Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
3 * auto carrier detecting ethernet driver. Also known as the
4 * "Happy Meal Ethernet" found on SunSwift SBUS cards.
5 *
6 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
7 * 2006, 2008 David S. Miller (davem@davemloft.net)
8 *
9 * Changes :
10 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
11 * - port to non-sparc architectures. Tested only on x86 and
12 * only currently works with QFE PCI cards.
13 * - ability to specify the MAC address at module load time by passing this
14 * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
15 */
16
17#include <linux/module.h>
18#include <linux/kernel.h>
19#include <linux/types.h>
20#include <linux/fcntl.h>
21#include <linux/interrupt.h>
22#include <linux/ioport.h>
23#include <linux/in.h>
24#include <linux/slab.h>
25#include <linux/string.h>
26#include <linux/delay.h>
27#include <linux/init.h>
28#include <linux/ethtool.h>
29#include <linux/mii.h>
30#include <linux/crc32.h>
31#include <linux/random.h>
32#include <linux/errno.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/skbuff.h>
36#include <linux/mm.h>
37#include <linux/bitops.h>
38#include <linux/dma-mapping.h>
39
40#include <asm/io.h>
41#include <asm/dma.h>
42#include <asm/byteorder.h>
43
44#ifdef CONFIG_SPARC
45#include <linux/of.h>
46#include <linux/of_device.h>
47#include <asm/idprom.h>
48#include <asm/openprom.h>
49#include <asm/oplib.h>
50#include <asm/prom.h>
51#include <asm/auxio.h>
52#endif
53#include <linux/uaccess.h>
54
55#include <asm/pgtable.h>
56#include <asm/irq.h>
57
58#ifdef CONFIG_PCI
59#include <linux/pci.h>
60#endif
61
62#include "sunhme.h"
63
64#define DRV_NAME "sunhme"
65#define DRV_VERSION "3.10"
66#define DRV_RELDATE "August 26, 2008"
67#define DRV_AUTHOR "David S. Miller (davem@davemloft.net)"
68
69static char version[] =
70 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
71
72MODULE_VERSION(DRV_VERSION);
73MODULE_AUTHOR(DRV_AUTHOR);
74MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
75MODULE_LICENSE("GPL");
76
77static int macaddr[6];
78
79/* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
80module_param_array(macaddr, int, NULL, 0);
81MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
82
83#ifdef CONFIG_SBUS
84static struct quattro *qfe_sbus_list;
85#endif
86
87#ifdef CONFIG_PCI
88static struct quattro *qfe_pci_list;
89#endif
90
91#undef HMEDEBUG
92#undef SXDEBUG
93#undef RXDEBUG
94#undef TXDEBUG
95#undef TXLOGGING
96
97#ifdef TXLOGGING
98struct hme_tx_logent {
99 unsigned int tstamp;
100 int tx_new, tx_old;
101 unsigned int action;
102#define TXLOG_ACTION_IRQ 0x01
103#define TXLOG_ACTION_TXMIT 0x02
104#define TXLOG_ACTION_TBUSY 0x04
105#define TXLOG_ACTION_NBUFS 0x08
106 unsigned int status;
107};
108#define TX_LOG_LEN 128
109static struct hme_tx_logent tx_log[TX_LOG_LEN];
110static int txlog_cur_entry;
111static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
112{
113 struct hme_tx_logent *tlp;
114 unsigned long flags;
115
116 local_irq_save(flags);
117 tlp = &tx_log[txlog_cur_entry];
118 tlp->tstamp = (unsigned int)jiffies;
119 tlp->tx_new = hp->tx_new;
120 tlp->tx_old = hp->tx_old;
121 tlp->action = a;
122 tlp->status = s;
123 txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
124 local_irq_restore(flags);
125}
126static __inline__ void tx_dump_log(void)
127{
128 int i, this;
129
130 this = txlog_cur_entry;
131 for (i = 0; i < TX_LOG_LEN; i++) {
132 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
133 tx_log[this].tstamp,
134 tx_log[this].tx_new, tx_log[this].tx_old,
135 tx_log[this].action, tx_log[this].status);
136 this = (this + 1) & (TX_LOG_LEN - 1);
137 }
138}
139static __inline__ void tx_dump_ring(struct happy_meal *hp)
140{
141 struct hmeal_init_block *hb = hp->happy_block;
142 struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
143 int i;
144
145 for (i = 0; i < TX_RING_SIZE; i+=4) {
146 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
147 i, i + 4,
148 le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
149 le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
150 le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
151 le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
152 }
153}
154#else
155#define tx_add_log(hp, a, s) do { } while(0)
156#define tx_dump_log() do { } while(0)
157#define tx_dump_ring(hp) do { } while(0)
158#endif
159
160#ifdef HMEDEBUG
161#define HMD(x) printk x
162#else
163#define HMD(x)
164#endif
165
166/* #define AUTO_SWITCH_DEBUG */
167
168#ifdef AUTO_SWITCH_DEBUG
169#define ASD(x) printk x
170#else
171#define ASD(x)
172#endif
173
174#define DEFAULT_IPG0 16 /* For lance-mode only */
175#define DEFAULT_IPG1 8 /* For all modes */
176#define DEFAULT_IPG2 4 /* For all modes */
177#define DEFAULT_JAMSIZE 4 /* Toe jam */
178
179/* NOTE: In the descriptor writes one _must_ write the address
180 * member _first_. The card must not be allowed to see
181 * the updated descriptor flags until the address is
182 * correct. I've added a write memory barrier between
183 * the two stores so that I can sleep well at night... -DaveM
184 */
185
186#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
187static void sbus_hme_write32(void __iomem *reg, u32 val)
188{
189 sbus_writel(val, reg);
190}
191
192static u32 sbus_hme_read32(void __iomem *reg)
193{
194 return sbus_readl(reg);
195}
196
197static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
198{
199 rxd->rx_addr = (__force hme32)addr;
200 dma_wmb();
201 rxd->rx_flags = (__force hme32)flags;
202}
203
204static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
205{
206 txd->tx_addr = (__force hme32)addr;
207 dma_wmb();
208 txd->tx_flags = (__force hme32)flags;
209}
210
211static u32 sbus_hme_read_desc32(hme32 *p)
212{
213 return (__force u32)*p;
214}
215
216static void pci_hme_write32(void __iomem *reg, u32 val)
217{
218 writel(val, reg);
219}
220
221static u32 pci_hme_read32(void __iomem *reg)
222{
223 return readl(reg);
224}
225
226static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
227{
228 rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
229 dma_wmb();
230 rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
231}
232
233static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
234{
235 txd->tx_addr = (__force hme32)cpu_to_le32(addr);
236 dma_wmb();
237 txd->tx_flags = (__force hme32)cpu_to_le32(flags);
238}
239
240static u32 pci_hme_read_desc32(hme32 *p)
241{
242 return le32_to_cpup((__le32 *)p);
243}
244
245#define hme_write32(__hp, __reg, __val) \
246 ((__hp)->write32((__reg), (__val)))
247#define hme_read32(__hp, __reg) \
248 ((__hp)->read32(__reg))
249#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
250 ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
251#define hme_write_txd(__hp, __txd, __flags, __addr) \
252 ((__hp)->write_txd((__txd), (__flags), (__addr)))
253#define hme_read_desc32(__hp, __p) \
254 ((__hp)->read_desc32(__p))
255#define hme_dma_map(__hp, __ptr, __size, __dir) \
256 ((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
257#define hme_dma_unmap(__hp, __addr, __size, __dir) \
258 ((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
259#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
260 ((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
261#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
262 ((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
263#else
264#ifdef CONFIG_SBUS
265/* SBUS only compilation */
266#define hme_write32(__hp, __reg, __val) \
267 sbus_writel((__val), (__reg))
268#define hme_read32(__hp, __reg) \
269 sbus_readl(__reg)
270#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
271do { (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
272 dma_wmb(); \
273 (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
274} while(0)
275#define hme_write_txd(__hp, __txd, __flags, __addr) \
276do { (__txd)->tx_addr = (__force hme32)(u32)(__addr); \
277 dma_wmb(); \
278 (__txd)->tx_flags = (__force hme32)(u32)(__flags); \
279} while(0)
280#define hme_read_desc32(__hp, __p) ((__force u32)(hme32)*(__p))
281#define hme_dma_map(__hp, __ptr, __size, __dir) \
282 dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
283#define hme_dma_unmap(__hp, __addr, __size, __dir) \
284 dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
285#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
286 dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
287#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
288 dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
289#else
290/* PCI only compilation */
291#define hme_write32(__hp, __reg, __val) \
292 writel((__val), (__reg))
293#define hme_read32(__hp, __reg) \
294 readl(__reg)
295#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
296do { (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
297 dma_wmb(); \
298 (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
299} while(0)
300#define hme_write_txd(__hp, __txd, __flags, __addr) \
301do { (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
302 dma_wmb(); \
303 (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
304} while(0)
305static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
306{
307 return le32_to_cpup((__le32 *)p);
308}
309#define hme_dma_map(__hp, __ptr, __size, __dir) \
310 pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
311#define hme_dma_unmap(__hp, __addr, __size, __dir) \
312 pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
313#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
314 pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
315#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
316 pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
317#endif
318#endif
319
320
321/* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */
322static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
323{
324 hme_write32(hp, tregs + TCVR_BBDATA, bit);
325 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
326 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
327}
328
329#if 0
330static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
331{
332 u32 ret;
333
334 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
335 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
336 ret = hme_read32(hp, tregs + TCVR_CFG);
337 if (internal)
338 ret &= TCV_CFG_MDIO0;
339 else
340 ret &= TCV_CFG_MDIO1;
341
342 return ret;
343}
344#endif
345
346static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
347{
348 u32 retval;
349
350 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
351 udelay(1);
352 retval = hme_read32(hp, tregs + TCVR_CFG);
353 if (internal)
354 retval &= TCV_CFG_MDIO0;
355 else
356 retval &= TCV_CFG_MDIO1;
357 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
358
359 return retval;
360}
361
362#define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */
363
364static int happy_meal_bb_read(struct happy_meal *hp,
365 void __iomem *tregs, int reg)
366{
367 u32 tmp;
368 int retval = 0;
369 int i;
370
371 ASD(("happy_meal_bb_read: reg=%d ", reg));
372
373 /* Enable the MIF BitBang outputs. */
374 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
375
376 /* Force BitBang into the idle state. */
377 for (i = 0; i < 32; i++)
378 BB_PUT_BIT(hp, tregs, 1);
379
380 /* Give it the read sequence. */
381 BB_PUT_BIT(hp, tregs, 0);
382 BB_PUT_BIT(hp, tregs, 1);
383 BB_PUT_BIT(hp, tregs, 1);
384 BB_PUT_BIT(hp, tregs, 0);
385
386 /* Give it the PHY address. */
387 tmp = hp->paddr & 0xff;
388 for (i = 4; i >= 0; i--)
389 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
390
391 /* Tell it what register we want to read. */
392 tmp = (reg & 0xff);
393 for (i = 4; i >= 0; i--)
394 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
395
396 /* Close down the MIF BitBang outputs. */
397 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
398
399 /* Now read in the value. */
400 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
401 for (i = 15; i >= 0; i--)
402 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
403 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
404 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
405 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
406 ASD(("value=%x\n", retval));
407 return retval;
408}
409
410static void happy_meal_bb_write(struct happy_meal *hp,
411 void __iomem *tregs, int reg,
412 unsigned short value)
413{
414 u32 tmp;
415 int i;
416
417 ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
418
419 /* Enable the MIF BitBang outputs. */
420 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
421
422 /* Force BitBang into the idle state. */
423 for (i = 0; i < 32; i++)
424 BB_PUT_BIT(hp, tregs, 1);
425
426 /* Give it write sequence. */
427 BB_PUT_BIT(hp, tregs, 0);
428 BB_PUT_BIT(hp, tregs, 1);
429 BB_PUT_BIT(hp, tregs, 0);
430 BB_PUT_BIT(hp, tregs, 1);
431
432 /* Give it the PHY address. */
433 tmp = (hp->paddr & 0xff);
434 for (i = 4; i >= 0; i--)
435 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
436
437 /* Tell it what register we will be writing. */
438 tmp = (reg & 0xff);
439 for (i = 4; i >= 0; i--)
440 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
441
442 /* Tell it to become ready for the bits. */
443 BB_PUT_BIT(hp, tregs, 1);
444 BB_PUT_BIT(hp, tregs, 0);
445
446 for (i = 15; i >= 0; i--)
447 BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
448
449 /* Close down the MIF BitBang outputs. */
450 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
451}
452
453#define TCVR_READ_TRIES 16
454
455static int happy_meal_tcvr_read(struct happy_meal *hp,
456 void __iomem *tregs, int reg)
457{
458 int tries = TCVR_READ_TRIES;
459 int retval;
460
461 ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
462 if (hp->tcvr_type == none) {
463 ASD(("no transceiver, value=TCVR_FAILURE\n"));
464 return TCVR_FAILURE;
465 }
466
467 if (!(hp->happy_flags & HFLAG_FENABLE)) {
468 ASD(("doing bit bang\n"));
469 return happy_meal_bb_read(hp, tregs, reg);
470 }
471
472 hme_write32(hp, tregs + TCVR_FRAME,
473 (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
474 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
475 udelay(20);
476 if (!tries) {
477 printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
478 return TCVR_FAILURE;
479 }
480 retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
481 ASD(("value=%04x\n", retval));
482 return retval;
483}
484
485#define TCVR_WRITE_TRIES 16
486
487static void happy_meal_tcvr_write(struct happy_meal *hp,
488 void __iomem *tregs, int reg,
489 unsigned short value)
490{
491 int tries = TCVR_WRITE_TRIES;
492
493 ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
494
495 /* Welcome to Sun Microsystems, can I take your order please? */
496 if (!(hp->happy_flags & HFLAG_FENABLE)) {
497 happy_meal_bb_write(hp, tregs, reg, value);
498 return;
499 }
500
501 /* Would you like fries with that? */
502 hme_write32(hp, tregs + TCVR_FRAME,
503 (FRAME_WRITE | (hp->paddr << 23) |
504 ((reg & 0xff) << 18) | (value & 0xffff)));
505 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
506 udelay(20);
507
508 /* Anything else? */
509 if (!tries)
510 printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
511
512 /* Fifty-two cents is your change, have a nice day. */
513}
514
515/* Auto negotiation. The scheme is very simple. We have a timer routine
516 * that keeps watching the auto negotiation process as it progresses.
517 * The DP83840 is first told to start doing it's thing, we set up the time
518 * and place the timer state machine in it's initial state.
519 *
520 * Here the timer peeks at the DP83840 status registers at each click to see
521 * if the auto negotiation has completed, we assume here that the DP83840 PHY
522 * will time out at some point and just tell us what (didn't) happen. For
523 * complete coverage we only allow so many of the ticks at this level to run,
524 * when this has expired we print a warning message and try another strategy.
525 * This "other" strategy is to force the interface into various speed/duplex
526 * configurations and we stop when we see a link-up condition before the
527 * maximum number of "peek" ticks have occurred.
528 *
529 * Once a valid link status has been detected we configure the BigMAC and
530 * the rest of the Happy Meal to speak the most efficient protocol we could
531 * get a clean link for. The priority for link configurations, highest first
532 * is:
533 * 100 Base-T Full Duplex
534 * 100 Base-T Half Duplex
535 * 10 Base-T Full Duplex
536 * 10 Base-T Half Duplex
537 *
538 * We start a new timer now, after a successful auto negotiation status has
539 * been detected. This timer just waits for the link-up bit to get set in
540 * the BMCR of the DP83840. When this occurs we print a kernel log message
541 * describing the link type in use and the fact that it is up.
542 *
543 * If a fatal error of some sort is signalled and detected in the interrupt
544 * service routine, and the chip is reset, or the link is ifconfig'd down
545 * and then back up, this entire process repeats itself all over again.
546 */
547static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
548{
549 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
550
551 /* Downgrade from full to half duplex. Only possible
552 * via ethtool.
553 */
554 if (hp->sw_bmcr & BMCR_FULLDPLX) {
555 hp->sw_bmcr &= ~(BMCR_FULLDPLX);
556 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
557 return 0;
558 }
559
560 /* Downgrade from 100 to 10. */
561 if (hp->sw_bmcr & BMCR_SPEED100) {
562 hp->sw_bmcr &= ~(BMCR_SPEED100);
563 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
564 return 0;
565 }
566
567 /* We've tried everything. */
568 return -1;
569}
570
571static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
572{
573 printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
574 if (hp->tcvr_type == external)
575 printk("external ");
576 else
577 printk("internal ");
578 printk("transceiver at ");
579 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
580 if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
581 if (hp->sw_lpa & LPA_100FULL)
582 printk("100Mb/s, Full Duplex.\n");
583 else
584 printk("100Mb/s, Half Duplex.\n");
585 } else {
586 if (hp->sw_lpa & LPA_10FULL)
587 printk("10Mb/s, Full Duplex.\n");
588 else
589 printk("10Mb/s, Half Duplex.\n");
590 }
591}
592
593static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
594{
595 printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
596 if (hp->tcvr_type == external)
597 printk("external ");
598 else
599 printk("internal ");
600 printk("transceiver at ");
601 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
602 if (hp->sw_bmcr & BMCR_SPEED100)
603 printk("100Mb/s, ");
604 else
605 printk("10Mb/s, ");
606 if (hp->sw_bmcr & BMCR_FULLDPLX)
607 printk("Full Duplex.\n");
608 else
609 printk("Half Duplex.\n");
610}
611
612static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
613{
614 int full;
615
616 /* All we care about is making sure the bigmac tx_cfg has a
617 * proper duplex setting.
618 */
619 if (hp->timer_state == arbwait) {
620 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
621 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
622 goto no_response;
623 if (hp->sw_lpa & LPA_100FULL)
624 full = 1;
625 else if (hp->sw_lpa & LPA_100HALF)
626 full = 0;
627 else if (hp->sw_lpa & LPA_10FULL)
628 full = 1;
629 else
630 full = 0;
631 } else {
632 /* Forcing a link mode. */
633 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
634 if (hp->sw_bmcr & BMCR_FULLDPLX)
635 full = 1;
636 else
637 full = 0;
638 }
639
640 /* Before changing other bits in the tx_cfg register, and in
641 * general any of other the TX config registers too, you
642 * must:
643 * 1) Clear Enable
644 * 2) Poll with reads until that bit reads back as zero
645 * 3) Make TX configuration changes
646 * 4) Set Enable once more
647 */
648 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
649 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
650 ~(BIGMAC_TXCFG_ENABLE));
651 while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
652 barrier();
653 if (full) {
654 hp->happy_flags |= HFLAG_FULL;
655 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
656 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
657 BIGMAC_TXCFG_FULLDPLX);
658 } else {
659 hp->happy_flags &= ~(HFLAG_FULL);
660 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
661 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
662 ~(BIGMAC_TXCFG_FULLDPLX));
663 }
664 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
665 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
666 BIGMAC_TXCFG_ENABLE);
667 return 0;
668no_response:
669 return 1;
670}
671
672static int happy_meal_init(struct happy_meal *hp);
673
674static int is_lucent_phy(struct happy_meal *hp)
675{
676 void __iomem *tregs = hp->tcvregs;
677 unsigned short mr2, mr3;
678 int ret = 0;
679
680 mr2 = happy_meal_tcvr_read(hp, tregs, 2);
681 mr3 = happy_meal_tcvr_read(hp, tregs, 3);
682 if ((mr2 & 0xffff) == 0x0180 &&
683 ((mr3 & 0xffff) >> 10) == 0x1d)
684 ret = 1;
685
686 return ret;
687}
688
689static void happy_meal_timer(struct timer_list *t)
690{
691 struct happy_meal *hp = from_timer(hp, t, happy_timer);
692 void __iomem *tregs = hp->tcvregs;
693 int restart_timer = 0;
694
695 spin_lock_irq(&hp->happy_lock);
696
697 hp->timer_ticks++;
698 switch(hp->timer_state) {
699 case arbwait:
700 /* Only allow for 5 ticks, thats 10 seconds and much too
701 * long to wait for arbitration to complete.
702 */
703 if (hp->timer_ticks >= 10) {
704 /* Enter force mode. */
705 do_force_mode:
706 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
707 printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
708 hp->dev->name);
709 hp->sw_bmcr = BMCR_SPEED100;
710 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
711
712 if (!is_lucent_phy(hp)) {
713 /* OK, seems we need do disable the transceiver for the first
714 * tick to make sure we get an accurate link state at the
715 * second tick.
716 */
717 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
718 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
719 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
720 }
721 hp->timer_state = ltrywait;
722 hp->timer_ticks = 0;
723 restart_timer = 1;
724 } else {
725 /* Anything interesting happen? */
726 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
727 if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
728 int ret;
729
730 /* Just what we've been waiting for... */
731 ret = set_happy_link_modes(hp, tregs);
732 if (ret) {
733 /* Ooops, something bad happened, go to force
734 * mode.
735 *
736 * XXX Broken hubs which don't support 802.3u
737 * XXX auto-negotiation make this happen as well.
738 */
739 goto do_force_mode;
740 }
741
742 /* Success, at least so far, advance our state engine. */
743 hp->timer_state = lupwait;
744 restart_timer = 1;
745 } else {
746 restart_timer = 1;
747 }
748 }
749 break;
750
751 case lupwait:
752 /* Auto negotiation was successful and we are awaiting a
753 * link up status. I have decided to let this timer run
754 * forever until some sort of error is signalled, reporting
755 * a message to the user at 10 second intervals.
756 */
757 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
758 if (hp->sw_bmsr & BMSR_LSTATUS) {
759 /* Wheee, it's up, display the link mode in use and put
760 * the timer to sleep.
761 */
762 display_link_mode(hp, tregs);
763 hp->timer_state = asleep;
764 restart_timer = 0;
765 } else {
766 if (hp->timer_ticks >= 10) {
767 printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
768 "not completely up.\n", hp->dev->name);
769 hp->timer_ticks = 0;
770 restart_timer = 1;
771 } else {
772 restart_timer = 1;
773 }
774 }
775 break;
776
777 case ltrywait:
778 /* Making the timeout here too long can make it take
779 * annoyingly long to attempt all of the link mode
780 * permutations, but then again this is essentially
781 * error recovery code for the most part.
782 */
783 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
784 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
785 if (hp->timer_ticks == 1) {
786 if (!is_lucent_phy(hp)) {
787 /* Re-enable transceiver, we'll re-enable the transceiver next
788 * tick, then check link state on the following tick.
789 */
790 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
791 happy_meal_tcvr_write(hp, tregs,
792 DP83840_CSCONFIG, hp->sw_csconfig);
793 }
794 restart_timer = 1;
795 break;
796 }
797 if (hp->timer_ticks == 2) {
798 if (!is_lucent_phy(hp)) {
799 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
800 happy_meal_tcvr_write(hp, tregs,
801 DP83840_CSCONFIG, hp->sw_csconfig);
802 }
803 restart_timer = 1;
804 break;
805 }
806 if (hp->sw_bmsr & BMSR_LSTATUS) {
807 /* Force mode selection success. */
808 display_forced_link_mode(hp, tregs);
809 set_happy_link_modes(hp, tregs); /* XXX error? then what? */
810 hp->timer_state = asleep;
811 restart_timer = 0;
812 } else {
813 if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
814 int ret;
815
816 ret = try_next_permutation(hp, tregs);
817 if (ret == -1) {
818 /* Aieee, tried them all, reset the
819 * chip and try all over again.
820 */
821
822 /* Let the user know... */
823 printk(KERN_NOTICE "%s: Link down, cable problem?\n",
824 hp->dev->name);
825
826 ret = happy_meal_init(hp);
827 if (ret) {
828 /* ho hum... */
829 printk(KERN_ERR "%s: Error, cannot re-init the "
830 "Happy Meal.\n", hp->dev->name);
831 }
832 goto out;
833 }
834 if (!is_lucent_phy(hp)) {
835 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
836 DP83840_CSCONFIG);
837 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
838 happy_meal_tcvr_write(hp, tregs,
839 DP83840_CSCONFIG, hp->sw_csconfig);
840 }
841 hp->timer_ticks = 0;
842 restart_timer = 1;
843 } else {
844 restart_timer = 1;
845 }
846 }
847 break;
848
849 case asleep:
850 default:
851 /* Can't happens.... */
852 printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
853 hp->dev->name);
854 restart_timer = 0;
855 hp->timer_ticks = 0;
856 hp->timer_state = asleep; /* foo on you */
857 break;
858 }
859
860 if (restart_timer) {
861 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
862 add_timer(&hp->happy_timer);
863 }
864
865out:
866 spin_unlock_irq(&hp->happy_lock);
867}
868
869#define TX_RESET_TRIES 32
870#define RX_RESET_TRIES 32
871
872/* hp->happy_lock must be held */
873static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
874{
875 int tries = TX_RESET_TRIES;
876
877 HMD(("happy_meal_tx_reset: reset, "));
878
879 /* Would you like to try our SMCC Delux? */
880 hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
881 while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
882 udelay(20);
883
884 /* Lettuce, tomato, buggy hardware (no extra charge)? */
885 if (!tries)
886 printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
887
888 /* Take care. */
889 HMD(("done\n"));
890}
891
892/* hp->happy_lock must be held */
893static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
894{
895 int tries = RX_RESET_TRIES;
896
897 HMD(("happy_meal_rx_reset: reset, "));
898
899 /* We have a special on GNU/Viking hardware bugs today. */
900 hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
901 while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
902 udelay(20);
903
904 /* Will that be all? */
905 if (!tries)
906 printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
907
908 /* Don't forget your vik_1137125_wa. Have a nice day. */
909 HMD(("done\n"));
910}
911
912#define STOP_TRIES 16
913
914/* hp->happy_lock must be held */
915static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
916{
917 int tries = STOP_TRIES;
918
919 HMD(("happy_meal_stop: reset, "));
920
921 /* We're consolidating our STB products, it's your lucky day. */
922 hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
923 while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
924 udelay(20);
925
926 /* Come back next week when we are "Sun Microelectronics". */
927 if (!tries)
928 printk(KERN_ERR "happy meal: Fry guys.");
929
930 /* Remember: "Different name, same old buggy as shit hardware." */
931 HMD(("done\n"));
932}
933
934/* hp->happy_lock must be held */
935static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
936{
937 struct net_device_stats *stats = &hp->dev->stats;
938
939 stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
940 hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
941
942 stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
943 hme_write32(hp, bregs + BMAC_UNALECTR, 0);
944
945 stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
946 hme_write32(hp, bregs + BMAC_GLECTR, 0);
947
948 stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
949
950 stats->collisions +=
951 (hme_read32(hp, bregs + BMAC_EXCTR) +
952 hme_read32(hp, bregs + BMAC_LTCTR));
953 hme_write32(hp, bregs + BMAC_EXCTR, 0);
954 hme_write32(hp, bregs + BMAC_LTCTR, 0);
955}
956
957/* hp->happy_lock must be held */
958static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
959{
960 ASD(("happy_meal_poll_stop: "));
961
962 /* If polling disabled or not polling already, nothing to do. */
963 if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
964 (HFLAG_POLLENABLE | HFLAG_POLL)) {
965 HMD(("not polling, return\n"));
966 return;
967 }
968
969 /* Shut up the MIF. */
970 ASD(("were polling, mif ints off, "));
971 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
972
973 /* Turn off polling. */
974 ASD(("polling off, "));
975 hme_write32(hp, tregs + TCVR_CFG,
976 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
977
978 /* We are no longer polling. */
979 hp->happy_flags &= ~(HFLAG_POLL);
980
981 /* Let the bits set. */
982 udelay(200);
983 ASD(("done\n"));
984}
985
986/* Only Sun can take such nice parts and fuck up the programming interface
987 * like this. Good job guys...
988 */
989#define TCVR_RESET_TRIES 16 /* It should reset quickly */
990#define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */
991
992/* hp->happy_lock must be held */
993static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
994{
995 u32 tconfig;
996 int result, tries = TCVR_RESET_TRIES;
997
998 tconfig = hme_read32(hp, tregs + TCVR_CFG);
999 ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
1000 if (hp->tcvr_type == external) {
1001 ASD(("external<"));
1002 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1003 hp->tcvr_type = internal;
1004 hp->paddr = TCV_PADDR_ITX;
1005 ASD(("ISOLATE,"));
1006 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1007 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1008 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1009 if (result == TCVR_FAILURE) {
1010 ASD(("phyread_fail>\n"));
1011 return -1;
1012 }
1013 ASD(("phyread_ok,PSELECT>"));
1014 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1015 hp->tcvr_type = external;
1016 hp->paddr = TCV_PADDR_ETX;
1017 } else {
1018 if (tconfig & TCV_CFG_MDIO1) {
1019 ASD(("internal<PSELECT,"));
1020 hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1021 ASD(("ISOLATE,"));
1022 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1023 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1024 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1025 if (result == TCVR_FAILURE) {
1026 ASD(("phyread_fail>\n"));
1027 return -1;
1028 }
1029 ASD(("phyread_ok,~PSELECT>"));
1030 hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1031 hp->tcvr_type = internal;
1032 hp->paddr = TCV_PADDR_ITX;
1033 }
1034 }
1035
1036 ASD(("BMCR_RESET "));
1037 happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1038
1039 while (--tries) {
1040 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1041 if (result == TCVR_FAILURE)
1042 return -1;
1043 hp->sw_bmcr = result;
1044 if (!(result & BMCR_RESET))
1045 break;
1046 udelay(20);
1047 }
1048 if (!tries) {
1049 ASD(("BMCR RESET FAILED!\n"));
1050 return -1;
1051 }
1052 ASD(("RESET_OK\n"));
1053
1054 /* Get fresh copies of the PHY registers. */
1055 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1056 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1057 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1058 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1059
1060 ASD(("UNISOLATE"));
1061 hp->sw_bmcr &= ~(BMCR_ISOLATE);
1062 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1063
1064 tries = TCVR_UNISOLATE_TRIES;
1065 while (--tries) {
1066 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1067 if (result == TCVR_FAILURE)
1068 return -1;
1069 if (!(result & BMCR_ISOLATE))
1070 break;
1071 udelay(20);
1072 }
1073 if (!tries) {
1074 ASD((" FAILED!\n"));
1075 return -1;
1076 }
1077 ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1078 if (!is_lucent_phy(hp)) {
1079 result = happy_meal_tcvr_read(hp, tregs,
1080 DP83840_CSCONFIG);
1081 happy_meal_tcvr_write(hp, tregs,
1082 DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1083 }
1084 return 0;
1085}
1086
1087/* Figure out whether we have an internal or external transceiver.
1088 *
1089 * hp->happy_lock must be held
1090 */
1091static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1092{
1093 unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1094
1095 ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1096 if (hp->happy_flags & HFLAG_POLL) {
1097 /* If we are polling, we must stop to get the transceiver type. */
1098 ASD(("<polling> "));
1099 if (hp->tcvr_type == internal) {
1100 if (tconfig & TCV_CFG_MDIO1) {
1101 ASD(("<internal> <poll stop> "));
1102 happy_meal_poll_stop(hp, tregs);
1103 hp->paddr = TCV_PADDR_ETX;
1104 hp->tcvr_type = external;
1105 ASD(("<external>\n"));
1106 tconfig &= ~(TCV_CFG_PENABLE);
1107 tconfig |= TCV_CFG_PSELECT;
1108 hme_write32(hp, tregs + TCVR_CFG, tconfig);
1109 }
1110 } else {
1111 if (hp->tcvr_type == external) {
1112 ASD(("<external> "));
1113 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1114 ASD(("<poll stop> "));
1115 happy_meal_poll_stop(hp, tregs);
1116 hp->paddr = TCV_PADDR_ITX;
1117 hp->tcvr_type = internal;
1118 ASD(("<internal>\n"));
1119 hme_write32(hp, tregs + TCVR_CFG,
1120 hme_read32(hp, tregs + TCVR_CFG) &
1121 ~(TCV_CFG_PSELECT));
1122 }
1123 ASD(("\n"));
1124 } else {
1125 ASD(("<none>\n"));
1126 }
1127 }
1128 } else {
1129 u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1130
1131 /* Else we can just work off of the MDIO bits. */
1132 ASD(("<not polling> "));
1133 if (reread & TCV_CFG_MDIO1) {
1134 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1135 hp->paddr = TCV_PADDR_ETX;
1136 hp->tcvr_type = external;
1137 ASD(("<external>\n"));
1138 } else {
1139 if (reread & TCV_CFG_MDIO0) {
1140 hme_write32(hp, tregs + TCVR_CFG,
1141 tconfig & ~(TCV_CFG_PSELECT));
1142 hp->paddr = TCV_PADDR_ITX;
1143 hp->tcvr_type = internal;
1144 ASD(("<internal>\n"));
1145 } else {
1146 printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1147 hp->tcvr_type = none; /* Grrr... */
1148 ASD(("<none>\n"));
1149 }
1150 }
1151 }
1152}
1153
1154/* The receive ring buffers are a bit tricky to get right. Here goes...
1155 *
1156 * The buffers we dma into must be 64 byte aligned. So we use a special
1157 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1158 * we really need.
1159 *
1160 * We use skb_reserve() to align the data block we get in the skb. We
1161 * also program the etxregs->cfg register to use an offset of 2. This
1162 * imperical constant plus the ethernet header size will always leave
1163 * us with a nicely aligned ip header once we pass things up to the
1164 * protocol layers.
1165 *
1166 * The numbers work out to:
1167 *
1168 * Max ethernet frame size 1518
1169 * Ethernet header size 14
1170 * Happy Meal base offset 2
1171 *
1172 * Say a skb data area is at 0xf001b010, and its size alloced is
1173 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1174 *
1175 * First our alloc_skb() routine aligns the data base to a 64 byte
1176 * boundary. We now have 0xf001b040 as our skb data address. We
1177 * plug this into the receive descriptor address.
1178 *
1179 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1180 * So now the data we will end up looking at starts at 0xf001b042. When
1181 * the packet arrives, we will check out the size received and subtract
1182 * this from the skb->length. Then we just pass the packet up to the
1183 * protocols as is, and allocate a new skb to replace this slot we have
1184 * just received from.
1185 *
1186 * The ethernet layer will strip the ether header from the front of the
1187 * skb we just sent to it, this leaves us with the ip header sitting
1188 * nicely aligned at 0xf001b050. Also, for tcp and udp packets the
1189 * Happy Meal has even checksummed the tcp/udp data for us. The 16
1190 * bit checksum is obtained from the low bits of the receive descriptor
1191 * flags, thus:
1192 *
1193 * skb->csum = rxd->rx_flags & 0xffff;
1194 * skb->ip_summed = CHECKSUM_COMPLETE;
1195 *
1196 * before sending off the skb to the protocols, and we are good as gold.
1197 */
1198static void happy_meal_clean_rings(struct happy_meal *hp)
1199{
1200 int i;
1201
1202 for (i = 0; i < RX_RING_SIZE; i++) {
1203 if (hp->rx_skbs[i] != NULL) {
1204 struct sk_buff *skb = hp->rx_skbs[i];
1205 struct happy_meal_rxd *rxd;
1206 u32 dma_addr;
1207
1208 rxd = &hp->happy_block->happy_meal_rxd[i];
1209 dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1210 dma_unmap_single(hp->dma_dev, dma_addr,
1211 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1212 dev_kfree_skb_any(skb);
1213 hp->rx_skbs[i] = NULL;
1214 }
1215 }
1216
1217 for (i = 0; i < TX_RING_SIZE; i++) {
1218 if (hp->tx_skbs[i] != NULL) {
1219 struct sk_buff *skb = hp->tx_skbs[i];
1220 struct happy_meal_txd *txd;
1221 u32 dma_addr;
1222 int frag;
1223
1224 hp->tx_skbs[i] = NULL;
1225
1226 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1227 txd = &hp->happy_block->happy_meal_txd[i];
1228 dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1229 if (!frag)
1230 dma_unmap_single(hp->dma_dev, dma_addr,
1231 (hme_read_desc32(hp, &txd->tx_flags)
1232 & TXFLAG_SIZE),
1233 DMA_TO_DEVICE);
1234 else
1235 dma_unmap_page(hp->dma_dev, dma_addr,
1236 (hme_read_desc32(hp, &txd->tx_flags)
1237 & TXFLAG_SIZE),
1238 DMA_TO_DEVICE);
1239
1240 if (frag != skb_shinfo(skb)->nr_frags)
1241 i++;
1242 }
1243
1244 dev_kfree_skb_any(skb);
1245 }
1246 }
1247}
1248
1249/* hp->happy_lock must be held */
1250static void happy_meal_init_rings(struct happy_meal *hp)
1251{
1252 struct hmeal_init_block *hb = hp->happy_block;
1253 int i;
1254
1255 HMD(("happy_meal_init_rings: counters to zero, "));
1256 hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1257
1258 /* Free any skippy bufs left around in the rings. */
1259 HMD(("clean, "));
1260 happy_meal_clean_rings(hp);
1261
1262 /* Now get new skippy bufs for the receive ring. */
1263 HMD(("init rxring, "));
1264 for (i = 0; i < RX_RING_SIZE; i++) {
1265 struct sk_buff *skb;
1266 u32 mapping;
1267
1268 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1269 if (!skb) {
1270 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1271 continue;
1272 }
1273 hp->rx_skbs[i] = skb;
1274
1275 /* Because we reserve afterwards. */
1276 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1277 mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1278 DMA_FROM_DEVICE);
1279 if (dma_mapping_error(hp->dma_dev, mapping)) {
1280 dev_kfree_skb_any(skb);
1281 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1282 continue;
1283 }
1284 hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1285 (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1286 mapping);
1287 skb_reserve(skb, RX_OFFSET);
1288 }
1289
1290 HMD(("init txring, "));
1291 for (i = 0; i < TX_RING_SIZE; i++)
1292 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1293
1294 HMD(("done\n"));
1295}
1296
1297/* hp->happy_lock must be held */
1298static void
1299happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1300 void __iomem *tregs,
1301 const struct ethtool_link_ksettings *ep)
1302{
1303 int timeout;
1304
1305 /* Read all of the registers we are interested in now. */
1306 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1307 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1308 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1309 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1310
1311 /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1312
1313 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1314 if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1315 /* Advertise everything we can support. */
1316 if (hp->sw_bmsr & BMSR_10HALF)
1317 hp->sw_advertise |= (ADVERTISE_10HALF);
1318 else
1319 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1320
1321 if (hp->sw_bmsr & BMSR_10FULL)
1322 hp->sw_advertise |= (ADVERTISE_10FULL);
1323 else
1324 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1325 if (hp->sw_bmsr & BMSR_100HALF)
1326 hp->sw_advertise |= (ADVERTISE_100HALF);
1327 else
1328 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1329 if (hp->sw_bmsr & BMSR_100FULL)
1330 hp->sw_advertise |= (ADVERTISE_100FULL);
1331 else
1332 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1333 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1334
1335 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1336 * XXX and this is because the DP83840 does not support it, changes
1337 * XXX would need to be made to the tx/rx logic in the driver as well
1338 * XXX so I completely skip checking for it in the BMSR for now.
1339 */
1340
1341#ifdef AUTO_SWITCH_DEBUG
1342 ASD(("%s: Advertising [ ", hp->dev->name));
1343 if (hp->sw_advertise & ADVERTISE_10HALF)
1344 ASD(("10H "));
1345 if (hp->sw_advertise & ADVERTISE_10FULL)
1346 ASD(("10F "));
1347 if (hp->sw_advertise & ADVERTISE_100HALF)
1348 ASD(("100H "));
1349 if (hp->sw_advertise & ADVERTISE_100FULL)
1350 ASD(("100F "));
1351#endif
1352
1353 /* Enable Auto-Negotiation, this is usually on already... */
1354 hp->sw_bmcr |= BMCR_ANENABLE;
1355 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1356
1357 /* Restart it to make sure it is going. */
1358 hp->sw_bmcr |= BMCR_ANRESTART;
1359 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1360
1361 /* BMCR_ANRESTART self clears when the process has begun. */
1362
1363 timeout = 64; /* More than enough. */
1364 while (--timeout) {
1365 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1366 if (!(hp->sw_bmcr & BMCR_ANRESTART))
1367 break; /* got it. */
1368 udelay(10);
1369 }
1370 if (!timeout) {
1371 printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1372 "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1373 printk(KERN_NOTICE "%s: Performing force link detection.\n",
1374 hp->dev->name);
1375 goto force_link;
1376 } else {
1377 hp->timer_state = arbwait;
1378 }
1379 } else {
1380force_link:
1381 /* Force the link up, trying first a particular mode.
1382 * Either we are here at the request of ethtool or
1383 * because the Happy Meal would not start to autoneg.
1384 */
1385
1386 /* Disable auto-negotiation in BMCR, enable the duplex and
1387 * speed setting, init the timer state machine, and fire it off.
1388 */
1389 if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1390 hp->sw_bmcr = BMCR_SPEED100;
1391 } else {
1392 if (ep->base.speed == SPEED_100)
1393 hp->sw_bmcr = BMCR_SPEED100;
1394 else
1395 hp->sw_bmcr = 0;
1396 if (ep->base.duplex == DUPLEX_FULL)
1397 hp->sw_bmcr |= BMCR_FULLDPLX;
1398 }
1399 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1400
1401 if (!is_lucent_phy(hp)) {
1402 /* OK, seems we need do disable the transceiver for the first
1403 * tick to make sure we get an accurate link state at the
1404 * second tick.
1405 */
1406 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1407 DP83840_CSCONFIG);
1408 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1409 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1410 hp->sw_csconfig);
1411 }
1412 hp->timer_state = ltrywait;
1413 }
1414
1415 hp->timer_ticks = 0;
1416 hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
1417 add_timer(&hp->happy_timer);
1418}
1419
1420/* hp->happy_lock must be held */
1421static int happy_meal_init(struct happy_meal *hp)
1422{
1423 void __iomem *gregs = hp->gregs;
1424 void __iomem *etxregs = hp->etxregs;
1425 void __iomem *erxregs = hp->erxregs;
1426 void __iomem *bregs = hp->bigmacregs;
1427 void __iomem *tregs = hp->tcvregs;
1428 u32 regtmp, rxcfg;
1429 unsigned char *e = &hp->dev->dev_addr[0];
1430
1431 /* If auto-negotiation timer is running, kill it. */
1432 del_timer(&hp->happy_timer);
1433
1434 HMD(("happy_meal_init: happy_flags[%08x] ",
1435 hp->happy_flags));
1436 if (!(hp->happy_flags & HFLAG_INIT)) {
1437 HMD(("set HFLAG_INIT, "));
1438 hp->happy_flags |= HFLAG_INIT;
1439 happy_meal_get_counters(hp, bregs);
1440 }
1441
1442 /* Stop polling. */
1443 HMD(("to happy_meal_poll_stop\n"));
1444 happy_meal_poll_stop(hp, tregs);
1445
1446 /* Stop transmitter and receiver. */
1447 HMD(("happy_meal_init: to happy_meal_stop\n"));
1448 happy_meal_stop(hp, gregs);
1449
1450 /* Alloc and reset the tx/rx descriptor chains. */
1451 HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1452 happy_meal_init_rings(hp);
1453
1454 /* Shut up the MIF. */
1455 HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1456 hme_read32(hp, tregs + TCVR_IMASK)));
1457 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1458
1459 /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1460 if (hp->happy_flags & HFLAG_FENABLE) {
1461 HMD(("use frame old[%08x], ",
1462 hme_read32(hp, tregs + TCVR_CFG)));
1463 hme_write32(hp, tregs + TCVR_CFG,
1464 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1465 } else {
1466 HMD(("use bitbang old[%08x], ",
1467 hme_read32(hp, tregs + TCVR_CFG)));
1468 hme_write32(hp, tregs + TCVR_CFG,
1469 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1470 }
1471
1472 /* Check the state of the transceiver. */
1473 HMD(("to happy_meal_transceiver_check\n"));
1474 happy_meal_transceiver_check(hp, tregs);
1475
1476 /* Put the Big Mac into a sane state. */
1477 HMD(("happy_meal_init: "));
1478 switch(hp->tcvr_type) {
1479 case none:
1480 /* Cannot operate if we don't know the transceiver type! */
1481 HMD(("AAIEEE no transceiver type, EAGAIN"));
1482 return -EAGAIN;
1483
1484 case internal:
1485 /* Using the MII buffers. */
1486 HMD(("internal, using MII, "));
1487 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1488 break;
1489
1490 case external:
1491 /* Not using the MII, disable it. */
1492 HMD(("external, disable MII, "));
1493 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1494 break;
1495 }
1496
1497 if (happy_meal_tcvr_reset(hp, tregs))
1498 return -EAGAIN;
1499
1500 /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1501 HMD(("tx/rx reset, "));
1502 happy_meal_tx_reset(hp, bregs);
1503 happy_meal_rx_reset(hp, bregs);
1504
1505 /* Set jam size and inter-packet gaps to reasonable defaults. */
1506 HMD(("jsize/ipg1/ipg2, "));
1507 hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1508 hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1509 hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1510
1511 /* Load up the MAC address and random seed. */
1512 HMD(("rseed/macaddr, "));
1513
1514 /* The docs recommend to use the 10LSB of our MAC here. */
1515 hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1516
1517 hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1518 hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1519 hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1520
1521 HMD(("htable, "));
1522 if ((hp->dev->flags & IFF_ALLMULTI) ||
1523 (netdev_mc_count(hp->dev) > 64)) {
1524 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1525 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1526 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1527 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1528 } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1529 u16 hash_table[4];
1530 struct netdev_hw_addr *ha;
1531 u32 crc;
1532
1533 memset(hash_table, 0, sizeof(hash_table));
1534 netdev_for_each_mc_addr(ha, hp->dev) {
1535 crc = ether_crc_le(6, ha->addr);
1536 crc >>= 26;
1537 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1538 }
1539 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1540 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1541 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1542 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1543 } else {
1544 hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1545 hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1546 hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1547 hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1548 }
1549
1550 /* Set the RX and TX ring ptrs. */
1551 HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1552 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1553 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1554 hme_write32(hp, erxregs + ERX_RING,
1555 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1556 hme_write32(hp, etxregs + ETX_RING,
1557 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1558
1559 /* Parity issues in the ERX unit of some HME revisions can cause some
1560 * registers to not be written unless their parity is even. Detect such
1561 * lost writes and simply rewrite with a low bit set (which will be ignored
1562 * since the rxring needs to be 2K aligned).
1563 */
1564 if (hme_read32(hp, erxregs + ERX_RING) !=
1565 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1566 hme_write32(hp, erxregs + ERX_RING,
1567 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1568 | 0x4);
1569
1570 /* Set the supported burst sizes. */
1571 HMD(("happy_meal_init: old[%08x] bursts<",
1572 hme_read32(hp, gregs + GREG_CFG)));
1573
1574#ifndef CONFIG_SPARC
1575 /* It is always PCI and can handle 64byte bursts. */
1576 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1577#else
1578 if ((hp->happy_bursts & DMA_BURST64) &&
1579 ((hp->happy_flags & HFLAG_PCI) != 0
1580#ifdef CONFIG_SBUS
1581 || sbus_can_burst64()
1582#endif
1583 || 0)) {
1584 u32 gcfg = GREG_CFG_BURST64;
1585
1586 /* I have no idea if I should set the extended
1587 * transfer mode bit for Cheerio, so for now I
1588 * do not. -DaveM
1589 */
1590#ifdef CONFIG_SBUS
1591 if ((hp->happy_flags & HFLAG_PCI) == 0) {
1592 struct platform_device *op = hp->happy_dev;
1593 if (sbus_can_dma_64bit()) {
1594 sbus_set_sbus64(&op->dev,
1595 hp->happy_bursts);
1596 gcfg |= GREG_CFG_64BIT;
1597 }
1598 }
1599#endif
1600
1601 HMD(("64>"));
1602 hme_write32(hp, gregs + GREG_CFG, gcfg);
1603 } else if (hp->happy_bursts & DMA_BURST32) {
1604 HMD(("32>"));
1605 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1606 } else if (hp->happy_bursts & DMA_BURST16) {
1607 HMD(("16>"));
1608 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1609 } else {
1610 HMD(("XXX>"));
1611 hme_write32(hp, gregs + GREG_CFG, 0);
1612 }
1613#endif /* CONFIG_SPARC */
1614
1615 /* Turn off interrupts we do not want to hear. */
1616 HMD((", enable global interrupts, "));
1617 hme_write32(hp, gregs + GREG_IMASK,
1618 (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1619 GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1620
1621 /* Set the transmit ring buffer size. */
1622 HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1623 hme_read32(hp, etxregs + ETX_RSIZE)));
1624 hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1625
1626 /* Enable transmitter DVMA. */
1627 HMD(("tx dma enable old[%08x], ",
1628 hme_read32(hp, etxregs + ETX_CFG)));
1629 hme_write32(hp, etxregs + ETX_CFG,
1630 hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1631
1632 /* This chip really rots, for the receiver sometimes when you
1633 * write to its control registers not all the bits get there
1634 * properly. I cannot think of a sane way to provide complete
1635 * coverage for this hardware bug yet.
1636 */
1637 HMD(("erx regs bug old[%08x]\n",
1638 hme_read32(hp, erxregs + ERX_CFG)));
1639 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1640 regtmp = hme_read32(hp, erxregs + ERX_CFG);
1641 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1642 if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1643 printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1644 printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1645 ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1646 /* XXX Should return failure here... */
1647 }
1648
1649 /* Enable Big Mac hash table filter. */
1650 HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1651 hme_read32(hp, bregs + BMAC_RXCFG)));
1652 rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1653 if (hp->dev->flags & IFF_PROMISC)
1654 rxcfg |= BIGMAC_RXCFG_PMISC;
1655 hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1656
1657 /* Let the bits settle in the chip. */
1658 udelay(10);
1659
1660 /* Ok, configure the Big Mac transmitter. */
1661 HMD(("BIGMAC init, "));
1662 regtmp = 0;
1663 if (hp->happy_flags & HFLAG_FULL)
1664 regtmp |= BIGMAC_TXCFG_FULLDPLX;
1665
1666 /* Don't turn on the "don't give up" bit for now. It could cause hme
1667 * to deadlock with the PHY if a Jabber occurs.
1668 */
1669 hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1670
1671 /* Give up after 16 TX attempts. */
1672 hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1673
1674 /* Enable the output drivers no matter what. */
1675 regtmp = BIGMAC_XCFG_ODENABLE;
1676
1677 /* If card can do lance mode, enable it. */
1678 if (hp->happy_flags & HFLAG_LANCE)
1679 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1680
1681 /* Disable the MII buffers if using external transceiver. */
1682 if (hp->tcvr_type == external)
1683 regtmp |= BIGMAC_XCFG_MIIDISAB;
1684
1685 HMD(("XIF config old[%08x], ",
1686 hme_read32(hp, bregs + BMAC_XIFCFG)));
1687 hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1688
1689 /* Start things up. */
1690 HMD(("tx old[%08x] and rx [%08x] ON!\n",
1691 hme_read32(hp, bregs + BMAC_TXCFG),
1692 hme_read32(hp, bregs + BMAC_RXCFG)));
1693
1694 /* Set larger TX/RX size to allow for 802.1q */
1695 hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1696 hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1697
1698 hme_write32(hp, bregs + BMAC_TXCFG,
1699 hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1700 hme_write32(hp, bregs + BMAC_RXCFG,
1701 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1702
1703 /* Get the autonegotiation started, and the watch timer ticking. */
1704 happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1705
1706 /* Success. */
1707 return 0;
1708}
1709
1710/* hp->happy_lock must be held */
1711static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1712{
1713 void __iomem *tregs = hp->tcvregs;
1714 void __iomem *bregs = hp->bigmacregs;
1715 void __iomem *gregs = hp->gregs;
1716
1717 happy_meal_stop(hp, gregs);
1718 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1719 if (hp->happy_flags & HFLAG_FENABLE)
1720 hme_write32(hp, tregs + TCVR_CFG,
1721 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1722 else
1723 hme_write32(hp, tregs + TCVR_CFG,
1724 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1725 happy_meal_transceiver_check(hp, tregs);
1726 switch(hp->tcvr_type) {
1727 case none:
1728 return;
1729 case internal:
1730 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1731 break;
1732 case external:
1733 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1734 break;
1735 }
1736 if (happy_meal_tcvr_reset(hp, tregs))
1737 return;
1738
1739 /* Latch PHY registers as of now. */
1740 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1741 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1742
1743 /* Advertise everything we can support. */
1744 if (hp->sw_bmsr & BMSR_10HALF)
1745 hp->sw_advertise |= (ADVERTISE_10HALF);
1746 else
1747 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1748
1749 if (hp->sw_bmsr & BMSR_10FULL)
1750 hp->sw_advertise |= (ADVERTISE_10FULL);
1751 else
1752 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1753 if (hp->sw_bmsr & BMSR_100HALF)
1754 hp->sw_advertise |= (ADVERTISE_100HALF);
1755 else
1756 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1757 if (hp->sw_bmsr & BMSR_100FULL)
1758 hp->sw_advertise |= (ADVERTISE_100FULL);
1759 else
1760 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1761
1762 /* Update the PHY advertisement register. */
1763 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1764}
1765
1766/* Once status is latched (by happy_meal_interrupt) it is cleared by
1767 * the hardware, so we cannot re-read it and get a correct value.
1768 *
1769 * hp->happy_lock must be held
1770 */
1771static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1772{
1773 int reset = 0;
1774
1775 /* Only print messages for non-counter related interrupts. */
1776 if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1777 GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1778 GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1779 GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1780 GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1781 GREG_STAT_SLVPERR))
1782 printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1783 hp->dev->name, status);
1784
1785 if (status & GREG_STAT_RFIFOVF) {
1786 /* Receive FIFO overflow is harmless and the hardware will take
1787 care of it, just some packets are lost. Who cares. */
1788 printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1789 }
1790
1791 if (status & GREG_STAT_STSTERR) {
1792 /* BigMAC SQE link test failed. */
1793 printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1794 reset = 1;
1795 }
1796
1797 if (status & GREG_STAT_TFIFO_UND) {
1798 /* Transmit FIFO underrun, again DMA error likely. */
1799 printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1800 hp->dev->name);
1801 reset = 1;
1802 }
1803
1804 if (status & GREG_STAT_MAXPKTERR) {
1805 /* Driver error, tried to transmit something larger
1806 * than ethernet max mtu.
1807 */
1808 printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1809 reset = 1;
1810 }
1811
1812 if (status & GREG_STAT_NORXD) {
1813 /* This is harmless, it just means the system is
1814 * quite loaded and the incoming packet rate was
1815 * faster than the interrupt handler could keep up
1816 * with.
1817 */
1818 printk(KERN_INFO "%s: Happy Meal out of receive "
1819 "descriptors, packet dropped.\n",
1820 hp->dev->name);
1821 }
1822
1823 if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1824 /* All sorts of DMA receive errors. */
1825 printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1826 if (status & GREG_STAT_RXERR)
1827 printk("GenericError ");
1828 if (status & GREG_STAT_RXPERR)
1829 printk("ParityError ");
1830 if (status & GREG_STAT_RXTERR)
1831 printk("RxTagBotch ");
1832 printk("]\n");
1833 reset = 1;
1834 }
1835
1836 if (status & GREG_STAT_EOPERR) {
1837 /* Driver bug, didn't set EOP bit in tx descriptor given
1838 * to the happy meal.
1839 */
1840 printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1841 hp->dev->name);
1842 reset = 1;
1843 }
1844
1845 if (status & GREG_STAT_MIFIRQ) {
1846 /* MIF signalled an interrupt, were we polling it? */
1847 printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1848 }
1849
1850 if (status &
1851 (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1852 /* All sorts of transmit DMA errors. */
1853 printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1854 if (status & GREG_STAT_TXEACK)
1855 printk("GenericError ");
1856 if (status & GREG_STAT_TXLERR)
1857 printk("LateError ");
1858 if (status & GREG_STAT_TXPERR)
1859 printk("ParityError ");
1860 if (status & GREG_STAT_TXTERR)
1861 printk("TagBotch ");
1862 printk("]\n");
1863 reset = 1;
1864 }
1865
1866 if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1867 /* Bus or parity error when cpu accessed happy meal registers
1868 * or it's internal FIFO's. Should never see this.
1869 */
1870 printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1871 hp->dev->name,
1872 (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1873 reset = 1;
1874 }
1875
1876 if (reset) {
1877 printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1878 happy_meal_init(hp);
1879 return 1;
1880 }
1881 return 0;
1882}
1883
1884/* hp->happy_lock must be held */
1885static void happy_meal_mif_interrupt(struct happy_meal *hp)
1886{
1887 void __iomem *tregs = hp->tcvregs;
1888
1889 printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1890 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1891 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1892
1893 /* Use the fastest transmission protocol possible. */
1894 if (hp->sw_lpa & LPA_100FULL) {
1895 printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1896 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1897 } else if (hp->sw_lpa & LPA_100HALF) {
1898 printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1899 hp->sw_bmcr |= BMCR_SPEED100;
1900 } else if (hp->sw_lpa & LPA_10FULL) {
1901 printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1902 hp->sw_bmcr |= BMCR_FULLDPLX;
1903 } else {
1904 printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1905 }
1906 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1907
1908 /* Finally stop polling and shut up the MIF. */
1909 happy_meal_poll_stop(hp, tregs);
1910}
1911
1912#ifdef TXDEBUG
1913#define TXD(x) printk x
1914#else
1915#define TXD(x)
1916#endif
1917
1918/* hp->happy_lock must be held */
1919static void happy_meal_tx(struct happy_meal *hp)
1920{
1921 struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1922 struct happy_meal_txd *this;
1923 struct net_device *dev = hp->dev;
1924 int elem;
1925
1926 elem = hp->tx_old;
1927 TXD(("TX<"));
1928 while (elem != hp->tx_new) {
1929 struct sk_buff *skb;
1930 u32 flags, dma_addr, dma_len;
1931 int frag;
1932
1933 TXD(("[%d]", elem));
1934 this = &txbase[elem];
1935 flags = hme_read_desc32(hp, &this->tx_flags);
1936 if (flags & TXFLAG_OWN)
1937 break;
1938 skb = hp->tx_skbs[elem];
1939 if (skb_shinfo(skb)->nr_frags) {
1940 int last;
1941
1942 last = elem + skb_shinfo(skb)->nr_frags;
1943 last &= (TX_RING_SIZE - 1);
1944 flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1945 if (flags & TXFLAG_OWN)
1946 break;
1947 }
1948 hp->tx_skbs[elem] = NULL;
1949 dev->stats.tx_bytes += skb->len;
1950
1951 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1952 dma_addr = hme_read_desc32(hp, &this->tx_addr);
1953 dma_len = hme_read_desc32(hp, &this->tx_flags);
1954
1955 dma_len &= TXFLAG_SIZE;
1956 if (!frag)
1957 dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1958 else
1959 dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1960
1961 elem = NEXT_TX(elem);
1962 this = &txbase[elem];
1963 }
1964
1965 dev_kfree_skb_irq(skb);
1966 dev->stats.tx_packets++;
1967 }
1968 hp->tx_old = elem;
1969 TXD((">"));
1970
1971 if (netif_queue_stopped(dev) &&
1972 TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1973 netif_wake_queue(dev);
1974}
1975
1976#ifdef RXDEBUG
1977#define RXD(x) printk x
1978#else
1979#define RXD(x)
1980#endif
1981
1982/* Originally I used to handle the allocation failure by just giving back just
1983 * that one ring buffer to the happy meal. Problem is that usually when that
1984 * condition is triggered, the happy meal expects you to do something reasonable
1985 * with all of the packets it has DMA'd in. So now I just drop the entire
1986 * ring when we cannot get a new skb and give them all back to the happy meal,
1987 * maybe things will be "happier" now.
1988 *
1989 * hp->happy_lock must be held
1990 */
1991static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1992{
1993 struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1994 struct happy_meal_rxd *this;
1995 int elem = hp->rx_new, drops = 0;
1996 u32 flags;
1997
1998 RXD(("RX<"));
1999 this = &rxbase[elem];
2000 while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2001 struct sk_buff *skb;
2002 int len = flags >> 16;
2003 u16 csum = flags & RXFLAG_CSUM;
2004 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2005
2006 RXD(("[%d ", elem));
2007
2008 /* Check for errors. */
2009 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2010 RXD(("ERR(%08x)]", flags));
2011 dev->stats.rx_errors++;
2012 if (len < ETH_ZLEN)
2013 dev->stats.rx_length_errors++;
2014 if (len & (RXFLAG_OVERFLOW >> 16)) {
2015 dev->stats.rx_over_errors++;
2016 dev->stats.rx_fifo_errors++;
2017 }
2018
2019 /* Return it to the Happy meal. */
2020 drop_it:
2021 dev->stats.rx_dropped++;
2022 hme_write_rxd(hp, this,
2023 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2024 dma_addr);
2025 goto next;
2026 }
2027 skb = hp->rx_skbs[elem];
2028 if (len > RX_COPY_THRESHOLD) {
2029 struct sk_buff *new_skb;
2030 u32 mapping;
2031
2032 /* Now refill the entry, if we can. */
2033 new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2034 if (new_skb == NULL) {
2035 drops++;
2036 goto drop_it;
2037 }
2038 skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2039 mapping = dma_map_single(hp->dma_dev, new_skb->data,
2040 RX_BUF_ALLOC_SIZE,
2041 DMA_FROM_DEVICE);
2042 if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2043 dev_kfree_skb_any(new_skb);
2044 drops++;
2045 goto drop_it;
2046 }
2047
2048 dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2049 hp->rx_skbs[elem] = new_skb;
2050 hme_write_rxd(hp, this,
2051 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2052 mapping);
2053 skb_reserve(new_skb, RX_OFFSET);
2054
2055 /* Trim the original skb for the netif. */
2056 skb_trim(skb, len);
2057 } else {
2058 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
2059
2060 if (copy_skb == NULL) {
2061 drops++;
2062 goto drop_it;
2063 }
2064
2065 skb_reserve(copy_skb, 2);
2066 skb_put(copy_skb, len);
2067 dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2068 skb_copy_from_linear_data(skb, copy_skb->data, len);
2069 dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2070 /* Reuse original ring buffer. */
2071 hme_write_rxd(hp, this,
2072 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2073 dma_addr);
2074
2075 skb = copy_skb;
2076 }
2077
2078 /* This card is _fucking_ hot... */
2079 skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2080 skb->ip_summed = CHECKSUM_COMPLETE;
2081
2082 RXD(("len=%d csum=%4x]", len, csum));
2083 skb->protocol = eth_type_trans(skb, dev);
2084 netif_rx(skb);
2085
2086 dev->stats.rx_packets++;
2087 dev->stats.rx_bytes += len;
2088 next:
2089 elem = NEXT_RX(elem);
2090 this = &rxbase[elem];
2091 }
2092 hp->rx_new = elem;
2093 if (drops)
2094 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2095 RXD((">"));
2096}
2097
2098static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2099{
2100 struct net_device *dev = dev_id;
2101 struct happy_meal *hp = netdev_priv(dev);
2102 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2103
2104 HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2105
2106 spin_lock(&hp->happy_lock);
2107
2108 if (happy_status & GREG_STAT_ERRORS) {
2109 HMD(("ERRORS "));
2110 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2111 goto out;
2112 }
2113
2114 if (happy_status & GREG_STAT_MIFIRQ) {
2115 HMD(("MIFIRQ "));
2116 happy_meal_mif_interrupt(hp);
2117 }
2118
2119 if (happy_status & GREG_STAT_TXALL) {
2120 HMD(("TXALL "));
2121 happy_meal_tx(hp);
2122 }
2123
2124 if (happy_status & GREG_STAT_RXTOHOST) {
2125 HMD(("RXTOHOST "));
2126 happy_meal_rx(hp, dev);
2127 }
2128
2129 HMD(("done\n"));
2130out:
2131 spin_unlock(&hp->happy_lock);
2132
2133 return IRQ_HANDLED;
2134}
2135
2136#ifdef CONFIG_SBUS
2137static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2138{
2139 struct quattro *qp = (struct quattro *) cookie;
2140 int i;
2141
2142 for (i = 0; i < 4; i++) {
2143 struct net_device *dev = qp->happy_meals[i];
2144 struct happy_meal *hp = netdev_priv(dev);
2145 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2146
2147 HMD(("quattro_interrupt: status=%08x ", happy_status));
2148
2149 if (!(happy_status & (GREG_STAT_ERRORS |
2150 GREG_STAT_MIFIRQ |
2151 GREG_STAT_TXALL |
2152 GREG_STAT_RXTOHOST)))
2153 continue;
2154
2155 spin_lock(&hp->happy_lock);
2156
2157 if (happy_status & GREG_STAT_ERRORS) {
2158 HMD(("ERRORS "));
2159 if (happy_meal_is_not_so_happy(hp, happy_status))
2160 goto next;
2161 }
2162
2163 if (happy_status & GREG_STAT_MIFIRQ) {
2164 HMD(("MIFIRQ "));
2165 happy_meal_mif_interrupt(hp);
2166 }
2167
2168 if (happy_status & GREG_STAT_TXALL) {
2169 HMD(("TXALL "));
2170 happy_meal_tx(hp);
2171 }
2172
2173 if (happy_status & GREG_STAT_RXTOHOST) {
2174 HMD(("RXTOHOST "));
2175 happy_meal_rx(hp, dev);
2176 }
2177
2178 next:
2179 spin_unlock(&hp->happy_lock);
2180 }
2181 HMD(("done\n"));
2182
2183 return IRQ_HANDLED;
2184}
2185#endif
2186
2187static int happy_meal_open(struct net_device *dev)
2188{
2189 struct happy_meal *hp = netdev_priv(dev);
2190 int res;
2191
2192 HMD(("happy_meal_open: "));
2193
2194 /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2195 * into a single source which we register handling at probe time.
2196 */
2197 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2198 res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2199 dev->name, dev);
2200 if (res) {
2201 HMD(("EAGAIN\n"));
2202 printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2203 hp->irq);
2204
2205 return -EAGAIN;
2206 }
2207 }
2208
2209 HMD(("to happy_meal_init\n"));
2210
2211 spin_lock_irq(&hp->happy_lock);
2212 res = happy_meal_init(hp);
2213 spin_unlock_irq(&hp->happy_lock);
2214
2215 if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2216 free_irq(hp->irq, dev);
2217 return res;
2218}
2219
2220static int happy_meal_close(struct net_device *dev)
2221{
2222 struct happy_meal *hp = netdev_priv(dev);
2223
2224 spin_lock_irq(&hp->happy_lock);
2225 happy_meal_stop(hp, hp->gregs);
2226 happy_meal_clean_rings(hp);
2227
2228 /* If auto-negotiation timer is running, kill it. */
2229 del_timer(&hp->happy_timer);
2230
2231 spin_unlock_irq(&hp->happy_lock);
2232
2233 /* On Quattro QFE cards, all hme interrupts are concentrated
2234 * into a single source which we register handling at probe
2235 * time and never unregister.
2236 */
2237 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2238 free_irq(hp->irq, dev);
2239
2240 return 0;
2241}
2242
2243#ifdef SXDEBUG
2244#define SXD(x) printk x
2245#else
2246#define SXD(x)
2247#endif
2248
2249static void happy_meal_tx_timeout(struct net_device *dev)
2250{
2251 struct happy_meal *hp = netdev_priv(dev);
2252
2253 printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2254 tx_dump_log();
2255 printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2256 hme_read32(hp, hp->gregs + GREG_STAT),
2257 hme_read32(hp, hp->etxregs + ETX_CFG),
2258 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2259
2260 spin_lock_irq(&hp->happy_lock);
2261 happy_meal_init(hp);
2262 spin_unlock_irq(&hp->happy_lock);
2263
2264 netif_wake_queue(dev);
2265}
2266
2267static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2268 u32 first_len, u32 first_entry, u32 entry)
2269{
2270 struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2271
2272 dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2273
2274 first_entry = NEXT_TX(first_entry);
2275 while (first_entry != entry) {
2276 struct happy_meal_txd *this = &txbase[first_entry];
2277 u32 addr, len;
2278
2279 addr = hme_read_desc32(hp, &this->tx_addr);
2280 len = hme_read_desc32(hp, &this->tx_flags);
2281 len &= TXFLAG_SIZE;
2282 dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2283 }
2284}
2285
2286static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2287 struct net_device *dev)
2288{
2289 struct happy_meal *hp = netdev_priv(dev);
2290 int entry;
2291 u32 tx_flags;
2292
2293 tx_flags = TXFLAG_OWN;
2294 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2295 const u32 csum_start_off = skb_checksum_start_offset(skb);
2296 const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2297
2298 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2299 ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2300 ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2301 }
2302
2303 spin_lock_irq(&hp->happy_lock);
2304
2305 if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2306 netif_stop_queue(dev);
2307 spin_unlock_irq(&hp->happy_lock);
2308 printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2309 dev->name);
2310 return NETDEV_TX_BUSY;
2311 }
2312
2313 entry = hp->tx_new;
2314 SXD(("SX<l[%d]e[%d]>", len, entry));
2315 hp->tx_skbs[entry] = skb;
2316
2317 if (skb_shinfo(skb)->nr_frags == 0) {
2318 u32 mapping, len;
2319
2320 len = skb->len;
2321 mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2322 if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2323 goto out_dma_error;
2324 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2325 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2326 (tx_flags | (len & TXFLAG_SIZE)),
2327 mapping);
2328 entry = NEXT_TX(entry);
2329 } else {
2330 u32 first_len, first_mapping;
2331 int frag, first_entry = entry;
2332
2333 /* We must give this initial chunk to the device last.
2334 * Otherwise we could race with the device.
2335 */
2336 first_len = skb_headlen(skb);
2337 first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2338 DMA_TO_DEVICE);
2339 if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2340 goto out_dma_error;
2341 entry = NEXT_TX(entry);
2342
2343 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2344 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2345 u32 len, mapping, this_txflags;
2346
2347 len = skb_frag_size(this_frag);
2348 mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2349 0, len, DMA_TO_DEVICE);
2350 if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2351 unmap_partial_tx_skb(hp, first_mapping, first_len,
2352 first_entry, entry);
2353 goto out_dma_error;
2354 }
2355 this_txflags = tx_flags;
2356 if (frag == skb_shinfo(skb)->nr_frags - 1)
2357 this_txflags |= TXFLAG_EOP;
2358 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2359 (this_txflags | (len & TXFLAG_SIZE)),
2360 mapping);
2361 entry = NEXT_TX(entry);
2362 }
2363 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2364 (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2365 first_mapping);
2366 }
2367
2368 hp->tx_new = entry;
2369
2370 if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2371 netif_stop_queue(dev);
2372
2373 /* Get it going. */
2374 hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2375
2376 spin_unlock_irq(&hp->happy_lock);
2377
2378 tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2379 return NETDEV_TX_OK;
2380
2381out_dma_error:
2382 hp->tx_skbs[hp->tx_new] = NULL;
2383 spin_unlock_irq(&hp->happy_lock);
2384
2385 dev_kfree_skb_any(skb);
2386 dev->stats.tx_dropped++;
2387 return NETDEV_TX_OK;
2388}
2389
2390static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2391{
2392 struct happy_meal *hp = netdev_priv(dev);
2393
2394 spin_lock_irq(&hp->happy_lock);
2395 happy_meal_get_counters(hp, hp->bigmacregs);
2396 spin_unlock_irq(&hp->happy_lock);
2397
2398 return &dev->stats;
2399}
2400
2401static void happy_meal_set_multicast(struct net_device *dev)
2402{
2403 struct happy_meal *hp = netdev_priv(dev);
2404 void __iomem *bregs = hp->bigmacregs;
2405 struct netdev_hw_addr *ha;
2406 u32 crc;
2407
2408 spin_lock_irq(&hp->happy_lock);
2409
2410 if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2411 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2412 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2413 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2414 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2415 } else if (dev->flags & IFF_PROMISC) {
2416 hme_write32(hp, bregs + BMAC_RXCFG,
2417 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2418 } else {
2419 u16 hash_table[4];
2420
2421 memset(hash_table, 0, sizeof(hash_table));
2422 netdev_for_each_mc_addr(ha, dev) {
2423 crc = ether_crc_le(6, ha->addr);
2424 crc >>= 26;
2425 hash_table[crc >> 4] |= 1 << (crc & 0xf);
2426 }
2427 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2428 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2429 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2430 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2431 }
2432
2433 spin_unlock_irq(&hp->happy_lock);
2434}
2435
2436/* Ethtool support... */
2437static int hme_get_link_ksettings(struct net_device *dev,
2438 struct ethtool_link_ksettings *cmd)
2439{
2440 struct happy_meal *hp = netdev_priv(dev);
2441 u32 speed;
2442 u32 supported;
2443
2444 supported =
2445 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2446 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2447 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2448
2449 /* XXX hardcoded stuff for now */
2450 cmd->base.port = PORT_TP; /* XXX no MII support */
2451 cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2452
2453 /* Record PHY settings. */
2454 spin_lock_irq(&hp->happy_lock);
2455 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2456 hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2457 spin_unlock_irq(&hp->happy_lock);
2458
2459 if (hp->sw_bmcr & BMCR_ANENABLE) {
2460 cmd->base.autoneg = AUTONEG_ENABLE;
2461 speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2462 SPEED_100 : SPEED_10);
2463 if (speed == SPEED_100)
2464 cmd->base.duplex =
2465 (hp->sw_lpa & (LPA_100FULL)) ?
2466 DUPLEX_FULL : DUPLEX_HALF;
2467 else
2468 cmd->base.duplex =
2469 (hp->sw_lpa & (LPA_10FULL)) ?
2470 DUPLEX_FULL : DUPLEX_HALF;
2471 } else {
2472 cmd->base.autoneg = AUTONEG_DISABLE;
2473 speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2474 cmd->base.duplex =
2475 (hp->sw_bmcr & BMCR_FULLDPLX) ?
2476 DUPLEX_FULL : DUPLEX_HALF;
2477 }
2478 cmd->base.speed = speed;
2479 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2480 supported);
2481
2482 return 0;
2483}
2484
2485static int hme_set_link_ksettings(struct net_device *dev,
2486 const struct ethtool_link_ksettings *cmd)
2487{
2488 struct happy_meal *hp = netdev_priv(dev);
2489
2490 /* Verify the settings we care about. */
2491 if (cmd->base.autoneg != AUTONEG_ENABLE &&
2492 cmd->base.autoneg != AUTONEG_DISABLE)
2493 return -EINVAL;
2494 if (cmd->base.autoneg == AUTONEG_DISABLE &&
2495 ((cmd->base.speed != SPEED_100 &&
2496 cmd->base.speed != SPEED_10) ||
2497 (cmd->base.duplex != DUPLEX_HALF &&
2498 cmd->base.duplex != DUPLEX_FULL)))
2499 return -EINVAL;
2500
2501 /* Ok, do it to it. */
2502 spin_lock_irq(&hp->happy_lock);
2503 del_timer(&hp->happy_timer);
2504 happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2505 spin_unlock_irq(&hp->happy_lock);
2506
2507 return 0;
2508}
2509
2510static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2511{
2512 struct happy_meal *hp = netdev_priv(dev);
2513
2514 strlcpy(info->driver, "sunhme", sizeof(info->driver));
2515 strlcpy(info->version, "2.02", sizeof(info->version));
2516 if (hp->happy_flags & HFLAG_PCI) {
2517 struct pci_dev *pdev = hp->happy_dev;
2518 strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2519 }
2520#ifdef CONFIG_SBUS
2521 else {
2522 const struct linux_prom_registers *regs;
2523 struct platform_device *op = hp->happy_dev;
2524 regs = of_get_property(op->dev.of_node, "regs", NULL);
2525 if (regs)
2526 snprintf(info->bus_info, sizeof(info->bus_info),
2527 "SBUS:%d",
2528 regs->which_io);
2529 }
2530#endif
2531}
2532
2533static u32 hme_get_link(struct net_device *dev)
2534{
2535 struct happy_meal *hp = netdev_priv(dev);
2536
2537 spin_lock_irq(&hp->happy_lock);
2538 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2539 spin_unlock_irq(&hp->happy_lock);
2540
2541 return hp->sw_bmsr & BMSR_LSTATUS;
2542}
2543
2544static const struct ethtool_ops hme_ethtool_ops = {
2545 .get_drvinfo = hme_get_drvinfo,
2546 .get_link = hme_get_link,
2547 .get_link_ksettings = hme_get_link_ksettings,
2548 .set_link_ksettings = hme_set_link_ksettings,
2549};
2550
2551static int hme_version_printed;
2552
2553#ifdef CONFIG_SBUS
2554/* Given a happy meal sbus device, find it's quattro parent.
2555 * If none exist, allocate and return a new one.
2556 *
2557 * Return NULL on failure.
2558 */
2559static struct quattro *quattro_sbus_find(struct platform_device *child)
2560{
2561 struct device *parent = child->dev.parent;
2562 struct platform_device *op;
2563 struct quattro *qp;
2564
2565 op = to_platform_device(parent);
2566 qp = platform_get_drvdata(op);
2567 if (qp)
2568 return qp;
2569
2570 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2571 if (qp != NULL) {
2572 int i;
2573
2574 for (i = 0; i < 4; i++)
2575 qp->happy_meals[i] = NULL;
2576
2577 qp->quattro_dev = child;
2578 qp->next = qfe_sbus_list;
2579 qfe_sbus_list = qp;
2580
2581 platform_set_drvdata(op, qp);
2582 }
2583 return qp;
2584}
2585
2586/* After all quattro cards have been probed, we call these functions
2587 * to register the IRQ handlers for the cards that have been
2588 * successfully probed and skip the cards that failed to initialize
2589 */
2590static int __init quattro_sbus_register_irqs(void)
2591{
2592 struct quattro *qp;
2593
2594 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2595 struct platform_device *op = qp->quattro_dev;
2596 int err, qfe_slot, skip = 0;
2597
2598 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2599 if (!qp->happy_meals[qfe_slot])
2600 skip = 1;
2601 }
2602 if (skip)
2603 continue;
2604
2605 err = request_irq(op->archdata.irqs[0],
2606 quattro_sbus_interrupt,
2607 IRQF_SHARED, "Quattro",
2608 qp);
2609 if (err != 0) {
2610 printk(KERN_ERR "Quattro HME: IRQ registration "
2611 "error %d.\n", err);
2612 return err;
2613 }
2614 }
2615
2616 return 0;
2617}
2618
2619static void quattro_sbus_free_irqs(void)
2620{
2621 struct quattro *qp;
2622
2623 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2624 struct platform_device *op = qp->quattro_dev;
2625 int qfe_slot, skip = 0;
2626
2627 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2628 if (!qp->happy_meals[qfe_slot])
2629 skip = 1;
2630 }
2631 if (skip)
2632 continue;
2633
2634 free_irq(op->archdata.irqs[0], qp);
2635 }
2636}
2637#endif /* CONFIG_SBUS */
2638
2639#ifdef CONFIG_PCI
2640static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2641{
2642 struct pci_dev *bdev = pdev->bus->self;
2643 struct quattro *qp;
2644
2645 if (!bdev) return NULL;
2646 for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2647 struct pci_dev *qpdev = qp->quattro_dev;
2648
2649 if (qpdev == bdev)
2650 return qp;
2651 }
2652 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2653 if (qp != NULL) {
2654 int i;
2655
2656 for (i = 0; i < 4; i++)
2657 qp->happy_meals[i] = NULL;
2658
2659 qp->quattro_dev = bdev;
2660 qp->next = qfe_pci_list;
2661 qfe_pci_list = qp;
2662
2663 /* No range tricks necessary on PCI. */
2664 qp->nranges = 0;
2665 }
2666 return qp;
2667}
2668#endif /* CONFIG_PCI */
2669
2670static const struct net_device_ops hme_netdev_ops = {
2671 .ndo_open = happy_meal_open,
2672 .ndo_stop = happy_meal_close,
2673 .ndo_start_xmit = happy_meal_start_xmit,
2674 .ndo_tx_timeout = happy_meal_tx_timeout,
2675 .ndo_get_stats = happy_meal_get_stats,
2676 .ndo_set_rx_mode = happy_meal_set_multicast,
2677 .ndo_set_mac_address = eth_mac_addr,
2678 .ndo_validate_addr = eth_validate_addr,
2679};
2680
2681#ifdef CONFIG_SBUS
2682static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2683{
2684 struct device_node *dp = op->dev.of_node, *sbus_dp;
2685 struct quattro *qp = NULL;
2686 struct happy_meal *hp;
2687 struct net_device *dev;
2688 int i, qfe_slot = -1;
2689 int err = -ENODEV;
2690
2691 sbus_dp = op->dev.parent->of_node;
2692
2693 /* We can match PCI devices too, do not accept those here. */
2694 if (strcmp(sbus_dp->name, "sbus") && strcmp(sbus_dp->name, "sbi"))
2695 return err;
2696
2697 if (is_qfe) {
2698 qp = quattro_sbus_find(op);
2699 if (qp == NULL)
2700 goto err_out;
2701 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2702 if (qp->happy_meals[qfe_slot] == NULL)
2703 break;
2704 if (qfe_slot == 4)
2705 goto err_out;
2706 }
2707
2708 err = -ENOMEM;
2709 dev = alloc_etherdev(sizeof(struct happy_meal));
2710 if (!dev)
2711 goto err_out;
2712 SET_NETDEV_DEV(dev, &op->dev);
2713
2714 if (hme_version_printed++ == 0)
2715 printk(KERN_INFO "%s", version);
2716
2717 /* If user did not specify a MAC address specifically, use
2718 * the Quattro local-mac-address property...
2719 */
2720 for (i = 0; i < 6; i++) {
2721 if (macaddr[i] != 0)
2722 break;
2723 }
2724 if (i < 6) { /* a mac address was given */
2725 for (i = 0; i < 6; i++)
2726 dev->dev_addr[i] = macaddr[i];
2727 macaddr[5]++;
2728 } else {
2729 const unsigned char *addr;
2730 int len;
2731
2732 addr = of_get_property(dp, "local-mac-address", &len);
2733
2734 if (qfe_slot != -1 && addr && len == ETH_ALEN)
2735 memcpy(dev->dev_addr, addr, ETH_ALEN);
2736 else
2737 memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
2738 }
2739
2740 hp = netdev_priv(dev);
2741
2742 hp->happy_dev = op;
2743 hp->dma_dev = &op->dev;
2744
2745 spin_lock_init(&hp->happy_lock);
2746
2747 err = -ENODEV;
2748 if (qp != NULL) {
2749 hp->qfe_parent = qp;
2750 hp->qfe_ent = qfe_slot;
2751 qp->happy_meals[qfe_slot] = dev;
2752 }
2753
2754 hp->gregs = of_ioremap(&op->resource[0], 0,
2755 GREG_REG_SIZE, "HME Global Regs");
2756 if (!hp->gregs) {
2757 printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2758 goto err_out_free_netdev;
2759 }
2760
2761 hp->etxregs = of_ioremap(&op->resource[1], 0,
2762 ETX_REG_SIZE, "HME TX Regs");
2763 if (!hp->etxregs) {
2764 printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2765 goto err_out_iounmap;
2766 }
2767
2768 hp->erxregs = of_ioremap(&op->resource[2], 0,
2769 ERX_REG_SIZE, "HME RX Regs");
2770 if (!hp->erxregs) {
2771 printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2772 goto err_out_iounmap;
2773 }
2774
2775 hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2776 BMAC_REG_SIZE, "HME BIGMAC Regs");
2777 if (!hp->bigmacregs) {
2778 printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2779 goto err_out_iounmap;
2780 }
2781
2782 hp->tcvregs = of_ioremap(&op->resource[4], 0,
2783 TCVR_REG_SIZE, "HME Tranceiver Regs");
2784 if (!hp->tcvregs) {
2785 printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2786 goto err_out_iounmap;
2787 }
2788
2789 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2790 if (hp->hm_revision == 0xff)
2791 hp->hm_revision = 0xa0;
2792
2793 /* Now enable the feature flags we can. */
2794 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2795 hp->happy_flags = HFLAG_20_21;
2796 else if (hp->hm_revision != 0xa0)
2797 hp->happy_flags = HFLAG_NOT_A0;
2798
2799 if (qp != NULL)
2800 hp->happy_flags |= HFLAG_QUATTRO;
2801
2802 /* Get the supported DVMA burst sizes from our Happy SBUS. */
2803 hp->happy_bursts = of_getintprop_default(sbus_dp,
2804 "burst-sizes", 0x00);
2805
2806 hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2807 PAGE_SIZE,
2808 &hp->hblock_dvma,
2809 GFP_ATOMIC);
2810 err = -ENOMEM;
2811 if (!hp->happy_block)
2812 goto err_out_iounmap;
2813
2814 /* Force check of the link first time we are brought up. */
2815 hp->linkcheck = 0;
2816
2817 /* Force timer state to 'asleep' with count of zero. */
2818 hp->timer_state = asleep;
2819 hp->timer_ticks = 0;
2820
2821 timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2822
2823 hp->dev = dev;
2824 dev->netdev_ops = &hme_netdev_ops;
2825 dev->watchdog_timeo = 5*HZ;
2826 dev->ethtool_ops = &hme_ethtool_ops;
2827
2828 /* Happy Meal can do it all... */
2829 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2830 dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2831
2832 hp->irq = op->archdata.irqs[0];
2833
2834#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2835 /* Hook up SBUS register/descriptor accessors. */
2836 hp->read_desc32 = sbus_hme_read_desc32;
2837 hp->write_txd = sbus_hme_write_txd;
2838 hp->write_rxd = sbus_hme_write_rxd;
2839 hp->read32 = sbus_hme_read32;
2840 hp->write32 = sbus_hme_write32;
2841#endif
2842
2843 /* Grrr, Happy Meal comes up by default not advertising
2844 * full duplex 100baseT capabilities, fix this.
2845 */
2846 spin_lock_irq(&hp->happy_lock);
2847 happy_meal_set_initial_advertisement(hp);
2848 spin_unlock_irq(&hp->happy_lock);
2849
2850 err = register_netdev(hp->dev);
2851 if (err) {
2852 printk(KERN_ERR "happymeal: Cannot register net device, "
2853 "aborting.\n");
2854 goto err_out_free_coherent;
2855 }
2856
2857 platform_set_drvdata(op, hp);
2858
2859 if (qfe_slot != -1)
2860 printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2861 dev->name, qfe_slot);
2862 else
2863 printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2864 dev->name);
2865
2866 printk("%pM\n", dev->dev_addr);
2867
2868 return 0;
2869
2870err_out_free_coherent:
2871 dma_free_coherent(hp->dma_dev,
2872 PAGE_SIZE,
2873 hp->happy_block,
2874 hp->hblock_dvma);
2875
2876err_out_iounmap:
2877 if (hp->gregs)
2878 of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2879 if (hp->etxregs)
2880 of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2881 if (hp->erxregs)
2882 of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2883 if (hp->bigmacregs)
2884 of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2885 if (hp->tcvregs)
2886 of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2887
2888 if (qp)
2889 qp->happy_meals[qfe_slot] = NULL;
2890
2891err_out_free_netdev:
2892 free_netdev(dev);
2893
2894err_out:
2895 return err;
2896}
2897#endif
2898
2899#ifdef CONFIG_PCI
2900#ifndef CONFIG_SPARC
2901static int is_quattro_p(struct pci_dev *pdev)
2902{
2903 struct pci_dev *busdev = pdev->bus->self;
2904 struct pci_dev *this_pdev;
2905 int n_hmes;
2906
2907 if (busdev == NULL ||
2908 busdev->vendor != PCI_VENDOR_ID_DEC ||
2909 busdev->device != PCI_DEVICE_ID_DEC_21153)
2910 return 0;
2911
2912 n_hmes = 0;
2913 list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2914 if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2915 this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2916 n_hmes++;
2917 }
2918
2919 if (n_hmes != 4)
2920 return 0;
2921
2922 return 1;
2923}
2924
2925/* Fetch MAC address from vital product data of PCI ROM. */
2926static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2927{
2928 int this_offset;
2929
2930 for (this_offset = 0x20; this_offset < len; this_offset++) {
2931 void __iomem *p = rom_base + this_offset;
2932
2933 if (readb(p + 0) != 0x90 ||
2934 readb(p + 1) != 0x00 ||
2935 readb(p + 2) != 0x09 ||
2936 readb(p + 3) != 0x4e ||
2937 readb(p + 4) != 0x41 ||
2938 readb(p + 5) != 0x06)
2939 continue;
2940
2941 this_offset += 6;
2942 p += 6;
2943
2944 if (index == 0) {
2945 int i;
2946
2947 for (i = 0; i < 6; i++)
2948 dev_addr[i] = readb(p + i);
2949 return 1;
2950 }
2951 index--;
2952 }
2953 return 0;
2954}
2955
2956static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2957{
2958 size_t size;
2959 void __iomem *p = pci_map_rom(pdev, &size);
2960
2961 if (p) {
2962 int index = 0;
2963 int found;
2964
2965 if (is_quattro_p(pdev))
2966 index = PCI_SLOT(pdev->devfn);
2967
2968 found = readb(p) == 0x55 &&
2969 readb(p + 1) == 0xaa &&
2970 find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2971 pci_unmap_rom(pdev, p);
2972 if (found)
2973 return;
2974 }
2975
2976 /* Sun MAC prefix then 3 random bytes. */
2977 dev_addr[0] = 0x08;
2978 dev_addr[1] = 0x00;
2979 dev_addr[2] = 0x20;
2980 get_random_bytes(&dev_addr[3], 3);
2981}
2982#endif /* !(CONFIG_SPARC) */
2983
2984static int happy_meal_pci_probe(struct pci_dev *pdev,
2985 const struct pci_device_id *ent)
2986{
2987 struct quattro *qp = NULL;
2988#ifdef CONFIG_SPARC
2989 struct device_node *dp;
2990#endif
2991 struct happy_meal *hp;
2992 struct net_device *dev;
2993 void __iomem *hpreg_base;
2994 unsigned long hpreg_res;
2995 int i, qfe_slot = -1;
2996 char prom_name[64];
2997 int err;
2998
2999 /* Now make sure pci_dev cookie is there. */
3000#ifdef CONFIG_SPARC
3001 dp = pci_device_to_OF_node(pdev);
3002 strcpy(prom_name, dp->name);
3003#else
3004 if (is_quattro_p(pdev))
3005 strcpy(prom_name, "SUNW,qfe");
3006 else
3007 strcpy(prom_name, "SUNW,hme");
3008#endif
3009
3010 err = -ENODEV;
3011
3012 if (pci_enable_device(pdev))
3013 goto err_out;
3014 pci_set_master(pdev);
3015
3016 if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3017 qp = quattro_pci_find(pdev);
3018 if (qp == NULL)
3019 goto err_out;
3020 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3021 if (qp->happy_meals[qfe_slot] == NULL)
3022 break;
3023 if (qfe_slot == 4)
3024 goto err_out;
3025 }
3026
3027 dev = alloc_etherdev(sizeof(struct happy_meal));
3028 err = -ENOMEM;
3029 if (!dev)
3030 goto err_out;
3031 SET_NETDEV_DEV(dev, &pdev->dev);
3032
3033 if (hme_version_printed++ == 0)
3034 printk(KERN_INFO "%s", version);
3035
3036 hp = netdev_priv(dev);
3037
3038 hp->happy_dev = pdev;
3039 hp->dma_dev = &pdev->dev;
3040
3041 spin_lock_init(&hp->happy_lock);
3042
3043 if (qp != NULL) {
3044 hp->qfe_parent = qp;
3045 hp->qfe_ent = qfe_slot;
3046 qp->happy_meals[qfe_slot] = dev;
3047 }
3048
3049 hpreg_res = pci_resource_start(pdev, 0);
3050 err = -ENODEV;
3051 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3052 printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3053 goto err_out_clear_quattro;
3054 }
3055 if (pci_request_regions(pdev, DRV_NAME)) {
3056 printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3057 "aborting.\n");
3058 goto err_out_clear_quattro;
3059 }
3060
3061 if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3062 printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3063 goto err_out_free_res;
3064 }
3065
3066 for (i = 0; i < 6; i++) {
3067 if (macaddr[i] != 0)
3068 break;
3069 }
3070 if (i < 6) { /* a mac address was given */
3071 for (i = 0; i < 6; i++)
3072 dev->dev_addr[i] = macaddr[i];
3073 macaddr[5]++;
3074 } else {
3075#ifdef CONFIG_SPARC
3076 const unsigned char *addr;
3077 int len;
3078
3079 if (qfe_slot != -1 &&
3080 (addr = of_get_property(dp, "local-mac-address", &len))
3081 != NULL &&
3082 len == 6) {
3083 memcpy(dev->dev_addr, addr, ETH_ALEN);
3084 } else {
3085 memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
3086 }
3087#else
3088 get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3089#endif
3090 }
3091
3092 /* Layout registers. */
3093 hp->gregs = (hpreg_base + 0x0000UL);
3094 hp->etxregs = (hpreg_base + 0x2000UL);
3095 hp->erxregs = (hpreg_base + 0x4000UL);
3096 hp->bigmacregs = (hpreg_base + 0x6000UL);
3097 hp->tcvregs = (hpreg_base + 0x7000UL);
3098
3099#ifdef CONFIG_SPARC
3100 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3101 if (hp->hm_revision == 0xff)
3102 hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3103#else
3104 /* works with this on non-sparc hosts */
3105 hp->hm_revision = 0x20;
3106#endif
3107
3108 /* Now enable the feature flags we can. */
3109 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3110 hp->happy_flags = HFLAG_20_21;
3111 else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3112 hp->happy_flags = HFLAG_NOT_A0;
3113
3114 if (qp != NULL)
3115 hp->happy_flags |= HFLAG_QUATTRO;
3116
3117 /* And of course, indicate this is PCI. */
3118 hp->happy_flags |= HFLAG_PCI;
3119
3120#ifdef CONFIG_SPARC
3121 /* Assume PCI happy meals can handle all burst sizes. */
3122 hp->happy_bursts = DMA_BURSTBITS;
3123#endif
3124
3125 hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3126 &hp->hblock_dvma, GFP_KERNEL);
3127 err = -ENODEV;
3128 if (!hp->happy_block)
3129 goto err_out_iounmap;
3130
3131 hp->linkcheck = 0;
3132 hp->timer_state = asleep;
3133 hp->timer_ticks = 0;
3134
3135 timer_setup(&hp->happy_timer, happy_meal_timer, 0);
3136
3137 hp->irq = pdev->irq;
3138 hp->dev = dev;
3139 dev->netdev_ops = &hme_netdev_ops;
3140 dev->watchdog_timeo = 5*HZ;
3141 dev->ethtool_ops = &hme_ethtool_ops;
3142
3143 /* Happy Meal can do it all... */
3144 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3145 dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3146
3147#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3148 /* Hook up PCI register/descriptor accessors. */
3149 hp->read_desc32 = pci_hme_read_desc32;
3150 hp->write_txd = pci_hme_write_txd;
3151 hp->write_rxd = pci_hme_write_rxd;
3152 hp->read32 = pci_hme_read32;
3153 hp->write32 = pci_hme_write32;
3154#endif
3155
3156 /* Grrr, Happy Meal comes up by default not advertising
3157 * full duplex 100baseT capabilities, fix this.
3158 */
3159 spin_lock_irq(&hp->happy_lock);
3160 happy_meal_set_initial_advertisement(hp);
3161 spin_unlock_irq(&hp->happy_lock);
3162
3163 err = register_netdev(hp->dev);
3164 if (err) {
3165 printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3166 "aborting.\n");
3167 goto err_out_iounmap;
3168 }
3169
3170 pci_set_drvdata(pdev, hp);
3171
3172 if (!qfe_slot) {
3173 struct pci_dev *qpdev = qp->quattro_dev;
3174
3175 prom_name[0] = 0;
3176 if (!strncmp(dev->name, "eth", 3)) {
3177 int i = simple_strtoul(dev->name + 3, NULL, 10);
3178 sprintf(prom_name, "-%d", i + 3);
3179 }
3180 printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3181 if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3182 qpdev->device == PCI_DEVICE_ID_DEC_21153)
3183 printk("DEC 21153 PCI Bridge\n");
3184 else
3185 printk("unknown bridge %04x.%04x\n",
3186 qpdev->vendor, qpdev->device);
3187 }
3188
3189 if (qfe_slot != -1)
3190 printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3191 dev->name, qfe_slot);
3192 else
3193 printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3194 dev->name);
3195
3196 printk("%pM\n", dev->dev_addr);
3197
3198 return 0;
3199
3200err_out_iounmap:
3201 iounmap(hp->gregs);
3202
3203err_out_free_res:
3204 pci_release_regions(pdev);
3205
3206err_out_clear_quattro:
3207 if (qp != NULL)
3208 qp->happy_meals[qfe_slot] = NULL;
3209
3210 free_netdev(dev);
3211
3212err_out:
3213 return err;
3214}
3215
3216static void happy_meal_pci_remove(struct pci_dev *pdev)
3217{
3218 struct happy_meal *hp = pci_get_drvdata(pdev);
3219 struct net_device *net_dev = hp->dev;
3220
3221 unregister_netdev(net_dev);
3222
3223 dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3224 hp->happy_block, hp->hblock_dvma);
3225 iounmap(hp->gregs);
3226 pci_release_regions(hp->happy_dev);
3227
3228 free_netdev(net_dev);
3229}
3230
3231static const struct pci_device_id happymeal_pci_ids[] = {
3232 { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3233 { } /* Terminating entry */
3234};
3235
3236MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3237
3238static struct pci_driver hme_pci_driver = {
3239 .name = "hme",
3240 .id_table = happymeal_pci_ids,
3241 .probe = happy_meal_pci_probe,
3242 .remove = happy_meal_pci_remove,
3243};
3244
3245static int __init happy_meal_pci_init(void)
3246{
3247 return pci_register_driver(&hme_pci_driver);
3248}
3249
3250static void happy_meal_pci_exit(void)
3251{
3252 pci_unregister_driver(&hme_pci_driver);
3253
3254 while (qfe_pci_list) {
3255 struct quattro *qfe = qfe_pci_list;
3256 struct quattro *next = qfe->next;
3257
3258 kfree(qfe);
3259
3260 qfe_pci_list = next;
3261 }
3262}
3263
3264#endif
3265
3266#ifdef CONFIG_SBUS
3267static const struct of_device_id hme_sbus_match[];
3268static int hme_sbus_probe(struct platform_device *op)
3269{
3270 const struct of_device_id *match;
3271 struct device_node *dp = op->dev.of_node;
3272 const char *model = of_get_property(dp, "model", NULL);
3273 int is_qfe;
3274
3275 match = of_match_device(hme_sbus_match, &op->dev);
3276 if (!match)
3277 return -EINVAL;
3278 is_qfe = (match->data != NULL);
3279
3280 if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3281 is_qfe = 1;
3282
3283 return happy_meal_sbus_probe_one(op, is_qfe);
3284}
3285
3286static int hme_sbus_remove(struct platform_device *op)
3287{
3288 struct happy_meal *hp = platform_get_drvdata(op);
3289 struct net_device *net_dev = hp->dev;
3290
3291 unregister_netdev(net_dev);
3292
3293 /* XXX qfe parent interrupt... */
3294
3295 of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3296 of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3297 of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3298 of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3299 of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3300 dma_free_coherent(hp->dma_dev,
3301 PAGE_SIZE,
3302 hp->happy_block,
3303 hp->hblock_dvma);
3304
3305 free_netdev(net_dev);
3306
3307 return 0;
3308}
3309
3310static const struct of_device_id hme_sbus_match[] = {
3311 {
3312 .name = "SUNW,hme",
3313 },
3314 {
3315 .name = "SUNW,qfe",
3316 .data = (void *) 1,
3317 },
3318 {
3319 .name = "qfe",
3320 .data = (void *) 1,
3321 },
3322 {},
3323};
3324
3325MODULE_DEVICE_TABLE(of, hme_sbus_match);
3326
3327static struct platform_driver hme_sbus_driver = {
3328 .driver = {
3329 .name = "hme",
3330 .of_match_table = hme_sbus_match,
3331 },
3332 .probe = hme_sbus_probe,
3333 .remove = hme_sbus_remove,
3334};
3335
3336static int __init happy_meal_sbus_init(void)
3337{
3338 int err;
3339
3340 err = platform_driver_register(&hme_sbus_driver);
3341 if (!err)
3342 err = quattro_sbus_register_irqs();
3343
3344 return err;
3345}
3346
3347static void happy_meal_sbus_exit(void)
3348{
3349 platform_driver_unregister(&hme_sbus_driver);
3350 quattro_sbus_free_irqs();
3351
3352 while (qfe_sbus_list) {
3353 struct quattro *qfe = qfe_sbus_list;
3354 struct quattro *next = qfe->next;
3355
3356 kfree(qfe);
3357
3358 qfe_sbus_list = next;
3359 }
3360}
3361#endif
3362
3363static int __init happy_meal_probe(void)
3364{
3365 int err = 0;
3366
3367#ifdef CONFIG_SBUS
3368 err = happy_meal_sbus_init();
3369#endif
3370#ifdef CONFIG_PCI
3371 if (!err) {
3372 err = happy_meal_pci_init();
3373#ifdef CONFIG_SBUS
3374 if (err)
3375 happy_meal_sbus_exit();
3376#endif
3377 }
3378#endif
3379
3380 return err;
3381}
3382
3383
3384static void __exit happy_meal_exit(void)
3385{
3386#ifdef CONFIG_SBUS
3387 happy_meal_sbus_exit();
3388#endif
3389#ifdef CONFIG_PCI
3390 happy_meal_pci_exit();
3391#endif
3392}
3393
3394module_init(happy_meal_probe);
3395module_exit(happy_meal_exit);
1// SPDX-License-Identifier: GPL-2.0
2/* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
3 * auto carrier detecting ethernet driver. Also known as the
4 * "Happy Meal Ethernet" found on SunSwift SBUS cards.
5 *
6 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
7 * 2006, 2008 David S. Miller (davem@davemloft.net)
8 *
9 * Changes :
10 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
11 * - port to non-sparc architectures. Tested only on x86 and
12 * only currently works with QFE PCI cards.
13 * - ability to specify the MAC address at module load time by passing this
14 * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
15 */
16
17#include <linux/module.h>
18#include <linux/kernel.h>
19#include <linux/types.h>
20#include <linux/fcntl.h>
21#include <linux/interrupt.h>
22#include <linux/ioport.h>
23#include <linux/in.h>
24#include <linux/slab.h>
25#include <linux/string.h>
26#include <linux/delay.h>
27#include <linux/init.h>
28#include <linux/ethtool.h>
29#include <linux/mii.h>
30#include <linux/crc32.h>
31#include <linux/random.h>
32#include <linux/errno.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/skbuff.h>
36#include <linux/mm.h>
37#include <linux/bitops.h>
38#include <linux/dma-mapping.h>
39
40#include <asm/io.h>
41#include <asm/dma.h>
42#include <asm/byteorder.h>
43
44#ifdef CONFIG_SPARC
45#include <linux/of.h>
46#include <linux/of_device.h>
47#include <asm/idprom.h>
48#include <asm/openprom.h>
49#include <asm/oplib.h>
50#include <asm/prom.h>
51#include <asm/auxio.h>
52#endif
53#include <linux/uaccess.h>
54
55#include <asm/irq.h>
56
57#ifdef CONFIG_PCI
58#include <linux/pci.h>
59#endif
60
61#include "sunhme.h"
62
63#define DRV_NAME "sunhme"
64
65MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
66MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
67MODULE_LICENSE("GPL");
68
69static int macaddr[6];
70
71/* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
72module_param_array(macaddr, int, NULL, 0);
73MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
74
75#ifdef CONFIG_SBUS
76static struct quattro *qfe_sbus_list;
77#endif
78
79#ifdef CONFIG_PCI
80static struct quattro *qfe_pci_list;
81#endif
82
83#define hme_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__)
84#define HMD hme_debug
85
86/* "Auto Switch Debug" aka phy debug */
87#if 1
88#define ASD hme_debug
89#else
90#define ASD(...)
91#endif
92
93#if 0
94struct hme_tx_logent {
95 unsigned int tstamp;
96 int tx_new, tx_old;
97 unsigned int action;
98#define TXLOG_ACTION_IRQ 0x01
99#define TXLOG_ACTION_TXMIT 0x02
100#define TXLOG_ACTION_TBUSY 0x04
101#define TXLOG_ACTION_NBUFS 0x08
102 unsigned int status;
103};
104#define TX_LOG_LEN 128
105static struct hme_tx_logent tx_log[TX_LOG_LEN];
106static int txlog_cur_entry;
107static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
108{
109 struct hme_tx_logent *tlp;
110 unsigned long flags;
111
112 local_irq_save(flags);
113 tlp = &tx_log[txlog_cur_entry];
114 tlp->tstamp = (unsigned int)jiffies;
115 tlp->tx_new = hp->tx_new;
116 tlp->tx_old = hp->tx_old;
117 tlp->action = a;
118 tlp->status = s;
119 txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
120 local_irq_restore(flags);
121}
122static __inline__ void tx_dump_log(void)
123{
124 int i, this;
125
126 this = txlog_cur_entry;
127 for (i = 0; i < TX_LOG_LEN; i++) {
128 pr_err("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
129 tx_log[this].tstamp,
130 tx_log[this].tx_new, tx_log[this].tx_old,
131 tx_log[this].action, tx_log[this].status);
132 this = (this + 1) & (TX_LOG_LEN - 1);
133 }
134}
135#else
136#define tx_add_log(hp, a, s)
137#define tx_dump_log()
138#endif
139
140#define DEFAULT_IPG0 16 /* For lance-mode only */
141#define DEFAULT_IPG1 8 /* For all modes */
142#define DEFAULT_IPG2 4 /* For all modes */
143#define DEFAULT_JAMSIZE 4 /* Toe jam */
144
145/* NOTE: In the descriptor writes one _must_ write the address
146 * member _first_. The card must not be allowed to see
147 * the updated descriptor flags until the address is
148 * correct. I've added a write memory barrier between
149 * the two stores so that I can sleep well at night... -DaveM
150 */
151
152#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
153static void sbus_hme_write32(void __iomem *reg, u32 val)
154{
155 sbus_writel(val, reg);
156}
157
158static u32 sbus_hme_read32(void __iomem *reg)
159{
160 return sbus_readl(reg);
161}
162
163static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
164{
165 rxd->rx_addr = (__force hme32)addr;
166 dma_wmb();
167 rxd->rx_flags = (__force hme32)flags;
168}
169
170static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
171{
172 txd->tx_addr = (__force hme32)addr;
173 dma_wmb();
174 txd->tx_flags = (__force hme32)flags;
175}
176
177static u32 sbus_hme_read_desc32(hme32 *p)
178{
179 return (__force u32)*p;
180}
181
182static void pci_hme_write32(void __iomem *reg, u32 val)
183{
184 writel(val, reg);
185}
186
187static u32 pci_hme_read32(void __iomem *reg)
188{
189 return readl(reg);
190}
191
192static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
193{
194 rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
195 dma_wmb();
196 rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
197}
198
199static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
200{
201 txd->tx_addr = (__force hme32)cpu_to_le32(addr);
202 dma_wmb();
203 txd->tx_flags = (__force hme32)cpu_to_le32(flags);
204}
205
206static u32 pci_hme_read_desc32(hme32 *p)
207{
208 return le32_to_cpup((__le32 *)p);
209}
210
211#define hme_write32(__hp, __reg, __val) \
212 ((__hp)->write32((__reg), (__val)))
213#define hme_read32(__hp, __reg) \
214 ((__hp)->read32(__reg))
215#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
216 ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
217#define hme_write_txd(__hp, __txd, __flags, __addr) \
218 ((__hp)->write_txd((__txd), (__flags), (__addr)))
219#define hme_read_desc32(__hp, __p) \
220 ((__hp)->read_desc32(__p))
221#else
222#ifdef CONFIG_SBUS
223/* SBUS only compilation */
224#define hme_write32(__hp, __reg, __val) \
225 sbus_writel((__val), (__reg))
226#define hme_read32(__hp, __reg) \
227 sbus_readl(__reg)
228#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
229do { (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
230 dma_wmb(); \
231 (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
232} while(0)
233#define hme_write_txd(__hp, __txd, __flags, __addr) \
234do { (__txd)->tx_addr = (__force hme32)(u32)(__addr); \
235 dma_wmb(); \
236 (__txd)->tx_flags = (__force hme32)(u32)(__flags); \
237} while(0)
238#define hme_read_desc32(__hp, __p) ((__force u32)(hme32)*(__p))
239#else
240/* PCI only compilation */
241#define hme_write32(__hp, __reg, __val) \
242 writel((__val), (__reg))
243#define hme_read32(__hp, __reg) \
244 readl(__reg)
245#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
246do { (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
247 dma_wmb(); \
248 (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
249} while(0)
250#define hme_write_txd(__hp, __txd, __flags, __addr) \
251do { (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
252 dma_wmb(); \
253 (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
254} while(0)
255static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
256{
257 return le32_to_cpup((__le32 *)p);
258}
259#endif
260#endif
261
262
263/* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */
264static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
265{
266 hme_write32(hp, tregs + TCVR_BBDATA, bit);
267 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
268 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
269}
270
271#if 0
272static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
273{
274 u32 ret;
275
276 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
277 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
278 ret = hme_read32(hp, tregs + TCVR_CFG);
279 if (internal)
280 ret &= TCV_CFG_MDIO0;
281 else
282 ret &= TCV_CFG_MDIO1;
283
284 return ret;
285}
286#endif
287
288static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
289{
290 u32 retval;
291
292 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
293 udelay(1);
294 retval = hme_read32(hp, tregs + TCVR_CFG);
295 if (internal)
296 retval &= TCV_CFG_MDIO0;
297 else
298 retval &= TCV_CFG_MDIO1;
299 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
300
301 return retval;
302}
303
304#define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */
305
306static int happy_meal_bb_read(struct happy_meal *hp,
307 void __iomem *tregs, int reg)
308{
309 u32 tmp;
310 int retval = 0;
311 int i;
312
313 /* Enable the MIF BitBang outputs. */
314 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
315
316 /* Force BitBang into the idle state. */
317 for (i = 0; i < 32; i++)
318 BB_PUT_BIT(hp, tregs, 1);
319
320 /* Give it the read sequence. */
321 BB_PUT_BIT(hp, tregs, 0);
322 BB_PUT_BIT(hp, tregs, 1);
323 BB_PUT_BIT(hp, tregs, 1);
324 BB_PUT_BIT(hp, tregs, 0);
325
326 /* Give it the PHY address. */
327 tmp = hp->paddr & 0xff;
328 for (i = 4; i >= 0; i--)
329 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
330
331 /* Tell it what register we want to read. */
332 tmp = (reg & 0xff);
333 for (i = 4; i >= 0; i--)
334 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
335
336 /* Close down the MIF BitBang outputs. */
337 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
338
339 /* Now read in the value. */
340 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
341 for (i = 15; i >= 0; i--)
342 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
343 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
344 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
345 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
346 ASD("reg=%d value=%x\n", reg, retval);
347 return retval;
348}
349
350static void happy_meal_bb_write(struct happy_meal *hp,
351 void __iomem *tregs, int reg,
352 unsigned short value)
353{
354 u32 tmp;
355 int i;
356
357 ASD("reg=%d value=%x\n", reg, value);
358
359 /* Enable the MIF BitBang outputs. */
360 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
361
362 /* Force BitBang into the idle state. */
363 for (i = 0; i < 32; i++)
364 BB_PUT_BIT(hp, tregs, 1);
365
366 /* Give it write sequence. */
367 BB_PUT_BIT(hp, tregs, 0);
368 BB_PUT_BIT(hp, tregs, 1);
369 BB_PUT_BIT(hp, tregs, 0);
370 BB_PUT_BIT(hp, tregs, 1);
371
372 /* Give it the PHY address. */
373 tmp = (hp->paddr & 0xff);
374 for (i = 4; i >= 0; i--)
375 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
376
377 /* Tell it what register we will be writing. */
378 tmp = (reg & 0xff);
379 for (i = 4; i >= 0; i--)
380 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
381
382 /* Tell it to become ready for the bits. */
383 BB_PUT_BIT(hp, tregs, 1);
384 BB_PUT_BIT(hp, tregs, 0);
385
386 for (i = 15; i >= 0; i--)
387 BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
388
389 /* Close down the MIF BitBang outputs. */
390 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
391}
392
393#define TCVR_READ_TRIES 16
394
395static int happy_meal_tcvr_read(struct happy_meal *hp,
396 void __iomem *tregs, int reg)
397{
398 int tries = TCVR_READ_TRIES;
399 int retval;
400
401 if (hp->tcvr_type == none) {
402 ASD("no transceiver, value=TCVR_FAILURE\n");
403 return TCVR_FAILURE;
404 }
405
406 if (!(hp->happy_flags & HFLAG_FENABLE)) {
407 ASD("doing bit bang\n");
408 return happy_meal_bb_read(hp, tregs, reg);
409 }
410
411 hme_write32(hp, tregs + TCVR_FRAME,
412 (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
413 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
414 udelay(20);
415 if (!tries) {
416 netdev_err(hp->dev, "Aieee, transceiver MIF read bolixed\n");
417 return TCVR_FAILURE;
418 }
419 retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
420 ASD("reg=0x%02x value=%04x\n", reg, retval);
421 return retval;
422}
423
424#define TCVR_WRITE_TRIES 16
425
426static void happy_meal_tcvr_write(struct happy_meal *hp,
427 void __iomem *tregs, int reg,
428 unsigned short value)
429{
430 int tries = TCVR_WRITE_TRIES;
431
432 ASD("reg=0x%02x value=%04x\n", reg, value);
433
434 /* Welcome to Sun Microsystems, can I take your order please? */
435 if (!(hp->happy_flags & HFLAG_FENABLE)) {
436 happy_meal_bb_write(hp, tregs, reg, value);
437 return;
438 }
439
440 /* Would you like fries with that? */
441 hme_write32(hp, tregs + TCVR_FRAME,
442 (FRAME_WRITE | (hp->paddr << 23) |
443 ((reg & 0xff) << 18) | (value & 0xffff)));
444 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
445 udelay(20);
446
447 /* Anything else? */
448 if (!tries)
449 netdev_err(hp->dev, "Aieee, transceiver MIF write bolixed\n");
450
451 /* Fifty-two cents is your change, have a nice day. */
452}
453
454/* Auto negotiation. The scheme is very simple. We have a timer routine
455 * that keeps watching the auto negotiation process as it progresses.
456 * The DP83840 is first told to start doing it's thing, we set up the time
457 * and place the timer state machine in it's initial state.
458 *
459 * Here the timer peeks at the DP83840 status registers at each click to see
460 * if the auto negotiation has completed, we assume here that the DP83840 PHY
461 * will time out at some point and just tell us what (didn't) happen. For
462 * complete coverage we only allow so many of the ticks at this level to run,
463 * when this has expired we print a warning message and try another strategy.
464 * This "other" strategy is to force the interface into various speed/duplex
465 * configurations and we stop when we see a link-up condition before the
466 * maximum number of "peek" ticks have occurred.
467 *
468 * Once a valid link status has been detected we configure the BigMAC and
469 * the rest of the Happy Meal to speak the most efficient protocol we could
470 * get a clean link for. The priority for link configurations, highest first
471 * is:
472 * 100 Base-T Full Duplex
473 * 100 Base-T Half Duplex
474 * 10 Base-T Full Duplex
475 * 10 Base-T Half Duplex
476 *
477 * We start a new timer now, after a successful auto negotiation status has
478 * been detected. This timer just waits for the link-up bit to get set in
479 * the BMCR of the DP83840. When this occurs we print a kernel log message
480 * describing the link type in use and the fact that it is up.
481 *
482 * If a fatal error of some sort is signalled and detected in the interrupt
483 * service routine, and the chip is reset, or the link is ifconfig'd down
484 * and then back up, this entire process repeats itself all over again.
485 */
486static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
487{
488 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
489
490 /* Downgrade from full to half duplex. Only possible
491 * via ethtool.
492 */
493 if (hp->sw_bmcr & BMCR_FULLDPLX) {
494 hp->sw_bmcr &= ~(BMCR_FULLDPLX);
495 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
496 return 0;
497 }
498
499 /* Downgrade from 100 to 10. */
500 if (hp->sw_bmcr & BMCR_SPEED100) {
501 hp->sw_bmcr &= ~(BMCR_SPEED100);
502 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
503 return 0;
504 }
505
506 /* We've tried everything. */
507 return -1;
508}
509
510static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
511{
512 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
513
514 netdev_info(hp->dev,
515 "Link is up using %s transceiver at %dMb/s, %s Duplex.\n",
516 hp->tcvr_type == external ? "external" : "internal",
517 hp->sw_lpa & (LPA_100HALF | LPA_100FULL) ? 100 : 10,
518 hp->sw_lpa & (LPA_100FULL | LPA_10FULL) ? "Full" : "Half");
519}
520
521static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
522{
523 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
524
525 netdev_info(hp->dev,
526 "Link has been forced up using %s transceiver at %dMb/s, %s Duplex.\n",
527 hp->tcvr_type == external ? "external" : "internal",
528 hp->sw_bmcr & BMCR_SPEED100 ? 100 : 10,
529 hp->sw_bmcr & BMCR_FULLDPLX ? "Full" : "Half");
530}
531
532static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
533{
534 int full;
535
536 /* All we care about is making sure the bigmac tx_cfg has a
537 * proper duplex setting.
538 */
539 if (hp->timer_state == arbwait) {
540 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
541 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
542 goto no_response;
543 if (hp->sw_lpa & LPA_100FULL)
544 full = 1;
545 else if (hp->sw_lpa & LPA_100HALF)
546 full = 0;
547 else if (hp->sw_lpa & LPA_10FULL)
548 full = 1;
549 else
550 full = 0;
551 } else {
552 /* Forcing a link mode. */
553 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
554 if (hp->sw_bmcr & BMCR_FULLDPLX)
555 full = 1;
556 else
557 full = 0;
558 }
559
560 /* Before changing other bits in the tx_cfg register, and in
561 * general any of other the TX config registers too, you
562 * must:
563 * 1) Clear Enable
564 * 2) Poll with reads until that bit reads back as zero
565 * 3) Make TX configuration changes
566 * 4) Set Enable once more
567 */
568 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
569 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
570 ~(BIGMAC_TXCFG_ENABLE));
571 while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
572 barrier();
573 if (full) {
574 hp->happy_flags |= HFLAG_FULL;
575 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
576 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
577 BIGMAC_TXCFG_FULLDPLX);
578 } else {
579 hp->happy_flags &= ~(HFLAG_FULL);
580 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
581 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
582 ~(BIGMAC_TXCFG_FULLDPLX));
583 }
584 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
585 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
586 BIGMAC_TXCFG_ENABLE);
587 return 0;
588no_response:
589 return 1;
590}
591
592static int happy_meal_init(struct happy_meal *hp);
593
594static int is_lucent_phy(struct happy_meal *hp)
595{
596 void __iomem *tregs = hp->tcvregs;
597 unsigned short mr2, mr3;
598 int ret = 0;
599
600 mr2 = happy_meal_tcvr_read(hp, tregs, 2);
601 mr3 = happy_meal_tcvr_read(hp, tregs, 3);
602 if ((mr2 & 0xffff) == 0x0180 &&
603 ((mr3 & 0xffff) >> 10) == 0x1d)
604 ret = 1;
605
606 return ret;
607}
608
609static void happy_meal_timer(struct timer_list *t)
610{
611 struct happy_meal *hp = from_timer(hp, t, happy_timer);
612 void __iomem *tregs = hp->tcvregs;
613 int restart_timer = 0;
614
615 spin_lock_irq(&hp->happy_lock);
616
617 hp->timer_ticks++;
618 switch(hp->timer_state) {
619 case arbwait:
620 /* Only allow for 5 ticks, thats 10 seconds and much too
621 * long to wait for arbitration to complete.
622 */
623 if (hp->timer_ticks >= 10) {
624 /* Enter force mode. */
625 do_force_mode:
626 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
627 netdev_notice(hp->dev,
628 "Auto-Negotiation unsuccessful, trying force link mode\n");
629 hp->sw_bmcr = BMCR_SPEED100;
630 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
631
632 if (!is_lucent_phy(hp)) {
633 /* OK, seems we need do disable the transceiver for the first
634 * tick to make sure we get an accurate link state at the
635 * second tick.
636 */
637 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
638 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
639 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
640 }
641 hp->timer_state = ltrywait;
642 hp->timer_ticks = 0;
643 restart_timer = 1;
644 } else {
645 /* Anything interesting happen? */
646 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
647 if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
648 int ret;
649
650 /* Just what we've been waiting for... */
651 ret = set_happy_link_modes(hp, tregs);
652 if (ret) {
653 /* Ooops, something bad happened, go to force
654 * mode.
655 *
656 * XXX Broken hubs which don't support 802.3u
657 * XXX auto-negotiation make this happen as well.
658 */
659 goto do_force_mode;
660 }
661
662 /* Success, at least so far, advance our state engine. */
663 hp->timer_state = lupwait;
664 restart_timer = 1;
665 } else {
666 restart_timer = 1;
667 }
668 }
669 break;
670
671 case lupwait:
672 /* Auto negotiation was successful and we are awaiting a
673 * link up status. I have decided to let this timer run
674 * forever until some sort of error is signalled, reporting
675 * a message to the user at 10 second intervals.
676 */
677 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
678 if (hp->sw_bmsr & BMSR_LSTATUS) {
679 /* Wheee, it's up, display the link mode in use and put
680 * the timer to sleep.
681 */
682 display_link_mode(hp, tregs);
683 hp->timer_state = asleep;
684 restart_timer = 0;
685 } else {
686 if (hp->timer_ticks >= 10) {
687 netdev_notice(hp->dev,
688 "Auto negotiation successful, link still not completely up.\n");
689 hp->timer_ticks = 0;
690 restart_timer = 1;
691 } else {
692 restart_timer = 1;
693 }
694 }
695 break;
696
697 case ltrywait:
698 /* Making the timeout here too long can make it take
699 * annoyingly long to attempt all of the link mode
700 * permutations, but then again this is essentially
701 * error recovery code for the most part.
702 */
703 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
704 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
705 if (hp->timer_ticks == 1) {
706 if (!is_lucent_phy(hp)) {
707 /* Re-enable transceiver, we'll re-enable the transceiver next
708 * tick, then check link state on the following tick.
709 */
710 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
711 happy_meal_tcvr_write(hp, tregs,
712 DP83840_CSCONFIG, hp->sw_csconfig);
713 }
714 restart_timer = 1;
715 break;
716 }
717 if (hp->timer_ticks == 2) {
718 if (!is_lucent_phy(hp)) {
719 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
720 happy_meal_tcvr_write(hp, tregs,
721 DP83840_CSCONFIG, hp->sw_csconfig);
722 }
723 restart_timer = 1;
724 break;
725 }
726 if (hp->sw_bmsr & BMSR_LSTATUS) {
727 /* Force mode selection success. */
728 display_forced_link_mode(hp, tregs);
729 set_happy_link_modes(hp, tregs); /* XXX error? then what? */
730 hp->timer_state = asleep;
731 restart_timer = 0;
732 } else {
733 if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
734 int ret;
735
736 ret = try_next_permutation(hp, tregs);
737 if (ret == -1) {
738 /* Aieee, tried them all, reset the
739 * chip and try all over again.
740 */
741
742 /* Let the user know... */
743 netdev_notice(hp->dev,
744 "Link down, cable problem?\n");
745
746 ret = happy_meal_init(hp);
747 if (ret) {
748 /* ho hum... */
749 netdev_err(hp->dev,
750 "Error, cannot re-init the Happy Meal.\n");
751 }
752 goto out;
753 }
754 if (!is_lucent_phy(hp)) {
755 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
756 DP83840_CSCONFIG);
757 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
758 happy_meal_tcvr_write(hp, tregs,
759 DP83840_CSCONFIG, hp->sw_csconfig);
760 }
761 hp->timer_ticks = 0;
762 restart_timer = 1;
763 } else {
764 restart_timer = 1;
765 }
766 }
767 break;
768
769 case asleep:
770 default:
771 /* Can't happens.... */
772 netdev_err(hp->dev,
773 "Aieee, link timer is asleep but we got one anyways!\n");
774 restart_timer = 0;
775 hp->timer_ticks = 0;
776 hp->timer_state = asleep; /* foo on you */
777 break;
778 }
779
780 if (restart_timer) {
781 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
782 add_timer(&hp->happy_timer);
783 }
784
785out:
786 spin_unlock_irq(&hp->happy_lock);
787}
788
789#define TX_RESET_TRIES 32
790#define RX_RESET_TRIES 32
791
792/* hp->happy_lock must be held */
793static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
794{
795 int tries = TX_RESET_TRIES;
796
797 HMD("reset...\n");
798
799 /* Would you like to try our SMCC Delux? */
800 hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
801 while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
802 udelay(20);
803
804 /* Lettuce, tomato, buggy hardware (no extra charge)? */
805 if (!tries)
806 netdev_err(hp->dev, "Transceiver BigMac ATTACK!");
807
808 /* Take care. */
809 HMD("done\n");
810}
811
812/* hp->happy_lock must be held */
813static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
814{
815 int tries = RX_RESET_TRIES;
816
817 HMD("reset...\n");
818
819 /* We have a special on GNU/Viking hardware bugs today. */
820 hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
821 while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
822 udelay(20);
823
824 /* Will that be all? */
825 if (!tries)
826 netdev_err(hp->dev, "Receiver BigMac ATTACK!\n");
827
828 /* Don't forget your vik_1137125_wa. Have a nice day. */
829 HMD("done\n");
830}
831
832#define STOP_TRIES 16
833
834/* hp->happy_lock must be held */
835static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
836{
837 int tries = STOP_TRIES;
838
839 HMD("reset...\n");
840
841 /* We're consolidating our STB products, it's your lucky day. */
842 hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
843 while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
844 udelay(20);
845
846 /* Come back next week when we are "Sun Microelectronics". */
847 if (!tries)
848 netdev_err(hp->dev, "Fry guys.\n");
849
850 /* Remember: "Different name, same old buggy as shit hardware." */
851 HMD("done\n");
852}
853
854/* hp->happy_lock must be held */
855static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
856{
857 struct net_device_stats *stats = &hp->dev->stats;
858
859 stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
860 hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
861
862 stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
863 hme_write32(hp, bregs + BMAC_UNALECTR, 0);
864
865 stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
866 hme_write32(hp, bregs + BMAC_GLECTR, 0);
867
868 stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
869
870 stats->collisions +=
871 (hme_read32(hp, bregs + BMAC_EXCTR) +
872 hme_read32(hp, bregs + BMAC_LTCTR));
873 hme_write32(hp, bregs + BMAC_EXCTR, 0);
874 hme_write32(hp, bregs + BMAC_LTCTR, 0);
875}
876
877/* hp->happy_lock must be held */
878static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
879{
880 /* If polling disabled or not polling already, nothing to do. */
881 if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
882 (HFLAG_POLLENABLE | HFLAG_POLL)) {
883 ASD("not polling, return\n");
884 return;
885 }
886
887 /* Shut up the MIF. */
888 ASD("were polling, mif ints off, polling off\n");
889 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
890
891 /* Turn off polling. */
892 hme_write32(hp, tregs + TCVR_CFG,
893 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
894
895 /* We are no longer polling. */
896 hp->happy_flags &= ~(HFLAG_POLL);
897
898 /* Let the bits set. */
899 udelay(200);
900 ASD("done\n");
901}
902
903/* Only Sun can take such nice parts and fuck up the programming interface
904 * like this. Good job guys...
905 */
906#define TCVR_RESET_TRIES 16 /* It should reset quickly */
907#define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */
908
909/* hp->happy_lock must be held */
910static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
911{
912 u32 tconfig;
913 int result, tries = TCVR_RESET_TRIES;
914
915 tconfig = hme_read32(hp, tregs + TCVR_CFG);
916 ASD("tcfg=%08x\n", tconfig);
917 if (hp->tcvr_type == external) {
918 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
919 hp->tcvr_type = internal;
920 hp->paddr = TCV_PADDR_ITX;
921 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
922 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
923 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
924 if (result == TCVR_FAILURE) {
925 ASD("phyread_fail\n");
926 return -1;
927 }
928 ASD("external: ISOLATE, phyread_ok, PSELECT\n");
929 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
930 hp->tcvr_type = external;
931 hp->paddr = TCV_PADDR_ETX;
932 } else {
933 if (tconfig & TCV_CFG_MDIO1) {
934 hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
935 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
936 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
937 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
938 if (result == TCVR_FAILURE) {
939 ASD("phyread_fail>\n");
940 return -1;
941 }
942 ASD("internal: PSELECT, ISOLATE, phyread_ok, ~PSELECT\n");
943 hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
944 hp->tcvr_type = internal;
945 hp->paddr = TCV_PADDR_ITX;
946 }
947 }
948
949 ASD("BMCR_RESET...\n");
950 happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
951
952 while (--tries) {
953 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
954 if (result == TCVR_FAILURE)
955 return -1;
956 hp->sw_bmcr = result;
957 if (!(result & BMCR_RESET))
958 break;
959 udelay(20);
960 }
961 if (!tries) {
962 ASD("BMCR RESET FAILED!\n");
963 return -1;
964 }
965 ASD("RESET_OK\n");
966
967 /* Get fresh copies of the PHY registers. */
968 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
969 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
970 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
971 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
972
973 ASD("UNISOLATE...\n");
974 hp->sw_bmcr &= ~(BMCR_ISOLATE);
975 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
976
977 tries = TCVR_UNISOLATE_TRIES;
978 while (--tries) {
979 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
980 if (result == TCVR_FAILURE)
981 return -1;
982 if (!(result & BMCR_ISOLATE))
983 break;
984 udelay(20);
985 }
986 if (!tries) {
987 ASD("UNISOLATE FAILED!\n");
988 return -1;
989 }
990 ASD("SUCCESS and CSCONFIG_DFBYPASS\n");
991 if (!is_lucent_phy(hp)) {
992 result = happy_meal_tcvr_read(hp, tregs,
993 DP83840_CSCONFIG);
994 happy_meal_tcvr_write(hp, tregs,
995 DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
996 }
997 return 0;
998}
999
1000/* Figure out whether we have an internal or external transceiver.
1001 *
1002 * hp->happy_lock must be held
1003 */
1004static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1005{
1006 unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1007
1008 ASD("tcfg=%08lx\n", tconfig);
1009 if (hp->happy_flags & HFLAG_POLL) {
1010 /* If we are polling, we must stop to get the transceiver type. */
1011 if (hp->tcvr_type == internal) {
1012 if (tconfig & TCV_CFG_MDIO1) {
1013 happy_meal_poll_stop(hp, tregs);
1014 hp->paddr = TCV_PADDR_ETX;
1015 hp->tcvr_type = external;
1016 tconfig &= ~(TCV_CFG_PENABLE);
1017 tconfig |= TCV_CFG_PSELECT;
1018 hme_write32(hp, tregs + TCVR_CFG, tconfig);
1019 ASD("poll stop, internal->external\n");
1020 }
1021 } else {
1022 if (hp->tcvr_type == external) {
1023 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1024 happy_meal_poll_stop(hp, tregs);
1025 hp->paddr = TCV_PADDR_ITX;
1026 hp->tcvr_type = internal;
1027 hme_write32(hp, tregs + TCVR_CFG,
1028 hme_read32(hp, tregs + TCVR_CFG) &
1029 ~(TCV_CFG_PSELECT));
1030 ASD("poll stop, external->internal\n");
1031 }
1032 } else {
1033 ASD("polling, none\n");
1034 }
1035 }
1036 } else {
1037 u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1038
1039 /* Else we can just work off of the MDIO bits. */
1040 if (reread & TCV_CFG_MDIO1) {
1041 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1042 hp->paddr = TCV_PADDR_ETX;
1043 hp->tcvr_type = external;
1044 ASD("not polling, external\n");
1045 } else {
1046 if (reread & TCV_CFG_MDIO0) {
1047 hme_write32(hp, tregs + TCVR_CFG,
1048 tconfig & ~(TCV_CFG_PSELECT));
1049 hp->paddr = TCV_PADDR_ITX;
1050 hp->tcvr_type = internal;
1051 ASD("not polling, internal\n");
1052 } else {
1053 netdev_err(hp->dev,
1054 "Transceiver and a coke please.");
1055 hp->tcvr_type = none; /* Grrr... */
1056 ASD("not polling, none\n");
1057 }
1058 }
1059 }
1060}
1061
1062/* The receive ring buffers are a bit tricky to get right. Here goes...
1063 *
1064 * The buffers we dma into must be 64 byte aligned. So we use a special
1065 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1066 * we really need.
1067 *
1068 * We use skb_reserve() to align the data block we get in the skb. We
1069 * also program the etxregs->cfg register to use an offset of 2. This
1070 * imperical constant plus the ethernet header size will always leave
1071 * us with a nicely aligned ip header once we pass things up to the
1072 * protocol layers.
1073 *
1074 * The numbers work out to:
1075 *
1076 * Max ethernet frame size 1518
1077 * Ethernet header size 14
1078 * Happy Meal base offset 2
1079 *
1080 * Say a skb data area is at 0xf001b010, and its size alloced is
1081 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1082 *
1083 * First our alloc_skb() routine aligns the data base to a 64 byte
1084 * boundary. We now have 0xf001b040 as our skb data address. We
1085 * plug this into the receive descriptor address.
1086 *
1087 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1088 * So now the data we will end up looking at starts at 0xf001b042. When
1089 * the packet arrives, we will check out the size received and subtract
1090 * this from the skb->length. Then we just pass the packet up to the
1091 * protocols as is, and allocate a new skb to replace this slot we have
1092 * just received from.
1093 *
1094 * The ethernet layer will strip the ether header from the front of the
1095 * skb we just sent to it, this leaves us with the ip header sitting
1096 * nicely aligned at 0xf001b050. Also, for tcp and udp packets the
1097 * Happy Meal has even checksummed the tcp/udp data for us. The 16
1098 * bit checksum is obtained from the low bits of the receive descriptor
1099 * flags, thus:
1100 *
1101 * skb->csum = rxd->rx_flags & 0xffff;
1102 * skb->ip_summed = CHECKSUM_COMPLETE;
1103 *
1104 * before sending off the skb to the protocols, and we are good as gold.
1105 */
1106static void happy_meal_clean_rings(struct happy_meal *hp)
1107{
1108 int i;
1109
1110 for (i = 0; i < RX_RING_SIZE; i++) {
1111 if (hp->rx_skbs[i] != NULL) {
1112 struct sk_buff *skb = hp->rx_skbs[i];
1113 struct happy_meal_rxd *rxd;
1114 u32 dma_addr;
1115
1116 rxd = &hp->happy_block->happy_meal_rxd[i];
1117 dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1118 dma_unmap_single(hp->dma_dev, dma_addr,
1119 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1120 dev_kfree_skb_any(skb);
1121 hp->rx_skbs[i] = NULL;
1122 }
1123 }
1124
1125 for (i = 0; i < TX_RING_SIZE; i++) {
1126 if (hp->tx_skbs[i] != NULL) {
1127 struct sk_buff *skb = hp->tx_skbs[i];
1128 struct happy_meal_txd *txd;
1129 u32 dma_addr;
1130 int frag;
1131
1132 hp->tx_skbs[i] = NULL;
1133
1134 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1135 txd = &hp->happy_block->happy_meal_txd[i];
1136 dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1137 if (!frag)
1138 dma_unmap_single(hp->dma_dev, dma_addr,
1139 (hme_read_desc32(hp, &txd->tx_flags)
1140 & TXFLAG_SIZE),
1141 DMA_TO_DEVICE);
1142 else
1143 dma_unmap_page(hp->dma_dev, dma_addr,
1144 (hme_read_desc32(hp, &txd->tx_flags)
1145 & TXFLAG_SIZE),
1146 DMA_TO_DEVICE);
1147
1148 if (frag != skb_shinfo(skb)->nr_frags)
1149 i++;
1150 }
1151
1152 dev_kfree_skb_any(skb);
1153 }
1154 }
1155}
1156
1157/* hp->happy_lock must be held */
1158static void happy_meal_init_rings(struct happy_meal *hp)
1159{
1160 struct hmeal_init_block *hb = hp->happy_block;
1161 int i;
1162
1163 HMD("counters to zero\n");
1164 hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1165
1166 /* Free any skippy bufs left around in the rings. */
1167 happy_meal_clean_rings(hp);
1168
1169 /* Now get new skippy bufs for the receive ring. */
1170 HMD("init rxring\n");
1171 for (i = 0; i < RX_RING_SIZE; i++) {
1172 struct sk_buff *skb;
1173 u32 mapping;
1174
1175 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1176 if (!skb) {
1177 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1178 continue;
1179 }
1180 hp->rx_skbs[i] = skb;
1181
1182 /* Because we reserve afterwards. */
1183 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1184 mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1185 DMA_FROM_DEVICE);
1186 if (dma_mapping_error(hp->dma_dev, mapping)) {
1187 dev_kfree_skb_any(skb);
1188 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1189 continue;
1190 }
1191 hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1192 (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1193 mapping);
1194 skb_reserve(skb, RX_OFFSET);
1195 }
1196
1197 HMD("init txring\n");
1198 for (i = 0; i < TX_RING_SIZE; i++)
1199 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1200
1201 HMD("done\n");
1202}
1203
1204/* hp->happy_lock must be held */
1205static void
1206happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1207 void __iomem *tregs,
1208 const struct ethtool_link_ksettings *ep)
1209{
1210 int timeout;
1211
1212 /* Read all of the registers we are interested in now. */
1213 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1214 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1215 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1216 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1217
1218 /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1219
1220 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1221 if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1222 /* Advertise everything we can support. */
1223 if (hp->sw_bmsr & BMSR_10HALF)
1224 hp->sw_advertise |= (ADVERTISE_10HALF);
1225 else
1226 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1227
1228 if (hp->sw_bmsr & BMSR_10FULL)
1229 hp->sw_advertise |= (ADVERTISE_10FULL);
1230 else
1231 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1232 if (hp->sw_bmsr & BMSR_100HALF)
1233 hp->sw_advertise |= (ADVERTISE_100HALF);
1234 else
1235 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1236 if (hp->sw_bmsr & BMSR_100FULL)
1237 hp->sw_advertise |= (ADVERTISE_100FULL);
1238 else
1239 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1240 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1241
1242 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1243 * XXX and this is because the DP83840 does not support it, changes
1244 * XXX would need to be made to the tx/rx logic in the driver as well
1245 * XXX so I completely skip checking for it in the BMSR for now.
1246 */
1247
1248 ASD("Advertising [ %s%s%s%s]\n",
1249 hp->sw_advertise & ADVERTISE_10HALF ? "10H " : "",
1250 hp->sw_advertise & ADVERTISE_10FULL ? "10F " : "",
1251 hp->sw_advertise & ADVERTISE_100HALF ? "100H " : "",
1252 hp->sw_advertise & ADVERTISE_100FULL ? "100F " : "");
1253
1254 /* Enable Auto-Negotiation, this is usually on already... */
1255 hp->sw_bmcr |= BMCR_ANENABLE;
1256 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1257
1258 /* Restart it to make sure it is going. */
1259 hp->sw_bmcr |= BMCR_ANRESTART;
1260 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1261
1262 /* BMCR_ANRESTART self clears when the process has begun. */
1263
1264 timeout = 64; /* More than enough. */
1265 while (--timeout) {
1266 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1267 if (!(hp->sw_bmcr & BMCR_ANRESTART))
1268 break; /* got it. */
1269 udelay(10);
1270 }
1271 if (!timeout) {
1272 netdev_err(hp->dev,
1273 "Happy Meal would not start auto negotiation BMCR=0x%04x\n",
1274 hp->sw_bmcr);
1275 netdev_notice(hp->dev,
1276 "Performing force link detection.\n");
1277 goto force_link;
1278 } else {
1279 hp->timer_state = arbwait;
1280 }
1281 } else {
1282force_link:
1283 /* Force the link up, trying first a particular mode.
1284 * Either we are here at the request of ethtool or
1285 * because the Happy Meal would not start to autoneg.
1286 */
1287
1288 /* Disable auto-negotiation in BMCR, enable the duplex and
1289 * speed setting, init the timer state machine, and fire it off.
1290 */
1291 if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1292 hp->sw_bmcr = BMCR_SPEED100;
1293 } else {
1294 if (ep->base.speed == SPEED_100)
1295 hp->sw_bmcr = BMCR_SPEED100;
1296 else
1297 hp->sw_bmcr = 0;
1298 if (ep->base.duplex == DUPLEX_FULL)
1299 hp->sw_bmcr |= BMCR_FULLDPLX;
1300 }
1301 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1302
1303 if (!is_lucent_phy(hp)) {
1304 /* OK, seems we need do disable the transceiver for the first
1305 * tick to make sure we get an accurate link state at the
1306 * second tick.
1307 */
1308 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1309 DP83840_CSCONFIG);
1310 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1311 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1312 hp->sw_csconfig);
1313 }
1314 hp->timer_state = ltrywait;
1315 }
1316
1317 hp->timer_ticks = 0;
1318 hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
1319 add_timer(&hp->happy_timer);
1320}
1321
1322/* hp->happy_lock must be held */
1323static int happy_meal_init(struct happy_meal *hp)
1324{
1325 const unsigned char *e = &hp->dev->dev_addr[0];
1326 void __iomem *gregs = hp->gregs;
1327 void __iomem *etxregs = hp->etxregs;
1328 void __iomem *erxregs = hp->erxregs;
1329 void __iomem *bregs = hp->bigmacregs;
1330 void __iomem *tregs = hp->tcvregs;
1331 const char *bursts = "64";
1332 u32 regtmp, rxcfg;
1333
1334 /* If auto-negotiation timer is running, kill it. */
1335 del_timer(&hp->happy_timer);
1336
1337 HMD("happy_flags[%08x]\n", hp->happy_flags);
1338 if (!(hp->happy_flags & HFLAG_INIT)) {
1339 HMD("set HFLAG_INIT\n");
1340 hp->happy_flags |= HFLAG_INIT;
1341 happy_meal_get_counters(hp, bregs);
1342 }
1343
1344 /* Stop polling. */
1345 HMD("to happy_meal_poll_stop\n");
1346 happy_meal_poll_stop(hp, tregs);
1347
1348 /* Stop transmitter and receiver. */
1349 HMD("to happy_meal_stop\n");
1350 happy_meal_stop(hp, gregs);
1351
1352 /* Alloc and reset the tx/rx descriptor chains. */
1353 HMD("to happy_meal_init_rings\n");
1354 happy_meal_init_rings(hp);
1355
1356 /* Shut up the MIF. */
1357 HMD("Disable all MIF irqs (old[%08x])\n",
1358 hme_read32(hp, tregs + TCVR_IMASK));
1359 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1360
1361 /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1362 if (hp->happy_flags & HFLAG_FENABLE) {
1363 HMD("use frame old[%08x]\n",
1364 hme_read32(hp, tregs + TCVR_CFG));
1365 hme_write32(hp, tregs + TCVR_CFG,
1366 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1367 } else {
1368 HMD("use bitbang old[%08x]\n",
1369 hme_read32(hp, tregs + TCVR_CFG));
1370 hme_write32(hp, tregs + TCVR_CFG,
1371 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1372 }
1373
1374 /* Check the state of the transceiver. */
1375 HMD("to happy_meal_transceiver_check\n");
1376 happy_meal_transceiver_check(hp, tregs);
1377
1378 /* Put the Big Mac into a sane state. */
1379 switch(hp->tcvr_type) {
1380 case none:
1381 /* Cannot operate if we don't know the transceiver type! */
1382 HMD("AAIEEE no transceiver type, EAGAIN\n");
1383 return -EAGAIN;
1384
1385 case internal:
1386 /* Using the MII buffers. */
1387 HMD("internal, using MII\n");
1388 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1389 break;
1390
1391 case external:
1392 /* Not using the MII, disable it. */
1393 HMD("external, disable MII\n");
1394 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1395 break;
1396 }
1397
1398 if (happy_meal_tcvr_reset(hp, tregs))
1399 return -EAGAIN;
1400
1401 /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1402 HMD("tx/rx reset\n");
1403 happy_meal_tx_reset(hp, bregs);
1404 happy_meal_rx_reset(hp, bregs);
1405
1406 /* Set jam size and inter-packet gaps to reasonable defaults. */
1407 hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1408 hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1409 hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1410
1411 /* Load up the MAC address and random seed. */
1412
1413 /* The docs recommend to use the 10LSB of our MAC here. */
1414 hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1415
1416 hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1417 hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1418 hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1419
1420 if ((hp->dev->flags & IFF_ALLMULTI) ||
1421 (netdev_mc_count(hp->dev) > 64)) {
1422 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1423 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1424 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1425 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1426 } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1427 u16 hash_table[4];
1428 struct netdev_hw_addr *ha;
1429 u32 crc;
1430
1431 memset(hash_table, 0, sizeof(hash_table));
1432 netdev_for_each_mc_addr(ha, hp->dev) {
1433 crc = ether_crc_le(6, ha->addr);
1434 crc >>= 26;
1435 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1436 }
1437 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1438 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1439 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1440 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1441 } else {
1442 hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1443 hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1444 hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1445 hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1446 }
1447
1448 /* Set the RX and TX ring ptrs. */
1449 HMD("ring ptrs rxr[%08x] txr[%08x]\n",
1450 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1451 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1452 hme_write32(hp, erxregs + ERX_RING,
1453 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1454 hme_write32(hp, etxregs + ETX_RING,
1455 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1456
1457 /* Parity issues in the ERX unit of some HME revisions can cause some
1458 * registers to not be written unless their parity is even. Detect such
1459 * lost writes and simply rewrite with a low bit set (which will be ignored
1460 * since the rxring needs to be 2K aligned).
1461 */
1462 if (hme_read32(hp, erxregs + ERX_RING) !=
1463 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1464 hme_write32(hp, erxregs + ERX_RING,
1465 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1466 | 0x4);
1467
1468 /* Set the supported burst sizes. */
1469#ifndef CONFIG_SPARC
1470 /* It is always PCI and can handle 64byte bursts. */
1471 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1472#else
1473 if ((hp->happy_bursts & DMA_BURST64) &&
1474 ((hp->happy_flags & HFLAG_PCI) != 0
1475#ifdef CONFIG_SBUS
1476 || sbus_can_burst64()
1477#endif
1478 || 0)) {
1479 u32 gcfg = GREG_CFG_BURST64;
1480
1481 /* I have no idea if I should set the extended
1482 * transfer mode bit for Cheerio, so for now I
1483 * do not. -DaveM
1484 */
1485#ifdef CONFIG_SBUS
1486 if ((hp->happy_flags & HFLAG_PCI) == 0) {
1487 struct platform_device *op = hp->happy_dev;
1488 if (sbus_can_dma_64bit()) {
1489 sbus_set_sbus64(&op->dev,
1490 hp->happy_bursts);
1491 gcfg |= GREG_CFG_64BIT;
1492 }
1493 }
1494#endif
1495
1496 bursts = "64";
1497 hme_write32(hp, gregs + GREG_CFG, gcfg);
1498 } else if (hp->happy_bursts & DMA_BURST32) {
1499 bursts = "32";
1500 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1501 } else if (hp->happy_bursts & DMA_BURST16) {
1502 bursts = "16";
1503 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1504 } else {
1505 bursts = "XXX";
1506 hme_write32(hp, gregs + GREG_CFG, 0);
1507 }
1508#endif /* CONFIG_SPARC */
1509
1510 HMD("old[%08x] bursts<%s>\n",
1511 hme_read32(hp, gregs + GREG_CFG), bursts);
1512
1513 /* Turn off interrupts we do not want to hear. */
1514 hme_write32(hp, gregs + GREG_IMASK,
1515 (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1516 GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1517
1518 /* Set the transmit ring buffer size. */
1519 HMD("tx rsize=%d oreg[%08x]\n", (int)TX_RING_SIZE,
1520 hme_read32(hp, etxregs + ETX_RSIZE));
1521 hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1522
1523 /* Enable transmitter DVMA. */
1524 HMD("tx dma enable old[%08x]\n", hme_read32(hp, etxregs + ETX_CFG));
1525 hme_write32(hp, etxregs + ETX_CFG,
1526 hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1527
1528 /* This chip really rots, for the receiver sometimes when you
1529 * write to its control registers not all the bits get there
1530 * properly. I cannot think of a sane way to provide complete
1531 * coverage for this hardware bug yet.
1532 */
1533 HMD("erx regs bug old[%08x]\n",
1534 hme_read32(hp, erxregs + ERX_CFG));
1535 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1536 regtmp = hme_read32(hp, erxregs + ERX_CFG);
1537 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1538 if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1539 netdev_err(hp->dev,
1540 "Eieee, rx config register gets greasy fries.\n");
1541 netdev_err(hp->dev,
1542 "Trying to set %08x, reread gives %08x\n",
1543 ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1544 /* XXX Should return failure here... */
1545 }
1546
1547 /* Enable Big Mac hash table filter. */
1548 HMD("enable hash rx_cfg_old[%08x]\n",
1549 hme_read32(hp, bregs + BMAC_RXCFG));
1550 rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1551 if (hp->dev->flags & IFF_PROMISC)
1552 rxcfg |= BIGMAC_RXCFG_PMISC;
1553 hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1554
1555 /* Let the bits settle in the chip. */
1556 udelay(10);
1557
1558 /* Ok, configure the Big Mac transmitter. */
1559 HMD("BIGMAC init\n");
1560 regtmp = 0;
1561 if (hp->happy_flags & HFLAG_FULL)
1562 regtmp |= BIGMAC_TXCFG_FULLDPLX;
1563
1564 /* Don't turn on the "don't give up" bit for now. It could cause hme
1565 * to deadlock with the PHY if a Jabber occurs.
1566 */
1567 hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1568
1569 /* Give up after 16 TX attempts. */
1570 hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1571
1572 /* Enable the output drivers no matter what. */
1573 regtmp = BIGMAC_XCFG_ODENABLE;
1574
1575 /* If card can do lance mode, enable it. */
1576 if (hp->happy_flags & HFLAG_LANCE)
1577 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1578
1579 /* Disable the MII buffers if using external transceiver. */
1580 if (hp->tcvr_type == external)
1581 regtmp |= BIGMAC_XCFG_MIIDISAB;
1582
1583 HMD("XIF config old[%08x]\n", hme_read32(hp, bregs + BMAC_XIFCFG));
1584 hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1585
1586 /* Start things up. */
1587 HMD("tx old[%08x] and rx [%08x] ON!\n",
1588 hme_read32(hp, bregs + BMAC_TXCFG),
1589 hme_read32(hp, bregs + BMAC_RXCFG));
1590
1591 /* Set larger TX/RX size to allow for 802.1q */
1592 hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1593 hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1594
1595 hme_write32(hp, bregs + BMAC_TXCFG,
1596 hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1597 hme_write32(hp, bregs + BMAC_RXCFG,
1598 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1599
1600 /* Get the autonegotiation started, and the watch timer ticking. */
1601 happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1602
1603 /* Success. */
1604 return 0;
1605}
1606
1607/* hp->happy_lock must be held */
1608static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1609{
1610 void __iomem *tregs = hp->tcvregs;
1611 void __iomem *bregs = hp->bigmacregs;
1612 void __iomem *gregs = hp->gregs;
1613
1614 happy_meal_stop(hp, gregs);
1615 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1616 if (hp->happy_flags & HFLAG_FENABLE)
1617 hme_write32(hp, tregs + TCVR_CFG,
1618 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1619 else
1620 hme_write32(hp, tregs + TCVR_CFG,
1621 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1622 happy_meal_transceiver_check(hp, tregs);
1623 switch(hp->tcvr_type) {
1624 case none:
1625 return;
1626 case internal:
1627 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1628 break;
1629 case external:
1630 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1631 break;
1632 }
1633 if (happy_meal_tcvr_reset(hp, tregs))
1634 return;
1635
1636 /* Latch PHY registers as of now. */
1637 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1638 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1639
1640 /* Advertise everything we can support. */
1641 if (hp->sw_bmsr & BMSR_10HALF)
1642 hp->sw_advertise |= (ADVERTISE_10HALF);
1643 else
1644 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1645
1646 if (hp->sw_bmsr & BMSR_10FULL)
1647 hp->sw_advertise |= (ADVERTISE_10FULL);
1648 else
1649 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1650 if (hp->sw_bmsr & BMSR_100HALF)
1651 hp->sw_advertise |= (ADVERTISE_100HALF);
1652 else
1653 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1654 if (hp->sw_bmsr & BMSR_100FULL)
1655 hp->sw_advertise |= (ADVERTISE_100FULL);
1656 else
1657 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1658
1659 /* Update the PHY advertisement register. */
1660 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1661}
1662
1663/* Once status is latched (by happy_meal_interrupt) it is cleared by
1664 * the hardware, so we cannot re-read it and get a correct value.
1665 *
1666 * hp->happy_lock must be held
1667 */
1668static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1669{
1670 int reset = 0;
1671
1672 /* Only print messages for non-counter related interrupts. */
1673 if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1674 GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1675 GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1676 GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1677 GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1678 GREG_STAT_SLVPERR))
1679 netdev_err(hp->dev,
1680 "Error interrupt for happy meal, status = %08x\n",
1681 status);
1682
1683 if (status & GREG_STAT_RFIFOVF) {
1684 /* Receive FIFO overflow is harmless and the hardware will take
1685 care of it, just some packets are lost. Who cares. */
1686 netdev_dbg(hp->dev, "Happy Meal receive FIFO overflow.\n");
1687 }
1688
1689 if (status & GREG_STAT_STSTERR) {
1690 /* BigMAC SQE link test failed. */
1691 netdev_err(hp->dev, "Happy Meal BigMAC SQE test failed.\n");
1692 reset = 1;
1693 }
1694
1695 if (status & GREG_STAT_TFIFO_UND) {
1696 /* Transmit FIFO underrun, again DMA error likely. */
1697 netdev_err(hp->dev,
1698 "Happy Meal transmitter FIFO underrun, DMA error.\n");
1699 reset = 1;
1700 }
1701
1702 if (status & GREG_STAT_MAXPKTERR) {
1703 /* Driver error, tried to transmit something larger
1704 * than ethernet max mtu.
1705 */
1706 netdev_err(hp->dev, "Happy Meal MAX Packet size error.\n");
1707 reset = 1;
1708 }
1709
1710 if (status & GREG_STAT_NORXD) {
1711 /* This is harmless, it just means the system is
1712 * quite loaded and the incoming packet rate was
1713 * faster than the interrupt handler could keep up
1714 * with.
1715 */
1716 netdev_info(hp->dev,
1717 "Happy Meal out of receive descriptors, packet dropped.\n");
1718 }
1719
1720 if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1721 /* All sorts of DMA receive errors. */
1722 netdev_err(hp->dev, "Happy Meal rx DMA errors [ %s%s%s]\n",
1723 status & GREG_STAT_RXERR ? "GenericError " : "",
1724 status & GREG_STAT_RXPERR ? "ParityError " : "",
1725 status & GREG_STAT_RXTERR ? "RxTagBotch " : "");
1726 reset = 1;
1727 }
1728
1729 if (status & GREG_STAT_EOPERR) {
1730 /* Driver bug, didn't set EOP bit in tx descriptor given
1731 * to the happy meal.
1732 */
1733 netdev_err(hp->dev,
1734 "EOP not set in happy meal transmit descriptor!\n");
1735 reset = 1;
1736 }
1737
1738 if (status & GREG_STAT_MIFIRQ) {
1739 /* MIF signalled an interrupt, were we polling it? */
1740 netdev_err(hp->dev, "Happy Meal MIF interrupt.\n");
1741 }
1742
1743 if (status &
1744 (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1745 /* All sorts of transmit DMA errors. */
1746 netdev_err(hp->dev, "Happy Meal tx DMA errors [ %s%s%s%s]\n",
1747 status & GREG_STAT_TXEACK ? "GenericError " : "",
1748 status & GREG_STAT_TXLERR ? "LateError " : "",
1749 status & GREG_STAT_TXPERR ? "ParityError " : "",
1750 status & GREG_STAT_TXTERR ? "TagBotch " : "");
1751 reset = 1;
1752 }
1753
1754 if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1755 /* Bus or parity error when cpu accessed happy meal registers
1756 * or it's internal FIFO's. Should never see this.
1757 */
1758 netdev_err(hp->dev,
1759 "Happy Meal register access SBUS slave (%s) error.\n",
1760 (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1761 reset = 1;
1762 }
1763
1764 if (reset) {
1765 netdev_notice(hp->dev, "Resetting...\n");
1766 happy_meal_init(hp);
1767 return 1;
1768 }
1769 return 0;
1770}
1771
1772/* hp->happy_lock must be held */
1773static void happy_meal_mif_interrupt(struct happy_meal *hp)
1774{
1775 void __iomem *tregs = hp->tcvregs;
1776
1777 netdev_info(hp->dev, "Link status change.\n");
1778 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1779 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1780
1781 /* Use the fastest transmission protocol possible. */
1782 if (hp->sw_lpa & LPA_100FULL) {
1783 netdev_info(hp->dev, "Switching to 100Mbps at full duplex.\n");
1784 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1785 } else if (hp->sw_lpa & LPA_100HALF) {
1786 netdev_info(hp->dev, "Switching to 100MBps at half duplex.\n");
1787 hp->sw_bmcr |= BMCR_SPEED100;
1788 } else if (hp->sw_lpa & LPA_10FULL) {
1789 netdev_info(hp->dev, "Switching to 10MBps at full duplex.\n");
1790 hp->sw_bmcr |= BMCR_FULLDPLX;
1791 } else {
1792 netdev_info(hp->dev, "Using 10Mbps at half duplex.\n");
1793 }
1794 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1795
1796 /* Finally stop polling and shut up the MIF. */
1797 happy_meal_poll_stop(hp, tregs);
1798}
1799
1800/* hp->happy_lock must be held */
1801static void happy_meal_tx(struct happy_meal *hp)
1802{
1803 struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1804 struct happy_meal_txd *this;
1805 struct net_device *dev = hp->dev;
1806 int elem;
1807
1808 elem = hp->tx_old;
1809 while (elem != hp->tx_new) {
1810 struct sk_buff *skb;
1811 u32 flags, dma_addr, dma_len;
1812 int frag;
1813
1814 netdev_vdbg(hp->dev, "TX[%d]\n", elem);
1815 this = &txbase[elem];
1816 flags = hme_read_desc32(hp, &this->tx_flags);
1817 if (flags & TXFLAG_OWN)
1818 break;
1819 skb = hp->tx_skbs[elem];
1820 if (skb_shinfo(skb)->nr_frags) {
1821 int last;
1822
1823 last = elem + skb_shinfo(skb)->nr_frags;
1824 last &= (TX_RING_SIZE - 1);
1825 flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1826 if (flags & TXFLAG_OWN)
1827 break;
1828 }
1829 hp->tx_skbs[elem] = NULL;
1830 dev->stats.tx_bytes += skb->len;
1831
1832 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1833 dma_addr = hme_read_desc32(hp, &this->tx_addr);
1834 dma_len = hme_read_desc32(hp, &this->tx_flags);
1835
1836 dma_len &= TXFLAG_SIZE;
1837 if (!frag)
1838 dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1839 else
1840 dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1841
1842 elem = NEXT_TX(elem);
1843 this = &txbase[elem];
1844 }
1845
1846 dev_consume_skb_irq(skb);
1847 dev->stats.tx_packets++;
1848 }
1849 hp->tx_old = elem;
1850
1851 if (netif_queue_stopped(dev) &&
1852 TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1853 netif_wake_queue(dev);
1854}
1855
1856/* Originally I used to handle the allocation failure by just giving back just
1857 * that one ring buffer to the happy meal. Problem is that usually when that
1858 * condition is triggered, the happy meal expects you to do something reasonable
1859 * with all of the packets it has DMA'd in. So now I just drop the entire
1860 * ring when we cannot get a new skb and give them all back to the happy meal,
1861 * maybe things will be "happier" now.
1862 *
1863 * hp->happy_lock must be held
1864 */
1865static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1866{
1867 struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1868 struct happy_meal_rxd *this;
1869 int elem = hp->rx_new, drops = 0;
1870 u32 flags;
1871
1872 this = &rxbase[elem];
1873 while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
1874 struct sk_buff *skb;
1875 int len = flags >> 16;
1876 u16 csum = flags & RXFLAG_CSUM;
1877 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
1878
1879 /* Check for errors. */
1880 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
1881 netdev_vdbg(dev, "RX[%d ERR(%08x)]", elem, flags);
1882 dev->stats.rx_errors++;
1883 if (len < ETH_ZLEN)
1884 dev->stats.rx_length_errors++;
1885 if (len & (RXFLAG_OVERFLOW >> 16)) {
1886 dev->stats.rx_over_errors++;
1887 dev->stats.rx_fifo_errors++;
1888 }
1889
1890 /* Return it to the Happy meal. */
1891 drop_it:
1892 dev->stats.rx_dropped++;
1893 hme_write_rxd(hp, this,
1894 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
1895 dma_addr);
1896 goto next;
1897 }
1898 skb = hp->rx_skbs[elem];
1899 if (len > RX_COPY_THRESHOLD) {
1900 struct sk_buff *new_skb;
1901 u32 mapping;
1902
1903 /* Now refill the entry, if we can. */
1904 new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1905 if (new_skb == NULL) {
1906 drops++;
1907 goto drop_it;
1908 }
1909 skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1910 mapping = dma_map_single(hp->dma_dev, new_skb->data,
1911 RX_BUF_ALLOC_SIZE,
1912 DMA_FROM_DEVICE);
1913 if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
1914 dev_kfree_skb_any(new_skb);
1915 drops++;
1916 goto drop_it;
1917 }
1918
1919 dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1920 hp->rx_skbs[elem] = new_skb;
1921 hme_write_rxd(hp, this,
1922 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
1923 mapping);
1924 skb_reserve(new_skb, RX_OFFSET);
1925
1926 /* Trim the original skb for the netif. */
1927 skb_trim(skb, len);
1928 } else {
1929 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
1930
1931 if (copy_skb == NULL) {
1932 drops++;
1933 goto drop_it;
1934 }
1935
1936 skb_reserve(copy_skb, 2);
1937 skb_put(copy_skb, len);
1938 dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len + 2, DMA_FROM_DEVICE);
1939 skb_copy_from_linear_data(skb, copy_skb->data, len);
1940 dma_sync_single_for_device(hp->dma_dev, dma_addr, len + 2, DMA_FROM_DEVICE);
1941 /* Reuse original ring buffer. */
1942 hme_write_rxd(hp, this,
1943 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
1944 dma_addr);
1945
1946 skb = copy_skb;
1947 }
1948
1949 /* This card is _fucking_ hot... */
1950 skb->csum = csum_unfold(~(__force __sum16)htons(csum));
1951 skb->ip_summed = CHECKSUM_COMPLETE;
1952
1953 netdev_vdbg(dev, "RX[%d len=%d csum=%4x]", elem, len, csum);
1954 skb->protocol = eth_type_trans(skb, dev);
1955 netif_rx(skb);
1956
1957 dev->stats.rx_packets++;
1958 dev->stats.rx_bytes += len;
1959 next:
1960 elem = NEXT_RX(elem);
1961 this = &rxbase[elem];
1962 }
1963 hp->rx_new = elem;
1964 if (drops)
1965 netdev_info(hp->dev, "Memory squeeze, deferring packet.\n");
1966}
1967
1968static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
1969{
1970 struct net_device *dev = dev_id;
1971 struct happy_meal *hp = netdev_priv(dev);
1972 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
1973
1974 HMD("status=%08x\n", happy_status);
1975
1976 spin_lock(&hp->happy_lock);
1977
1978 if (happy_status & GREG_STAT_ERRORS) {
1979 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
1980 goto out;
1981 }
1982
1983 if (happy_status & GREG_STAT_MIFIRQ)
1984 happy_meal_mif_interrupt(hp);
1985
1986 if (happy_status & GREG_STAT_TXALL)
1987 happy_meal_tx(hp);
1988
1989 if (happy_status & GREG_STAT_RXTOHOST)
1990 happy_meal_rx(hp, dev);
1991
1992 HMD("done\n");
1993out:
1994 spin_unlock(&hp->happy_lock);
1995
1996 return IRQ_HANDLED;
1997}
1998
1999#ifdef CONFIG_SBUS
2000static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2001{
2002 struct quattro *qp = (struct quattro *) cookie;
2003 int i;
2004
2005 for (i = 0; i < 4; i++) {
2006 struct net_device *dev = qp->happy_meals[i];
2007 struct happy_meal *hp = netdev_priv(dev);
2008 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2009
2010 HMD("status=%08x\n", happy_status);
2011
2012 if (!(happy_status & (GREG_STAT_ERRORS |
2013 GREG_STAT_MIFIRQ |
2014 GREG_STAT_TXALL |
2015 GREG_STAT_RXTOHOST)))
2016 continue;
2017
2018 spin_lock(&hp->happy_lock);
2019
2020 if (happy_status & GREG_STAT_ERRORS)
2021 if (happy_meal_is_not_so_happy(hp, happy_status))
2022 goto next;
2023
2024 if (happy_status & GREG_STAT_MIFIRQ)
2025 happy_meal_mif_interrupt(hp);
2026
2027 if (happy_status & GREG_STAT_TXALL)
2028 happy_meal_tx(hp);
2029
2030 if (happy_status & GREG_STAT_RXTOHOST)
2031 happy_meal_rx(hp, dev);
2032
2033 next:
2034 spin_unlock(&hp->happy_lock);
2035 }
2036 HMD("done\n");
2037
2038 return IRQ_HANDLED;
2039}
2040#endif
2041
2042static int happy_meal_open(struct net_device *dev)
2043{
2044 struct happy_meal *hp = netdev_priv(dev);
2045 int res;
2046
2047 /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2048 * into a single source which we register handling at probe time.
2049 */
2050 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2051 res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2052 dev->name, dev);
2053 if (res) {
2054 HMD("EAGAIN\n");
2055 netdev_err(dev, "Can't order irq %d to go.\n", hp->irq);
2056
2057 return -EAGAIN;
2058 }
2059 }
2060
2061 HMD("to happy_meal_init\n");
2062
2063 spin_lock_irq(&hp->happy_lock);
2064 res = happy_meal_init(hp);
2065 spin_unlock_irq(&hp->happy_lock);
2066
2067 if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2068 free_irq(hp->irq, dev);
2069 return res;
2070}
2071
2072static int happy_meal_close(struct net_device *dev)
2073{
2074 struct happy_meal *hp = netdev_priv(dev);
2075
2076 spin_lock_irq(&hp->happy_lock);
2077 happy_meal_stop(hp, hp->gregs);
2078 happy_meal_clean_rings(hp);
2079
2080 /* If auto-negotiation timer is running, kill it. */
2081 del_timer(&hp->happy_timer);
2082
2083 spin_unlock_irq(&hp->happy_lock);
2084
2085 /* On Quattro QFE cards, all hme interrupts are concentrated
2086 * into a single source which we register handling at probe
2087 * time and never unregister.
2088 */
2089 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2090 free_irq(hp->irq, dev);
2091
2092 return 0;
2093}
2094
2095static void happy_meal_tx_timeout(struct net_device *dev, unsigned int txqueue)
2096{
2097 struct happy_meal *hp = netdev_priv(dev);
2098
2099 netdev_err(dev, "transmit timed out, resetting\n");
2100 tx_dump_log();
2101 netdev_err(dev, "Happy Status %08x TX[%08x:%08x]\n",
2102 hme_read32(hp, hp->gregs + GREG_STAT),
2103 hme_read32(hp, hp->etxregs + ETX_CFG),
2104 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2105
2106 spin_lock_irq(&hp->happy_lock);
2107 happy_meal_init(hp);
2108 spin_unlock_irq(&hp->happy_lock);
2109
2110 netif_wake_queue(dev);
2111}
2112
2113static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2114 u32 first_len, u32 first_entry, u32 entry)
2115{
2116 struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2117
2118 dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2119
2120 first_entry = NEXT_TX(first_entry);
2121 while (first_entry != entry) {
2122 struct happy_meal_txd *this = &txbase[first_entry];
2123 u32 addr, len;
2124
2125 addr = hme_read_desc32(hp, &this->tx_addr);
2126 len = hme_read_desc32(hp, &this->tx_flags);
2127 len &= TXFLAG_SIZE;
2128 dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2129 }
2130}
2131
2132static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2133 struct net_device *dev)
2134{
2135 struct happy_meal *hp = netdev_priv(dev);
2136 int entry;
2137 u32 tx_flags;
2138
2139 tx_flags = TXFLAG_OWN;
2140 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2141 const u32 csum_start_off = skb_checksum_start_offset(skb);
2142 const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2143
2144 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2145 ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2146 ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2147 }
2148
2149 spin_lock_irq(&hp->happy_lock);
2150
2151 if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2152 netif_stop_queue(dev);
2153 spin_unlock_irq(&hp->happy_lock);
2154 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2155 return NETDEV_TX_BUSY;
2156 }
2157
2158 entry = hp->tx_new;
2159 netdev_vdbg(dev, "SX<l[%d]e[%d]>\n", skb->len, entry);
2160 hp->tx_skbs[entry] = skb;
2161
2162 if (skb_shinfo(skb)->nr_frags == 0) {
2163 u32 mapping, len;
2164
2165 len = skb->len;
2166 mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2167 if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2168 goto out_dma_error;
2169 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2170 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2171 (tx_flags | (len & TXFLAG_SIZE)),
2172 mapping);
2173 entry = NEXT_TX(entry);
2174 } else {
2175 u32 first_len, first_mapping;
2176 int frag, first_entry = entry;
2177
2178 /* We must give this initial chunk to the device last.
2179 * Otherwise we could race with the device.
2180 */
2181 first_len = skb_headlen(skb);
2182 first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2183 DMA_TO_DEVICE);
2184 if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2185 goto out_dma_error;
2186 entry = NEXT_TX(entry);
2187
2188 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2189 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2190 u32 len, mapping, this_txflags;
2191
2192 len = skb_frag_size(this_frag);
2193 mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2194 0, len, DMA_TO_DEVICE);
2195 if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2196 unmap_partial_tx_skb(hp, first_mapping, first_len,
2197 first_entry, entry);
2198 goto out_dma_error;
2199 }
2200 this_txflags = tx_flags;
2201 if (frag == skb_shinfo(skb)->nr_frags - 1)
2202 this_txflags |= TXFLAG_EOP;
2203 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2204 (this_txflags | (len & TXFLAG_SIZE)),
2205 mapping);
2206 entry = NEXT_TX(entry);
2207 }
2208 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2209 (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2210 first_mapping);
2211 }
2212
2213 hp->tx_new = entry;
2214
2215 if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2216 netif_stop_queue(dev);
2217
2218 /* Get it going. */
2219 hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2220
2221 spin_unlock_irq(&hp->happy_lock);
2222
2223 tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2224 return NETDEV_TX_OK;
2225
2226out_dma_error:
2227 hp->tx_skbs[hp->tx_new] = NULL;
2228 spin_unlock_irq(&hp->happy_lock);
2229
2230 dev_kfree_skb_any(skb);
2231 dev->stats.tx_dropped++;
2232 return NETDEV_TX_OK;
2233}
2234
2235static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2236{
2237 struct happy_meal *hp = netdev_priv(dev);
2238
2239 spin_lock_irq(&hp->happy_lock);
2240 happy_meal_get_counters(hp, hp->bigmacregs);
2241 spin_unlock_irq(&hp->happy_lock);
2242
2243 return &dev->stats;
2244}
2245
2246static void happy_meal_set_multicast(struct net_device *dev)
2247{
2248 struct happy_meal *hp = netdev_priv(dev);
2249 void __iomem *bregs = hp->bigmacregs;
2250 struct netdev_hw_addr *ha;
2251 u32 crc;
2252
2253 spin_lock_irq(&hp->happy_lock);
2254
2255 if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2256 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2257 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2258 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2259 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2260 } else if (dev->flags & IFF_PROMISC) {
2261 hme_write32(hp, bregs + BMAC_RXCFG,
2262 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2263 } else {
2264 u16 hash_table[4];
2265
2266 memset(hash_table, 0, sizeof(hash_table));
2267 netdev_for_each_mc_addr(ha, dev) {
2268 crc = ether_crc_le(6, ha->addr);
2269 crc >>= 26;
2270 hash_table[crc >> 4] |= 1 << (crc & 0xf);
2271 }
2272 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2273 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2274 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2275 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2276 }
2277
2278 spin_unlock_irq(&hp->happy_lock);
2279}
2280
2281/* Ethtool support... */
2282static int hme_get_link_ksettings(struct net_device *dev,
2283 struct ethtool_link_ksettings *cmd)
2284{
2285 struct happy_meal *hp = netdev_priv(dev);
2286 u32 speed;
2287 u32 supported;
2288
2289 supported =
2290 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2291 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2292 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2293
2294 /* XXX hardcoded stuff for now */
2295 cmd->base.port = PORT_TP; /* XXX no MII support */
2296 cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2297
2298 /* Record PHY settings. */
2299 spin_lock_irq(&hp->happy_lock);
2300 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2301 hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2302 spin_unlock_irq(&hp->happy_lock);
2303
2304 if (hp->sw_bmcr & BMCR_ANENABLE) {
2305 cmd->base.autoneg = AUTONEG_ENABLE;
2306 speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2307 SPEED_100 : SPEED_10);
2308 if (speed == SPEED_100)
2309 cmd->base.duplex =
2310 (hp->sw_lpa & (LPA_100FULL)) ?
2311 DUPLEX_FULL : DUPLEX_HALF;
2312 else
2313 cmd->base.duplex =
2314 (hp->sw_lpa & (LPA_10FULL)) ?
2315 DUPLEX_FULL : DUPLEX_HALF;
2316 } else {
2317 cmd->base.autoneg = AUTONEG_DISABLE;
2318 speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2319 cmd->base.duplex =
2320 (hp->sw_bmcr & BMCR_FULLDPLX) ?
2321 DUPLEX_FULL : DUPLEX_HALF;
2322 }
2323 cmd->base.speed = speed;
2324 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2325 supported);
2326
2327 return 0;
2328}
2329
2330static int hme_set_link_ksettings(struct net_device *dev,
2331 const struct ethtool_link_ksettings *cmd)
2332{
2333 struct happy_meal *hp = netdev_priv(dev);
2334
2335 /* Verify the settings we care about. */
2336 if (cmd->base.autoneg != AUTONEG_ENABLE &&
2337 cmd->base.autoneg != AUTONEG_DISABLE)
2338 return -EINVAL;
2339 if (cmd->base.autoneg == AUTONEG_DISABLE &&
2340 ((cmd->base.speed != SPEED_100 &&
2341 cmd->base.speed != SPEED_10) ||
2342 (cmd->base.duplex != DUPLEX_HALF &&
2343 cmd->base.duplex != DUPLEX_FULL)))
2344 return -EINVAL;
2345
2346 /* Ok, do it to it. */
2347 spin_lock_irq(&hp->happy_lock);
2348 del_timer(&hp->happy_timer);
2349 happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2350 spin_unlock_irq(&hp->happy_lock);
2351
2352 return 0;
2353}
2354
2355static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2356{
2357 struct happy_meal *hp = netdev_priv(dev);
2358
2359 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2360 if (hp->happy_flags & HFLAG_PCI) {
2361 struct pci_dev *pdev = hp->happy_dev;
2362 strscpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2363 }
2364#ifdef CONFIG_SBUS
2365 else {
2366 const struct linux_prom_registers *regs;
2367 struct platform_device *op = hp->happy_dev;
2368 regs = of_get_property(op->dev.of_node, "regs", NULL);
2369 if (regs)
2370 snprintf(info->bus_info, sizeof(info->bus_info),
2371 "SBUS:%d",
2372 regs->which_io);
2373 }
2374#endif
2375}
2376
2377static u32 hme_get_link(struct net_device *dev)
2378{
2379 struct happy_meal *hp = netdev_priv(dev);
2380
2381 spin_lock_irq(&hp->happy_lock);
2382 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2383 spin_unlock_irq(&hp->happy_lock);
2384
2385 return hp->sw_bmsr & BMSR_LSTATUS;
2386}
2387
2388static const struct ethtool_ops hme_ethtool_ops = {
2389 .get_drvinfo = hme_get_drvinfo,
2390 .get_link = hme_get_link,
2391 .get_link_ksettings = hme_get_link_ksettings,
2392 .set_link_ksettings = hme_set_link_ksettings,
2393};
2394
2395#ifdef CONFIG_SBUS
2396/* Given a happy meal sbus device, find it's quattro parent.
2397 * If none exist, allocate and return a new one.
2398 *
2399 * Return NULL on failure.
2400 */
2401static struct quattro *quattro_sbus_find(struct platform_device *child)
2402{
2403 struct device *parent = child->dev.parent;
2404 struct platform_device *op;
2405 struct quattro *qp;
2406
2407 op = to_platform_device(parent);
2408 qp = platform_get_drvdata(op);
2409 if (qp)
2410 return qp;
2411
2412 qp = kzalloc(sizeof(*qp), GFP_KERNEL);
2413 if (!qp)
2414 return NULL;
2415
2416 qp->quattro_dev = child;
2417 qp->next = qfe_sbus_list;
2418 qfe_sbus_list = qp;
2419
2420 platform_set_drvdata(op, qp);
2421 return qp;
2422}
2423
2424/* After all quattro cards have been probed, we call these functions
2425 * to register the IRQ handlers for the cards that have been
2426 * successfully probed and skip the cards that failed to initialize
2427 */
2428static int __init quattro_sbus_register_irqs(void)
2429{
2430 struct quattro *qp;
2431
2432 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2433 struct platform_device *op = qp->quattro_dev;
2434 int err, qfe_slot, skip = 0;
2435
2436 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2437 if (!qp->happy_meals[qfe_slot])
2438 skip = 1;
2439 }
2440 if (skip)
2441 continue;
2442
2443 err = request_irq(op->archdata.irqs[0],
2444 quattro_sbus_interrupt,
2445 IRQF_SHARED, "Quattro",
2446 qp);
2447 if (err != 0) {
2448 dev_err(&op->dev,
2449 "Quattro HME: IRQ registration error %d.\n",
2450 err);
2451 return err;
2452 }
2453 }
2454
2455 return 0;
2456}
2457
2458static void quattro_sbus_free_irqs(void)
2459{
2460 struct quattro *qp;
2461
2462 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2463 struct platform_device *op = qp->quattro_dev;
2464 int qfe_slot, skip = 0;
2465
2466 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2467 if (!qp->happy_meals[qfe_slot])
2468 skip = 1;
2469 }
2470 if (skip)
2471 continue;
2472
2473 free_irq(op->archdata.irqs[0], qp);
2474 }
2475}
2476#endif /* CONFIG_SBUS */
2477
2478#ifdef CONFIG_PCI
2479static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2480{
2481 int i;
2482 struct pci_dev *bdev = pdev->bus->self;
2483 struct quattro *qp;
2484
2485 if (!bdev)
2486 return ERR_PTR(-ENODEV);
2487
2488 for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2489 struct pci_dev *qpdev = qp->quattro_dev;
2490
2491 if (qpdev == bdev)
2492 return qp;
2493 }
2494
2495 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2496 if (!qp)
2497 return ERR_PTR(-ENOMEM);
2498
2499 for (i = 0; i < 4; i++)
2500 qp->happy_meals[i] = NULL;
2501
2502 qp->quattro_dev = bdev;
2503 qp->next = qfe_pci_list;
2504 qfe_pci_list = qp;
2505
2506 /* No range tricks necessary on PCI. */
2507 qp->nranges = 0;
2508 return qp;
2509}
2510#endif /* CONFIG_PCI */
2511
2512static const struct net_device_ops hme_netdev_ops = {
2513 .ndo_open = happy_meal_open,
2514 .ndo_stop = happy_meal_close,
2515 .ndo_start_xmit = happy_meal_start_xmit,
2516 .ndo_tx_timeout = happy_meal_tx_timeout,
2517 .ndo_get_stats = happy_meal_get_stats,
2518 .ndo_set_rx_mode = happy_meal_set_multicast,
2519 .ndo_set_mac_address = eth_mac_addr,
2520 .ndo_validate_addr = eth_validate_addr,
2521};
2522
2523#ifdef CONFIG_SBUS
2524static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2525{
2526 struct device_node *dp = op->dev.of_node, *sbus_dp;
2527 struct quattro *qp = NULL;
2528 struct happy_meal *hp;
2529 struct net_device *dev;
2530 int i, qfe_slot = -1;
2531 u8 addr[ETH_ALEN];
2532 int err = -ENODEV;
2533
2534 sbus_dp = op->dev.parent->of_node;
2535
2536 /* We can match PCI devices too, do not accept those here. */
2537 if (!of_node_name_eq(sbus_dp, "sbus") && !of_node_name_eq(sbus_dp, "sbi"))
2538 return err;
2539
2540 if (is_qfe) {
2541 qp = quattro_sbus_find(op);
2542 if (qp == NULL)
2543 goto err_out;
2544 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2545 if (qp->happy_meals[qfe_slot] == NULL)
2546 break;
2547 if (qfe_slot == 4)
2548 goto err_out;
2549 }
2550
2551 err = -ENOMEM;
2552 dev = alloc_etherdev(sizeof(struct happy_meal));
2553 if (!dev)
2554 goto err_out;
2555 SET_NETDEV_DEV(dev, &op->dev);
2556
2557 /* If user did not specify a MAC address specifically, use
2558 * the Quattro local-mac-address property...
2559 */
2560 for (i = 0; i < 6; i++) {
2561 if (macaddr[i] != 0)
2562 break;
2563 }
2564 if (i < 6) { /* a mac address was given */
2565 for (i = 0; i < 6; i++)
2566 addr[i] = macaddr[i];
2567 eth_hw_addr_set(dev, addr);
2568 macaddr[5]++;
2569 } else {
2570 const unsigned char *addr;
2571 int len;
2572
2573 addr = of_get_property(dp, "local-mac-address", &len);
2574
2575 if (qfe_slot != -1 && addr && len == ETH_ALEN)
2576 eth_hw_addr_set(dev, addr);
2577 else
2578 eth_hw_addr_set(dev, idprom->id_ethaddr);
2579 }
2580
2581 hp = netdev_priv(dev);
2582
2583 hp->happy_dev = op;
2584 hp->dma_dev = &op->dev;
2585
2586 spin_lock_init(&hp->happy_lock);
2587
2588 err = -ENODEV;
2589 if (qp != NULL) {
2590 hp->qfe_parent = qp;
2591 hp->qfe_ent = qfe_slot;
2592 qp->happy_meals[qfe_slot] = dev;
2593 }
2594
2595 hp->gregs = of_ioremap(&op->resource[0], 0,
2596 GREG_REG_SIZE, "HME Global Regs");
2597 if (!hp->gregs) {
2598 dev_err(&op->dev, "Cannot map global registers.\n");
2599 goto err_out_free_netdev;
2600 }
2601
2602 hp->etxregs = of_ioremap(&op->resource[1], 0,
2603 ETX_REG_SIZE, "HME TX Regs");
2604 if (!hp->etxregs) {
2605 dev_err(&op->dev, "Cannot map MAC TX registers.\n");
2606 goto err_out_iounmap;
2607 }
2608
2609 hp->erxregs = of_ioremap(&op->resource[2], 0,
2610 ERX_REG_SIZE, "HME RX Regs");
2611 if (!hp->erxregs) {
2612 dev_err(&op->dev, "Cannot map MAC RX registers.\n");
2613 goto err_out_iounmap;
2614 }
2615
2616 hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2617 BMAC_REG_SIZE, "HME BIGMAC Regs");
2618 if (!hp->bigmacregs) {
2619 dev_err(&op->dev, "Cannot map BIGMAC registers.\n");
2620 goto err_out_iounmap;
2621 }
2622
2623 hp->tcvregs = of_ioremap(&op->resource[4], 0,
2624 TCVR_REG_SIZE, "HME Tranceiver Regs");
2625 if (!hp->tcvregs) {
2626 dev_err(&op->dev, "Cannot map TCVR registers.\n");
2627 goto err_out_iounmap;
2628 }
2629
2630 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2631 if (hp->hm_revision == 0xff)
2632 hp->hm_revision = 0xa0;
2633
2634 /* Now enable the feature flags we can. */
2635 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2636 hp->happy_flags = HFLAG_20_21;
2637 else if (hp->hm_revision != 0xa0)
2638 hp->happy_flags = HFLAG_NOT_A0;
2639
2640 if (qp != NULL)
2641 hp->happy_flags |= HFLAG_QUATTRO;
2642
2643 /* Get the supported DVMA burst sizes from our Happy SBUS. */
2644 hp->happy_bursts = of_getintprop_default(sbus_dp,
2645 "burst-sizes", 0x00);
2646
2647 hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2648 PAGE_SIZE,
2649 &hp->hblock_dvma,
2650 GFP_ATOMIC);
2651 err = -ENOMEM;
2652 if (!hp->happy_block)
2653 goto err_out_iounmap;
2654
2655 /* Force check of the link first time we are brought up. */
2656 hp->linkcheck = 0;
2657
2658 /* Force timer state to 'asleep' with count of zero. */
2659 hp->timer_state = asleep;
2660 hp->timer_ticks = 0;
2661
2662 timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2663
2664 hp->dev = dev;
2665 dev->netdev_ops = &hme_netdev_ops;
2666 dev->watchdog_timeo = 5*HZ;
2667 dev->ethtool_ops = &hme_ethtool_ops;
2668
2669 /* Happy Meal can do it all... */
2670 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2671 dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2672
2673 hp->irq = op->archdata.irqs[0];
2674
2675#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2676 /* Hook up SBUS register/descriptor accessors. */
2677 hp->read_desc32 = sbus_hme_read_desc32;
2678 hp->write_txd = sbus_hme_write_txd;
2679 hp->write_rxd = sbus_hme_write_rxd;
2680 hp->read32 = sbus_hme_read32;
2681 hp->write32 = sbus_hme_write32;
2682#endif
2683
2684 /* Grrr, Happy Meal comes up by default not advertising
2685 * full duplex 100baseT capabilities, fix this.
2686 */
2687 spin_lock_irq(&hp->happy_lock);
2688 happy_meal_set_initial_advertisement(hp);
2689 spin_unlock_irq(&hp->happy_lock);
2690
2691 err = register_netdev(hp->dev);
2692 if (err) {
2693 dev_err(&op->dev, "Cannot register net device, aborting.\n");
2694 goto err_out_free_coherent;
2695 }
2696
2697 platform_set_drvdata(op, hp);
2698
2699 if (qfe_slot != -1)
2700 netdev_info(dev,
2701 "Quattro HME slot %d (SBUS) 10/100baseT Ethernet %pM\n",
2702 qfe_slot, dev->dev_addr);
2703 else
2704 netdev_info(dev, "HAPPY MEAL (SBUS) 10/100baseT Ethernet %pM\n",
2705 dev->dev_addr);
2706
2707 return 0;
2708
2709err_out_free_coherent:
2710 dma_free_coherent(hp->dma_dev,
2711 PAGE_SIZE,
2712 hp->happy_block,
2713 hp->hblock_dvma);
2714
2715err_out_iounmap:
2716 if (hp->gregs)
2717 of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2718 if (hp->etxregs)
2719 of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2720 if (hp->erxregs)
2721 of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2722 if (hp->bigmacregs)
2723 of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2724 if (hp->tcvregs)
2725 of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2726
2727 if (qp)
2728 qp->happy_meals[qfe_slot] = NULL;
2729
2730err_out_free_netdev:
2731 free_netdev(dev);
2732
2733err_out:
2734 return err;
2735}
2736#endif
2737
2738#ifdef CONFIG_PCI
2739#ifndef CONFIG_SPARC
2740static int is_quattro_p(struct pci_dev *pdev)
2741{
2742 struct pci_dev *busdev = pdev->bus->self;
2743 struct pci_dev *this_pdev;
2744 int n_hmes;
2745
2746 if (busdev == NULL ||
2747 busdev->vendor != PCI_VENDOR_ID_DEC ||
2748 busdev->device != PCI_DEVICE_ID_DEC_21153)
2749 return 0;
2750
2751 n_hmes = 0;
2752 list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2753 if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2754 this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2755 n_hmes++;
2756 }
2757
2758 if (n_hmes != 4)
2759 return 0;
2760
2761 return 1;
2762}
2763
2764/* Fetch MAC address from vital product data of PCI ROM. */
2765static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2766{
2767 int this_offset;
2768
2769 for (this_offset = 0x20; this_offset < len; this_offset++) {
2770 void __iomem *p = rom_base + this_offset;
2771
2772 if (readb(p + 0) != 0x90 ||
2773 readb(p + 1) != 0x00 ||
2774 readb(p + 2) != 0x09 ||
2775 readb(p + 3) != 0x4e ||
2776 readb(p + 4) != 0x41 ||
2777 readb(p + 5) != 0x06)
2778 continue;
2779
2780 this_offset += 6;
2781 p += 6;
2782
2783 if (index == 0) {
2784 int i;
2785
2786 for (i = 0; i < 6; i++)
2787 dev_addr[i] = readb(p + i);
2788 return 1;
2789 }
2790 index--;
2791 }
2792 return 0;
2793}
2794
2795static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2796{
2797 size_t size;
2798 void __iomem *p = pci_map_rom(pdev, &size);
2799
2800 if (p) {
2801 int index = 0;
2802 int found;
2803
2804 if (is_quattro_p(pdev))
2805 index = PCI_SLOT(pdev->devfn);
2806
2807 found = readb(p) == 0x55 &&
2808 readb(p + 1) == 0xaa &&
2809 find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2810 pci_unmap_rom(pdev, p);
2811 if (found)
2812 return;
2813 }
2814
2815 /* Sun MAC prefix then 3 random bytes. */
2816 dev_addr[0] = 0x08;
2817 dev_addr[1] = 0x00;
2818 dev_addr[2] = 0x20;
2819 get_random_bytes(&dev_addr[3], 3);
2820}
2821#endif /* !(CONFIG_SPARC) */
2822
2823static int happy_meal_pci_probe(struct pci_dev *pdev,
2824 const struct pci_device_id *ent)
2825{
2826 struct quattro *qp = NULL;
2827#ifdef CONFIG_SPARC
2828 struct device_node *dp;
2829#endif
2830 struct happy_meal *hp;
2831 struct net_device *dev;
2832 void __iomem *hpreg_base;
2833 struct resource *hpreg_res;
2834 int i, qfe_slot = -1;
2835 char prom_name[64];
2836 u8 addr[ETH_ALEN];
2837 int err;
2838
2839 /* Now make sure pci_dev cookie is there. */
2840#ifdef CONFIG_SPARC
2841 dp = pci_device_to_OF_node(pdev);
2842 snprintf(prom_name, sizeof(prom_name), "%pOFn", dp);
2843#else
2844 if (is_quattro_p(pdev))
2845 strcpy(prom_name, "SUNW,qfe");
2846 else
2847 strcpy(prom_name, "SUNW,hme");
2848#endif
2849
2850 err = pcim_enable_device(pdev);
2851 if (err)
2852 goto err_out;
2853 pci_set_master(pdev);
2854
2855 if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
2856 qp = quattro_pci_find(pdev);
2857 if (IS_ERR(qp)) {
2858 err = PTR_ERR(qp);
2859 goto err_out;
2860 }
2861
2862 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2863 if (!qp->happy_meals[qfe_slot])
2864 break;
2865
2866 if (qfe_slot == 4)
2867 goto err_out;
2868 }
2869
2870 dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct happy_meal));
2871 if (!dev) {
2872 err = -ENOMEM;
2873 goto err_out;
2874 }
2875 SET_NETDEV_DEV(dev, &pdev->dev);
2876
2877 hp = netdev_priv(dev);
2878
2879 hp->happy_dev = pdev;
2880 hp->dma_dev = &pdev->dev;
2881
2882 spin_lock_init(&hp->happy_lock);
2883
2884 if (qp != NULL) {
2885 hp->qfe_parent = qp;
2886 hp->qfe_ent = qfe_slot;
2887 qp->happy_meals[qfe_slot] = dev;
2888 }
2889
2890 err = -EINVAL;
2891 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2892 dev_err(&pdev->dev,
2893 "Cannot find proper PCI device base address.\n");
2894 goto err_out_clear_quattro;
2895 }
2896
2897 hpreg_res = devm_request_region(&pdev->dev, pci_resource_start(pdev, 0),
2898 pci_resource_len(pdev, 0), DRV_NAME);
2899 if (!hpreg_res) {
2900 err = -EBUSY;
2901 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
2902 goto err_out_clear_quattro;
2903 }
2904
2905 hpreg_base = pcim_iomap(pdev, 0, 0x8000);
2906 if (!hpreg_base) {
2907 err = -ENOMEM;
2908 dev_err(&pdev->dev, "Unable to remap card memory.\n");
2909 goto err_out_clear_quattro;
2910 }
2911
2912 for (i = 0; i < 6; i++) {
2913 if (macaddr[i] != 0)
2914 break;
2915 }
2916 if (i < 6) { /* a mac address was given */
2917 for (i = 0; i < 6; i++)
2918 addr[i] = macaddr[i];
2919 eth_hw_addr_set(dev, addr);
2920 macaddr[5]++;
2921 } else {
2922#ifdef CONFIG_SPARC
2923 const unsigned char *addr;
2924 int len;
2925
2926 if (qfe_slot != -1 &&
2927 (addr = of_get_property(dp, "local-mac-address", &len))
2928 != NULL &&
2929 len == 6) {
2930 eth_hw_addr_set(dev, addr);
2931 } else {
2932 eth_hw_addr_set(dev, idprom->id_ethaddr);
2933 }
2934#else
2935 u8 addr[ETH_ALEN];
2936
2937 get_hme_mac_nonsparc(pdev, addr);
2938 eth_hw_addr_set(dev, addr);
2939#endif
2940 }
2941
2942 /* Layout registers. */
2943 hp->gregs = (hpreg_base + 0x0000UL);
2944 hp->etxregs = (hpreg_base + 0x2000UL);
2945 hp->erxregs = (hpreg_base + 0x4000UL);
2946 hp->bigmacregs = (hpreg_base + 0x6000UL);
2947 hp->tcvregs = (hpreg_base + 0x7000UL);
2948
2949#ifdef CONFIG_SPARC
2950 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2951 if (hp->hm_revision == 0xff)
2952 hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
2953#else
2954 /* works with this on non-sparc hosts */
2955 hp->hm_revision = 0x20;
2956#endif
2957
2958 /* Now enable the feature flags we can. */
2959 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2960 hp->happy_flags = HFLAG_20_21;
2961 else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
2962 hp->happy_flags = HFLAG_NOT_A0;
2963
2964 if (qp != NULL)
2965 hp->happy_flags |= HFLAG_QUATTRO;
2966
2967 /* And of course, indicate this is PCI. */
2968 hp->happy_flags |= HFLAG_PCI;
2969
2970#ifdef CONFIG_SPARC
2971 /* Assume PCI happy meals can handle all burst sizes. */
2972 hp->happy_bursts = DMA_BURSTBITS;
2973#endif
2974
2975 hp->happy_block = dmam_alloc_coherent(&pdev->dev, PAGE_SIZE,
2976 &hp->hblock_dvma, GFP_KERNEL);
2977 if (!hp->happy_block) {
2978 err = -ENOMEM;
2979 goto err_out_clear_quattro;
2980 }
2981
2982 hp->linkcheck = 0;
2983 hp->timer_state = asleep;
2984 hp->timer_ticks = 0;
2985
2986 timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2987
2988 hp->irq = pdev->irq;
2989 hp->dev = dev;
2990 dev->netdev_ops = &hme_netdev_ops;
2991 dev->watchdog_timeo = 5*HZ;
2992 dev->ethtool_ops = &hme_ethtool_ops;
2993
2994 /* Happy Meal can do it all... */
2995 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2996 dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2997
2998#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2999 /* Hook up PCI register/descriptor accessors. */
3000 hp->read_desc32 = pci_hme_read_desc32;
3001 hp->write_txd = pci_hme_write_txd;
3002 hp->write_rxd = pci_hme_write_rxd;
3003 hp->read32 = pci_hme_read32;
3004 hp->write32 = pci_hme_write32;
3005#endif
3006
3007 /* Grrr, Happy Meal comes up by default not advertising
3008 * full duplex 100baseT capabilities, fix this.
3009 */
3010 spin_lock_irq(&hp->happy_lock);
3011 happy_meal_set_initial_advertisement(hp);
3012 spin_unlock_irq(&hp->happy_lock);
3013
3014 err = devm_register_netdev(&pdev->dev, dev);
3015 if (err) {
3016 dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
3017 goto err_out_clear_quattro;
3018 }
3019
3020 pci_set_drvdata(pdev, hp);
3021
3022 if (!qfe_slot) {
3023 struct pci_dev *qpdev = qp->quattro_dev;
3024
3025 prom_name[0] = 0;
3026 if (!strncmp(dev->name, "eth", 3)) {
3027 int i = simple_strtoul(dev->name + 3, NULL, 10);
3028 sprintf(prom_name, "-%d", i + 3);
3029 }
3030 netdev_info(dev,
3031 "%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet bridge %04x.%04x\n",
3032 prom_name, qpdev->vendor, qpdev->device);
3033 }
3034
3035 if (qfe_slot != -1)
3036 netdev_info(dev,
3037 "Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet %pM\n",
3038 qfe_slot, dev->dev_addr);
3039 else
3040 netdev_info(dev,
3041 "HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet %pM\n",
3042 dev->dev_addr);
3043
3044 return 0;
3045
3046err_out_clear_quattro:
3047 if (qp != NULL)
3048 qp->happy_meals[qfe_slot] = NULL;
3049
3050err_out:
3051 return err;
3052}
3053
3054static const struct pci_device_id happymeal_pci_ids[] = {
3055 { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3056 { } /* Terminating entry */
3057};
3058
3059MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3060
3061static struct pci_driver hme_pci_driver = {
3062 .name = "hme",
3063 .id_table = happymeal_pci_ids,
3064 .probe = happy_meal_pci_probe,
3065};
3066
3067static int __init happy_meal_pci_init(void)
3068{
3069 return pci_register_driver(&hme_pci_driver);
3070}
3071
3072static void happy_meal_pci_exit(void)
3073{
3074 pci_unregister_driver(&hme_pci_driver);
3075
3076 while (qfe_pci_list) {
3077 struct quattro *qfe = qfe_pci_list;
3078 struct quattro *next = qfe->next;
3079
3080 kfree(qfe);
3081
3082 qfe_pci_list = next;
3083 }
3084}
3085
3086#endif
3087
3088#ifdef CONFIG_SBUS
3089static const struct of_device_id hme_sbus_match[];
3090static int hme_sbus_probe(struct platform_device *op)
3091{
3092 const struct of_device_id *match;
3093 struct device_node *dp = op->dev.of_node;
3094 const char *model = of_get_property(dp, "model", NULL);
3095 int is_qfe;
3096
3097 match = of_match_device(hme_sbus_match, &op->dev);
3098 if (!match)
3099 return -EINVAL;
3100 is_qfe = (match->data != NULL);
3101
3102 if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3103 is_qfe = 1;
3104
3105 return happy_meal_sbus_probe_one(op, is_qfe);
3106}
3107
3108static int hme_sbus_remove(struct platform_device *op)
3109{
3110 struct happy_meal *hp = platform_get_drvdata(op);
3111 struct net_device *net_dev = hp->dev;
3112
3113 unregister_netdev(net_dev);
3114
3115 /* XXX qfe parent interrupt... */
3116
3117 of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3118 of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3119 of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3120 of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3121 of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3122 dma_free_coherent(hp->dma_dev,
3123 PAGE_SIZE,
3124 hp->happy_block,
3125 hp->hblock_dvma);
3126
3127 free_netdev(net_dev);
3128
3129 return 0;
3130}
3131
3132static const struct of_device_id hme_sbus_match[] = {
3133 {
3134 .name = "SUNW,hme",
3135 },
3136 {
3137 .name = "SUNW,qfe",
3138 .data = (void *) 1,
3139 },
3140 {
3141 .name = "qfe",
3142 .data = (void *) 1,
3143 },
3144 {},
3145};
3146
3147MODULE_DEVICE_TABLE(of, hme_sbus_match);
3148
3149static struct platform_driver hme_sbus_driver = {
3150 .driver = {
3151 .name = "hme",
3152 .of_match_table = hme_sbus_match,
3153 },
3154 .probe = hme_sbus_probe,
3155 .remove = hme_sbus_remove,
3156};
3157
3158static int __init happy_meal_sbus_init(void)
3159{
3160 int err;
3161
3162 err = platform_driver_register(&hme_sbus_driver);
3163 if (!err)
3164 err = quattro_sbus_register_irqs();
3165
3166 return err;
3167}
3168
3169static void happy_meal_sbus_exit(void)
3170{
3171 platform_driver_unregister(&hme_sbus_driver);
3172 quattro_sbus_free_irqs();
3173
3174 while (qfe_sbus_list) {
3175 struct quattro *qfe = qfe_sbus_list;
3176 struct quattro *next = qfe->next;
3177
3178 kfree(qfe);
3179
3180 qfe_sbus_list = next;
3181 }
3182}
3183#endif
3184
3185static int __init happy_meal_probe(void)
3186{
3187 int err = 0;
3188
3189#ifdef CONFIG_SBUS
3190 err = happy_meal_sbus_init();
3191#endif
3192#ifdef CONFIG_PCI
3193 if (!err) {
3194 err = happy_meal_pci_init();
3195#ifdef CONFIG_SBUS
3196 if (err)
3197 happy_meal_sbus_exit();
3198#endif
3199 }
3200#endif
3201
3202 return err;
3203}
3204
3205
3206static void __exit happy_meal_exit(void)
3207{
3208#ifdef CONFIG_SBUS
3209 happy_meal_sbus_exit();
3210#endif
3211#ifdef CONFIG_PCI
3212 happy_meal_pci_exit();
3213#endif
3214}
3215
3216module_init(happy_meal_probe);
3217module_exit(happy_meal_exit);