Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
   3 *           auto carrier detecting ethernet driver.  Also known as the
   4 *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
   5 *
   6 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
   7 *		2006, 2008 David S. Miller (davem@davemloft.net)
   8 *
   9 * Changes :
  10 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
  11 *   - port to non-sparc architectures. Tested only on x86 and
  12 *     only currently works with QFE PCI cards.
  13 *   - ability to specify the MAC address at module load time by passing this
  14 *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
  15 */
  16
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/types.h>
  20#include <linux/fcntl.h>
  21#include <linux/interrupt.h>
  22#include <linux/ioport.h>
  23#include <linux/in.h>
  24#include <linux/slab.h>
  25#include <linux/string.h>
  26#include <linux/delay.h>
  27#include <linux/init.h>
  28#include <linux/ethtool.h>
  29#include <linux/mii.h>
  30#include <linux/crc32.h>
  31#include <linux/random.h>
  32#include <linux/errno.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/skbuff.h>
  36#include <linux/mm.h>
  37#include <linux/bitops.h>
  38#include <linux/dma-mapping.h>
  39
  40#include <asm/io.h>
  41#include <asm/dma.h>
  42#include <asm/byteorder.h>
  43
  44#ifdef CONFIG_SPARC
  45#include <linux/of.h>
  46#include <linux/of_device.h>
  47#include <asm/idprom.h>
  48#include <asm/openprom.h>
  49#include <asm/oplib.h>
  50#include <asm/prom.h>
  51#include <asm/auxio.h>
  52#endif
  53#include <linux/uaccess.h>
  54
  55#include <asm/pgtable.h>
  56#include <asm/irq.h>
  57
  58#ifdef CONFIG_PCI
  59#include <linux/pci.h>
  60#endif
  61
  62#include "sunhme.h"
  63
  64#define DRV_NAME	"sunhme"
  65#define DRV_VERSION	"3.10"
  66#define DRV_RELDATE	"August 26, 2008"
  67#define DRV_AUTHOR	"David S. Miller (davem@davemloft.net)"
  68
  69static char version[] =
  70	DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
  71
  72MODULE_VERSION(DRV_VERSION);
  73MODULE_AUTHOR(DRV_AUTHOR);
  74MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
  75MODULE_LICENSE("GPL");
  76
  77static int macaddr[6];
  78
  79/* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
  80module_param_array(macaddr, int, NULL, 0);
  81MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
  82
  83#ifdef CONFIG_SBUS
  84static struct quattro *qfe_sbus_list;
  85#endif
  86
  87#ifdef CONFIG_PCI
  88static struct quattro *qfe_pci_list;
  89#endif
  90
  91#undef HMEDEBUG
  92#undef SXDEBUG
  93#undef RXDEBUG
  94#undef TXDEBUG
  95#undef TXLOGGING
 
 
 
 
  96
  97#ifdef TXLOGGING
  98struct hme_tx_logent {
  99	unsigned int tstamp;
 100	int tx_new, tx_old;
 101	unsigned int action;
 102#define TXLOG_ACTION_IRQ	0x01
 103#define TXLOG_ACTION_TXMIT	0x02
 104#define TXLOG_ACTION_TBUSY	0x04
 105#define TXLOG_ACTION_NBUFS	0x08
 106	unsigned int status;
 107};
 108#define TX_LOG_LEN	128
 109static struct hme_tx_logent tx_log[TX_LOG_LEN];
 110static int txlog_cur_entry;
 111static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
 112{
 113	struct hme_tx_logent *tlp;
 114	unsigned long flags;
 115
 116	local_irq_save(flags);
 117	tlp = &tx_log[txlog_cur_entry];
 118	tlp->tstamp = (unsigned int)jiffies;
 119	tlp->tx_new = hp->tx_new;
 120	tlp->tx_old = hp->tx_old;
 121	tlp->action = a;
 122	tlp->status = s;
 123	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
 124	local_irq_restore(flags);
 125}
 126static __inline__ void tx_dump_log(void)
 127{
 128	int i, this;
 129
 130	this = txlog_cur_entry;
 131	for (i = 0; i < TX_LOG_LEN; i++) {
 132		printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
 133		       tx_log[this].tstamp,
 134		       tx_log[this].tx_new, tx_log[this].tx_old,
 135		       tx_log[this].action, tx_log[this].status);
 136		this = (this + 1) & (TX_LOG_LEN - 1);
 137	}
 138}
 139static __inline__ void tx_dump_ring(struct happy_meal *hp)
 140{
 141	struct hmeal_init_block *hb = hp->happy_block;
 142	struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
 143	int i;
 144
 145	for (i = 0; i < TX_RING_SIZE; i+=4) {
 146		printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
 147		       i, i + 4,
 148		       le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
 149		       le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
 150		       le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
 151		       le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
 152	}
 153}
 154#else
 155#define tx_add_log(hp, a, s)		do { } while(0)
 156#define tx_dump_log()			do { } while(0)
 157#define tx_dump_ring(hp)		do { } while(0)
 158#endif
 159
 160#ifdef HMEDEBUG
 161#define HMD(x)  printk x
 162#else
 163#define HMD(x)
 164#endif
 165
 166/* #define AUTO_SWITCH_DEBUG */
 167
 168#ifdef AUTO_SWITCH_DEBUG
 169#define ASD(x)  printk x
 170#else
 171#define ASD(x)
 172#endif
 173
 174#define DEFAULT_IPG0      16 /* For lance-mode only */
 175#define DEFAULT_IPG1       8 /* For all modes */
 176#define DEFAULT_IPG2       4 /* For all modes */
 177#define DEFAULT_JAMSIZE    4 /* Toe jam */
 178
 179/* NOTE: In the descriptor writes one _must_ write the address
 180 *	 member _first_.  The card must not be allowed to see
 181 *	 the updated descriptor flags until the address is
 182 *	 correct.  I've added a write memory barrier between
 183 *	 the two stores so that I can sleep well at night... -DaveM
 184 */
 185
 186#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
 187static void sbus_hme_write32(void __iomem *reg, u32 val)
 188{
 189	sbus_writel(val, reg);
 190}
 191
 192static u32 sbus_hme_read32(void __iomem *reg)
 193{
 194	return sbus_readl(reg);
 195}
 196
 197static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
 198{
 199	rxd->rx_addr = (__force hme32)addr;
 200	dma_wmb();
 201	rxd->rx_flags = (__force hme32)flags;
 202}
 203
 204static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
 205{
 206	txd->tx_addr = (__force hme32)addr;
 207	dma_wmb();
 208	txd->tx_flags = (__force hme32)flags;
 209}
 210
 211static u32 sbus_hme_read_desc32(hme32 *p)
 212{
 213	return (__force u32)*p;
 214}
 215
 216static void pci_hme_write32(void __iomem *reg, u32 val)
 217{
 218	writel(val, reg);
 219}
 220
 221static u32 pci_hme_read32(void __iomem *reg)
 222{
 223	return readl(reg);
 224}
 225
 226static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
 227{
 228	rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
 229	dma_wmb();
 230	rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
 231}
 232
 233static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
 234{
 235	txd->tx_addr = (__force hme32)cpu_to_le32(addr);
 236	dma_wmb();
 237	txd->tx_flags = (__force hme32)cpu_to_le32(flags);
 238}
 239
 240static u32 pci_hme_read_desc32(hme32 *p)
 241{
 242	return le32_to_cpup((__le32 *)p);
 243}
 244
 245#define hme_write32(__hp, __reg, __val) \
 246	((__hp)->write32((__reg), (__val)))
 247#define hme_read32(__hp, __reg) \
 248	((__hp)->read32(__reg))
 249#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 250	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
 251#define hme_write_txd(__hp, __txd, __flags, __addr) \
 252	((__hp)->write_txd((__txd), (__flags), (__addr)))
 253#define hme_read_desc32(__hp, __p) \
 254	((__hp)->read_desc32(__p))
 255#define hme_dma_map(__hp, __ptr, __size, __dir) \
 256	((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
 257#define hme_dma_unmap(__hp, __addr, __size, __dir) \
 258	((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
 259#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 260	((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
 261#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 262	((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
 263#else
 264#ifdef CONFIG_SBUS
 265/* SBUS only compilation */
 266#define hme_write32(__hp, __reg, __val) \
 267	sbus_writel((__val), (__reg))
 268#define hme_read32(__hp, __reg) \
 269	sbus_readl(__reg)
 270#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 271do {	(__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
 272	dma_wmb(); \
 273	(__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
 274} while(0)
 275#define hme_write_txd(__hp, __txd, __flags, __addr) \
 276do {	(__txd)->tx_addr = (__force hme32)(u32)(__addr); \
 277	dma_wmb(); \
 278	(__txd)->tx_flags = (__force hme32)(u32)(__flags); \
 279} while(0)
 280#define hme_read_desc32(__hp, __p)	((__force u32)(hme32)*(__p))
 281#define hme_dma_map(__hp, __ptr, __size, __dir) \
 282	dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
 283#define hme_dma_unmap(__hp, __addr, __size, __dir) \
 284	dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
 285#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 286	dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
 287#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 288	dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
 289#else
 290/* PCI only compilation */
 291#define hme_write32(__hp, __reg, __val) \
 292	writel((__val), (__reg))
 293#define hme_read32(__hp, __reg) \
 294	readl(__reg)
 295#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 296do {	(__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
 297	dma_wmb(); \
 298	(__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
 299} while(0)
 300#define hme_write_txd(__hp, __txd, __flags, __addr) \
 301do {	(__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
 302	dma_wmb(); \
 303	(__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
 304} while(0)
 305static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
 306{
 307	return le32_to_cpup((__le32 *)p);
 308}
 309#define hme_dma_map(__hp, __ptr, __size, __dir) \
 310	pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
 311#define hme_dma_unmap(__hp, __addr, __size, __dir) \
 312	pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
 313#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 314	pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
 315#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 316	pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
 317#endif
 318#endif
 319
 320
 321/* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
 322static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
 323{
 324	hme_write32(hp, tregs + TCVR_BBDATA, bit);
 325	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 326	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 327}
 328
 329#if 0
 330static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
 331{
 332	u32 ret;
 333
 334	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 335	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 336	ret = hme_read32(hp, tregs + TCVR_CFG);
 337	if (internal)
 338		ret &= TCV_CFG_MDIO0;
 339	else
 340		ret &= TCV_CFG_MDIO1;
 341
 342	return ret;
 343}
 344#endif
 345
 346static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
 347{
 348	u32 retval;
 349
 350	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 351	udelay(1);
 352	retval = hme_read32(hp, tregs + TCVR_CFG);
 353	if (internal)
 354		retval &= TCV_CFG_MDIO0;
 355	else
 356		retval &= TCV_CFG_MDIO1;
 357	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 358
 359	return retval;
 360}
 361
 362#define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
 363
 364static int happy_meal_bb_read(struct happy_meal *hp,
 365			      void __iomem *tregs, int reg)
 366{
 367	u32 tmp;
 368	int retval = 0;
 369	int i;
 370
 371	ASD(("happy_meal_bb_read: reg=%d ", reg));
 372
 373	/* Enable the MIF BitBang outputs. */
 374	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
 375
 376	/* Force BitBang into the idle state. */
 377	for (i = 0; i < 32; i++)
 378		BB_PUT_BIT(hp, tregs, 1);
 379
 380	/* Give it the read sequence. */
 381	BB_PUT_BIT(hp, tregs, 0);
 382	BB_PUT_BIT(hp, tregs, 1);
 383	BB_PUT_BIT(hp, tregs, 1);
 384	BB_PUT_BIT(hp, tregs, 0);
 385
 386	/* Give it the PHY address. */
 387	tmp = hp->paddr & 0xff;
 388	for (i = 4; i >= 0; i--)
 389		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 390
 391	/* Tell it what register we want to read. */
 392	tmp = (reg & 0xff);
 393	for (i = 4; i >= 0; i--)
 394		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 395
 396	/* Close down the MIF BitBang outputs. */
 397	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
 398
 399	/* Now read in the value. */
 400	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 401	for (i = 15; i >= 0; i--)
 402		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 403	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 404	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 405	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 406	ASD(("value=%x\n", retval));
 407	return retval;
 408}
 409
 410static void happy_meal_bb_write(struct happy_meal *hp,
 411				void __iomem *tregs, int reg,
 412				unsigned short value)
 413{
 414	u32 tmp;
 415	int i;
 416
 417	ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
 418
 419	/* Enable the MIF BitBang outputs. */
 420	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
 421
 422	/* Force BitBang into the idle state. */
 423	for (i = 0; i < 32; i++)
 424		BB_PUT_BIT(hp, tregs, 1);
 425
 426	/* Give it write sequence. */
 427	BB_PUT_BIT(hp, tregs, 0);
 428	BB_PUT_BIT(hp, tregs, 1);
 429	BB_PUT_BIT(hp, tregs, 0);
 430	BB_PUT_BIT(hp, tregs, 1);
 431
 432	/* Give it the PHY address. */
 433	tmp = (hp->paddr & 0xff);
 434	for (i = 4; i >= 0; i--)
 435		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 436
 437	/* Tell it what register we will be writing. */
 438	tmp = (reg & 0xff);
 439	for (i = 4; i >= 0; i--)
 440		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 441
 442	/* Tell it to become ready for the bits. */
 443	BB_PUT_BIT(hp, tregs, 1);
 444	BB_PUT_BIT(hp, tregs, 0);
 445
 446	for (i = 15; i >= 0; i--)
 447		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
 448
 449	/* Close down the MIF BitBang outputs. */
 450	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
 451}
 452
 453#define TCVR_READ_TRIES   16
 454
 455static int happy_meal_tcvr_read(struct happy_meal *hp,
 456				void __iomem *tregs, int reg)
 457{
 458	int tries = TCVR_READ_TRIES;
 459	int retval;
 460
 461	ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
 462	if (hp->tcvr_type == none) {
 463		ASD(("no transceiver, value=TCVR_FAILURE\n"));
 464		return TCVR_FAILURE;
 465	}
 466
 467	if (!(hp->happy_flags & HFLAG_FENABLE)) {
 468		ASD(("doing bit bang\n"));
 469		return happy_meal_bb_read(hp, tregs, reg);
 470	}
 471
 472	hme_write32(hp, tregs + TCVR_FRAME,
 473		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
 474	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
 475		udelay(20);
 476	if (!tries) {
 477		printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
 478		return TCVR_FAILURE;
 479	}
 480	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
 481	ASD(("value=%04x\n", retval));
 482	return retval;
 483}
 484
 485#define TCVR_WRITE_TRIES  16
 486
 487static void happy_meal_tcvr_write(struct happy_meal *hp,
 488				  void __iomem *tregs, int reg,
 489				  unsigned short value)
 490{
 491	int tries = TCVR_WRITE_TRIES;
 492
 493	ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
 494
 495	/* Welcome to Sun Microsystems, can I take your order please? */
 496	if (!(hp->happy_flags & HFLAG_FENABLE)) {
 497		happy_meal_bb_write(hp, tregs, reg, value);
 498		return;
 499	}
 500
 501	/* Would you like fries with that? */
 502	hme_write32(hp, tregs + TCVR_FRAME,
 503		    (FRAME_WRITE | (hp->paddr << 23) |
 504		     ((reg & 0xff) << 18) | (value & 0xffff)));
 505	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
 506		udelay(20);
 507
 508	/* Anything else? */
 509	if (!tries)
 510		printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
 511
 512	/* Fifty-two cents is your change, have a nice day. */
 513}
 514
 515/* Auto negotiation.  The scheme is very simple.  We have a timer routine
 516 * that keeps watching the auto negotiation process as it progresses.
 517 * The DP83840 is first told to start doing it's thing, we set up the time
 518 * and place the timer state machine in it's initial state.
 519 *
 520 * Here the timer peeks at the DP83840 status registers at each click to see
 521 * if the auto negotiation has completed, we assume here that the DP83840 PHY
 522 * will time out at some point and just tell us what (didn't) happen.  For
 523 * complete coverage we only allow so many of the ticks at this level to run,
 524 * when this has expired we print a warning message and try another strategy.
 525 * This "other" strategy is to force the interface into various speed/duplex
 526 * configurations and we stop when we see a link-up condition before the
 527 * maximum number of "peek" ticks have occurred.
 528 *
 529 * Once a valid link status has been detected we configure the BigMAC and
 530 * the rest of the Happy Meal to speak the most efficient protocol we could
 531 * get a clean link for.  The priority for link configurations, highest first
 532 * is:
 533 *                 100 Base-T Full Duplex
 534 *                 100 Base-T Half Duplex
 535 *                 10 Base-T Full Duplex
 536 *                 10 Base-T Half Duplex
 537 *
 538 * We start a new timer now, after a successful auto negotiation status has
 539 * been detected.  This timer just waits for the link-up bit to get set in
 540 * the BMCR of the DP83840.  When this occurs we print a kernel log message
 541 * describing the link type in use and the fact that it is up.
 542 *
 543 * If a fatal error of some sort is signalled and detected in the interrupt
 544 * service routine, and the chip is reset, or the link is ifconfig'd down
 545 * and then back up, this entire process repeats itself all over again.
 546 */
 547static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
 548{
 549	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 550
 551	/* Downgrade from full to half duplex.  Only possible
 552	 * via ethtool.
 553	 */
 554	if (hp->sw_bmcr & BMCR_FULLDPLX) {
 555		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
 556		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 557		return 0;
 558	}
 559
 560	/* Downgrade from 100 to 10. */
 561	if (hp->sw_bmcr & BMCR_SPEED100) {
 562		hp->sw_bmcr &= ~(BMCR_SPEED100);
 563		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 564		return 0;
 565	}
 566
 567	/* We've tried everything. */
 568	return -1;
 569}
 570
 571static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
 572{
 573	printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
 574	if (hp->tcvr_type == external)
 575		printk("external ");
 576	else
 577		printk("internal ");
 578	printk("transceiver at ");
 579	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
 580	if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
 581		if (hp->sw_lpa & LPA_100FULL)
 582			printk("100Mb/s, Full Duplex.\n");
 583		else
 584			printk("100Mb/s, Half Duplex.\n");
 585	} else {
 586		if (hp->sw_lpa & LPA_10FULL)
 587			printk("10Mb/s, Full Duplex.\n");
 588		else
 589			printk("10Mb/s, Half Duplex.\n");
 590	}
 591}
 592
 593static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
 594{
 595	printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
 596	if (hp->tcvr_type == external)
 597		printk("external ");
 598	else
 599		printk("internal ");
 600	printk("transceiver at ");
 601	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 602	if (hp->sw_bmcr & BMCR_SPEED100)
 603		printk("100Mb/s, ");
 604	else
 605		printk("10Mb/s, ");
 606	if (hp->sw_bmcr & BMCR_FULLDPLX)
 607		printk("Full Duplex.\n");
 608	else
 609		printk("Half Duplex.\n");
 610}
 611
 612static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
 613{
 614	int full;
 615
 616	/* All we care about is making sure the bigmac tx_cfg has a
 617	 * proper duplex setting.
 618	 */
 619	if (hp->timer_state == arbwait) {
 620		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
 621		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
 622			goto no_response;
 623		if (hp->sw_lpa & LPA_100FULL)
 624			full = 1;
 625		else if (hp->sw_lpa & LPA_100HALF)
 626			full = 0;
 627		else if (hp->sw_lpa & LPA_10FULL)
 628			full = 1;
 629		else
 630			full = 0;
 631	} else {
 632		/* Forcing a link mode. */
 633		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 634		if (hp->sw_bmcr & BMCR_FULLDPLX)
 635			full = 1;
 636		else
 637			full = 0;
 638	}
 639
 640	/* Before changing other bits in the tx_cfg register, and in
 641	 * general any of other the TX config registers too, you
 642	 * must:
 643	 * 1) Clear Enable
 644	 * 2) Poll with reads until that bit reads back as zero
 645	 * 3) Make TX configuration changes
 646	 * 4) Set Enable once more
 647	 */
 648	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 649		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
 650		    ~(BIGMAC_TXCFG_ENABLE));
 651	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
 652		barrier();
 653	if (full) {
 654		hp->happy_flags |= HFLAG_FULL;
 655		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 656			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
 657			    BIGMAC_TXCFG_FULLDPLX);
 658	} else {
 659		hp->happy_flags &= ~(HFLAG_FULL);
 660		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 661			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
 662			    ~(BIGMAC_TXCFG_FULLDPLX));
 663	}
 664	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 665		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
 666		    BIGMAC_TXCFG_ENABLE);
 667	return 0;
 668no_response:
 669	return 1;
 670}
 671
 672static int happy_meal_init(struct happy_meal *hp);
 673
 674static int is_lucent_phy(struct happy_meal *hp)
 675{
 676	void __iomem *tregs = hp->tcvregs;
 677	unsigned short mr2, mr3;
 678	int ret = 0;
 679
 680	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
 681	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
 682	if ((mr2 & 0xffff) == 0x0180 &&
 683	    ((mr3 & 0xffff) >> 10) == 0x1d)
 684		ret = 1;
 685
 686	return ret;
 687}
 688
 689static void happy_meal_timer(struct timer_list *t)
 690{
 691	struct happy_meal *hp = from_timer(hp, t, happy_timer);
 692	void __iomem *tregs = hp->tcvregs;
 693	int restart_timer = 0;
 694
 695	spin_lock_irq(&hp->happy_lock);
 696
 697	hp->timer_ticks++;
 698	switch(hp->timer_state) {
 699	case arbwait:
 700		/* Only allow for 5 ticks, thats 10 seconds and much too
 701		 * long to wait for arbitration to complete.
 702		 */
 703		if (hp->timer_ticks >= 10) {
 704			/* Enter force mode. */
 705	do_force_mode:
 706			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 707			printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
 708			       hp->dev->name);
 709			hp->sw_bmcr = BMCR_SPEED100;
 710			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 711
 712			if (!is_lucent_phy(hp)) {
 713				/* OK, seems we need do disable the transceiver for the first
 714				 * tick to make sure we get an accurate link state at the
 715				 * second tick.
 716				 */
 717				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
 718				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
 719				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
 720			}
 721			hp->timer_state = ltrywait;
 722			hp->timer_ticks = 0;
 723			restart_timer = 1;
 724		} else {
 725			/* Anything interesting happen? */
 726			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 727			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
 728				int ret;
 729
 730				/* Just what we've been waiting for... */
 731				ret = set_happy_link_modes(hp, tregs);
 732				if (ret) {
 733					/* Ooops, something bad happened, go to force
 734					 * mode.
 735					 *
 736					 * XXX Broken hubs which don't support 802.3u
 737					 * XXX auto-negotiation make this happen as well.
 738					 */
 739					goto do_force_mode;
 740				}
 741
 742				/* Success, at least so far, advance our state engine. */
 743				hp->timer_state = lupwait;
 744				restart_timer = 1;
 745			} else {
 746				restart_timer = 1;
 747			}
 748		}
 749		break;
 750
 751	case lupwait:
 752		/* Auto negotiation was successful and we are awaiting a
 753		 * link up status.  I have decided to let this timer run
 754		 * forever until some sort of error is signalled, reporting
 755		 * a message to the user at 10 second intervals.
 756		 */
 757		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 758		if (hp->sw_bmsr & BMSR_LSTATUS) {
 759			/* Wheee, it's up, display the link mode in use and put
 760			 * the timer to sleep.
 761			 */
 762			display_link_mode(hp, tregs);
 763			hp->timer_state = asleep;
 764			restart_timer = 0;
 765		} else {
 766			if (hp->timer_ticks >= 10) {
 767				printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
 768				       "not completely up.\n", hp->dev->name);
 769				hp->timer_ticks = 0;
 770				restart_timer = 1;
 771			} else {
 772				restart_timer = 1;
 773			}
 774		}
 775		break;
 776
 777	case ltrywait:
 778		/* Making the timeout here too long can make it take
 779		 * annoyingly long to attempt all of the link mode
 780		 * permutations, but then again this is essentially
 781		 * error recovery code for the most part.
 782		 */
 783		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 784		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
 785		if (hp->timer_ticks == 1) {
 786			if (!is_lucent_phy(hp)) {
 787				/* Re-enable transceiver, we'll re-enable the transceiver next
 788				 * tick, then check link state on the following tick.
 789				 */
 790				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
 791				happy_meal_tcvr_write(hp, tregs,
 792						      DP83840_CSCONFIG, hp->sw_csconfig);
 793			}
 794			restart_timer = 1;
 795			break;
 796		}
 797		if (hp->timer_ticks == 2) {
 798			if (!is_lucent_phy(hp)) {
 799				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
 800				happy_meal_tcvr_write(hp, tregs,
 801						      DP83840_CSCONFIG, hp->sw_csconfig);
 802			}
 803			restart_timer = 1;
 804			break;
 805		}
 806		if (hp->sw_bmsr & BMSR_LSTATUS) {
 807			/* Force mode selection success. */
 808			display_forced_link_mode(hp, tregs);
 809			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
 810			hp->timer_state = asleep;
 811			restart_timer = 0;
 812		} else {
 813			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
 814				int ret;
 815
 816				ret = try_next_permutation(hp, tregs);
 817				if (ret == -1) {
 818					/* Aieee, tried them all, reset the
 819					 * chip and try all over again.
 820					 */
 821
 822					/* Let the user know... */
 823					printk(KERN_NOTICE "%s: Link down, cable problem?\n",
 824					       hp->dev->name);
 825
 826					ret = happy_meal_init(hp);
 827					if (ret) {
 828						/* ho hum... */
 829						printk(KERN_ERR "%s: Error, cannot re-init the "
 830						       "Happy Meal.\n", hp->dev->name);
 831					}
 832					goto out;
 833				}
 834				if (!is_lucent_phy(hp)) {
 835					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
 836									       DP83840_CSCONFIG);
 837					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
 838					happy_meal_tcvr_write(hp, tregs,
 839							      DP83840_CSCONFIG, hp->sw_csconfig);
 840				}
 841				hp->timer_ticks = 0;
 842				restart_timer = 1;
 843			} else {
 844				restart_timer = 1;
 845			}
 846		}
 847		break;
 848
 849	case asleep:
 850	default:
 851		/* Can't happens.... */
 852		printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
 853		       hp->dev->name);
 854		restart_timer = 0;
 855		hp->timer_ticks = 0;
 856		hp->timer_state = asleep; /* foo on you */
 857		break;
 858	}
 859
 860	if (restart_timer) {
 861		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
 862		add_timer(&hp->happy_timer);
 863	}
 864
 865out:
 866	spin_unlock_irq(&hp->happy_lock);
 867}
 868
 869#define TX_RESET_TRIES     32
 870#define RX_RESET_TRIES     32
 871
 872/* hp->happy_lock must be held */
 873static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
 874{
 875	int tries = TX_RESET_TRIES;
 876
 877	HMD(("happy_meal_tx_reset: reset, "));
 878
 879	/* Would you like to try our SMCC Delux? */
 880	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
 881	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
 882		udelay(20);
 883
 884	/* Lettuce, tomato, buggy hardware (no extra charge)? */
 885	if (!tries)
 886		printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
 887
 888	/* Take care. */
 889	HMD(("done\n"));
 890}
 891
 892/* hp->happy_lock must be held */
 893static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
 894{
 895	int tries = RX_RESET_TRIES;
 896
 897	HMD(("happy_meal_rx_reset: reset, "));
 898
 899	/* We have a special on GNU/Viking hardware bugs today. */
 900	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
 901	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
 902		udelay(20);
 903
 904	/* Will that be all? */
 905	if (!tries)
 906		printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
 907
 908	/* Don't forget your vik_1137125_wa.  Have a nice day. */
 909	HMD(("done\n"));
 910}
 911
 912#define STOP_TRIES         16
 913
 914/* hp->happy_lock must be held */
 915static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
 916{
 917	int tries = STOP_TRIES;
 918
 919	HMD(("happy_meal_stop: reset, "));
 920
 921	/* We're consolidating our STB products, it's your lucky day. */
 922	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
 923	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
 924		udelay(20);
 925
 926	/* Come back next week when we are "Sun Microelectronics". */
 927	if (!tries)
 928		printk(KERN_ERR "happy meal: Fry guys.");
 929
 930	/* Remember: "Different name, same old buggy as shit hardware." */
 931	HMD(("done\n"));
 932}
 933
 934/* hp->happy_lock must be held */
 935static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
 936{
 937	struct net_device_stats *stats = &hp->dev->stats;
 938
 939	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
 940	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
 941
 942	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
 943	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
 944
 945	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
 946	hme_write32(hp, bregs + BMAC_GLECTR, 0);
 947
 948	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
 949
 950	stats->collisions +=
 951		(hme_read32(hp, bregs + BMAC_EXCTR) +
 952		 hme_read32(hp, bregs + BMAC_LTCTR));
 953	hme_write32(hp, bregs + BMAC_EXCTR, 0);
 954	hme_write32(hp, bregs + BMAC_LTCTR, 0);
 955}
 956
 957/* hp->happy_lock must be held */
 958static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
 959{
 960	ASD(("happy_meal_poll_stop: "));
 961
 962	/* If polling disabled or not polling already, nothing to do. */
 963	if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
 964	   (HFLAG_POLLENABLE | HFLAG_POLL)) {
 965		HMD(("not polling, return\n"));
 966		return;
 967	}
 968
 969	/* Shut up the MIF. */
 970	ASD(("were polling, mif ints off, "));
 971	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
 972
 973	/* Turn off polling. */
 974	ASD(("polling off, "));
 975	hme_write32(hp, tregs + TCVR_CFG,
 976		    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
 977
 978	/* We are no longer polling. */
 979	hp->happy_flags &= ~(HFLAG_POLL);
 980
 981	/* Let the bits set. */
 982	udelay(200);
 983	ASD(("done\n"));
 984}
 985
 986/* Only Sun can take such nice parts and fuck up the programming interface
 987 * like this.  Good job guys...
 988 */
 989#define TCVR_RESET_TRIES       16 /* It should reset quickly        */
 990#define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
 991
 992/* hp->happy_lock must be held */
 993static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
 994{
 995	u32 tconfig;
 996	int result, tries = TCVR_RESET_TRIES;
 997
 998	tconfig = hme_read32(hp, tregs + TCVR_CFG);
 999	ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
1000	if (hp->tcvr_type == external) {
1001		ASD(("external<"));
1002		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1003		hp->tcvr_type = internal;
1004		hp->paddr = TCV_PADDR_ITX;
1005		ASD(("ISOLATE,"));
1006		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1007				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1008		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1009		if (result == TCVR_FAILURE) {
1010			ASD(("phyread_fail>\n"));
1011			return -1;
1012		}
1013		ASD(("phyread_ok,PSELECT>"));
1014		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1015		hp->tcvr_type = external;
1016		hp->paddr = TCV_PADDR_ETX;
1017	} else {
1018		if (tconfig & TCV_CFG_MDIO1) {
1019			ASD(("internal<PSELECT,"));
1020			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1021			ASD(("ISOLATE,"));
1022			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1023					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1024			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1025			if (result == TCVR_FAILURE) {
1026				ASD(("phyread_fail>\n"));
1027				return -1;
1028			}
1029			ASD(("phyread_ok,~PSELECT>"));
1030			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1031			hp->tcvr_type = internal;
1032			hp->paddr = TCV_PADDR_ITX;
1033		}
1034	}
1035
1036	ASD(("BMCR_RESET "));
1037	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1038
1039	while (--tries) {
1040		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1041		if (result == TCVR_FAILURE)
1042			return -1;
1043		hp->sw_bmcr = result;
1044		if (!(result & BMCR_RESET))
1045			break;
1046		udelay(20);
1047	}
1048	if (!tries) {
1049		ASD(("BMCR RESET FAILED!\n"));
1050		return -1;
1051	}
1052	ASD(("RESET_OK\n"));
1053
1054	/* Get fresh copies of the PHY registers. */
1055	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1056	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1057	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1058	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1059
1060	ASD(("UNISOLATE"));
1061	hp->sw_bmcr &= ~(BMCR_ISOLATE);
1062	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1063
1064	tries = TCVR_UNISOLATE_TRIES;
1065	while (--tries) {
1066		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1067		if (result == TCVR_FAILURE)
1068			return -1;
1069		if (!(result & BMCR_ISOLATE))
1070			break;
1071		udelay(20);
1072	}
1073	if (!tries) {
1074		ASD((" FAILED!\n"));
1075		return -1;
1076	}
1077	ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1078	if (!is_lucent_phy(hp)) {
1079		result = happy_meal_tcvr_read(hp, tregs,
1080					      DP83840_CSCONFIG);
1081		happy_meal_tcvr_write(hp, tregs,
1082				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1083	}
1084	return 0;
1085}
1086
1087/* Figure out whether we have an internal or external transceiver.
1088 *
1089 * hp->happy_lock must be held
1090 */
1091static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1092{
1093	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1094
1095	ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1096	if (hp->happy_flags & HFLAG_POLL) {
1097		/* If we are polling, we must stop to get the transceiver type. */
1098		ASD(("<polling> "));
1099		if (hp->tcvr_type == internal) {
1100			if (tconfig & TCV_CFG_MDIO1) {
1101				ASD(("<internal> <poll stop> "));
1102				happy_meal_poll_stop(hp, tregs);
1103				hp->paddr = TCV_PADDR_ETX;
1104				hp->tcvr_type = external;
1105				ASD(("<external>\n"));
1106				tconfig &= ~(TCV_CFG_PENABLE);
1107				tconfig |= TCV_CFG_PSELECT;
1108				hme_write32(hp, tregs + TCVR_CFG, tconfig);
 
1109			}
1110		} else {
1111			if (hp->tcvr_type == external) {
1112				ASD(("<external> "));
1113				if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1114					ASD(("<poll stop> "));
1115					happy_meal_poll_stop(hp, tregs);
1116					hp->paddr = TCV_PADDR_ITX;
1117					hp->tcvr_type = internal;
1118					ASD(("<internal>\n"));
1119					hme_write32(hp, tregs + TCVR_CFG,
1120						    hme_read32(hp, tregs + TCVR_CFG) &
1121						    ~(TCV_CFG_PSELECT));
 
1122				}
1123				ASD(("\n"));
1124			} else {
1125				ASD(("<none>\n"));
1126			}
1127		}
1128	} else {
1129		u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1130
1131		/* Else we can just work off of the MDIO bits. */
1132		ASD(("<not polling> "));
1133		if (reread & TCV_CFG_MDIO1) {
1134			hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1135			hp->paddr = TCV_PADDR_ETX;
1136			hp->tcvr_type = external;
1137			ASD(("<external>\n"));
1138		} else {
1139			if (reread & TCV_CFG_MDIO0) {
1140				hme_write32(hp, tregs + TCVR_CFG,
1141					    tconfig & ~(TCV_CFG_PSELECT));
1142				hp->paddr = TCV_PADDR_ITX;
1143				hp->tcvr_type = internal;
1144				ASD(("<internal>\n"));
1145			} else {
1146				printk(KERN_ERR "happy meal: Transceiver and a coke please.");
 
1147				hp->tcvr_type = none; /* Grrr... */
1148				ASD(("<none>\n"));
1149			}
1150		}
1151	}
1152}
1153
1154/* The receive ring buffers are a bit tricky to get right.  Here goes...
1155 *
1156 * The buffers we dma into must be 64 byte aligned.  So we use a special
1157 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1158 * we really need.
1159 *
1160 * We use skb_reserve() to align the data block we get in the skb.  We
1161 * also program the etxregs->cfg register to use an offset of 2.  This
1162 * imperical constant plus the ethernet header size will always leave
1163 * us with a nicely aligned ip header once we pass things up to the
1164 * protocol layers.
1165 *
1166 * The numbers work out to:
1167 *
1168 *         Max ethernet frame size         1518
1169 *         Ethernet header size              14
1170 *         Happy Meal base offset             2
1171 *
1172 * Say a skb data area is at 0xf001b010, and its size alloced is
1173 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1174 *
1175 * First our alloc_skb() routine aligns the data base to a 64 byte
1176 * boundary.  We now have 0xf001b040 as our skb data address.  We
1177 * plug this into the receive descriptor address.
1178 *
1179 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1180 * So now the data we will end up looking at starts at 0xf001b042.  When
1181 * the packet arrives, we will check out the size received and subtract
1182 * this from the skb->length.  Then we just pass the packet up to the
1183 * protocols as is, and allocate a new skb to replace this slot we have
1184 * just received from.
1185 *
1186 * The ethernet layer will strip the ether header from the front of the
1187 * skb we just sent to it, this leaves us with the ip header sitting
1188 * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1189 * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1190 * bit checksum is obtained from the low bits of the receive descriptor
1191 * flags, thus:
1192 *
1193 * 	skb->csum = rxd->rx_flags & 0xffff;
1194 * 	skb->ip_summed = CHECKSUM_COMPLETE;
1195 *
1196 * before sending off the skb to the protocols, and we are good as gold.
1197 */
1198static void happy_meal_clean_rings(struct happy_meal *hp)
1199{
1200	int i;
1201
1202	for (i = 0; i < RX_RING_SIZE; i++) {
1203		if (hp->rx_skbs[i] != NULL) {
1204			struct sk_buff *skb = hp->rx_skbs[i];
1205			struct happy_meal_rxd *rxd;
1206			u32 dma_addr;
1207
1208			rxd = &hp->happy_block->happy_meal_rxd[i];
1209			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1210			dma_unmap_single(hp->dma_dev, dma_addr,
1211					 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1212			dev_kfree_skb_any(skb);
1213			hp->rx_skbs[i] = NULL;
1214		}
1215	}
1216
1217	for (i = 0; i < TX_RING_SIZE; i++) {
1218		if (hp->tx_skbs[i] != NULL) {
1219			struct sk_buff *skb = hp->tx_skbs[i];
1220			struct happy_meal_txd *txd;
1221			u32 dma_addr;
1222			int frag;
1223
1224			hp->tx_skbs[i] = NULL;
1225
1226			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1227				txd = &hp->happy_block->happy_meal_txd[i];
1228				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1229				if (!frag)
1230					dma_unmap_single(hp->dma_dev, dma_addr,
1231							 (hme_read_desc32(hp, &txd->tx_flags)
1232							  & TXFLAG_SIZE),
1233							 DMA_TO_DEVICE);
1234				else
1235					dma_unmap_page(hp->dma_dev, dma_addr,
1236							 (hme_read_desc32(hp, &txd->tx_flags)
1237							  & TXFLAG_SIZE),
1238							 DMA_TO_DEVICE);
1239
1240				if (frag != skb_shinfo(skb)->nr_frags)
1241					i++;
1242			}
1243
1244			dev_kfree_skb_any(skb);
1245		}
1246	}
1247}
1248
1249/* hp->happy_lock must be held */
1250static void happy_meal_init_rings(struct happy_meal *hp)
1251{
1252	struct hmeal_init_block *hb = hp->happy_block;
1253	int i;
1254
1255	HMD(("happy_meal_init_rings: counters to zero, "));
1256	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1257
1258	/* Free any skippy bufs left around in the rings. */
1259	HMD(("clean, "));
1260	happy_meal_clean_rings(hp);
1261
1262	/* Now get new skippy bufs for the receive ring. */
1263	HMD(("init rxring, "));
1264	for (i = 0; i < RX_RING_SIZE; i++) {
1265		struct sk_buff *skb;
1266		u32 mapping;
1267
1268		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1269		if (!skb) {
1270			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1271			continue;
1272		}
1273		hp->rx_skbs[i] = skb;
1274
1275		/* Because we reserve afterwards. */
1276		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1277		mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1278					 DMA_FROM_DEVICE);
1279		if (dma_mapping_error(hp->dma_dev, mapping)) {
1280			dev_kfree_skb_any(skb);
1281			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1282			continue;
1283		}
1284		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1285			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1286			      mapping);
1287		skb_reserve(skb, RX_OFFSET);
1288	}
1289
1290	HMD(("init txring, "));
1291	for (i = 0; i < TX_RING_SIZE; i++)
1292		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1293
1294	HMD(("done\n"));
1295}
1296
1297/* hp->happy_lock must be held */
1298static void
1299happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1300				  void __iomem *tregs,
1301				  const struct ethtool_link_ksettings *ep)
1302{
1303	int timeout;
1304
1305	/* Read all of the registers we are interested in now. */
1306	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1307	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1308	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1309	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1310
1311	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1312
1313	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1314	if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1315		/* Advertise everything we can support. */
1316		if (hp->sw_bmsr & BMSR_10HALF)
1317			hp->sw_advertise |= (ADVERTISE_10HALF);
1318		else
1319			hp->sw_advertise &= ~(ADVERTISE_10HALF);
1320
1321		if (hp->sw_bmsr & BMSR_10FULL)
1322			hp->sw_advertise |= (ADVERTISE_10FULL);
1323		else
1324			hp->sw_advertise &= ~(ADVERTISE_10FULL);
1325		if (hp->sw_bmsr & BMSR_100HALF)
1326			hp->sw_advertise |= (ADVERTISE_100HALF);
1327		else
1328			hp->sw_advertise &= ~(ADVERTISE_100HALF);
1329		if (hp->sw_bmsr & BMSR_100FULL)
1330			hp->sw_advertise |= (ADVERTISE_100FULL);
1331		else
1332			hp->sw_advertise &= ~(ADVERTISE_100FULL);
1333		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1334
1335		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1336		 * XXX and this is because the DP83840 does not support it, changes
1337		 * XXX would need to be made to the tx/rx logic in the driver as well
1338		 * XXX so I completely skip checking for it in the BMSR for now.
1339		 */
1340
1341#ifdef AUTO_SWITCH_DEBUG
1342		ASD(("%s: Advertising [ ", hp->dev->name));
1343		if (hp->sw_advertise & ADVERTISE_10HALF)
1344			ASD(("10H "));
1345		if (hp->sw_advertise & ADVERTISE_10FULL)
1346			ASD(("10F "));
1347		if (hp->sw_advertise & ADVERTISE_100HALF)
1348			ASD(("100H "));
1349		if (hp->sw_advertise & ADVERTISE_100FULL)
1350			ASD(("100F "));
1351#endif
1352
1353		/* Enable Auto-Negotiation, this is usually on already... */
1354		hp->sw_bmcr |= BMCR_ANENABLE;
1355		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1356
1357		/* Restart it to make sure it is going. */
1358		hp->sw_bmcr |= BMCR_ANRESTART;
1359		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1360
1361		/* BMCR_ANRESTART self clears when the process has begun. */
1362
1363		timeout = 64;  /* More than enough. */
1364		while (--timeout) {
1365			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1366			if (!(hp->sw_bmcr & BMCR_ANRESTART))
1367				break; /* got it. */
1368			udelay(10);
1369		}
1370		if (!timeout) {
1371			printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1372			       "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1373			printk(KERN_NOTICE "%s: Performing force link detection.\n",
1374			       hp->dev->name);
 
1375			goto force_link;
1376		} else {
1377			hp->timer_state = arbwait;
1378		}
1379	} else {
1380force_link:
1381		/* Force the link up, trying first a particular mode.
1382		 * Either we are here at the request of ethtool or
1383		 * because the Happy Meal would not start to autoneg.
1384		 */
1385
1386		/* Disable auto-negotiation in BMCR, enable the duplex and
1387		 * speed setting, init the timer state machine, and fire it off.
1388		 */
1389		if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1390			hp->sw_bmcr = BMCR_SPEED100;
1391		} else {
1392			if (ep->base.speed == SPEED_100)
1393				hp->sw_bmcr = BMCR_SPEED100;
1394			else
1395				hp->sw_bmcr = 0;
1396			if (ep->base.duplex == DUPLEX_FULL)
1397				hp->sw_bmcr |= BMCR_FULLDPLX;
1398		}
1399		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1400
1401		if (!is_lucent_phy(hp)) {
1402			/* OK, seems we need do disable the transceiver for the first
1403			 * tick to make sure we get an accurate link state at the
1404			 * second tick.
1405			 */
1406			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1407							       DP83840_CSCONFIG);
1408			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1409			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1410					      hp->sw_csconfig);
1411		}
1412		hp->timer_state = ltrywait;
1413	}
1414
1415	hp->timer_ticks = 0;
1416	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1417	add_timer(&hp->happy_timer);
1418}
1419
1420/* hp->happy_lock must be held */
1421static int happy_meal_init(struct happy_meal *hp)
1422{
 
1423	void __iomem *gregs        = hp->gregs;
1424	void __iomem *etxregs      = hp->etxregs;
1425	void __iomem *erxregs      = hp->erxregs;
1426	void __iomem *bregs        = hp->bigmacregs;
1427	void __iomem *tregs        = hp->tcvregs;
 
1428	u32 regtmp, rxcfg;
1429	unsigned char *e = &hp->dev->dev_addr[0];
1430
1431	/* If auto-negotiation timer is running, kill it. */
1432	del_timer(&hp->happy_timer);
1433
1434	HMD(("happy_meal_init: happy_flags[%08x] ",
1435	     hp->happy_flags));
1436	if (!(hp->happy_flags & HFLAG_INIT)) {
1437		HMD(("set HFLAG_INIT, "));
1438		hp->happy_flags |= HFLAG_INIT;
1439		happy_meal_get_counters(hp, bregs);
1440	}
1441
1442	/* Stop polling. */
1443	HMD(("to happy_meal_poll_stop\n"));
1444	happy_meal_poll_stop(hp, tregs);
1445
1446	/* Stop transmitter and receiver. */
1447	HMD(("happy_meal_init: to happy_meal_stop\n"));
1448	happy_meal_stop(hp, gregs);
1449
1450	/* Alloc and reset the tx/rx descriptor chains. */
1451	HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1452	happy_meal_init_rings(hp);
1453
1454	/* Shut up the MIF. */
1455	HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1456	     hme_read32(hp, tregs + TCVR_IMASK)));
1457	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1458
1459	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
1460	if (hp->happy_flags & HFLAG_FENABLE) {
1461		HMD(("use frame old[%08x], ",
1462		     hme_read32(hp, tregs + TCVR_CFG)));
1463		hme_write32(hp, tregs + TCVR_CFG,
1464			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1465	} else {
1466		HMD(("use bitbang old[%08x], ",
1467		     hme_read32(hp, tregs + TCVR_CFG)));
1468		hme_write32(hp, tregs + TCVR_CFG,
1469			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1470	}
1471
1472	/* Check the state of the transceiver. */
1473	HMD(("to happy_meal_transceiver_check\n"));
1474	happy_meal_transceiver_check(hp, tregs);
1475
1476	/* Put the Big Mac into a sane state. */
1477	HMD(("happy_meal_init: "));
1478	switch(hp->tcvr_type) {
1479	case none:
1480		/* Cannot operate if we don't know the transceiver type! */
1481		HMD(("AAIEEE no transceiver type, EAGAIN"));
1482		return -EAGAIN;
1483
1484	case internal:
1485		/* Using the MII buffers. */
1486		HMD(("internal, using MII, "));
1487		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1488		break;
1489
1490	case external:
1491		/* Not using the MII, disable it. */
1492		HMD(("external, disable MII, "));
1493		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1494		break;
1495	}
1496
1497	if (happy_meal_tcvr_reset(hp, tregs))
1498		return -EAGAIN;
1499
1500	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
1501	HMD(("tx/rx reset, "));
1502	happy_meal_tx_reset(hp, bregs);
1503	happy_meal_rx_reset(hp, bregs);
1504
1505	/* Set jam size and inter-packet gaps to reasonable defaults. */
1506	HMD(("jsize/ipg1/ipg2, "));
1507	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1508	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1509	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1510
1511	/* Load up the MAC address and random seed. */
1512	HMD(("rseed/macaddr, "));
1513
1514	/* The docs recommend to use the 10LSB of our MAC here. */
1515	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1516
1517	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1518	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1519	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1520
1521	HMD(("htable, "));
1522	if ((hp->dev->flags & IFF_ALLMULTI) ||
1523	    (netdev_mc_count(hp->dev) > 64)) {
1524		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1525		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1526		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1527		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1528	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1529		u16 hash_table[4];
1530		struct netdev_hw_addr *ha;
1531		u32 crc;
1532
1533		memset(hash_table, 0, sizeof(hash_table));
1534		netdev_for_each_mc_addr(ha, hp->dev) {
1535			crc = ether_crc_le(6, ha->addr);
1536			crc >>= 26;
1537			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1538		}
1539		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1540		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1541		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1542		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1543	} else {
1544		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1545		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1546		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1547		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1548	}
1549
1550	/* Set the RX and TX ring ptrs. */
1551	HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1552	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1553	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1554	hme_write32(hp, erxregs + ERX_RING,
1555		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1556	hme_write32(hp, etxregs + ETX_RING,
1557		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1558
1559	/* Parity issues in the ERX unit of some HME revisions can cause some
1560	 * registers to not be written unless their parity is even.  Detect such
1561	 * lost writes and simply rewrite with a low bit set (which will be ignored
1562	 * since the rxring needs to be 2K aligned).
1563	 */
1564	if (hme_read32(hp, erxregs + ERX_RING) !=
1565	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1566		hme_write32(hp, erxregs + ERX_RING,
1567			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1568			    | 0x4);
1569
1570	/* Set the supported burst sizes. */
1571	HMD(("happy_meal_init: old[%08x] bursts<",
1572	     hme_read32(hp, gregs + GREG_CFG)));
1573
1574#ifndef CONFIG_SPARC
1575	/* It is always PCI and can handle 64byte bursts. */
1576	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1577#else
1578	if ((hp->happy_bursts & DMA_BURST64) &&
1579	    ((hp->happy_flags & HFLAG_PCI) != 0
1580#ifdef CONFIG_SBUS
1581	     || sbus_can_burst64()
1582#endif
1583	     || 0)) {
1584		u32 gcfg = GREG_CFG_BURST64;
1585
1586		/* I have no idea if I should set the extended
1587		 * transfer mode bit for Cheerio, so for now I
1588		 * do not.  -DaveM
1589		 */
1590#ifdef CONFIG_SBUS
1591		if ((hp->happy_flags & HFLAG_PCI) == 0) {
1592			struct platform_device *op = hp->happy_dev;
1593			if (sbus_can_dma_64bit()) {
1594				sbus_set_sbus64(&op->dev,
1595						hp->happy_bursts);
1596				gcfg |= GREG_CFG_64BIT;
1597			}
1598		}
1599#endif
1600
1601		HMD(("64>"));
1602		hme_write32(hp, gregs + GREG_CFG, gcfg);
1603	} else if (hp->happy_bursts & DMA_BURST32) {
1604		HMD(("32>"));
1605		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1606	} else if (hp->happy_bursts & DMA_BURST16) {
1607		HMD(("16>"));
1608		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1609	} else {
1610		HMD(("XXX>"));
1611		hme_write32(hp, gregs + GREG_CFG, 0);
1612	}
1613#endif /* CONFIG_SPARC */
1614
 
 
 
1615	/* Turn off interrupts we do not want to hear. */
1616	HMD((", enable global interrupts, "));
1617	hme_write32(hp, gregs + GREG_IMASK,
1618		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1619		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1620
1621	/* Set the transmit ring buffer size. */
1622	HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1623	     hme_read32(hp, etxregs + ETX_RSIZE)));
1624	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1625
1626	/* Enable transmitter DVMA. */
1627	HMD(("tx dma enable old[%08x], ",
1628	     hme_read32(hp, etxregs + ETX_CFG)));
1629	hme_write32(hp, etxregs + ETX_CFG,
1630		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1631
1632	/* This chip really rots, for the receiver sometimes when you
1633	 * write to its control registers not all the bits get there
1634	 * properly.  I cannot think of a sane way to provide complete
1635	 * coverage for this hardware bug yet.
1636	 */
1637	HMD(("erx regs bug old[%08x]\n",
1638	     hme_read32(hp, erxregs + ERX_CFG)));
1639	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1640	regtmp = hme_read32(hp, erxregs + ERX_CFG);
1641	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1642	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1643		printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1644		printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1645		       ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
 
 
1646		/* XXX Should return failure here... */
1647	}
1648
1649	/* Enable Big Mac hash table filter. */
1650	HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1651	     hme_read32(hp, bregs + BMAC_RXCFG)));
1652	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1653	if (hp->dev->flags & IFF_PROMISC)
1654		rxcfg |= BIGMAC_RXCFG_PMISC;
1655	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1656
1657	/* Let the bits settle in the chip. */
1658	udelay(10);
1659
1660	/* Ok, configure the Big Mac transmitter. */
1661	HMD(("BIGMAC init, "));
1662	regtmp = 0;
1663	if (hp->happy_flags & HFLAG_FULL)
1664		regtmp |= BIGMAC_TXCFG_FULLDPLX;
1665
1666	/* Don't turn on the "don't give up" bit for now.  It could cause hme
1667	 * to deadlock with the PHY if a Jabber occurs.
1668	 */
1669	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1670
1671	/* Give up after 16 TX attempts. */
1672	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1673
1674	/* Enable the output drivers no matter what. */
1675	regtmp = BIGMAC_XCFG_ODENABLE;
1676
1677	/* If card can do lance mode, enable it. */
1678	if (hp->happy_flags & HFLAG_LANCE)
1679		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1680
1681	/* Disable the MII buffers if using external transceiver. */
1682	if (hp->tcvr_type == external)
1683		regtmp |= BIGMAC_XCFG_MIIDISAB;
1684
1685	HMD(("XIF config old[%08x], ",
1686	     hme_read32(hp, bregs + BMAC_XIFCFG)));
1687	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1688
1689	/* Start things up. */
1690	HMD(("tx old[%08x] and rx [%08x] ON!\n",
1691	     hme_read32(hp, bregs + BMAC_TXCFG),
1692	     hme_read32(hp, bregs + BMAC_RXCFG)));
1693
1694	/* Set larger TX/RX size to allow for 802.1q */
1695	hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1696	hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1697
1698	hme_write32(hp, bregs + BMAC_TXCFG,
1699		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1700	hme_write32(hp, bregs + BMAC_RXCFG,
1701		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1702
1703	/* Get the autonegotiation started, and the watch timer ticking. */
1704	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1705
1706	/* Success. */
1707	return 0;
1708}
1709
1710/* hp->happy_lock must be held */
1711static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1712{
1713	void __iomem *tregs	= hp->tcvregs;
1714	void __iomem *bregs	= hp->bigmacregs;
1715	void __iomem *gregs	= hp->gregs;
1716
1717	happy_meal_stop(hp, gregs);
1718	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1719	if (hp->happy_flags & HFLAG_FENABLE)
1720		hme_write32(hp, tregs + TCVR_CFG,
1721			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1722	else
1723		hme_write32(hp, tregs + TCVR_CFG,
1724			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1725	happy_meal_transceiver_check(hp, tregs);
1726	switch(hp->tcvr_type) {
1727	case none:
1728		return;
1729	case internal:
1730		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1731		break;
1732	case external:
1733		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1734		break;
1735	}
1736	if (happy_meal_tcvr_reset(hp, tregs))
1737		return;
1738
1739	/* Latch PHY registers as of now. */
1740	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1741	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1742
1743	/* Advertise everything we can support. */
1744	if (hp->sw_bmsr & BMSR_10HALF)
1745		hp->sw_advertise |= (ADVERTISE_10HALF);
1746	else
1747		hp->sw_advertise &= ~(ADVERTISE_10HALF);
1748
1749	if (hp->sw_bmsr & BMSR_10FULL)
1750		hp->sw_advertise |= (ADVERTISE_10FULL);
1751	else
1752		hp->sw_advertise &= ~(ADVERTISE_10FULL);
1753	if (hp->sw_bmsr & BMSR_100HALF)
1754		hp->sw_advertise |= (ADVERTISE_100HALF);
1755	else
1756		hp->sw_advertise &= ~(ADVERTISE_100HALF);
1757	if (hp->sw_bmsr & BMSR_100FULL)
1758		hp->sw_advertise |= (ADVERTISE_100FULL);
1759	else
1760		hp->sw_advertise &= ~(ADVERTISE_100FULL);
1761
1762	/* Update the PHY advertisement register. */
1763	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1764}
1765
1766/* Once status is latched (by happy_meal_interrupt) it is cleared by
1767 * the hardware, so we cannot re-read it and get a correct value.
1768 *
1769 * hp->happy_lock must be held
1770 */
1771static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1772{
1773	int reset = 0;
1774
1775	/* Only print messages for non-counter related interrupts. */
1776	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1777		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1778		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1779		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1780		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1781		      GREG_STAT_SLVPERR))
1782		printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1783		       hp->dev->name, status);
 
1784
1785	if (status & GREG_STAT_RFIFOVF) {
1786		/* Receive FIFO overflow is harmless and the hardware will take
1787		   care of it, just some packets are lost. Who cares. */
1788		printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1789	}
1790
1791	if (status & GREG_STAT_STSTERR) {
1792		/* BigMAC SQE link test failed. */
1793		printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1794		reset = 1;
1795	}
1796
1797	if (status & GREG_STAT_TFIFO_UND) {
1798		/* Transmit FIFO underrun, again DMA error likely. */
1799		printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1800		       hp->dev->name);
1801		reset = 1;
1802	}
1803
1804	if (status & GREG_STAT_MAXPKTERR) {
1805		/* Driver error, tried to transmit something larger
1806		 * than ethernet max mtu.
1807		 */
1808		printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1809		reset = 1;
1810	}
1811
1812	if (status & GREG_STAT_NORXD) {
1813		/* This is harmless, it just means the system is
1814		 * quite loaded and the incoming packet rate was
1815		 * faster than the interrupt handler could keep up
1816		 * with.
1817		 */
1818		printk(KERN_INFO "%s: Happy Meal out of receive "
1819		       "descriptors, packet dropped.\n",
1820		       hp->dev->name);
1821	}
1822
1823	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1824		/* All sorts of DMA receive errors. */
1825		printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1826		if (status & GREG_STAT_RXERR)
1827			printk("GenericError ");
1828		if (status & GREG_STAT_RXPERR)
1829			printk("ParityError ");
1830		if (status & GREG_STAT_RXTERR)
1831			printk("RxTagBotch ");
1832		printk("]\n");
1833		reset = 1;
1834	}
1835
1836	if (status & GREG_STAT_EOPERR) {
1837		/* Driver bug, didn't set EOP bit in tx descriptor given
1838		 * to the happy meal.
1839		 */
1840		printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1841		       hp->dev->name);
1842		reset = 1;
1843	}
1844
1845	if (status & GREG_STAT_MIFIRQ) {
1846		/* MIF signalled an interrupt, were we polling it? */
1847		printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1848	}
1849
1850	if (status &
1851	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1852		/* All sorts of transmit DMA errors. */
1853		printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1854		if (status & GREG_STAT_TXEACK)
1855			printk("GenericError ");
1856		if (status & GREG_STAT_TXLERR)
1857			printk("LateError ");
1858		if (status & GREG_STAT_TXPERR)
1859			printk("ParityError ");
1860		if (status & GREG_STAT_TXTERR)
1861			printk("TagBotch ");
1862		printk("]\n");
1863		reset = 1;
1864	}
1865
1866	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1867		/* Bus or parity error when cpu accessed happy meal registers
1868		 * or it's internal FIFO's.  Should never see this.
1869		 */
1870		printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1871		       hp->dev->name,
1872		       (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1873		reset = 1;
1874	}
1875
1876	if (reset) {
1877		printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1878		happy_meal_init(hp);
1879		return 1;
1880	}
1881	return 0;
1882}
1883
1884/* hp->happy_lock must be held */
1885static void happy_meal_mif_interrupt(struct happy_meal *hp)
1886{
1887	void __iomem *tregs = hp->tcvregs;
1888
1889	printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1890	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1891	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1892
1893	/* Use the fastest transmission protocol possible. */
1894	if (hp->sw_lpa & LPA_100FULL) {
1895		printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1896		hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1897	} else if (hp->sw_lpa & LPA_100HALF) {
1898		printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1899		hp->sw_bmcr |= BMCR_SPEED100;
1900	} else if (hp->sw_lpa & LPA_10FULL) {
1901		printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1902		hp->sw_bmcr |= BMCR_FULLDPLX;
1903	} else {
1904		printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1905	}
1906	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1907
1908	/* Finally stop polling and shut up the MIF. */
1909	happy_meal_poll_stop(hp, tregs);
1910}
1911
1912#ifdef TXDEBUG
1913#define TXD(x) printk x
1914#else
1915#define TXD(x)
1916#endif
1917
1918/* hp->happy_lock must be held */
1919static void happy_meal_tx(struct happy_meal *hp)
1920{
1921	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1922	struct happy_meal_txd *this;
1923	struct net_device *dev = hp->dev;
1924	int elem;
1925
1926	elem = hp->tx_old;
1927	TXD(("TX<"));
1928	while (elem != hp->tx_new) {
1929		struct sk_buff *skb;
1930		u32 flags, dma_addr, dma_len;
1931		int frag;
1932
1933		TXD(("[%d]", elem));
1934		this = &txbase[elem];
1935		flags = hme_read_desc32(hp, &this->tx_flags);
1936		if (flags & TXFLAG_OWN)
1937			break;
1938		skb = hp->tx_skbs[elem];
1939		if (skb_shinfo(skb)->nr_frags) {
1940			int last;
1941
1942			last = elem + skb_shinfo(skb)->nr_frags;
1943			last &= (TX_RING_SIZE - 1);
1944			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1945			if (flags & TXFLAG_OWN)
1946				break;
1947		}
1948		hp->tx_skbs[elem] = NULL;
1949		dev->stats.tx_bytes += skb->len;
1950
1951		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1952			dma_addr = hme_read_desc32(hp, &this->tx_addr);
1953			dma_len = hme_read_desc32(hp, &this->tx_flags);
1954
1955			dma_len &= TXFLAG_SIZE;
1956			if (!frag)
1957				dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1958			else
1959				dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1960
1961			elem = NEXT_TX(elem);
1962			this = &txbase[elem];
1963		}
1964
1965		dev_kfree_skb_irq(skb);
1966		dev->stats.tx_packets++;
1967	}
1968	hp->tx_old = elem;
1969	TXD((">"));
1970
1971	if (netif_queue_stopped(dev) &&
1972	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1973		netif_wake_queue(dev);
1974}
1975
1976#ifdef RXDEBUG
1977#define RXD(x) printk x
1978#else
1979#define RXD(x)
1980#endif
1981
1982/* Originally I used to handle the allocation failure by just giving back just
1983 * that one ring buffer to the happy meal.  Problem is that usually when that
1984 * condition is triggered, the happy meal expects you to do something reasonable
1985 * with all of the packets it has DMA'd in.  So now I just drop the entire
1986 * ring when we cannot get a new skb and give them all back to the happy meal,
1987 * maybe things will be "happier" now.
1988 *
1989 * hp->happy_lock must be held
1990 */
1991static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1992{
1993	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1994	struct happy_meal_rxd *this;
1995	int elem = hp->rx_new, drops = 0;
1996	u32 flags;
1997
1998	RXD(("RX<"));
1999	this = &rxbase[elem];
2000	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2001		struct sk_buff *skb;
2002		int len = flags >> 16;
2003		u16 csum = flags & RXFLAG_CSUM;
2004		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2005
2006		RXD(("[%d ", elem));
2007
2008		/* Check for errors. */
2009		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2010			RXD(("ERR(%08x)]", flags));
2011			dev->stats.rx_errors++;
2012			if (len < ETH_ZLEN)
2013				dev->stats.rx_length_errors++;
2014			if (len & (RXFLAG_OVERFLOW >> 16)) {
2015				dev->stats.rx_over_errors++;
2016				dev->stats.rx_fifo_errors++;
2017			}
2018
2019			/* Return it to the Happy meal. */
2020	drop_it:
2021			dev->stats.rx_dropped++;
2022			hme_write_rxd(hp, this,
2023				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2024				      dma_addr);
2025			goto next;
2026		}
2027		skb = hp->rx_skbs[elem];
2028		if (len > RX_COPY_THRESHOLD) {
2029			struct sk_buff *new_skb;
2030			u32 mapping;
2031
2032			/* Now refill the entry, if we can. */
2033			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2034			if (new_skb == NULL) {
2035				drops++;
2036				goto drop_it;
2037			}
2038			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2039			mapping = dma_map_single(hp->dma_dev, new_skb->data,
2040						 RX_BUF_ALLOC_SIZE,
2041						 DMA_FROM_DEVICE);
2042			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2043				dev_kfree_skb_any(new_skb);
2044				drops++;
2045				goto drop_it;
2046			}
2047
2048			dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2049			hp->rx_skbs[elem] = new_skb;
2050			hme_write_rxd(hp, this,
2051				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2052				      mapping);
2053			skb_reserve(new_skb, RX_OFFSET);
2054
2055			/* Trim the original skb for the netif. */
2056			skb_trim(skb, len);
2057		} else {
2058			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
2059
2060			if (copy_skb == NULL) {
2061				drops++;
2062				goto drop_it;
2063			}
2064
2065			skb_reserve(copy_skb, 2);
2066			skb_put(copy_skb, len);
2067			dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2068			skb_copy_from_linear_data(skb, copy_skb->data, len);
2069			dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2070			/* Reuse original ring buffer. */
2071			hme_write_rxd(hp, this,
2072				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2073				      dma_addr);
2074
2075			skb = copy_skb;
2076		}
2077
2078		/* This card is _fucking_ hot... */
2079		skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2080		skb->ip_summed = CHECKSUM_COMPLETE;
2081
2082		RXD(("len=%d csum=%4x]", len, csum));
2083		skb->protocol = eth_type_trans(skb, dev);
2084		netif_rx(skb);
2085
2086		dev->stats.rx_packets++;
2087		dev->stats.rx_bytes += len;
2088	next:
2089		elem = NEXT_RX(elem);
2090		this = &rxbase[elem];
2091	}
2092	hp->rx_new = elem;
2093	if (drops)
2094		printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2095	RXD((">"));
2096}
2097
2098static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2099{
2100	struct net_device *dev = dev_id;
2101	struct happy_meal *hp  = netdev_priv(dev);
2102	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2103
2104	HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2105
2106	spin_lock(&hp->happy_lock);
2107
2108	if (happy_status & GREG_STAT_ERRORS) {
2109		HMD(("ERRORS "));
2110		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2111			goto out;
2112	}
2113
2114	if (happy_status & GREG_STAT_MIFIRQ) {
2115		HMD(("MIFIRQ "));
2116		happy_meal_mif_interrupt(hp);
2117	}
2118
2119	if (happy_status & GREG_STAT_TXALL) {
2120		HMD(("TXALL "));
2121		happy_meal_tx(hp);
2122	}
2123
2124	if (happy_status & GREG_STAT_RXTOHOST) {
2125		HMD(("RXTOHOST "));
2126		happy_meal_rx(hp, dev);
2127	}
2128
2129	HMD(("done\n"));
2130out:
2131	spin_unlock(&hp->happy_lock);
2132
2133	return IRQ_HANDLED;
2134}
2135
2136#ifdef CONFIG_SBUS
2137static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2138{
2139	struct quattro *qp = (struct quattro *) cookie;
2140	int i;
2141
2142	for (i = 0; i < 4; i++) {
2143		struct net_device *dev = qp->happy_meals[i];
2144		struct happy_meal *hp  = netdev_priv(dev);
2145		u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2146
2147		HMD(("quattro_interrupt: status=%08x ", happy_status));
2148
2149		if (!(happy_status & (GREG_STAT_ERRORS |
2150				      GREG_STAT_MIFIRQ |
2151				      GREG_STAT_TXALL |
2152				      GREG_STAT_RXTOHOST)))
2153			continue;
2154
2155		spin_lock(&hp->happy_lock);
2156
2157		if (happy_status & GREG_STAT_ERRORS) {
2158			HMD(("ERRORS "));
2159			if (happy_meal_is_not_so_happy(hp, happy_status))
2160				goto next;
2161		}
2162
2163		if (happy_status & GREG_STAT_MIFIRQ) {
2164			HMD(("MIFIRQ "));
2165			happy_meal_mif_interrupt(hp);
2166		}
2167
2168		if (happy_status & GREG_STAT_TXALL) {
2169			HMD(("TXALL "));
2170			happy_meal_tx(hp);
2171		}
2172
2173		if (happy_status & GREG_STAT_RXTOHOST) {
2174			HMD(("RXTOHOST "));
2175			happy_meal_rx(hp, dev);
2176		}
2177
2178	next:
2179		spin_unlock(&hp->happy_lock);
2180	}
2181	HMD(("done\n"));
2182
2183	return IRQ_HANDLED;
2184}
2185#endif
2186
2187static int happy_meal_open(struct net_device *dev)
2188{
2189	struct happy_meal *hp = netdev_priv(dev);
2190	int res;
2191
2192	HMD(("happy_meal_open: "));
2193
2194	/* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2195	 * into a single source which we register handling at probe time.
2196	 */
2197	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2198		res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2199				  dev->name, dev);
2200		if (res) {
2201			HMD(("EAGAIN\n"));
2202			printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2203			       hp->irq);
2204
2205			return -EAGAIN;
2206		}
2207	}
2208
2209	HMD(("to happy_meal_init\n"));
2210
2211	spin_lock_irq(&hp->happy_lock);
2212	res = happy_meal_init(hp);
2213	spin_unlock_irq(&hp->happy_lock);
2214
2215	if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2216		free_irq(hp->irq, dev);
2217	return res;
2218}
2219
2220static int happy_meal_close(struct net_device *dev)
2221{
2222	struct happy_meal *hp = netdev_priv(dev);
2223
2224	spin_lock_irq(&hp->happy_lock);
2225	happy_meal_stop(hp, hp->gregs);
2226	happy_meal_clean_rings(hp);
2227
2228	/* If auto-negotiation timer is running, kill it. */
2229	del_timer(&hp->happy_timer);
2230
2231	spin_unlock_irq(&hp->happy_lock);
2232
2233	/* On Quattro QFE cards, all hme interrupts are concentrated
2234	 * into a single source which we register handling at probe
2235	 * time and never unregister.
2236	 */
2237	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2238		free_irq(hp->irq, dev);
2239
2240	return 0;
2241}
2242
2243#ifdef SXDEBUG
2244#define SXD(x) printk x
2245#else
2246#define SXD(x)
2247#endif
2248
2249static void happy_meal_tx_timeout(struct net_device *dev)
2250{
2251	struct happy_meal *hp = netdev_priv(dev);
2252
2253	printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2254	tx_dump_log();
2255	printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2256		hme_read32(hp, hp->gregs + GREG_STAT),
2257		hme_read32(hp, hp->etxregs + ETX_CFG),
2258		hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2259
2260	spin_lock_irq(&hp->happy_lock);
2261	happy_meal_init(hp);
2262	spin_unlock_irq(&hp->happy_lock);
2263
2264	netif_wake_queue(dev);
2265}
2266
2267static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2268				 u32 first_len, u32 first_entry, u32 entry)
2269{
2270	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2271
2272	dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2273
2274	first_entry = NEXT_TX(first_entry);
2275	while (first_entry != entry) {
2276		struct happy_meal_txd *this = &txbase[first_entry];
2277		u32 addr, len;
2278
2279		addr = hme_read_desc32(hp, &this->tx_addr);
2280		len = hme_read_desc32(hp, &this->tx_flags);
2281		len &= TXFLAG_SIZE;
2282		dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2283	}
2284}
2285
2286static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2287					 struct net_device *dev)
2288{
2289	struct happy_meal *hp = netdev_priv(dev);
2290 	int entry;
2291 	u32 tx_flags;
2292
2293	tx_flags = TXFLAG_OWN;
2294	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2295		const u32 csum_start_off = skb_checksum_start_offset(skb);
2296		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2297
2298		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2299			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2300			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2301	}
2302
2303	spin_lock_irq(&hp->happy_lock);
2304
2305 	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2306		netif_stop_queue(dev);
2307		spin_unlock_irq(&hp->happy_lock);
2308		printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2309		       dev->name);
2310		return NETDEV_TX_BUSY;
2311	}
2312
2313	entry = hp->tx_new;
2314	SXD(("SX<l[%d]e[%d]>", len, entry));
2315	hp->tx_skbs[entry] = skb;
2316
2317	if (skb_shinfo(skb)->nr_frags == 0) {
2318		u32 mapping, len;
2319
2320		len = skb->len;
2321		mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2322		if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2323			goto out_dma_error;
2324		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2325		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2326			      (tx_flags | (len & TXFLAG_SIZE)),
2327			      mapping);
2328		entry = NEXT_TX(entry);
2329	} else {
2330		u32 first_len, first_mapping;
2331		int frag, first_entry = entry;
2332
2333		/* We must give this initial chunk to the device last.
2334		 * Otherwise we could race with the device.
2335		 */
2336		first_len = skb_headlen(skb);
2337		first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2338					       DMA_TO_DEVICE);
2339		if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2340			goto out_dma_error;
2341		entry = NEXT_TX(entry);
2342
2343		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2344			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2345			u32 len, mapping, this_txflags;
2346
2347			len = skb_frag_size(this_frag);
2348			mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2349						   0, len, DMA_TO_DEVICE);
2350			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2351				unmap_partial_tx_skb(hp, first_mapping, first_len,
2352						     first_entry, entry);
2353				goto out_dma_error;
2354			}
2355			this_txflags = tx_flags;
2356			if (frag == skb_shinfo(skb)->nr_frags - 1)
2357				this_txflags |= TXFLAG_EOP;
2358			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2359				      (this_txflags | (len & TXFLAG_SIZE)),
2360				      mapping);
2361			entry = NEXT_TX(entry);
2362		}
2363		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2364			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2365			      first_mapping);
2366	}
2367
2368	hp->tx_new = entry;
2369
2370	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2371		netif_stop_queue(dev);
2372
2373	/* Get it going. */
2374	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2375
2376	spin_unlock_irq(&hp->happy_lock);
2377
2378	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2379	return NETDEV_TX_OK;
2380
2381out_dma_error:
2382	hp->tx_skbs[hp->tx_new] = NULL;
2383	spin_unlock_irq(&hp->happy_lock);
2384
2385	dev_kfree_skb_any(skb);
2386	dev->stats.tx_dropped++;
2387	return NETDEV_TX_OK;
2388}
2389
2390static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2391{
2392	struct happy_meal *hp = netdev_priv(dev);
2393
2394	spin_lock_irq(&hp->happy_lock);
2395	happy_meal_get_counters(hp, hp->bigmacregs);
2396	spin_unlock_irq(&hp->happy_lock);
2397
2398	return &dev->stats;
2399}
2400
2401static void happy_meal_set_multicast(struct net_device *dev)
2402{
2403	struct happy_meal *hp = netdev_priv(dev);
2404	void __iomem *bregs = hp->bigmacregs;
2405	struct netdev_hw_addr *ha;
2406	u32 crc;
2407
2408	spin_lock_irq(&hp->happy_lock);
2409
2410	if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2411		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2412		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2413		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2414		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2415	} else if (dev->flags & IFF_PROMISC) {
2416		hme_write32(hp, bregs + BMAC_RXCFG,
2417			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2418	} else {
2419		u16 hash_table[4];
2420
2421		memset(hash_table, 0, sizeof(hash_table));
2422		netdev_for_each_mc_addr(ha, dev) {
2423			crc = ether_crc_le(6, ha->addr);
2424			crc >>= 26;
2425			hash_table[crc >> 4] |= 1 << (crc & 0xf);
2426		}
2427		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2428		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2429		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2430		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2431	}
2432
2433	spin_unlock_irq(&hp->happy_lock);
2434}
2435
2436/* Ethtool support... */
2437static int hme_get_link_ksettings(struct net_device *dev,
2438				  struct ethtool_link_ksettings *cmd)
2439{
2440	struct happy_meal *hp = netdev_priv(dev);
2441	u32 speed;
2442	u32 supported;
2443
2444	supported =
2445		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2446		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2447		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2448
2449	/* XXX hardcoded stuff for now */
2450	cmd->base.port = PORT_TP; /* XXX no MII support */
2451	cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2452
2453	/* Record PHY settings. */
2454	spin_lock_irq(&hp->happy_lock);
2455	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2456	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2457	spin_unlock_irq(&hp->happy_lock);
2458
2459	if (hp->sw_bmcr & BMCR_ANENABLE) {
2460		cmd->base.autoneg = AUTONEG_ENABLE;
2461		speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2462			 SPEED_100 : SPEED_10);
2463		if (speed == SPEED_100)
2464			cmd->base.duplex =
2465				(hp->sw_lpa & (LPA_100FULL)) ?
2466				DUPLEX_FULL : DUPLEX_HALF;
2467		else
2468			cmd->base.duplex =
2469				(hp->sw_lpa & (LPA_10FULL)) ?
2470				DUPLEX_FULL : DUPLEX_HALF;
2471	} else {
2472		cmd->base.autoneg = AUTONEG_DISABLE;
2473		speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2474		cmd->base.duplex =
2475			(hp->sw_bmcr & BMCR_FULLDPLX) ?
2476			DUPLEX_FULL : DUPLEX_HALF;
2477	}
2478	cmd->base.speed = speed;
2479	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2480						supported);
2481
2482	return 0;
2483}
2484
2485static int hme_set_link_ksettings(struct net_device *dev,
2486				  const struct ethtool_link_ksettings *cmd)
2487{
2488	struct happy_meal *hp = netdev_priv(dev);
2489
2490	/* Verify the settings we care about. */
2491	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2492	    cmd->base.autoneg != AUTONEG_DISABLE)
2493		return -EINVAL;
2494	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2495	    ((cmd->base.speed != SPEED_100 &&
2496	      cmd->base.speed != SPEED_10) ||
2497	     (cmd->base.duplex != DUPLEX_HALF &&
2498	      cmd->base.duplex != DUPLEX_FULL)))
2499		return -EINVAL;
2500
2501	/* Ok, do it to it. */
2502	spin_lock_irq(&hp->happy_lock);
2503	del_timer(&hp->happy_timer);
2504	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2505	spin_unlock_irq(&hp->happy_lock);
2506
2507	return 0;
2508}
2509
2510static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2511{
2512	struct happy_meal *hp = netdev_priv(dev);
2513
2514	strlcpy(info->driver, "sunhme", sizeof(info->driver));
2515	strlcpy(info->version, "2.02", sizeof(info->version));
2516	if (hp->happy_flags & HFLAG_PCI) {
2517		struct pci_dev *pdev = hp->happy_dev;
2518		strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2519	}
2520#ifdef CONFIG_SBUS
2521	else {
2522		const struct linux_prom_registers *regs;
2523		struct platform_device *op = hp->happy_dev;
2524		regs = of_get_property(op->dev.of_node, "regs", NULL);
2525		if (regs)
2526			snprintf(info->bus_info, sizeof(info->bus_info),
2527				"SBUS:%d",
2528				regs->which_io);
2529	}
2530#endif
2531}
2532
2533static u32 hme_get_link(struct net_device *dev)
2534{
2535	struct happy_meal *hp = netdev_priv(dev);
2536
2537	spin_lock_irq(&hp->happy_lock);
2538	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2539	spin_unlock_irq(&hp->happy_lock);
2540
2541	return hp->sw_bmsr & BMSR_LSTATUS;
2542}
2543
2544static const struct ethtool_ops hme_ethtool_ops = {
2545	.get_drvinfo		= hme_get_drvinfo,
2546	.get_link		= hme_get_link,
2547	.get_link_ksettings	= hme_get_link_ksettings,
2548	.set_link_ksettings	= hme_set_link_ksettings,
2549};
2550
2551static int hme_version_printed;
2552
2553#ifdef CONFIG_SBUS
2554/* Given a happy meal sbus device, find it's quattro parent.
2555 * If none exist, allocate and return a new one.
2556 *
2557 * Return NULL on failure.
2558 */
2559static struct quattro *quattro_sbus_find(struct platform_device *child)
2560{
2561	struct device *parent = child->dev.parent;
2562	struct platform_device *op;
2563	struct quattro *qp;
2564
2565	op = to_platform_device(parent);
2566	qp = platform_get_drvdata(op);
2567	if (qp)
2568		return qp;
2569
2570	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2571	if (qp != NULL) {
2572		int i;
 
 
 
 
2573
2574		for (i = 0; i < 4; i++)
2575			qp->happy_meals[i] = NULL;
2576
2577		qp->quattro_dev = child;
2578		qp->next = qfe_sbus_list;
2579		qfe_sbus_list = qp;
2580
2581		platform_set_drvdata(op, qp);
2582	}
2583	return qp;
2584}
2585
2586/* After all quattro cards have been probed, we call these functions
2587 * to register the IRQ handlers for the cards that have been
2588 * successfully probed and skip the cards that failed to initialize
2589 */
2590static int __init quattro_sbus_register_irqs(void)
2591{
2592	struct quattro *qp;
2593
2594	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2595		struct platform_device *op = qp->quattro_dev;
2596		int err, qfe_slot, skip = 0;
2597
2598		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2599			if (!qp->happy_meals[qfe_slot])
2600				skip = 1;
2601		}
2602		if (skip)
2603			continue;
2604
2605		err = request_irq(op->archdata.irqs[0],
2606				  quattro_sbus_interrupt,
2607				  IRQF_SHARED, "Quattro",
2608				  qp);
2609		if (err != 0) {
2610			printk(KERN_ERR "Quattro HME: IRQ registration "
2611			       "error %d.\n", err);
 
2612			return err;
2613		}
2614	}
2615
2616	return 0;
2617}
2618
2619static void quattro_sbus_free_irqs(void)
2620{
2621	struct quattro *qp;
2622
2623	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2624		struct platform_device *op = qp->quattro_dev;
2625		int qfe_slot, skip = 0;
2626
2627		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2628			if (!qp->happy_meals[qfe_slot])
2629				skip = 1;
2630		}
2631		if (skip)
2632			continue;
2633
2634		free_irq(op->archdata.irqs[0], qp);
2635	}
2636}
2637#endif /* CONFIG_SBUS */
2638
2639#ifdef CONFIG_PCI
2640static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2641{
 
2642	struct pci_dev *bdev = pdev->bus->self;
2643	struct quattro *qp;
2644
2645	if (!bdev) return NULL;
 
 
2646	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2647		struct pci_dev *qpdev = qp->quattro_dev;
2648
2649		if (qpdev == bdev)
2650			return qp;
2651	}
 
2652	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2653	if (qp != NULL) {
2654		int i;
2655
2656		for (i = 0; i < 4; i++)
2657			qp->happy_meals[i] = NULL;
2658
2659		qp->quattro_dev = bdev;
2660		qp->next = qfe_pci_list;
2661		qfe_pci_list = qp;
2662
2663		/* No range tricks necessary on PCI. */
2664		qp->nranges = 0;
2665	}
2666	return qp;
2667}
2668#endif /* CONFIG_PCI */
2669
2670static const struct net_device_ops hme_netdev_ops = {
2671	.ndo_open		= happy_meal_open,
2672	.ndo_stop		= happy_meal_close,
2673	.ndo_start_xmit		= happy_meal_start_xmit,
2674	.ndo_tx_timeout		= happy_meal_tx_timeout,
2675	.ndo_get_stats		= happy_meal_get_stats,
2676	.ndo_set_rx_mode	= happy_meal_set_multicast,
2677	.ndo_set_mac_address 	= eth_mac_addr,
2678	.ndo_validate_addr	= eth_validate_addr,
2679};
2680
2681#ifdef CONFIG_SBUS
2682static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2683{
2684	struct device_node *dp = op->dev.of_node, *sbus_dp;
2685	struct quattro *qp = NULL;
2686	struct happy_meal *hp;
2687	struct net_device *dev;
2688	int i, qfe_slot = -1;
 
2689	int err = -ENODEV;
2690
2691	sbus_dp = op->dev.parent->of_node;
2692
2693	/* We can match PCI devices too, do not accept those here. */
2694	if (strcmp(sbus_dp->name, "sbus") && strcmp(sbus_dp->name, "sbi"))
2695		return err;
2696
2697	if (is_qfe) {
2698		qp = quattro_sbus_find(op);
2699		if (qp == NULL)
2700			goto err_out;
2701		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2702			if (qp->happy_meals[qfe_slot] == NULL)
2703				break;
2704		if (qfe_slot == 4)
2705			goto err_out;
2706	}
2707
2708	err = -ENOMEM;
2709	dev = alloc_etherdev(sizeof(struct happy_meal));
2710	if (!dev)
2711		goto err_out;
2712	SET_NETDEV_DEV(dev, &op->dev);
2713
2714	if (hme_version_printed++ == 0)
2715		printk(KERN_INFO "%s", version);
2716
2717	/* If user did not specify a MAC address specifically, use
2718	 * the Quattro local-mac-address property...
2719	 */
2720	for (i = 0; i < 6; i++) {
2721		if (macaddr[i] != 0)
2722			break;
2723	}
2724	if (i < 6) { /* a mac address was given */
2725		for (i = 0; i < 6; i++)
2726			dev->dev_addr[i] = macaddr[i];
 
2727		macaddr[5]++;
2728	} else {
2729		const unsigned char *addr;
2730		int len;
2731
2732		addr = of_get_property(dp, "local-mac-address", &len);
2733
2734		if (qfe_slot != -1 && addr && len == ETH_ALEN)
2735			memcpy(dev->dev_addr, addr, ETH_ALEN);
2736		else
2737			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
2738	}
2739
2740	hp = netdev_priv(dev);
2741
2742	hp->happy_dev = op;
2743	hp->dma_dev = &op->dev;
2744
2745	spin_lock_init(&hp->happy_lock);
2746
2747	err = -ENODEV;
2748	if (qp != NULL) {
2749		hp->qfe_parent = qp;
2750		hp->qfe_ent = qfe_slot;
2751		qp->happy_meals[qfe_slot] = dev;
2752	}
2753
2754	hp->gregs = of_ioremap(&op->resource[0], 0,
2755			       GREG_REG_SIZE, "HME Global Regs");
2756	if (!hp->gregs) {
2757		printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2758		goto err_out_free_netdev;
2759	}
2760
2761	hp->etxregs = of_ioremap(&op->resource[1], 0,
2762				 ETX_REG_SIZE, "HME TX Regs");
2763	if (!hp->etxregs) {
2764		printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2765		goto err_out_iounmap;
2766	}
2767
2768	hp->erxregs = of_ioremap(&op->resource[2], 0,
2769				 ERX_REG_SIZE, "HME RX Regs");
2770	if (!hp->erxregs) {
2771		printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2772		goto err_out_iounmap;
2773	}
2774
2775	hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2776				    BMAC_REG_SIZE, "HME BIGMAC Regs");
2777	if (!hp->bigmacregs) {
2778		printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2779		goto err_out_iounmap;
2780	}
2781
2782	hp->tcvregs = of_ioremap(&op->resource[4], 0,
2783				 TCVR_REG_SIZE, "HME Tranceiver Regs");
2784	if (!hp->tcvregs) {
2785		printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2786		goto err_out_iounmap;
2787	}
2788
2789	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2790	if (hp->hm_revision == 0xff)
2791		hp->hm_revision = 0xa0;
2792
2793	/* Now enable the feature flags we can. */
2794	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2795		hp->happy_flags = HFLAG_20_21;
2796	else if (hp->hm_revision != 0xa0)
2797		hp->happy_flags = HFLAG_NOT_A0;
2798
2799	if (qp != NULL)
2800		hp->happy_flags |= HFLAG_QUATTRO;
2801
2802	/* Get the supported DVMA burst sizes from our Happy SBUS. */
2803	hp->happy_bursts = of_getintprop_default(sbus_dp,
2804						 "burst-sizes", 0x00);
2805
2806	hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2807					     PAGE_SIZE,
2808					     &hp->hblock_dvma,
2809					     GFP_ATOMIC);
2810	err = -ENOMEM;
2811	if (!hp->happy_block)
2812		goto err_out_iounmap;
2813
2814	/* Force check of the link first time we are brought up. */
2815	hp->linkcheck = 0;
2816
2817	/* Force timer state to 'asleep' with count of zero. */
2818	hp->timer_state = asleep;
2819	hp->timer_ticks = 0;
2820
2821	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2822
2823	hp->dev = dev;
2824	dev->netdev_ops = &hme_netdev_ops;
2825	dev->watchdog_timeo = 5*HZ;
2826	dev->ethtool_ops = &hme_ethtool_ops;
2827
2828	/* Happy Meal can do it all... */
2829	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2830	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2831
2832	hp->irq = op->archdata.irqs[0];
2833
2834#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2835	/* Hook up SBUS register/descriptor accessors. */
2836	hp->read_desc32 = sbus_hme_read_desc32;
2837	hp->write_txd = sbus_hme_write_txd;
2838	hp->write_rxd = sbus_hme_write_rxd;
2839	hp->read32 = sbus_hme_read32;
2840	hp->write32 = sbus_hme_write32;
2841#endif
2842
2843	/* Grrr, Happy Meal comes up by default not advertising
2844	 * full duplex 100baseT capabilities, fix this.
2845	 */
2846	spin_lock_irq(&hp->happy_lock);
2847	happy_meal_set_initial_advertisement(hp);
2848	spin_unlock_irq(&hp->happy_lock);
2849
2850	err = register_netdev(hp->dev);
2851	if (err) {
2852		printk(KERN_ERR "happymeal: Cannot register net device, "
2853		       "aborting.\n");
2854		goto err_out_free_coherent;
2855	}
2856
2857	platform_set_drvdata(op, hp);
2858
2859	if (qfe_slot != -1)
2860		printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2861		       dev->name, qfe_slot);
 
2862	else
2863		printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2864		       dev->name);
2865
2866	printk("%pM\n", dev->dev_addr);
2867
2868	return 0;
2869
2870err_out_free_coherent:
2871	dma_free_coherent(hp->dma_dev,
2872			  PAGE_SIZE,
2873			  hp->happy_block,
2874			  hp->hblock_dvma);
2875
2876err_out_iounmap:
2877	if (hp->gregs)
2878		of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2879	if (hp->etxregs)
2880		of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2881	if (hp->erxregs)
2882		of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2883	if (hp->bigmacregs)
2884		of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2885	if (hp->tcvregs)
2886		of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2887
2888	if (qp)
2889		qp->happy_meals[qfe_slot] = NULL;
2890
2891err_out_free_netdev:
2892	free_netdev(dev);
2893
2894err_out:
2895	return err;
2896}
2897#endif
2898
2899#ifdef CONFIG_PCI
2900#ifndef CONFIG_SPARC
2901static int is_quattro_p(struct pci_dev *pdev)
2902{
2903	struct pci_dev *busdev = pdev->bus->self;
2904	struct pci_dev *this_pdev;
2905	int n_hmes;
2906
2907	if (busdev == NULL ||
2908	    busdev->vendor != PCI_VENDOR_ID_DEC ||
2909	    busdev->device != PCI_DEVICE_ID_DEC_21153)
2910		return 0;
2911
2912	n_hmes = 0;
2913	list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2914		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2915		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2916			n_hmes++;
2917	}
2918
2919	if (n_hmes != 4)
2920		return 0;
2921
2922	return 1;
2923}
2924
2925/* Fetch MAC address from vital product data of PCI ROM. */
2926static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2927{
2928	int this_offset;
2929
2930	for (this_offset = 0x20; this_offset < len; this_offset++) {
2931		void __iomem *p = rom_base + this_offset;
2932
2933		if (readb(p + 0) != 0x90 ||
2934		    readb(p + 1) != 0x00 ||
2935		    readb(p + 2) != 0x09 ||
2936		    readb(p + 3) != 0x4e ||
2937		    readb(p + 4) != 0x41 ||
2938		    readb(p + 5) != 0x06)
2939			continue;
2940
2941		this_offset += 6;
2942		p += 6;
2943
2944		if (index == 0) {
2945			int i;
2946
2947			for (i = 0; i < 6; i++)
2948				dev_addr[i] = readb(p + i);
2949			return 1;
2950		}
2951		index--;
2952	}
2953	return 0;
2954}
2955
2956static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2957{
2958	size_t size;
2959	void __iomem *p = pci_map_rom(pdev, &size);
2960
2961	if (p) {
2962		int index = 0;
2963		int found;
2964
2965		if (is_quattro_p(pdev))
2966			index = PCI_SLOT(pdev->devfn);
2967
2968		found = readb(p) == 0x55 &&
2969			readb(p + 1) == 0xaa &&
2970			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2971		pci_unmap_rom(pdev, p);
2972		if (found)
2973			return;
2974	}
2975
2976	/* Sun MAC prefix then 3 random bytes. */
2977	dev_addr[0] = 0x08;
2978	dev_addr[1] = 0x00;
2979	dev_addr[2] = 0x20;
2980	get_random_bytes(&dev_addr[3], 3);
2981}
2982#endif /* !(CONFIG_SPARC) */
2983
2984static int happy_meal_pci_probe(struct pci_dev *pdev,
2985				const struct pci_device_id *ent)
2986{
2987	struct quattro *qp = NULL;
2988#ifdef CONFIG_SPARC
2989	struct device_node *dp;
2990#endif
2991	struct happy_meal *hp;
2992	struct net_device *dev;
2993	void __iomem *hpreg_base;
2994	unsigned long hpreg_res;
2995	int i, qfe_slot = -1;
2996	char prom_name[64];
 
2997	int err;
2998
2999	/* Now make sure pci_dev cookie is there. */
3000#ifdef CONFIG_SPARC
3001	dp = pci_device_to_OF_node(pdev);
3002	strcpy(prom_name, dp->name);
3003#else
3004	if (is_quattro_p(pdev))
3005		strcpy(prom_name, "SUNW,qfe");
3006	else
3007		strcpy(prom_name, "SUNW,hme");
3008#endif
3009
3010	err = -ENODEV;
3011
3012	if (pci_enable_device(pdev))
3013		goto err_out;
3014	pci_set_master(pdev);
3015
3016	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3017		qp = quattro_pci_find(pdev);
3018		if (qp == NULL)
 
3019			goto err_out;
 
 
3020		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3021			if (qp->happy_meals[qfe_slot] == NULL)
3022				break;
 
3023		if (qfe_slot == 4)
3024			goto err_out;
3025	}
3026
3027	dev = alloc_etherdev(sizeof(struct happy_meal));
3028	err = -ENOMEM;
3029	if (!dev)
3030		goto err_out;
 
3031	SET_NETDEV_DEV(dev, &pdev->dev);
3032
3033	if (hme_version_printed++ == 0)
3034		printk(KERN_INFO "%s", version);
3035
3036	hp = netdev_priv(dev);
3037
3038	hp->happy_dev = pdev;
3039	hp->dma_dev = &pdev->dev;
3040
3041	spin_lock_init(&hp->happy_lock);
3042
3043	if (qp != NULL) {
3044		hp->qfe_parent = qp;
3045		hp->qfe_ent = qfe_slot;
3046		qp->happy_meals[qfe_slot] = dev;
3047	}
3048
3049	hpreg_res = pci_resource_start(pdev, 0);
3050	err = -ENODEV;
3051	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3052		printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
 
3053		goto err_out_clear_quattro;
3054	}
3055	if (pci_request_regions(pdev, DRV_NAME)) {
3056		printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3057		       "aborting.\n");
 
 
 
3058		goto err_out_clear_quattro;
3059	}
3060
3061	if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3062		printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3063		goto err_out_free_res;
 
 
3064	}
3065
3066	for (i = 0; i < 6; i++) {
3067		if (macaddr[i] != 0)
3068			break;
3069	}
3070	if (i < 6) { /* a mac address was given */
3071		for (i = 0; i < 6; i++)
3072			dev->dev_addr[i] = macaddr[i];
 
3073		macaddr[5]++;
3074	} else {
3075#ifdef CONFIG_SPARC
3076		const unsigned char *addr;
3077		int len;
3078
3079		if (qfe_slot != -1 &&
3080		    (addr = of_get_property(dp, "local-mac-address", &len))
3081			!= NULL &&
3082		    len == 6) {
3083			memcpy(dev->dev_addr, addr, ETH_ALEN);
3084		} else {
3085			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
3086		}
3087#else
3088		get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
 
 
 
3089#endif
3090	}
3091
3092	/* Layout registers. */
3093	hp->gregs      = (hpreg_base + 0x0000UL);
3094	hp->etxregs    = (hpreg_base + 0x2000UL);
3095	hp->erxregs    = (hpreg_base + 0x4000UL);
3096	hp->bigmacregs = (hpreg_base + 0x6000UL);
3097	hp->tcvregs    = (hpreg_base + 0x7000UL);
3098
3099#ifdef CONFIG_SPARC
3100	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3101	if (hp->hm_revision == 0xff)
3102		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3103#else
3104	/* works with this on non-sparc hosts */
3105	hp->hm_revision = 0x20;
3106#endif
3107
3108	/* Now enable the feature flags we can. */
3109	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3110		hp->happy_flags = HFLAG_20_21;
3111	else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3112		hp->happy_flags = HFLAG_NOT_A0;
3113
3114	if (qp != NULL)
3115		hp->happy_flags |= HFLAG_QUATTRO;
3116
3117	/* And of course, indicate this is PCI. */
3118	hp->happy_flags |= HFLAG_PCI;
3119
3120#ifdef CONFIG_SPARC
3121	/* Assume PCI happy meals can handle all burst sizes. */
3122	hp->happy_bursts = DMA_BURSTBITS;
3123#endif
3124
3125	hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3126					     &hp->hblock_dvma, GFP_KERNEL);
3127	err = -ENODEV;
3128	if (!hp->happy_block)
3129		goto err_out_iounmap;
 
3130
3131	hp->linkcheck = 0;
3132	hp->timer_state = asleep;
3133	hp->timer_ticks = 0;
3134
3135	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
3136
3137	hp->irq = pdev->irq;
3138	hp->dev = dev;
3139	dev->netdev_ops = &hme_netdev_ops;
3140	dev->watchdog_timeo = 5*HZ;
3141	dev->ethtool_ops = &hme_ethtool_ops;
3142
3143	/* Happy Meal can do it all... */
3144	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3145	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3146
3147#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3148	/* Hook up PCI register/descriptor accessors. */
3149	hp->read_desc32 = pci_hme_read_desc32;
3150	hp->write_txd = pci_hme_write_txd;
3151	hp->write_rxd = pci_hme_write_rxd;
3152	hp->read32 = pci_hme_read32;
3153	hp->write32 = pci_hme_write32;
3154#endif
3155
3156	/* Grrr, Happy Meal comes up by default not advertising
3157	 * full duplex 100baseT capabilities, fix this.
3158	 */
3159	spin_lock_irq(&hp->happy_lock);
3160	happy_meal_set_initial_advertisement(hp);
3161	spin_unlock_irq(&hp->happy_lock);
3162
3163	err = register_netdev(hp->dev);
3164	if (err) {
3165		printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3166		       "aborting.\n");
3167		goto err_out_iounmap;
3168	}
3169
3170	pci_set_drvdata(pdev, hp);
3171
3172	if (!qfe_slot) {
3173		struct pci_dev *qpdev = qp->quattro_dev;
3174
3175		prom_name[0] = 0;
3176		if (!strncmp(dev->name, "eth", 3)) {
3177			int i = simple_strtoul(dev->name + 3, NULL, 10);
3178			sprintf(prom_name, "-%d", i + 3);
3179		}
3180		printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3181		if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3182		    qpdev->device == PCI_DEVICE_ID_DEC_21153)
3183			printk("DEC 21153 PCI Bridge\n");
3184		else
3185			printk("unknown bridge %04x.%04x\n",
3186				qpdev->vendor, qpdev->device);
3187	}
3188
3189	if (qfe_slot != -1)
3190		printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3191		       dev->name, qfe_slot);
 
3192	else
3193		printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3194		       dev->name);
3195
3196	printk("%pM\n", dev->dev_addr);
3197
3198	return 0;
3199
3200err_out_iounmap:
3201	iounmap(hp->gregs);
3202
3203err_out_free_res:
3204	pci_release_regions(pdev);
3205
3206err_out_clear_quattro:
3207	if (qp != NULL)
3208		qp->happy_meals[qfe_slot] = NULL;
3209
3210	free_netdev(dev);
3211
3212err_out:
3213	return err;
3214}
3215
3216static void happy_meal_pci_remove(struct pci_dev *pdev)
3217{
3218	struct happy_meal *hp = pci_get_drvdata(pdev);
3219	struct net_device *net_dev = hp->dev;
3220
3221	unregister_netdev(net_dev);
3222
3223	dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3224			  hp->happy_block, hp->hblock_dvma);
3225	iounmap(hp->gregs);
3226	pci_release_regions(hp->happy_dev);
3227
3228	free_netdev(net_dev);
3229}
3230
3231static const struct pci_device_id happymeal_pci_ids[] = {
3232	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3233	{ }			/* Terminating entry */
3234};
3235
3236MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3237
3238static struct pci_driver hme_pci_driver = {
3239	.name		= "hme",
3240	.id_table	= happymeal_pci_ids,
3241	.probe		= happy_meal_pci_probe,
3242	.remove		= happy_meal_pci_remove,
3243};
3244
3245static int __init happy_meal_pci_init(void)
3246{
3247	return pci_register_driver(&hme_pci_driver);
3248}
3249
3250static void happy_meal_pci_exit(void)
3251{
3252	pci_unregister_driver(&hme_pci_driver);
3253
3254	while (qfe_pci_list) {
3255		struct quattro *qfe = qfe_pci_list;
3256		struct quattro *next = qfe->next;
3257
3258		kfree(qfe);
3259
3260		qfe_pci_list = next;
3261	}
3262}
3263
3264#endif
3265
3266#ifdef CONFIG_SBUS
3267static const struct of_device_id hme_sbus_match[];
3268static int hme_sbus_probe(struct platform_device *op)
3269{
3270	const struct of_device_id *match;
3271	struct device_node *dp = op->dev.of_node;
3272	const char *model = of_get_property(dp, "model", NULL);
3273	int is_qfe;
3274
3275	match = of_match_device(hme_sbus_match, &op->dev);
3276	if (!match)
3277		return -EINVAL;
3278	is_qfe = (match->data != NULL);
3279
3280	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3281		is_qfe = 1;
3282
3283	return happy_meal_sbus_probe_one(op, is_qfe);
3284}
3285
3286static int hme_sbus_remove(struct platform_device *op)
3287{
3288	struct happy_meal *hp = platform_get_drvdata(op);
3289	struct net_device *net_dev = hp->dev;
3290
3291	unregister_netdev(net_dev);
3292
3293	/* XXX qfe parent interrupt... */
3294
3295	of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3296	of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3297	of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3298	of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3299	of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3300	dma_free_coherent(hp->dma_dev,
3301			  PAGE_SIZE,
3302			  hp->happy_block,
3303			  hp->hblock_dvma);
3304
3305	free_netdev(net_dev);
3306
3307	return 0;
3308}
3309
3310static const struct of_device_id hme_sbus_match[] = {
3311	{
3312		.name = "SUNW,hme",
3313	},
3314	{
3315		.name = "SUNW,qfe",
3316		.data = (void *) 1,
3317	},
3318	{
3319		.name = "qfe",
3320		.data = (void *) 1,
3321	},
3322	{},
3323};
3324
3325MODULE_DEVICE_TABLE(of, hme_sbus_match);
3326
3327static struct platform_driver hme_sbus_driver = {
3328	.driver = {
3329		.name = "hme",
3330		.of_match_table = hme_sbus_match,
3331	},
3332	.probe		= hme_sbus_probe,
3333	.remove		= hme_sbus_remove,
3334};
3335
3336static int __init happy_meal_sbus_init(void)
3337{
3338	int err;
3339
3340	err = platform_driver_register(&hme_sbus_driver);
3341	if (!err)
3342		err = quattro_sbus_register_irqs();
3343
3344	return err;
3345}
3346
3347static void happy_meal_sbus_exit(void)
3348{
3349	platform_driver_unregister(&hme_sbus_driver);
3350	quattro_sbus_free_irqs();
3351
3352	while (qfe_sbus_list) {
3353		struct quattro *qfe = qfe_sbus_list;
3354		struct quattro *next = qfe->next;
3355
3356		kfree(qfe);
3357
3358		qfe_sbus_list = next;
3359	}
3360}
3361#endif
3362
3363static int __init happy_meal_probe(void)
3364{
3365	int err = 0;
3366
3367#ifdef CONFIG_SBUS
3368	err = happy_meal_sbus_init();
3369#endif
3370#ifdef CONFIG_PCI
3371	if (!err) {
3372		err = happy_meal_pci_init();
3373#ifdef CONFIG_SBUS
3374		if (err)
3375			happy_meal_sbus_exit();
3376#endif
3377	}
3378#endif
3379
3380	return err;
3381}
3382
3383
3384static void __exit happy_meal_exit(void)
3385{
3386#ifdef CONFIG_SBUS
3387	happy_meal_sbus_exit();
3388#endif
3389#ifdef CONFIG_PCI
3390	happy_meal_pci_exit();
3391#endif
3392}
3393
3394module_init(happy_meal_probe);
3395module_exit(happy_meal_exit);
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
   3 *           auto carrier detecting ethernet driver.  Also known as the
   4 *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
   5 *
   6 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
   7 *		2006, 2008 David S. Miller (davem@davemloft.net)
   8 *
   9 * Changes :
  10 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
  11 *   - port to non-sparc architectures. Tested only on x86 and
  12 *     only currently works with QFE PCI cards.
  13 *   - ability to specify the MAC address at module load time by passing this
  14 *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
  15 */
  16
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/types.h>
  20#include <linux/fcntl.h>
  21#include <linux/interrupt.h>
  22#include <linux/ioport.h>
  23#include <linux/in.h>
  24#include <linux/slab.h>
  25#include <linux/string.h>
  26#include <linux/delay.h>
  27#include <linux/init.h>
  28#include <linux/ethtool.h>
  29#include <linux/mii.h>
  30#include <linux/crc32.h>
  31#include <linux/random.h>
  32#include <linux/errno.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/skbuff.h>
  36#include <linux/mm.h>
  37#include <linux/bitops.h>
  38#include <linux/dma-mapping.h>
  39
  40#include <asm/io.h>
  41#include <asm/dma.h>
  42#include <asm/byteorder.h>
  43
  44#ifdef CONFIG_SPARC
  45#include <linux/of.h>
  46#include <linux/of_device.h>
  47#include <asm/idprom.h>
  48#include <asm/openprom.h>
  49#include <asm/oplib.h>
  50#include <asm/prom.h>
  51#include <asm/auxio.h>
  52#endif
  53#include <linux/uaccess.h>
  54
 
  55#include <asm/irq.h>
  56
  57#ifdef CONFIG_PCI
  58#include <linux/pci.h>
  59#endif
  60
  61#include "sunhme.h"
  62
  63#define DRV_NAME	"sunhme"
 
 
 
  64
  65MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
 
 
 
 
  66MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
  67MODULE_LICENSE("GPL");
  68
  69static int macaddr[6];
  70
  71/* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
  72module_param_array(macaddr, int, NULL, 0);
  73MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
  74
  75#ifdef CONFIG_SBUS
  76static struct quattro *qfe_sbus_list;
  77#endif
  78
  79#ifdef CONFIG_PCI
  80static struct quattro *qfe_pci_list;
  81#endif
  82
  83#define hme_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__)
  84#define HMD hme_debug
  85
  86/* "Auto Switch Debug" aka phy debug */
  87#if 1
  88#define ASD hme_debug
  89#else
  90#define ASD(...)
  91#endif
  92
  93#if 0
  94struct hme_tx_logent {
  95	unsigned int tstamp;
  96	int tx_new, tx_old;
  97	unsigned int action;
  98#define TXLOG_ACTION_IRQ	0x01
  99#define TXLOG_ACTION_TXMIT	0x02
 100#define TXLOG_ACTION_TBUSY	0x04
 101#define TXLOG_ACTION_NBUFS	0x08
 102	unsigned int status;
 103};
 104#define TX_LOG_LEN	128
 105static struct hme_tx_logent tx_log[TX_LOG_LEN];
 106static int txlog_cur_entry;
 107static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
 108{
 109	struct hme_tx_logent *tlp;
 110	unsigned long flags;
 111
 112	local_irq_save(flags);
 113	tlp = &tx_log[txlog_cur_entry];
 114	tlp->tstamp = (unsigned int)jiffies;
 115	tlp->tx_new = hp->tx_new;
 116	tlp->tx_old = hp->tx_old;
 117	tlp->action = a;
 118	tlp->status = s;
 119	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
 120	local_irq_restore(flags);
 121}
 122static __inline__ void tx_dump_log(void)
 123{
 124	int i, this;
 125
 126	this = txlog_cur_entry;
 127	for (i = 0; i < TX_LOG_LEN; i++) {
 128		pr_err("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
 129		       tx_log[this].tstamp,
 130		       tx_log[this].tx_new, tx_log[this].tx_old,
 131		       tx_log[this].action, tx_log[this].status);
 132		this = (this + 1) & (TX_LOG_LEN - 1);
 133	}
 134}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135#else
 136#define tx_add_log(hp, a, s)
 137#define tx_dump_log()
 
 
 
 
 
 
 
 138#endif
 139
 140#define DEFAULT_IPG0      16 /* For lance-mode only */
 141#define DEFAULT_IPG1       8 /* For all modes */
 142#define DEFAULT_IPG2       4 /* For all modes */
 143#define DEFAULT_JAMSIZE    4 /* Toe jam */
 144
 145/* NOTE: In the descriptor writes one _must_ write the address
 146 *	 member _first_.  The card must not be allowed to see
 147 *	 the updated descriptor flags until the address is
 148 *	 correct.  I've added a write memory barrier between
 149 *	 the two stores so that I can sleep well at night... -DaveM
 150 */
 151
 152#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
 153static void sbus_hme_write32(void __iomem *reg, u32 val)
 154{
 155	sbus_writel(val, reg);
 156}
 157
 158static u32 sbus_hme_read32(void __iomem *reg)
 159{
 160	return sbus_readl(reg);
 161}
 162
 163static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
 164{
 165	rxd->rx_addr = (__force hme32)addr;
 166	dma_wmb();
 167	rxd->rx_flags = (__force hme32)flags;
 168}
 169
 170static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
 171{
 172	txd->tx_addr = (__force hme32)addr;
 173	dma_wmb();
 174	txd->tx_flags = (__force hme32)flags;
 175}
 176
 177static u32 sbus_hme_read_desc32(hme32 *p)
 178{
 179	return (__force u32)*p;
 180}
 181
 182static void pci_hme_write32(void __iomem *reg, u32 val)
 183{
 184	writel(val, reg);
 185}
 186
 187static u32 pci_hme_read32(void __iomem *reg)
 188{
 189	return readl(reg);
 190}
 191
 192static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
 193{
 194	rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
 195	dma_wmb();
 196	rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
 197}
 198
 199static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
 200{
 201	txd->tx_addr = (__force hme32)cpu_to_le32(addr);
 202	dma_wmb();
 203	txd->tx_flags = (__force hme32)cpu_to_le32(flags);
 204}
 205
 206static u32 pci_hme_read_desc32(hme32 *p)
 207{
 208	return le32_to_cpup((__le32 *)p);
 209}
 210
 211#define hme_write32(__hp, __reg, __val) \
 212	((__hp)->write32((__reg), (__val)))
 213#define hme_read32(__hp, __reg) \
 214	((__hp)->read32(__reg))
 215#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 216	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
 217#define hme_write_txd(__hp, __txd, __flags, __addr) \
 218	((__hp)->write_txd((__txd), (__flags), (__addr)))
 219#define hme_read_desc32(__hp, __p) \
 220	((__hp)->read_desc32(__p))
 
 
 
 
 
 
 
 
 221#else
 222#ifdef CONFIG_SBUS
 223/* SBUS only compilation */
 224#define hme_write32(__hp, __reg, __val) \
 225	sbus_writel((__val), (__reg))
 226#define hme_read32(__hp, __reg) \
 227	sbus_readl(__reg)
 228#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 229do {	(__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
 230	dma_wmb(); \
 231	(__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
 232} while(0)
 233#define hme_write_txd(__hp, __txd, __flags, __addr) \
 234do {	(__txd)->tx_addr = (__force hme32)(u32)(__addr); \
 235	dma_wmb(); \
 236	(__txd)->tx_flags = (__force hme32)(u32)(__flags); \
 237} while(0)
 238#define hme_read_desc32(__hp, __p)	((__force u32)(hme32)*(__p))
 
 
 
 
 
 
 
 
 239#else
 240/* PCI only compilation */
 241#define hme_write32(__hp, __reg, __val) \
 242	writel((__val), (__reg))
 243#define hme_read32(__hp, __reg) \
 244	readl(__reg)
 245#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 246do {	(__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
 247	dma_wmb(); \
 248	(__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
 249} while(0)
 250#define hme_write_txd(__hp, __txd, __flags, __addr) \
 251do {	(__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
 252	dma_wmb(); \
 253	(__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
 254} while(0)
 255static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
 256{
 257	return le32_to_cpup((__le32 *)p);
 258}
 
 
 
 
 
 
 
 
 259#endif
 260#endif
 261
 262
 263/* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
 264static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
 265{
 266	hme_write32(hp, tregs + TCVR_BBDATA, bit);
 267	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 268	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 269}
 270
 271#if 0
 272static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
 273{
 274	u32 ret;
 275
 276	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 277	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 278	ret = hme_read32(hp, tregs + TCVR_CFG);
 279	if (internal)
 280		ret &= TCV_CFG_MDIO0;
 281	else
 282		ret &= TCV_CFG_MDIO1;
 283
 284	return ret;
 285}
 286#endif
 287
 288static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
 289{
 290	u32 retval;
 291
 292	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 293	udelay(1);
 294	retval = hme_read32(hp, tregs + TCVR_CFG);
 295	if (internal)
 296		retval &= TCV_CFG_MDIO0;
 297	else
 298		retval &= TCV_CFG_MDIO1;
 299	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 300
 301	return retval;
 302}
 303
 304#define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
 305
 306static int happy_meal_bb_read(struct happy_meal *hp,
 307			      void __iomem *tregs, int reg)
 308{
 309	u32 tmp;
 310	int retval = 0;
 311	int i;
 312
 
 
 313	/* Enable the MIF BitBang outputs. */
 314	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
 315
 316	/* Force BitBang into the idle state. */
 317	for (i = 0; i < 32; i++)
 318		BB_PUT_BIT(hp, tregs, 1);
 319
 320	/* Give it the read sequence. */
 321	BB_PUT_BIT(hp, tregs, 0);
 322	BB_PUT_BIT(hp, tregs, 1);
 323	BB_PUT_BIT(hp, tregs, 1);
 324	BB_PUT_BIT(hp, tregs, 0);
 325
 326	/* Give it the PHY address. */
 327	tmp = hp->paddr & 0xff;
 328	for (i = 4; i >= 0; i--)
 329		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 330
 331	/* Tell it what register we want to read. */
 332	tmp = (reg & 0xff);
 333	for (i = 4; i >= 0; i--)
 334		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 335
 336	/* Close down the MIF BitBang outputs. */
 337	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
 338
 339	/* Now read in the value. */
 340	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 341	for (i = 15; i >= 0; i--)
 342		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 343	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 344	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 345	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 346	ASD("reg=%d value=%x\n", reg, retval);
 347	return retval;
 348}
 349
 350static void happy_meal_bb_write(struct happy_meal *hp,
 351				void __iomem *tregs, int reg,
 352				unsigned short value)
 353{
 354	u32 tmp;
 355	int i;
 356
 357	ASD("reg=%d value=%x\n", reg, value);
 358
 359	/* Enable the MIF BitBang outputs. */
 360	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
 361
 362	/* Force BitBang into the idle state. */
 363	for (i = 0; i < 32; i++)
 364		BB_PUT_BIT(hp, tregs, 1);
 365
 366	/* Give it write sequence. */
 367	BB_PUT_BIT(hp, tregs, 0);
 368	BB_PUT_BIT(hp, tregs, 1);
 369	BB_PUT_BIT(hp, tregs, 0);
 370	BB_PUT_BIT(hp, tregs, 1);
 371
 372	/* Give it the PHY address. */
 373	tmp = (hp->paddr & 0xff);
 374	for (i = 4; i >= 0; i--)
 375		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 376
 377	/* Tell it what register we will be writing. */
 378	tmp = (reg & 0xff);
 379	for (i = 4; i >= 0; i--)
 380		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 381
 382	/* Tell it to become ready for the bits. */
 383	BB_PUT_BIT(hp, tregs, 1);
 384	BB_PUT_BIT(hp, tregs, 0);
 385
 386	for (i = 15; i >= 0; i--)
 387		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
 388
 389	/* Close down the MIF BitBang outputs. */
 390	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
 391}
 392
 393#define TCVR_READ_TRIES   16
 394
 395static int happy_meal_tcvr_read(struct happy_meal *hp,
 396				void __iomem *tregs, int reg)
 397{
 398	int tries = TCVR_READ_TRIES;
 399	int retval;
 400
 
 401	if (hp->tcvr_type == none) {
 402		ASD("no transceiver, value=TCVR_FAILURE\n");
 403		return TCVR_FAILURE;
 404	}
 405
 406	if (!(hp->happy_flags & HFLAG_FENABLE)) {
 407		ASD("doing bit bang\n");
 408		return happy_meal_bb_read(hp, tregs, reg);
 409	}
 410
 411	hme_write32(hp, tregs + TCVR_FRAME,
 412		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
 413	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
 414		udelay(20);
 415	if (!tries) {
 416		netdev_err(hp->dev, "Aieee, transceiver MIF read bolixed\n");
 417		return TCVR_FAILURE;
 418	}
 419	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
 420	ASD("reg=0x%02x value=%04x\n", reg, retval);
 421	return retval;
 422}
 423
 424#define TCVR_WRITE_TRIES  16
 425
 426static void happy_meal_tcvr_write(struct happy_meal *hp,
 427				  void __iomem *tregs, int reg,
 428				  unsigned short value)
 429{
 430	int tries = TCVR_WRITE_TRIES;
 431
 432	ASD("reg=0x%02x value=%04x\n", reg, value);
 433
 434	/* Welcome to Sun Microsystems, can I take your order please? */
 435	if (!(hp->happy_flags & HFLAG_FENABLE)) {
 436		happy_meal_bb_write(hp, tregs, reg, value);
 437		return;
 438	}
 439
 440	/* Would you like fries with that? */
 441	hme_write32(hp, tregs + TCVR_FRAME,
 442		    (FRAME_WRITE | (hp->paddr << 23) |
 443		     ((reg & 0xff) << 18) | (value & 0xffff)));
 444	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
 445		udelay(20);
 446
 447	/* Anything else? */
 448	if (!tries)
 449		netdev_err(hp->dev, "Aieee, transceiver MIF write bolixed\n");
 450
 451	/* Fifty-two cents is your change, have a nice day. */
 452}
 453
 454/* Auto negotiation.  The scheme is very simple.  We have a timer routine
 455 * that keeps watching the auto negotiation process as it progresses.
 456 * The DP83840 is first told to start doing it's thing, we set up the time
 457 * and place the timer state machine in it's initial state.
 458 *
 459 * Here the timer peeks at the DP83840 status registers at each click to see
 460 * if the auto negotiation has completed, we assume here that the DP83840 PHY
 461 * will time out at some point and just tell us what (didn't) happen.  For
 462 * complete coverage we only allow so many of the ticks at this level to run,
 463 * when this has expired we print a warning message and try another strategy.
 464 * This "other" strategy is to force the interface into various speed/duplex
 465 * configurations and we stop when we see a link-up condition before the
 466 * maximum number of "peek" ticks have occurred.
 467 *
 468 * Once a valid link status has been detected we configure the BigMAC and
 469 * the rest of the Happy Meal to speak the most efficient protocol we could
 470 * get a clean link for.  The priority for link configurations, highest first
 471 * is:
 472 *                 100 Base-T Full Duplex
 473 *                 100 Base-T Half Duplex
 474 *                 10 Base-T Full Duplex
 475 *                 10 Base-T Half Duplex
 476 *
 477 * We start a new timer now, after a successful auto negotiation status has
 478 * been detected.  This timer just waits for the link-up bit to get set in
 479 * the BMCR of the DP83840.  When this occurs we print a kernel log message
 480 * describing the link type in use and the fact that it is up.
 481 *
 482 * If a fatal error of some sort is signalled and detected in the interrupt
 483 * service routine, and the chip is reset, or the link is ifconfig'd down
 484 * and then back up, this entire process repeats itself all over again.
 485 */
 486static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
 487{
 488	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 489
 490	/* Downgrade from full to half duplex.  Only possible
 491	 * via ethtool.
 492	 */
 493	if (hp->sw_bmcr & BMCR_FULLDPLX) {
 494		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
 495		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 496		return 0;
 497	}
 498
 499	/* Downgrade from 100 to 10. */
 500	if (hp->sw_bmcr & BMCR_SPEED100) {
 501		hp->sw_bmcr &= ~(BMCR_SPEED100);
 502		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 503		return 0;
 504	}
 505
 506	/* We've tried everything. */
 507	return -1;
 508}
 509
 510static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
 511{
 
 
 
 
 
 
 512	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
 513
 514	netdev_info(hp->dev,
 515		    "Link is up using %s transceiver at %dMb/s, %s Duplex.\n",
 516		    hp->tcvr_type == external ? "external" : "internal",
 517		    hp->sw_lpa & (LPA_100HALF | LPA_100FULL) ? 100 : 10,
 518		    hp->sw_lpa & (LPA_100FULL | LPA_10FULL) ? "Full" : "Half");
 
 
 
 
 
 519}
 520
 521static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
 522{
 
 
 
 
 
 
 523	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 524
 525	netdev_info(hp->dev,
 526		    "Link has been forced up using %s transceiver at %dMb/s, %s Duplex.\n",
 527		    hp->tcvr_type == external ? "external" : "internal",
 528		    hp->sw_bmcr & BMCR_SPEED100 ? 100 : 10,
 529		    hp->sw_bmcr & BMCR_FULLDPLX ? "Full" : "Half");
 
 
 530}
 531
 532static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
 533{
 534	int full;
 535
 536	/* All we care about is making sure the bigmac tx_cfg has a
 537	 * proper duplex setting.
 538	 */
 539	if (hp->timer_state == arbwait) {
 540		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
 541		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
 542			goto no_response;
 543		if (hp->sw_lpa & LPA_100FULL)
 544			full = 1;
 545		else if (hp->sw_lpa & LPA_100HALF)
 546			full = 0;
 547		else if (hp->sw_lpa & LPA_10FULL)
 548			full = 1;
 549		else
 550			full = 0;
 551	} else {
 552		/* Forcing a link mode. */
 553		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 554		if (hp->sw_bmcr & BMCR_FULLDPLX)
 555			full = 1;
 556		else
 557			full = 0;
 558	}
 559
 560	/* Before changing other bits in the tx_cfg register, and in
 561	 * general any of other the TX config registers too, you
 562	 * must:
 563	 * 1) Clear Enable
 564	 * 2) Poll with reads until that bit reads back as zero
 565	 * 3) Make TX configuration changes
 566	 * 4) Set Enable once more
 567	 */
 568	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 569		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
 570		    ~(BIGMAC_TXCFG_ENABLE));
 571	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
 572		barrier();
 573	if (full) {
 574		hp->happy_flags |= HFLAG_FULL;
 575		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 576			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
 577			    BIGMAC_TXCFG_FULLDPLX);
 578	} else {
 579		hp->happy_flags &= ~(HFLAG_FULL);
 580		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 581			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
 582			    ~(BIGMAC_TXCFG_FULLDPLX));
 583	}
 584	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 585		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
 586		    BIGMAC_TXCFG_ENABLE);
 587	return 0;
 588no_response:
 589	return 1;
 590}
 591
 592static int happy_meal_init(struct happy_meal *hp);
 593
 594static int is_lucent_phy(struct happy_meal *hp)
 595{
 596	void __iomem *tregs = hp->tcvregs;
 597	unsigned short mr2, mr3;
 598	int ret = 0;
 599
 600	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
 601	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
 602	if ((mr2 & 0xffff) == 0x0180 &&
 603	    ((mr3 & 0xffff) >> 10) == 0x1d)
 604		ret = 1;
 605
 606	return ret;
 607}
 608
 609static void happy_meal_timer(struct timer_list *t)
 610{
 611	struct happy_meal *hp = from_timer(hp, t, happy_timer);
 612	void __iomem *tregs = hp->tcvregs;
 613	int restart_timer = 0;
 614
 615	spin_lock_irq(&hp->happy_lock);
 616
 617	hp->timer_ticks++;
 618	switch(hp->timer_state) {
 619	case arbwait:
 620		/* Only allow for 5 ticks, thats 10 seconds and much too
 621		 * long to wait for arbitration to complete.
 622		 */
 623		if (hp->timer_ticks >= 10) {
 624			/* Enter force mode. */
 625	do_force_mode:
 626			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 627			netdev_notice(hp->dev,
 628				      "Auto-Negotiation unsuccessful, trying force link mode\n");
 629			hp->sw_bmcr = BMCR_SPEED100;
 630			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 631
 632			if (!is_lucent_phy(hp)) {
 633				/* OK, seems we need do disable the transceiver for the first
 634				 * tick to make sure we get an accurate link state at the
 635				 * second tick.
 636				 */
 637				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
 638				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
 639				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
 640			}
 641			hp->timer_state = ltrywait;
 642			hp->timer_ticks = 0;
 643			restart_timer = 1;
 644		} else {
 645			/* Anything interesting happen? */
 646			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 647			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
 648				int ret;
 649
 650				/* Just what we've been waiting for... */
 651				ret = set_happy_link_modes(hp, tregs);
 652				if (ret) {
 653					/* Ooops, something bad happened, go to force
 654					 * mode.
 655					 *
 656					 * XXX Broken hubs which don't support 802.3u
 657					 * XXX auto-negotiation make this happen as well.
 658					 */
 659					goto do_force_mode;
 660				}
 661
 662				/* Success, at least so far, advance our state engine. */
 663				hp->timer_state = lupwait;
 664				restart_timer = 1;
 665			} else {
 666				restart_timer = 1;
 667			}
 668		}
 669		break;
 670
 671	case lupwait:
 672		/* Auto negotiation was successful and we are awaiting a
 673		 * link up status.  I have decided to let this timer run
 674		 * forever until some sort of error is signalled, reporting
 675		 * a message to the user at 10 second intervals.
 676		 */
 677		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 678		if (hp->sw_bmsr & BMSR_LSTATUS) {
 679			/* Wheee, it's up, display the link mode in use and put
 680			 * the timer to sleep.
 681			 */
 682			display_link_mode(hp, tregs);
 683			hp->timer_state = asleep;
 684			restart_timer = 0;
 685		} else {
 686			if (hp->timer_ticks >= 10) {
 687				netdev_notice(hp->dev,
 688					      "Auto negotiation successful, link still not completely up.\n");
 689				hp->timer_ticks = 0;
 690				restart_timer = 1;
 691			} else {
 692				restart_timer = 1;
 693			}
 694		}
 695		break;
 696
 697	case ltrywait:
 698		/* Making the timeout here too long can make it take
 699		 * annoyingly long to attempt all of the link mode
 700		 * permutations, but then again this is essentially
 701		 * error recovery code for the most part.
 702		 */
 703		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 704		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
 705		if (hp->timer_ticks == 1) {
 706			if (!is_lucent_phy(hp)) {
 707				/* Re-enable transceiver, we'll re-enable the transceiver next
 708				 * tick, then check link state on the following tick.
 709				 */
 710				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
 711				happy_meal_tcvr_write(hp, tregs,
 712						      DP83840_CSCONFIG, hp->sw_csconfig);
 713			}
 714			restart_timer = 1;
 715			break;
 716		}
 717		if (hp->timer_ticks == 2) {
 718			if (!is_lucent_phy(hp)) {
 719				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
 720				happy_meal_tcvr_write(hp, tregs,
 721						      DP83840_CSCONFIG, hp->sw_csconfig);
 722			}
 723			restart_timer = 1;
 724			break;
 725		}
 726		if (hp->sw_bmsr & BMSR_LSTATUS) {
 727			/* Force mode selection success. */
 728			display_forced_link_mode(hp, tregs);
 729			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
 730			hp->timer_state = asleep;
 731			restart_timer = 0;
 732		} else {
 733			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
 734				int ret;
 735
 736				ret = try_next_permutation(hp, tregs);
 737				if (ret == -1) {
 738					/* Aieee, tried them all, reset the
 739					 * chip and try all over again.
 740					 */
 741
 742					/* Let the user know... */
 743					netdev_notice(hp->dev,
 744						      "Link down, cable problem?\n");
 745
 746					ret = happy_meal_init(hp);
 747					if (ret) {
 748						/* ho hum... */
 749						netdev_err(hp->dev,
 750							   "Error, cannot re-init the Happy Meal.\n");
 751					}
 752					goto out;
 753				}
 754				if (!is_lucent_phy(hp)) {
 755					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
 756									       DP83840_CSCONFIG);
 757					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
 758					happy_meal_tcvr_write(hp, tregs,
 759							      DP83840_CSCONFIG, hp->sw_csconfig);
 760				}
 761				hp->timer_ticks = 0;
 762				restart_timer = 1;
 763			} else {
 764				restart_timer = 1;
 765			}
 766		}
 767		break;
 768
 769	case asleep:
 770	default:
 771		/* Can't happens.... */
 772		netdev_err(hp->dev,
 773			   "Aieee, link timer is asleep but we got one anyways!\n");
 774		restart_timer = 0;
 775		hp->timer_ticks = 0;
 776		hp->timer_state = asleep; /* foo on you */
 777		break;
 778	}
 779
 780	if (restart_timer) {
 781		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
 782		add_timer(&hp->happy_timer);
 783	}
 784
 785out:
 786	spin_unlock_irq(&hp->happy_lock);
 787}
 788
 789#define TX_RESET_TRIES     32
 790#define RX_RESET_TRIES     32
 791
 792/* hp->happy_lock must be held */
 793static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
 794{
 795	int tries = TX_RESET_TRIES;
 796
 797	HMD("reset...\n");
 798
 799	/* Would you like to try our SMCC Delux? */
 800	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
 801	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
 802		udelay(20);
 803
 804	/* Lettuce, tomato, buggy hardware (no extra charge)? */
 805	if (!tries)
 806		netdev_err(hp->dev, "Transceiver BigMac ATTACK!");
 807
 808	/* Take care. */
 809	HMD("done\n");
 810}
 811
 812/* hp->happy_lock must be held */
 813static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
 814{
 815	int tries = RX_RESET_TRIES;
 816
 817	HMD("reset...\n");
 818
 819	/* We have a special on GNU/Viking hardware bugs today. */
 820	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
 821	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
 822		udelay(20);
 823
 824	/* Will that be all? */
 825	if (!tries)
 826		netdev_err(hp->dev, "Receiver BigMac ATTACK!\n");
 827
 828	/* Don't forget your vik_1137125_wa.  Have a nice day. */
 829	HMD("done\n");
 830}
 831
 832#define STOP_TRIES         16
 833
 834/* hp->happy_lock must be held */
 835static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
 836{
 837	int tries = STOP_TRIES;
 838
 839	HMD("reset...\n");
 840
 841	/* We're consolidating our STB products, it's your lucky day. */
 842	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
 843	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
 844		udelay(20);
 845
 846	/* Come back next week when we are "Sun Microelectronics". */
 847	if (!tries)
 848		netdev_err(hp->dev, "Fry guys.\n");
 849
 850	/* Remember: "Different name, same old buggy as shit hardware." */
 851	HMD("done\n");
 852}
 853
 854/* hp->happy_lock must be held */
 855static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
 856{
 857	struct net_device_stats *stats = &hp->dev->stats;
 858
 859	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
 860	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
 861
 862	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
 863	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
 864
 865	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
 866	hme_write32(hp, bregs + BMAC_GLECTR, 0);
 867
 868	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
 869
 870	stats->collisions +=
 871		(hme_read32(hp, bregs + BMAC_EXCTR) +
 872		 hme_read32(hp, bregs + BMAC_LTCTR));
 873	hme_write32(hp, bregs + BMAC_EXCTR, 0);
 874	hme_write32(hp, bregs + BMAC_LTCTR, 0);
 875}
 876
 877/* hp->happy_lock must be held */
 878static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
 879{
 
 
 880	/* If polling disabled or not polling already, nothing to do. */
 881	if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
 882	   (HFLAG_POLLENABLE | HFLAG_POLL)) {
 883		ASD("not polling, return\n");
 884		return;
 885	}
 886
 887	/* Shut up the MIF. */
 888	ASD("were polling, mif ints off, polling off\n");
 889	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
 890
 891	/* Turn off polling. */
 
 892	hme_write32(hp, tregs + TCVR_CFG,
 893		    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
 894
 895	/* We are no longer polling. */
 896	hp->happy_flags &= ~(HFLAG_POLL);
 897
 898	/* Let the bits set. */
 899	udelay(200);
 900	ASD("done\n");
 901}
 902
 903/* Only Sun can take such nice parts and fuck up the programming interface
 904 * like this.  Good job guys...
 905 */
 906#define TCVR_RESET_TRIES       16 /* It should reset quickly        */
 907#define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
 908
 909/* hp->happy_lock must be held */
 910static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
 911{
 912	u32 tconfig;
 913	int result, tries = TCVR_RESET_TRIES;
 914
 915	tconfig = hme_read32(hp, tregs + TCVR_CFG);
 916	ASD("tcfg=%08x\n", tconfig);
 917	if (hp->tcvr_type == external) {
 
 918		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
 919		hp->tcvr_type = internal;
 920		hp->paddr = TCV_PADDR_ITX;
 
 921		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
 922				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
 923		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 924		if (result == TCVR_FAILURE) {
 925			ASD("phyread_fail\n");
 926			return -1;
 927		}
 928		ASD("external: ISOLATE, phyread_ok, PSELECT\n");
 929		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
 930		hp->tcvr_type = external;
 931		hp->paddr = TCV_PADDR_ETX;
 932	} else {
 933		if (tconfig & TCV_CFG_MDIO1) {
 
 934			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
 
 935			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
 936					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
 937			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 938			if (result == TCVR_FAILURE) {
 939				ASD("phyread_fail>\n");
 940				return -1;
 941			}
 942			ASD("internal: PSELECT, ISOLATE, phyread_ok, ~PSELECT\n");
 943			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
 944			hp->tcvr_type = internal;
 945			hp->paddr = TCV_PADDR_ITX;
 946		}
 947	}
 948
 949	ASD("BMCR_RESET...\n");
 950	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
 951
 952	while (--tries) {
 953		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 954		if (result == TCVR_FAILURE)
 955			return -1;
 956		hp->sw_bmcr = result;
 957		if (!(result & BMCR_RESET))
 958			break;
 959		udelay(20);
 960	}
 961	if (!tries) {
 962		ASD("BMCR RESET FAILED!\n");
 963		return -1;
 964	}
 965	ASD("RESET_OK\n");
 966
 967	/* Get fresh copies of the PHY registers. */
 968	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 969	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
 970	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
 971	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
 972
 973	ASD("UNISOLATE...\n");
 974	hp->sw_bmcr &= ~(BMCR_ISOLATE);
 975	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 976
 977	tries = TCVR_UNISOLATE_TRIES;
 978	while (--tries) {
 979		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 980		if (result == TCVR_FAILURE)
 981			return -1;
 982		if (!(result & BMCR_ISOLATE))
 983			break;
 984		udelay(20);
 985	}
 986	if (!tries) {
 987		ASD("UNISOLATE FAILED!\n");
 988		return -1;
 989	}
 990	ASD("SUCCESS and CSCONFIG_DFBYPASS\n");
 991	if (!is_lucent_phy(hp)) {
 992		result = happy_meal_tcvr_read(hp, tregs,
 993					      DP83840_CSCONFIG);
 994		happy_meal_tcvr_write(hp, tregs,
 995				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
 996	}
 997	return 0;
 998}
 999
1000/* Figure out whether we have an internal or external transceiver.
1001 *
1002 * hp->happy_lock must be held
1003 */
1004static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1005{
1006	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1007
1008	ASD("tcfg=%08lx\n", tconfig);
1009	if (hp->happy_flags & HFLAG_POLL) {
1010		/* If we are polling, we must stop to get the transceiver type. */
 
1011		if (hp->tcvr_type == internal) {
1012			if (tconfig & TCV_CFG_MDIO1) {
 
1013				happy_meal_poll_stop(hp, tregs);
1014				hp->paddr = TCV_PADDR_ETX;
1015				hp->tcvr_type = external;
 
1016				tconfig &= ~(TCV_CFG_PENABLE);
1017				tconfig |= TCV_CFG_PSELECT;
1018				hme_write32(hp, tregs + TCVR_CFG, tconfig);
1019				ASD("poll stop, internal->external\n");
1020			}
1021		} else {
1022			if (hp->tcvr_type == external) {
 
1023				if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
 
1024					happy_meal_poll_stop(hp, tregs);
1025					hp->paddr = TCV_PADDR_ITX;
1026					hp->tcvr_type = internal;
 
1027					hme_write32(hp, tregs + TCVR_CFG,
1028						    hme_read32(hp, tregs + TCVR_CFG) &
1029						    ~(TCV_CFG_PSELECT));
1030					ASD("poll stop, external->internal\n");
1031				}
 
1032			} else {
1033				ASD("polling, none\n");
1034			}
1035		}
1036	} else {
1037		u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1038
1039		/* Else we can just work off of the MDIO bits. */
 
1040		if (reread & TCV_CFG_MDIO1) {
1041			hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1042			hp->paddr = TCV_PADDR_ETX;
1043			hp->tcvr_type = external;
1044			ASD("not polling, external\n");
1045		} else {
1046			if (reread & TCV_CFG_MDIO0) {
1047				hme_write32(hp, tregs + TCVR_CFG,
1048					    tconfig & ~(TCV_CFG_PSELECT));
1049				hp->paddr = TCV_PADDR_ITX;
1050				hp->tcvr_type = internal;
1051				ASD("not polling, internal\n");
1052			} else {
1053				netdev_err(hp->dev,
1054					   "Transceiver and a coke please.");
1055				hp->tcvr_type = none; /* Grrr... */
1056				ASD("not polling, none\n");
1057			}
1058		}
1059	}
1060}
1061
1062/* The receive ring buffers are a bit tricky to get right.  Here goes...
1063 *
1064 * The buffers we dma into must be 64 byte aligned.  So we use a special
1065 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1066 * we really need.
1067 *
1068 * We use skb_reserve() to align the data block we get in the skb.  We
1069 * also program the etxregs->cfg register to use an offset of 2.  This
1070 * imperical constant plus the ethernet header size will always leave
1071 * us with a nicely aligned ip header once we pass things up to the
1072 * protocol layers.
1073 *
1074 * The numbers work out to:
1075 *
1076 *         Max ethernet frame size         1518
1077 *         Ethernet header size              14
1078 *         Happy Meal base offset             2
1079 *
1080 * Say a skb data area is at 0xf001b010, and its size alloced is
1081 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1082 *
1083 * First our alloc_skb() routine aligns the data base to a 64 byte
1084 * boundary.  We now have 0xf001b040 as our skb data address.  We
1085 * plug this into the receive descriptor address.
1086 *
1087 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1088 * So now the data we will end up looking at starts at 0xf001b042.  When
1089 * the packet arrives, we will check out the size received and subtract
1090 * this from the skb->length.  Then we just pass the packet up to the
1091 * protocols as is, and allocate a new skb to replace this slot we have
1092 * just received from.
1093 *
1094 * The ethernet layer will strip the ether header from the front of the
1095 * skb we just sent to it, this leaves us with the ip header sitting
1096 * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1097 * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1098 * bit checksum is obtained from the low bits of the receive descriptor
1099 * flags, thus:
1100 *
1101 * 	skb->csum = rxd->rx_flags & 0xffff;
1102 * 	skb->ip_summed = CHECKSUM_COMPLETE;
1103 *
1104 * before sending off the skb to the protocols, and we are good as gold.
1105 */
1106static void happy_meal_clean_rings(struct happy_meal *hp)
1107{
1108	int i;
1109
1110	for (i = 0; i < RX_RING_SIZE; i++) {
1111		if (hp->rx_skbs[i] != NULL) {
1112			struct sk_buff *skb = hp->rx_skbs[i];
1113			struct happy_meal_rxd *rxd;
1114			u32 dma_addr;
1115
1116			rxd = &hp->happy_block->happy_meal_rxd[i];
1117			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1118			dma_unmap_single(hp->dma_dev, dma_addr,
1119					 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1120			dev_kfree_skb_any(skb);
1121			hp->rx_skbs[i] = NULL;
1122		}
1123	}
1124
1125	for (i = 0; i < TX_RING_SIZE; i++) {
1126		if (hp->tx_skbs[i] != NULL) {
1127			struct sk_buff *skb = hp->tx_skbs[i];
1128			struct happy_meal_txd *txd;
1129			u32 dma_addr;
1130			int frag;
1131
1132			hp->tx_skbs[i] = NULL;
1133
1134			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1135				txd = &hp->happy_block->happy_meal_txd[i];
1136				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1137				if (!frag)
1138					dma_unmap_single(hp->dma_dev, dma_addr,
1139							 (hme_read_desc32(hp, &txd->tx_flags)
1140							  & TXFLAG_SIZE),
1141							 DMA_TO_DEVICE);
1142				else
1143					dma_unmap_page(hp->dma_dev, dma_addr,
1144							 (hme_read_desc32(hp, &txd->tx_flags)
1145							  & TXFLAG_SIZE),
1146							 DMA_TO_DEVICE);
1147
1148				if (frag != skb_shinfo(skb)->nr_frags)
1149					i++;
1150			}
1151
1152			dev_kfree_skb_any(skb);
1153		}
1154	}
1155}
1156
1157/* hp->happy_lock must be held */
1158static void happy_meal_init_rings(struct happy_meal *hp)
1159{
1160	struct hmeal_init_block *hb = hp->happy_block;
1161	int i;
1162
1163	HMD("counters to zero\n");
1164	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1165
1166	/* Free any skippy bufs left around in the rings. */
 
1167	happy_meal_clean_rings(hp);
1168
1169	/* Now get new skippy bufs for the receive ring. */
1170	HMD("init rxring\n");
1171	for (i = 0; i < RX_RING_SIZE; i++) {
1172		struct sk_buff *skb;
1173		u32 mapping;
1174
1175		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1176		if (!skb) {
1177			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1178			continue;
1179		}
1180		hp->rx_skbs[i] = skb;
1181
1182		/* Because we reserve afterwards. */
1183		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1184		mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1185					 DMA_FROM_DEVICE);
1186		if (dma_mapping_error(hp->dma_dev, mapping)) {
1187			dev_kfree_skb_any(skb);
1188			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1189			continue;
1190		}
1191		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1192			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1193			      mapping);
1194		skb_reserve(skb, RX_OFFSET);
1195	}
1196
1197	HMD("init txring\n");
1198	for (i = 0; i < TX_RING_SIZE; i++)
1199		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1200
1201	HMD("done\n");
1202}
1203
1204/* hp->happy_lock must be held */
1205static void
1206happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1207				  void __iomem *tregs,
1208				  const struct ethtool_link_ksettings *ep)
1209{
1210	int timeout;
1211
1212	/* Read all of the registers we are interested in now. */
1213	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1214	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1215	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1216	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1217
1218	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1219
1220	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1221	if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1222		/* Advertise everything we can support. */
1223		if (hp->sw_bmsr & BMSR_10HALF)
1224			hp->sw_advertise |= (ADVERTISE_10HALF);
1225		else
1226			hp->sw_advertise &= ~(ADVERTISE_10HALF);
1227
1228		if (hp->sw_bmsr & BMSR_10FULL)
1229			hp->sw_advertise |= (ADVERTISE_10FULL);
1230		else
1231			hp->sw_advertise &= ~(ADVERTISE_10FULL);
1232		if (hp->sw_bmsr & BMSR_100HALF)
1233			hp->sw_advertise |= (ADVERTISE_100HALF);
1234		else
1235			hp->sw_advertise &= ~(ADVERTISE_100HALF);
1236		if (hp->sw_bmsr & BMSR_100FULL)
1237			hp->sw_advertise |= (ADVERTISE_100FULL);
1238		else
1239			hp->sw_advertise &= ~(ADVERTISE_100FULL);
1240		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1241
1242		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1243		 * XXX and this is because the DP83840 does not support it, changes
1244		 * XXX would need to be made to the tx/rx logic in the driver as well
1245		 * XXX so I completely skip checking for it in the BMSR for now.
1246		 */
1247
1248		ASD("Advertising [ %s%s%s%s]\n",
1249		    hp->sw_advertise & ADVERTISE_10HALF ? "10H " : "",
1250		    hp->sw_advertise & ADVERTISE_10FULL ? "10F " : "",
1251		    hp->sw_advertise & ADVERTISE_100HALF ? "100H " : "",
1252		    hp->sw_advertise & ADVERTISE_100FULL ? "100F " : "");
 
 
 
 
 
 
1253
1254		/* Enable Auto-Negotiation, this is usually on already... */
1255		hp->sw_bmcr |= BMCR_ANENABLE;
1256		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1257
1258		/* Restart it to make sure it is going. */
1259		hp->sw_bmcr |= BMCR_ANRESTART;
1260		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1261
1262		/* BMCR_ANRESTART self clears when the process has begun. */
1263
1264		timeout = 64;  /* More than enough. */
1265		while (--timeout) {
1266			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1267			if (!(hp->sw_bmcr & BMCR_ANRESTART))
1268				break; /* got it. */
1269			udelay(10);
1270		}
1271		if (!timeout) {
1272			netdev_err(hp->dev,
1273				   "Happy Meal would not start auto negotiation BMCR=0x%04x\n",
1274				   hp->sw_bmcr);
1275			netdev_notice(hp->dev,
1276				      "Performing force link detection.\n");
1277			goto force_link;
1278		} else {
1279			hp->timer_state = arbwait;
1280		}
1281	} else {
1282force_link:
1283		/* Force the link up, trying first a particular mode.
1284		 * Either we are here at the request of ethtool or
1285		 * because the Happy Meal would not start to autoneg.
1286		 */
1287
1288		/* Disable auto-negotiation in BMCR, enable the duplex and
1289		 * speed setting, init the timer state machine, and fire it off.
1290		 */
1291		if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1292			hp->sw_bmcr = BMCR_SPEED100;
1293		} else {
1294			if (ep->base.speed == SPEED_100)
1295				hp->sw_bmcr = BMCR_SPEED100;
1296			else
1297				hp->sw_bmcr = 0;
1298			if (ep->base.duplex == DUPLEX_FULL)
1299				hp->sw_bmcr |= BMCR_FULLDPLX;
1300		}
1301		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1302
1303		if (!is_lucent_phy(hp)) {
1304			/* OK, seems we need do disable the transceiver for the first
1305			 * tick to make sure we get an accurate link state at the
1306			 * second tick.
1307			 */
1308			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1309							       DP83840_CSCONFIG);
1310			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1311			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1312					      hp->sw_csconfig);
1313		}
1314		hp->timer_state = ltrywait;
1315	}
1316
1317	hp->timer_ticks = 0;
1318	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1319	add_timer(&hp->happy_timer);
1320}
1321
1322/* hp->happy_lock must be held */
1323static int happy_meal_init(struct happy_meal *hp)
1324{
1325	const unsigned char *e = &hp->dev->dev_addr[0];
1326	void __iomem *gregs        = hp->gregs;
1327	void __iomem *etxregs      = hp->etxregs;
1328	void __iomem *erxregs      = hp->erxregs;
1329	void __iomem *bregs        = hp->bigmacregs;
1330	void __iomem *tregs        = hp->tcvregs;
1331	const char *bursts = "64";
1332	u32 regtmp, rxcfg;
 
1333
1334	/* If auto-negotiation timer is running, kill it. */
1335	del_timer(&hp->happy_timer);
1336
1337	HMD("happy_flags[%08x]\n", hp->happy_flags);
 
1338	if (!(hp->happy_flags & HFLAG_INIT)) {
1339		HMD("set HFLAG_INIT\n");
1340		hp->happy_flags |= HFLAG_INIT;
1341		happy_meal_get_counters(hp, bregs);
1342	}
1343
1344	/* Stop polling. */
1345	HMD("to happy_meal_poll_stop\n");
1346	happy_meal_poll_stop(hp, tregs);
1347
1348	/* Stop transmitter and receiver. */
1349	HMD("to happy_meal_stop\n");
1350	happy_meal_stop(hp, gregs);
1351
1352	/* Alloc and reset the tx/rx descriptor chains. */
1353	HMD("to happy_meal_init_rings\n");
1354	happy_meal_init_rings(hp);
1355
1356	/* Shut up the MIF. */
1357	HMD("Disable all MIF irqs (old[%08x])\n",
1358	    hme_read32(hp, tregs + TCVR_IMASK));
1359	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1360
1361	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
1362	if (hp->happy_flags & HFLAG_FENABLE) {
1363		HMD("use frame old[%08x]\n",
1364		    hme_read32(hp, tregs + TCVR_CFG));
1365		hme_write32(hp, tregs + TCVR_CFG,
1366			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1367	} else {
1368		HMD("use bitbang old[%08x]\n",
1369		    hme_read32(hp, tregs + TCVR_CFG));
1370		hme_write32(hp, tregs + TCVR_CFG,
1371			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1372	}
1373
1374	/* Check the state of the transceiver. */
1375	HMD("to happy_meal_transceiver_check\n");
1376	happy_meal_transceiver_check(hp, tregs);
1377
1378	/* Put the Big Mac into a sane state. */
 
1379	switch(hp->tcvr_type) {
1380	case none:
1381		/* Cannot operate if we don't know the transceiver type! */
1382		HMD("AAIEEE no transceiver type, EAGAIN\n");
1383		return -EAGAIN;
1384
1385	case internal:
1386		/* Using the MII buffers. */
1387		HMD("internal, using MII\n");
1388		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1389		break;
1390
1391	case external:
1392		/* Not using the MII, disable it. */
1393		HMD("external, disable MII\n");
1394		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1395		break;
1396	}
1397
1398	if (happy_meal_tcvr_reset(hp, tregs))
1399		return -EAGAIN;
1400
1401	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
1402	HMD("tx/rx reset\n");
1403	happy_meal_tx_reset(hp, bregs);
1404	happy_meal_rx_reset(hp, bregs);
1405
1406	/* Set jam size and inter-packet gaps to reasonable defaults. */
 
1407	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1408	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1409	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1410
1411	/* Load up the MAC address and random seed. */
 
1412
1413	/* The docs recommend to use the 10LSB of our MAC here. */
1414	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1415
1416	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1417	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1418	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1419
 
1420	if ((hp->dev->flags & IFF_ALLMULTI) ||
1421	    (netdev_mc_count(hp->dev) > 64)) {
1422		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1423		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1424		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1425		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1426	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1427		u16 hash_table[4];
1428		struct netdev_hw_addr *ha;
1429		u32 crc;
1430
1431		memset(hash_table, 0, sizeof(hash_table));
1432		netdev_for_each_mc_addr(ha, hp->dev) {
1433			crc = ether_crc_le(6, ha->addr);
1434			crc >>= 26;
1435			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1436		}
1437		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1438		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1439		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1440		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1441	} else {
1442		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1443		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1444		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1445		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1446	}
1447
1448	/* Set the RX and TX ring ptrs. */
1449	HMD("ring ptrs rxr[%08x] txr[%08x]\n",
1450	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1451	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1452	hme_write32(hp, erxregs + ERX_RING,
1453		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1454	hme_write32(hp, etxregs + ETX_RING,
1455		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1456
1457	/* Parity issues in the ERX unit of some HME revisions can cause some
1458	 * registers to not be written unless their parity is even.  Detect such
1459	 * lost writes and simply rewrite with a low bit set (which will be ignored
1460	 * since the rxring needs to be 2K aligned).
1461	 */
1462	if (hme_read32(hp, erxregs + ERX_RING) !=
1463	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1464		hme_write32(hp, erxregs + ERX_RING,
1465			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1466			    | 0x4);
1467
1468	/* Set the supported burst sizes. */
 
 
 
1469#ifndef CONFIG_SPARC
1470	/* It is always PCI and can handle 64byte bursts. */
1471	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1472#else
1473	if ((hp->happy_bursts & DMA_BURST64) &&
1474	    ((hp->happy_flags & HFLAG_PCI) != 0
1475#ifdef CONFIG_SBUS
1476	     || sbus_can_burst64()
1477#endif
1478	     || 0)) {
1479		u32 gcfg = GREG_CFG_BURST64;
1480
1481		/* I have no idea if I should set the extended
1482		 * transfer mode bit for Cheerio, so for now I
1483		 * do not.  -DaveM
1484		 */
1485#ifdef CONFIG_SBUS
1486		if ((hp->happy_flags & HFLAG_PCI) == 0) {
1487			struct platform_device *op = hp->happy_dev;
1488			if (sbus_can_dma_64bit()) {
1489				sbus_set_sbus64(&op->dev,
1490						hp->happy_bursts);
1491				gcfg |= GREG_CFG_64BIT;
1492			}
1493		}
1494#endif
1495
1496		bursts = "64";
1497		hme_write32(hp, gregs + GREG_CFG, gcfg);
1498	} else if (hp->happy_bursts & DMA_BURST32) {
1499		bursts = "32";
1500		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1501	} else if (hp->happy_bursts & DMA_BURST16) {
1502		bursts = "16";
1503		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1504	} else {
1505		bursts = "XXX";
1506		hme_write32(hp, gregs + GREG_CFG, 0);
1507	}
1508#endif /* CONFIG_SPARC */
1509
1510	HMD("old[%08x] bursts<%s>\n",
1511	    hme_read32(hp, gregs + GREG_CFG), bursts);
1512
1513	/* Turn off interrupts we do not want to hear. */
 
1514	hme_write32(hp, gregs + GREG_IMASK,
1515		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1516		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1517
1518	/* Set the transmit ring buffer size. */
1519	HMD("tx rsize=%d oreg[%08x]\n", (int)TX_RING_SIZE,
1520	    hme_read32(hp, etxregs + ETX_RSIZE));
1521	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1522
1523	/* Enable transmitter DVMA. */
1524	HMD("tx dma enable old[%08x]\n", hme_read32(hp, etxregs + ETX_CFG));
 
1525	hme_write32(hp, etxregs + ETX_CFG,
1526		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1527
1528	/* This chip really rots, for the receiver sometimes when you
1529	 * write to its control registers not all the bits get there
1530	 * properly.  I cannot think of a sane way to provide complete
1531	 * coverage for this hardware bug yet.
1532	 */
1533	HMD("erx regs bug old[%08x]\n",
1534	    hme_read32(hp, erxregs + ERX_CFG));
1535	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1536	regtmp = hme_read32(hp, erxregs + ERX_CFG);
1537	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1538	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1539		netdev_err(hp->dev,
1540			   "Eieee, rx config register gets greasy fries.\n");
1541		netdev_err(hp->dev,
1542			   "Trying to set %08x, reread gives %08x\n",
1543			   ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1544		/* XXX Should return failure here... */
1545	}
1546
1547	/* Enable Big Mac hash table filter. */
1548	HMD("enable hash rx_cfg_old[%08x]\n",
1549	    hme_read32(hp, bregs + BMAC_RXCFG));
1550	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1551	if (hp->dev->flags & IFF_PROMISC)
1552		rxcfg |= BIGMAC_RXCFG_PMISC;
1553	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1554
1555	/* Let the bits settle in the chip. */
1556	udelay(10);
1557
1558	/* Ok, configure the Big Mac transmitter. */
1559	HMD("BIGMAC init\n");
1560	regtmp = 0;
1561	if (hp->happy_flags & HFLAG_FULL)
1562		regtmp |= BIGMAC_TXCFG_FULLDPLX;
1563
1564	/* Don't turn on the "don't give up" bit for now.  It could cause hme
1565	 * to deadlock with the PHY if a Jabber occurs.
1566	 */
1567	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1568
1569	/* Give up after 16 TX attempts. */
1570	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1571
1572	/* Enable the output drivers no matter what. */
1573	regtmp = BIGMAC_XCFG_ODENABLE;
1574
1575	/* If card can do lance mode, enable it. */
1576	if (hp->happy_flags & HFLAG_LANCE)
1577		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1578
1579	/* Disable the MII buffers if using external transceiver. */
1580	if (hp->tcvr_type == external)
1581		regtmp |= BIGMAC_XCFG_MIIDISAB;
1582
1583	HMD("XIF config old[%08x]\n", hme_read32(hp, bregs + BMAC_XIFCFG));
 
1584	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1585
1586	/* Start things up. */
1587	HMD("tx old[%08x] and rx [%08x] ON!\n",
1588	    hme_read32(hp, bregs + BMAC_TXCFG),
1589	    hme_read32(hp, bregs + BMAC_RXCFG));
1590
1591	/* Set larger TX/RX size to allow for 802.1q */
1592	hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1593	hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1594
1595	hme_write32(hp, bregs + BMAC_TXCFG,
1596		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1597	hme_write32(hp, bregs + BMAC_RXCFG,
1598		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1599
1600	/* Get the autonegotiation started, and the watch timer ticking. */
1601	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1602
1603	/* Success. */
1604	return 0;
1605}
1606
1607/* hp->happy_lock must be held */
1608static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1609{
1610	void __iomem *tregs	= hp->tcvregs;
1611	void __iomem *bregs	= hp->bigmacregs;
1612	void __iomem *gregs	= hp->gregs;
1613
1614	happy_meal_stop(hp, gregs);
1615	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1616	if (hp->happy_flags & HFLAG_FENABLE)
1617		hme_write32(hp, tregs + TCVR_CFG,
1618			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1619	else
1620		hme_write32(hp, tregs + TCVR_CFG,
1621			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1622	happy_meal_transceiver_check(hp, tregs);
1623	switch(hp->tcvr_type) {
1624	case none:
1625		return;
1626	case internal:
1627		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1628		break;
1629	case external:
1630		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1631		break;
1632	}
1633	if (happy_meal_tcvr_reset(hp, tregs))
1634		return;
1635
1636	/* Latch PHY registers as of now. */
1637	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1638	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1639
1640	/* Advertise everything we can support. */
1641	if (hp->sw_bmsr & BMSR_10HALF)
1642		hp->sw_advertise |= (ADVERTISE_10HALF);
1643	else
1644		hp->sw_advertise &= ~(ADVERTISE_10HALF);
1645
1646	if (hp->sw_bmsr & BMSR_10FULL)
1647		hp->sw_advertise |= (ADVERTISE_10FULL);
1648	else
1649		hp->sw_advertise &= ~(ADVERTISE_10FULL);
1650	if (hp->sw_bmsr & BMSR_100HALF)
1651		hp->sw_advertise |= (ADVERTISE_100HALF);
1652	else
1653		hp->sw_advertise &= ~(ADVERTISE_100HALF);
1654	if (hp->sw_bmsr & BMSR_100FULL)
1655		hp->sw_advertise |= (ADVERTISE_100FULL);
1656	else
1657		hp->sw_advertise &= ~(ADVERTISE_100FULL);
1658
1659	/* Update the PHY advertisement register. */
1660	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1661}
1662
1663/* Once status is latched (by happy_meal_interrupt) it is cleared by
1664 * the hardware, so we cannot re-read it and get a correct value.
1665 *
1666 * hp->happy_lock must be held
1667 */
1668static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1669{
1670	int reset = 0;
1671
1672	/* Only print messages for non-counter related interrupts. */
1673	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1674		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1675		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1676		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1677		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1678		      GREG_STAT_SLVPERR))
1679		netdev_err(hp->dev,
1680			   "Error interrupt for happy meal, status = %08x\n",
1681			   status);
1682
1683	if (status & GREG_STAT_RFIFOVF) {
1684		/* Receive FIFO overflow is harmless and the hardware will take
1685		   care of it, just some packets are lost. Who cares. */
1686		netdev_dbg(hp->dev, "Happy Meal receive FIFO overflow.\n");
1687	}
1688
1689	if (status & GREG_STAT_STSTERR) {
1690		/* BigMAC SQE link test failed. */
1691		netdev_err(hp->dev, "Happy Meal BigMAC SQE test failed.\n");
1692		reset = 1;
1693	}
1694
1695	if (status & GREG_STAT_TFIFO_UND) {
1696		/* Transmit FIFO underrun, again DMA error likely. */
1697		netdev_err(hp->dev,
1698			   "Happy Meal transmitter FIFO underrun, DMA error.\n");
1699		reset = 1;
1700	}
1701
1702	if (status & GREG_STAT_MAXPKTERR) {
1703		/* Driver error, tried to transmit something larger
1704		 * than ethernet max mtu.
1705		 */
1706		netdev_err(hp->dev, "Happy Meal MAX Packet size error.\n");
1707		reset = 1;
1708	}
1709
1710	if (status & GREG_STAT_NORXD) {
1711		/* This is harmless, it just means the system is
1712		 * quite loaded and the incoming packet rate was
1713		 * faster than the interrupt handler could keep up
1714		 * with.
1715		 */
1716		netdev_info(hp->dev,
1717			    "Happy Meal out of receive descriptors, packet dropped.\n");
 
1718	}
1719
1720	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1721		/* All sorts of DMA receive errors. */
1722		netdev_err(hp->dev, "Happy Meal rx DMA errors [ %s%s%s]\n",
1723			   status & GREG_STAT_RXERR ? "GenericError " : "",
1724			   status & GREG_STAT_RXPERR ? "ParityError " : "",
1725			   status & GREG_STAT_RXTERR ? "RxTagBotch " : "");
 
 
 
 
1726		reset = 1;
1727	}
1728
1729	if (status & GREG_STAT_EOPERR) {
1730		/* Driver bug, didn't set EOP bit in tx descriptor given
1731		 * to the happy meal.
1732		 */
1733		netdev_err(hp->dev,
1734			   "EOP not set in happy meal transmit descriptor!\n");
1735		reset = 1;
1736	}
1737
1738	if (status & GREG_STAT_MIFIRQ) {
1739		/* MIF signalled an interrupt, were we polling it? */
1740		netdev_err(hp->dev, "Happy Meal MIF interrupt.\n");
1741	}
1742
1743	if (status &
1744	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1745		/* All sorts of transmit DMA errors. */
1746		netdev_err(hp->dev, "Happy Meal tx DMA errors [ %s%s%s%s]\n",
1747			   status & GREG_STAT_TXEACK ? "GenericError " : "",
1748			   status & GREG_STAT_TXLERR ? "LateError " : "",
1749			   status & GREG_STAT_TXPERR ? "ParityError " : "",
1750			   status & GREG_STAT_TXTERR ? "TagBotch " : "");
 
 
 
 
 
1751		reset = 1;
1752	}
1753
1754	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1755		/* Bus or parity error when cpu accessed happy meal registers
1756		 * or it's internal FIFO's.  Should never see this.
1757		 */
1758		netdev_err(hp->dev,
1759			   "Happy Meal register access SBUS slave (%s) error.\n",
1760			   (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1761		reset = 1;
1762	}
1763
1764	if (reset) {
1765		netdev_notice(hp->dev, "Resetting...\n");
1766		happy_meal_init(hp);
1767		return 1;
1768	}
1769	return 0;
1770}
1771
1772/* hp->happy_lock must be held */
1773static void happy_meal_mif_interrupt(struct happy_meal *hp)
1774{
1775	void __iomem *tregs = hp->tcvregs;
1776
1777	netdev_info(hp->dev, "Link status change.\n");
1778	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1779	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1780
1781	/* Use the fastest transmission protocol possible. */
1782	if (hp->sw_lpa & LPA_100FULL) {
1783		netdev_info(hp->dev, "Switching to 100Mbps at full duplex.\n");
1784		hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1785	} else if (hp->sw_lpa & LPA_100HALF) {
1786		netdev_info(hp->dev, "Switching to 100MBps at half duplex.\n");
1787		hp->sw_bmcr |= BMCR_SPEED100;
1788	} else if (hp->sw_lpa & LPA_10FULL) {
1789		netdev_info(hp->dev, "Switching to 10MBps at full duplex.\n");
1790		hp->sw_bmcr |= BMCR_FULLDPLX;
1791	} else {
1792		netdev_info(hp->dev, "Using 10Mbps at half duplex.\n");
1793	}
1794	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1795
1796	/* Finally stop polling and shut up the MIF. */
1797	happy_meal_poll_stop(hp, tregs);
1798}
1799
 
 
 
 
 
 
1800/* hp->happy_lock must be held */
1801static void happy_meal_tx(struct happy_meal *hp)
1802{
1803	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1804	struct happy_meal_txd *this;
1805	struct net_device *dev = hp->dev;
1806	int elem;
1807
1808	elem = hp->tx_old;
 
1809	while (elem != hp->tx_new) {
1810		struct sk_buff *skb;
1811		u32 flags, dma_addr, dma_len;
1812		int frag;
1813
1814		netdev_vdbg(hp->dev, "TX[%d]\n", elem);
1815		this = &txbase[elem];
1816		flags = hme_read_desc32(hp, &this->tx_flags);
1817		if (flags & TXFLAG_OWN)
1818			break;
1819		skb = hp->tx_skbs[elem];
1820		if (skb_shinfo(skb)->nr_frags) {
1821			int last;
1822
1823			last = elem + skb_shinfo(skb)->nr_frags;
1824			last &= (TX_RING_SIZE - 1);
1825			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1826			if (flags & TXFLAG_OWN)
1827				break;
1828		}
1829		hp->tx_skbs[elem] = NULL;
1830		dev->stats.tx_bytes += skb->len;
1831
1832		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1833			dma_addr = hme_read_desc32(hp, &this->tx_addr);
1834			dma_len = hme_read_desc32(hp, &this->tx_flags);
1835
1836			dma_len &= TXFLAG_SIZE;
1837			if (!frag)
1838				dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1839			else
1840				dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1841
1842			elem = NEXT_TX(elem);
1843			this = &txbase[elem];
1844		}
1845
1846		dev_consume_skb_irq(skb);
1847		dev->stats.tx_packets++;
1848	}
1849	hp->tx_old = elem;
 
1850
1851	if (netif_queue_stopped(dev) &&
1852	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1853		netif_wake_queue(dev);
1854}
1855
 
 
 
 
 
 
1856/* Originally I used to handle the allocation failure by just giving back just
1857 * that one ring buffer to the happy meal.  Problem is that usually when that
1858 * condition is triggered, the happy meal expects you to do something reasonable
1859 * with all of the packets it has DMA'd in.  So now I just drop the entire
1860 * ring when we cannot get a new skb and give them all back to the happy meal,
1861 * maybe things will be "happier" now.
1862 *
1863 * hp->happy_lock must be held
1864 */
1865static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1866{
1867	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1868	struct happy_meal_rxd *this;
1869	int elem = hp->rx_new, drops = 0;
1870	u32 flags;
1871
 
1872	this = &rxbase[elem];
1873	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
1874		struct sk_buff *skb;
1875		int len = flags >> 16;
1876		u16 csum = flags & RXFLAG_CSUM;
1877		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
1878
 
 
1879		/* Check for errors. */
1880		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
1881			netdev_vdbg(dev, "RX[%d ERR(%08x)]", elem, flags);
1882			dev->stats.rx_errors++;
1883			if (len < ETH_ZLEN)
1884				dev->stats.rx_length_errors++;
1885			if (len & (RXFLAG_OVERFLOW >> 16)) {
1886				dev->stats.rx_over_errors++;
1887				dev->stats.rx_fifo_errors++;
1888			}
1889
1890			/* Return it to the Happy meal. */
1891	drop_it:
1892			dev->stats.rx_dropped++;
1893			hme_write_rxd(hp, this,
1894				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
1895				      dma_addr);
1896			goto next;
1897		}
1898		skb = hp->rx_skbs[elem];
1899		if (len > RX_COPY_THRESHOLD) {
1900			struct sk_buff *new_skb;
1901			u32 mapping;
1902
1903			/* Now refill the entry, if we can. */
1904			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1905			if (new_skb == NULL) {
1906				drops++;
1907				goto drop_it;
1908			}
1909			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1910			mapping = dma_map_single(hp->dma_dev, new_skb->data,
1911						 RX_BUF_ALLOC_SIZE,
1912						 DMA_FROM_DEVICE);
1913			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
1914				dev_kfree_skb_any(new_skb);
1915				drops++;
1916				goto drop_it;
1917			}
1918
1919			dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1920			hp->rx_skbs[elem] = new_skb;
1921			hme_write_rxd(hp, this,
1922				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
1923				      mapping);
1924			skb_reserve(new_skb, RX_OFFSET);
1925
1926			/* Trim the original skb for the netif. */
1927			skb_trim(skb, len);
1928		} else {
1929			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
1930
1931			if (copy_skb == NULL) {
1932				drops++;
1933				goto drop_it;
1934			}
1935
1936			skb_reserve(copy_skb, 2);
1937			skb_put(copy_skb, len);
1938			dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len + 2, DMA_FROM_DEVICE);
1939			skb_copy_from_linear_data(skb, copy_skb->data, len);
1940			dma_sync_single_for_device(hp->dma_dev, dma_addr, len + 2, DMA_FROM_DEVICE);
1941			/* Reuse original ring buffer. */
1942			hme_write_rxd(hp, this,
1943				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
1944				      dma_addr);
1945
1946			skb = copy_skb;
1947		}
1948
1949		/* This card is _fucking_ hot... */
1950		skb->csum = csum_unfold(~(__force __sum16)htons(csum));
1951		skb->ip_summed = CHECKSUM_COMPLETE;
1952
1953		netdev_vdbg(dev, "RX[%d len=%d csum=%4x]", elem, len, csum);
1954		skb->protocol = eth_type_trans(skb, dev);
1955		netif_rx(skb);
1956
1957		dev->stats.rx_packets++;
1958		dev->stats.rx_bytes += len;
1959	next:
1960		elem = NEXT_RX(elem);
1961		this = &rxbase[elem];
1962	}
1963	hp->rx_new = elem;
1964	if (drops)
1965		netdev_info(hp->dev, "Memory squeeze, deferring packet.\n");
 
1966}
1967
1968static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
1969{
1970	struct net_device *dev = dev_id;
1971	struct happy_meal *hp  = netdev_priv(dev);
1972	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
1973
1974	HMD("status=%08x\n", happy_status);
1975
1976	spin_lock(&hp->happy_lock);
1977
1978	if (happy_status & GREG_STAT_ERRORS) {
 
1979		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
1980			goto out;
1981	}
1982
1983	if (happy_status & GREG_STAT_MIFIRQ)
 
1984		happy_meal_mif_interrupt(hp);
 
1985
1986	if (happy_status & GREG_STAT_TXALL)
 
1987		happy_meal_tx(hp);
 
1988
1989	if (happy_status & GREG_STAT_RXTOHOST)
 
1990		happy_meal_rx(hp, dev);
 
1991
1992	HMD("done\n");
1993out:
1994	spin_unlock(&hp->happy_lock);
1995
1996	return IRQ_HANDLED;
1997}
1998
1999#ifdef CONFIG_SBUS
2000static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2001{
2002	struct quattro *qp = (struct quattro *) cookie;
2003	int i;
2004
2005	for (i = 0; i < 4; i++) {
2006		struct net_device *dev = qp->happy_meals[i];
2007		struct happy_meal *hp  = netdev_priv(dev);
2008		u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2009
2010		HMD("status=%08x\n", happy_status);
2011
2012		if (!(happy_status & (GREG_STAT_ERRORS |
2013				      GREG_STAT_MIFIRQ |
2014				      GREG_STAT_TXALL |
2015				      GREG_STAT_RXTOHOST)))
2016			continue;
2017
2018		spin_lock(&hp->happy_lock);
2019
2020		if (happy_status & GREG_STAT_ERRORS)
 
2021			if (happy_meal_is_not_so_happy(hp, happy_status))
2022				goto next;
 
2023
2024		if (happy_status & GREG_STAT_MIFIRQ)
 
2025			happy_meal_mif_interrupt(hp);
 
2026
2027		if (happy_status & GREG_STAT_TXALL)
 
2028			happy_meal_tx(hp);
 
2029
2030		if (happy_status & GREG_STAT_RXTOHOST)
 
2031			happy_meal_rx(hp, dev);
 
2032
2033	next:
2034		spin_unlock(&hp->happy_lock);
2035	}
2036	HMD("done\n");
2037
2038	return IRQ_HANDLED;
2039}
2040#endif
2041
2042static int happy_meal_open(struct net_device *dev)
2043{
2044	struct happy_meal *hp = netdev_priv(dev);
2045	int res;
2046
 
 
2047	/* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2048	 * into a single source which we register handling at probe time.
2049	 */
2050	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2051		res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2052				  dev->name, dev);
2053		if (res) {
2054			HMD("EAGAIN\n");
2055			netdev_err(dev, "Can't order irq %d to go.\n", hp->irq);
 
2056
2057			return -EAGAIN;
2058		}
2059	}
2060
2061	HMD("to happy_meal_init\n");
2062
2063	spin_lock_irq(&hp->happy_lock);
2064	res = happy_meal_init(hp);
2065	spin_unlock_irq(&hp->happy_lock);
2066
2067	if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2068		free_irq(hp->irq, dev);
2069	return res;
2070}
2071
2072static int happy_meal_close(struct net_device *dev)
2073{
2074	struct happy_meal *hp = netdev_priv(dev);
2075
2076	spin_lock_irq(&hp->happy_lock);
2077	happy_meal_stop(hp, hp->gregs);
2078	happy_meal_clean_rings(hp);
2079
2080	/* If auto-negotiation timer is running, kill it. */
2081	del_timer(&hp->happy_timer);
2082
2083	spin_unlock_irq(&hp->happy_lock);
2084
2085	/* On Quattro QFE cards, all hme interrupts are concentrated
2086	 * into a single source which we register handling at probe
2087	 * time and never unregister.
2088	 */
2089	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2090		free_irq(hp->irq, dev);
2091
2092	return 0;
2093}
2094
2095static void happy_meal_tx_timeout(struct net_device *dev, unsigned int txqueue)
 
 
 
 
 
 
2096{
2097	struct happy_meal *hp = netdev_priv(dev);
2098
2099	netdev_err(dev, "transmit timed out, resetting\n");
2100	tx_dump_log();
2101	netdev_err(dev, "Happy Status %08x TX[%08x:%08x]\n",
2102		   hme_read32(hp, hp->gregs + GREG_STAT),
2103		   hme_read32(hp, hp->etxregs + ETX_CFG),
2104		   hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2105
2106	spin_lock_irq(&hp->happy_lock);
2107	happy_meal_init(hp);
2108	spin_unlock_irq(&hp->happy_lock);
2109
2110	netif_wake_queue(dev);
2111}
2112
2113static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2114				 u32 first_len, u32 first_entry, u32 entry)
2115{
2116	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2117
2118	dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2119
2120	first_entry = NEXT_TX(first_entry);
2121	while (first_entry != entry) {
2122		struct happy_meal_txd *this = &txbase[first_entry];
2123		u32 addr, len;
2124
2125		addr = hme_read_desc32(hp, &this->tx_addr);
2126		len = hme_read_desc32(hp, &this->tx_flags);
2127		len &= TXFLAG_SIZE;
2128		dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2129	}
2130}
2131
2132static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2133					 struct net_device *dev)
2134{
2135	struct happy_meal *hp = netdev_priv(dev);
2136	int entry;
2137	u32 tx_flags;
2138
2139	tx_flags = TXFLAG_OWN;
2140	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2141		const u32 csum_start_off = skb_checksum_start_offset(skb);
2142		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2143
2144		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2145			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2146			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2147	}
2148
2149	spin_lock_irq(&hp->happy_lock);
2150
2151	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2152		netif_stop_queue(dev);
2153		spin_unlock_irq(&hp->happy_lock);
2154		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
 
2155		return NETDEV_TX_BUSY;
2156	}
2157
2158	entry = hp->tx_new;
2159	netdev_vdbg(dev, "SX<l[%d]e[%d]>\n", skb->len, entry);
2160	hp->tx_skbs[entry] = skb;
2161
2162	if (skb_shinfo(skb)->nr_frags == 0) {
2163		u32 mapping, len;
2164
2165		len = skb->len;
2166		mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2167		if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2168			goto out_dma_error;
2169		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2170		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2171			      (tx_flags | (len & TXFLAG_SIZE)),
2172			      mapping);
2173		entry = NEXT_TX(entry);
2174	} else {
2175		u32 first_len, first_mapping;
2176		int frag, first_entry = entry;
2177
2178		/* We must give this initial chunk to the device last.
2179		 * Otherwise we could race with the device.
2180		 */
2181		first_len = skb_headlen(skb);
2182		first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2183					       DMA_TO_DEVICE);
2184		if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2185			goto out_dma_error;
2186		entry = NEXT_TX(entry);
2187
2188		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2189			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2190			u32 len, mapping, this_txflags;
2191
2192			len = skb_frag_size(this_frag);
2193			mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2194						   0, len, DMA_TO_DEVICE);
2195			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2196				unmap_partial_tx_skb(hp, first_mapping, first_len,
2197						     first_entry, entry);
2198				goto out_dma_error;
2199			}
2200			this_txflags = tx_flags;
2201			if (frag == skb_shinfo(skb)->nr_frags - 1)
2202				this_txflags |= TXFLAG_EOP;
2203			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2204				      (this_txflags | (len & TXFLAG_SIZE)),
2205				      mapping);
2206			entry = NEXT_TX(entry);
2207		}
2208		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2209			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2210			      first_mapping);
2211	}
2212
2213	hp->tx_new = entry;
2214
2215	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2216		netif_stop_queue(dev);
2217
2218	/* Get it going. */
2219	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2220
2221	spin_unlock_irq(&hp->happy_lock);
2222
2223	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2224	return NETDEV_TX_OK;
2225
2226out_dma_error:
2227	hp->tx_skbs[hp->tx_new] = NULL;
2228	spin_unlock_irq(&hp->happy_lock);
2229
2230	dev_kfree_skb_any(skb);
2231	dev->stats.tx_dropped++;
2232	return NETDEV_TX_OK;
2233}
2234
2235static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2236{
2237	struct happy_meal *hp = netdev_priv(dev);
2238
2239	spin_lock_irq(&hp->happy_lock);
2240	happy_meal_get_counters(hp, hp->bigmacregs);
2241	spin_unlock_irq(&hp->happy_lock);
2242
2243	return &dev->stats;
2244}
2245
2246static void happy_meal_set_multicast(struct net_device *dev)
2247{
2248	struct happy_meal *hp = netdev_priv(dev);
2249	void __iomem *bregs = hp->bigmacregs;
2250	struct netdev_hw_addr *ha;
2251	u32 crc;
2252
2253	spin_lock_irq(&hp->happy_lock);
2254
2255	if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2256		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2257		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2258		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2259		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2260	} else if (dev->flags & IFF_PROMISC) {
2261		hme_write32(hp, bregs + BMAC_RXCFG,
2262			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2263	} else {
2264		u16 hash_table[4];
2265
2266		memset(hash_table, 0, sizeof(hash_table));
2267		netdev_for_each_mc_addr(ha, dev) {
2268			crc = ether_crc_le(6, ha->addr);
2269			crc >>= 26;
2270			hash_table[crc >> 4] |= 1 << (crc & 0xf);
2271		}
2272		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2273		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2274		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2275		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2276	}
2277
2278	spin_unlock_irq(&hp->happy_lock);
2279}
2280
2281/* Ethtool support... */
2282static int hme_get_link_ksettings(struct net_device *dev,
2283				  struct ethtool_link_ksettings *cmd)
2284{
2285	struct happy_meal *hp = netdev_priv(dev);
2286	u32 speed;
2287	u32 supported;
2288
2289	supported =
2290		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2291		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2292		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2293
2294	/* XXX hardcoded stuff for now */
2295	cmd->base.port = PORT_TP; /* XXX no MII support */
2296	cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2297
2298	/* Record PHY settings. */
2299	spin_lock_irq(&hp->happy_lock);
2300	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2301	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2302	spin_unlock_irq(&hp->happy_lock);
2303
2304	if (hp->sw_bmcr & BMCR_ANENABLE) {
2305		cmd->base.autoneg = AUTONEG_ENABLE;
2306		speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2307			 SPEED_100 : SPEED_10);
2308		if (speed == SPEED_100)
2309			cmd->base.duplex =
2310				(hp->sw_lpa & (LPA_100FULL)) ?
2311				DUPLEX_FULL : DUPLEX_HALF;
2312		else
2313			cmd->base.duplex =
2314				(hp->sw_lpa & (LPA_10FULL)) ?
2315				DUPLEX_FULL : DUPLEX_HALF;
2316	} else {
2317		cmd->base.autoneg = AUTONEG_DISABLE;
2318		speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2319		cmd->base.duplex =
2320			(hp->sw_bmcr & BMCR_FULLDPLX) ?
2321			DUPLEX_FULL : DUPLEX_HALF;
2322	}
2323	cmd->base.speed = speed;
2324	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2325						supported);
2326
2327	return 0;
2328}
2329
2330static int hme_set_link_ksettings(struct net_device *dev,
2331				  const struct ethtool_link_ksettings *cmd)
2332{
2333	struct happy_meal *hp = netdev_priv(dev);
2334
2335	/* Verify the settings we care about. */
2336	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2337	    cmd->base.autoneg != AUTONEG_DISABLE)
2338		return -EINVAL;
2339	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2340	    ((cmd->base.speed != SPEED_100 &&
2341	      cmd->base.speed != SPEED_10) ||
2342	     (cmd->base.duplex != DUPLEX_HALF &&
2343	      cmd->base.duplex != DUPLEX_FULL)))
2344		return -EINVAL;
2345
2346	/* Ok, do it to it. */
2347	spin_lock_irq(&hp->happy_lock);
2348	del_timer(&hp->happy_timer);
2349	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2350	spin_unlock_irq(&hp->happy_lock);
2351
2352	return 0;
2353}
2354
2355static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2356{
2357	struct happy_meal *hp = netdev_priv(dev);
2358
2359	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
 
2360	if (hp->happy_flags & HFLAG_PCI) {
2361		struct pci_dev *pdev = hp->happy_dev;
2362		strscpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2363	}
2364#ifdef CONFIG_SBUS
2365	else {
2366		const struct linux_prom_registers *regs;
2367		struct platform_device *op = hp->happy_dev;
2368		regs = of_get_property(op->dev.of_node, "regs", NULL);
2369		if (regs)
2370			snprintf(info->bus_info, sizeof(info->bus_info),
2371				"SBUS:%d",
2372				regs->which_io);
2373	}
2374#endif
2375}
2376
2377static u32 hme_get_link(struct net_device *dev)
2378{
2379	struct happy_meal *hp = netdev_priv(dev);
2380
2381	spin_lock_irq(&hp->happy_lock);
2382	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2383	spin_unlock_irq(&hp->happy_lock);
2384
2385	return hp->sw_bmsr & BMSR_LSTATUS;
2386}
2387
2388static const struct ethtool_ops hme_ethtool_ops = {
2389	.get_drvinfo		= hme_get_drvinfo,
2390	.get_link		= hme_get_link,
2391	.get_link_ksettings	= hme_get_link_ksettings,
2392	.set_link_ksettings	= hme_set_link_ksettings,
2393};
2394
 
 
2395#ifdef CONFIG_SBUS
2396/* Given a happy meal sbus device, find it's quattro parent.
2397 * If none exist, allocate and return a new one.
2398 *
2399 * Return NULL on failure.
2400 */
2401static struct quattro *quattro_sbus_find(struct platform_device *child)
2402{
2403	struct device *parent = child->dev.parent;
2404	struct platform_device *op;
2405	struct quattro *qp;
2406
2407	op = to_platform_device(parent);
2408	qp = platform_get_drvdata(op);
2409	if (qp)
2410		return qp;
2411
2412	qp = kzalloc(sizeof(*qp), GFP_KERNEL);
2413	if (!qp)
2414		return NULL;
2415
2416	qp->quattro_dev = child;
2417	qp->next = qfe_sbus_list;
2418	qfe_sbus_list = qp;
2419
2420	platform_set_drvdata(op, qp);
 
 
 
 
 
 
 
 
2421	return qp;
2422}
2423
2424/* After all quattro cards have been probed, we call these functions
2425 * to register the IRQ handlers for the cards that have been
2426 * successfully probed and skip the cards that failed to initialize
2427 */
2428static int __init quattro_sbus_register_irqs(void)
2429{
2430	struct quattro *qp;
2431
2432	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2433		struct platform_device *op = qp->quattro_dev;
2434		int err, qfe_slot, skip = 0;
2435
2436		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2437			if (!qp->happy_meals[qfe_slot])
2438				skip = 1;
2439		}
2440		if (skip)
2441			continue;
2442
2443		err = request_irq(op->archdata.irqs[0],
2444				  quattro_sbus_interrupt,
2445				  IRQF_SHARED, "Quattro",
2446				  qp);
2447		if (err != 0) {
2448			dev_err(&op->dev,
2449				"Quattro HME: IRQ registration error %d.\n",
2450				err);
2451			return err;
2452		}
2453	}
2454
2455	return 0;
2456}
2457
2458static void quattro_sbus_free_irqs(void)
2459{
2460	struct quattro *qp;
2461
2462	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2463		struct platform_device *op = qp->quattro_dev;
2464		int qfe_slot, skip = 0;
2465
2466		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2467			if (!qp->happy_meals[qfe_slot])
2468				skip = 1;
2469		}
2470		if (skip)
2471			continue;
2472
2473		free_irq(op->archdata.irqs[0], qp);
2474	}
2475}
2476#endif /* CONFIG_SBUS */
2477
2478#ifdef CONFIG_PCI
2479static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2480{
2481	int i;
2482	struct pci_dev *bdev = pdev->bus->self;
2483	struct quattro *qp;
2484
2485	if (!bdev)
2486		return ERR_PTR(-ENODEV);
2487
2488	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2489		struct pci_dev *qpdev = qp->quattro_dev;
2490
2491		if (qpdev == bdev)
2492			return qp;
2493	}
2494
2495	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2496	if (!qp)
2497		return ERR_PTR(-ENOMEM);
2498
2499	for (i = 0; i < 4; i++)
2500		qp->happy_meals[i] = NULL;
2501
2502	qp->quattro_dev = bdev;
2503	qp->next = qfe_pci_list;
2504	qfe_pci_list = qp;
2505
2506	/* No range tricks necessary on PCI. */
2507	qp->nranges = 0;
 
2508	return qp;
2509}
2510#endif /* CONFIG_PCI */
2511
2512static const struct net_device_ops hme_netdev_ops = {
2513	.ndo_open		= happy_meal_open,
2514	.ndo_stop		= happy_meal_close,
2515	.ndo_start_xmit		= happy_meal_start_xmit,
2516	.ndo_tx_timeout		= happy_meal_tx_timeout,
2517	.ndo_get_stats		= happy_meal_get_stats,
2518	.ndo_set_rx_mode	= happy_meal_set_multicast,
2519	.ndo_set_mac_address 	= eth_mac_addr,
2520	.ndo_validate_addr	= eth_validate_addr,
2521};
2522
2523#ifdef CONFIG_SBUS
2524static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2525{
2526	struct device_node *dp = op->dev.of_node, *sbus_dp;
2527	struct quattro *qp = NULL;
2528	struct happy_meal *hp;
2529	struct net_device *dev;
2530	int i, qfe_slot = -1;
2531	u8 addr[ETH_ALEN];
2532	int err = -ENODEV;
2533
2534	sbus_dp = op->dev.parent->of_node;
2535
2536	/* We can match PCI devices too, do not accept those here. */
2537	if (!of_node_name_eq(sbus_dp, "sbus") && !of_node_name_eq(sbus_dp, "sbi"))
2538		return err;
2539
2540	if (is_qfe) {
2541		qp = quattro_sbus_find(op);
2542		if (qp == NULL)
2543			goto err_out;
2544		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2545			if (qp->happy_meals[qfe_slot] == NULL)
2546				break;
2547		if (qfe_slot == 4)
2548			goto err_out;
2549	}
2550
2551	err = -ENOMEM;
2552	dev = alloc_etherdev(sizeof(struct happy_meal));
2553	if (!dev)
2554		goto err_out;
2555	SET_NETDEV_DEV(dev, &op->dev);
2556
 
 
 
2557	/* If user did not specify a MAC address specifically, use
2558	 * the Quattro local-mac-address property...
2559	 */
2560	for (i = 0; i < 6; i++) {
2561		if (macaddr[i] != 0)
2562			break;
2563	}
2564	if (i < 6) { /* a mac address was given */
2565		for (i = 0; i < 6; i++)
2566			addr[i] = macaddr[i];
2567		eth_hw_addr_set(dev, addr);
2568		macaddr[5]++;
2569	} else {
2570		const unsigned char *addr;
2571		int len;
2572
2573		addr = of_get_property(dp, "local-mac-address", &len);
2574
2575		if (qfe_slot != -1 && addr && len == ETH_ALEN)
2576			eth_hw_addr_set(dev, addr);
2577		else
2578			eth_hw_addr_set(dev, idprom->id_ethaddr);
2579	}
2580
2581	hp = netdev_priv(dev);
2582
2583	hp->happy_dev = op;
2584	hp->dma_dev = &op->dev;
2585
2586	spin_lock_init(&hp->happy_lock);
2587
2588	err = -ENODEV;
2589	if (qp != NULL) {
2590		hp->qfe_parent = qp;
2591		hp->qfe_ent = qfe_slot;
2592		qp->happy_meals[qfe_slot] = dev;
2593	}
2594
2595	hp->gregs = of_ioremap(&op->resource[0], 0,
2596			       GREG_REG_SIZE, "HME Global Regs");
2597	if (!hp->gregs) {
2598		dev_err(&op->dev, "Cannot map global registers.\n");
2599		goto err_out_free_netdev;
2600	}
2601
2602	hp->etxregs = of_ioremap(&op->resource[1], 0,
2603				 ETX_REG_SIZE, "HME TX Regs");
2604	if (!hp->etxregs) {
2605		dev_err(&op->dev, "Cannot map MAC TX registers.\n");
2606		goto err_out_iounmap;
2607	}
2608
2609	hp->erxregs = of_ioremap(&op->resource[2], 0,
2610				 ERX_REG_SIZE, "HME RX Regs");
2611	if (!hp->erxregs) {
2612		dev_err(&op->dev, "Cannot map MAC RX registers.\n");
2613		goto err_out_iounmap;
2614	}
2615
2616	hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2617				    BMAC_REG_SIZE, "HME BIGMAC Regs");
2618	if (!hp->bigmacregs) {
2619		dev_err(&op->dev, "Cannot map BIGMAC registers.\n");
2620		goto err_out_iounmap;
2621	}
2622
2623	hp->tcvregs = of_ioremap(&op->resource[4], 0,
2624				 TCVR_REG_SIZE, "HME Tranceiver Regs");
2625	if (!hp->tcvregs) {
2626		dev_err(&op->dev, "Cannot map TCVR registers.\n");
2627		goto err_out_iounmap;
2628	}
2629
2630	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2631	if (hp->hm_revision == 0xff)
2632		hp->hm_revision = 0xa0;
2633
2634	/* Now enable the feature flags we can. */
2635	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2636		hp->happy_flags = HFLAG_20_21;
2637	else if (hp->hm_revision != 0xa0)
2638		hp->happy_flags = HFLAG_NOT_A0;
2639
2640	if (qp != NULL)
2641		hp->happy_flags |= HFLAG_QUATTRO;
2642
2643	/* Get the supported DVMA burst sizes from our Happy SBUS. */
2644	hp->happy_bursts = of_getintprop_default(sbus_dp,
2645						 "burst-sizes", 0x00);
2646
2647	hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2648					     PAGE_SIZE,
2649					     &hp->hblock_dvma,
2650					     GFP_ATOMIC);
2651	err = -ENOMEM;
2652	if (!hp->happy_block)
2653		goto err_out_iounmap;
2654
2655	/* Force check of the link first time we are brought up. */
2656	hp->linkcheck = 0;
2657
2658	/* Force timer state to 'asleep' with count of zero. */
2659	hp->timer_state = asleep;
2660	hp->timer_ticks = 0;
2661
2662	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2663
2664	hp->dev = dev;
2665	dev->netdev_ops = &hme_netdev_ops;
2666	dev->watchdog_timeo = 5*HZ;
2667	dev->ethtool_ops = &hme_ethtool_ops;
2668
2669	/* Happy Meal can do it all... */
2670	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2671	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2672
2673	hp->irq = op->archdata.irqs[0];
2674
2675#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2676	/* Hook up SBUS register/descriptor accessors. */
2677	hp->read_desc32 = sbus_hme_read_desc32;
2678	hp->write_txd = sbus_hme_write_txd;
2679	hp->write_rxd = sbus_hme_write_rxd;
2680	hp->read32 = sbus_hme_read32;
2681	hp->write32 = sbus_hme_write32;
2682#endif
2683
2684	/* Grrr, Happy Meal comes up by default not advertising
2685	 * full duplex 100baseT capabilities, fix this.
2686	 */
2687	spin_lock_irq(&hp->happy_lock);
2688	happy_meal_set_initial_advertisement(hp);
2689	spin_unlock_irq(&hp->happy_lock);
2690
2691	err = register_netdev(hp->dev);
2692	if (err) {
2693		dev_err(&op->dev, "Cannot register net device, aborting.\n");
 
2694		goto err_out_free_coherent;
2695	}
2696
2697	platform_set_drvdata(op, hp);
2698
2699	if (qfe_slot != -1)
2700		netdev_info(dev,
2701			    "Quattro HME slot %d (SBUS) 10/100baseT Ethernet %pM\n",
2702			    qfe_slot, dev->dev_addr);
2703	else
2704		netdev_info(dev, "HAPPY MEAL (SBUS) 10/100baseT Ethernet %pM\n",
2705			    dev->dev_addr);
 
 
2706
2707	return 0;
2708
2709err_out_free_coherent:
2710	dma_free_coherent(hp->dma_dev,
2711			  PAGE_SIZE,
2712			  hp->happy_block,
2713			  hp->hblock_dvma);
2714
2715err_out_iounmap:
2716	if (hp->gregs)
2717		of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2718	if (hp->etxregs)
2719		of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2720	if (hp->erxregs)
2721		of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2722	if (hp->bigmacregs)
2723		of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2724	if (hp->tcvregs)
2725		of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2726
2727	if (qp)
2728		qp->happy_meals[qfe_slot] = NULL;
2729
2730err_out_free_netdev:
2731	free_netdev(dev);
2732
2733err_out:
2734	return err;
2735}
2736#endif
2737
2738#ifdef CONFIG_PCI
2739#ifndef CONFIG_SPARC
2740static int is_quattro_p(struct pci_dev *pdev)
2741{
2742	struct pci_dev *busdev = pdev->bus->self;
2743	struct pci_dev *this_pdev;
2744	int n_hmes;
2745
2746	if (busdev == NULL ||
2747	    busdev->vendor != PCI_VENDOR_ID_DEC ||
2748	    busdev->device != PCI_DEVICE_ID_DEC_21153)
2749		return 0;
2750
2751	n_hmes = 0;
2752	list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2753		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2754		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2755			n_hmes++;
2756	}
2757
2758	if (n_hmes != 4)
2759		return 0;
2760
2761	return 1;
2762}
2763
2764/* Fetch MAC address from vital product data of PCI ROM. */
2765static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2766{
2767	int this_offset;
2768
2769	for (this_offset = 0x20; this_offset < len; this_offset++) {
2770		void __iomem *p = rom_base + this_offset;
2771
2772		if (readb(p + 0) != 0x90 ||
2773		    readb(p + 1) != 0x00 ||
2774		    readb(p + 2) != 0x09 ||
2775		    readb(p + 3) != 0x4e ||
2776		    readb(p + 4) != 0x41 ||
2777		    readb(p + 5) != 0x06)
2778			continue;
2779
2780		this_offset += 6;
2781		p += 6;
2782
2783		if (index == 0) {
2784			int i;
2785
2786			for (i = 0; i < 6; i++)
2787				dev_addr[i] = readb(p + i);
2788			return 1;
2789		}
2790		index--;
2791	}
2792	return 0;
2793}
2794
2795static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2796{
2797	size_t size;
2798	void __iomem *p = pci_map_rom(pdev, &size);
2799
2800	if (p) {
2801		int index = 0;
2802		int found;
2803
2804		if (is_quattro_p(pdev))
2805			index = PCI_SLOT(pdev->devfn);
2806
2807		found = readb(p) == 0x55 &&
2808			readb(p + 1) == 0xaa &&
2809			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2810		pci_unmap_rom(pdev, p);
2811		if (found)
2812			return;
2813	}
2814
2815	/* Sun MAC prefix then 3 random bytes. */
2816	dev_addr[0] = 0x08;
2817	dev_addr[1] = 0x00;
2818	dev_addr[2] = 0x20;
2819	get_random_bytes(&dev_addr[3], 3);
2820}
2821#endif /* !(CONFIG_SPARC) */
2822
2823static int happy_meal_pci_probe(struct pci_dev *pdev,
2824				const struct pci_device_id *ent)
2825{
2826	struct quattro *qp = NULL;
2827#ifdef CONFIG_SPARC
2828	struct device_node *dp;
2829#endif
2830	struct happy_meal *hp;
2831	struct net_device *dev;
2832	void __iomem *hpreg_base;
2833	struct resource *hpreg_res;
2834	int i, qfe_slot = -1;
2835	char prom_name[64];
2836	u8 addr[ETH_ALEN];
2837	int err;
2838
2839	/* Now make sure pci_dev cookie is there. */
2840#ifdef CONFIG_SPARC
2841	dp = pci_device_to_OF_node(pdev);
2842	snprintf(prom_name, sizeof(prom_name), "%pOFn", dp);
2843#else
2844	if (is_quattro_p(pdev))
2845		strcpy(prom_name, "SUNW,qfe");
2846	else
2847		strcpy(prom_name, "SUNW,hme");
2848#endif
2849
2850	err = pcim_enable_device(pdev);
2851	if (err)
 
2852		goto err_out;
2853	pci_set_master(pdev);
2854
2855	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
2856		qp = quattro_pci_find(pdev);
2857		if (IS_ERR(qp)) {
2858			err = PTR_ERR(qp);
2859			goto err_out;
2860		}
2861
2862		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2863			if (!qp->happy_meals[qfe_slot])
2864				break;
2865
2866		if (qfe_slot == 4)
2867			goto err_out;
2868	}
2869
2870	dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct happy_meal));
2871	if (!dev) {
2872		err = -ENOMEM;
2873		goto err_out;
2874	}
2875	SET_NETDEV_DEV(dev, &pdev->dev);
2876
 
 
 
2877	hp = netdev_priv(dev);
2878
2879	hp->happy_dev = pdev;
2880	hp->dma_dev = &pdev->dev;
2881
2882	spin_lock_init(&hp->happy_lock);
2883
2884	if (qp != NULL) {
2885		hp->qfe_parent = qp;
2886		hp->qfe_ent = qfe_slot;
2887		qp->happy_meals[qfe_slot] = dev;
2888	}
2889
2890	err = -EINVAL;
 
2891	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2892		dev_err(&pdev->dev,
2893			"Cannot find proper PCI device base address.\n");
2894		goto err_out_clear_quattro;
2895	}
2896
2897	hpreg_res = devm_request_region(&pdev->dev, pci_resource_start(pdev, 0),
2898					pci_resource_len(pdev, 0), DRV_NAME);
2899	if (!hpreg_res) {
2900		err = -EBUSY;
2901		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
2902		goto err_out_clear_quattro;
2903	}
2904
2905	hpreg_base = pcim_iomap(pdev, 0, 0x8000);
2906	if (!hpreg_base) {
2907		err = -ENOMEM;
2908		dev_err(&pdev->dev, "Unable to remap card memory.\n");
2909		goto err_out_clear_quattro;
2910	}
2911
2912	for (i = 0; i < 6; i++) {
2913		if (macaddr[i] != 0)
2914			break;
2915	}
2916	if (i < 6) { /* a mac address was given */
2917		for (i = 0; i < 6; i++)
2918			addr[i] = macaddr[i];
2919		eth_hw_addr_set(dev, addr);
2920		macaddr[5]++;
2921	} else {
2922#ifdef CONFIG_SPARC
2923		const unsigned char *addr;
2924		int len;
2925
2926		if (qfe_slot != -1 &&
2927		    (addr = of_get_property(dp, "local-mac-address", &len))
2928			!= NULL &&
2929		    len == 6) {
2930			eth_hw_addr_set(dev, addr);
2931		} else {
2932			eth_hw_addr_set(dev, idprom->id_ethaddr);
2933		}
2934#else
2935		u8 addr[ETH_ALEN];
2936
2937		get_hme_mac_nonsparc(pdev, addr);
2938		eth_hw_addr_set(dev, addr);
2939#endif
2940	}
2941
2942	/* Layout registers. */
2943	hp->gregs      = (hpreg_base + 0x0000UL);
2944	hp->etxregs    = (hpreg_base + 0x2000UL);
2945	hp->erxregs    = (hpreg_base + 0x4000UL);
2946	hp->bigmacregs = (hpreg_base + 0x6000UL);
2947	hp->tcvregs    = (hpreg_base + 0x7000UL);
2948
2949#ifdef CONFIG_SPARC
2950	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2951	if (hp->hm_revision == 0xff)
2952		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
2953#else
2954	/* works with this on non-sparc hosts */
2955	hp->hm_revision = 0x20;
2956#endif
2957
2958	/* Now enable the feature flags we can. */
2959	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2960		hp->happy_flags = HFLAG_20_21;
2961	else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
2962		hp->happy_flags = HFLAG_NOT_A0;
2963
2964	if (qp != NULL)
2965		hp->happy_flags |= HFLAG_QUATTRO;
2966
2967	/* And of course, indicate this is PCI. */
2968	hp->happy_flags |= HFLAG_PCI;
2969
2970#ifdef CONFIG_SPARC
2971	/* Assume PCI happy meals can handle all burst sizes. */
2972	hp->happy_bursts = DMA_BURSTBITS;
2973#endif
2974
2975	hp->happy_block = dmam_alloc_coherent(&pdev->dev, PAGE_SIZE,
2976					      &hp->hblock_dvma, GFP_KERNEL);
2977	if (!hp->happy_block) {
2978		err = -ENOMEM;
2979		goto err_out_clear_quattro;
2980	}
2981
2982	hp->linkcheck = 0;
2983	hp->timer_state = asleep;
2984	hp->timer_ticks = 0;
2985
2986	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2987
2988	hp->irq = pdev->irq;
2989	hp->dev = dev;
2990	dev->netdev_ops = &hme_netdev_ops;
2991	dev->watchdog_timeo = 5*HZ;
2992	dev->ethtool_ops = &hme_ethtool_ops;
2993
2994	/* Happy Meal can do it all... */
2995	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2996	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2997
2998#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2999	/* Hook up PCI register/descriptor accessors. */
3000	hp->read_desc32 = pci_hme_read_desc32;
3001	hp->write_txd = pci_hme_write_txd;
3002	hp->write_rxd = pci_hme_write_rxd;
3003	hp->read32 = pci_hme_read32;
3004	hp->write32 = pci_hme_write32;
3005#endif
3006
3007	/* Grrr, Happy Meal comes up by default not advertising
3008	 * full duplex 100baseT capabilities, fix this.
3009	 */
3010	spin_lock_irq(&hp->happy_lock);
3011	happy_meal_set_initial_advertisement(hp);
3012	spin_unlock_irq(&hp->happy_lock);
3013
3014	err = devm_register_netdev(&pdev->dev, dev);
3015	if (err) {
3016		dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
3017		goto err_out_clear_quattro;
 
3018	}
3019
3020	pci_set_drvdata(pdev, hp);
3021
3022	if (!qfe_slot) {
3023		struct pci_dev *qpdev = qp->quattro_dev;
3024
3025		prom_name[0] = 0;
3026		if (!strncmp(dev->name, "eth", 3)) {
3027			int i = simple_strtoul(dev->name + 3, NULL, 10);
3028			sprintf(prom_name, "-%d", i + 3);
3029		}
3030		netdev_info(dev,
3031			    "%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet bridge %04x.%04x\n",
3032			    prom_name, qpdev->vendor, qpdev->device);
 
 
 
 
3033	}
3034
3035	if (qfe_slot != -1)
3036		netdev_info(dev,
3037			    "Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet %pM\n",
3038			    qfe_slot, dev->dev_addr);
3039	else
3040		netdev_info(dev,
3041			    "HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet %pM\n",
3042			    dev->dev_addr);
 
3043
3044	return 0;
3045
 
 
 
 
 
 
3046err_out_clear_quattro:
3047	if (qp != NULL)
3048		qp->happy_meals[qfe_slot] = NULL;
3049
 
 
3050err_out:
3051	return err;
3052}
3053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054static const struct pci_device_id happymeal_pci_ids[] = {
3055	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3056	{ }			/* Terminating entry */
3057};
3058
3059MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3060
3061static struct pci_driver hme_pci_driver = {
3062	.name		= "hme",
3063	.id_table	= happymeal_pci_ids,
3064	.probe		= happy_meal_pci_probe,
 
3065};
3066
3067static int __init happy_meal_pci_init(void)
3068{
3069	return pci_register_driver(&hme_pci_driver);
3070}
3071
3072static void happy_meal_pci_exit(void)
3073{
3074	pci_unregister_driver(&hme_pci_driver);
3075
3076	while (qfe_pci_list) {
3077		struct quattro *qfe = qfe_pci_list;
3078		struct quattro *next = qfe->next;
3079
3080		kfree(qfe);
3081
3082		qfe_pci_list = next;
3083	}
3084}
3085
3086#endif
3087
3088#ifdef CONFIG_SBUS
3089static const struct of_device_id hme_sbus_match[];
3090static int hme_sbus_probe(struct platform_device *op)
3091{
3092	const struct of_device_id *match;
3093	struct device_node *dp = op->dev.of_node;
3094	const char *model = of_get_property(dp, "model", NULL);
3095	int is_qfe;
3096
3097	match = of_match_device(hme_sbus_match, &op->dev);
3098	if (!match)
3099		return -EINVAL;
3100	is_qfe = (match->data != NULL);
3101
3102	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3103		is_qfe = 1;
3104
3105	return happy_meal_sbus_probe_one(op, is_qfe);
3106}
3107
3108static int hme_sbus_remove(struct platform_device *op)
3109{
3110	struct happy_meal *hp = platform_get_drvdata(op);
3111	struct net_device *net_dev = hp->dev;
3112
3113	unregister_netdev(net_dev);
3114
3115	/* XXX qfe parent interrupt... */
3116
3117	of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3118	of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3119	of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3120	of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3121	of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3122	dma_free_coherent(hp->dma_dev,
3123			  PAGE_SIZE,
3124			  hp->happy_block,
3125			  hp->hblock_dvma);
3126
3127	free_netdev(net_dev);
3128
3129	return 0;
3130}
3131
3132static const struct of_device_id hme_sbus_match[] = {
3133	{
3134		.name = "SUNW,hme",
3135	},
3136	{
3137		.name = "SUNW,qfe",
3138		.data = (void *) 1,
3139	},
3140	{
3141		.name = "qfe",
3142		.data = (void *) 1,
3143	},
3144	{},
3145};
3146
3147MODULE_DEVICE_TABLE(of, hme_sbus_match);
3148
3149static struct platform_driver hme_sbus_driver = {
3150	.driver = {
3151		.name = "hme",
3152		.of_match_table = hme_sbus_match,
3153	},
3154	.probe		= hme_sbus_probe,
3155	.remove		= hme_sbus_remove,
3156};
3157
3158static int __init happy_meal_sbus_init(void)
3159{
3160	int err;
3161
3162	err = platform_driver_register(&hme_sbus_driver);
3163	if (!err)
3164		err = quattro_sbus_register_irqs();
3165
3166	return err;
3167}
3168
3169static void happy_meal_sbus_exit(void)
3170{
3171	platform_driver_unregister(&hme_sbus_driver);
3172	quattro_sbus_free_irqs();
3173
3174	while (qfe_sbus_list) {
3175		struct quattro *qfe = qfe_sbus_list;
3176		struct quattro *next = qfe->next;
3177
3178		kfree(qfe);
3179
3180		qfe_sbus_list = next;
3181	}
3182}
3183#endif
3184
3185static int __init happy_meal_probe(void)
3186{
3187	int err = 0;
3188
3189#ifdef CONFIG_SBUS
3190	err = happy_meal_sbus_init();
3191#endif
3192#ifdef CONFIG_PCI
3193	if (!err) {
3194		err = happy_meal_pci_init();
3195#ifdef CONFIG_SBUS
3196		if (err)
3197			happy_meal_sbus_exit();
3198#endif
3199	}
3200#endif
3201
3202	return err;
3203}
3204
3205
3206static void __exit happy_meal_exit(void)
3207{
3208#ifdef CONFIG_SBUS
3209	happy_meal_sbus_exit();
3210#endif
3211#ifdef CONFIG_PCI
3212	happy_meal_pci_exit();
3213#endif
3214}
3215
3216module_init(happy_meal_probe);
3217module_exit(happy_meal_exit);