lock held and IRQs disabled.
 805 */
 806static void pl011_dma_flush_buffer(struct uart_port *port)
 807__releases(&uap->port.lock)
 808__acquires(&uap->port.lock)
 809{
 810	struct uart_amba_port *uap =
 811	    container_of(port, struct uart_amba_port, port);
 812
 813	if (!uap->using_tx_dma)
 814		return;
 815
 816	/* Avoid deadlock with the DMA engine callback */
 817	spin_unlock(&uap->port.lock);
 818	dmaengine_terminate_all(uap->dmatx.chan);
 819	spin_lock(&uap->port.lock);
 820	if (uap->dmatx.queued) {
 821		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 822			     DMA_TO_DEVICE);
 823		uap->dmatx.queued = false;
 824		uap->dmacr &= ~UART011_TXDMAE;
 825		pl011_write(uap->dmacr, uap, REG_DMACR);
 826	}
 827}
 828
 829static void pl011_dma_rx_callback(void *data);
 830
 831static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 832{
 833	struct dma_chan *rxchan = uap->dmarx.chan;
 834	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 835	struct dma_async_tx_descriptor *desc;
 836	struct pl011_sgbuf *sgbuf;
 837
 838	if (!rxchan)
 839		return -EIO;
 840
 841	/* Start the RX DMA job */
 842	sgbuf = uap->dmarx.use_buf_b ?
 843		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 844	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 845					DMA_DEV_TO_MEM,
 846					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 847	/*
 848	 * If the DMA engine is busy and cannot prepare a
 849	 * channel, no big deal, the driver will fall back
 850	 * to interrupt mode as a result of this error code.
 851	 */
 852	if (!desc) {
 853		uap->dmarx.running = false;
 854		dmaengine_terminate_all(rxchan);
 855		return -EBUSY;
 856	}
 857
 858	/* Some data to go along to the callback */
 859	desc->callback = pl011_dma_rx_callback;
 860	desc->callback_param = uap;
 861	dmarx->cookie = dmaengine_submit(desc);
 862	dma_async_issue_pending(rxchan);
 863
 864	uap->dmacr |= UART011_RXDMAE;
 865	pl011_write(uap->dmacr, uap, REG_DMACR);
 866	uap->dmarx.running = true;
 867
 868	uap->im &= ~UART011_RXIM;
 869	pl011_write(uap->im, uap, REG_IMSC);
 870
 871	return 0;
 872}
 873
 874/*
 875 * This is called when either the DMA job is complete, or
 876 * the FIFO timeout interrupt occurred. This must be called
 877 * with the port spinlock uap->port.lock held.
 878 */
 879static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 880			       u32 pending, bool use_buf_b,
 881			       bool readfifo)
 882{
 883	struct tty_port *port = &uap->port.state->port;
 884	struct pl011_sgbuf *sgbuf = use_buf_b ?
 885		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 886	int dma_count = 0;
 887	u32 fifotaken = 0; /* only used for vdbg() */
 888
 889	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 890	int dmataken = 0;
 891
 892	if (uap->dmarx.poll_rate) {
 893		/* The data can be taken by polling */
 894		dmataken = sgbuf->sg.length - dmarx->last_residue;
 895		/* Recalculate the pending size */
 896		if (pending >= dmataken)
 897			pending -= dmataken;
 898	}
 899
 900	/* Pick the remain data from the DMA */
 901	if (pending) {
 902
 903		/*
 904		 * First take all chars in the DMA pipe, then look in the FIFO.
 905		 * Note that tty_insert_flip_buf() tries to take as many chars
 906		 * as it can.
 907		 */
 908		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
 909				pending);
 910
 911		uap->port.icount.rx += dma_count;
 912		if (dma_count < pending)
 913			dev_warn(uap->port.dev,
 914				 "couldn't insert all characters (TTY is full?)\n");
 915	}
 916
 917	/* Reset the last_residue for Rx DMA poll */
 918	if (uap->dmarx.poll_rate)
 919		dmarx->last_residue = sgbuf->sg.length;
 920
 921	/*
 922	 * Only continue with trying to read the FIFO if all DMA chars have
 923	 * been taken first.
 924	 */
 925	if (dma_count == pending && readfifo) {
 926		/* Clear any error flags */
 927		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
 928			    UART011_FEIS, uap, REG_ICR);
 929
 930		/*
 931		 * If we read all the DMA'd characters, and we had an
 932		 * incomplete buffer, that could be due to an rx error, or
 933		 * maybe we just timed out. Read any pending chars and check
 934		 * the error status.
 935		 *
 936		 * Error conditions will only occur in the FIFO, these will
 937		 * trigger an immediate interrupt and stop the DMA job, so we
 938		 * will always find the error in the FIFO, never in the DMA
 939		 * buffer.
 940		 */
 941		fifotaken = pl011_fifo_to_tty(uap);
 942	}
 943
 944	spin_unlock(&uap->port.lock);
 945	dev_vdbg(uap->port.dev,
 946		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 947		 dma_count, fifotaken);
 948	tty_flip_buffer_push(port);
 949	spin_lock(&uap->port.lock);
 950}
 951
 952static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 953{
 954	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 955	struct dma_chan *rxchan = dmarx->chan;
 956	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 957		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 958	size_t pending;
 959	struct dma_tx_state state;
 960	enum dma_status dmastat;
 961
 962	/*
 963	 * Pause the transfer so we can trust the current counter,
 964	 * do this before we pause the PL011 block, else we may
 965	 * overflow the FIFO.
 966	 */
 967	if (dmaengine_pause(rxchan))
 968		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 969	dmastat = rxchan->device->device_tx_status(rxchan,
 970						   dmarx->cookie, &state);
 971	if (dmastat != DMA_PAUSED)
 972		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 973
 974	/* Disable RX DMA - incoming data will wait in the FIFO */
 975	uap->dmacr &= ~UART011_RXDMAE;
 976	pl011_write(uap->dmacr, uap, REG_DMACR);
 977	uap->dmarx.running = false;
 978
 979	pending = sgbuf->sg.length - state.residue;
 980	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 981	/* Then we terminate the transfer - we now know our residue */
 982	dmaengine_terminate_all(rxchan);
 983
 984	/*
 985	 * This will take the chars we have so far and insert
 986	 * into the framework.
 987	 */
 988	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 989
 990	/* Switch buffer & re-trigger DMA job */
 991	dmarx->use_buf_b = !dmarx->use_buf_b;
 992	if (pl011_dma_rx_trigger_dma(uap)) {
 993		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 994			"fall back to interrupt mode\n");
 995		uap->im |= UART011_RXIM;
 996		pl011_write(uap->im, uap, REG_IMSC);
 997	}
 998}
 999
1000static void pl011_dma_rx_callback(void *data)
1001{
1002	struct uart_amba_port *uap = data;
1003	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1004	struct dma_chan *rxchan = dmarx->chan;
1005	bool lastbuf = dmarx->use_buf_b;
1006	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1007		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1008	size_t pending;
1009	struct dma_tx_state state;
1010	int ret;
1011
1012	/*
1013	 * This completion interrupt occurs typically when the
1014	 * RX buffer is totally stuffed but no timeout has yet
1015	 * occurred. When that happens, we just want the RX
1016	 * routine to flush out the secondary DMA buffer while
1017	 * we immediately trigger the next DMA job.
1018	 */
1019	spin_lock_irq(&uap->port.lock);
1020	/*
1021	 * Rx data can be taken by the UART interrupts during
1022	 * the DMA irq handler. So we check the residue here.
1023	 */
1024	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1025	pending = sgbuf->sg.length - state.residue;
1026	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1027	/* Then we terminate the transfer - we now know our residue */
1028	dmaengine_terminate_all(rxchan);
1029
1030	uap->dmarx.running = false;
1031	dmarx->use_buf_b = !lastbuf;
1032	ret = pl011_dma_rx_trigger_dma(uap);
1033
1034	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1035	spin_unlock_irq(&uap->port.lock);
1036	/*
1037	 * Do this check after we picked the DMA chars so we don't
1038	 * get some IRQ immediately from RX.
1039	 */
1040	if (ret) {
1041		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1042			"fall back to interrupt mode\n");
1043		uap->im |= UART011_RXIM;
1044		pl011_write(uap->im, uap, REG_IMSC);
1045	}
1046}
1047
1048/*
1049 * Stop accepting received characters, when we're shutting down or
1050 * suspending this port.
1051 * Locking: called with port lock held and IRQs disabled.
1052 */
1053static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1054{
 
 
 
1055	/* FIXME.  Just disable the DMA enable */
1056	uap->dmacr &= ~UART011_RXDMAE;
1057	pl011_write(uap->dmacr, uap, REG_DMACR);
1058}
1059
1060/*
1061 * Timer handler for Rx DMA polling.
1062 * Every polling, It checks the residue in the dma buffer and transfer
1063 * data to the tty. Also, last_residue is updated for the next polling.
1064 */
1065static void pl011_dma_rx_poll(struct timer_list *t)
1066{
1067	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1068	struct tty_port *port = &uap->port.state->port;
1069	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1070	struct dma_chan *rxchan = uap->dmarx.chan;
1071	unsigned long flags = 0;
1072	unsigned int dmataken = 0;
1073	unsigned int size = 0;
1074	struct pl011_sgbuf *sgbuf;
1075	int dma_count;
1076	struct dma_tx_state state;
1077
1078	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1079	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1080	if (likely(state.residue < dmarx->last_residue)) {
1081		dmataken = sgbuf->sg.length - dmarx->last_residue;
1082		size = dmarx->last_residue - state.residue;
1083		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1084				size);
1085		if (dma_count == size)
1086			dmarx->last_residue =  state.residue;
1087		dmarx->last_jiffies = jiffies;
1088	}
1089	tty_flip_buffer_push(port);
1090
1091	/*
1092	 * If no data is received in poll_timeout, the driver will fall back
1093	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1094	 */
1095	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1096			> uap->dmarx.poll_timeout) {
1097
1098		spin_lock_irqsave(&uap->port.lock, flags);
1099		pl011_dma_rx_stop(uap);
1100		uap->im |= UART011_RXIM;
1101		pl011_write(uap->im, uap, REG_IMSC);
1102		spin_unlock_irqrestore(&uap->port.lock, flags);
1103
1104		uap->dmarx.running = false;
1105		dmaengine_terminate_all(rxchan);
1106		del_timer(&uap->dmarx.timer);
1107	} else {
1108		mod_timer(&uap->dmarx.timer,
1109			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1110	}
1111}
1112
1113static void pl011_dma_startup(struct uart_amba_port *uap)
1114{
1115	int ret;
1116
1117	if (!uap->dma_probed)
1118		pl011_dma_probe(uap);
1119
1120	if (!uap->dmatx.chan)
1121		return;
1122
1123	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1124	if (!uap->dmatx.buf) {
1125		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1126		uap->port.fifosize = uap->fifosize;
1127		return;
1128	}
1129
1130	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1131
1132	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1133	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1134	uap->using_tx_dma = true;
1135
1136	if (!uap->dmarx.chan)
1137		goto skip_rx;
1138
1139	/* Allocate and map DMA RX buffers */
1140	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1141			       DMA_FROM_DEVICE);
1142	if (ret) {
1143		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1144			"RX buffer A", ret);
1145		goto skip_rx;
1146	}
1147
1148	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1149			       DMA_FROM_DEVICE);
1150	if (ret) {
1151		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1152			"RX buffer B", ret);
1153		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1154				 DMA_FROM_DEVICE);
1155		goto skip_rx;
1156	}
1157
1158	uap->using_rx_dma = true;
1159
1160skip_rx:
1161	/* Turn on DMA error (RX/TX will be enabled on demand) */
1162	uap->dmacr |= UART011_DMAONERR;
1163	pl011_write(uap->dmacr, uap, REG_DMACR);
1164
1165	/*
1166	 * ST Micro variants has some specific dma burst threshold
1167	 * compensation. Set this to 16 bytes, so burst will only
1168	 * be issued above/below 16 bytes.
1169	 */
1170	if (uap->vendor->dma_threshold)
1171		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1172			    uap, REG_ST_DMAWM);
1173
1174	if (uap->using_rx_dma) {
1175		if (pl011_dma_rx_trigger_dma(uap))
1176			dev_dbg(uap->port.dev, "could not trigger initial "
1177				"RX DMA job, fall back to interrupt mode\n");
1178		if (uap->dmarx.poll_rate) {
1179			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1180			mod_timer(&uap->dmarx.timer,
1181				jiffies +
1182				msecs_to_jiffies(uap->dmarx.poll_rate));
1183			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1184			uap->dmarx.last_jiffies = jiffies;
1185		}
1186	}
1187}
1188
1189static void pl011_dma_shutdown(struct uart_amba_port *uap)
1190{
1191	if (!(uap->using_tx_dma || uap->using_rx_dma))
1192		return;
1193
1194	/* Disable RX and TX DMA */
1195	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1196		cpu_relax();
1197
1198	spin_lock_irq(&uap->port.lock);
1199	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1200	pl011_write(uap->dmacr, uap, REG_DMACR);
1201	spin_unlock_irq(&uap->port.lock);
1202
1203	if (uap->using_tx_dma) {
1204		/* In theory, this should already be done by pl011_dma_flush_buffer */
1205		dmaengine_terminate_all(uap->dmatx.chan);
1206		if (uap->dmatx.queued) {
1207			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1208				     DMA_TO_DEVICE);
1209			uap->dmatx.queued = false;
1210		}
1211
1212		kfree(uap->dmatx.buf);
1213		uap->using_tx_dma = false;
1214	}
1215
1216	if (uap->using_rx_dma) {
1217		dmaengine_terminate_all(uap->dmarx.chan);
1218		/* Clean up the RX DMA */
1219		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1220		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1221		if (uap->dmarx.poll_rate)
1222			del_timer_sync(&uap->dmarx.timer);
1223		uap->using_rx_dma = false;
1224	}
1225}
1226
1227static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1228{
1229	return uap->using_rx_dma;
1230}
1231
1232static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1233{
1234	return uap->using_rx_dma && uap->dmarx.running;
1235}
1236
1237#else
1238/* Blank functions if the DMA engine is not available */
1239static inline void pl011_dma_probe(struct uart_amba_port *uap)
1240{
1241}
1242
1243static inline void pl011_dma_remove(struct uart_amba_port *uap)
1244{
1245}
1246
1247static inline void pl011_dma_startup(struct uart_amba_port *uap)
1248{
1249}
1250
1251static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1252{
1253}
1254
1255static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1256{
1257	return false;
1258}
1259
1260static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1261{
1262}
1263
1264static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1265{
1266	return false;
1267}
1268
1269static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1270{
1271}
1272
1273static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1274{
1275}
1276
1277static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1278{
1279	return -EIO;
1280}
1281
1282static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1283{
1284	return false;
1285}
1286
1287static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1288{
1289	return false;
1290}
1291
1292#define pl011_dma_flush_buffer	NULL
1293#endif
1294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295static void pl011_stop_tx(struct uart_port *port)
1296{
1297	struct uart_amba_port *uap =
1298	    container_of(port, struct uart_amba_port, port);
1299
1300	uap->im &= ~UART011_TXIM;
1301	pl011_write(uap->im, uap, REG_IMSC);
1302	pl011_dma_tx_stop(uap);
 
 
 
1303}
1304
1305static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1306
1307/* Start TX with programmed I/O only (no DMA) */
1308static void pl011_start_tx_pio(struct uart_amba_port *uap)
1309{
1310	if (pl011_tx_chars(uap, false)) {
1311		uap->im |= UART011_TXIM;
1312		pl011_write(uap->im, uap, REG_IMSC);
1313	}
1314}
1315
1316static void pl011_start_tx(struct uart_port *port)
1317{
1318	struct uart_amba_port *uap =
1319	    container_of(port, struct uart_amba_port, port);
1320
1321	if (!pl011_dma_tx_start(uap))
1322		pl011_start_tx_pio(uap);
1323}
1324
1325static void pl011_stop_rx(struct uart_port *port)
1326{
1327	struct uart_amba_port *uap =
1328	    container_of(port, struct uart_amba_port, port);
1329
1330	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1331		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1332	pl011_write(uap->im, uap, REG_IMSC);
1333
1334	pl011_dma_rx_stop(uap);
1335}
1336
 
 
 
 
 
 
 
 
 
1337static void pl011_enable_ms(struct uart_port *port)
1338{
1339	struct uart_amba_port *uap =
1340	    container_of(port, struct uart_amba_port, port);
1341
1342	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1343	pl011_write(uap->im, uap, REG_IMSC);
1344}
1345
1346static void pl011_rx_chars(struct uart_amba_port *uap)
1347__releases(&uap->port.lock)
1348__acquires(&uap->port.lock)
1349{
1350	pl011_fifo_to_tty(uap);
1351
1352	spin_unlock(&uap->port.lock);
1353	tty_flip_buffer_push(&uap->port.state->port);
1354	/*
1355	 * If we were temporarily out of DMA mode for a while,
1356	 * attempt to switch back to DMA mode again.
1357	 */
1358	if (pl011_dma_rx_available(uap)) {
1359		if (pl011_dma_rx_trigger_dma(uap)) {
1360			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1361				"fall back to interrupt mode again\n");
1362			uap->im |= UART011_RXIM;
1363			pl011_write(uap->im, uap, REG_IMSC);
1364		} else {
1365#ifdef CONFIG_DMA_ENGINE
1366			/* Start Rx DMA poll */
1367			if (uap->dmarx.poll_rate) {
1368				uap->dmarx.last_jiffies = jiffies;
1369				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1370				mod_timer(&uap->dmarx.timer,
1371					jiffies +
1372					msecs_to_jiffies(uap->dmarx.poll_rate));
1373			}
1374#endif
1375		}
1376	}
1377	spin_lock(&uap->port.lock);
1378}
1379
1380static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1381			  bool from_irq)
1382{
1383	if (unlikely(!from_irq) &&
1384	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1385		return false; /* unable to transmit character */
1386
1387	pl011_write(c, uap, REG_DR);
1388	uap->port.icount.tx++;
1389
1390	return true;
1391}
1392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1393/* Returns true if tx interrupts have to be (kept) enabled  */
1394static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1395{
1396	struct circ_buf *xmit = &uap->port.state->xmit;
1397	int count = uap->fifosize >> 1;
1398
 
 
 
 
1399	if (uap->port.x_char) {
1400		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1401			return true;
1402		uap->port.x_char = 0;
1403		--count;
1404	}
1405	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1406		pl011_stop_tx(&uap->port);
1407		return false;
1408	}
1409
1410	/* If we are using DMA mode, try to send some characters. */
1411	if (pl011_dma_tx_irq(uap))
1412		return true;
1413
1414	do {
1415		if (likely(from_irq) && count-- == 0)
1416			break;
1417
1418		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1419			break;
1420
1421		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1422	} while (!uart_circ_empty(xmit));
1423
1424	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1425		uart_write_wakeup(&uap->port);
1426
1427	if (uart_circ_empty(xmit)) {
1428		pl011_stop_tx(&uap->port);
1429		return false;
1430	}
1431	return true;
1432}
1433
1434static void pl011_modem_status(struct uart_amba_port *uap)
1435{
1436	unsigned int status, delta;
1437
1438	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1439
1440	delta = status ^ uap->old_status;
1441	uap->old_status = status;
1442
1443	if (!delta)
1444		return;
1445
1446	if (delta & UART01x_FR_DCD)
1447		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1448
1449	if (delta & uap->vendor->fr_dsr)
1450		uap->port.icount.dsr++;
1451
1452	if (delta & uap->vendor->fr_cts)
1453		uart_handle_cts_change(&uap->port,
1454				       status & uap->vendor->fr_cts);
1455
1456	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1457}
1458
1459static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1460{
1461	unsigned int dummy_read;
1462
1463	if (!uap->vendor->cts_event_workaround)
1464		return;
1465
1466	/* workaround to make sure that all bits are unlocked.. */
1467	pl011_write(0x00, uap, REG_ICR);
1468
1469	/*
1470	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1471	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1472	 * so add 2 dummy reads
1473	 */
1474	dummy_read = pl011_read(uap, REG_ICR);
1475	dummy_read = pl011_read(uap, REG_ICR);
1476}
1477
1478static irqreturn_t pl011_int(int irq, void *dev_id)
1479{
1480	struct uart_amba_port *uap = dev_id;
1481	unsigned long flags;
1482	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1483	int handled = 0;
1484
1485	spin_lock_irqsave(&uap->port.lock, flags);
1486	status = pl011_read(uap, REG_RIS) & uap->im;
1487	if (status) {
1488		do {
1489			check_apply_cts_event_workaround(uap);
1490
1491			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1492					       UART011_RXIS),
1493				    uap, REG_ICR);
1494
1495			if (status & (UART011_RTIS|UART011_RXIS)) {
1496				if (pl011_dma_rx_running(uap))
1497					pl011_dma_rx_irq(uap);
1498				else
1499					pl011_rx_chars(uap);
1500			}
1501			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1502				      UART011_CTSMIS|UART011_RIMIS))
1503				pl011_modem_status(uap);
1504			if (status & UART011_TXIS)
1505				pl011_tx_chars(uap, true);
1506
1507			if (pass_counter-- == 0)
1508				break;
1509
1510			status = pl011_read(uap, REG_RIS) & uap->im;
1511		} while (status != 0);
1512		handled = 1;
1513	}
1514
1515	spin_unlock_irqrestore(&uap->port.lock, flags);
1516
1517	return IRQ_RETVAL(handled);
1518}
1519
1520static unsigned int pl011_tx_empty(struct uart_port *port)
1521{
1522	struct uart_amba_port *uap =
1523	    container_of(port, struct uart_amba_port, port);
1524
1525	/* Allow feature register bits to be inverted to work around errata */
1526	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1527
1528	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1529							0 : TIOCSER_TEMT;
1530}
1531
1532static unsigned int pl011_get_mctrl(struct uart_port *port)
1533{
1534	struct uart_amba_port *uap =
1535	    container_of(port, struct uart_amba_port, port);
1536	unsigned int result = 0;
1537	unsigned int status = pl011_read(uap, REG_FR);
1538
1539#define TIOCMBIT(uartbit, tiocmbit)	\
1540	if (status & uartbit)		\
1541		result |= tiocmbit
1542
1543	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1544	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1545	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1546	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1547#undef TIOCMBIT
1548	return result;
1549}
1550
1551static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1552{
1553	struct uart_amba_port *uap =
1554	    container_of(port, struct uart_amba_port, port);
1555	unsigned int cr;
1556
1557	cr = pl011_read(uap, REG_CR);
1558
1559#define	TIOCMBIT(tiocmbit, uartbit)		\
1560	if (mctrl & tiocmbit)		\
1561		cr |= uartbit;		\
1562	else				\
1563		cr &= ~uartbit
1564
1565	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1566	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1567	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1568	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1569	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1570
1571	if (port->status & UPSTAT_AUTORTS) {
1572		/* We need to disable auto-RTS if we want to turn RTS off */
1573		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1574	}
1575#undef TIOCMBIT
1576
1577	pl011_write(cr, uap, REG_CR);
1578}
1579
1580static void pl011_break_ctl(struct uart_port *port, int break_state)
1581{
1582	struct uart_amba_port *uap =
1583	    container_of(port, struct uart_amba_port, port);
1584	unsigned long flags;
1585	unsigned int lcr_h;
1586
1587	spin_lock_irqsave(&uap->port.lock, flags);
1588	lcr_h = pl011_read(uap, REG_LCRH_TX);
1589	if (break_state == -1)
1590		lcr_h |= UART01x_LCRH_BRK;
1591	else
1592		lcr_h &= ~UART01x_LCRH_BRK;
1593	pl011_write(lcr_h, uap, REG_LCRH_TX);
1594	spin_unlock_irqrestore(&uap->port.lock, flags);
1595}
1596
1597#ifdef CONFIG_CONSOLE_POLL
1598
1599static void pl011_quiesce_irqs(struct uart_port *port)
1600{
1601	struct uart_amba_port *uap =
1602	    container_of(port, struct uart_amba_port, port);
1603
1604	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1605	/*
1606	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1607	 * we simply mask it. start_tx() will unmask it.
1608	 *
1609	 * Note we can race with start_tx(), and if the race happens, the
1610	 * polling user might get another interrupt just after we clear it.
1611	 * But it should be OK and can happen even w/o the race, e.g.
1612	 * controller immediately got some new data and raised the IRQ.
1613	 *
1614	 * And whoever uses polling routines assumes that it manages the device
1615	 * (including tx queue), so we're also fine with start_tx()'s caller
1616	 * side.
1617	 */
1618	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1619		    REG_IMSC);
1620}
1621
1622static int pl011_get_poll_char(struct uart_port *port)
1623{
1624	struct uart_amba_port *uap =
1625	    container_of(port, struct uart_amba_port, port);
1626	unsigned int status;
1627
1628	/*
1629	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1630	 * debugger.
1631	 */
1632	pl011_quiesce_irqs(port);
1633
1634	status = pl011_read(uap, REG_FR);
1635	if (status & UART01x_FR_RXFE)
1636		return NO_POLL_CHAR;
1637
1638	return pl011_read(uap, REG_DR);
1639}
1640
1641static void pl011_put_poll_char(struct uart_port *port,
1642			 unsigned char ch)
1643{
1644	struct uart_amba_port *uap =
1645	    container_of(port, struct uart_amba_port, port);
1646
1647	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1648		cpu_relax();
1649
1650	pl011_write(ch, uap, REG_DR);
1651}
1652
1653#endif /* CONFIG_CONSOLE_POLL */
1654
1655static int pl011_hwinit(struct uart_port *port)
1656{
1657	struct uart_amba_port *uap =
1658	    container_of(port, struct uart_amba_port, port);
1659	int retval;
1660
1661	/* Optionaly enable pins to be muxed in and configured */
1662	pinctrl_pm_select_default_state(port->dev);
1663
1664	/*
1665	 * Try to enable the clock producer.
1666	 */
1667	retval = clk_prepare_enable(uap->clk);
1668	if (retval)
1669		return retval;
1670
1671	uap->port.uartclk = clk_get_rate(uap->clk);
1672
1673	/* Clear pending error and receive interrupts */
1674	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1675		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1676		    uap, REG_ICR);
1677
1678	/*
1679	 * Save interrupts enable mask, and enable RX interrupts in case if
1680	 * the interrupt is used for NMI entry.
1681	 */
1682	uap->im = pl011_read(uap, REG_IMSC);
1683	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1684
1685	if (dev_get_platdata(uap->port.dev)) {
1686		struct amba_pl011_data *plat;
1687
1688		plat = dev_get_platdata(uap->port.dev);
1689		if (plat->init)
1690			plat->init();
1691	}
1692	return 0;
1693}
1694
1695static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1696{
1697	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1698	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1699}
1700
1701static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1702{
1703	pl011_write(lcr_h, uap, REG_LCRH_RX);
1704	if (pl011_split_lcrh(uap)) {
1705		int i;
1706		/*
1707		 * Wait 10 PCLKs before writing LCRH_TX register,
1708		 * to get this delay write read only register 10 times
1709		 */
1710		for (i = 0; i < 10; ++i)
1711			pl011_write(0xff, uap, REG_MIS);
1712		pl011_write(lcr_h, uap, REG_LCRH_TX);
1713	}
1714}
1715
1716static int pl011_allocate_irq(struct uart_amba_port *uap)
1717{
1718	pl011_write(uap->im, uap, REG_IMSC);
1719
1720	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1721}
1722
1723/*
1724 * Enable interrupts, only timeouts when using DMA
1725 * if initial RX DMA job failed, start in interrupt mode
1726 * as well.
1727 */
1728static void pl011_enable_interrupts(struct uart_amba_port *uap)
1729{
1730	spin_lock_irq(&uap->port.lock);
 
 
 
1731
1732	/* Clear out any spuriously appearing RX interrupts */
1733	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1734	uap->im = UART011_RTIM;
1735	if (!pl011_dma_rx_running(uap))
1736		uap->im |= UART011_RXIM;
1737	pl011_write(uap->im, uap, REG_IMSC);
1738	spin_unlock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1739}
1740
1741static int pl011_startup(struct uart_port *port)
1742{
1743	struct uart_amba_port *uap =
1744	    container_of(port, struct uart_amba_port, port);
1745	unsigned int cr;
1746	int retval;
1747
1748	retval = pl011_hwinit(port);
1749	if (retval)
1750		goto clk_dis;
1751
1752	retval = pl011_allocate_irq(uap);
1753	if (retval)
1754		goto clk_dis;
1755
1756	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1757
1758	spin_lock_irq(&uap->port.lock);
1759
1760	/* restore RTS and DTR */
1761	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1762	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
 
 
 
 
1763	pl011_write(cr, uap, REG_CR);
1764
1765	spin_unlock_irq(&uap->port.lock);
1766
1767	/*
1768	 * initialise the old status of the modem signals
1769	 */
1770	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1771
1772	/* Startup DMA */
1773	pl011_dma_startup(uap);
1774
1775	pl011_enable_interrupts(uap);
1776
1777	return 0;
1778
1779 clk_dis:
1780	clk_disable_unprepare(uap->clk);
1781	return retval;
1782}
1783
1784static int sbsa_uart_startup(struct uart_port *port)
1785{
1786	struct uart_amba_port *uap =
1787		container_of(port, struct uart_amba_port, port);
1788	int retval;
1789
1790	retval = pl011_hwinit(port);
1791	if (retval)
1792		return retval;
1793
1794	retval = pl011_allocate_irq(uap);
1795	if (retval)
1796		return retval;
1797
1798	/* The SBSA UART does not support any modem status lines. */
1799	uap->old_status = 0;
1800
1801	pl011_enable_interrupts(uap);
1802
1803	return 0;
1804}
1805
1806static void pl011_shutdown_channel(struct uart_amba_port *uap,
1807					unsigned int lcrh)
1808{
1809      unsigned long val;
1810
1811      val = pl011_read(uap, lcrh);
1812      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1813      pl011_write(val, uap, lcrh);
1814}
1815
1816/*
1817 * disable the port. It should not disable RTS and DTR.
1818 * Also RTS and DTR state should be preserved to restore
1819 * it during startup().
1820 */
1821static void pl011_disable_uart(struct uart_amba_port *uap)
1822{
1823	unsigned int cr;
1824
1825	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1826	spin_lock_irq(&uap->port.lock);
1827	cr = pl011_read(uap, REG_CR);
1828	uap->old_cr = cr;
1829	cr &= UART011_CR_RTS | UART011_CR_DTR;
1830	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1831	pl011_write(cr, uap, REG_CR);
1832	spin_unlock_irq(&uap->port.lock);
1833
1834	/*
1835	 * disable break condition and fifos
1836	 */
1837	pl011_shutdown_channel(uap, REG_LCRH_RX);
1838	if (pl011_split_lcrh(uap))
1839		pl011_shutdown_channel(uap, REG_LCRH_TX);
1840}
1841
1842static void pl011_disable_interrupts(struct uart_amba_port *uap)
1843{
1844	spin_lock_irq(&uap->port.lock);
1845
1846	/* mask all interrupts and clear all pending ones */
1847	uap->im = 0;
1848	pl011_write(uap->im, uap, REG_IMSC);
1849	pl011_write(0xffff, uap, REG_ICR);
1850
1851	spin_unlock_irq(&uap->port.lock);
1852}
1853
1854static void pl011_shutdown(struct uart_port *port)
1855{
1856	struct uart_amba_port *uap =
1857		container_of(port, struct uart_amba_port, port);
1858
1859	pl011_disable_interrupts(uap);
1860
1861	pl011_dma_shutdown(uap);
1862
 
 
 
1863	free_irq(uap->port.irq, uap);
1864
1865	pl011_disable_uart(uap);
1866
1867	/*
1868	 * Shut down the clock producer
1869	 */
1870	clk_disable_unprepare(uap->clk);
1871	/* Optionally let pins go into sleep states */
1872	pinctrl_pm_select_sleep_state(port->dev);
1873
1874	if (dev_get_platdata(uap->port.dev)) {
1875		struct amba_pl011_data *plat;
1876
1877		plat = dev_get_platdata(uap->port.dev);
1878		if (plat->exit)
1879			plat->exit();
1880	}
1881
1882	if (uap->port.ops->flush_buffer)
1883		uap->port.ops->flush_buffer(port);
1884}
1885
1886static void sbsa_uart_shutdown(struct uart_port *port)
1887{
1888	struct uart_amba_port *uap =
1889		container_of(port, struct uart_amba_port, port);
1890
1891	pl011_disable_interrupts(uap);
1892
1893	free_irq(uap->port.irq, uap);
1894
1895	if (uap->port.ops->flush_buffer)
1896		uap->port.ops->flush_buffer(port);
1897}
1898
1899static void
1900pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1901{
1902	port->read_status_mask = UART011_DR_OE | 255;
1903	if (termios->c_iflag & INPCK)
1904		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1905	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1906		port->read_status_mask |= UART011_DR_BE;
1907
1908	/*
1909	 * Characters to ignore
1910	 */
1911	port->ignore_status_mask = 0;
1912	if (termios->c_iflag & IGNPAR)
1913		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1914	if (termios->c_iflag & IGNBRK) {
1915		port->ignore_status_mask |= UART011_DR_BE;
1916		/*
1917		 * If we're ignoring parity and break indicators,
1918		 * ignore overruns too (for real raw support).
1919		 */
1920		if (termios->c_iflag & IGNPAR)
1921			port->ignore_status_mask |= UART011_DR_OE;
1922	}
1923
1924	/*
1925	 * Ignore all characters if CREAD is not set.
1926	 */
1927	if ((termios->c_cflag & CREAD) == 0)
1928		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1929}
1930
1931static void
1932pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1933		     struct ktermios *old)
1934{
1935	struct uart_amba_port *uap =
1936	    container_of(port, struct uart_amba_port, port);
1937	unsigned int lcr_h, old_cr;
1938	unsigned long flags;
1939	unsigned int baud, quot, clkdiv;
 
1940
1941	if (uap->vendor->oversampling)
1942		clkdiv = 8;
1943	else
1944		clkdiv = 16;
1945
1946	/*
1947	 * Ask the core to calculate the divisor for us.
1948	 */
1949	baud = uart_get_baud_rate(port, termios, old, 0,
1950				  port->uartclk / clkdiv);
1951#ifdef CONFIG_DMA_ENGINE
1952	/*
1953	 * Adjust RX DMA polling rate with baud rate if not specified.
1954	 */
1955	if (uap->dmarx.auto_poll_rate)
1956		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1957#endif
1958
1959	if (baud > port->uartclk/16)
1960		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1961	else
1962		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1963
1964	switch (termios->c_cflag & CSIZE) {
1965	case CS5:
1966		lcr_h = UART01x_LCRH_WLEN_5;
1967		break;
1968	case CS6:
1969		lcr_h = UART01x_LCRH_WLEN_6;
1970		break;
1971	case CS7:
1972		lcr_h = UART01x_LCRH_WLEN_7;
1973		break;
1974	default: // CS8
1975		lcr_h = UART01x_LCRH_WLEN_8;
1976		break;
1977	}
1978	if (termios->c_cflag & CSTOPB)
1979		lcr_h |= UART01x_LCRH_STP2;
1980	if (termios->c_cflag & PARENB) {
1981		lcr_h |= UART01x_LCRH_PEN;
1982		if (!(termios->c_cflag & PARODD))
1983			lcr_h |= UART01x_LCRH_EPS;
1984		if (termios->c_cflag & CMSPAR)
1985			lcr_h |= UART011_LCRH_SPS;
1986	}
1987	if (uap->fifosize > 1)
1988		lcr_h |= UART01x_LCRH_FEN;
1989
 
 
1990	spin_lock_irqsave(&port->lock, flags);
1991
1992	/*
1993	 * Update the per-port timeout.
1994	 */
1995	uart_update_timeout(port, termios->c_cflag, baud);
1996
 
 
 
 
 
 
 
1997	pl011_setup_status_masks(port, termios);
1998
1999	if (UART_ENABLE_MS(port, termios->c_cflag))
2000		pl011_enable_ms(port);
2001
2002	/* first, disable everything */
 
 
2003	old_cr = pl011_read(uap, REG_CR);
2004	pl011_write(0, uap, REG_CR);
2005
2006	if (termios->c_cflag & CRTSCTS) {
2007		if (old_cr & UART011_CR_RTS)
2008			old_cr |= UART011_CR_RTSEN;
2009
2010		old_cr |= UART011_CR_CTSEN;
2011		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2012	} else {
2013		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2014		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2015	}
2016
2017	if (uap->vendor->oversampling) {
2018		if (baud > port->uartclk / 16)
2019			old_cr |= ST_UART011_CR_OVSFACT;
2020		else
2021			old_cr &= ~ST_UART011_CR_OVSFACT;
2022	}
2023
2024	/*
2025	 * Workaround for the ST Micro oversampling variants to
2026	 * increase the bitrate slightly, by lowering the divisor,
2027	 * to avoid delayed sampling of start bit at high speeds,
2028	 * else we see data corruption.
2029	 */
2030	if (uap->vendor->oversampling) {
2031		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2032			quot -= 1;
2033		else if ((baud > 3250000) && (quot > 2))
2034			quot -= 2;
2035	}
2036	/* Set baud rate */
2037	pl011_write(quot & 0x3f, uap, REG_FBRD);
2038	pl011_write(quot >> 6, uap, REG_IBRD);
2039
2040	/*
2041	 * ----------v----------v----------v----------v-----
2042	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2043	 * REG_FBRD & REG_IBRD.
2044	 * ----------^----------^----------^----------^-----
2045	 */
2046	pl011_write_lcr_h(uap, lcr_h);
2047	pl011_write(old_cr, uap, REG_CR);
2048
2049	spin_unlock_irqrestore(&port->lock, flags);
2050}
2051
2052static void
2053sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2054		      struct ktermios *old)
2055{
2056	struct uart_amba_port *uap =
2057	    container_of(port, struct uart_amba_port, port);
2058	unsigned long flags;
2059
2060	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2061
2062	/* The SBSA UART only supports 8n1 without hardware flow control. */
2063	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2064	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2065	termios->c_cflag |= CS8 | CLOCAL;
2066
2067	spin_lock_irqsave(&port->lock, flags);
2068	uart_update_timeout(port, CS8, uap->fixed_baud);
2069	pl011_setup_status_masks(port, termios);
2070	spin_unlock_irqrestore(&port->lock, flags);
2071}
2072
2073static const char *pl011_type(struct uart_port *port)
2074{
2075	struct uart_amba_port *uap =
2076	    container_of(port, struct uart_amba_port, port);
2077	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2078}
2079
2080/*
2081 * Release the memory region(s) being used by 'port'
2082 */
2083static void pl011_release_port(struct uart_port *port)
2084{
2085	release_mem_region(port->mapbase, SZ_4K);
2086}
2087
2088/*
2089 * Request the memory region(s) being used by 'port'
2090 */
2091static int pl011_request_port(struct uart_port *port)
2092{
2093	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2094			!= NULL ? 0 : -EBUSY;
2095}
2096
2097/*
2098 * Configure/autoconfigure the port.
2099 */
2100static void pl011_config_port(struct uart_port *port, int flags)
2101{
2102	if (flags & UART_CONFIG_TYPE) {
2103		port->type = PORT_AMBA;
2104		pl011_request_port(port);
2105	}
2106}
2107
2108/*
2109 * verify the new serial_struct (for TIOCSSERIAL).
2110 */
2111static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2112{
2113	int ret = 0;
2114	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2115		ret = -EINVAL;
2116	if (ser->irq < 0 || ser->irq >= nr_irqs)
2117		ret = -EINVAL;
2118	if (ser->baud_base < 9600)
2119		ret = -EINVAL;
 
 
2120	return ret;
2121}
2122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2123static const struct uart_ops amba_pl011_pops = {
2124	.tx_empty	= pl011_tx_empty,
2125	.set_mctrl	= pl011_set_mctrl,
2126	.get_mctrl	= pl011_get_mctrl,
2127	.stop_tx	= pl011_stop_tx,
2128	.start_tx	= pl011_start_tx,
2129	.stop_rx	= pl011_stop_rx,
 
 
2130	.enable_ms	= pl011_enable_ms,
2131	.break_ctl	= pl011_break_ctl,
2132	.startup	= pl011_startup,
2133	.shutdown	= pl011_shutdown,
2134	.flush_buffer	= pl011_dma_flush_buffer,
2135	.set_termios	= pl011_set_termios,
2136	.type		= pl011_type,
2137	.release_port	= pl011_release_port,
2138	.request_port	= pl011_request_port,
2139	.config_port	= pl011_config_port,
2140	.verify_port	= pl011_verify_port,
2141#ifdef CONFIG_CONSOLE_POLL
2142	.poll_init     = pl011_hwinit,
2143	.poll_get_char = pl011_get_poll_char,
2144	.poll_put_char = pl011_put_poll_char,
2145#endif
2146};
2147
2148static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2149{
2150}
2151
2152static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2153{
2154	return 0;
2155}
2156
2157static const struct uart_ops sbsa_uart_pops = {
2158	.tx_empty	= pl011_tx_empty,
2159	.set_mctrl	= sbsa_uart_set_mctrl,
2160	.get_mctrl	= sbsa_uart_get_mctrl,
2161	.stop_tx	= pl011_stop_tx,
2162	.start_tx	= pl011_start_tx,
2163	.stop_rx	= pl011_stop_rx,
2164	.startup	= sbsa_uart_startup,
2165	.shutdown	= sbsa_uart_shutdown,
2166	.set_termios	= sbsa_uart_set_termios,
2167	.type		= pl011_type,
2168	.release_port	= pl011_release_port,
2169	.request_port	= pl011_request_port,
2170	.config_port	= pl011_config_port,
2171	.verify_port	= pl011_verify_port,
2172#ifdef CONFIG_CONSOLE_POLL
2173	.poll_init     = pl011_hwinit,
2174	.poll_get_char = pl011_get_poll_char,
2175	.poll_put_char = pl011_put_poll_char,
2176#endif
2177};
2178
2179static struct uart_amba_port *amba_ports[UART_NR];
2180
2181#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2182
2183static void pl011_console_putchar(struct uart_port *port, int ch)
2184{
2185	struct uart_amba_port *uap =
2186	    container_of(port, struct uart_amba_port, port);
2187
2188	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2189		cpu_relax();
2190	pl011_write(ch, uap, REG_DR);
2191}
2192
2193static void
2194pl011_console_write(struct console *co, const char *s, unsigned int count)
2195{
2196	struct uart_amba_port *uap = amba_ports[co->index];
2197	unsigned int old_cr = 0, new_cr;
2198	unsigned long flags;
2199	int locked = 1;
2200
2201	clk_enable(uap->clk);
2202
2203	local_irq_save(flags);
2204	if (uap->port.sysrq)
2205		locked = 0;
2206	else if (oops_in_progress)
2207		locked = spin_trylock(&uap->port.lock);
2208	else
2209		spin_lock(&uap->port.lock);
2210
2211	/*
2212	 *	First save the CR then disable the interrupts
2213	 */
2214	if (!uap->vendor->always_enabled) {
2215		old_cr = pl011_read(uap, REG_CR);
2216		new_cr = old_cr & ~UART011_CR_CTSEN;
2217		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2218		pl011_write(new_cr, uap, REG_CR);
2219	}
2220
2221	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2222
2223	/*
2224	 *	Finally, wait for transmitter to become empty and restore the
2225	 *	TCR. Allow feature register bits to be inverted to work around
2226	 *	errata.
2227	 */
2228	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2229						& uap->vendor->fr_busy)
2230		cpu_relax();
2231	if (!uap->vendor->always_enabled)
2232		pl011_write(old_cr, uap, REG_CR);
2233
2234	if (locked)
2235		spin_unlock(&uap->port.lock);
2236	local_irq_restore(flags);
2237
2238	clk_disable(uap->clk);
2239}
2240
2241static void __init
2242pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2243			     int *parity, int *bits)
2244{
2245	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2246		unsigned int lcr_h, ibrd, fbrd;
2247
2248		lcr_h = pl011_read(uap, REG_LCRH_TX);
2249
2250		*parity = 'n';
2251		if (lcr_h & UART01x_LCRH_PEN) {
2252			if (lcr_h & UART01x_LCRH_EPS)
2253				*parity = 'e';
2254			else
2255				*parity = 'o';
2256		}
2257
2258		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2259			*bits = 7;
2260		else
2261			*bits = 8;
2262
2263		ibrd = pl011_read(uap, REG_IBRD);
2264		fbrd = pl011_read(uap, REG_FBRD);
2265
2266		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2267
2268		if (uap->vendor->oversampling) {
2269			if (pl011_read(uap, REG_CR)
2270				  & ST_UART011_CR_OVSFACT)
2271				*baud *= 2;
2272		}
2273	}
2274}
2275
2276static int __init pl011_console_setup(struct console *co, char *options)
2277{
2278	struct uart_amba_port *uap;
2279	int baud = 38400;
2280	int bits = 8;
2281	int parity = 'n';
2282	int flow = 'n';
2283	int ret;
2284
2285	/*
2286	 * Check whether an invalid uart number has been specified, and
2287	 * if so, search for the first available port that does have
2288	 * console support.
2289	 */
2290	if (co->index >= UART_NR)
2291		co->index = 0;
2292	uap = amba_ports[co->index];
2293	if (!uap)
2294		return -ENODEV;
2295
2296	/* Allow pins to be muxed in and configured */
2297	pinctrl_pm_select_default_state(uap->port.dev);
2298
2299	ret = clk_prepare(uap->clk);
2300	if (ret)
2301		return ret;
2302
2303	if (dev_get_platdata(uap->port.dev)) {
2304		struct amba_pl011_data *plat;
2305
2306		plat = dev_get_platdata(uap->port.dev);
2307		if (plat->init)
2308			plat->init();
2309	}
2310
2311	uap->port.uartclk = clk_get_rate(uap->clk);
2312
2313	if (uap->vendor->fixed_options) {
2314		baud = uap->fixed_baud;
2315	} else {
2316		if (options)
2317			uart_parse_options(options,
2318					   &baud, &parity, &bits, &flow);
2319		else
2320			pl011_console_get_options(uap, &baud, &parity, &bits);
2321	}
2322
2323	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2324}
2325
2326/**
2327 *	pl011_console_match - non-standard console matching
2328 *	@co:	  registering console
2329 *	@name:	  name from console command line
2330 *	@idx:	  index from console command line
2331 *	@options: ptr to option string from console command line
2332 *
2333 *	Only attempts to match console command lines of the form:
2334 *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2335 *	    console=pl011,0x<addr>[,<options>]
2336 *	This form is used to register an initial earlycon boot console and
2337 *	replace it with the amba_console at pl011 driver init.
2338 *
2339 *	Performs console setup for a match (as required by interface)
2340 *	If no <options> are specified, then assume the h/w is already setup.
2341 *
2342 *	Returns 0 if console matches; otherwise non-zero to use default matching
2343 */
2344static int __init pl011_console_match(struct console *co, char *name, int idx,
2345				      char *options)
2346{
2347	unsigned char iotype;
2348	resource_size_t addr;
2349	int i;
2350
2351	/*
2352	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2353	 * have a distinct console name, so make sure we check for that.
2354	 * The actual implementation of the erratum occurs in the probe
2355	 * function.
2356	 */
2357	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2358		return -ENODEV;
2359
2360	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2361		return -ENODEV;
2362
2363	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2364		return -ENODEV;
2365
2366	/* try to match the port specified on the command line */
2367	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2368		struct uart_port *port;
2369
2370		if (!amba_ports[i])
2371			continue;
2372
2373		port = &amba_ports[i]->port;
2374
2375		if (port->mapbase != addr)
2376			continue;
2377
2378		co->index = i;
2379		port->cons = co;
2380		return pl011_console_setup(co, options);
2381	}
2382
2383	return -ENODEV;
2384}
2385
2386static struct uart_driver amba_reg;
2387static struct console amba_console = {
2388	.name		= "ttyAMA",
2389	.write		= pl011_console_write,
2390	.device		= uart_console_device,
2391	.setup		= pl011_console_setup,
2392	.match		= pl011_console_match,
2393	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2394	.index		= -1,
2395	.data		= &amba_reg,
2396};
2397
2398#define AMBA_CONSOLE	(&amba_console)
2399
2400static void qdf2400_e44_putc(struct uart_port *port, int c)
2401{
2402	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2403		cpu_relax();
2404	writel(c, port->membase + UART01x_DR);
2405	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2406		cpu_relax();
2407}
2408
2409static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2410{
2411	struct earlycon_device *dev = con->data;
2412
2413	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2414}
2415
2416static void pl011_putc(struct uart_port *port, int c)
2417{
2418	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2419		cpu_relax();
2420	if (port->iotype == UPIO_MEM32)
2421		writel(c, port->membase + UART01x_DR);
2422	else
2423		writeb(c, port->membase + UART01x_DR);
2424	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2425		cpu_relax();
2426}
2427
2428static void pl011_early_write(struct console *con, const char *s, unsigned n)
2429{
2430	struct earlycon_device *dev = con->data;
2431
2432	uart_console_write(&dev->port, s, n, pl011_putc);
2433}
2434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2435/*
2436 * On non-ACPI systems, earlycon is enabled by specifying
2437 * "earlycon=pl011,<address>" on the kernel command line.
2438 *
2439 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2440 * by specifying only "earlycon" on the command line.  Because it requires
2441 * SPCR, the console starts after ACPI is parsed, which is later than a
2442 * traditional early console.
2443 *
2444 * To get the traditional early console that starts before ACPI is parsed,
2445 * specify the full "earlycon=pl011,<address>" option.
2446 */
2447static int __init pl011_early_console_setup(struct earlycon_device *device,
2448					    const char *opt)
2449{
2450	if (!device->port.membase)
2451		return -ENODEV;
2452
2453	device->con->write = pl011_early_write;
 
2454
2455	return 0;
2456}
2457OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2458OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2459
2460/*
2461 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2462 * Erratum 44, traditional earlycon can be enabled by specifying
2463 * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2464 *
2465 * Alternatively, you can just specify "earlycon", and the early console
2466 * will be enabled with the information from the SPCR table.  In this
2467 * case, the SPCR code will detect the need for the E44 work-around,
2468 * and set the console name to "qdf2400_e44".
2469 */
2470static int __init
2471qdf2400_e44_early_console_setup(struct earlycon_device *device,
2472				const char *opt)
2473{
2474	if (!device->port.membase)
2475		return -ENODEV;
2476
2477	device->con->write = qdf2400_e44_early_write;
2478	return 0;
2479}
2480EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2481
2482#else
2483#define AMBA_CONSOLE	NULL
2484#endif
2485
2486static struct uart_driver amba_reg = {
2487	.owner			= THIS_MODULE,
2488	.driver_name		= "ttyAMA",
2489	.dev_name		= "ttyAMA",
2490	.major			= SERIAL_AMBA_MAJOR,
2491	.minor			= SERIAL_AMBA_MINOR,
2492	.nr			= UART_NR,
2493	.cons			= AMBA_CONSOLE,
2494};
2495
2496static int pl011_probe_dt_alias(int index, struct device *dev)
2497{
2498	struct device_node *np;
2499	static bool seen_dev_with_alias = false;
2500	static bool seen_dev_without_alias = false;
2501	int ret = index;
2502
2503	if (!IS_ENABLED(CONFIG_OF))
2504		return ret;
2505
2506	np = dev->of_node;
2507	if (!np)
2508		return ret;
2509
2510	ret = of_alias_get_id(np, "serial");
2511	if (ret < 0) {
2512		seen_dev_without_alias = true;
2513		ret = index;
2514	} else {
2515		seen_dev_with_alias = true;
2516		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2517			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2518			ret = index;
2519		}
2520	}
2521
2522	if (seen_dev_with_alias && seen_dev_without_alias)
2523		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2524
2525	return ret;
2526}
2527
2528/* unregisters the driver also if no more ports are left */
2529static void pl011_unregister_port(struct uart_amba_port *uap)
2530{
2531	int i;
2532	bool busy = false;
2533
2534	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2535		if (amba_ports[i] == uap)
2536			amba_ports[i] = NULL;
2537		else if (amba_ports[i])
2538			busy = true;
2539	}
2540	pl011_dma_remove(uap);
2541	if (!busy)
2542		uart_unregister_driver(&amba_reg);
2543}
2544
2545static int pl011_find_free_port(void)
2546{
2547	int i;
2548
2549	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2550		if (amba_ports[i] == NULL)
2551			return i;
2552
2553	return -EBUSY;
2554}
2555
 
 
 
 
 
 
 
 
 
 
 
 
2556static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2557			    struct resource *mmiobase, int index)
2558{
2559	void __iomem *base;
 
2560
2561	base = devm_ioremap_resource(dev, mmiobase);
2562	if (IS_ERR(base))
2563		return PTR_ERR(base);
2564
2565	index = pl011_probe_dt_alias(index, dev);
2566
2567	uap->old_cr = 0;
2568	uap->port.dev = dev;
2569	uap->port.mapbase = mmiobase->start;
2570	uap->port.membase = base;
2571	uap->port.fifosize = uap->fifosize;
 
2572	uap->port.flags = UPF_BOOT_AUTOCONF;
2573	uap->port.line = index;
2574
 
 
 
 
2575	amba_ports[index] = uap;
2576
2577	return 0;
2578}
2579
2580static int pl011_register_port(struct uart_amba_port *uap)
2581{
2582	int ret;
2583
2584	/* Ensure interrupts from this UART are masked and cleared */
2585	pl011_write(0, uap, REG_IMSC);
2586	pl011_write(0xffff, uap, REG_ICR);
2587
2588	if (!amba_reg.state) {
2589		ret = uart_register_driver(&amba_reg);
2590		if (ret < 0) {
2591			dev_err(uap->port.dev,
2592				"Failed to register AMBA-PL011 driver\n");
 
 
 
2593			return ret;
2594		}
2595	}
2596
2597	ret = uart_add_one_port(&amba_reg, &uap->port);
2598	if (ret)
2599		pl011_unregister_port(uap);
2600
2601	return ret;
2602}
2603
 
 
 
 
 
 
 
2604static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2605{
2606	struct uart_amba_port *uap;
2607	struct vendor_data *vendor = id->data;
2608	int portnr, ret;
 
2609
2610	portnr = pl011_find_free_port();
2611	if (portnr < 0)
2612		return portnr;
2613
2614	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2615			   GFP_KERNEL);
2616	if (!uap)
2617		return -ENOMEM;
2618
2619	uap->clk = devm_clk_get(&dev->dev, NULL);
2620	if (IS_ERR(uap->clk))
2621		return PTR_ERR(uap->clk);
2622
2623	uap->reg_offset = vendor->reg_offset;
2624	uap->vendor = vendor;
2625	uap->fifosize = vendor->get_fifosize(dev);
2626	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2627	uap->port.irq = dev->irq[0];
2628	uap->port.ops = &amba_pl011_pops;
2629
 
2630	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2632	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2633	if (ret)
2634		return ret;
2635
2636	amba_set_drvdata(dev, uap);
2637
2638	return pl011_register_port(uap);
2639}
2640
2641static int pl011_remove(struct amba_device *dev)
2642{
2643	struct uart_amba_port *uap = amba_get_drvdata(dev);
2644
2645	uart_remove_one_port(&amba_reg, &uap->port);
2646	pl011_unregister_port(uap);
2647	return 0;
2648}
2649
2650#ifdef CONFIG_PM_SLEEP
2651static int pl011_suspend(struct device *dev)
2652{
2653	struct uart_amba_port *uap = dev_get_drvdata(dev);
2654
2655	if (!uap)
2656		return -EINVAL;
2657
2658	return uart_suspend_port(&amba_reg, &uap->port);
2659}
2660
2661static int pl011_resume(struct device *dev)
2662{
2663	struct uart_amba_port *uap = dev_get_drvdata(dev);
2664
2665	if (!uap)
2666		return -EINVAL;
2667
2668	return uart_resume_port(&amba_reg, &uap->port);
2669}
2670#endif
2671
2672static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2673
2674static int sbsa_uart_probe(struct platform_device *pdev)
2675{
2676	struct uart_amba_port *uap;
2677	struct resource *r;
2678	int portnr, ret;
2679	int baudrate;
2680
2681	/*
2682	 * Check the mandatory baud rate parameter in the DT node early
2683	 * so that we can easily exit with the error.
2684	 */
2685	if (pdev->dev.of_node) {
2686		struct device_node *np = pdev->dev.of_node;
2687
2688		ret = of_property_read_u32(np, "current-speed", &baudrate);
2689		if (ret)
2690			return ret;
2691	} else {
2692		baudrate = 115200;
2693	}
2694
2695	portnr = pl011_find_free_port();
2696	if (portnr < 0)
2697		return portnr;
2698
2699	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2700			   GFP_KERNEL);
2701	if (!uap)
2702		return -ENOMEM;
2703
2704	ret = platform_get_irq(pdev, 0);
2705	if (ret < 0) {
2706		if (ret != -EPROBE_DEFER)
2707			dev_err(&pdev->dev, "cannot obtain irq\n");
2708		return ret;
2709	}
2710	uap->port.irq	= ret;
2711
2712#ifdef CONFIG_ACPI_SPCR_TABLE
2713	if (qdf2400_e44_present) {
2714		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2715		uap->vendor = &vendor_qdt_qdf2400_e44;
2716	} else
2717#endif
2718		uap->vendor = &vendor_sbsa;
2719
2720	uap->reg_offset	= uap->vendor->reg_offset;
2721	uap->fifosize	= 32;
2722	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2723	uap->port.ops	= &sbsa_uart_pops;
2724	uap->fixed_baud = baudrate;
2725
2726	snprintf(uap->type, sizeof(uap->type), "SBSA");
2727
2728	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2729
2730	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2731	if (ret)
2732		return ret;
2733
2734	platform_set_drvdata(pdev, uap);
2735
2736	return pl011_register_port(uap);
2737}
2738
2739static int sbsa_uart_remove(struct platform_device *pdev)
2740{
2741	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2742
2743	uart_remove_one_port(&amba_reg, &uap->port);
2744	pl011_unregister_port(uap);
2745	return 0;
2746}
2747
2748static const struct of_device_id sbsa_uart_of_match[] = {
2749	{ .compatible = "arm,sbsa-uart", },
2750	{},
2751};
2752MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2753
2754static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2755	{ "ARMH0011", 0 },
 
2756	{},
2757};
2758MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2759
2760static struct platform_driver arm_sbsa_uart_platform_driver = {
2761	.probe		= sbsa_uart_probe,
2762	.remove		= sbsa_uart_remove,
2763	.driver	= {
2764		.name	= "sbsa-uart",
 
2765		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2766		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
 
2767	},
2768};
2769
2770static const struct amba_id pl011_ids[] = {
2771	{
2772		.id	= 0x00041011,
2773		.mask	= 0x000fffff,
2774		.data	= &vendor_arm,
2775	},
2776	{
2777		.id	= 0x00380802,
2778		.mask	= 0x00ffffff,
2779		.data	= &vendor_st,
2780	},
2781	{
2782		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2783		.mask	= 0x00ffffff,
2784		.data	= &vendor_zte,
2785	},
2786	{ 0, 0 },
2787};
2788
2789MODULE_DEVICE_TABLE(amba, pl011_ids);
2790
2791static struct amba_driver pl011_driver = {
2792	.drv = {
2793		.name	= "uart-pl011",
2794		.pm	= &pl011_dev_pm_ops,
 
2795	},
2796	.id_table	= pl011_ids,
2797	.probe		= pl011_probe,
2798	.remove		= pl011_remove,
2799};
2800
2801static int __init pl011_init(void)
2802{
2803	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2804
2805	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2806		pr_warn("could not register SBSA UART platform driver\n");
2807	return amba_driver_register(&pl011_driver);
2808}
2809
2810static void __exit pl011_exit(void)
2811{
2812	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2813	amba_driver_unregister(&pl011_driver);
2814}
2815
2816/*
2817 * While this can be a module, if builtin it's most likely the console
2818 * So let's leave module_exit but move module_init to an earlier place
2819 */
2820arch_initcall(pl011_init);
2821module_exit(pl011_exit);
2822
2823MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2824MODULE_DESCRIPTION("ARM AMBA serial port driver");
2825MODULE_LICENSE("GPL");
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 *  Driver for AMBA serial ports
   4 *
   5 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   6 *
   7 *  Copyright 1999 ARM Limited
   8 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   9 *  Copyright (C) 2010 ST-Ericsson SA
  10 *
  11 * This is a generic driver for ARM AMBA-type serial ports.  They
  12 * have a lot of 16550-like features, but are not register compatible.
  13 * Note that although they do have CTS, DCD and DSR inputs, they do
  14 * not have an RI input, nor do they have DTR or RTS outputs.  If
  15 * required, these have to be supplied via some other means (eg, GPIO)
  16 * and hooked into this driver.
  17 */
  18
 
 
 
 
 
  19#include <linux/module.h>
  20#include <linux/ioport.h>
  21#include <linux/init.h>
  22#include <linux/console.h>
  23#include <linux/sysrq.h>
  24#include <linux/device.h>
  25#include <linux/tty.h>
  26#include <linux/tty_flip.h>
  27#include <linux/serial_core.h>
  28#include <linux/serial.h>
  29#include <linux/amba/bus.h>
  30#include <linux/amba/serial.h>
  31#include <linux/clk.h>
  32#include <linux/slab.h>
  33#include <linux/dmaengine.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/scatterlist.h>
  36#include <linux/delay.h>
  37#include <linux/types.h>
  38#include <linux/of.h>
  39#include <linux/of_device.h>
  40#include <linux/pinctrl/consumer.h>
  41#include <linux/sizes.h>
  42#include <linux/io.h>
  43#include <linux/acpi.h>
  44
 
 
  45#define UART_NR			14
  46
  47#define SERIAL_AMBA_MAJOR	204
  48#define SERIAL_AMBA_MINOR	64
  49#define SERIAL_AMBA_NR		UART_NR
  50
  51#define AMBA_ISR_PASS_LIMIT	256
  52
  53#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  54#define UART_DUMMY_DR_RX	(1 << 16)
  55
  56enum {
  57	REG_DR,
  58	REG_ST_DMAWM,
  59	REG_ST_TIMEOUT,
  60	REG_FR,
  61	REG_LCRH_RX,
  62	REG_LCRH_TX,
  63	REG_IBRD,
  64	REG_FBRD,
  65	REG_CR,
  66	REG_IFLS,
  67	REG_IMSC,
  68	REG_RIS,
  69	REG_MIS,
  70	REG_ICR,
  71	REG_DMACR,
  72	REG_ST_XFCR,
  73	REG_ST_XON1,
  74	REG_ST_XON2,
  75	REG_ST_XOFF1,
  76	REG_ST_XOFF2,
  77	REG_ST_ITCR,
  78	REG_ST_ITIP,
  79	REG_ST_ABCR,
  80	REG_ST_ABIMSC,
  81
  82	/* The size of the array - must be last */
  83	REG_ARRAY_SIZE,
  84};
  85
  86static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
  87	[REG_DR] = UART01x_DR,
  88	[REG_FR] = UART01x_FR,
  89	[REG_LCRH_RX] = UART011_LCRH,
  90	[REG_LCRH_TX] = UART011_LCRH,
  91	[REG_IBRD] = UART011_IBRD,
  92	[REG_FBRD] = UART011_FBRD,
  93	[REG_CR] = UART011_CR,
  94	[REG_IFLS] = UART011_IFLS,
  95	[REG_IMSC] = UART011_IMSC,
  96	[REG_RIS] = UART011_RIS,
  97	[REG_MIS] = UART011_MIS,
  98	[REG_ICR] = UART011_ICR,
  99	[REG_DMACR] = UART011_DMACR,
 100};
 101
 102/* There is by now at least one vendor with differing details, so handle it */
 103struct vendor_data {
 104	const u16		*reg_offset;
 105	unsigned int		ifls;
 106	unsigned int		fr_busy;
 107	unsigned int		fr_dsr;
 108	unsigned int		fr_cts;
 109	unsigned int		fr_ri;
 110	unsigned int		inv_fr;
 111	bool			access_32b;
 112	bool			oversampling;
 113	bool			dma_threshold;
 114	bool			cts_event_workaround;
 115	bool			always_enabled;
 116	bool			fixed_options;
 117
 118	unsigned int (*get_fifosize)(struct amba_device *dev);
 119};
 120
 121static unsigned int get_fifosize_arm(struct amba_device *dev)
 122{
 123	return amba_rev(dev) < 3 ? 16 : 32;
 124}
 125
 126static struct vendor_data vendor_arm = {
 127	.reg_offset		= pl011_std_offsets,
 128	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 129	.fr_busy		= UART01x_FR_BUSY,
 130	.fr_dsr			= UART01x_FR_DSR,
 131	.fr_cts			= UART01x_FR_CTS,
 132	.fr_ri			= UART011_FR_RI,
 133	.oversampling		= false,
 134	.dma_threshold		= false,
 135	.cts_event_workaround	= false,
 136	.always_enabled		= false,
 137	.fixed_options		= false,
 138	.get_fifosize		= get_fifosize_arm,
 139};
 140
 141static const struct vendor_data vendor_sbsa = {
 142	.reg_offset		= pl011_std_offsets,
 143	.fr_busy		= UART01x_FR_BUSY,
 144	.fr_dsr			= UART01x_FR_DSR,
 145	.fr_cts			= UART01x_FR_CTS,
 146	.fr_ri			= UART011_FR_RI,
 147	.access_32b		= true,
 148	.oversampling		= false,
 149	.dma_threshold		= false,
 150	.cts_event_workaround	= false,
 151	.always_enabled		= true,
 152	.fixed_options		= true,
 153};
 154
 155#ifdef CONFIG_ACPI_SPCR_TABLE
 156static const struct vendor_data vendor_qdt_qdf2400_e44 = {
 157	.reg_offset		= pl011_std_offsets,
 158	.fr_busy		= UART011_FR_TXFE,
 159	.fr_dsr			= UART01x_FR_DSR,
 160	.fr_cts			= UART01x_FR_CTS,
 161	.fr_ri			= UART011_FR_RI,
 162	.inv_fr			= UART011_FR_TXFE,
 163	.access_32b		= true,
 164	.oversampling		= false,
 165	.dma_threshold		= false,
 166	.cts_event_workaround	= false,
 167	.always_enabled		= true,
 168	.fixed_options		= true,
 169};
 170#endif
 171
 172static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
 173	[REG_DR] = UART01x_DR,
 174	[REG_ST_DMAWM] = ST_UART011_DMAWM,
 175	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
 176	[REG_FR] = UART01x_FR,
 177	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
 178	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
 179	[REG_IBRD] = UART011_IBRD,
 180	[REG_FBRD] = UART011_FBRD,
 181	[REG_CR] = UART011_CR,
 182	[REG_IFLS] = UART011_IFLS,
 183	[REG_IMSC] = UART011_IMSC,
 184	[REG_RIS] = UART011_RIS,
 185	[REG_MIS] = UART011_MIS,
 186	[REG_ICR] = UART011_ICR,
 187	[REG_DMACR] = UART011_DMACR,
 188	[REG_ST_XFCR] = ST_UART011_XFCR,
 189	[REG_ST_XON1] = ST_UART011_XON1,
 190	[REG_ST_XON2] = ST_UART011_XON2,
 191	[REG_ST_XOFF1] = ST_UART011_XOFF1,
 192	[REG_ST_XOFF2] = ST_UART011_XOFF2,
 193	[REG_ST_ITCR] = ST_UART011_ITCR,
 194	[REG_ST_ITIP] = ST_UART011_ITIP,
 195	[REG_ST_ABCR] = ST_UART011_ABCR,
 196	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
 197};
 198
 199static unsigned int get_fifosize_st(struct amba_device *dev)
 200{
 201	return 64;
 202}
 203
 204static struct vendor_data vendor_st = {
 205	.reg_offset		= pl011_st_offsets,
 206	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 207	.fr_busy		= UART01x_FR_BUSY,
 208	.fr_dsr			= UART01x_FR_DSR,
 209	.fr_cts			= UART01x_FR_CTS,
 210	.fr_ri			= UART011_FR_RI,
 211	.oversampling		= true,
 212	.dma_threshold		= true,
 213	.cts_event_workaround	= true,
 214	.always_enabled		= false,
 215	.fixed_options		= false,
 216	.get_fifosize		= get_fifosize_st,
 217};
 218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219/* Deals with DMA transactions */
 220
 221struct pl011_sgbuf {
 222	struct scatterlist sg;
 223	char *buf;
 224};
 225
 226struct pl011_dmarx_data {
 227	struct dma_chan		*chan;
 228	struct completion	complete;
 229	bool			use_buf_b;
 230	struct pl011_sgbuf	sgbuf_a;
 231	struct pl011_sgbuf	sgbuf_b;
 232	dma_cookie_t		cookie;
 233	bool			running;
 234	struct timer_list	timer;
 235	unsigned int last_residue;
 236	unsigned long last_jiffies;
 237	bool auto_poll_rate;
 238	unsigned int poll_rate;
 239	unsigned int poll_timeout;
 240};
 241
 242struct pl011_dmatx_data {
 243	struct dma_chan		*chan;
 244	struct scatterlist	sg;
 245	char			*buf;
 246	bool			queued;
 247};
 248
 249/*
 250 * We wrap our port structure around the generic uart_port.
 251 */
 252struct uart_amba_port {
 253	struct uart_port	port;
 254	const u16		*reg_offset;
 255	struct clk		*clk;
 256	const struct vendor_data *vendor;
 257	unsigned int		dmacr;		/* dma control reg */
 258	unsigned int		im;		/* interrupt mask */
 259	unsigned int		old_status;
 260	unsigned int		fifosize;	/* vendor-specific */
 
 261	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
 262	char			type[12];
 263	bool			rs485_tx_started;
 264	unsigned int		rs485_tx_drain_interval; /* usecs */
 265#ifdef CONFIG_DMA_ENGINE
 266	/* DMA stuff */
 267	bool			using_tx_dma;
 268	bool			using_rx_dma;
 269	struct pl011_dmarx_data dmarx;
 270	struct pl011_dmatx_data	dmatx;
 271	bool			dma_probed;
 272#endif
 273};
 274
 275static unsigned int pl011_tx_empty(struct uart_port *port);
 276
 277static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
 278	unsigned int reg)
 279{
 280	return uap->reg_offset[reg];
 281}
 282
 283static unsigned int pl011_read(const struct uart_amba_port *uap,
 284	unsigned int reg)
 285{
 286	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 287
 288	return (uap->port.iotype == UPIO_MEM32) ?
 289		readl_relaxed(addr) : readw_relaxed(addr);
 290}
 291
 292static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
 293	unsigned int reg)
 294{
 295	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 296
 297	if (uap->port.iotype == UPIO_MEM32)
 298		writel_relaxed(val, addr);
 299	else
 300		writew_relaxed(val, addr);
 301}
 302
 303/*
 304 * Reads up to 256 characters from the FIFO or until it's empty and
 305 * inserts them into the TTY layer. Returns the number of characters
 306 * read from the FIFO.
 307 */
 308static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 309{
 
 310	unsigned int ch, flag, fifotaken;
 311	int sysrq;
 312	u16 status;
 313
 314	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
 315		status = pl011_read(uap, REG_FR);
 316		if (status & UART01x_FR_RXFE)
 317			break;
 318
 319		/* Take chars from the FIFO and update status */
 320		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
 321		flag = TTY_NORMAL;
 322		uap->port.icount.rx++;
 323
 324		if (unlikely(ch & UART_DR_ERROR)) {
 325			if (ch & UART011_DR_BE) {
 326				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 327				uap->port.icount.brk++;
 328				if (uart_handle_break(&uap->port))
 329					continue;
 330			} else if (ch & UART011_DR_PE)
 331				uap->port.icount.parity++;
 332			else if (ch & UART011_DR_FE)
 333				uap->port.icount.frame++;
 334			if (ch & UART011_DR_OE)
 335				uap->port.icount.overrun++;
 336
 337			ch &= uap->port.read_status_mask;
 338
 339			if (ch & UART011_DR_BE)
 340				flag = TTY_BREAK;
 341			else if (ch & UART011_DR_PE)
 342				flag = TTY_PARITY;
 343			else if (ch & UART011_DR_FE)
 344				flag = TTY_FRAME;
 345		}
 346
 347		spin_unlock(&uap->port.lock);
 348		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
 349		spin_lock(&uap->port.lock);
 350
 351		if (!sysrq)
 352			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 353	}
 354
 355	return fifotaken;
 356}
 357
 358
 359/*
 360 * All the DMA operation mode stuff goes inside this ifdef.
 361 * This assumes that you have a generic DMA device interface,
 362 * no custom DMA interfaces are supported.
 363 */
 364#ifdef CONFIG_DMA_ENGINE
 365
 366#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 367
 368static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 369	enum dma_data_direction dir)
 370{
 371	dma_addr_t dma_addr;
 372
 373	sg->buf = dma_alloc_coherent(chan->device->dev,
 374		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
 375	if (!sg->buf)
 376		return -ENOMEM;
 377
 378	sg_init_table(&sg->sg, 1);
 379	sg_set_page(&sg->sg, phys_to_page(dma_addr),
 380		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
 381	sg_dma_address(&sg->sg) = dma_addr;
 382	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
 383
 384	return 0;
 385}
 386
 387static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 388	enum dma_data_direction dir)
 389{
 390	if (sg->buf) {
 391		dma_free_coherent(chan->device->dev,
 392			PL011_DMA_BUFFER_SIZE, sg->buf,
 393			sg_dma_address(&sg->sg));
 394	}
 395}
 396
 397static void pl011_dma_probe(struct uart_amba_port *uap)
 398{
 399	/* DMA is the sole user of the platform data right now */
 400	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 401	struct device *dev = uap->port.dev;
 402	struct dma_slave_config tx_conf = {
 403		.dst_addr = uap->port.mapbase +
 404				 pl011_reg_to_offset(uap, REG_DR),
 405		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 406		.direction = DMA_MEM_TO_DEV,
 407		.dst_maxburst = uap->fifosize >> 1,
 408		.device_fc = false,
 409	};
 410	struct dma_chan *chan;
 411	dma_cap_mask_t mask;
 412
 413	uap->dma_probed = true;
 414	chan = dma_request_chan(dev, "tx");
 415	if (IS_ERR(chan)) {
 416		if (PTR_ERR(chan) == -EPROBE_DEFER) {
 417			uap->dma_probed = false;
 418			return;
 419		}
 420
 421		/* We need platform data */
 422		if (!plat || !plat->dma_filter) {
 423			dev_info(uap->port.dev, "no DMA platform data\n");
 424			return;
 425		}
 426
 427		/* Try to acquire a generic DMA engine slave TX channel */
 428		dma_cap_zero(mask);
 429		dma_cap_set(DMA_SLAVE, mask);
 430
 431		chan = dma_request_channel(mask, plat->dma_filter,
 432						plat->dma_tx_param);
 433		if (!chan) {
 434			dev_err(uap->port.dev, "no TX DMA channel!\n");
 435			return;
 436		}
 437	}
 438
 439	dmaengine_slave_config(chan, &tx_conf);
 440	uap->dmatx.chan = chan;
 441
 442	dev_info(uap->port.dev, "DMA channel TX %s\n",
 443		 dma_chan_name(uap->dmatx.chan));
 444
 445	/* Optionally make use of an RX channel as well */
 446	chan = dma_request_slave_channel(dev, "rx");
 447
 448	if (!chan && plat && plat->dma_rx_param) {
 449		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 450
 451		if (!chan) {
 452			dev_err(uap->port.dev, "no RX DMA channel!\n");
 453			return;
 454		}
 455	}
 456
 457	if (chan) {
 458		struct dma_slave_config rx_conf = {
 459			.src_addr = uap->port.mapbase +
 460				pl011_reg_to_offset(uap, REG_DR),
 461			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 462			.direction = DMA_DEV_TO_MEM,
 463			.src_maxburst = uap->fifosize >> 2,
 464			.device_fc = false,
 465		};
 466		struct dma_slave_caps caps;
 467
 468		/*
 469		 * Some DMA controllers provide information on their capabilities.
 470		 * If the controller does, check for suitable residue processing
 471		 * otherwise assime all is well.
 472		 */
 473		if (0 == dma_get_slave_caps(chan, &caps)) {
 474			if (caps.residue_granularity ==
 475					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
 476				dma_release_channel(chan);
 477				dev_info(uap->port.dev,
 478					"RX DMA disabled - no residue processing\n");
 479				return;
 480			}
 481		}
 482		dmaengine_slave_config(chan, &rx_conf);
 483		uap->dmarx.chan = chan;
 484
 485		uap->dmarx.auto_poll_rate = false;
 486		if (plat && plat->dma_rx_poll_enable) {
 487			/* Set poll rate if specified. */
 488			if (plat->dma_rx_poll_rate) {
 489				uap->dmarx.auto_poll_rate = false;
 490				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 491			} else {
 492				/*
 493				 * 100 ms defaults to poll rate if not
 494				 * specified. This will be adjusted with
 495				 * the baud rate at set_termios.
 496				 */
 497				uap->dmarx.auto_poll_rate = true;
 498				uap->dmarx.poll_rate =  100;
 499			}
 500			/* 3 secs defaults poll_timeout if not specified. */
 501			if (plat->dma_rx_poll_timeout)
 502				uap->dmarx.poll_timeout =
 503					plat->dma_rx_poll_timeout;
 504			else
 505				uap->dmarx.poll_timeout = 3000;
 506		} else if (!plat && dev->of_node) {
 507			uap->dmarx.auto_poll_rate = of_property_read_bool(
 508						dev->of_node, "auto-poll");
 509			if (uap->dmarx.auto_poll_rate) {
 510				u32 x;
 511
 512				if (0 == of_property_read_u32(dev->of_node,
 513						"poll-rate-ms", &x))
 514					uap->dmarx.poll_rate = x;
 515				else
 516					uap->dmarx.poll_rate = 100;
 517				if (0 == of_property_read_u32(dev->of_node,
 518						"poll-timeout-ms", &x))
 519					uap->dmarx.poll_timeout = x;
 520				else
 521					uap->dmarx.poll_timeout = 3000;
 522			}
 523		}
 524		dev_info(uap->port.dev, "DMA channel RX %s\n",
 525			 dma_chan_name(uap->dmarx.chan));
 526	}
 527}
 528
 529static void pl011_dma_remove(struct uart_amba_port *uap)
 530{
 531	if (uap->dmatx.chan)
 532		dma_release_channel(uap->dmatx.chan);
 533	if (uap->dmarx.chan)
 534		dma_release_channel(uap->dmarx.chan);
 535}
 536
 537/* Forward declare these for the refill routine */
 538static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 539static void pl011_start_tx_pio(struct uart_amba_port *uap);
 540
 541/*
 542 * The current DMA TX buffer has been sent.
 543 * Try to queue up another DMA buffer.
 544 */
 545static void pl011_dma_tx_callback(void *data)
 546{
 547	struct uart_amba_port *uap = data;
 548	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 549	unsigned long flags;
 550	u16 dmacr;
 551
 552	spin_lock_irqsave(&uap->port.lock, flags);
 553	if (uap->dmatx.queued)
 554		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 555			     DMA_TO_DEVICE);
 556
 557	dmacr = uap->dmacr;
 558	uap->dmacr = dmacr & ~UART011_TXDMAE;
 559	pl011_write(uap->dmacr, uap, REG_DMACR);
 560
 561	/*
 562	 * If TX DMA was disabled, it means that we've stopped the DMA for
 563	 * some reason (eg, XOFF received, or we want to send an X-char.)
 564	 *
 565	 * Note: we need to be careful here of a potential race between DMA
 566	 * and the rest of the driver - if the driver disables TX DMA while
 567	 * a TX buffer completing, we must update the tx queued status to
 568	 * get further refills (hence we check dmacr).
 569	 */
 570	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 571	    uart_circ_empty(&uap->port.state->xmit)) {
 572		uap->dmatx.queued = false;
 573		spin_unlock_irqrestore(&uap->port.lock, flags);
 574		return;
 575	}
 576
 577	if (pl011_dma_tx_refill(uap) <= 0)
 578		/*
 579		 * We didn't queue a DMA buffer for some reason, but we
 580		 * have data pending to be sent.  Re-enable the TX IRQ.
 581		 */
 582		pl011_start_tx_pio(uap);
 583
 584	spin_unlock_irqrestore(&uap->port.lock, flags);
 585}
 586
 587/*
 588 * Try to refill the TX DMA buffer.
 589 * Locking: called with port lock held and IRQs disabled.
 590 * Returns:
 591 *   1 if we queued up a TX DMA buffer.
 592 *   0 if we didn't want to handle this by DMA
 593 *  <0 on error
 594 */
 595static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 596{
 597	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 598	struct dma_chan *chan = dmatx->chan;
 599	struct dma_device *dma_dev = chan->device;
 600	struct dma_async_tx_descriptor *desc;
 601	struct circ_buf *xmit = &uap->port.state->xmit;
 602	unsigned int count;
 603
 604	/*
 605	 * Try to avoid the overhead involved in using DMA if the
 606	 * transaction fits in the first half of the FIFO, by using
 607	 * the standard interrupt handling.  This ensures that we
 608	 * issue a uart_write_wakeup() at the appropriate time.
 609	 */
 610	count = uart_circ_chars_pending(xmit);
 611	if (count < (uap->fifosize >> 1)) {
 612		uap->dmatx.queued = false;
 613		return 0;
 614	}
 615
 616	/*
 617	 * Bodge: don't send the last character by DMA, as this
 618	 * will prevent XON from notifying us to restart DMA.
 619	 */
 620	count -= 1;
 621
 622	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 623	if (count > PL011_DMA_BUFFER_SIZE)
 624		count = PL011_DMA_BUFFER_SIZE;
 625
 626	if (xmit->tail < xmit->head)
 627		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 628	else {
 629		size_t first = UART_XMIT_SIZE - xmit->tail;
 630		size_t second;
 631
 632		if (first > count)
 633			first = count;
 634		second = count - first;
 635
 636		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 637		if (second)
 638			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 639	}
 640
 641	dmatx->sg.length = count;
 642
 643	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 644		uap->dmatx.queued = false;
 645		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 646		return -EBUSY;
 647	}
 648
 649	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
 650					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 651	if (!desc) {
 652		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 653		uap->dmatx.queued = false;
 654		/*
 655		 * If DMA cannot be used right now, we complete this
 656		 * transaction via IRQ and let the TTY layer retry.
 657		 */
 658		dev_dbg(uap->port.dev, "TX DMA busy\n");
 659		return -EBUSY;
 660	}
 661
 662	/* Some data to go along to the callback */
 663	desc->callback = pl011_dma_tx_callback;
 664	desc->callback_param = uap;
 665
 666	/* All errors should happen at prepare time */
 667	dmaengine_submit(desc);
 668
 669	/* Fire the DMA transaction */
 670	dma_dev->device_issue_pending(chan);
 671
 672	uap->dmacr |= UART011_TXDMAE;
 673	pl011_write(uap->dmacr, uap, REG_DMACR);
 674	uap->dmatx.queued = true;
 675
 676	/*
 677	 * Now we know that DMA will fire, so advance the ring buffer
 678	 * with the stuff we just dispatched.
 679	 */
 680	uart_xmit_advance(&uap->port, count);
 
 681
 682	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 683		uart_write_wakeup(&uap->port);
 684
 685	return 1;
 686}
 687
 688/*
 689 * We received a transmit interrupt without a pending X-char but with
 690 * pending characters.
 691 * Locking: called with port lock held and IRQs disabled.
 692 * Returns:
 693 *   false if we want to use PIO to transmit
 694 *   true if we queued a DMA buffer
 695 */
 696static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 697{
 698	if (!uap->using_tx_dma)
 699		return false;
 700
 701	/*
 702	 * If we already have a TX buffer queued, but received a
 703	 * TX interrupt, it will be because we've just sent an X-char.
 704	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 705	 */
 706	if (uap->dmatx.queued) {
 707		uap->dmacr |= UART011_TXDMAE;
 708		pl011_write(uap->dmacr, uap, REG_DMACR);
 709		uap->im &= ~UART011_TXIM;
 710		pl011_write(uap->im, uap, REG_IMSC);
 711		return true;
 712	}
 713
 714	/*
 715	 * We don't have a TX buffer queued, so try to queue one.
 716	 * If we successfully queued a buffer, mask the TX IRQ.
 717	 */
 718	if (pl011_dma_tx_refill(uap) > 0) {
 719		uap->im &= ~UART011_TXIM;
 720		pl011_write(uap->im, uap, REG_IMSC);
 721		return true;
 722	}
 723	return false;
 724}
 725
 726/*
 727 * Stop the DMA transmit (eg, due to received XOFF).
 728 * Locking: called with port lock held and IRQs disabled.
 729 */
 730static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 731{
 732	if (uap->dmatx.queued) {
 733		uap->dmacr &= ~UART011_TXDMAE;
 734		pl011_write(uap->dmacr, uap, REG_DMACR);
 735	}
 736}
 737
 738/*
 739 * Try to start a DMA transmit, or in the case of an XON/OFF
 740 * character queued for send, try to get that character out ASAP.
 741 * Locking: called with port lock held and IRQs disabled.
 742 * Returns:
 743 *   false if we want the TX IRQ to be enabled
 744 *   true if we have a buffer queued
 745 */
 746static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 747{
 748	u16 dmacr;
 749
 750	if (!uap->using_tx_dma)
 751		return false;
 752
 753	if (!uap->port.x_char) {
 754		/* no X-char, try to push chars out in DMA mode */
 755		bool ret = true;
 756
 757		if (!uap->dmatx.queued) {
 758			if (pl011_dma_tx_refill(uap) > 0) {
 759				uap->im &= ~UART011_TXIM;
 760				pl011_write(uap->im, uap, REG_IMSC);
 761			} else
 762				ret = false;
 763		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 764			uap->dmacr |= UART011_TXDMAE;
 765			pl011_write(uap->dmacr, uap, REG_DMACR);
 766		}
 767		return ret;
 768	}
 769
 770	/*
 771	 * We have an X-char to send.  Disable DMA to prevent it loading
 772	 * the TX fifo, and then see if we can stuff it into the FIFO.
 773	 */
 774	dmacr = uap->dmacr;
 775	uap->dmacr &= ~UART011_TXDMAE;
 776	pl011_write(uap->dmacr, uap, REG_DMACR);
 777
 778	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
 779		/*
 780		 * No space in the FIFO, so enable the transmit interrupt
 781		 * so we know when there is space.  Note that once we've
 782		 * loaded the character, we should just re-enable DMA.
 783		 */
 784		return false;
 785	}
 786
 787	pl011_write(uap->port.x_char, uap, REG_DR);
 788	uap->port.icount.tx++;
 789	uap->port.x_char = 0;
 790
 791	/* Success - restore the DMA state */
 792	uap->dmacr = dmacr;
 793	pl011_write(dmacr, uap, REG_DMACR);
 794
 795	return true;
 796}
 797
 798/*
 799 * Flush the transmit buffer.
 800 * Locking: called with port lock held and IRQs disabled.
 801 */
 802static void pl011_dma_flush_buffer(struct uart_port *port)
 803__releases(&uap->port.lock)
 804__acquires(&uap->port.lock)
 805{
 806	struct uart_amba_port *uap =
 807	    container_of(port, struct uart_amba_port, port);
 808
 809	if (!uap->using_tx_dma)
 810		return;
 811
 812	dmaengine_terminate_async(uap->dmatx.chan);
 813
 
 
 814	if (uap->dmatx.queued) {
 815		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 816			     DMA_TO_DEVICE);
 817		uap->dmatx.queued = false;
 818		uap->dmacr &= ~UART011_TXDMAE;
 819		pl011_write(uap->dmacr, uap, REG_DMACR);
 820	}
 821}
 822
 823static void pl011_dma_rx_callback(void *data);
 824
 825static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 826{
 827	struct dma_chan *rxchan = uap->dmarx.chan;
 828	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 829	struct dma_async_tx_descriptor *desc;
 830	struct pl011_sgbuf *sgbuf;
 831
 832	if (!rxchan)
 833		return -EIO;
 834
 835	/* Start the RX DMA job */
 836	sgbuf = uap->dmarx.use_buf_b ?
 837		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 838	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 839					DMA_DEV_TO_MEM,
 840					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 841	/*
 842	 * If the DMA engine is busy and cannot prepare a
 843	 * channel, no big deal, the driver will fall back
 844	 * to interrupt mode as a result of this error code.
 845	 */
 846	if (!desc) {
 847		uap->dmarx.running = false;
 848		dmaengine_terminate_all(rxchan);
 849		return -EBUSY;
 850	}
 851
 852	/* Some data to go along to the callback */
 853	desc->callback = pl011_dma_rx_callback;
 854	desc->callback_param = uap;
 855	dmarx->cookie = dmaengine_submit(desc);
 856	dma_async_issue_pending(rxchan);
 857
 858	uap->dmacr |= UART011_RXDMAE;
 859	pl011_write(uap->dmacr, uap, REG_DMACR);
 860	uap->dmarx.running = true;
 861
 862	uap->im &= ~UART011_RXIM;
 863	pl011_write(uap->im, uap, REG_IMSC);
 864
 865	return 0;
 866}
 867
 868/*
 869 * This is called when either the DMA job is complete, or
 870 * the FIFO timeout interrupt occurred. This must be called
 871 * with the port spinlock uap->port.lock held.
 872 */
 873static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 874			       u32 pending, bool use_buf_b,
 875			       bool readfifo)
 876{
 877	struct tty_port *port = &uap->port.state->port;
 878	struct pl011_sgbuf *sgbuf = use_buf_b ?
 879		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 880	int dma_count = 0;
 881	u32 fifotaken = 0; /* only used for vdbg() */
 882
 883	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 884	int dmataken = 0;
 885
 886	if (uap->dmarx.poll_rate) {
 887		/* The data can be taken by polling */
 888		dmataken = sgbuf->sg.length - dmarx->last_residue;
 889		/* Recalculate the pending size */
 890		if (pending >= dmataken)
 891			pending -= dmataken;
 892	}
 893
 894	/* Pick the remain data from the DMA */
 895	if (pending) {
 896
 897		/*
 898		 * First take all chars in the DMA pipe, then look in the FIFO.
 899		 * Note that tty_insert_flip_buf() tries to take as many chars
 900		 * as it can.
 901		 */
 902		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
 903				pending);
 904
 905		uap->port.icount.rx += dma_count;
 906		if (dma_count < pending)
 907			dev_warn(uap->port.dev,
 908				 "couldn't insert all characters (TTY is full?)\n");
 909	}
 910
 911	/* Reset the last_residue for Rx DMA poll */
 912	if (uap->dmarx.poll_rate)
 913		dmarx->last_residue = sgbuf->sg.length;
 914
 915	/*
 916	 * Only continue with trying to read the FIFO if all DMA chars have
 917	 * been taken first.
 918	 */
 919	if (dma_count == pending && readfifo) {
 920		/* Clear any error flags */
 921		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
 922			    UART011_FEIS, uap, REG_ICR);
 923
 924		/*
 925		 * If we read all the DMA'd characters, and we had an
 926		 * incomplete buffer, that could be due to an rx error, or
 927		 * maybe we just timed out. Read any pending chars and check
 928		 * the error status.
 929		 *
 930		 * Error conditions will only occur in the FIFO, these will
 931		 * trigger an immediate interrupt and stop the DMA job, so we
 932		 * will always find the error in the FIFO, never in the DMA
 933		 * buffer.
 934		 */
 935		fifotaken = pl011_fifo_to_tty(uap);
 936	}
 937
 
 938	dev_vdbg(uap->port.dev,
 939		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 940		 dma_count, fifotaken);
 941	tty_flip_buffer_push(port);
 
 942}
 943
 944static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 945{
 946	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 947	struct dma_chan *rxchan = dmarx->chan;
 948	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 949		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 950	size_t pending;
 951	struct dma_tx_state state;
 952	enum dma_status dmastat;
 953
 954	/*
 955	 * Pause the transfer so we can trust the current counter,
 956	 * do this before we pause the PL011 block, else we may
 957	 * overflow the FIFO.
 958	 */
 959	if (dmaengine_pause(rxchan))
 960		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 961	dmastat = rxchan->device->device_tx_status(rxchan,
 962						   dmarx->cookie, &state);
 963	if (dmastat != DMA_PAUSED)
 964		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 965
 966	/* Disable RX DMA - incoming data will wait in the FIFO */
 967	uap->dmacr &= ~UART011_RXDMAE;
 968	pl011_write(uap->dmacr, uap, REG_DMACR);
 969	uap->dmarx.running = false;
 970
 971	pending = sgbuf->sg.length - state.residue;
 972	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 973	/* Then we terminate the transfer - we now know our residue */
 974	dmaengine_terminate_all(rxchan);
 975
 976	/*
 977	 * This will take the chars we have so far and insert
 978	 * into the framework.
 979	 */
 980	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 981
 982	/* Switch buffer & re-trigger DMA job */
 983	dmarx->use_buf_b = !dmarx->use_buf_b;
 984	if (pl011_dma_rx_trigger_dma(uap)) {
 985		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 986			"fall back to interrupt mode\n");
 987		uap->im |= UART011_RXIM;
 988		pl011_write(uap->im, uap, REG_IMSC);
 989	}
 990}
 991
 992static void pl011_dma_rx_callback(void *data)
 993{
 994	struct uart_amba_port *uap = data;
 995	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 996	struct dma_chan *rxchan = dmarx->chan;
 997	bool lastbuf = dmarx->use_buf_b;
 998	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 999		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1000	size_t pending;
1001	struct dma_tx_state state;
1002	int ret;
1003
1004	/*
1005	 * This completion interrupt occurs typically when the
1006	 * RX buffer is totally stuffed but no timeout has yet
1007	 * occurred. When that happens, we just want the RX
1008	 * routine to flush out the secondary DMA buffer while
1009	 * we immediately trigger the next DMA job.
1010	 */
1011	spin_lock_irq(&uap->port.lock);
1012	/*
1013	 * Rx data can be taken by the UART interrupts during
1014	 * the DMA irq handler. So we check the residue here.
1015	 */
1016	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1017	pending = sgbuf->sg.length - state.residue;
1018	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1019	/* Then we terminate the transfer - we now know our residue */
1020	dmaengine_terminate_all(rxchan);
1021
1022	uap->dmarx.running = false;
1023	dmarx->use_buf_b = !lastbuf;
1024	ret = pl011_dma_rx_trigger_dma(uap);
1025
1026	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1027	spin_unlock_irq(&uap->port.lock);
1028	/*
1029	 * Do this check after we picked the DMA chars so we don't
1030	 * get some IRQ immediately from RX.
1031	 */
1032	if (ret) {
1033		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1034			"fall back to interrupt mode\n");
1035		uap->im |= UART011_RXIM;
1036		pl011_write(uap->im, uap, REG_IMSC);
1037	}
1038}
1039
1040/*
1041 * Stop accepting received characters, when we're shutting down or
1042 * suspending this port.
1043 * Locking: called with port lock held and IRQs disabled.
1044 */
1045static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1046{
1047	if (!uap->using_rx_dma)
1048		return;
1049
1050	/* FIXME.  Just disable the DMA enable */
1051	uap->dmacr &= ~UART011_RXDMAE;
1052	pl011_write(uap->dmacr, uap, REG_DMACR);
1053}
1054
1055/*
1056 * Timer handler for Rx DMA polling.
1057 * Every polling, It checks the residue in the dma buffer and transfer
1058 * data to the tty. Also, last_residue is updated for the next polling.
1059 */
1060static void pl011_dma_rx_poll(struct timer_list *t)
1061{
1062	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1063	struct tty_port *port = &uap->port.state->port;
1064	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1065	struct dma_chan *rxchan = uap->dmarx.chan;
1066	unsigned long flags;
1067	unsigned int dmataken = 0;
1068	unsigned int size = 0;
1069	struct pl011_sgbuf *sgbuf;
1070	int dma_count;
1071	struct dma_tx_state state;
1072
1073	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1074	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1075	if (likely(state.residue < dmarx->last_residue)) {
1076		dmataken = sgbuf->sg.length - dmarx->last_residue;
1077		size = dmarx->last_residue - state.residue;
1078		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1079				size);
1080		if (dma_count == size)
1081			dmarx->last_residue =  state.residue;
1082		dmarx->last_jiffies = jiffies;
1083	}
1084	tty_flip_buffer_push(port);
1085
1086	/*
1087	 * If no data is received in poll_timeout, the driver will fall back
1088	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1089	 */
1090	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1091			> uap->dmarx.poll_timeout) {
1092
1093		spin_lock_irqsave(&uap->port.lock, flags);
1094		pl011_dma_rx_stop(uap);
1095		uap->im |= UART011_RXIM;
1096		pl011_write(uap->im, uap, REG_IMSC);
1097		spin_unlock_irqrestore(&uap->port.lock, flags);
1098
1099		uap->dmarx.running = false;
1100		dmaengine_terminate_all(rxchan);
1101		del_timer(&uap->dmarx.timer);
1102	} else {
1103		mod_timer(&uap->dmarx.timer,
1104			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1105	}
1106}
1107
1108static void pl011_dma_startup(struct uart_amba_port *uap)
1109{
1110	int ret;
1111
1112	if (!uap->dma_probed)
1113		pl011_dma_probe(uap);
1114
1115	if (!uap->dmatx.chan)
1116		return;
1117
1118	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1119	if (!uap->dmatx.buf) {
1120		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1121		uap->port.fifosize = uap->fifosize;
1122		return;
1123	}
1124
1125	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1126
1127	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1128	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1129	uap->using_tx_dma = true;
1130
1131	if (!uap->dmarx.chan)
1132		goto skip_rx;
1133
1134	/* Allocate and map DMA RX buffers */
1135	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1136			       DMA_FROM_DEVICE);
1137	if (ret) {
1138		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1139			"RX buffer A", ret);
1140		goto skip_rx;
1141	}
1142
1143	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1144			       DMA_FROM_DEVICE);
1145	if (ret) {
1146		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1147			"RX buffer B", ret);
1148		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1149				 DMA_FROM_DEVICE);
1150		goto skip_rx;
1151	}
1152
1153	uap->using_rx_dma = true;
1154
1155skip_rx:
1156	/* Turn on DMA error (RX/TX will be enabled on demand) */
1157	uap->dmacr |= UART011_DMAONERR;
1158	pl011_write(uap->dmacr, uap, REG_DMACR);
1159
1160	/*
1161	 * ST Micro variants has some specific dma burst threshold
1162	 * compensation. Set this to 16 bytes, so burst will only
1163	 * be issued above/below 16 bytes.
1164	 */
1165	if (uap->vendor->dma_threshold)
1166		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1167			    uap, REG_ST_DMAWM);
1168
1169	if (uap->using_rx_dma) {
1170		if (pl011_dma_rx_trigger_dma(uap))
1171			dev_dbg(uap->port.dev, "could not trigger initial "
1172				"RX DMA job, fall back to interrupt mode\n");
1173		if (uap->dmarx.poll_rate) {
1174			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1175			mod_timer(&uap->dmarx.timer,
1176				jiffies +
1177				msecs_to_jiffies(uap->dmarx.poll_rate));
1178			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1179			uap->dmarx.last_jiffies = jiffies;
1180		}
1181	}
1182}
1183
1184static void pl011_dma_shutdown(struct uart_amba_port *uap)
1185{
1186	if (!(uap->using_tx_dma || uap->using_rx_dma))
1187		return;
1188
1189	/* Disable RX and TX DMA */
1190	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1191		cpu_relax();
1192
1193	spin_lock_irq(&uap->port.lock);
1194	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1195	pl011_write(uap->dmacr, uap, REG_DMACR);
1196	spin_unlock_irq(&uap->port.lock);
1197
1198	if (uap->using_tx_dma) {
1199		/* In theory, this should already be done by pl011_dma_flush_buffer */
1200		dmaengine_terminate_all(uap->dmatx.chan);
1201		if (uap->dmatx.queued) {
1202			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1203				     DMA_TO_DEVICE);
1204			uap->dmatx.queued = false;
1205		}
1206
1207		kfree(uap->dmatx.buf);
1208		uap->using_tx_dma = false;
1209	}
1210
1211	if (uap->using_rx_dma) {
1212		dmaengine_terminate_all(uap->dmarx.chan);
1213		/* Clean up the RX DMA */
1214		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1215		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1216		if (uap->dmarx.poll_rate)
1217			del_timer_sync(&uap->dmarx.timer);
1218		uap->using_rx_dma = false;
1219	}
1220}
1221
1222static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1223{
1224	return uap->using_rx_dma;
1225}
1226
1227static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1228{
1229	return uap->using_rx_dma && uap->dmarx.running;
1230}
1231
1232#else
1233/* Blank functions if the DMA engine is not available */
 
 
 
 
1234static inline void pl011_dma_remove(struct uart_amba_port *uap)
1235{
1236}
1237
1238static inline void pl011_dma_startup(struct uart_amba_port *uap)
1239{
1240}
1241
1242static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1243{
1244}
1245
1246static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1247{
1248	return false;
1249}
1250
1251static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1252{
1253}
1254
1255static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1256{
1257	return false;
1258}
1259
1260static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1261{
1262}
1263
1264static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1265{
1266}
1267
1268static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1269{
1270	return -EIO;
1271}
1272
1273static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1274{
1275	return false;
1276}
1277
1278static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1279{
1280	return false;
1281}
1282
1283#define pl011_dma_flush_buffer	NULL
1284#endif
1285
1286static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1287{
1288	/*
1289	 * To be on the safe side only time out after twice as many iterations
1290	 * as fifo size.
1291	 */
1292	const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1293	struct uart_port *port = &uap->port;
1294	int i = 0;
1295	u32 cr;
1296
1297	/* Wait until hardware tx queue is empty */
1298	while (!pl011_tx_empty(port)) {
1299		if (i > MAX_TX_DRAIN_ITERS) {
1300			dev_warn(port->dev,
1301				 "timeout while draining hardware tx queue\n");
1302			break;
1303		}
1304
1305		udelay(uap->rs485_tx_drain_interval);
1306		i++;
1307	}
1308
1309	if (port->rs485.delay_rts_after_send)
1310		mdelay(port->rs485.delay_rts_after_send);
1311
1312	cr = pl011_read(uap, REG_CR);
1313
1314	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1315		cr &= ~UART011_CR_RTS;
1316	else
1317		cr |= UART011_CR_RTS;
1318
1319	/* Disable the transmitter and reenable the transceiver */
1320	cr &= ~UART011_CR_TXE;
1321	cr |= UART011_CR_RXE;
1322	pl011_write(cr, uap, REG_CR);
1323
1324	uap->rs485_tx_started = false;
1325}
1326
1327static void pl011_stop_tx(struct uart_port *port)
1328{
1329	struct uart_amba_port *uap =
1330	    container_of(port, struct uart_amba_port, port);
1331
1332	uap->im &= ~UART011_TXIM;
1333	pl011_write(uap->im, uap, REG_IMSC);
1334	pl011_dma_tx_stop(uap);
1335
1336	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1337		pl011_rs485_tx_stop(uap);
1338}
1339
1340static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1341
1342/* Start TX with programmed I/O only (no DMA) */
1343static void pl011_start_tx_pio(struct uart_amba_port *uap)
1344{
1345	if (pl011_tx_chars(uap, false)) {
1346		uap->im |= UART011_TXIM;
1347		pl011_write(uap->im, uap, REG_IMSC);
1348	}
1349}
1350
1351static void pl011_start_tx(struct uart_port *port)
1352{
1353	struct uart_amba_port *uap =
1354	    container_of(port, struct uart_amba_port, port);
1355
1356	if (!pl011_dma_tx_start(uap))
1357		pl011_start_tx_pio(uap);
1358}
1359
1360static void pl011_stop_rx(struct uart_port *port)
1361{
1362	struct uart_amba_port *uap =
1363	    container_of(port, struct uart_amba_port, port);
1364
1365	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1366		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1367	pl011_write(uap->im, uap, REG_IMSC);
1368
1369	pl011_dma_rx_stop(uap);
1370}
1371
1372static void pl011_throttle_rx(struct uart_port *port)
1373{
1374	unsigned long flags;
1375
1376	spin_lock_irqsave(&port->lock, flags);
1377	pl011_stop_rx(port);
1378	spin_unlock_irqrestore(&port->lock, flags);
1379}
1380
1381static void pl011_enable_ms(struct uart_port *port)
1382{
1383	struct uart_amba_port *uap =
1384	    container_of(port, struct uart_amba_port, port);
1385
1386	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1387	pl011_write(uap->im, uap, REG_IMSC);
1388}
1389
1390static void pl011_rx_chars(struct uart_amba_port *uap)
1391__releases(&uap->port.lock)
1392__acquires(&uap->port.lock)
1393{
1394	pl011_fifo_to_tty(uap);
1395
1396	spin_unlock(&uap->port.lock);
1397	tty_flip_buffer_push(&uap->port.state->port);
1398	/*
1399	 * If we were temporarily out of DMA mode for a while,
1400	 * attempt to switch back to DMA mode again.
1401	 */
1402	if (pl011_dma_rx_available(uap)) {
1403		if (pl011_dma_rx_trigger_dma(uap)) {
1404			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1405				"fall back to interrupt mode again\n");
1406			uap->im |= UART011_RXIM;
1407			pl011_write(uap->im, uap, REG_IMSC);
1408		} else {
1409#ifdef CONFIG_DMA_ENGINE
1410			/* Start Rx DMA poll */
1411			if (uap->dmarx.poll_rate) {
1412				uap->dmarx.last_jiffies = jiffies;
1413				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1414				mod_timer(&uap->dmarx.timer,
1415					jiffies +
1416					msecs_to_jiffies(uap->dmarx.poll_rate));
1417			}
1418#endif
1419		}
1420	}
1421	spin_lock(&uap->port.lock);
1422}
1423
1424static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1425			  bool from_irq)
1426{
1427	if (unlikely(!from_irq) &&
1428	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1429		return false; /* unable to transmit character */
1430
1431	pl011_write(c, uap, REG_DR);
1432	uap->port.icount.tx++;
1433
1434	return true;
1435}
1436
1437static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1438{
1439	struct uart_port *port = &uap->port;
1440	u32 cr;
1441
1442	/* Enable transmitter */
1443	cr = pl011_read(uap, REG_CR);
1444	cr |= UART011_CR_TXE;
1445
1446	/* Disable receiver if half-duplex */
1447	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1448		cr &= ~UART011_CR_RXE;
1449
1450	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1451		cr &= ~UART011_CR_RTS;
1452	else
1453		cr |= UART011_CR_RTS;
1454
1455	pl011_write(cr, uap, REG_CR);
1456
1457	if (port->rs485.delay_rts_before_send)
1458		mdelay(port->rs485.delay_rts_before_send);
1459
1460	uap->rs485_tx_started = true;
1461}
1462
1463/* Returns true if tx interrupts have to be (kept) enabled  */
1464static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1465{
1466	struct circ_buf *xmit = &uap->port.state->xmit;
1467	int count = uap->fifosize >> 1;
1468
1469	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1470	    !uap->rs485_tx_started)
1471		pl011_rs485_tx_start(uap);
1472
1473	if (uap->port.x_char) {
1474		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1475			return true;
1476		uap->port.x_char = 0;
1477		--count;
1478	}
1479	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1480		pl011_stop_tx(&uap->port);
1481		return false;
1482	}
1483
1484	/* If we are using DMA mode, try to send some characters. */
1485	if (pl011_dma_tx_irq(uap))
1486		return true;
1487
1488	do {
1489		if (likely(from_irq) && count-- == 0)
1490			break;
1491
1492		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1493			break;
1494
1495		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1496	} while (!uart_circ_empty(xmit));
1497
1498	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1499		uart_write_wakeup(&uap->port);
1500
1501	if (uart_circ_empty(xmit)) {
1502		pl011_stop_tx(&uap->port);
1503		return false;
1504	}
1505	return true;
1506}
1507
1508static void pl011_modem_status(struct uart_amba_port *uap)
1509{
1510	unsigned int status, delta;
1511
1512	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1513
1514	delta = status ^ uap->old_status;
1515	uap->old_status = status;
1516
1517	if (!delta)
1518		return;
1519
1520	if (delta & UART01x_FR_DCD)
1521		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1522
1523	if (delta & uap->vendor->fr_dsr)
1524		uap->port.icount.dsr++;
1525
1526	if (delta & uap->vendor->fr_cts)
1527		uart_handle_cts_change(&uap->port,
1528				       status & uap->vendor->fr_cts);
1529
1530	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1531}
1532
1533static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1534{
 
 
1535	if (!uap->vendor->cts_event_workaround)
1536		return;
1537
1538	/* workaround to make sure that all bits are unlocked.. */
1539	pl011_write(0x00, uap, REG_ICR);
1540
1541	/*
1542	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1543	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1544	 * so add 2 dummy reads
1545	 */
1546	pl011_read(uap, REG_ICR);
1547	pl011_read(uap, REG_ICR);
1548}
1549
1550static irqreturn_t pl011_int(int irq, void *dev_id)
1551{
1552	struct uart_amba_port *uap = dev_id;
1553	unsigned long flags;
1554	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1555	int handled = 0;
1556
1557	spin_lock_irqsave(&uap->port.lock, flags);
1558	status = pl011_read(uap, REG_RIS) & uap->im;
1559	if (status) {
1560		do {
1561			check_apply_cts_event_workaround(uap);
1562
1563			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1564					       UART011_RXIS),
1565				    uap, REG_ICR);
1566
1567			if (status & (UART011_RTIS|UART011_RXIS)) {
1568				if (pl011_dma_rx_running(uap))
1569					pl011_dma_rx_irq(uap);
1570				else
1571					pl011_rx_chars(uap);
1572			}
1573			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1574				      UART011_CTSMIS|UART011_RIMIS))
1575				pl011_modem_status(uap);
1576			if (status & UART011_TXIS)
1577				pl011_tx_chars(uap, true);
1578
1579			if (pass_counter-- == 0)
1580				break;
1581
1582			status = pl011_read(uap, REG_RIS) & uap->im;
1583		} while (status != 0);
1584		handled = 1;
1585	}
1586
1587	spin_unlock_irqrestore(&uap->port.lock, flags);
1588
1589	return IRQ_RETVAL(handled);
1590}
1591
1592static unsigned int pl011_tx_empty(struct uart_port *port)
1593{
1594	struct uart_amba_port *uap =
1595	    container_of(port, struct uart_amba_port, port);
1596
1597	/* Allow feature register bits to be inverted to work around errata */
1598	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1599
1600	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1601							0 : TIOCSER_TEMT;
1602}
1603
1604static unsigned int pl011_get_mctrl(struct uart_port *port)
1605{
1606	struct uart_amba_port *uap =
1607	    container_of(port, struct uart_amba_port, port);
1608	unsigned int result = 0;
1609	unsigned int status = pl011_read(uap, REG_FR);
1610
1611#define TIOCMBIT(uartbit, tiocmbit)	\
1612	if (status & uartbit)		\
1613		result |= tiocmbit
1614
1615	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1616	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1617	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1618	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1619#undef TIOCMBIT
1620	return result;
1621}
1622
1623static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1624{
1625	struct uart_amba_port *uap =
1626	    container_of(port, struct uart_amba_port, port);
1627	unsigned int cr;
1628
1629	cr = pl011_read(uap, REG_CR);
1630
1631#define	TIOCMBIT(tiocmbit, uartbit)		\
1632	if (mctrl & tiocmbit)		\
1633		cr |= uartbit;		\
1634	else				\
1635		cr &= ~uartbit
1636
1637	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1638	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1639	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1640	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1641	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1642
1643	if (port->status & UPSTAT_AUTORTS) {
1644		/* We need to disable auto-RTS if we want to turn RTS off */
1645		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1646	}
1647#undef TIOCMBIT
1648
1649	pl011_write(cr, uap, REG_CR);
1650}
1651
1652static void pl011_break_ctl(struct uart_port *port, int break_state)
1653{
1654	struct uart_amba_port *uap =
1655	    container_of(port, struct uart_amba_port, port);
1656	unsigned long flags;
1657	unsigned int lcr_h;
1658
1659	spin_lock_irqsave(&uap->port.lock, flags);
1660	lcr_h = pl011_read(uap, REG_LCRH_TX);
1661	if (break_state == -1)
1662		lcr_h |= UART01x_LCRH_BRK;
1663	else
1664		lcr_h &= ~UART01x_LCRH_BRK;
1665	pl011_write(lcr_h, uap, REG_LCRH_TX);
1666	spin_unlock_irqrestore(&uap->port.lock, flags);
1667}
1668
1669#ifdef CONFIG_CONSOLE_POLL
1670
1671static void pl011_quiesce_irqs(struct uart_port *port)
1672{
1673	struct uart_amba_port *uap =
1674	    container_of(port, struct uart_amba_port, port);
1675
1676	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1677	/*
1678	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1679	 * we simply mask it. start_tx() will unmask it.
1680	 *
1681	 * Note we can race with start_tx(), and if the race happens, the
1682	 * polling user might get another interrupt just after we clear it.
1683	 * But it should be OK and can happen even w/o the race, e.g.
1684	 * controller immediately got some new data and raised the IRQ.
1685	 *
1686	 * And whoever uses polling routines assumes that it manages the device
1687	 * (including tx queue), so we're also fine with start_tx()'s caller
1688	 * side.
1689	 */
1690	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1691		    REG_IMSC);
1692}
1693
1694static int pl011_get_poll_char(struct uart_port *port)
1695{
1696	struct uart_amba_port *uap =
1697	    container_of(port, struct uart_amba_port, port);
1698	unsigned int status;
1699
1700	/*
1701	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1702	 * debugger.
1703	 */
1704	pl011_quiesce_irqs(port);
1705
1706	status = pl011_read(uap, REG_FR);
1707	if (status & UART01x_FR_RXFE)
1708		return NO_POLL_CHAR;
1709
1710	return pl011_read(uap, REG_DR);
1711}
1712
1713static void pl011_put_poll_char(struct uart_port *port,
1714			 unsigned char ch)
1715{
1716	struct uart_amba_port *uap =
1717	    container_of(port, struct uart_amba_port, port);
1718
1719	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1720		cpu_relax();
1721
1722	pl011_write(ch, uap, REG_DR);
1723}
1724
1725#endif /* CONFIG_CONSOLE_POLL */
1726
1727static int pl011_hwinit(struct uart_port *port)
1728{
1729	struct uart_amba_port *uap =
1730	    container_of(port, struct uart_amba_port, port);
1731	int retval;
1732
1733	/* Optionaly enable pins to be muxed in and configured */
1734	pinctrl_pm_select_default_state(port->dev);
1735
1736	/*
1737	 * Try to enable the clock producer.
1738	 */
1739	retval = clk_prepare_enable(uap->clk);
1740	if (retval)
1741		return retval;
1742
1743	uap->port.uartclk = clk_get_rate(uap->clk);
1744
1745	/* Clear pending error and receive interrupts */
1746	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1747		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1748		    uap, REG_ICR);
1749
1750	/*
1751	 * Save interrupts enable mask, and enable RX interrupts in case if
1752	 * the interrupt is used for NMI entry.
1753	 */
1754	uap->im = pl011_read(uap, REG_IMSC);
1755	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1756
1757	if (dev_get_platdata(uap->port.dev)) {
1758		struct amba_pl011_data *plat;
1759
1760		plat = dev_get_platdata(uap->port.dev);
1761		if (plat->init)
1762			plat->init();
1763	}
1764	return 0;
1765}
1766
1767static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1768{
1769	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1770	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1771}
1772
1773static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1774{
1775	pl011_write(lcr_h, uap, REG_LCRH_RX);
1776	if (pl011_split_lcrh(uap)) {
1777		int i;
1778		/*
1779		 * Wait 10 PCLKs before writing LCRH_TX register,
1780		 * to get this delay write read only register 10 times
1781		 */
1782		for (i = 0; i < 10; ++i)
1783			pl011_write(0xff, uap, REG_MIS);
1784		pl011_write(lcr_h, uap, REG_LCRH_TX);
1785	}
1786}
1787
1788static int pl011_allocate_irq(struct uart_amba_port *uap)
1789{
1790	pl011_write(uap->im, uap, REG_IMSC);
1791
1792	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1793}
1794
1795/*
1796 * Enable interrupts, only timeouts when using DMA
1797 * if initial RX DMA job failed, start in interrupt mode
1798 * as well.
1799 */
1800static void pl011_enable_interrupts(struct uart_amba_port *uap)
1801{
1802	unsigned long flags;
1803	unsigned int i;
1804
1805	spin_lock_irqsave(&uap->port.lock, flags);
1806
1807	/* Clear out any spuriously appearing RX interrupts */
1808	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1809
1810	/*
1811	 * RXIS is asserted only when the RX FIFO transitions from below
1812	 * to above the trigger threshold.  If the RX FIFO is already
1813	 * full to the threshold this can't happen and RXIS will now be
1814	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1815	 */
1816	for (i = 0; i < uap->fifosize * 2; ++i) {
1817		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1818			break;
1819
1820		pl011_read(uap, REG_DR);
1821	}
1822
1823	uap->im = UART011_RTIM;
1824	if (!pl011_dma_rx_running(uap))
1825		uap->im |= UART011_RXIM;
1826	pl011_write(uap->im, uap, REG_IMSC);
1827	spin_unlock_irqrestore(&uap->port.lock, flags);
1828}
1829
1830static void pl011_unthrottle_rx(struct uart_port *port)
1831{
1832	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1833	unsigned long flags;
1834
1835	spin_lock_irqsave(&uap->port.lock, flags);
1836
1837	uap->im = UART011_RTIM;
1838	if (!pl011_dma_rx_running(uap))
1839		uap->im |= UART011_RXIM;
1840
1841	pl011_write(uap->im, uap, REG_IMSC);
1842
1843	spin_unlock_irqrestore(&uap->port.lock, flags);
1844}
1845
1846static int pl011_startup(struct uart_port *port)
1847{
1848	struct uart_amba_port *uap =
1849	    container_of(port, struct uart_amba_port, port);
1850	unsigned int cr;
1851	int retval;
1852
1853	retval = pl011_hwinit(port);
1854	if (retval)
1855		goto clk_dis;
1856
1857	retval = pl011_allocate_irq(uap);
1858	if (retval)
1859		goto clk_dis;
1860
1861	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1862
1863	spin_lock_irq(&uap->port.lock);
1864
1865	cr = pl011_read(uap, REG_CR);
1866	cr &= UART011_CR_RTS | UART011_CR_DTR;
1867	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1868
1869	if (!(port->rs485.flags & SER_RS485_ENABLED))
1870		cr |= UART011_CR_TXE;
1871
1872	pl011_write(cr, uap, REG_CR);
1873
1874	spin_unlock_irq(&uap->port.lock);
1875
1876	/*
1877	 * initialise the old status of the modem signals
1878	 */
1879	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1880
1881	/* Startup DMA */
1882	pl011_dma_startup(uap);
1883
1884	pl011_enable_interrupts(uap);
1885
1886	return 0;
1887
1888 clk_dis:
1889	clk_disable_unprepare(uap->clk);
1890	return retval;
1891}
1892
1893static int sbsa_uart_startup(struct uart_port *port)
1894{
1895	struct uart_amba_port *uap =
1896		container_of(port, struct uart_amba_port, port);
1897	int retval;
1898
1899	retval = pl011_hwinit(port);
1900	if (retval)
1901		return retval;
1902
1903	retval = pl011_allocate_irq(uap);
1904	if (retval)
1905		return retval;
1906
1907	/* The SBSA UART does not support any modem status lines. */
1908	uap->old_status = 0;
1909
1910	pl011_enable_interrupts(uap);
1911
1912	return 0;
1913}
1914
1915static void pl011_shutdown_channel(struct uart_amba_port *uap,
1916					unsigned int lcrh)
1917{
1918      unsigned long val;
1919
1920      val = pl011_read(uap, lcrh);
1921      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1922      pl011_write(val, uap, lcrh);
1923}
1924
1925/*
1926 * disable the port. It should not disable RTS and DTR.
1927 * Also RTS and DTR state should be preserved to restore
1928 * it during startup().
1929 */
1930static void pl011_disable_uart(struct uart_amba_port *uap)
1931{
1932	unsigned int cr;
1933
1934	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1935	spin_lock_irq(&uap->port.lock);
1936	cr = pl011_read(uap, REG_CR);
 
1937	cr &= UART011_CR_RTS | UART011_CR_DTR;
1938	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1939	pl011_write(cr, uap, REG_CR);
1940	spin_unlock_irq(&uap->port.lock);
1941
1942	/*
1943	 * disable break condition and fifos
1944	 */
1945	pl011_shutdown_channel(uap, REG_LCRH_RX);
1946	if (pl011_split_lcrh(uap))
1947		pl011_shutdown_channel(uap, REG_LCRH_TX);
1948}
1949
1950static void pl011_disable_interrupts(struct uart_amba_port *uap)
1951{
1952	spin_lock_irq(&uap->port.lock);
1953
1954	/* mask all interrupts and clear all pending ones */
1955	uap->im = 0;
1956	pl011_write(uap->im, uap, REG_IMSC);
1957	pl011_write(0xffff, uap, REG_ICR);
1958
1959	spin_unlock_irq(&uap->port.lock);
1960}
1961
1962static void pl011_shutdown(struct uart_port *port)
1963{
1964	struct uart_amba_port *uap =
1965		container_of(port, struct uart_amba_port, port);
1966
1967	pl011_disable_interrupts(uap);
1968
1969	pl011_dma_shutdown(uap);
1970
1971	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1972		pl011_rs485_tx_stop(uap);
1973
1974	free_irq(uap->port.irq, uap);
1975
1976	pl011_disable_uart(uap);
1977
1978	/*
1979	 * Shut down the clock producer
1980	 */
1981	clk_disable_unprepare(uap->clk);
1982	/* Optionally let pins go into sleep states */
1983	pinctrl_pm_select_sleep_state(port->dev);
1984
1985	if (dev_get_platdata(uap->port.dev)) {
1986		struct amba_pl011_data *plat;
1987
1988		plat = dev_get_platdata(uap->port.dev);
1989		if (plat->exit)
1990			plat->exit();
1991	}
1992
1993	if (uap->port.ops->flush_buffer)
1994		uap->port.ops->flush_buffer(port);
1995}
1996
1997static void sbsa_uart_shutdown(struct uart_port *port)
1998{
1999	struct uart_amba_port *uap =
2000		container_of(port, struct uart_amba_port, port);
2001
2002	pl011_disable_interrupts(uap);
2003
2004	free_irq(uap->port.irq, uap);
2005
2006	if (uap->port.ops->flush_buffer)
2007		uap->port.ops->flush_buffer(port);
2008}
2009
2010static void
2011pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2012{
2013	port->read_status_mask = UART011_DR_OE | 255;
2014	if (termios->c_iflag & INPCK)
2015		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2016	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2017		port->read_status_mask |= UART011_DR_BE;
2018
2019	/*
2020	 * Characters to ignore
2021	 */
2022	port->ignore_status_mask = 0;
2023	if (termios->c_iflag & IGNPAR)
2024		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2025	if (termios->c_iflag & IGNBRK) {
2026		port->ignore_status_mask |= UART011_DR_BE;
2027		/*
2028		 * If we're ignoring parity and break indicators,
2029		 * ignore overruns too (for real raw support).
2030		 */
2031		if (termios->c_iflag & IGNPAR)
2032			port->ignore_status_mask |= UART011_DR_OE;
2033	}
2034
2035	/*
2036	 * Ignore all characters if CREAD is not set.
2037	 */
2038	if ((termios->c_cflag & CREAD) == 0)
2039		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2040}
2041
2042static void
2043pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2044		  const struct ktermios *old)
2045{
2046	struct uart_amba_port *uap =
2047	    container_of(port, struct uart_amba_port, port);
2048	unsigned int lcr_h, old_cr;
2049	unsigned long flags;
2050	unsigned int baud, quot, clkdiv;
2051	unsigned int bits;
2052
2053	if (uap->vendor->oversampling)
2054		clkdiv = 8;
2055	else
2056		clkdiv = 16;
2057
2058	/*
2059	 * Ask the core to calculate the divisor for us.
2060	 */
2061	baud = uart_get_baud_rate(port, termios, old, 0,
2062				  port->uartclk / clkdiv);
2063#ifdef CONFIG_DMA_ENGINE
2064	/*
2065	 * Adjust RX DMA polling rate with baud rate if not specified.
2066	 */
2067	if (uap->dmarx.auto_poll_rate)
2068		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2069#endif
2070
2071	if (baud > port->uartclk/16)
2072		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2073	else
2074		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2075
2076	switch (termios->c_cflag & CSIZE) {
2077	case CS5:
2078		lcr_h = UART01x_LCRH_WLEN_5;
2079		break;
2080	case CS6:
2081		lcr_h = UART01x_LCRH_WLEN_6;
2082		break;
2083	case CS7:
2084		lcr_h = UART01x_LCRH_WLEN_7;
2085		break;
2086	default: // CS8
2087		lcr_h = UART01x_LCRH_WLEN_8;
2088		break;
2089	}
2090	if (termios->c_cflag & CSTOPB)
2091		lcr_h |= UART01x_LCRH_STP2;
2092	if (termios->c_cflag & PARENB) {
2093		lcr_h |= UART01x_LCRH_PEN;
2094		if (!(termios->c_cflag & PARODD))
2095			lcr_h |= UART01x_LCRH_EPS;
2096		if (termios->c_cflag & CMSPAR)
2097			lcr_h |= UART011_LCRH_SPS;
2098	}
2099	if (uap->fifosize > 1)
2100		lcr_h |= UART01x_LCRH_FEN;
2101
2102	bits = tty_get_frame_size(termios->c_cflag);
2103
2104	spin_lock_irqsave(&port->lock, flags);
2105
2106	/*
2107	 * Update the per-port timeout.
2108	 */
2109	uart_update_timeout(port, termios->c_cflag, baud);
2110
2111	/*
2112	 * Calculate the approximated time it takes to transmit one character
2113	 * with the given baud rate. We use this as the poll interval when we
2114	 * wait for the tx queue to empty.
2115	 */
2116	uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2117
2118	pl011_setup_status_masks(port, termios);
2119
2120	if (UART_ENABLE_MS(port, termios->c_cflag))
2121		pl011_enable_ms(port);
2122
2123	if (port->rs485.flags & SER_RS485_ENABLED)
2124		termios->c_cflag &= ~CRTSCTS;
2125
2126	old_cr = pl011_read(uap, REG_CR);
 
2127
2128	if (termios->c_cflag & CRTSCTS) {
2129		if (old_cr & UART011_CR_RTS)
2130			old_cr |= UART011_CR_RTSEN;
2131
2132		old_cr |= UART011_CR_CTSEN;
2133		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2134	} else {
2135		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2136		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2137	}
2138
2139	if (uap->vendor->oversampling) {
2140		if (baud > port->uartclk / 16)
2141			old_cr |= ST_UART011_CR_OVSFACT;
2142		else
2143			old_cr &= ~ST_UART011_CR_OVSFACT;
2144	}
2145
2146	/*
2147	 * Workaround for the ST Micro oversampling variants to
2148	 * increase the bitrate slightly, by lowering the divisor,
2149	 * to avoid delayed sampling of start bit at high speeds,
2150	 * else we see data corruption.
2151	 */
2152	if (uap->vendor->oversampling) {
2153		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2154			quot -= 1;
2155		else if ((baud > 3250000) && (quot > 2))
2156			quot -= 2;
2157	}
2158	/* Set baud rate */
2159	pl011_write(quot & 0x3f, uap, REG_FBRD);
2160	pl011_write(quot >> 6, uap, REG_IBRD);
2161
2162	/*
2163	 * ----------v----------v----------v----------v-----
2164	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2165	 * REG_FBRD & REG_IBRD.
2166	 * ----------^----------^----------^----------^-----
2167	 */
2168	pl011_write_lcr_h(uap, lcr_h);
2169	pl011_write(old_cr, uap, REG_CR);
2170
2171	spin_unlock_irqrestore(&port->lock, flags);
2172}
2173
2174static void
2175sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2176		      const struct ktermios *old)
2177{
2178	struct uart_amba_port *uap =
2179	    container_of(port, struct uart_amba_port, port);
2180	unsigned long flags;
2181
2182	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2183
2184	/* The SBSA UART only supports 8n1 without hardware flow control. */
2185	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2186	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2187	termios->c_cflag |= CS8 | CLOCAL;
2188
2189	spin_lock_irqsave(&port->lock, flags);
2190	uart_update_timeout(port, CS8, uap->fixed_baud);
2191	pl011_setup_status_masks(port, termios);
2192	spin_unlock_irqrestore(&port->lock, flags);
2193}
2194
2195static const char *pl011_type(struct uart_port *port)
2196{
2197	struct uart_amba_port *uap =
2198	    container_of(port, struct uart_amba_port, port);
2199	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2200}
2201
2202/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203 * Configure/autoconfigure the port.
2204 */
2205static void pl011_config_port(struct uart_port *port, int flags)
2206{
2207	if (flags & UART_CONFIG_TYPE)
2208		port->type = PORT_AMBA;
 
 
2209}
2210
2211/*
2212 * verify the new serial_struct (for TIOCSSERIAL).
2213 */
2214static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2215{
2216	int ret = 0;
2217	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2218		ret = -EINVAL;
2219	if (ser->irq < 0 || ser->irq >= nr_irqs)
2220		ret = -EINVAL;
2221	if (ser->baud_base < 9600)
2222		ret = -EINVAL;
2223	if (port->mapbase != (unsigned long) ser->iomem_base)
2224		ret = -EINVAL;
2225	return ret;
2226}
2227
2228static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2229			      struct serial_rs485 *rs485)
2230{
2231	struct uart_amba_port *uap =
2232		container_of(port, struct uart_amba_port, port);
2233
2234	if (port->rs485.flags & SER_RS485_ENABLED)
2235		pl011_rs485_tx_stop(uap);
2236
2237	/* Make sure auto RTS is disabled */
2238	if (rs485->flags & SER_RS485_ENABLED) {
2239		u32 cr = pl011_read(uap, REG_CR);
2240
2241		cr &= ~UART011_CR_RTSEN;
2242		pl011_write(cr, uap, REG_CR);
2243		port->status &= ~UPSTAT_AUTORTS;
2244	}
2245
2246	return 0;
2247}
2248
2249static const struct uart_ops amba_pl011_pops = {
2250	.tx_empty	= pl011_tx_empty,
2251	.set_mctrl	= pl011_set_mctrl,
2252	.get_mctrl	= pl011_get_mctrl,
2253	.stop_tx	= pl011_stop_tx,
2254	.start_tx	= pl011_start_tx,
2255	.stop_rx	= pl011_stop_rx,
2256	.throttle	= pl011_throttle_rx,
2257	.unthrottle	= pl011_unthrottle_rx,
2258	.enable_ms	= pl011_enable_ms,
2259	.break_ctl	= pl011_break_ctl,
2260	.startup	= pl011_startup,
2261	.shutdown	= pl011_shutdown,
2262	.flush_buffer	= pl011_dma_flush_buffer,
2263	.set_termios	= pl011_set_termios,
2264	.type		= pl011_type,
 
 
2265	.config_port	= pl011_config_port,
2266	.verify_port	= pl011_verify_port,
2267#ifdef CONFIG_CONSOLE_POLL
2268	.poll_init     = pl011_hwinit,
2269	.poll_get_char = pl011_get_poll_char,
2270	.poll_put_char = pl011_put_poll_char,
2271#endif
2272};
2273
2274static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2275{
2276}
2277
2278static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2279{
2280	return 0;
2281}
2282
2283static const struct uart_ops sbsa_uart_pops = {
2284	.tx_empty	= pl011_tx_empty,
2285	.set_mctrl	= sbsa_uart_set_mctrl,
2286	.get_mctrl	= sbsa_uart_get_mctrl,
2287	.stop_tx	= pl011_stop_tx,
2288	.start_tx	= pl011_start_tx,
2289	.stop_rx	= pl011_stop_rx,
2290	.startup	= sbsa_uart_startup,
2291	.shutdown	= sbsa_uart_shutdown,
2292	.set_termios	= sbsa_uart_set_termios,
2293	.type		= pl011_type,
 
 
2294	.config_port	= pl011_config_port,
2295	.verify_port	= pl011_verify_port,
2296#ifdef CONFIG_CONSOLE_POLL
2297	.poll_init     = pl011_hwinit,
2298	.poll_get_char = pl011_get_poll_char,
2299	.poll_put_char = pl011_put_poll_char,
2300#endif
2301};
2302
2303static struct uart_amba_port *amba_ports[UART_NR];
2304
2305#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2306
2307static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2308{
2309	struct uart_amba_port *uap =
2310	    container_of(port, struct uart_amba_port, port);
2311
2312	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2313		cpu_relax();
2314	pl011_write(ch, uap, REG_DR);
2315}
2316
2317static void
2318pl011_console_write(struct console *co, const char *s, unsigned int count)
2319{
2320	struct uart_amba_port *uap = amba_ports[co->index];
2321	unsigned int old_cr = 0, new_cr;
2322	unsigned long flags;
2323	int locked = 1;
2324
2325	clk_enable(uap->clk);
2326
2327	local_irq_save(flags);
2328	if (uap->port.sysrq)
2329		locked = 0;
2330	else if (oops_in_progress)
2331		locked = spin_trylock(&uap->port.lock);
2332	else
2333		spin_lock(&uap->port.lock);
2334
2335	/*
2336	 *	First save the CR then disable the interrupts
2337	 */
2338	if (!uap->vendor->always_enabled) {
2339		old_cr = pl011_read(uap, REG_CR);
2340		new_cr = old_cr & ~UART011_CR_CTSEN;
2341		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2342		pl011_write(new_cr, uap, REG_CR);
2343	}
2344
2345	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2346
2347	/*
2348	 *	Finally, wait for transmitter to become empty and restore the
2349	 *	TCR. Allow feature register bits to be inverted to work around
2350	 *	errata.
2351	 */
2352	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2353						& uap->vendor->fr_busy)
2354		cpu_relax();
2355	if (!uap->vendor->always_enabled)
2356		pl011_write(old_cr, uap, REG_CR);
2357
2358	if (locked)
2359		spin_unlock(&uap->port.lock);
2360	local_irq_restore(flags);
2361
2362	clk_disable(uap->clk);
2363}
2364
2365static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2366				      int *parity, int *bits)
 
2367{
2368	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2369		unsigned int lcr_h, ibrd, fbrd;
2370
2371		lcr_h = pl011_read(uap, REG_LCRH_TX);
2372
2373		*parity = 'n';
2374		if (lcr_h & UART01x_LCRH_PEN) {
2375			if (lcr_h & UART01x_LCRH_EPS)
2376				*parity = 'e';
2377			else
2378				*parity = 'o';
2379		}
2380
2381		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2382			*bits = 7;
2383		else
2384			*bits = 8;
2385
2386		ibrd = pl011_read(uap, REG_IBRD);
2387		fbrd = pl011_read(uap, REG_FBRD);
2388
2389		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2390
2391		if (uap->vendor->oversampling) {
2392			if (pl011_read(uap, REG_CR)
2393				  & ST_UART011_CR_OVSFACT)
2394				*baud *= 2;
2395		}
2396	}
2397}
2398
2399static int pl011_console_setup(struct console *co, char *options)
2400{
2401	struct uart_amba_port *uap;
2402	int baud = 38400;
2403	int bits = 8;
2404	int parity = 'n';
2405	int flow = 'n';
2406	int ret;
2407
2408	/*
2409	 * Check whether an invalid uart number has been specified, and
2410	 * if so, search for the first available port that does have
2411	 * console support.
2412	 */
2413	if (co->index >= UART_NR)
2414		co->index = 0;
2415	uap = amba_ports[co->index];
2416	if (!uap)
2417		return -ENODEV;
2418
2419	/* Allow pins to be muxed in and configured */
2420	pinctrl_pm_select_default_state(uap->port.dev);
2421
2422	ret = clk_prepare(uap->clk);
2423	if (ret)
2424		return ret;
2425
2426	if (dev_get_platdata(uap->port.dev)) {
2427		struct amba_pl011_data *plat;
2428
2429		plat = dev_get_platdata(uap->port.dev);
2430		if (plat->init)
2431			plat->init();
2432	}
2433
2434	uap->port.uartclk = clk_get_rate(uap->clk);
2435
2436	if (uap->vendor->fixed_options) {
2437		baud = uap->fixed_baud;
2438	} else {
2439		if (options)
2440			uart_parse_options(options,
2441					   &baud, &parity, &bits, &flow);
2442		else
2443			pl011_console_get_options(uap, &baud, &parity, &bits);
2444	}
2445
2446	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2447}
2448
2449/**
2450 *	pl011_console_match - non-standard console matching
2451 *	@co:	  registering console
2452 *	@name:	  name from console command line
2453 *	@idx:	  index from console command line
2454 *	@options: ptr to option string from console command line
2455 *
2456 *	Only attempts to match console command lines of the form:
2457 *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2458 *	    console=pl011,0x<addr>[,<options>]
2459 *	This form is used to register an initial earlycon boot console and
2460 *	replace it with the amba_console at pl011 driver init.
2461 *
2462 *	Performs console setup for a match (as required by interface)
2463 *	If no <options> are specified, then assume the h/w is already setup.
2464 *
2465 *	Returns 0 if console matches; otherwise non-zero to use default matching
2466 */
2467static int pl011_console_match(struct console *co, char *name, int idx,
2468			       char *options)
2469{
2470	unsigned char iotype;
2471	resource_size_t addr;
2472	int i;
2473
2474	/*
2475	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2476	 * have a distinct console name, so make sure we check for that.
2477	 * The actual implementation of the erratum occurs in the probe
2478	 * function.
2479	 */
2480	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2481		return -ENODEV;
2482
2483	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2484		return -ENODEV;
2485
2486	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2487		return -ENODEV;
2488
2489	/* try to match the port specified on the command line */
2490	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2491		struct uart_port *port;
2492
2493		if (!amba_ports[i])
2494			continue;
2495
2496		port = &amba_ports[i]->port;
2497
2498		if (port->mapbase != addr)
2499			continue;
2500
2501		co->index = i;
2502		port->cons = co;
2503		return pl011_console_setup(co, options);
2504	}
2505
2506	return -ENODEV;
2507}
2508
2509static struct uart_driver amba_reg;
2510static struct console amba_console = {
2511	.name		= "ttyAMA",
2512	.write		= pl011_console_write,
2513	.device		= uart_console_device,
2514	.setup		= pl011_console_setup,
2515	.match		= pl011_console_match,
2516	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2517	.index		= -1,
2518	.data		= &amba_reg,
2519};
2520
2521#define AMBA_CONSOLE	(&amba_console)
2522
2523static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2524{
2525	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2526		cpu_relax();
2527	writel(c, port->membase + UART01x_DR);
2528	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2529		cpu_relax();
2530}
2531
2532static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2533{
2534	struct earlycon_device *dev = con->data;
2535
2536	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2537}
2538
2539static void pl011_putc(struct uart_port *port, unsigned char c)
2540{
2541	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2542		cpu_relax();
2543	if (port->iotype == UPIO_MEM32)
2544		writel(c, port->membase + UART01x_DR);
2545	else
2546		writeb(c, port->membase + UART01x_DR);
2547	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2548		cpu_relax();
2549}
2550
2551static void pl011_early_write(struct console *con, const char *s, unsigned n)
2552{
2553	struct earlycon_device *dev = con->data;
2554
2555	uart_console_write(&dev->port, s, n, pl011_putc);
2556}
2557
2558#ifdef CONFIG_CONSOLE_POLL
2559static int pl011_getc(struct uart_port *port)
2560{
2561	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2562		return NO_POLL_CHAR;
2563
2564	if (port->iotype == UPIO_MEM32)
2565		return readl(port->membase + UART01x_DR);
2566	else
2567		return readb(port->membase + UART01x_DR);
2568}
2569
2570static int pl011_early_read(struct console *con, char *s, unsigned int n)
2571{
2572	struct earlycon_device *dev = con->data;
2573	int ch, num_read = 0;
2574
2575	while (num_read < n) {
2576		ch = pl011_getc(&dev->port);
2577		if (ch == NO_POLL_CHAR)
2578			break;
2579
2580		s[num_read++] = ch;
2581	}
2582
2583	return num_read;
2584}
2585#else
2586#define pl011_early_read NULL
2587#endif
2588
2589/*
2590 * On non-ACPI systems, earlycon is enabled by specifying
2591 * "earlycon=pl011,<address>" on the kernel command line.
2592 *
2593 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2594 * by specifying only "earlycon" on the command line.  Because it requires
2595 * SPCR, the console starts after ACPI is parsed, which is later than a
2596 * traditional early console.
2597 *
2598 * To get the traditional early console that starts before ACPI is parsed,
2599 * specify the full "earlycon=pl011,<address>" option.
2600 */
2601static int __init pl011_early_console_setup(struct earlycon_device *device,
2602					    const char *opt)
2603{
2604	if (!device->port.membase)
2605		return -ENODEV;
2606
2607	device->con->write = pl011_early_write;
2608	device->con->read = pl011_early_read;
2609
2610	return 0;
2611}
2612OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2613OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2614
2615/*
2616 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2617 * Erratum 44, traditional earlycon can be enabled by specifying
2618 * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2619 *
2620 * Alternatively, you can just specify "earlycon", and the early console
2621 * will be enabled with the information from the SPCR table.  In this
2622 * case, the SPCR code will detect the need for the E44 work-around,
2623 * and set the console name to "qdf2400_e44".
2624 */
2625static int __init
2626qdf2400_e44_early_console_setup(struct earlycon_device *device,
2627				const char *opt)
2628{
2629	if (!device->port.membase)
2630		return -ENODEV;
2631
2632	device->con->write = qdf2400_e44_early_write;
2633	return 0;
2634}
2635EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2636
2637#else
2638#define AMBA_CONSOLE	NULL
2639#endif
2640
2641static struct uart_driver amba_reg = {
2642	.owner			= THIS_MODULE,
2643	.driver_name		= "ttyAMA",
2644	.dev_name		= "ttyAMA",
2645	.major			= SERIAL_AMBA_MAJOR,
2646	.minor			= SERIAL_AMBA_MINOR,
2647	.nr			= UART_NR,
2648	.cons			= AMBA_CONSOLE,
2649};
2650
2651static int pl011_probe_dt_alias(int index, struct device *dev)
2652{
2653	struct device_node *np;
2654	static bool seen_dev_with_alias = false;
2655	static bool seen_dev_without_alias = false;
2656	int ret = index;
2657
2658	if (!IS_ENABLED(CONFIG_OF))
2659		return ret;
2660
2661	np = dev->of_node;
2662	if (!np)
2663		return ret;
2664
2665	ret = of_alias_get_id(np, "serial");
2666	if (ret < 0) {
2667		seen_dev_without_alias = true;
2668		ret = index;
2669	} else {
2670		seen_dev_with_alias = true;
2671		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2672			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2673			ret = index;
2674		}
2675	}
2676
2677	if (seen_dev_with_alias && seen_dev_without_alias)
2678		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2679
2680	return ret;
2681}
2682
2683/* unregisters the driver also if no more ports are left */
2684static void pl011_unregister_port(struct uart_amba_port *uap)
2685{
2686	int i;
2687	bool busy = false;
2688
2689	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2690		if (amba_ports[i] == uap)
2691			amba_ports[i] = NULL;
2692		else if (amba_ports[i])
2693			busy = true;
2694	}
2695	pl011_dma_remove(uap);
2696	if (!busy)
2697		uart_unregister_driver(&amba_reg);
2698}
2699
2700static int pl011_find_free_port(void)
2701{
2702	int i;
2703
2704	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2705		if (amba_ports[i] == NULL)
2706			return i;
2707
2708	return -EBUSY;
2709}
2710
2711static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2712{
2713	struct uart_port *port = &uap->port;
2714	int ret;
2715
2716	ret = uart_get_rs485_mode(port);
2717	if (ret)
2718		return ret;
2719
2720	return 0;
2721}
2722
2723static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2724			    struct resource *mmiobase, int index)
2725{
2726	void __iomem *base;
2727	int ret;
2728
2729	base = devm_ioremap_resource(dev, mmiobase);
2730	if (IS_ERR(base))
2731		return PTR_ERR(base);
2732
2733	index = pl011_probe_dt_alias(index, dev);
2734
 
2735	uap->port.dev = dev;
2736	uap->port.mapbase = mmiobase->start;
2737	uap->port.membase = base;
2738	uap->port.fifosize = uap->fifosize;
2739	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2740	uap->port.flags = UPF_BOOT_AUTOCONF;
2741	uap->port.line = index;
2742
2743	ret = pl011_get_rs485_mode(uap);
2744	if (ret)
2745		return ret;
2746
2747	amba_ports[index] = uap;
2748
2749	return 0;
2750}
2751
2752static int pl011_register_port(struct uart_amba_port *uap)
2753{
2754	int ret, i;
2755
2756	/* Ensure interrupts from this UART are masked and cleared */
2757	pl011_write(0, uap, REG_IMSC);
2758	pl011_write(0xffff, uap, REG_ICR);
2759
2760	if (!amba_reg.state) {
2761		ret = uart_register_driver(&amba_reg);
2762		if (ret < 0) {
2763			dev_err(uap->port.dev,
2764				"Failed to register AMBA-PL011 driver\n");
2765			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2766				if (amba_ports[i] == uap)
2767					amba_ports[i] = NULL;
2768			return ret;
2769		}
2770	}
2771
2772	ret = uart_add_one_port(&amba_reg, &uap->port);
2773	if (ret)
2774		pl011_unregister_port(uap);
2775
2776	return ret;
2777}
2778
2779static const struct serial_rs485 pl011_rs485_supported = {
2780	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2781		 SER_RS485_RX_DURING_TX,
2782	.delay_rts_before_send = 1,
2783	.delay_rts_after_send = 1,
2784};
2785
2786static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2787{
2788	struct uart_amba_port *uap;
2789	struct vendor_data *vendor = id->data;
2790	int portnr, ret;
2791	u32 val;
2792
2793	portnr = pl011_find_free_port();
2794	if (portnr < 0)
2795		return portnr;
2796
2797	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2798			   GFP_KERNEL);
2799	if (!uap)
2800		return -ENOMEM;
2801
2802	uap->clk = devm_clk_get(&dev->dev, NULL);
2803	if (IS_ERR(uap->clk))
2804		return PTR_ERR(uap->clk);
2805
2806	uap->reg_offset = vendor->reg_offset;
2807	uap->vendor = vendor;
2808	uap->fifosize = vendor->get_fifosize(dev);
2809	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2810	uap->port.irq = dev->irq[0];
2811	uap->port.ops = &amba_pl011_pops;
2812	uap->port.rs485_config = pl011_rs485_config;
2813	uap->port.rs485_supported = pl011_rs485_supported;
2814	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2815
2816	if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2817		switch (val) {
2818		case 1:
2819			uap->port.iotype = UPIO_MEM;
2820			break;
2821		case 4:
2822			uap->port.iotype = UPIO_MEM32;
2823			break;
2824		default:
2825			dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2826				 val);
2827			return -EINVAL;
2828		}
2829	}
2830
2831	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2832	if (ret)
2833		return ret;
2834
2835	amba_set_drvdata(dev, uap);
2836
2837	return pl011_register_port(uap);
2838}
2839
2840static void pl011_remove(struct amba_device *dev)
2841{
2842	struct uart_amba_port *uap = amba_get_drvdata(dev);
2843
2844	uart_remove_one_port(&amba_reg, &uap->port);
2845	pl011_unregister_port(uap);
 
2846}
2847
2848#ifdef CONFIG_PM_SLEEP
2849static int pl011_suspend(struct device *dev)
2850{
2851	struct uart_amba_port *uap = dev_get_drvdata(dev);
2852
2853	if (!uap)
2854		return -EINVAL;
2855
2856	return uart_suspend_port(&amba_reg, &uap->port);
2857}
2858
2859static int pl011_resume(struct device *dev)
2860{
2861	struct uart_amba_port *uap = dev_get_drvdata(dev);
2862
2863	if (!uap)
2864		return -EINVAL;
2865
2866	return uart_resume_port(&amba_reg, &uap->port);
2867}
2868#endif
2869
2870static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2871
2872static int sbsa_uart_probe(struct platform_device *pdev)
2873{
2874	struct uart_amba_port *uap;
2875	struct resource *r;
2876	int portnr, ret;
2877	int baudrate;
2878
2879	/*
2880	 * Check the mandatory baud rate parameter in the DT node early
2881	 * so that we can easily exit with the error.
2882	 */
2883	if (pdev->dev.of_node) {
2884		struct device_node *np = pdev->dev.of_node;
2885
2886		ret = of_property_read_u32(np, "current-speed", &baudrate);
2887		if (ret)
2888			return ret;
2889	} else {
2890		baudrate = 115200;
2891	}
2892
2893	portnr = pl011_find_free_port();
2894	if (portnr < 0)
2895		return portnr;
2896
2897	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2898			   GFP_KERNEL);
2899	if (!uap)
2900		return -ENOMEM;
2901
2902	ret = platform_get_irq(pdev, 0);
2903	if (ret < 0)
 
 
2904		return ret;
 
2905	uap->port.irq	= ret;
2906
2907#ifdef CONFIG_ACPI_SPCR_TABLE
2908	if (qdf2400_e44_present) {
2909		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2910		uap->vendor = &vendor_qdt_qdf2400_e44;
2911	} else
2912#endif
2913		uap->vendor = &vendor_sbsa;
2914
2915	uap->reg_offset	= uap->vendor->reg_offset;
2916	uap->fifosize	= 32;
2917	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2918	uap->port.ops	= &sbsa_uart_pops;
2919	uap->fixed_baud = baudrate;
2920
2921	snprintf(uap->type, sizeof(uap->type), "SBSA");
2922
2923	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2924
2925	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2926	if (ret)
2927		return ret;
2928
2929	platform_set_drvdata(pdev, uap);
2930
2931	return pl011_register_port(uap);
2932}
2933
2934static int sbsa_uart_remove(struct platform_device *pdev)
2935{
2936	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2937
2938	uart_remove_one_port(&amba_reg, &uap->port);
2939	pl011_unregister_port(uap);
2940	return 0;
2941}
2942
2943static const struct of_device_id sbsa_uart_of_match[] = {
2944	{ .compatible = "arm,sbsa-uart", },
2945	{},
2946};
2947MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2948
2949static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2950	{ "ARMH0011", 0 },
2951	{ "ARMHB000", 0 },
2952	{},
2953};
2954MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2955
2956static struct platform_driver arm_sbsa_uart_platform_driver = {
2957	.probe		= sbsa_uart_probe,
2958	.remove		= sbsa_uart_remove,
2959	.driver	= {
2960		.name	= "sbsa-uart",
2961		.pm	= &pl011_dev_pm_ops,
2962		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2963		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2964		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2965	},
2966};
2967
2968static const struct amba_id pl011_ids[] = {
2969	{
2970		.id	= 0x00041011,
2971		.mask	= 0x000fffff,
2972		.data	= &vendor_arm,
2973	},
2974	{
2975		.id	= 0x00380802,
2976		.mask	= 0x00ffffff,
2977		.data	= &vendor_st,
2978	},
 
 
 
 
 
2979	{ 0, 0 },
2980};
2981
2982MODULE_DEVICE_TABLE(amba, pl011_ids);
2983
2984static struct amba_driver pl011_driver = {
2985	.drv = {
2986		.name	= "uart-pl011",
2987		.pm	= &pl011_dev_pm_ops,
2988		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2989	},
2990	.id_table	= pl011_ids,
2991	.probe		= pl011_probe,
2992	.remove		= pl011_remove,
2993};
2994
2995static int __init pl011_init(void)
2996{
2997	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2998
2999	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3000		pr_warn("could not register SBSA UART platform driver\n");
3001	return amba_driver_register(&pl011_driver);
3002}
3003
3004static void __exit pl011_exit(void)
3005{
3006	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3007	amba_driver_unregister(&pl011_driver);
3008}
3009
3010/*
3011 * While this can be a module, if builtin it's most likely the console
3012 * So let's leave module_exit but move module_init to an earlier place
3013 */
3014arch_initcall(pl011_init);
3015module_exit(pl011_exit);
3016
3017MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3018MODULE_DESCRIPTION("ARM AMBA serial port driver");
3019MODULE_LICENSE("GPL");