Loading...
1/*
2 * Xilinx Axi Ethernet device driver
3 *
4 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
5 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8 * Copyright (c) 2010 - 2011 PetaLogix
9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
10 *
11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12 * and Spartan6.
13 *
14 * TODO:
15 * - Add Axi Fifo support.
16 * - Factor out Axi DMA code into separate driver.
17 * - Test and fix basic multicast filtering.
18 * - Add support for extended multicast filtering.
19 * - Test basic VLAN support.
20 * - Add support for extended VLAN support.
21 */
22
23#include <linux/delay.h>
24#include <linux/etherdevice.h>
25#include <linux/module.h>
26#include <linux/netdevice.h>
27#include <linux/of_mdio.h>
28#include <linux/of_net.h>
29#include <linux/of_platform.h>
30#include <linux/of_irq.h>
31#include <linux/of_address.h>
32#include <linux/skbuff.h>
33#include <linux/spinlock.h>
34#include <linux/phy.h>
35#include <linux/mii.h>
36#include <linux/ethtool.h>
37
38#include "xilinx_axienet.h"
39
40/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
41#define TX_BD_NUM 64
42#define RX_BD_NUM 128
43
44/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
45#define DRIVER_NAME "xaxienet"
46#define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
47#define DRIVER_VERSION "1.00a"
48
49#define AXIENET_REGS_N 32
50
51/* Match table for of_platform binding */
52static const struct of_device_id axienet_of_match[] = {
53 { .compatible = "xlnx,axi-ethernet-1.00.a", },
54 { .compatible = "xlnx,axi-ethernet-1.01.a", },
55 { .compatible = "xlnx,axi-ethernet-2.01.a", },
56 {},
57};
58
59MODULE_DEVICE_TABLE(of, axienet_of_match);
60
61/* Option table for setting up Axi Ethernet hardware options */
62static struct axienet_option axienet_options[] = {
63 /* Turn on jumbo packet support for both Rx and Tx */
64 {
65 .opt = XAE_OPTION_JUMBO,
66 .reg = XAE_TC_OFFSET,
67 .m_or = XAE_TC_JUM_MASK,
68 }, {
69 .opt = XAE_OPTION_JUMBO,
70 .reg = XAE_RCW1_OFFSET,
71 .m_or = XAE_RCW1_JUM_MASK,
72 }, { /* Turn on VLAN packet support for both Rx and Tx */
73 .opt = XAE_OPTION_VLAN,
74 .reg = XAE_TC_OFFSET,
75 .m_or = XAE_TC_VLAN_MASK,
76 }, {
77 .opt = XAE_OPTION_VLAN,
78 .reg = XAE_RCW1_OFFSET,
79 .m_or = XAE_RCW1_VLAN_MASK,
80 }, { /* Turn on FCS stripping on receive packets */
81 .opt = XAE_OPTION_FCS_STRIP,
82 .reg = XAE_RCW1_OFFSET,
83 .m_or = XAE_RCW1_FCS_MASK,
84 }, { /* Turn on FCS insertion on transmit packets */
85 .opt = XAE_OPTION_FCS_INSERT,
86 .reg = XAE_TC_OFFSET,
87 .m_or = XAE_TC_FCS_MASK,
88 }, { /* Turn off length/type field checking on receive packets */
89 .opt = XAE_OPTION_LENTYPE_ERR,
90 .reg = XAE_RCW1_OFFSET,
91 .m_or = XAE_RCW1_LT_DIS_MASK,
92 }, { /* Turn on Rx flow control */
93 .opt = XAE_OPTION_FLOW_CONTROL,
94 .reg = XAE_FCC_OFFSET,
95 .m_or = XAE_FCC_FCRX_MASK,
96 }, { /* Turn on Tx flow control */
97 .opt = XAE_OPTION_FLOW_CONTROL,
98 .reg = XAE_FCC_OFFSET,
99 .m_or = XAE_FCC_FCTX_MASK,
100 }, { /* Turn on promiscuous frame filtering */
101 .opt = XAE_OPTION_PROMISC,
102 .reg = XAE_FMI_OFFSET,
103 .m_or = XAE_FMI_PM_MASK,
104 }, { /* Enable transmitter */
105 .opt = XAE_OPTION_TXEN,
106 .reg = XAE_TC_OFFSET,
107 .m_or = XAE_TC_TX_MASK,
108 }, { /* Enable receiver */
109 .opt = XAE_OPTION_RXEN,
110 .reg = XAE_RCW1_OFFSET,
111 .m_or = XAE_RCW1_RX_MASK,
112 },
113 {}
114};
115
116/**
117 * axienet_dma_in32 - Memory mapped Axi DMA register read
118 * @lp: Pointer to axienet local structure
119 * @reg: Address offset from the base address of the Axi DMA core
120 *
121 * Return: The contents of the Axi DMA register
122 *
123 * This function returns the contents of the corresponding Axi DMA register.
124 */
125static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
126{
127 return in_be32(lp->dma_regs + reg);
128}
129
130/**
131 * axienet_dma_out32 - Memory mapped Axi DMA register write.
132 * @lp: Pointer to axienet local structure
133 * @reg: Address offset from the base address of the Axi DMA core
134 * @value: Value to be written into the Axi DMA register
135 *
136 * This function writes the desired value into the corresponding Axi DMA
137 * register.
138 */
139static inline void axienet_dma_out32(struct axienet_local *lp,
140 off_t reg, u32 value)
141{
142 out_be32((lp->dma_regs + reg), value);
143}
144
145/**
146 * axienet_dma_bd_release - Release buffer descriptor rings
147 * @ndev: Pointer to the net_device structure
148 *
149 * This function is used to release the descriptors allocated in
150 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
151 * driver stop api is called.
152 */
153static void axienet_dma_bd_release(struct net_device *ndev)
154{
155 int i;
156 struct axienet_local *lp = netdev_priv(ndev);
157
158 for (i = 0; i < RX_BD_NUM; i++) {
159 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
160 lp->max_frm_size, DMA_FROM_DEVICE);
161 dev_kfree_skb((struct sk_buff *)
162 (lp->rx_bd_v[i].sw_id_offset));
163 }
164
165 if (lp->rx_bd_v) {
166 dma_free_coherent(ndev->dev.parent,
167 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
168 lp->rx_bd_v,
169 lp->rx_bd_p);
170 }
171 if (lp->tx_bd_v) {
172 dma_free_coherent(ndev->dev.parent,
173 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
174 lp->tx_bd_v,
175 lp->tx_bd_p);
176 }
177}
178
179/**
180 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
181 * @ndev: Pointer to the net_device structure
182 *
183 * Return: 0, on success -ENOMEM, on failure
184 *
185 * This function is called to initialize the Rx and Tx DMA descriptor
186 * rings. This initializes the descriptors with required default values
187 * and is called when Axi Ethernet driver reset is called.
188 */
189static int axienet_dma_bd_init(struct net_device *ndev)
190{
191 u32 cr;
192 int i;
193 struct sk_buff *skb;
194 struct axienet_local *lp = netdev_priv(ndev);
195
196 /* Reset the indexes which are used for accessing the BDs */
197 lp->tx_bd_ci = 0;
198 lp->tx_bd_tail = 0;
199 lp->rx_bd_ci = 0;
200
201 /* Allocate the Tx and Rx buffer descriptors. */
202 lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
203 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
204 &lp->tx_bd_p, GFP_KERNEL);
205 if (!lp->tx_bd_v)
206 goto out;
207
208 lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
209 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
210 &lp->rx_bd_p, GFP_KERNEL);
211 if (!lp->rx_bd_v)
212 goto out;
213
214 for (i = 0; i < TX_BD_NUM; i++) {
215 lp->tx_bd_v[i].next = lp->tx_bd_p +
216 sizeof(*lp->tx_bd_v) *
217 ((i + 1) % TX_BD_NUM);
218 }
219
220 for (i = 0; i < RX_BD_NUM; i++) {
221 lp->rx_bd_v[i].next = lp->rx_bd_p +
222 sizeof(*lp->rx_bd_v) *
223 ((i + 1) % RX_BD_NUM);
224
225 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
226 if (!skb)
227 goto out;
228
229 lp->rx_bd_v[i].sw_id_offset = (u32) skb;
230 lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
231 skb->data,
232 lp->max_frm_size,
233 DMA_FROM_DEVICE);
234 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
235 }
236
237 /* Start updating the Rx channel control register */
238 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
239 /* Update the interrupt coalesce count */
240 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
241 ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
242 /* Update the delay timer count */
243 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
244 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
245 /* Enable coalesce, delay timer and error interrupts */
246 cr |= XAXIDMA_IRQ_ALL_MASK;
247 /* Write to the Rx channel control register */
248 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
249
250 /* Start updating the Tx channel control register */
251 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
252 /* Update the interrupt coalesce count */
253 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
254 ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
255 /* Update the delay timer count */
256 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
257 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
258 /* Enable coalesce, delay timer and error interrupts */
259 cr |= XAXIDMA_IRQ_ALL_MASK;
260 /* Write to the Tx channel control register */
261 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
262
263 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
264 * halted state. This will make the Rx side ready for reception.
265 */
266 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
267 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
268 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
269 cr | XAXIDMA_CR_RUNSTOP_MASK);
270 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
271 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
272
273 /* Write to the RS (Run-stop) bit in the Tx channel control register.
274 * Tx channel is now ready to run. But only after we write to the
275 * tail pointer register that the Tx channel will start transmitting.
276 */
277 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
278 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
279 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
280 cr | XAXIDMA_CR_RUNSTOP_MASK);
281
282 return 0;
283out:
284 axienet_dma_bd_release(ndev);
285 return -ENOMEM;
286}
287
288/**
289 * axienet_set_mac_address - Write the MAC address
290 * @ndev: Pointer to the net_device structure
291 * @address: 6 byte Address to be written as MAC address
292 *
293 * This function is called to initialize the MAC address of the Axi Ethernet
294 * core. It writes to the UAW0 and UAW1 registers of the core.
295 */
296static void axienet_set_mac_address(struct net_device *ndev,
297 const void *address)
298{
299 struct axienet_local *lp = netdev_priv(ndev);
300
301 if (address)
302 memcpy(ndev->dev_addr, address, ETH_ALEN);
303 if (!is_valid_ether_addr(ndev->dev_addr))
304 eth_hw_addr_random(ndev);
305
306 /* Set up unicast MAC address filter set its mac address */
307 axienet_iow(lp, XAE_UAW0_OFFSET,
308 (ndev->dev_addr[0]) |
309 (ndev->dev_addr[1] << 8) |
310 (ndev->dev_addr[2] << 16) |
311 (ndev->dev_addr[3] << 24));
312 axienet_iow(lp, XAE_UAW1_OFFSET,
313 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
314 ~XAE_UAW1_UNICASTADDR_MASK) |
315 (ndev->dev_addr[4] |
316 (ndev->dev_addr[5] << 8))));
317}
318
319/**
320 * netdev_set_mac_address - Write the MAC address (from outside the driver)
321 * @ndev: Pointer to the net_device structure
322 * @p: 6 byte Address to be written as MAC address
323 *
324 * Return: 0 for all conditions. Presently, there is no failure case.
325 *
326 * This function is called to initialize the MAC address of the Axi Ethernet
327 * core. It calls the core specific axienet_set_mac_address. This is the
328 * function that goes into net_device_ops structure entry ndo_set_mac_address.
329 */
330static int netdev_set_mac_address(struct net_device *ndev, void *p)
331{
332 struct sockaddr *addr = p;
333 axienet_set_mac_address(ndev, addr->sa_data);
334 return 0;
335}
336
337/**
338 * axienet_set_multicast_list - Prepare the multicast table
339 * @ndev: Pointer to the net_device structure
340 *
341 * This function is called to initialize the multicast table during
342 * initialization. The Axi Ethernet basic multicast support has a four-entry
343 * multicast table which is initialized here. Additionally this function
344 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
345 * means whenever the multicast table entries need to be updated this
346 * function gets called.
347 */
348static void axienet_set_multicast_list(struct net_device *ndev)
349{
350 int i;
351 u32 reg, af0reg, af1reg;
352 struct axienet_local *lp = netdev_priv(ndev);
353
354 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
355 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
356 /* We must make the kernel realize we had to move into
357 * promiscuous mode. If it was a promiscuous mode request
358 * the flag is already set. If not we set it.
359 */
360 ndev->flags |= IFF_PROMISC;
361 reg = axienet_ior(lp, XAE_FMI_OFFSET);
362 reg |= XAE_FMI_PM_MASK;
363 axienet_iow(lp, XAE_FMI_OFFSET, reg);
364 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
365 } else if (!netdev_mc_empty(ndev)) {
366 struct netdev_hw_addr *ha;
367
368 i = 0;
369 netdev_for_each_mc_addr(ha, ndev) {
370 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
371 break;
372
373 af0reg = (ha->addr[0]);
374 af0reg |= (ha->addr[1] << 8);
375 af0reg |= (ha->addr[2] << 16);
376 af0reg |= (ha->addr[3] << 24);
377
378 af1reg = (ha->addr[4]);
379 af1reg |= (ha->addr[5] << 8);
380
381 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
382 reg |= i;
383
384 axienet_iow(lp, XAE_FMI_OFFSET, reg);
385 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
386 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
387 i++;
388 }
389 } else {
390 reg = axienet_ior(lp, XAE_FMI_OFFSET);
391 reg &= ~XAE_FMI_PM_MASK;
392
393 axienet_iow(lp, XAE_FMI_OFFSET, reg);
394
395 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
396 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
397 reg |= i;
398
399 axienet_iow(lp, XAE_FMI_OFFSET, reg);
400 axienet_iow(lp, XAE_AF0_OFFSET, 0);
401 axienet_iow(lp, XAE_AF1_OFFSET, 0);
402 }
403
404 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
405 }
406}
407
408/**
409 * axienet_setoptions - Set an Axi Ethernet option
410 * @ndev: Pointer to the net_device structure
411 * @options: Option to be enabled/disabled
412 *
413 * The Axi Ethernet core has multiple features which can be selectively turned
414 * on or off. The typical options could be jumbo frame option, basic VLAN
415 * option, promiscuous mode option etc. This function is used to set or clear
416 * these options in the Axi Ethernet hardware. This is done through
417 * axienet_option structure .
418 */
419static void axienet_setoptions(struct net_device *ndev, u32 options)
420{
421 int reg;
422 struct axienet_local *lp = netdev_priv(ndev);
423 struct axienet_option *tp = &axienet_options[0];
424
425 while (tp->opt) {
426 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
427 if (options & tp->opt)
428 reg |= tp->m_or;
429 axienet_iow(lp, tp->reg, reg);
430 tp++;
431 }
432
433 lp->options |= options;
434}
435
436static void __axienet_device_reset(struct axienet_local *lp, off_t offset)
437{
438 u32 timeout;
439 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
440 * process of Axi DMA takes a while to complete as all pending
441 * commands/transfers will be flushed or completed during this
442 * reset process.
443 */
444 axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
445 timeout = DELAY_OF_ONE_MILLISEC;
446 while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
447 udelay(1);
448 if (--timeout == 0) {
449 netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
450 __func__);
451 break;
452 }
453 }
454}
455
456/**
457 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
458 * @ndev: Pointer to the net_device structure
459 *
460 * This function is called to reset and initialize the Axi Ethernet core. This
461 * is typically called during initialization. It does a reset of the Axi DMA
462 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
463 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
464 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
465 * core.
466 */
467static void axienet_device_reset(struct net_device *ndev)
468{
469 u32 axienet_status;
470 struct axienet_local *lp = netdev_priv(ndev);
471
472 __axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
473 __axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
474
475 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
476 lp->options |= XAE_OPTION_VLAN;
477 lp->options &= (~XAE_OPTION_JUMBO);
478
479 if ((ndev->mtu > XAE_MTU) &&
480 (ndev->mtu <= XAE_JUMBO_MTU)) {
481 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
482 XAE_TRL_SIZE;
483
484 if (lp->max_frm_size <= lp->rxmem)
485 lp->options |= XAE_OPTION_JUMBO;
486 }
487
488 if (axienet_dma_bd_init(ndev)) {
489 netdev_err(ndev, "%s: descriptor allocation failed\n",
490 __func__);
491 }
492
493 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
494 axienet_status &= ~XAE_RCW1_RX_MASK;
495 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
496
497 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
498 if (axienet_status & XAE_INT_RXRJECT_MASK)
499 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
500
501 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
502
503 /* Sync default options with HW but leave receiver and
504 * transmitter disabled.
505 */
506 axienet_setoptions(ndev, lp->options &
507 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
508 axienet_set_mac_address(ndev, NULL);
509 axienet_set_multicast_list(ndev);
510 axienet_setoptions(ndev, lp->options);
511
512 netif_trans_update(ndev);
513}
514
515/**
516 * axienet_adjust_link - Adjust the PHY link speed/duplex.
517 * @ndev: Pointer to the net_device structure
518 *
519 * This function is called to change the speed and duplex setting after
520 * auto negotiation is done by the PHY. This is the function that gets
521 * registered with the PHY interface through the "of_phy_connect" call.
522 */
523static void axienet_adjust_link(struct net_device *ndev)
524{
525 u32 emmc_reg;
526 u32 link_state;
527 u32 setspeed = 1;
528 struct axienet_local *lp = netdev_priv(ndev);
529 struct phy_device *phy = ndev->phydev;
530
531 link_state = phy->speed | (phy->duplex << 1) | phy->link;
532 if (lp->last_link != link_state) {
533 if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
534 if (lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX)
535 setspeed = 0;
536 } else {
537 if ((phy->speed == SPEED_1000) &&
538 (lp->phy_mode == PHY_INTERFACE_MODE_MII))
539 setspeed = 0;
540 }
541
542 if (setspeed == 1) {
543 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
544 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
545
546 switch (phy->speed) {
547 case SPEED_1000:
548 emmc_reg |= XAE_EMMC_LINKSPD_1000;
549 break;
550 case SPEED_100:
551 emmc_reg |= XAE_EMMC_LINKSPD_100;
552 break;
553 case SPEED_10:
554 emmc_reg |= XAE_EMMC_LINKSPD_10;
555 break;
556 default:
557 dev_err(&ndev->dev, "Speed other than 10, 100 "
558 "or 1Gbps is not supported\n");
559 break;
560 }
561
562 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
563 lp->last_link = link_state;
564 phy_print_status(phy);
565 } else {
566 netdev_err(ndev,
567 "Error setting Axi Ethernet mac speed\n");
568 }
569 }
570}
571
572/**
573 * axienet_start_xmit_done - Invoked once a transmit is completed by the
574 * Axi DMA Tx channel.
575 * @ndev: Pointer to the net_device structure
576 *
577 * This function is invoked from the Axi DMA Tx isr to notify the completion
578 * of transmit operation. It clears fields in the corresponding Tx BDs and
579 * unmaps the corresponding buffer so that CPU can regain ownership of the
580 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
581 * required.
582 */
583static void axienet_start_xmit_done(struct net_device *ndev)
584{
585 u32 size = 0;
586 u32 packets = 0;
587 struct axienet_local *lp = netdev_priv(ndev);
588 struct axidma_bd *cur_p;
589 unsigned int status = 0;
590
591 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
592 status = cur_p->status;
593 while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
594 dma_unmap_single(ndev->dev.parent, cur_p->phys,
595 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
596 DMA_TO_DEVICE);
597 if (cur_p->app4)
598 dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
599 /*cur_p->phys = 0;*/
600 cur_p->app0 = 0;
601 cur_p->app1 = 0;
602 cur_p->app2 = 0;
603 cur_p->app4 = 0;
604 cur_p->status = 0;
605
606 size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
607 packets++;
608
609 ++lp->tx_bd_ci;
610 lp->tx_bd_ci %= TX_BD_NUM;
611 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
612 status = cur_p->status;
613 }
614
615 ndev->stats.tx_packets += packets;
616 ndev->stats.tx_bytes += size;
617 netif_wake_queue(ndev);
618}
619
620/**
621 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
622 * @lp: Pointer to the axienet_local structure
623 * @num_frag: The number of BDs to check for
624 *
625 * Return: 0, on success
626 * NETDEV_TX_BUSY, if any of the descriptors are not free
627 *
628 * This function is invoked before BDs are allocated and transmission starts.
629 * This function returns 0 if a BD or group of BDs can be allocated for
630 * transmission. If the BD or any of the BDs are not free the function
631 * returns a busy status. This is invoked from axienet_start_xmit.
632 */
633static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
634 int num_frag)
635{
636 struct axidma_bd *cur_p;
637 cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
638 if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
639 return NETDEV_TX_BUSY;
640 return 0;
641}
642
643/**
644 * axienet_start_xmit - Starts the transmission.
645 * @skb: sk_buff pointer that contains data to be Txed.
646 * @ndev: Pointer to net_device structure.
647 *
648 * Return: NETDEV_TX_OK, on success
649 * NETDEV_TX_BUSY, if any of the descriptors are not free
650 *
651 * This function is invoked from upper layers to initiate transmission. The
652 * function uses the next available free BDs and populates their fields to
653 * start the transmission. Additionally if checksum offloading is supported,
654 * it populates AXI Stream Control fields with appropriate values.
655 */
656static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
657{
658 u32 ii;
659 u32 num_frag;
660 u32 csum_start_off;
661 u32 csum_index_off;
662 skb_frag_t *frag;
663 dma_addr_t tail_p;
664 struct axienet_local *lp = netdev_priv(ndev);
665 struct axidma_bd *cur_p;
666
667 num_frag = skb_shinfo(skb)->nr_frags;
668 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
669
670 if (axienet_check_tx_bd_space(lp, num_frag)) {
671 if (!netif_queue_stopped(ndev))
672 netif_stop_queue(ndev);
673 return NETDEV_TX_BUSY;
674 }
675
676 if (skb->ip_summed == CHECKSUM_PARTIAL) {
677 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
678 /* Tx Full Checksum Offload Enabled */
679 cur_p->app0 |= 2;
680 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
681 csum_start_off = skb_transport_offset(skb);
682 csum_index_off = csum_start_off + skb->csum_offset;
683 /* Tx Partial Checksum Offload Enabled */
684 cur_p->app0 |= 1;
685 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
686 }
687 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
688 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
689 }
690
691 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
692 cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
693 skb_headlen(skb), DMA_TO_DEVICE);
694
695 for (ii = 0; ii < num_frag; ii++) {
696 ++lp->tx_bd_tail;
697 lp->tx_bd_tail %= TX_BD_NUM;
698 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
699 frag = &skb_shinfo(skb)->frags[ii];
700 cur_p->phys = dma_map_single(ndev->dev.parent,
701 skb_frag_address(frag),
702 skb_frag_size(frag),
703 DMA_TO_DEVICE);
704 cur_p->cntrl = skb_frag_size(frag);
705 }
706
707 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
708 cur_p->app4 = (unsigned long)skb;
709
710 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
711 /* Start the transfer */
712 axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
713 ++lp->tx_bd_tail;
714 lp->tx_bd_tail %= TX_BD_NUM;
715
716 return NETDEV_TX_OK;
717}
718
719/**
720 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
721 * BD processing.
722 * @ndev: Pointer to net_device structure.
723 *
724 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
725 * does minimal processing and invokes "netif_rx" to complete further
726 * processing.
727 */
728static void axienet_recv(struct net_device *ndev)
729{
730 u32 length;
731 u32 csumstatus;
732 u32 size = 0;
733 u32 packets = 0;
734 dma_addr_t tail_p = 0;
735 struct axienet_local *lp = netdev_priv(ndev);
736 struct sk_buff *skb, *new_skb;
737 struct axidma_bd *cur_p;
738
739 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
740
741 while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
742 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
743 skb = (struct sk_buff *) (cur_p->sw_id_offset);
744 length = cur_p->app4 & 0x0000FFFF;
745
746 dma_unmap_single(ndev->dev.parent, cur_p->phys,
747 lp->max_frm_size,
748 DMA_FROM_DEVICE);
749
750 skb_put(skb, length);
751 skb->protocol = eth_type_trans(skb, ndev);
752 /*skb_checksum_none_assert(skb);*/
753 skb->ip_summed = CHECKSUM_NONE;
754
755 /* if we're doing Rx csum offload, set it up */
756 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
757 csumstatus = (cur_p->app2 &
758 XAE_FULL_CSUM_STATUS_MASK) >> 3;
759 if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
760 (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
761 skb->ip_summed = CHECKSUM_UNNECESSARY;
762 }
763 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
764 skb->protocol == htons(ETH_P_IP) &&
765 skb->len > 64) {
766 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
767 skb->ip_summed = CHECKSUM_COMPLETE;
768 }
769
770 netif_rx(skb);
771
772 size += length;
773 packets++;
774
775 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
776 if (!new_skb)
777 return;
778
779 cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
780 lp->max_frm_size,
781 DMA_FROM_DEVICE);
782 cur_p->cntrl = lp->max_frm_size;
783 cur_p->status = 0;
784 cur_p->sw_id_offset = (u32) new_skb;
785
786 ++lp->rx_bd_ci;
787 lp->rx_bd_ci %= RX_BD_NUM;
788 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
789 }
790
791 ndev->stats.rx_packets += packets;
792 ndev->stats.rx_bytes += size;
793
794 if (tail_p)
795 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
796}
797
798/**
799 * axienet_tx_irq - Tx Done Isr.
800 * @irq: irq number
801 * @_ndev: net_device pointer
802 *
803 * Return: IRQ_HANDLED for all cases.
804 *
805 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
806 * to complete the BD processing.
807 */
808static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
809{
810 u32 cr;
811 unsigned int status;
812 struct net_device *ndev = _ndev;
813 struct axienet_local *lp = netdev_priv(ndev);
814
815 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
816 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
817 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
818 axienet_start_xmit_done(lp->ndev);
819 goto out;
820 }
821 if (!(status & XAXIDMA_IRQ_ALL_MASK))
822 dev_err(&ndev->dev, "No interrupts asserted in Tx path\n");
823 if (status & XAXIDMA_IRQ_ERROR_MASK) {
824 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
825 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
826 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
827
828 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
829 /* Disable coalesce, delay timer and error interrupts */
830 cr &= (~XAXIDMA_IRQ_ALL_MASK);
831 /* Write to the Tx channel control register */
832 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
833
834 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
835 /* Disable coalesce, delay timer and error interrupts */
836 cr &= (~XAXIDMA_IRQ_ALL_MASK);
837 /* Write to the Rx channel control register */
838 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
839
840 tasklet_schedule(&lp->dma_err_tasklet);
841 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
842 }
843out:
844 return IRQ_HANDLED;
845}
846
847/**
848 * axienet_rx_irq - Rx Isr.
849 * @irq: irq number
850 * @_ndev: net_device pointer
851 *
852 * Return: IRQ_HANDLED for all cases.
853 *
854 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
855 * processing.
856 */
857static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
858{
859 u32 cr;
860 unsigned int status;
861 struct net_device *ndev = _ndev;
862 struct axienet_local *lp = netdev_priv(ndev);
863
864 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
865 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
866 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
867 axienet_recv(lp->ndev);
868 goto out;
869 }
870 if (!(status & XAXIDMA_IRQ_ALL_MASK))
871 dev_err(&ndev->dev, "No interrupts asserted in Rx path\n");
872 if (status & XAXIDMA_IRQ_ERROR_MASK) {
873 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
874 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
875 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
876
877 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
878 /* Disable coalesce, delay timer and error interrupts */
879 cr &= (~XAXIDMA_IRQ_ALL_MASK);
880 /* Finally write to the Tx channel control register */
881 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
882
883 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
884 /* Disable coalesce, delay timer and error interrupts */
885 cr &= (~XAXIDMA_IRQ_ALL_MASK);
886 /* write to the Rx channel control register */
887 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
888
889 tasklet_schedule(&lp->dma_err_tasklet);
890 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
891 }
892out:
893 return IRQ_HANDLED;
894}
895
896static void axienet_dma_err_handler(unsigned long data);
897
898/**
899 * axienet_open - Driver open routine.
900 * @ndev: Pointer to net_device structure
901 *
902 * Return: 0, on success.
903 * -ENODEV, if PHY cannot be connected to
904 * non-zero error value on failure
905 *
906 * This is the driver open routine. It calls phy_start to start the PHY device.
907 * It also allocates interrupt service routines, enables the interrupt lines
908 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
909 * descriptors are initialized.
910 */
911static int axienet_open(struct net_device *ndev)
912{
913 int ret, mdio_mcreg;
914 struct axienet_local *lp = netdev_priv(ndev);
915 struct phy_device *phydev = NULL;
916
917 dev_dbg(&ndev->dev, "axienet_open()\n");
918
919 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
920 ret = axienet_mdio_wait_until_ready(lp);
921 if (ret < 0)
922 return ret;
923 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
924 * When we do an Axi Ethernet reset, it resets the complete core
925 * including the MDIO. If MDIO is not disabled when the reset
926 * process is started, MDIO will be broken afterwards.
927 */
928 axienet_iow(lp, XAE_MDIO_MC_OFFSET,
929 (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
930 axienet_device_reset(ndev);
931 /* Enable the MDIO */
932 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
933 ret = axienet_mdio_wait_until_ready(lp);
934 if (ret < 0)
935 return ret;
936
937 if (lp->phy_node) {
938 phydev = of_phy_connect(lp->ndev, lp->phy_node,
939 axienet_adjust_link, 0, lp->phy_mode);
940
941 if (!phydev)
942 dev_err(lp->dev, "of_phy_connect() failed\n");
943 else
944 phy_start(phydev);
945 }
946
947 /* Enable tasklets for Axi DMA error handling */
948 tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
949 (unsigned long) lp);
950
951 /* Enable interrupts for Axi DMA Tx */
952 ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
953 if (ret)
954 goto err_tx_irq;
955 /* Enable interrupts for Axi DMA Rx */
956 ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
957 if (ret)
958 goto err_rx_irq;
959
960 return 0;
961
962err_rx_irq:
963 free_irq(lp->tx_irq, ndev);
964err_tx_irq:
965 if (phydev)
966 phy_disconnect(phydev);
967 tasklet_kill(&lp->dma_err_tasklet);
968 dev_err(lp->dev, "request_irq() failed\n");
969 return ret;
970}
971
972/**
973 * axienet_stop - Driver stop routine.
974 * @ndev: Pointer to net_device structure
975 *
976 * Return: 0, on success.
977 *
978 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
979 * device. It also removes the interrupt handlers and disables the interrupts.
980 * The Axi DMA Tx/Rx BDs are released.
981 */
982static int axienet_stop(struct net_device *ndev)
983{
984 u32 cr;
985 struct axienet_local *lp = netdev_priv(ndev);
986
987 dev_dbg(&ndev->dev, "axienet_close()\n");
988
989 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
990 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
991 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
992 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
993 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
994 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
995 axienet_setoptions(ndev, lp->options &
996 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
997
998 tasklet_kill(&lp->dma_err_tasklet);
999
1000 free_irq(lp->tx_irq, ndev);
1001 free_irq(lp->rx_irq, ndev);
1002
1003 if (ndev->phydev)
1004 phy_disconnect(ndev->phydev);
1005
1006 axienet_dma_bd_release(ndev);
1007 return 0;
1008}
1009
1010/**
1011 * axienet_change_mtu - Driver change mtu routine.
1012 * @ndev: Pointer to net_device structure
1013 * @new_mtu: New mtu value to be applied
1014 *
1015 * Return: Always returns 0 (success).
1016 *
1017 * This is the change mtu driver routine. It checks if the Axi Ethernet
1018 * hardware supports jumbo frames before changing the mtu. This can be
1019 * called only when the device is not up.
1020 */
1021static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1022{
1023 struct axienet_local *lp = netdev_priv(ndev);
1024
1025 if (netif_running(ndev))
1026 return -EBUSY;
1027
1028 if ((new_mtu + VLAN_ETH_HLEN +
1029 XAE_TRL_SIZE) > lp->rxmem)
1030 return -EINVAL;
1031
1032 ndev->mtu = new_mtu;
1033
1034 return 0;
1035}
1036
1037#ifdef CONFIG_NET_POLL_CONTROLLER
1038/**
1039 * axienet_poll_controller - Axi Ethernet poll mechanism.
1040 * @ndev: Pointer to net_device structure
1041 *
1042 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1043 * to polling the ISRs and are enabled back after the polling is done.
1044 */
1045static void axienet_poll_controller(struct net_device *ndev)
1046{
1047 struct axienet_local *lp = netdev_priv(ndev);
1048 disable_irq(lp->tx_irq);
1049 disable_irq(lp->rx_irq);
1050 axienet_rx_irq(lp->tx_irq, ndev);
1051 axienet_tx_irq(lp->rx_irq, ndev);
1052 enable_irq(lp->tx_irq);
1053 enable_irq(lp->rx_irq);
1054}
1055#endif
1056
1057static const struct net_device_ops axienet_netdev_ops = {
1058 .ndo_open = axienet_open,
1059 .ndo_stop = axienet_stop,
1060 .ndo_start_xmit = axienet_start_xmit,
1061 .ndo_change_mtu = axienet_change_mtu,
1062 .ndo_set_mac_address = netdev_set_mac_address,
1063 .ndo_validate_addr = eth_validate_addr,
1064 .ndo_set_rx_mode = axienet_set_multicast_list,
1065#ifdef CONFIG_NET_POLL_CONTROLLER
1066 .ndo_poll_controller = axienet_poll_controller,
1067#endif
1068};
1069
1070/**
1071 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1072 * @ndev: Pointer to net_device structure
1073 * @ed: Pointer to ethtool_drvinfo structure
1074 *
1075 * This implements ethtool command for getting the driver information.
1076 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1077 */
1078static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1079 struct ethtool_drvinfo *ed)
1080{
1081 strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1082 strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1083}
1084
1085/**
1086 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1087 * AxiEthernet core.
1088 * @ndev: Pointer to net_device structure
1089 *
1090 * This implements ethtool command for getting the total register length
1091 * information.
1092 *
1093 * Return: the total regs length
1094 */
1095static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1096{
1097 return sizeof(u32) * AXIENET_REGS_N;
1098}
1099
1100/**
1101 * axienet_ethtools_get_regs - Dump the contents of all registers present
1102 * in AxiEthernet core.
1103 * @ndev: Pointer to net_device structure
1104 * @regs: Pointer to ethtool_regs structure
1105 * @ret: Void pointer used to return the contents of the registers.
1106 *
1107 * This implements ethtool command for getting the Axi Ethernet register dump.
1108 * Issue "ethtool -d ethX" to execute this function.
1109 */
1110static void axienet_ethtools_get_regs(struct net_device *ndev,
1111 struct ethtool_regs *regs, void *ret)
1112{
1113 u32 *data = (u32 *) ret;
1114 size_t len = sizeof(u32) * AXIENET_REGS_N;
1115 struct axienet_local *lp = netdev_priv(ndev);
1116
1117 regs->version = 0;
1118 regs->len = len;
1119
1120 memset(data, 0, len);
1121 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1122 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1123 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1124 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1125 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1126 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1127 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1128 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1129 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1130 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1131 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1132 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1133 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1134 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1135 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1136 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1137 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1138 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1139 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1140 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1141 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1142 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1143 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1144 data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1145 data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1146 data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1147 data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1148 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1149 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1150 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1151 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1152 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1153}
1154
1155/**
1156 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1157 * Tx and Rx paths.
1158 * @ndev: Pointer to net_device structure
1159 * @epauseparm: Pointer to ethtool_pauseparam structure.
1160 *
1161 * This implements ethtool command for getting axi ethernet pause frame
1162 * setting. Issue "ethtool -a ethX" to execute this function.
1163 */
1164static void
1165axienet_ethtools_get_pauseparam(struct net_device *ndev,
1166 struct ethtool_pauseparam *epauseparm)
1167{
1168 u32 regval;
1169 struct axienet_local *lp = netdev_priv(ndev);
1170 epauseparm->autoneg = 0;
1171 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1172 epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1173 epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1174}
1175
1176/**
1177 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1178 * settings.
1179 * @ndev: Pointer to net_device structure
1180 * @epauseparm:Pointer to ethtool_pauseparam structure
1181 *
1182 * This implements ethtool command for enabling flow control on Rx and Tx
1183 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1184 * function.
1185 *
1186 * Return: 0 on success, -EFAULT if device is running
1187 */
1188static int
1189axienet_ethtools_set_pauseparam(struct net_device *ndev,
1190 struct ethtool_pauseparam *epauseparm)
1191{
1192 u32 regval = 0;
1193 struct axienet_local *lp = netdev_priv(ndev);
1194
1195 if (netif_running(ndev)) {
1196 netdev_err(ndev,
1197 "Please stop netif before applying configuration\n");
1198 return -EFAULT;
1199 }
1200
1201 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1202 if (epauseparm->tx_pause)
1203 regval |= XAE_FCC_FCTX_MASK;
1204 else
1205 regval &= ~XAE_FCC_FCTX_MASK;
1206 if (epauseparm->rx_pause)
1207 regval |= XAE_FCC_FCRX_MASK;
1208 else
1209 regval &= ~XAE_FCC_FCRX_MASK;
1210 axienet_iow(lp, XAE_FCC_OFFSET, regval);
1211
1212 return 0;
1213}
1214
1215/**
1216 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1217 * @ndev: Pointer to net_device structure
1218 * @ecoalesce: Pointer to ethtool_coalesce structure
1219 *
1220 * This implements ethtool command for getting the DMA interrupt coalescing
1221 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1222 * execute this function.
1223 *
1224 * Return: 0 always
1225 */
1226static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1227 struct ethtool_coalesce *ecoalesce)
1228{
1229 u32 regval = 0;
1230 struct axienet_local *lp = netdev_priv(ndev);
1231 regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1232 ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1233 >> XAXIDMA_COALESCE_SHIFT;
1234 regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1235 ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1236 >> XAXIDMA_COALESCE_SHIFT;
1237 return 0;
1238}
1239
1240/**
1241 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1242 * @ndev: Pointer to net_device structure
1243 * @ecoalesce: Pointer to ethtool_coalesce structure
1244 *
1245 * This implements ethtool command for setting the DMA interrupt coalescing
1246 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1247 * prompt to execute this function.
1248 *
1249 * Return: 0, on success, Non-zero error value on failure.
1250 */
1251static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1252 struct ethtool_coalesce *ecoalesce)
1253{
1254 struct axienet_local *lp = netdev_priv(ndev);
1255
1256 if (netif_running(ndev)) {
1257 netdev_err(ndev,
1258 "Please stop netif before applying configuration\n");
1259 return -EFAULT;
1260 }
1261
1262 if ((ecoalesce->rx_coalesce_usecs) ||
1263 (ecoalesce->rx_coalesce_usecs_irq) ||
1264 (ecoalesce->rx_max_coalesced_frames_irq) ||
1265 (ecoalesce->tx_coalesce_usecs) ||
1266 (ecoalesce->tx_coalesce_usecs_irq) ||
1267 (ecoalesce->tx_max_coalesced_frames_irq) ||
1268 (ecoalesce->stats_block_coalesce_usecs) ||
1269 (ecoalesce->use_adaptive_rx_coalesce) ||
1270 (ecoalesce->use_adaptive_tx_coalesce) ||
1271 (ecoalesce->pkt_rate_low) ||
1272 (ecoalesce->rx_coalesce_usecs_low) ||
1273 (ecoalesce->rx_max_coalesced_frames_low) ||
1274 (ecoalesce->tx_coalesce_usecs_low) ||
1275 (ecoalesce->tx_max_coalesced_frames_low) ||
1276 (ecoalesce->pkt_rate_high) ||
1277 (ecoalesce->rx_coalesce_usecs_high) ||
1278 (ecoalesce->rx_max_coalesced_frames_high) ||
1279 (ecoalesce->tx_coalesce_usecs_high) ||
1280 (ecoalesce->tx_max_coalesced_frames_high) ||
1281 (ecoalesce->rate_sample_interval))
1282 return -EOPNOTSUPP;
1283 if (ecoalesce->rx_max_coalesced_frames)
1284 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1285 if (ecoalesce->tx_max_coalesced_frames)
1286 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1287
1288 return 0;
1289}
1290
1291static const struct ethtool_ops axienet_ethtool_ops = {
1292 .get_drvinfo = axienet_ethtools_get_drvinfo,
1293 .get_regs_len = axienet_ethtools_get_regs_len,
1294 .get_regs = axienet_ethtools_get_regs,
1295 .get_link = ethtool_op_get_link,
1296 .get_pauseparam = axienet_ethtools_get_pauseparam,
1297 .set_pauseparam = axienet_ethtools_set_pauseparam,
1298 .get_coalesce = axienet_ethtools_get_coalesce,
1299 .set_coalesce = axienet_ethtools_set_coalesce,
1300 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1301 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1302};
1303
1304/**
1305 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1306 * @data: Data passed
1307 *
1308 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1309 * Tx/Rx BDs.
1310 */
1311static void axienet_dma_err_handler(unsigned long data)
1312{
1313 u32 axienet_status;
1314 u32 cr, i;
1315 int mdio_mcreg;
1316 struct axienet_local *lp = (struct axienet_local *) data;
1317 struct net_device *ndev = lp->ndev;
1318 struct axidma_bd *cur_p;
1319
1320 axienet_setoptions(ndev, lp->options &
1321 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1322 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1323 axienet_mdio_wait_until_ready(lp);
1324 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1325 * When we do an Axi Ethernet reset, it resets the complete core
1326 * including the MDIO. So if MDIO is not disabled when the reset
1327 * process is started, MDIO will be broken afterwards.
1328 */
1329 axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1330 ~XAE_MDIO_MC_MDIOEN_MASK));
1331
1332 __axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
1333 __axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
1334
1335 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1336 axienet_mdio_wait_until_ready(lp);
1337
1338 for (i = 0; i < TX_BD_NUM; i++) {
1339 cur_p = &lp->tx_bd_v[i];
1340 if (cur_p->phys)
1341 dma_unmap_single(ndev->dev.parent, cur_p->phys,
1342 (cur_p->cntrl &
1343 XAXIDMA_BD_CTRL_LENGTH_MASK),
1344 DMA_TO_DEVICE);
1345 if (cur_p->app4)
1346 dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1347 cur_p->phys = 0;
1348 cur_p->cntrl = 0;
1349 cur_p->status = 0;
1350 cur_p->app0 = 0;
1351 cur_p->app1 = 0;
1352 cur_p->app2 = 0;
1353 cur_p->app3 = 0;
1354 cur_p->app4 = 0;
1355 cur_p->sw_id_offset = 0;
1356 }
1357
1358 for (i = 0; i < RX_BD_NUM; i++) {
1359 cur_p = &lp->rx_bd_v[i];
1360 cur_p->status = 0;
1361 cur_p->app0 = 0;
1362 cur_p->app1 = 0;
1363 cur_p->app2 = 0;
1364 cur_p->app3 = 0;
1365 cur_p->app4 = 0;
1366 }
1367
1368 lp->tx_bd_ci = 0;
1369 lp->tx_bd_tail = 0;
1370 lp->rx_bd_ci = 0;
1371
1372 /* Start updating the Rx channel control register */
1373 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1374 /* Update the interrupt coalesce count */
1375 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1376 (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1377 /* Update the delay timer count */
1378 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1379 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1380 /* Enable coalesce, delay timer and error interrupts */
1381 cr |= XAXIDMA_IRQ_ALL_MASK;
1382 /* Finally write to the Rx channel control register */
1383 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1384
1385 /* Start updating the Tx channel control register */
1386 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1387 /* Update the interrupt coalesce count */
1388 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1389 (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1390 /* Update the delay timer count */
1391 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1392 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1393 /* Enable coalesce, delay timer and error interrupts */
1394 cr |= XAXIDMA_IRQ_ALL_MASK;
1395 /* Finally write to the Tx channel control register */
1396 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1397
1398 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
1399 * halted state. This will make the Rx side ready for reception.
1400 */
1401 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1402 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1403 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1404 cr | XAXIDMA_CR_RUNSTOP_MASK);
1405 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1406 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1407
1408 /* Write to the RS (Run-stop) bit in the Tx channel control register.
1409 * Tx channel is now ready to run. But only after we write to the
1410 * tail pointer register that the Tx channel will start transmitting
1411 */
1412 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1413 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1414 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1415 cr | XAXIDMA_CR_RUNSTOP_MASK);
1416
1417 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1418 axienet_status &= ~XAE_RCW1_RX_MASK;
1419 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1420
1421 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1422 if (axienet_status & XAE_INT_RXRJECT_MASK)
1423 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1424 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1425
1426 /* Sync default options with HW but leave receiver and
1427 * transmitter disabled.
1428 */
1429 axienet_setoptions(ndev, lp->options &
1430 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1431 axienet_set_mac_address(ndev, NULL);
1432 axienet_set_multicast_list(ndev);
1433 axienet_setoptions(ndev, lp->options);
1434}
1435
1436/**
1437 * axienet_probe - Axi Ethernet probe function.
1438 * @pdev: Pointer to platform device structure.
1439 *
1440 * Return: 0, on success
1441 * Non-zero error value on failure.
1442 *
1443 * This is the probe routine for Axi Ethernet driver. This is called before
1444 * any other driver routines are invoked. It allocates and sets up the Ethernet
1445 * device. Parses through device tree and populates fields of
1446 * axienet_local. It registers the Ethernet device.
1447 */
1448static int axienet_probe(struct platform_device *pdev)
1449{
1450 int ret;
1451 struct device_node *np;
1452 struct axienet_local *lp;
1453 struct net_device *ndev;
1454 const void *mac_addr;
1455 struct resource *ethres, dmares;
1456 u32 value;
1457
1458 ndev = alloc_etherdev(sizeof(*lp));
1459 if (!ndev)
1460 return -ENOMEM;
1461
1462 platform_set_drvdata(pdev, ndev);
1463
1464 SET_NETDEV_DEV(ndev, &pdev->dev);
1465 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
1466 ndev->features = NETIF_F_SG;
1467 ndev->netdev_ops = &axienet_netdev_ops;
1468 ndev->ethtool_ops = &axienet_ethtool_ops;
1469
1470 /* MTU range: 64 - 9000 */
1471 ndev->min_mtu = 64;
1472 ndev->max_mtu = XAE_JUMBO_MTU;
1473
1474 lp = netdev_priv(ndev);
1475 lp->ndev = ndev;
1476 lp->dev = &pdev->dev;
1477 lp->options = XAE_OPTION_DEFAULTS;
1478 /* Map device registers */
1479 ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1480 lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1481 if (IS_ERR(lp->regs)) {
1482 dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1483 ret = PTR_ERR(lp->regs);
1484 goto free_netdev;
1485 }
1486
1487 /* Setup checksum offload, but default to off if not specified */
1488 lp->features = 0;
1489
1490 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1491 if (!ret) {
1492 switch (value) {
1493 case 1:
1494 lp->csum_offload_on_tx_path =
1495 XAE_FEATURE_PARTIAL_TX_CSUM;
1496 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1497 /* Can checksum TCP/UDP over IPv4. */
1498 ndev->features |= NETIF_F_IP_CSUM;
1499 break;
1500 case 2:
1501 lp->csum_offload_on_tx_path =
1502 XAE_FEATURE_FULL_TX_CSUM;
1503 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1504 /* Can checksum TCP/UDP over IPv4. */
1505 ndev->features |= NETIF_F_IP_CSUM;
1506 break;
1507 default:
1508 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1509 }
1510 }
1511 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1512 if (!ret) {
1513 switch (value) {
1514 case 1:
1515 lp->csum_offload_on_rx_path =
1516 XAE_FEATURE_PARTIAL_RX_CSUM;
1517 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1518 break;
1519 case 2:
1520 lp->csum_offload_on_rx_path =
1521 XAE_FEATURE_FULL_RX_CSUM;
1522 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1523 break;
1524 default:
1525 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1526 }
1527 }
1528 /* For supporting jumbo frames, the Axi Ethernet hardware must have
1529 * a larger Rx/Tx Memory. Typically, the size must be large so that
1530 * we can enable jumbo option and start supporting jumbo frames.
1531 * Here we check for memory allocated for Rx/Tx in the hardware from
1532 * the device-tree and accordingly set flags.
1533 */
1534 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1535
1536 /* Start with the proprietary, and broken phy_type */
1537 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1538 if (!ret) {
1539 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1540 switch (value) {
1541 case XAE_PHY_TYPE_MII:
1542 lp->phy_mode = PHY_INTERFACE_MODE_MII;
1543 break;
1544 case XAE_PHY_TYPE_GMII:
1545 lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1546 break;
1547 case XAE_PHY_TYPE_RGMII_2_0:
1548 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1549 break;
1550 case XAE_PHY_TYPE_SGMII:
1551 lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1552 break;
1553 case XAE_PHY_TYPE_1000BASE_X:
1554 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1555 break;
1556 default:
1557 ret = -EINVAL;
1558 goto free_netdev;
1559 }
1560 } else {
1561 lp->phy_mode = of_get_phy_mode(pdev->dev.of_node);
1562 if (lp->phy_mode < 0) {
1563 ret = -EINVAL;
1564 goto free_netdev;
1565 }
1566 }
1567
1568 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1569 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1570 if (!np) {
1571 dev_err(&pdev->dev, "could not find DMA node\n");
1572 ret = -ENODEV;
1573 goto free_netdev;
1574 }
1575 ret = of_address_to_resource(np, 0, &dmares);
1576 if (ret) {
1577 dev_err(&pdev->dev, "unable to get DMA resource\n");
1578 goto free_netdev;
1579 }
1580 lp->dma_regs = devm_ioremap_resource(&pdev->dev, &dmares);
1581 if (IS_ERR(lp->dma_regs)) {
1582 dev_err(&pdev->dev, "could not map DMA regs\n");
1583 ret = PTR_ERR(lp->dma_regs);
1584 goto free_netdev;
1585 }
1586 lp->rx_irq = irq_of_parse_and_map(np, 1);
1587 lp->tx_irq = irq_of_parse_and_map(np, 0);
1588 of_node_put(np);
1589 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1590 dev_err(&pdev->dev, "could not determine irqs\n");
1591 ret = -ENOMEM;
1592 goto free_netdev;
1593 }
1594
1595 /* Retrieve the MAC address */
1596 mac_addr = of_get_mac_address(pdev->dev.of_node);
1597 if (!mac_addr) {
1598 dev_err(&pdev->dev, "could not find MAC address\n");
1599 goto free_netdev;
1600 }
1601 axienet_set_mac_address(ndev, mac_addr);
1602
1603 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1604 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1605
1606 lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1607 if (lp->phy_node) {
1608 ret = axienet_mdio_setup(lp, pdev->dev.of_node);
1609 if (ret)
1610 dev_warn(&pdev->dev, "error registering MDIO bus\n");
1611 }
1612
1613 ret = register_netdev(lp->ndev);
1614 if (ret) {
1615 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1616 goto free_netdev;
1617 }
1618
1619 return 0;
1620
1621free_netdev:
1622 free_netdev(ndev);
1623
1624 return ret;
1625}
1626
1627static int axienet_remove(struct platform_device *pdev)
1628{
1629 struct net_device *ndev = platform_get_drvdata(pdev);
1630 struct axienet_local *lp = netdev_priv(ndev);
1631
1632 axienet_mdio_teardown(lp);
1633 unregister_netdev(ndev);
1634
1635 of_node_put(lp->phy_node);
1636 lp->phy_node = NULL;
1637
1638 free_netdev(ndev);
1639
1640 return 0;
1641}
1642
1643static struct platform_driver axienet_driver = {
1644 .probe = axienet_probe,
1645 .remove = axienet_remove,
1646 .driver = {
1647 .name = "xilinx_axienet",
1648 .of_match_table = axienet_of_match,
1649 },
1650};
1651
1652module_platform_driver(axienet_driver);
1653
1654MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1655MODULE_AUTHOR("Xilinx");
1656MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Xilinx Axi Ethernet device driver
4 *
5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9 * Copyright (c) 2010 - 2011 PetaLogix
10 * Copyright (c) 2019 - 2022 Calian Advanced Technologies
11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12 *
13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14 * and Spartan6.
15 *
16 * TODO:
17 * - Add Axi Fifo support.
18 * - Factor out Axi DMA code into separate driver.
19 * - Test and fix basic multicast filtering.
20 * - Add support for extended multicast filtering.
21 * - Test basic VLAN support.
22 * - Add support for extended VLAN support.
23 */
24
25#include <linux/clk.h>
26#include <linux/delay.h>
27#include <linux/etherdevice.h>
28#include <linux/module.h>
29#include <linux/netdevice.h>
30#include <linux/of_mdio.h>
31#include <linux/of_net.h>
32#include <linux/of_platform.h>
33#include <linux/of_irq.h>
34#include <linux/of_address.h>
35#include <linux/skbuff.h>
36#include <linux/math64.h>
37#include <linux/phy.h>
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40
41#include "xilinx_axienet.h"
42
43/* Descriptors defines for Tx and Rx DMA */
44#define TX_BD_NUM_DEFAULT 128
45#define RX_BD_NUM_DEFAULT 1024
46#define TX_BD_NUM_MIN (MAX_SKB_FRAGS + 1)
47#define TX_BD_NUM_MAX 4096
48#define RX_BD_NUM_MAX 4096
49
50/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
51#define DRIVER_NAME "xaxienet"
52#define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
53#define DRIVER_VERSION "1.00a"
54
55#define AXIENET_REGS_N 40
56
57/* Match table for of_platform binding */
58static const struct of_device_id axienet_of_match[] = {
59 { .compatible = "xlnx,axi-ethernet-1.00.a", },
60 { .compatible = "xlnx,axi-ethernet-1.01.a", },
61 { .compatible = "xlnx,axi-ethernet-2.01.a", },
62 {},
63};
64
65MODULE_DEVICE_TABLE(of, axienet_of_match);
66
67/* Option table for setting up Axi Ethernet hardware options */
68static struct axienet_option axienet_options[] = {
69 /* Turn on jumbo packet support for both Rx and Tx */
70 {
71 .opt = XAE_OPTION_JUMBO,
72 .reg = XAE_TC_OFFSET,
73 .m_or = XAE_TC_JUM_MASK,
74 }, {
75 .opt = XAE_OPTION_JUMBO,
76 .reg = XAE_RCW1_OFFSET,
77 .m_or = XAE_RCW1_JUM_MASK,
78 }, { /* Turn on VLAN packet support for both Rx and Tx */
79 .opt = XAE_OPTION_VLAN,
80 .reg = XAE_TC_OFFSET,
81 .m_or = XAE_TC_VLAN_MASK,
82 }, {
83 .opt = XAE_OPTION_VLAN,
84 .reg = XAE_RCW1_OFFSET,
85 .m_or = XAE_RCW1_VLAN_MASK,
86 }, { /* Turn on FCS stripping on receive packets */
87 .opt = XAE_OPTION_FCS_STRIP,
88 .reg = XAE_RCW1_OFFSET,
89 .m_or = XAE_RCW1_FCS_MASK,
90 }, { /* Turn on FCS insertion on transmit packets */
91 .opt = XAE_OPTION_FCS_INSERT,
92 .reg = XAE_TC_OFFSET,
93 .m_or = XAE_TC_FCS_MASK,
94 }, { /* Turn off length/type field checking on receive packets */
95 .opt = XAE_OPTION_LENTYPE_ERR,
96 .reg = XAE_RCW1_OFFSET,
97 .m_or = XAE_RCW1_LT_DIS_MASK,
98 }, { /* Turn on Rx flow control */
99 .opt = XAE_OPTION_FLOW_CONTROL,
100 .reg = XAE_FCC_OFFSET,
101 .m_or = XAE_FCC_FCRX_MASK,
102 }, { /* Turn on Tx flow control */
103 .opt = XAE_OPTION_FLOW_CONTROL,
104 .reg = XAE_FCC_OFFSET,
105 .m_or = XAE_FCC_FCTX_MASK,
106 }, { /* Turn on promiscuous frame filtering */
107 .opt = XAE_OPTION_PROMISC,
108 .reg = XAE_FMI_OFFSET,
109 .m_or = XAE_FMI_PM_MASK,
110 }, { /* Enable transmitter */
111 .opt = XAE_OPTION_TXEN,
112 .reg = XAE_TC_OFFSET,
113 .m_or = XAE_TC_TX_MASK,
114 }, { /* Enable receiver */
115 .opt = XAE_OPTION_RXEN,
116 .reg = XAE_RCW1_OFFSET,
117 .m_or = XAE_RCW1_RX_MASK,
118 },
119 {}
120};
121
122/**
123 * axienet_dma_in32 - Memory mapped Axi DMA register read
124 * @lp: Pointer to axienet local structure
125 * @reg: Address offset from the base address of the Axi DMA core
126 *
127 * Return: The contents of the Axi DMA register
128 *
129 * This function returns the contents of the corresponding Axi DMA register.
130 */
131static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
132{
133 return ioread32(lp->dma_regs + reg);
134}
135
136static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
137 struct axidma_bd *desc)
138{
139 desc->phys = lower_32_bits(addr);
140 if (lp->features & XAE_FEATURE_DMA_64BIT)
141 desc->phys_msb = upper_32_bits(addr);
142}
143
144static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
145 struct axidma_bd *desc)
146{
147 dma_addr_t ret = desc->phys;
148
149 if (lp->features & XAE_FEATURE_DMA_64BIT)
150 ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
151
152 return ret;
153}
154
155/**
156 * axienet_dma_bd_release - Release buffer descriptor rings
157 * @ndev: Pointer to the net_device structure
158 *
159 * This function is used to release the descriptors allocated in
160 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
161 * driver stop api is called.
162 */
163static void axienet_dma_bd_release(struct net_device *ndev)
164{
165 int i;
166 struct axienet_local *lp = netdev_priv(ndev);
167
168 /* If we end up here, tx_bd_v must have been DMA allocated. */
169 dma_free_coherent(lp->dev,
170 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
171 lp->tx_bd_v,
172 lp->tx_bd_p);
173
174 if (!lp->rx_bd_v)
175 return;
176
177 for (i = 0; i < lp->rx_bd_num; i++) {
178 dma_addr_t phys;
179
180 /* A NULL skb means this descriptor has not been initialised
181 * at all.
182 */
183 if (!lp->rx_bd_v[i].skb)
184 break;
185
186 dev_kfree_skb(lp->rx_bd_v[i].skb);
187
188 /* For each descriptor, we programmed cntrl with the (non-zero)
189 * descriptor size, after it had been successfully allocated.
190 * So a non-zero value in there means we need to unmap it.
191 */
192 if (lp->rx_bd_v[i].cntrl) {
193 phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
194 dma_unmap_single(lp->dev, phys,
195 lp->max_frm_size, DMA_FROM_DEVICE);
196 }
197 }
198
199 dma_free_coherent(lp->dev,
200 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
201 lp->rx_bd_v,
202 lp->rx_bd_p);
203}
204
205/**
206 * axienet_usec_to_timer - Calculate IRQ delay timer value
207 * @lp: Pointer to the axienet_local structure
208 * @coalesce_usec: Microseconds to convert into timer value
209 */
210static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
211{
212 u32 result;
213 u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
214
215 if (lp->axi_clk)
216 clk_rate = clk_get_rate(lp->axi_clk);
217
218 /* 1 Timeout Interval = 125 * (clock period of SG clock) */
219 result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
220 (u64)125000000);
221 if (result > 255)
222 result = 255;
223
224 return result;
225}
226
227/**
228 * axienet_dma_start - Set up DMA registers and start DMA operation
229 * @lp: Pointer to the axienet_local structure
230 */
231static void axienet_dma_start(struct axienet_local *lp)
232{
233 /* Start updating the Rx channel control register */
234 lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
235 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
236 /* Only set interrupt delay timer if not generating an interrupt on
237 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
238 */
239 if (lp->coalesce_count_rx > 1)
240 lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
241 << XAXIDMA_DELAY_SHIFT) |
242 XAXIDMA_IRQ_DELAY_MASK;
243 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
244
245 /* Start updating the Tx channel control register */
246 lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
247 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
248 /* Only set interrupt delay timer if not generating an interrupt on
249 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
250 */
251 if (lp->coalesce_count_tx > 1)
252 lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
253 << XAXIDMA_DELAY_SHIFT) |
254 XAXIDMA_IRQ_DELAY_MASK;
255 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
256
257 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
258 * halted state. This will make the Rx side ready for reception.
259 */
260 axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
261 lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
262 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
263 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
264 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
265
266 /* Write to the RS (Run-stop) bit in the Tx channel control register.
267 * Tx channel is now ready to run. But only after we write to the
268 * tail pointer register that the Tx channel will start transmitting.
269 */
270 axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
271 lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
272 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
273}
274
275/**
276 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
277 * @ndev: Pointer to the net_device structure
278 *
279 * Return: 0, on success -ENOMEM, on failure
280 *
281 * This function is called to initialize the Rx and Tx DMA descriptor
282 * rings. This initializes the descriptors with required default values
283 * and is called when Axi Ethernet driver reset is called.
284 */
285static int axienet_dma_bd_init(struct net_device *ndev)
286{
287 int i;
288 struct sk_buff *skb;
289 struct axienet_local *lp = netdev_priv(ndev);
290
291 /* Reset the indexes which are used for accessing the BDs */
292 lp->tx_bd_ci = 0;
293 lp->tx_bd_tail = 0;
294 lp->rx_bd_ci = 0;
295
296 /* Allocate the Tx and Rx buffer descriptors. */
297 lp->tx_bd_v = dma_alloc_coherent(lp->dev,
298 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
299 &lp->tx_bd_p, GFP_KERNEL);
300 if (!lp->tx_bd_v)
301 return -ENOMEM;
302
303 lp->rx_bd_v = dma_alloc_coherent(lp->dev,
304 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
305 &lp->rx_bd_p, GFP_KERNEL);
306 if (!lp->rx_bd_v)
307 goto out;
308
309 for (i = 0; i < lp->tx_bd_num; i++) {
310 dma_addr_t addr = lp->tx_bd_p +
311 sizeof(*lp->tx_bd_v) *
312 ((i + 1) % lp->tx_bd_num);
313
314 lp->tx_bd_v[i].next = lower_32_bits(addr);
315 if (lp->features & XAE_FEATURE_DMA_64BIT)
316 lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
317 }
318
319 for (i = 0; i < lp->rx_bd_num; i++) {
320 dma_addr_t addr;
321
322 addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
323 ((i + 1) % lp->rx_bd_num);
324 lp->rx_bd_v[i].next = lower_32_bits(addr);
325 if (lp->features & XAE_FEATURE_DMA_64BIT)
326 lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
327
328 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
329 if (!skb)
330 goto out;
331
332 lp->rx_bd_v[i].skb = skb;
333 addr = dma_map_single(lp->dev, skb->data,
334 lp->max_frm_size, DMA_FROM_DEVICE);
335 if (dma_mapping_error(lp->dev, addr)) {
336 netdev_err(ndev, "DMA mapping error\n");
337 goto out;
338 }
339 desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
340
341 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
342 }
343
344 axienet_dma_start(lp);
345
346 return 0;
347out:
348 axienet_dma_bd_release(ndev);
349 return -ENOMEM;
350}
351
352/**
353 * axienet_set_mac_address - Write the MAC address
354 * @ndev: Pointer to the net_device structure
355 * @address: 6 byte Address to be written as MAC address
356 *
357 * This function is called to initialize the MAC address of the Axi Ethernet
358 * core. It writes to the UAW0 and UAW1 registers of the core.
359 */
360static void axienet_set_mac_address(struct net_device *ndev,
361 const void *address)
362{
363 struct axienet_local *lp = netdev_priv(ndev);
364
365 if (address)
366 eth_hw_addr_set(ndev, address);
367 if (!is_valid_ether_addr(ndev->dev_addr))
368 eth_hw_addr_random(ndev);
369
370 /* Set up unicast MAC address filter set its mac address */
371 axienet_iow(lp, XAE_UAW0_OFFSET,
372 (ndev->dev_addr[0]) |
373 (ndev->dev_addr[1] << 8) |
374 (ndev->dev_addr[2] << 16) |
375 (ndev->dev_addr[3] << 24));
376 axienet_iow(lp, XAE_UAW1_OFFSET,
377 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
378 ~XAE_UAW1_UNICASTADDR_MASK) |
379 (ndev->dev_addr[4] |
380 (ndev->dev_addr[5] << 8))));
381}
382
383/**
384 * netdev_set_mac_address - Write the MAC address (from outside the driver)
385 * @ndev: Pointer to the net_device structure
386 * @p: 6 byte Address to be written as MAC address
387 *
388 * Return: 0 for all conditions. Presently, there is no failure case.
389 *
390 * This function is called to initialize the MAC address of the Axi Ethernet
391 * core. It calls the core specific axienet_set_mac_address. This is the
392 * function that goes into net_device_ops structure entry ndo_set_mac_address.
393 */
394static int netdev_set_mac_address(struct net_device *ndev, void *p)
395{
396 struct sockaddr *addr = p;
397 axienet_set_mac_address(ndev, addr->sa_data);
398 return 0;
399}
400
401/**
402 * axienet_set_multicast_list - Prepare the multicast table
403 * @ndev: Pointer to the net_device structure
404 *
405 * This function is called to initialize the multicast table during
406 * initialization. The Axi Ethernet basic multicast support has a four-entry
407 * multicast table which is initialized here. Additionally this function
408 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
409 * means whenever the multicast table entries need to be updated this
410 * function gets called.
411 */
412static void axienet_set_multicast_list(struct net_device *ndev)
413{
414 int i;
415 u32 reg, af0reg, af1reg;
416 struct axienet_local *lp = netdev_priv(ndev);
417
418 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
419 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
420 /* We must make the kernel realize we had to move into
421 * promiscuous mode. If it was a promiscuous mode request
422 * the flag is already set. If not we set it.
423 */
424 ndev->flags |= IFF_PROMISC;
425 reg = axienet_ior(lp, XAE_FMI_OFFSET);
426 reg |= XAE_FMI_PM_MASK;
427 axienet_iow(lp, XAE_FMI_OFFSET, reg);
428 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
429 } else if (!netdev_mc_empty(ndev)) {
430 struct netdev_hw_addr *ha;
431
432 i = 0;
433 netdev_for_each_mc_addr(ha, ndev) {
434 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
435 break;
436
437 af0reg = (ha->addr[0]);
438 af0reg |= (ha->addr[1] << 8);
439 af0reg |= (ha->addr[2] << 16);
440 af0reg |= (ha->addr[3] << 24);
441
442 af1reg = (ha->addr[4]);
443 af1reg |= (ha->addr[5] << 8);
444
445 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
446 reg |= i;
447
448 axienet_iow(lp, XAE_FMI_OFFSET, reg);
449 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
450 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
451 i++;
452 }
453 } else {
454 reg = axienet_ior(lp, XAE_FMI_OFFSET);
455 reg &= ~XAE_FMI_PM_MASK;
456
457 axienet_iow(lp, XAE_FMI_OFFSET, reg);
458
459 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
460 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
461 reg |= i;
462
463 axienet_iow(lp, XAE_FMI_OFFSET, reg);
464 axienet_iow(lp, XAE_AF0_OFFSET, 0);
465 axienet_iow(lp, XAE_AF1_OFFSET, 0);
466 }
467
468 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
469 }
470}
471
472/**
473 * axienet_setoptions - Set an Axi Ethernet option
474 * @ndev: Pointer to the net_device structure
475 * @options: Option to be enabled/disabled
476 *
477 * The Axi Ethernet core has multiple features which can be selectively turned
478 * on or off. The typical options could be jumbo frame option, basic VLAN
479 * option, promiscuous mode option etc. This function is used to set or clear
480 * these options in the Axi Ethernet hardware. This is done through
481 * axienet_option structure .
482 */
483static void axienet_setoptions(struct net_device *ndev, u32 options)
484{
485 int reg;
486 struct axienet_local *lp = netdev_priv(ndev);
487 struct axienet_option *tp = &axienet_options[0];
488
489 while (tp->opt) {
490 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
491 if (options & tp->opt)
492 reg |= tp->m_or;
493 axienet_iow(lp, tp->reg, reg);
494 tp++;
495 }
496
497 lp->options |= options;
498}
499
500static int __axienet_device_reset(struct axienet_local *lp)
501{
502 u32 value;
503 int ret;
504
505 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
506 * process of Axi DMA takes a while to complete as all pending
507 * commands/transfers will be flushed or completed during this
508 * reset process.
509 * Note that even though both TX and RX have their own reset register,
510 * they both reset the entire DMA core, so only one needs to be used.
511 */
512 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
513 ret = read_poll_timeout(axienet_dma_in32, value,
514 !(value & XAXIDMA_CR_RESET_MASK),
515 DELAY_OF_ONE_MILLISEC, 50000, false, lp,
516 XAXIDMA_TX_CR_OFFSET);
517 if (ret) {
518 dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
519 return ret;
520 }
521
522 /* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
523 ret = read_poll_timeout(axienet_ior, value,
524 value & XAE_INT_PHYRSTCMPLT_MASK,
525 DELAY_OF_ONE_MILLISEC, 50000, false, lp,
526 XAE_IS_OFFSET);
527 if (ret) {
528 dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
529 return ret;
530 }
531
532 return 0;
533}
534
535/**
536 * axienet_dma_stop - Stop DMA operation
537 * @lp: Pointer to the axienet_local structure
538 */
539static void axienet_dma_stop(struct axienet_local *lp)
540{
541 int count;
542 u32 cr, sr;
543
544 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
545 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
546 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
547 synchronize_irq(lp->rx_irq);
548
549 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
550 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
551 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
552 synchronize_irq(lp->tx_irq);
553
554 /* Give DMAs a chance to halt gracefully */
555 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
556 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
557 msleep(20);
558 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
559 }
560
561 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
562 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
563 msleep(20);
564 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
565 }
566
567 /* Do a reset to ensure DMA is really stopped */
568 axienet_lock_mii(lp);
569 __axienet_device_reset(lp);
570 axienet_unlock_mii(lp);
571}
572
573/**
574 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
575 * @ndev: Pointer to the net_device structure
576 *
577 * This function is called to reset and initialize the Axi Ethernet core. This
578 * is typically called during initialization. It does a reset of the Axi DMA
579 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
580 * are connected to Axi Ethernet reset lines, this in turn resets the Axi
581 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
582 * core.
583 * Returns 0 on success or a negative error number otherwise.
584 */
585static int axienet_device_reset(struct net_device *ndev)
586{
587 u32 axienet_status;
588 struct axienet_local *lp = netdev_priv(ndev);
589 int ret;
590
591 ret = __axienet_device_reset(lp);
592 if (ret)
593 return ret;
594
595 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
596 lp->options |= XAE_OPTION_VLAN;
597 lp->options &= (~XAE_OPTION_JUMBO);
598
599 if ((ndev->mtu > XAE_MTU) &&
600 (ndev->mtu <= XAE_JUMBO_MTU)) {
601 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
602 XAE_TRL_SIZE;
603
604 if (lp->max_frm_size <= lp->rxmem)
605 lp->options |= XAE_OPTION_JUMBO;
606 }
607
608 ret = axienet_dma_bd_init(ndev);
609 if (ret) {
610 netdev_err(ndev, "%s: descriptor allocation failed\n",
611 __func__);
612 return ret;
613 }
614
615 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
616 axienet_status &= ~XAE_RCW1_RX_MASK;
617 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
618
619 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
620 if (axienet_status & XAE_INT_RXRJECT_MASK)
621 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
622 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
623 XAE_INT_RECV_ERROR_MASK : 0);
624
625 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
626
627 /* Sync default options with HW but leave receiver and
628 * transmitter disabled.
629 */
630 axienet_setoptions(ndev, lp->options &
631 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
632 axienet_set_mac_address(ndev, NULL);
633 axienet_set_multicast_list(ndev);
634 axienet_setoptions(ndev, lp->options);
635
636 netif_trans_update(ndev);
637
638 return 0;
639}
640
641/**
642 * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
643 * @lp: Pointer to the axienet_local structure
644 * @first_bd: Index of first descriptor to clean up
645 * @nr_bds: Max number of descriptors to clean up
646 * @force: Whether to clean descriptors even if not complete
647 * @sizep: Pointer to a u32 filled with the total sum of all bytes
648 * in all cleaned-up descriptors. Ignored if NULL.
649 * @budget: NAPI budget (use 0 when not called from NAPI poll)
650 *
651 * Would either be called after a successful transmit operation, or after
652 * there was an error when setting up the chain.
653 * Returns the number of descriptors handled.
654 */
655static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
656 int nr_bds, bool force, u32 *sizep, int budget)
657{
658 struct axidma_bd *cur_p;
659 unsigned int status;
660 dma_addr_t phys;
661 int i;
662
663 for (i = 0; i < nr_bds; i++) {
664 cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
665 status = cur_p->status;
666
667 /* If force is not specified, clean up only descriptors
668 * that have been completed by the MAC.
669 */
670 if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
671 break;
672
673 /* Ensure we see complete descriptor update */
674 dma_rmb();
675 phys = desc_get_phys_addr(lp, cur_p);
676 dma_unmap_single(lp->dev, phys,
677 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
678 DMA_TO_DEVICE);
679
680 if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
681 napi_consume_skb(cur_p->skb, budget);
682
683 cur_p->app0 = 0;
684 cur_p->app1 = 0;
685 cur_p->app2 = 0;
686 cur_p->app4 = 0;
687 cur_p->skb = NULL;
688 /* ensure our transmit path and device don't prematurely see status cleared */
689 wmb();
690 cur_p->cntrl = 0;
691 cur_p->status = 0;
692
693 if (sizep)
694 *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
695 }
696
697 return i;
698}
699
700/**
701 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
702 * @lp: Pointer to the axienet_local structure
703 * @num_frag: The number of BDs to check for
704 *
705 * Return: 0, on success
706 * NETDEV_TX_BUSY, if any of the descriptors are not free
707 *
708 * This function is invoked before BDs are allocated and transmission starts.
709 * This function returns 0 if a BD or group of BDs can be allocated for
710 * transmission. If the BD or any of the BDs are not free the function
711 * returns a busy status.
712 */
713static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
714 int num_frag)
715{
716 struct axidma_bd *cur_p;
717
718 /* Ensure we see all descriptor updates from device or TX polling */
719 rmb();
720 cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
721 lp->tx_bd_num];
722 if (cur_p->cntrl)
723 return NETDEV_TX_BUSY;
724 return 0;
725}
726
727/**
728 * axienet_tx_poll - Invoked once a transmit is completed by the
729 * Axi DMA Tx channel.
730 * @napi: Pointer to NAPI structure.
731 * @budget: Max number of TX packets to process.
732 *
733 * Return: Number of TX packets processed.
734 *
735 * This function is invoked from the NAPI processing to notify the completion
736 * of transmit operation. It clears fields in the corresponding Tx BDs and
737 * unmaps the corresponding buffer so that CPU can regain ownership of the
738 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
739 * required.
740 */
741static int axienet_tx_poll(struct napi_struct *napi, int budget)
742{
743 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
744 struct net_device *ndev = lp->ndev;
745 u32 size = 0;
746 int packets;
747
748 packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget);
749
750 if (packets) {
751 lp->tx_bd_ci += packets;
752 if (lp->tx_bd_ci >= lp->tx_bd_num)
753 lp->tx_bd_ci %= lp->tx_bd_num;
754
755 u64_stats_update_begin(&lp->tx_stat_sync);
756 u64_stats_add(&lp->tx_packets, packets);
757 u64_stats_add(&lp->tx_bytes, size);
758 u64_stats_update_end(&lp->tx_stat_sync);
759
760 /* Matches barrier in axienet_start_xmit */
761 smp_mb();
762
763 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
764 netif_wake_queue(ndev);
765 }
766
767 if (packets < budget && napi_complete_done(napi, packets)) {
768 /* Re-enable TX completion interrupts. This should
769 * cause an immediate interrupt if any TX packets are
770 * already pending.
771 */
772 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
773 }
774 return packets;
775}
776
777/**
778 * axienet_start_xmit - Starts the transmission.
779 * @skb: sk_buff pointer that contains data to be Txed.
780 * @ndev: Pointer to net_device structure.
781 *
782 * Return: NETDEV_TX_OK, on success
783 * NETDEV_TX_BUSY, if any of the descriptors are not free
784 *
785 * This function is invoked from upper layers to initiate transmission. The
786 * function uses the next available free BDs and populates their fields to
787 * start the transmission. Additionally if checksum offloading is supported,
788 * it populates AXI Stream Control fields with appropriate values.
789 */
790static netdev_tx_t
791axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
792{
793 u32 ii;
794 u32 num_frag;
795 u32 csum_start_off;
796 u32 csum_index_off;
797 skb_frag_t *frag;
798 dma_addr_t tail_p, phys;
799 u32 orig_tail_ptr, new_tail_ptr;
800 struct axienet_local *lp = netdev_priv(ndev);
801 struct axidma_bd *cur_p;
802
803 orig_tail_ptr = lp->tx_bd_tail;
804 new_tail_ptr = orig_tail_ptr;
805
806 num_frag = skb_shinfo(skb)->nr_frags;
807 cur_p = &lp->tx_bd_v[orig_tail_ptr];
808
809 if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
810 /* Should not happen as last start_xmit call should have
811 * checked for sufficient space and queue should only be
812 * woken when sufficient space is available.
813 */
814 netif_stop_queue(ndev);
815 if (net_ratelimit())
816 netdev_warn(ndev, "TX ring unexpectedly full\n");
817 return NETDEV_TX_BUSY;
818 }
819
820 if (skb->ip_summed == CHECKSUM_PARTIAL) {
821 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
822 /* Tx Full Checksum Offload Enabled */
823 cur_p->app0 |= 2;
824 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
825 csum_start_off = skb_transport_offset(skb);
826 csum_index_off = csum_start_off + skb->csum_offset;
827 /* Tx Partial Checksum Offload Enabled */
828 cur_p->app0 |= 1;
829 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
830 }
831 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
832 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
833 }
834
835 phys = dma_map_single(lp->dev, skb->data,
836 skb_headlen(skb), DMA_TO_DEVICE);
837 if (unlikely(dma_mapping_error(lp->dev, phys))) {
838 if (net_ratelimit())
839 netdev_err(ndev, "TX DMA mapping error\n");
840 ndev->stats.tx_dropped++;
841 return NETDEV_TX_OK;
842 }
843 desc_set_phys_addr(lp, phys, cur_p);
844 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
845
846 for (ii = 0; ii < num_frag; ii++) {
847 if (++new_tail_ptr >= lp->tx_bd_num)
848 new_tail_ptr = 0;
849 cur_p = &lp->tx_bd_v[new_tail_ptr];
850 frag = &skb_shinfo(skb)->frags[ii];
851 phys = dma_map_single(lp->dev,
852 skb_frag_address(frag),
853 skb_frag_size(frag),
854 DMA_TO_DEVICE);
855 if (unlikely(dma_mapping_error(lp->dev, phys))) {
856 if (net_ratelimit())
857 netdev_err(ndev, "TX DMA mapping error\n");
858 ndev->stats.tx_dropped++;
859 axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
860 true, NULL, 0);
861 return NETDEV_TX_OK;
862 }
863 desc_set_phys_addr(lp, phys, cur_p);
864 cur_p->cntrl = skb_frag_size(frag);
865 }
866
867 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
868 cur_p->skb = skb;
869
870 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
871 if (++new_tail_ptr >= lp->tx_bd_num)
872 new_tail_ptr = 0;
873 WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
874
875 /* Start the transfer */
876 axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
877
878 /* Stop queue if next transmit may not have space */
879 if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
880 netif_stop_queue(ndev);
881
882 /* Matches barrier in axienet_tx_poll */
883 smp_mb();
884
885 /* Space might have just been freed - check again */
886 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
887 netif_wake_queue(ndev);
888 }
889
890 return NETDEV_TX_OK;
891}
892
893/**
894 * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
895 * @napi: Pointer to NAPI structure.
896 * @budget: Max number of RX packets to process.
897 *
898 * Return: Number of RX packets processed.
899 */
900static int axienet_rx_poll(struct napi_struct *napi, int budget)
901{
902 u32 length;
903 u32 csumstatus;
904 u32 size = 0;
905 int packets = 0;
906 dma_addr_t tail_p = 0;
907 struct axidma_bd *cur_p;
908 struct sk_buff *skb, *new_skb;
909 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
910
911 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
912
913 while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
914 dma_addr_t phys;
915
916 /* Ensure we see complete descriptor update */
917 dma_rmb();
918
919 skb = cur_p->skb;
920 cur_p->skb = NULL;
921
922 /* skb could be NULL if a previous pass already received the
923 * packet for this slot in the ring, but failed to refill it
924 * with a newly allocated buffer. In this case, don't try to
925 * receive it again.
926 */
927 if (likely(skb)) {
928 length = cur_p->app4 & 0x0000FFFF;
929
930 phys = desc_get_phys_addr(lp, cur_p);
931 dma_unmap_single(lp->dev, phys, lp->max_frm_size,
932 DMA_FROM_DEVICE);
933
934 skb_put(skb, length);
935 skb->protocol = eth_type_trans(skb, lp->ndev);
936 /*skb_checksum_none_assert(skb);*/
937 skb->ip_summed = CHECKSUM_NONE;
938
939 /* if we're doing Rx csum offload, set it up */
940 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
941 csumstatus = (cur_p->app2 &
942 XAE_FULL_CSUM_STATUS_MASK) >> 3;
943 if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
944 csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
945 skb->ip_summed = CHECKSUM_UNNECESSARY;
946 }
947 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
948 skb->protocol == htons(ETH_P_IP) &&
949 skb->len > 64) {
950 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
951 skb->ip_summed = CHECKSUM_COMPLETE;
952 }
953
954 napi_gro_receive(napi, skb);
955
956 size += length;
957 packets++;
958 }
959
960 new_skb = napi_alloc_skb(napi, lp->max_frm_size);
961 if (!new_skb)
962 break;
963
964 phys = dma_map_single(lp->dev, new_skb->data,
965 lp->max_frm_size,
966 DMA_FROM_DEVICE);
967 if (unlikely(dma_mapping_error(lp->dev, phys))) {
968 if (net_ratelimit())
969 netdev_err(lp->ndev, "RX DMA mapping error\n");
970 dev_kfree_skb(new_skb);
971 break;
972 }
973 desc_set_phys_addr(lp, phys, cur_p);
974
975 cur_p->cntrl = lp->max_frm_size;
976 cur_p->status = 0;
977 cur_p->skb = new_skb;
978
979 /* Only update tail_p to mark this slot as usable after it has
980 * been successfully refilled.
981 */
982 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
983
984 if (++lp->rx_bd_ci >= lp->rx_bd_num)
985 lp->rx_bd_ci = 0;
986 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
987 }
988
989 u64_stats_update_begin(&lp->rx_stat_sync);
990 u64_stats_add(&lp->rx_packets, packets);
991 u64_stats_add(&lp->rx_bytes, size);
992 u64_stats_update_end(&lp->rx_stat_sync);
993
994 if (tail_p)
995 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
996
997 if (packets < budget && napi_complete_done(napi, packets)) {
998 /* Re-enable RX completion interrupts. This should
999 * cause an immediate interrupt if any RX packets are
1000 * already pending.
1001 */
1002 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1003 }
1004 return packets;
1005}
1006
1007/**
1008 * axienet_tx_irq - Tx Done Isr.
1009 * @irq: irq number
1010 * @_ndev: net_device pointer
1011 *
1012 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1013 *
1014 * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
1015 * TX BD processing.
1016 */
1017static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1018{
1019 unsigned int status;
1020 struct net_device *ndev = _ndev;
1021 struct axienet_local *lp = netdev_priv(ndev);
1022
1023 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1024
1025 if (!(status & XAXIDMA_IRQ_ALL_MASK))
1026 return IRQ_NONE;
1027
1028 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1029
1030 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1031 netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1032 netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1033 (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1034 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1035 schedule_work(&lp->dma_err_task);
1036 } else {
1037 /* Disable further TX completion interrupts and schedule
1038 * NAPI to handle the completions.
1039 */
1040 u32 cr = lp->tx_dma_cr;
1041
1042 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1043 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1044
1045 napi_schedule(&lp->napi_tx);
1046 }
1047
1048 return IRQ_HANDLED;
1049}
1050
1051/**
1052 * axienet_rx_irq - Rx Isr.
1053 * @irq: irq number
1054 * @_ndev: net_device pointer
1055 *
1056 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1057 *
1058 * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1059 * processing.
1060 */
1061static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1062{
1063 unsigned int status;
1064 struct net_device *ndev = _ndev;
1065 struct axienet_local *lp = netdev_priv(ndev);
1066
1067 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1068
1069 if (!(status & XAXIDMA_IRQ_ALL_MASK))
1070 return IRQ_NONE;
1071
1072 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1073
1074 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1075 netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1076 netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1077 (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1078 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1079 schedule_work(&lp->dma_err_task);
1080 } else {
1081 /* Disable further RX completion interrupts and schedule
1082 * NAPI receive.
1083 */
1084 u32 cr = lp->rx_dma_cr;
1085
1086 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1087 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1088
1089 napi_schedule(&lp->napi_rx);
1090 }
1091
1092 return IRQ_HANDLED;
1093}
1094
1095/**
1096 * axienet_eth_irq - Ethernet core Isr.
1097 * @irq: irq number
1098 * @_ndev: net_device pointer
1099 *
1100 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1101 *
1102 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1103 */
1104static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1105{
1106 struct net_device *ndev = _ndev;
1107 struct axienet_local *lp = netdev_priv(ndev);
1108 unsigned int pending;
1109
1110 pending = axienet_ior(lp, XAE_IP_OFFSET);
1111 if (!pending)
1112 return IRQ_NONE;
1113
1114 if (pending & XAE_INT_RXFIFOOVR_MASK)
1115 ndev->stats.rx_missed_errors++;
1116
1117 if (pending & XAE_INT_RXRJECT_MASK)
1118 ndev->stats.rx_frame_errors++;
1119
1120 axienet_iow(lp, XAE_IS_OFFSET, pending);
1121 return IRQ_HANDLED;
1122}
1123
1124static void axienet_dma_err_handler(struct work_struct *work);
1125
1126/**
1127 * axienet_open - Driver open routine.
1128 * @ndev: Pointer to net_device structure
1129 *
1130 * Return: 0, on success.
1131 * non-zero error value on failure
1132 *
1133 * This is the driver open routine. It calls phylink_start to start the
1134 * PHY device.
1135 * It also allocates interrupt service routines, enables the interrupt lines
1136 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1137 * descriptors are initialized.
1138 */
1139static int axienet_open(struct net_device *ndev)
1140{
1141 int ret;
1142 struct axienet_local *lp = netdev_priv(ndev);
1143
1144 dev_dbg(&ndev->dev, "axienet_open()\n");
1145
1146 /* When we do an Axi Ethernet reset, it resets the complete core
1147 * including the MDIO. MDIO must be disabled before resetting.
1148 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1149 */
1150 axienet_lock_mii(lp);
1151 ret = axienet_device_reset(ndev);
1152 axienet_unlock_mii(lp);
1153
1154 ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1155 if (ret) {
1156 dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1157 return ret;
1158 }
1159
1160 phylink_start(lp->phylink);
1161
1162 /* Enable worker thread for Axi DMA error handling */
1163 INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1164
1165 napi_enable(&lp->napi_rx);
1166 napi_enable(&lp->napi_tx);
1167
1168 /* Enable interrupts for Axi DMA Tx */
1169 ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1170 ndev->name, ndev);
1171 if (ret)
1172 goto err_tx_irq;
1173 /* Enable interrupts for Axi DMA Rx */
1174 ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1175 ndev->name, ndev);
1176 if (ret)
1177 goto err_rx_irq;
1178 /* Enable interrupts for Axi Ethernet core (if defined) */
1179 if (lp->eth_irq > 0) {
1180 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1181 ndev->name, ndev);
1182 if (ret)
1183 goto err_eth_irq;
1184 }
1185
1186 return 0;
1187
1188err_eth_irq:
1189 free_irq(lp->rx_irq, ndev);
1190err_rx_irq:
1191 free_irq(lp->tx_irq, ndev);
1192err_tx_irq:
1193 napi_disable(&lp->napi_tx);
1194 napi_disable(&lp->napi_rx);
1195 phylink_stop(lp->phylink);
1196 phylink_disconnect_phy(lp->phylink);
1197 cancel_work_sync(&lp->dma_err_task);
1198 dev_err(lp->dev, "request_irq() failed\n");
1199 return ret;
1200}
1201
1202/**
1203 * axienet_stop - Driver stop routine.
1204 * @ndev: Pointer to net_device structure
1205 *
1206 * Return: 0, on success.
1207 *
1208 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1209 * device. It also removes the interrupt handlers and disables the interrupts.
1210 * The Axi DMA Tx/Rx BDs are released.
1211 */
1212static int axienet_stop(struct net_device *ndev)
1213{
1214 struct axienet_local *lp = netdev_priv(ndev);
1215
1216 dev_dbg(&ndev->dev, "axienet_close()\n");
1217
1218 napi_disable(&lp->napi_tx);
1219 napi_disable(&lp->napi_rx);
1220
1221 phylink_stop(lp->phylink);
1222 phylink_disconnect_phy(lp->phylink);
1223
1224 axienet_setoptions(ndev, lp->options &
1225 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1226
1227 axienet_dma_stop(lp);
1228
1229 axienet_iow(lp, XAE_IE_OFFSET, 0);
1230
1231 cancel_work_sync(&lp->dma_err_task);
1232
1233 if (lp->eth_irq > 0)
1234 free_irq(lp->eth_irq, ndev);
1235 free_irq(lp->tx_irq, ndev);
1236 free_irq(lp->rx_irq, ndev);
1237
1238 axienet_dma_bd_release(ndev);
1239 return 0;
1240}
1241
1242/**
1243 * axienet_change_mtu - Driver change mtu routine.
1244 * @ndev: Pointer to net_device structure
1245 * @new_mtu: New mtu value to be applied
1246 *
1247 * Return: Always returns 0 (success).
1248 *
1249 * This is the change mtu driver routine. It checks if the Axi Ethernet
1250 * hardware supports jumbo frames before changing the mtu. This can be
1251 * called only when the device is not up.
1252 */
1253static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1254{
1255 struct axienet_local *lp = netdev_priv(ndev);
1256
1257 if (netif_running(ndev))
1258 return -EBUSY;
1259
1260 if ((new_mtu + VLAN_ETH_HLEN +
1261 XAE_TRL_SIZE) > lp->rxmem)
1262 return -EINVAL;
1263
1264 ndev->mtu = new_mtu;
1265
1266 return 0;
1267}
1268
1269#ifdef CONFIG_NET_POLL_CONTROLLER
1270/**
1271 * axienet_poll_controller - Axi Ethernet poll mechanism.
1272 * @ndev: Pointer to net_device structure
1273 *
1274 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1275 * to polling the ISRs and are enabled back after the polling is done.
1276 */
1277static void axienet_poll_controller(struct net_device *ndev)
1278{
1279 struct axienet_local *lp = netdev_priv(ndev);
1280 disable_irq(lp->tx_irq);
1281 disable_irq(lp->rx_irq);
1282 axienet_rx_irq(lp->tx_irq, ndev);
1283 axienet_tx_irq(lp->rx_irq, ndev);
1284 enable_irq(lp->tx_irq);
1285 enable_irq(lp->rx_irq);
1286}
1287#endif
1288
1289static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1290{
1291 struct axienet_local *lp = netdev_priv(dev);
1292
1293 if (!netif_running(dev))
1294 return -EINVAL;
1295
1296 return phylink_mii_ioctl(lp->phylink, rq, cmd);
1297}
1298
1299static void
1300axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1301{
1302 struct axienet_local *lp = netdev_priv(dev);
1303 unsigned int start;
1304
1305 netdev_stats_to_stats64(stats, &dev->stats);
1306
1307 do {
1308 start = u64_stats_fetch_begin(&lp->rx_stat_sync);
1309 stats->rx_packets = u64_stats_read(&lp->rx_packets);
1310 stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
1311 } while (u64_stats_fetch_retry(&lp->rx_stat_sync, start));
1312
1313 do {
1314 start = u64_stats_fetch_begin(&lp->tx_stat_sync);
1315 stats->tx_packets = u64_stats_read(&lp->tx_packets);
1316 stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
1317 } while (u64_stats_fetch_retry(&lp->tx_stat_sync, start));
1318}
1319
1320static const struct net_device_ops axienet_netdev_ops = {
1321 .ndo_open = axienet_open,
1322 .ndo_stop = axienet_stop,
1323 .ndo_start_xmit = axienet_start_xmit,
1324 .ndo_get_stats64 = axienet_get_stats64,
1325 .ndo_change_mtu = axienet_change_mtu,
1326 .ndo_set_mac_address = netdev_set_mac_address,
1327 .ndo_validate_addr = eth_validate_addr,
1328 .ndo_eth_ioctl = axienet_ioctl,
1329 .ndo_set_rx_mode = axienet_set_multicast_list,
1330#ifdef CONFIG_NET_POLL_CONTROLLER
1331 .ndo_poll_controller = axienet_poll_controller,
1332#endif
1333};
1334
1335/**
1336 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1337 * @ndev: Pointer to net_device structure
1338 * @ed: Pointer to ethtool_drvinfo structure
1339 *
1340 * This implements ethtool command for getting the driver information.
1341 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1342 */
1343static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1344 struct ethtool_drvinfo *ed)
1345{
1346 strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1347 strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1348}
1349
1350/**
1351 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1352 * AxiEthernet core.
1353 * @ndev: Pointer to net_device structure
1354 *
1355 * This implements ethtool command for getting the total register length
1356 * information.
1357 *
1358 * Return: the total regs length
1359 */
1360static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1361{
1362 return sizeof(u32) * AXIENET_REGS_N;
1363}
1364
1365/**
1366 * axienet_ethtools_get_regs - Dump the contents of all registers present
1367 * in AxiEthernet core.
1368 * @ndev: Pointer to net_device structure
1369 * @regs: Pointer to ethtool_regs structure
1370 * @ret: Void pointer used to return the contents of the registers.
1371 *
1372 * This implements ethtool command for getting the Axi Ethernet register dump.
1373 * Issue "ethtool -d ethX" to execute this function.
1374 */
1375static void axienet_ethtools_get_regs(struct net_device *ndev,
1376 struct ethtool_regs *regs, void *ret)
1377{
1378 u32 *data = (u32 *)ret;
1379 size_t len = sizeof(u32) * AXIENET_REGS_N;
1380 struct axienet_local *lp = netdev_priv(ndev);
1381
1382 regs->version = 0;
1383 regs->len = len;
1384
1385 memset(data, 0, len);
1386 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1387 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1388 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1389 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1390 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1391 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1392 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1393 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1394 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1395 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1396 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1397 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1398 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1399 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1400 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1401 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1402 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1403 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1404 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1405 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1406 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1407 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1408 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1409 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1410 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1411 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1412 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1413 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1414 data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1415 data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1416 data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1417 data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1418 data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1419 data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1420 data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1421 data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1422}
1423
1424static void
1425axienet_ethtools_get_ringparam(struct net_device *ndev,
1426 struct ethtool_ringparam *ering,
1427 struct kernel_ethtool_ringparam *kernel_ering,
1428 struct netlink_ext_ack *extack)
1429{
1430 struct axienet_local *lp = netdev_priv(ndev);
1431
1432 ering->rx_max_pending = RX_BD_NUM_MAX;
1433 ering->rx_mini_max_pending = 0;
1434 ering->rx_jumbo_max_pending = 0;
1435 ering->tx_max_pending = TX_BD_NUM_MAX;
1436 ering->rx_pending = lp->rx_bd_num;
1437 ering->rx_mini_pending = 0;
1438 ering->rx_jumbo_pending = 0;
1439 ering->tx_pending = lp->tx_bd_num;
1440}
1441
1442static int
1443axienet_ethtools_set_ringparam(struct net_device *ndev,
1444 struct ethtool_ringparam *ering,
1445 struct kernel_ethtool_ringparam *kernel_ering,
1446 struct netlink_ext_ack *extack)
1447{
1448 struct axienet_local *lp = netdev_priv(ndev);
1449
1450 if (ering->rx_pending > RX_BD_NUM_MAX ||
1451 ering->rx_mini_pending ||
1452 ering->rx_jumbo_pending ||
1453 ering->tx_pending < TX_BD_NUM_MIN ||
1454 ering->tx_pending > TX_BD_NUM_MAX)
1455 return -EINVAL;
1456
1457 if (netif_running(ndev))
1458 return -EBUSY;
1459
1460 lp->rx_bd_num = ering->rx_pending;
1461 lp->tx_bd_num = ering->tx_pending;
1462 return 0;
1463}
1464
1465/**
1466 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1467 * Tx and Rx paths.
1468 * @ndev: Pointer to net_device structure
1469 * @epauseparm: Pointer to ethtool_pauseparam structure.
1470 *
1471 * This implements ethtool command for getting axi ethernet pause frame
1472 * setting. Issue "ethtool -a ethX" to execute this function.
1473 */
1474static void
1475axienet_ethtools_get_pauseparam(struct net_device *ndev,
1476 struct ethtool_pauseparam *epauseparm)
1477{
1478 struct axienet_local *lp = netdev_priv(ndev);
1479
1480 phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1481}
1482
1483/**
1484 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1485 * settings.
1486 * @ndev: Pointer to net_device structure
1487 * @epauseparm:Pointer to ethtool_pauseparam structure
1488 *
1489 * This implements ethtool command for enabling flow control on Rx and Tx
1490 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1491 * function.
1492 *
1493 * Return: 0 on success, -EFAULT if device is running
1494 */
1495static int
1496axienet_ethtools_set_pauseparam(struct net_device *ndev,
1497 struct ethtool_pauseparam *epauseparm)
1498{
1499 struct axienet_local *lp = netdev_priv(ndev);
1500
1501 return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1502}
1503
1504/**
1505 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1506 * @ndev: Pointer to net_device structure
1507 * @ecoalesce: Pointer to ethtool_coalesce structure
1508 * @kernel_coal: ethtool CQE mode setting structure
1509 * @extack: extack for reporting error messages
1510 *
1511 * This implements ethtool command for getting the DMA interrupt coalescing
1512 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1513 * execute this function.
1514 *
1515 * Return: 0 always
1516 */
1517static int
1518axienet_ethtools_get_coalesce(struct net_device *ndev,
1519 struct ethtool_coalesce *ecoalesce,
1520 struct kernel_ethtool_coalesce *kernel_coal,
1521 struct netlink_ext_ack *extack)
1522{
1523 struct axienet_local *lp = netdev_priv(ndev);
1524
1525 ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
1526 ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
1527 ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
1528 ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
1529 return 0;
1530}
1531
1532/**
1533 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1534 * @ndev: Pointer to net_device structure
1535 * @ecoalesce: Pointer to ethtool_coalesce structure
1536 * @kernel_coal: ethtool CQE mode setting structure
1537 * @extack: extack for reporting error messages
1538 *
1539 * This implements ethtool command for setting the DMA interrupt coalescing
1540 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1541 * prompt to execute this function.
1542 *
1543 * Return: 0, on success, Non-zero error value on failure.
1544 */
1545static int
1546axienet_ethtools_set_coalesce(struct net_device *ndev,
1547 struct ethtool_coalesce *ecoalesce,
1548 struct kernel_ethtool_coalesce *kernel_coal,
1549 struct netlink_ext_ack *extack)
1550{
1551 struct axienet_local *lp = netdev_priv(ndev);
1552
1553 if (netif_running(ndev)) {
1554 netdev_err(ndev,
1555 "Please stop netif before applying configuration\n");
1556 return -EFAULT;
1557 }
1558
1559 if (ecoalesce->rx_max_coalesced_frames)
1560 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1561 if (ecoalesce->rx_coalesce_usecs)
1562 lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
1563 if (ecoalesce->tx_max_coalesced_frames)
1564 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1565 if (ecoalesce->tx_coalesce_usecs)
1566 lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
1567
1568 return 0;
1569}
1570
1571static int
1572axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1573 struct ethtool_link_ksettings *cmd)
1574{
1575 struct axienet_local *lp = netdev_priv(ndev);
1576
1577 return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1578}
1579
1580static int
1581axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1582 const struct ethtool_link_ksettings *cmd)
1583{
1584 struct axienet_local *lp = netdev_priv(ndev);
1585
1586 return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1587}
1588
1589static int axienet_ethtools_nway_reset(struct net_device *dev)
1590{
1591 struct axienet_local *lp = netdev_priv(dev);
1592
1593 return phylink_ethtool_nway_reset(lp->phylink);
1594}
1595
1596static const struct ethtool_ops axienet_ethtool_ops = {
1597 .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
1598 ETHTOOL_COALESCE_USECS,
1599 .get_drvinfo = axienet_ethtools_get_drvinfo,
1600 .get_regs_len = axienet_ethtools_get_regs_len,
1601 .get_regs = axienet_ethtools_get_regs,
1602 .get_link = ethtool_op_get_link,
1603 .get_ringparam = axienet_ethtools_get_ringparam,
1604 .set_ringparam = axienet_ethtools_set_ringparam,
1605 .get_pauseparam = axienet_ethtools_get_pauseparam,
1606 .set_pauseparam = axienet_ethtools_set_pauseparam,
1607 .get_coalesce = axienet_ethtools_get_coalesce,
1608 .set_coalesce = axienet_ethtools_set_coalesce,
1609 .get_link_ksettings = axienet_ethtools_get_link_ksettings,
1610 .set_link_ksettings = axienet_ethtools_set_link_ksettings,
1611 .nway_reset = axienet_ethtools_nway_reset,
1612};
1613
1614static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
1615{
1616 return container_of(pcs, struct axienet_local, pcs);
1617}
1618
1619static void axienet_pcs_get_state(struct phylink_pcs *pcs,
1620 struct phylink_link_state *state)
1621{
1622 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1623
1624 phylink_mii_c22_pcs_get_state(pcs_phy, state);
1625}
1626
1627static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
1628{
1629 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1630
1631 phylink_mii_c22_pcs_an_restart(pcs_phy);
1632}
1633
1634static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
1635 phy_interface_t interface,
1636 const unsigned long *advertising,
1637 bool permit_pause_to_mac)
1638{
1639 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1640 struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
1641 struct axienet_local *lp = netdev_priv(ndev);
1642 int ret;
1643
1644 if (lp->switch_x_sgmii) {
1645 ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
1646 interface == PHY_INTERFACE_MODE_SGMII ?
1647 XLNX_MII_STD_SELECT_SGMII : 0);
1648 if (ret < 0) {
1649 netdev_warn(ndev,
1650 "Failed to switch PHY interface: %d\n",
1651 ret);
1652 return ret;
1653 }
1654 }
1655
1656 ret = phylink_mii_c22_pcs_config(pcs_phy, mode, interface, advertising);
1657 if (ret < 0)
1658 netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
1659
1660 return ret;
1661}
1662
1663static const struct phylink_pcs_ops axienet_pcs_ops = {
1664 .pcs_get_state = axienet_pcs_get_state,
1665 .pcs_config = axienet_pcs_config,
1666 .pcs_an_restart = axienet_pcs_an_restart,
1667};
1668
1669static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
1670 phy_interface_t interface)
1671{
1672 struct net_device *ndev = to_net_dev(config->dev);
1673 struct axienet_local *lp = netdev_priv(ndev);
1674
1675 if (interface == PHY_INTERFACE_MODE_1000BASEX ||
1676 interface == PHY_INTERFACE_MODE_SGMII)
1677 return &lp->pcs;
1678
1679 return NULL;
1680}
1681
1682static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1683 const struct phylink_link_state *state)
1684{
1685 /* nothing meaningful to do */
1686}
1687
1688static void axienet_mac_link_down(struct phylink_config *config,
1689 unsigned int mode,
1690 phy_interface_t interface)
1691{
1692 /* nothing meaningful to do */
1693}
1694
1695static void axienet_mac_link_up(struct phylink_config *config,
1696 struct phy_device *phy,
1697 unsigned int mode, phy_interface_t interface,
1698 int speed, int duplex,
1699 bool tx_pause, bool rx_pause)
1700{
1701 struct net_device *ndev = to_net_dev(config->dev);
1702 struct axienet_local *lp = netdev_priv(ndev);
1703 u32 emmc_reg, fcc_reg;
1704
1705 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1706 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1707
1708 switch (speed) {
1709 case SPEED_1000:
1710 emmc_reg |= XAE_EMMC_LINKSPD_1000;
1711 break;
1712 case SPEED_100:
1713 emmc_reg |= XAE_EMMC_LINKSPD_100;
1714 break;
1715 case SPEED_10:
1716 emmc_reg |= XAE_EMMC_LINKSPD_10;
1717 break;
1718 default:
1719 dev_err(&ndev->dev,
1720 "Speed other than 10, 100 or 1Gbps is not supported\n");
1721 break;
1722 }
1723
1724 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1725
1726 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1727 if (tx_pause)
1728 fcc_reg |= XAE_FCC_FCTX_MASK;
1729 else
1730 fcc_reg &= ~XAE_FCC_FCTX_MASK;
1731 if (rx_pause)
1732 fcc_reg |= XAE_FCC_FCRX_MASK;
1733 else
1734 fcc_reg &= ~XAE_FCC_FCRX_MASK;
1735 axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1736}
1737
1738static const struct phylink_mac_ops axienet_phylink_ops = {
1739 .mac_select_pcs = axienet_mac_select_pcs,
1740 .mac_config = axienet_mac_config,
1741 .mac_link_down = axienet_mac_link_down,
1742 .mac_link_up = axienet_mac_link_up,
1743};
1744
1745/**
1746 * axienet_dma_err_handler - Work queue task for Axi DMA Error
1747 * @work: pointer to work_struct
1748 *
1749 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1750 * Tx/Rx BDs.
1751 */
1752static void axienet_dma_err_handler(struct work_struct *work)
1753{
1754 u32 i;
1755 u32 axienet_status;
1756 struct axidma_bd *cur_p;
1757 struct axienet_local *lp = container_of(work, struct axienet_local,
1758 dma_err_task);
1759 struct net_device *ndev = lp->ndev;
1760
1761 napi_disable(&lp->napi_tx);
1762 napi_disable(&lp->napi_rx);
1763
1764 axienet_setoptions(ndev, lp->options &
1765 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1766
1767 axienet_dma_stop(lp);
1768
1769 for (i = 0; i < lp->tx_bd_num; i++) {
1770 cur_p = &lp->tx_bd_v[i];
1771 if (cur_p->cntrl) {
1772 dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
1773
1774 dma_unmap_single(lp->dev, addr,
1775 (cur_p->cntrl &
1776 XAXIDMA_BD_CTRL_LENGTH_MASK),
1777 DMA_TO_DEVICE);
1778 }
1779 if (cur_p->skb)
1780 dev_kfree_skb_irq(cur_p->skb);
1781 cur_p->phys = 0;
1782 cur_p->phys_msb = 0;
1783 cur_p->cntrl = 0;
1784 cur_p->status = 0;
1785 cur_p->app0 = 0;
1786 cur_p->app1 = 0;
1787 cur_p->app2 = 0;
1788 cur_p->app3 = 0;
1789 cur_p->app4 = 0;
1790 cur_p->skb = NULL;
1791 }
1792
1793 for (i = 0; i < lp->rx_bd_num; i++) {
1794 cur_p = &lp->rx_bd_v[i];
1795 cur_p->status = 0;
1796 cur_p->app0 = 0;
1797 cur_p->app1 = 0;
1798 cur_p->app2 = 0;
1799 cur_p->app3 = 0;
1800 cur_p->app4 = 0;
1801 }
1802
1803 lp->tx_bd_ci = 0;
1804 lp->tx_bd_tail = 0;
1805 lp->rx_bd_ci = 0;
1806
1807 axienet_dma_start(lp);
1808
1809 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1810 axienet_status &= ~XAE_RCW1_RX_MASK;
1811 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1812
1813 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1814 if (axienet_status & XAE_INT_RXRJECT_MASK)
1815 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1816 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1817 XAE_INT_RECV_ERROR_MASK : 0);
1818 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1819
1820 /* Sync default options with HW but leave receiver and
1821 * transmitter disabled.
1822 */
1823 axienet_setoptions(ndev, lp->options &
1824 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1825 axienet_set_mac_address(ndev, NULL);
1826 axienet_set_multicast_list(ndev);
1827 axienet_setoptions(ndev, lp->options);
1828 napi_enable(&lp->napi_rx);
1829 napi_enable(&lp->napi_tx);
1830}
1831
1832/**
1833 * axienet_probe - Axi Ethernet probe function.
1834 * @pdev: Pointer to platform device structure.
1835 *
1836 * Return: 0, on success
1837 * Non-zero error value on failure.
1838 *
1839 * This is the probe routine for Axi Ethernet driver. This is called before
1840 * any other driver routines are invoked. It allocates and sets up the Ethernet
1841 * device. Parses through device tree and populates fields of
1842 * axienet_local. It registers the Ethernet device.
1843 */
1844static int axienet_probe(struct platform_device *pdev)
1845{
1846 int ret;
1847 struct device_node *np;
1848 struct axienet_local *lp;
1849 struct net_device *ndev;
1850 struct resource *ethres;
1851 u8 mac_addr[ETH_ALEN];
1852 int addr_width = 32;
1853 u32 value;
1854
1855 ndev = alloc_etherdev(sizeof(*lp));
1856 if (!ndev)
1857 return -ENOMEM;
1858
1859 platform_set_drvdata(pdev, ndev);
1860
1861 SET_NETDEV_DEV(ndev, &pdev->dev);
1862 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
1863 ndev->features = NETIF_F_SG;
1864 ndev->netdev_ops = &axienet_netdev_ops;
1865 ndev->ethtool_ops = &axienet_ethtool_ops;
1866
1867 /* MTU range: 64 - 9000 */
1868 ndev->min_mtu = 64;
1869 ndev->max_mtu = XAE_JUMBO_MTU;
1870
1871 lp = netdev_priv(ndev);
1872 lp->ndev = ndev;
1873 lp->dev = &pdev->dev;
1874 lp->options = XAE_OPTION_DEFAULTS;
1875 lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1876 lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1877
1878 u64_stats_init(&lp->rx_stat_sync);
1879 u64_stats_init(&lp->tx_stat_sync);
1880
1881 netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
1882 netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
1883
1884 lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
1885 if (!lp->axi_clk) {
1886 /* For backward compatibility, if named AXI clock is not present,
1887 * treat the first clock specified as the AXI clock.
1888 */
1889 lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
1890 }
1891 if (IS_ERR(lp->axi_clk)) {
1892 ret = PTR_ERR(lp->axi_clk);
1893 goto free_netdev;
1894 }
1895 ret = clk_prepare_enable(lp->axi_clk);
1896 if (ret) {
1897 dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
1898 goto free_netdev;
1899 }
1900
1901 lp->misc_clks[0].id = "axis_clk";
1902 lp->misc_clks[1].id = "ref_clk";
1903 lp->misc_clks[2].id = "mgt_clk";
1904
1905 ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1906 if (ret)
1907 goto cleanup_clk;
1908
1909 ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1910 if (ret)
1911 goto cleanup_clk;
1912
1913 /* Map device registers */
1914 lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ðres);
1915 if (IS_ERR(lp->regs)) {
1916 ret = PTR_ERR(lp->regs);
1917 goto cleanup_clk;
1918 }
1919 lp->regs_start = ethres->start;
1920
1921 /* Setup checksum offload, but default to off if not specified */
1922 lp->features = 0;
1923
1924 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1925 if (!ret) {
1926 switch (value) {
1927 case 1:
1928 lp->csum_offload_on_tx_path =
1929 XAE_FEATURE_PARTIAL_TX_CSUM;
1930 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1931 /* Can checksum TCP/UDP over IPv4. */
1932 ndev->features |= NETIF_F_IP_CSUM;
1933 break;
1934 case 2:
1935 lp->csum_offload_on_tx_path =
1936 XAE_FEATURE_FULL_TX_CSUM;
1937 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1938 /* Can checksum TCP/UDP over IPv4. */
1939 ndev->features |= NETIF_F_IP_CSUM;
1940 break;
1941 default:
1942 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1943 }
1944 }
1945 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1946 if (!ret) {
1947 switch (value) {
1948 case 1:
1949 lp->csum_offload_on_rx_path =
1950 XAE_FEATURE_PARTIAL_RX_CSUM;
1951 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1952 break;
1953 case 2:
1954 lp->csum_offload_on_rx_path =
1955 XAE_FEATURE_FULL_RX_CSUM;
1956 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1957 break;
1958 default:
1959 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1960 }
1961 }
1962 /* For supporting jumbo frames, the Axi Ethernet hardware must have
1963 * a larger Rx/Tx Memory. Typically, the size must be large so that
1964 * we can enable jumbo option and start supporting jumbo frames.
1965 * Here we check for memory allocated for Rx/Tx in the hardware from
1966 * the device-tree and accordingly set flags.
1967 */
1968 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1969
1970 lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
1971 "xlnx,switch-x-sgmii");
1972
1973 /* Start with the proprietary, and broken phy_type */
1974 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1975 if (!ret) {
1976 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1977 switch (value) {
1978 case XAE_PHY_TYPE_MII:
1979 lp->phy_mode = PHY_INTERFACE_MODE_MII;
1980 break;
1981 case XAE_PHY_TYPE_GMII:
1982 lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1983 break;
1984 case XAE_PHY_TYPE_RGMII_2_0:
1985 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1986 break;
1987 case XAE_PHY_TYPE_SGMII:
1988 lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1989 break;
1990 case XAE_PHY_TYPE_1000BASE_X:
1991 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1992 break;
1993 default:
1994 ret = -EINVAL;
1995 goto cleanup_clk;
1996 }
1997 } else {
1998 ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
1999 if (ret)
2000 goto cleanup_clk;
2001 }
2002 if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
2003 lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
2004 dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
2005 ret = -EINVAL;
2006 goto cleanup_clk;
2007 }
2008
2009 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2010 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2011 if (np) {
2012 struct resource dmares;
2013
2014 ret = of_address_to_resource(np, 0, &dmares);
2015 if (ret) {
2016 dev_err(&pdev->dev,
2017 "unable to get DMA resource\n");
2018 of_node_put(np);
2019 goto cleanup_clk;
2020 }
2021 lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2022 &dmares);
2023 lp->rx_irq = irq_of_parse_and_map(np, 1);
2024 lp->tx_irq = irq_of_parse_and_map(np, 0);
2025 of_node_put(np);
2026 lp->eth_irq = platform_get_irq_optional(pdev, 0);
2027 } else {
2028 /* Check for these resources directly on the Ethernet node. */
2029 lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2030 lp->rx_irq = platform_get_irq(pdev, 1);
2031 lp->tx_irq = platform_get_irq(pdev, 0);
2032 lp->eth_irq = platform_get_irq_optional(pdev, 2);
2033 }
2034 if (IS_ERR(lp->dma_regs)) {
2035 dev_err(&pdev->dev, "could not map DMA regs\n");
2036 ret = PTR_ERR(lp->dma_regs);
2037 goto cleanup_clk;
2038 }
2039 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
2040 dev_err(&pdev->dev, "could not determine irqs\n");
2041 ret = -ENOMEM;
2042 goto cleanup_clk;
2043 }
2044
2045 /* Autodetect the need for 64-bit DMA pointers.
2046 * When the IP is configured for a bus width bigger than 32 bits,
2047 * writing the MSB registers is mandatory, even if they are all 0.
2048 * We can detect this case by writing all 1's to one such register
2049 * and see if that sticks: when the IP is configured for 32 bits
2050 * only, those registers are RES0.
2051 * Those MSB registers were introduced in IP v7.1, which we check first.
2052 */
2053 if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2054 void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2055
2056 iowrite32(0x0, desc);
2057 if (ioread32(desc) == 0) { /* sanity check */
2058 iowrite32(0xffffffff, desc);
2059 if (ioread32(desc) > 0) {
2060 lp->features |= XAE_FEATURE_DMA_64BIT;
2061 addr_width = 64;
2062 dev_info(&pdev->dev,
2063 "autodetected 64-bit DMA range\n");
2064 }
2065 iowrite32(0x0, desc);
2066 }
2067 }
2068 if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
2069 dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
2070 ret = -EINVAL;
2071 goto cleanup_clk;
2072 }
2073
2074 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2075 if (ret) {
2076 dev_err(&pdev->dev, "No suitable DMA available\n");
2077 goto cleanup_clk;
2078 }
2079
2080 /* Check for Ethernet core IRQ (optional) */
2081 if (lp->eth_irq <= 0)
2082 dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2083
2084 /* Retrieve the MAC address */
2085 ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2086 if (!ret) {
2087 axienet_set_mac_address(ndev, mac_addr);
2088 } else {
2089 dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2090 ret);
2091 axienet_set_mac_address(ndev, NULL);
2092 }
2093
2094 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2095 lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
2096 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2097 lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2098
2099 /* Reset core now that clocks are enabled, prior to accessing MDIO */
2100 ret = __axienet_device_reset(lp);
2101 if (ret)
2102 goto cleanup_clk;
2103
2104 ret = axienet_mdio_setup(lp);
2105 if (ret)
2106 dev_warn(&pdev->dev,
2107 "error registering MDIO bus: %d\n", ret);
2108
2109 if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2110 lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2111 np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
2112 if (!np) {
2113 /* Deprecated: Always use "pcs-handle" for pcs_phy.
2114 * Falling back to "phy-handle" here is only for
2115 * backward compatibility with old device trees.
2116 */
2117 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2118 }
2119 if (!np) {
2120 dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
2121 ret = -EINVAL;
2122 goto cleanup_mdio;
2123 }
2124 lp->pcs_phy = of_mdio_find_device(np);
2125 if (!lp->pcs_phy) {
2126 ret = -EPROBE_DEFER;
2127 of_node_put(np);
2128 goto cleanup_mdio;
2129 }
2130 of_node_put(np);
2131 lp->pcs.ops = &axienet_pcs_ops;
2132 lp->pcs.poll = true;
2133 }
2134
2135 lp->phylink_config.dev = &ndev->dev;
2136 lp->phylink_config.type = PHYLINK_NETDEV;
2137 lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
2138 MAC_10FD | MAC_100FD | MAC_1000FD;
2139
2140 __set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
2141 if (lp->switch_x_sgmii) {
2142 __set_bit(PHY_INTERFACE_MODE_1000BASEX,
2143 lp->phylink_config.supported_interfaces);
2144 __set_bit(PHY_INTERFACE_MODE_SGMII,
2145 lp->phylink_config.supported_interfaces);
2146 }
2147
2148 lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2149 lp->phy_mode,
2150 &axienet_phylink_ops);
2151 if (IS_ERR(lp->phylink)) {
2152 ret = PTR_ERR(lp->phylink);
2153 dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2154 goto cleanup_mdio;
2155 }
2156
2157 ret = register_netdev(lp->ndev);
2158 if (ret) {
2159 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2160 goto cleanup_phylink;
2161 }
2162
2163 return 0;
2164
2165cleanup_phylink:
2166 phylink_destroy(lp->phylink);
2167
2168cleanup_mdio:
2169 if (lp->pcs_phy)
2170 put_device(&lp->pcs_phy->dev);
2171 if (lp->mii_bus)
2172 axienet_mdio_teardown(lp);
2173cleanup_clk:
2174 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2175 clk_disable_unprepare(lp->axi_clk);
2176
2177free_netdev:
2178 free_netdev(ndev);
2179
2180 return ret;
2181}
2182
2183static int axienet_remove(struct platform_device *pdev)
2184{
2185 struct net_device *ndev = platform_get_drvdata(pdev);
2186 struct axienet_local *lp = netdev_priv(ndev);
2187
2188 unregister_netdev(ndev);
2189
2190 if (lp->phylink)
2191 phylink_destroy(lp->phylink);
2192
2193 if (lp->pcs_phy)
2194 put_device(&lp->pcs_phy->dev);
2195
2196 axienet_mdio_teardown(lp);
2197
2198 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2199 clk_disable_unprepare(lp->axi_clk);
2200
2201 free_netdev(ndev);
2202
2203 return 0;
2204}
2205
2206static void axienet_shutdown(struct platform_device *pdev)
2207{
2208 struct net_device *ndev = platform_get_drvdata(pdev);
2209
2210 rtnl_lock();
2211 netif_device_detach(ndev);
2212
2213 if (netif_running(ndev))
2214 dev_close(ndev);
2215
2216 rtnl_unlock();
2217}
2218
2219static int axienet_suspend(struct device *dev)
2220{
2221 struct net_device *ndev = dev_get_drvdata(dev);
2222
2223 if (!netif_running(ndev))
2224 return 0;
2225
2226 netif_device_detach(ndev);
2227
2228 rtnl_lock();
2229 axienet_stop(ndev);
2230 rtnl_unlock();
2231
2232 return 0;
2233}
2234
2235static int axienet_resume(struct device *dev)
2236{
2237 struct net_device *ndev = dev_get_drvdata(dev);
2238
2239 if (!netif_running(ndev))
2240 return 0;
2241
2242 rtnl_lock();
2243 axienet_open(ndev);
2244 rtnl_unlock();
2245
2246 netif_device_attach(ndev);
2247
2248 return 0;
2249}
2250
2251static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops,
2252 axienet_suspend, axienet_resume);
2253
2254static struct platform_driver axienet_driver = {
2255 .probe = axienet_probe,
2256 .remove = axienet_remove,
2257 .shutdown = axienet_shutdown,
2258 .driver = {
2259 .name = "xilinx_axienet",
2260 .pm = &axienet_pm_ops,
2261 .of_match_table = axienet_of_match,
2262 },
2263};
2264
2265module_platform_driver(axienet_driver);
2266
2267MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2268MODULE_AUTHOR("Xilinx");
2269MODULE_LICENSE("GPL");