Loading...
Note: File does not exist in v4.17.
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_RESCTRL_INTERNAL_H
3#define _ASM_X86_RESCTRL_INTERNAL_H
4
5#include <linux/resctrl.h>
6#include <linux/sched.h>
7#include <linux/kernfs.h>
8#include <linux/fs_context.h>
9#include <linux/jump_label.h>
10
11#define L3_QOS_CDP_ENABLE 0x01ULL
12
13#define L2_QOS_CDP_ENABLE 0x01ULL
14
15#define CQM_LIMBOCHECK_INTERVAL 1000
16
17#define MBM_CNTR_WIDTH_BASE 24
18#define MBM_OVERFLOW_INTERVAL 1000
19#define MAX_MBA_BW 100u
20#define MBA_IS_LINEAR 0x4
21#define MAX_MBA_BW_AMD 0x800
22#define MBM_CNTR_WIDTH_OFFSET_AMD 20
23
24#define RMID_VAL_ERROR BIT_ULL(63)
25#define RMID_VAL_UNAVAIL BIT_ULL(62)
26/*
27 * With the above fields in use 62 bits remain in MSR_IA32_QM_CTR for
28 * data to be returned. The counter width is discovered from the hardware
29 * as an offset from MBM_CNTR_WIDTH_BASE.
30 */
31#define MBM_CNTR_WIDTH_OFFSET_MAX (62 - MBM_CNTR_WIDTH_BASE)
32
33
34struct rdt_fs_context {
35 struct kernfs_fs_context kfc;
36 bool enable_cdpl2;
37 bool enable_cdpl3;
38 bool enable_mba_mbps;
39};
40
41static inline struct rdt_fs_context *rdt_fc2context(struct fs_context *fc)
42{
43 struct kernfs_fs_context *kfc = fc->fs_private;
44
45 return container_of(kfc, struct rdt_fs_context, kfc);
46}
47
48DECLARE_STATIC_KEY_FALSE(rdt_enable_key);
49DECLARE_STATIC_KEY_FALSE(rdt_mon_enable_key);
50
51/**
52 * struct mon_evt - Entry in the event list of a resource
53 * @evtid: event id
54 * @name: name of the event
55 * @list: entry in &rdt_resource->evt_list
56 */
57struct mon_evt {
58 enum resctrl_event_id evtid;
59 char *name;
60 struct list_head list;
61};
62
63/**
64 * union mon_data_bits - Monitoring details for each event file
65 * @priv: Used to store monitoring event data in @u
66 * as kernfs private data
67 * @rid: Resource id associated with the event file
68 * @evtid: Event id associated with the event file
69 * @domid: The domain to which the event file belongs
70 * @u: Name of the bit fields struct
71 */
72union mon_data_bits {
73 void *priv;
74 struct {
75 unsigned int rid : 10;
76 enum resctrl_event_id evtid : 8;
77 unsigned int domid : 14;
78 } u;
79};
80
81struct rmid_read {
82 struct rdtgroup *rgrp;
83 struct rdt_resource *r;
84 struct rdt_domain *d;
85 enum resctrl_event_id evtid;
86 bool first;
87 int err;
88 u64 val;
89};
90
91extern bool rdt_alloc_capable;
92extern bool rdt_mon_capable;
93extern unsigned int rdt_mon_features;
94extern struct list_head resctrl_schema_all;
95
96enum rdt_group_type {
97 RDTCTRL_GROUP = 0,
98 RDTMON_GROUP,
99 RDT_NUM_GROUP,
100};
101
102/**
103 * enum rdtgrp_mode - Mode of a RDT resource group
104 * @RDT_MODE_SHAREABLE: This resource group allows sharing of its allocations
105 * @RDT_MODE_EXCLUSIVE: No sharing of this resource group's allocations allowed
106 * @RDT_MODE_PSEUDO_LOCKSETUP: Resource group will be used for Pseudo-Locking
107 * @RDT_MODE_PSEUDO_LOCKED: No sharing of this resource group's allocations
108 * allowed AND the allocations are Cache Pseudo-Locked
109 * @RDT_NUM_MODES: Total number of modes
110 *
111 * The mode of a resource group enables control over the allowed overlap
112 * between allocations associated with different resource groups (classes
113 * of service). User is able to modify the mode of a resource group by
114 * writing to the "mode" resctrl file associated with the resource group.
115 *
116 * The "shareable", "exclusive", and "pseudo-locksetup" modes are set by
117 * writing the appropriate text to the "mode" file. A resource group enters
118 * "pseudo-locked" mode after the schemata is written while the resource
119 * group is in "pseudo-locksetup" mode.
120 */
121enum rdtgrp_mode {
122 RDT_MODE_SHAREABLE = 0,
123 RDT_MODE_EXCLUSIVE,
124 RDT_MODE_PSEUDO_LOCKSETUP,
125 RDT_MODE_PSEUDO_LOCKED,
126
127 /* Must be last */
128 RDT_NUM_MODES,
129};
130
131/**
132 * struct mongroup - store mon group's data in resctrl fs.
133 * @mon_data_kn: kernfs node for the mon_data directory
134 * @parent: parent rdtgrp
135 * @crdtgrp_list: child rdtgroup node list
136 * @rmid: rmid for this rdtgroup
137 */
138struct mongroup {
139 struct kernfs_node *mon_data_kn;
140 struct rdtgroup *parent;
141 struct list_head crdtgrp_list;
142 u32 rmid;
143};
144
145/**
146 * struct pseudo_lock_region - pseudo-lock region information
147 * @s: Resctrl schema for the resource to which this
148 * pseudo-locked region belongs
149 * @d: RDT domain to which this pseudo-locked region
150 * belongs
151 * @cbm: bitmask of the pseudo-locked region
152 * @lock_thread_wq: waitqueue used to wait on the pseudo-locking thread
153 * completion
154 * @thread_done: variable used by waitqueue to test if pseudo-locking
155 * thread completed
156 * @cpu: core associated with the cache on which the setup code
157 * will be run
158 * @line_size: size of the cache lines
159 * @size: size of pseudo-locked region in bytes
160 * @kmem: the kernel memory associated with pseudo-locked region
161 * @minor: minor number of character device associated with this
162 * region
163 * @debugfs_dir: pointer to this region's directory in the debugfs
164 * filesystem
165 * @pm_reqs: Power management QoS requests related to this region
166 */
167struct pseudo_lock_region {
168 struct resctrl_schema *s;
169 struct rdt_domain *d;
170 u32 cbm;
171 wait_queue_head_t lock_thread_wq;
172 int thread_done;
173 int cpu;
174 unsigned int line_size;
175 unsigned int size;
176 void *kmem;
177 unsigned int minor;
178 struct dentry *debugfs_dir;
179 struct list_head pm_reqs;
180};
181
182/**
183 * struct rdtgroup - store rdtgroup's data in resctrl file system.
184 * @kn: kernfs node
185 * @rdtgroup_list: linked list for all rdtgroups
186 * @closid: closid for this rdtgroup
187 * @cpu_mask: CPUs assigned to this rdtgroup
188 * @flags: status bits
189 * @waitcount: how many cpus expect to find this
190 * group when they acquire rdtgroup_mutex
191 * @type: indicates type of this rdtgroup - either
192 * monitor only or ctrl_mon group
193 * @mon: mongroup related data
194 * @mode: mode of resource group
195 * @plr: pseudo-locked region
196 */
197struct rdtgroup {
198 struct kernfs_node *kn;
199 struct list_head rdtgroup_list;
200 u32 closid;
201 struct cpumask cpu_mask;
202 int flags;
203 atomic_t waitcount;
204 enum rdt_group_type type;
205 struct mongroup mon;
206 enum rdtgrp_mode mode;
207 struct pseudo_lock_region *plr;
208};
209
210/* rdtgroup.flags */
211#define RDT_DELETED 1
212
213/* rftype.flags */
214#define RFTYPE_FLAGS_CPUS_LIST 1
215
216/*
217 * Define the file type flags for base and info directories.
218 */
219#define RFTYPE_INFO BIT(0)
220#define RFTYPE_BASE BIT(1)
221#define RF_CTRLSHIFT 4
222#define RF_MONSHIFT 5
223#define RF_TOPSHIFT 6
224#define RFTYPE_CTRL BIT(RF_CTRLSHIFT)
225#define RFTYPE_MON BIT(RF_MONSHIFT)
226#define RFTYPE_TOP BIT(RF_TOPSHIFT)
227#define RFTYPE_RES_CACHE BIT(8)
228#define RFTYPE_RES_MB BIT(9)
229#define RF_CTRL_INFO (RFTYPE_INFO | RFTYPE_CTRL)
230#define RF_MON_INFO (RFTYPE_INFO | RFTYPE_MON)
231#define RF_TOP_INFO (RFTYPE_INFO | RFTYPE_TOP)
232#define RF_CTRL_BASE (RFTYPE_BASE | RFTYPE_CTRL)
233
234/* List of all resource groups */
235extern struct list_head rdt_all_groups;
236
237extern int max_name_width, max_data_width;
238
239int __init rdtgroup_init(void);
240void __exit rdtgroup_exit(void);
241
242/**
243 * struct rftype - describe each file in the resctrl file system
244 * @name: File name
245 * @mode: Access mode
246 * @kf_ops: File operations
247 * @flags: File specific RFTYPE_FLAGS_* flags
248 * @fflags: File specific RF_* or RFTYPE_* flags
249 * @seq_show: Show content of the file
250 * @write: Write to the file
251 */
252struct rftype {
253 char *name;
254 umode_t mode;
255 const struct kernfs_ops *kf_ops;
256 unsigned long flags;
257 unsigned long fflags;
258
259 int (*seq_show)(struct kernfs_open_file *of,
260 struct seq_file *sf, void *v);
261 /*
262 * write() is the generic write callback which maps directly to
263 * kernfs write operation and overrides all other operations.
264 * Maximum write size is determined by ->max_write_len.
265 */
266 ssize_t (*write)(struct kernfs_open_file *of,
267 char *buf, size_t nbytes, loff_t off);
268};
269
270/**
271 * struct mbm_state - status for each MBM counter in each domain
272 * @prev_bw_bytes: Previous bytes value read for bandwidth calculation
273 * @prev_bw: The most recent bandwidth in MBps
274 * @delta_bw: Difference between the current and previous bandwidth
275 * @delta_comp: Indicates whether to compute the delta_bw
276 */
277struct mbm_state {
278 u64 prev_bw_bytes;
279 u32 prev_bw;
280 u32 delta_bw;
281 bool delta_comp;
282};
283
284/**
285 * struct arch_mbm_state - values used to compute resctrl_arch_rmid_read()s
286 * return value.
287 * @chunks: Total data moved (multiply by rdt_group.mon_scale to get bytes)
288 * @prev_msr: Value of IA32_QM_CTR last time it was read for the RMID used to
289 * find this struct.
290 */
291struct arch_mbm_state {
292 u64 chunks;
293 u64 prev_msr;
294};
295
296/**
297 * struct rdt_hw_domain - Arch private attributes of a set of CPUs that share
298 * a resource
299 * @d_resctrl: Properties exposed to the resctrl file system
300 * @ctrl_val: array of cache or mem ctrl values (indexed by CLOSID)
301 * @arch_mbm_total: arch private state for MBM total bandwidth
302 * @arch_mbm_local: arch private state for MBM local bandwidth
303 *
304 * Members of this structure are accessed via helpers that provide abstraction.
305 */
306struct rdt_hw_domain {
307 struct rdt_domain d_resctrl;
308 u32 *ctrl_val;
309 struct arch_mbm_state *arch_mbm_total;
310 struct arch_mbm_state *arch_mbm_local;
311};
312
313static inline struct rdt_hw_domain *resctrl_to_arch_dom(struct rdt_domain *r)
314{
315 return container_of(r, struct rdt_hw_domain, d_resctrl);
316}
317
318/**
319 * struct msr_param - set a range of MSRs from a domain
320 * @res: The resource to use
321 * @low: Beginning index from base MSR
322 * @high: End index
323 */
324struct msr_param {
325 struct rdt_resource *res;
326 u32 low;
327 u32 high;
328};
329
330static inline bool is_llc_occupancy_enabled(void)
331{
332 return (rdt_mon_features & (1 << QOS_L3_OCCUP_EVENT_ID));
333}
334
335static inline bool is_mbm_total_enabled(void)
336{
337 return (rdt_mon_features & (1 << QOS_L3_MBM_TOTAL_EVENT_ID));
338}
339
340static inline bool is_mbm_local_enabled(void)
341{
342 return (rdt_mon_features & (1 << QOS_L3_MBM_LOCAL_EVENT_ID));
343}
344
345static inline bool is_mbm_enabled(void)
346{
347 return (is_mbm_total_enabled() || is_mbm_local_enabled());
348}
349
350static inline bool is_mbm_event(int e)
351{
352 return (e >= QOS_L3_MBM_TOTAL_EVENT_ID &&
353 e <= QOS_L3_MBM_LOCAL_EVENT_ID);
354}
355
356struct rdt_parse_data {
357 struct rdtgroup *rdtgrp;
358 char *buf;
359};
360
361/**
362 * struct rdt_hw_resource - arch private attributes of a resctrl resource
363 * @r_resctrl: Attributes of the resource used directly by resctrl.
364 * @num_closid: Maximum number of closid this hardware can support,
365 * regardless of CDP. This is exposed via
366 * resctrl_arch_get_num_closid() to avoid confusion
367 * with struct resctrl_schema's property of the same name,
368 * which has been corrected for features like CDP.
369 * @msr_base: Base MSR address for CBMs
370 * @msr_update: Function pointer to update QOS MSRs
371 * @mon_scale: cqm counter * mon_scale = occupancy in bytes
372 * @mbm_width: Monitor width, to detect and correct for overflow.
373 * @cdp_enabled: CDP state of this resource
374 *
375 * Members of this structure are either private to the architecture
376 * e.g. mbm_width, or accessed via helpers that provide abstraction. e.g.
377 * msr_update and msr_base.
378 */
379struct rdt_hw_resource {
380 struct rdt_resource r_resctrl;
381 u32 num_closid;
382 unsigned int msr_base;
383 void (*msr_update) (struct rdt_domain *d, struct msr_param *m,
384 struct rdt_resource *r);
385 unsigned int mon_scale;
386 unsigned int mbm_width;
387 bool cdp_enabled;
388};
389
390static inline struct rdt_hw_resource *resctrl_to_arch_res(struct rdt_resource *r)
391{
392 return container_of(r, struct rdt_hw_resource, r_resctrl);
393}
394
395int parse_cbm(struct rdt_parse_data *data, struct resctrl_schema *s,
396 struct rdt_domain *d);
397int parse_bw(struct rdt_parse_data *data, struct resctrl_schema *s,
398 struct rdt_domain *d);
399
400extern struct mutex rdtgroup_mutex;
401
402extern struct rdt_hw_resource rdt_resources_all[];
403extern struct rdtgroup rdtgroup_default;
404DECLARE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
405
406extern struct dentry *debugfs_resctrl;
407
408enum resctrl_res_level {
409 RDT_RESOURCE_L3,
410 RDT_RESOURCE_L2,
411 RDT_RESOURCE_MBA,
412
413 /* Must be the last */
414 RDT_NUM_RESOURCES,
415};
416
417static inline struct rdt_resource *resctrl_inc(struct rdt_resource *res)
418{
419 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(res);
420
421 hw_res++;
422 return &hw_res->r_resctrl;
423}
424
425static inline bool resctrl_arch_get_cdp_enabled(enum resctrl_res_level l)
426{
427 return rdt_resources_all[l].cdp_enabled;
428}
429
430int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable);
431
432/*
433 * To return the common struct rdt_resource, which is contained in struct
434 * rdt_hw_resource, walk the resctrl member of struct rdt_hw_resource.
435 */
436#define for_each_rdt_resource(r) \
437 for (r = &rdt_resources_all[0].r_resctrl; \
438 r <= &rdt_resources_all[RDT_NUM_RESOURCES - 1].r_resctrl; \
439 r = resctrl_inc(r))
440
441#define for_each_capable_rdt_resource(r) \
442 for_each_rdt_resource(r) \
443 if (r->alloc_capable || r->mon_capable)
444
445#define for_each_alloc_capable_rdt_resource(r) \
446 for_each_rdt_resource(r) \
447 if (r->alloc_capable)
448
449#define for_each_mon_capable_rdt_resource(r) \
450 for_each_rdt_resource(r) \
451 if (r->mon_capable)
452
453/* CPUID.(EAX=10H, ECX=ResID=1).EAX */
454union cpuid_0x10_1_eax {
455 struct {
456 unsigned int cbm_len:5;
457 } split;
458 unsigned int full;
459};
460
461/* CPUID.(EAX=10H, ECX=ResID=3).EAX */
462union cpuid_0x10_3_eax {
463 struct {
464 unsigned int max_delay:12;
465 } split;
466 unsigned int full;
467};
468
469/* CPUID.(EAX=10H, ECX=ResID).EDX */
470union cpuid_0x10_x_edx {
471 struct {
472 unsigned int cos_max:16;
473 } split;
474 unsigned int full;
475};
476
477void rdt_last_cmd_clear(void);
478void rdt_last_cmd_puts(const char *s);
479__printf(1, 2)
480void rdt_last_cmd_printf(const char *fmt, ...);
481
482void rdt_ctrl_update(void *arg);
483struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn);
484void rdtgroup_kn_unlock(struct kernfs_node *kn);
485int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name);
486int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
487 umode_t mask);
488struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id,
489 struct list_head **pos);
490ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of,
491 char *buf, size_t nbytes, loff_t off);
492int rdtgroup_schemata_show(struct kernfs_open_file *of,
493 struct seq_file *s, void *v);
494bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d,
495 unsigned long cbm, int closid, bool exclusive);
496unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, struct rdt_domain *d,
497 unsigned long cbm);
498enum rdtgrp_mode rdtgroup_mode_by_closid(int closid);
499int rdtgroup_tasks_assigned(struct rdtgroup *r);
500int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp);
501int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp);
502bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm);
503bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d);
504int rdt_pseudo_lock_init(void);
505void rdt_pseudo_lock_release(void);
506int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp);
507void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp);
508struct rdt_domain *get_domain_from_cpu(int cpu, struct rdt_resource *r);
509int closids_supported(void);
510void closid_free(int closid);
511int alloc_rmid(void);
512void free_rmid(u32 rmid);
513int rdt_get_mon_l3_config(struct rdt_resource *r);
514void mon_event_count(void *info);
515int rdtgroup_mondata_show(struct seq_file *m, void *arg);
516void mon_event_read(struct rmid_read *rr, struct rdt_resource *r,
517 struct rdt_domain *d, struct rdtgroup *rdtgrp,
518 int evtid, int first);
519void mbm_setup_overflow_handler(struct rdt_domain *dom,
520 unsigned long delay_ms);
521void mbm_handle_overflow(struct work_struct *work);
522void __init intel_rdt_mbm_apply_quirk(void);
523bool is_mba_sc(struct rdt_resource *r);
524void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms);
525void cqm_handle_limbo(struct work_struct *work);
526bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d);
527void __check_limbo(struct rdt_domain *d, bool force_free);
528void rdt_domain_reconfigure_cdp(struct rdt_resource *r);
529void __init thread_throttle_mode_init(void);
530
531#endif /* _ASM_X86_RESCTRL_INTERNAL_H */