Linux Audio

Check our new training course

Loading...
v4.17
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_X86_BITOPS_H
  3#define _ASM_X86_BITOPS_H
  4
  5/*
  6 * Copyright 1992, Linus Torvalds.
  7 *
  8 * Note: inlines with more than a single statement should be marked
  9 * __always_inline to avoid problems with older gcc's inlining heuristics.
 10 */
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 16#include <linux/compiler.h>
 17#include <asm/alternative.h>
 18#include <asm/rmwcc.h>
 19#include <asm/barrier.h>
 20
 21#if BITS_PER_LONG == 32
 22# define _BITOPS_LONG_SHIFT 5
 23#elif BITS_PER_LONG == 64
 24# define _BITOPS_LONG_SHIFT 6
 25#else
 26# error "Unexpected BITS_PER_LONG"
 27#endif
 28
 29#define BIT_64(n)			(U64_C(1) << (n))
 30
 31/*
 32 * These have to be done with inline assembly: that way the bit-setting
 33 * is guaranteed to be atomic. All bit operations return 0 if the bit
 34 * was cleared before the operation and != 0 if it was not.
 35 *
 36 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 37 */
 38
 39#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
 40/* Technically wrong, but this avoids compilation errors on some gcc
 41   versions. */
 42#define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
 43#else
 44#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
 45#endif
 46
 47#define ADDR				BITOP_ADDR(addr)
 48
 49/*
 50 * We do the locked ops that don't return the old value as
 51 * a mask operation on a byte.
 52 */
 53#define IS_IMMEDIATE(nr)		(__builtin_constant_p(nr))
 54#define CONST_MASK_ADDR(nr, addr)	BITOP_ADDR((void *)(addr) + ((nr)>>3))
 55#define CONST_MASK(nr)			(1 << ((nr) & 7))
 56
 57/**
 58 * set_bit - Atomically set a bit in memory
 59 * @nr: the bit to set
 60 * @addr: the address to start counting from
 61 *
 62 * This function is atomic and may not be reordered.  See __set_bit()
 63 * if you do not require the atomic guarantees.
 64 *
 65 * Note: there are no guarantees that this function will not be reordered
 66 * on non x86 architectures, so if you are writing portable code,
 67 * make sure not to rely on its reordering guarantees.
 68 *
 69 * Note that @nr may be almost arbitrarily large; this function is not
 70 * restricted to acting on a single-word quantity.
 71 */
 72static __always_inline void
 73set_bit(long nr, volatile unsigned long *addr)
 74{
 75	if (IS_IMMEDIATE(nr)) {
 76		asm volatile(LOCK_PREFIX "orb %1,%0"
 77			: CONST_MASK_ADDR(nr, addr)
 78			: "iq" ((u8)CONST_MASK(nr))
 79			: "memory");
 80	} else {
 81		asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0"
 82			: BITOP_ADDR(addr) : "Ir" (nr) : "memory");
 83	}
 84}
 85
 86/**
 87 * __set_bit - Set a bit in memory
 88 * @nr: the bit to set
 89 * @addr: the address to start counting from
 90 *
 91 * Unlike set_bit(), this function is non-atomic and may be reordered.
 92 * If it's called on the same region of memory simultaneously, the effect
 93 * may be that only one operation succeeds.
 94 */
 95static __always_inline void __set_bit(long nr, volatile unsigned long *addr)
 96{
 97	asm volatile(__ASM_SIZE(bts) " %1,%0" : ADDR : "Ir" (nr) : "memory");
 98}
 99
100/**
101 * clear_bit - Clears a bit in memory
102 * @nr: Bit to clear
103 * @addr: Address to start counting from
104 *
105 * clear_bit() is atomic and may not be reordered.  However, it does
106 * not contain a memory barrier, so if it is used for locking purposes,
107 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
108 * in order to ensure changes are visible on other processors.
109 */
110static __always_inline void
111clear_bit(long nr, volatile unsigned long *addr)
112{
113	if (IS_IMMEDIATE(nr)) {
114		asm volatile(LOCK_PREFIX "andb %1,%0"
115			: CONST_MASK_ADDR(nr, addr)
116			: "iq" ((u8)~CONST_MASK(nr)));
117	} else {
118		asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0"
119			: BITOP_ADDR(addr)
120			: "Ir" (nr));
121	}
122}
123
124/*
125 * clear_bit_unlock - Clears a bit in memory
126 * @nr: Bit to clear
127 * @addr: Address to start counting from
128 *
129 * clear_bit() is atomic and implies release semantics before the memory
130 * operation. It can be used for an unlock.
131 */
132static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
133{
134	barrier();
135	clear_bit(nr, addr);
136}
137
138static __always_inline void __clear_bit(long nr, volatile unsigned long *addr)
 
139{
140	asm volatile(__ASM_SIZE(btr) " %1,%0" : ADDR : "Ir" (nr));
141}
142
143static __always_inline bool clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
 
144{
145	bool negative;
146	asm volatile(LOCK_PREFIX "andb %2,%1"
147		CC_SET(s)
148		: CC_OUT(s) (negative), ADDR
149		: "ir" ((char) ~(1 << nr)) : "memory");
150	return negative;
151}
 
 
152
153// Let everybody know we have it
154#define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte
155
156/*
157 * __clear_bit_unlock - Clears a bit in memory
158 * @nr: Bit to clear
159 * @addr: Address to start counting from
160 *
161 * __clear_bit() is non-atomic and implies release semantics before the memory
162 * operation. It can be used for an unlock if no other CPUs can concurrently
163 * modify other bits in the word.
164 *
165 * No memory barrier is required here, because x86 cannot reorder stores past
166 * older loads. Same principle as spin_unlock.
167 */
168static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
169{
170	barrier();
171	__clear_bit(nr, addr);
172}
173
174/**
175 * __change_bit - Toggle a bit in memory
176 * @nr: the bit to change
177 * @addr: the address to start counting from
178 *
179 * Unlike change_bit(), this function is non-atomic and may be reordered.
180 * If it's called on the same region of memory simultaneously, the effect
181 * may be that only one operation succeeds.
182 */
183static __always_inline void __change_bit(long nr, volatile unsigned long *addr)
184{
185	asm volatile(__ASM_SIZE(btc) " %1,%0" : ADDR : "Ir" (nr));
186}
187
188/**
189 * change_bit - Toggle a bit in memory
190 * @nr: Bit to change
191 * @addr: Address to start counting from
192 *
193 * change_bit() is atomic and may not be reordered.
194 * Note that @nr may be almost arbitrarily large; this function is not
195 * restricted to acting on a single-word quantity.
196 */
197static __always_inline void change_bit(long nr, volatile unsigned long *addr)
198{
199	if (IS_IMMEDIATE(nr)) {
200		asm volatile(LOCK_PREFIX "xorb %1,%0"
201			: CONST_MASK_ADDR(nr, addr)
202			: "iq" ((u8)CONST_MASK(nr)));
203	} else {
204		asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0"
205			: BITOP_ADDR(addr)
206			: "Ir" (nr));
207	}
208}
209
210/**
211 * test_and_set_bit - Set a bit and return its old value
212 * @nr: Bit to set
213 * @addr: Address to count from
214 *
215 * This operation is atomic and cannot be reordered.
216 * It also implies a memory barrier.
217 */
218static __always_inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
219{
220	GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts),
221	                 *addr, "Ir", nr, "%0", c);
222}
223
224/**
225 * test_and_set_bit_lock - Set a bit and return its old value for lock
226 * @nr: Bit to set
227 * @addr: Address to count from
228 *
229 * This is the same as test_and_set_bit on x86.
230 */
231static __always_inline bool
232test_and_set_bit_lock(long nr, volatile unsigned long *addr)
233{
234	return test_and_set_bit(nr, addr);
235}
236
237/**
238 * __test_and_set_bit - Set a bit and return its old value
239 * @nr: Bit to set
240 * @addr: Address to count from
241 *
242 * This operation is non-atomic and can be reordered.
243 * If two examples of this operation race, one can appear to succeed
244 * but actually fail.  You must protect multiple accesses with a lock.
245 */
246static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
247{
248	bool oldbit;
249
250	asm(__ASM_SIZE(bts) " %2,%1"
251	    CC_SET(c)
252	    : CC_OUT(c) (oldbit), ADDR
253	    : "Ir" (nr));
254	return oldbit;
255}
256
257/**
258 * test_and_clear_bit - Clear a bit and return its old value
259 * @nr: Bit to clear
260 * @addr: Address to count from
261 *
262 * This operation is atomic and cannot be reordered.
263 * It also implies a memory barrier.
264 */
265static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
266{
267	GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr),
268	                 *addr, "Ir", nr, "%0", c);
269}
270
271/**
272 * __test_and_clear_bit - Clear a bit and return its old value
273 * @nr: Bit to clear
274 * @addr: Address to count from
275 *
276 * This operation is non-atomic and can be reordered.
277 * If two examples of this operation race, one can appear to succeed
278 * but actually fail.  You must protect multiple accesses with a lock.
279 *
280 * Note: the operation is performed atomically with respect to
281 * the local CPU, but not other CPUs. Portable code should not
282 * rely on this behaviour.
283 * KVM relies on this behaviour on x86 for modifying memory that is also
284 * accessed from a hypervisor on the same CPU if running in a VM: don't change
285 * this without also updating arch/x86/kernel/kvm.c
286 */
287static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
 
288{
289	bool oldbit;
290
291	asm volatile(__ASM_SIZE(btr) " %2,%1"
292		     CC_SET(c)
293		     : CC_OUT(c) (oldbit), ADDR
294		     : "Ir" (nr));
295	return oldbit;
296}
297
298/* WARNING: non atomic and it can be reordered! */
299static __always_inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
300{
301	bool oldbit;
302
303	asm volatile(__ASM_SIZE(btc) " %2,%1"
304		     CC_SET(c)
305		     : CC_OUT(c) (oldbit), ADDR
306		     : "Ir" (nr) : "memory");
307
308	return oldbit;
309}
310
311/**
312 * test_and_change_bit - Change a bit and return its old value
313 * @nr: Bit to change
314 * @addr: Address to count from
315 *
316 * This operation is atomic and cannot be reordered.
317 * It also implies a memory barrier.
318 */
319static __always_inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
320{
321	GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc),
322	                 *addr, "Ir", nr, "%0", c);
323}
324
325static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
326{
327	return ((1UL << (nr & (BITS_PER_LONG-1))) &
328		(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
329}
330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
332{
333	bool oldbit;
334
335	asm volatile(__ASM_SIZE(bt) " %2,%1"
336		     CC_SET(c)
337		     : CC_OUT(c) (oldbit)
338		     : "m" (*(unsigned long *)addr), "Ir" (nr));
339
340	return oldbit;
341}
342
343#if 0 /* Fool kernel-doc since it doesn't do macros yet */
344/**
345 * test_bit - Determine whether a bit is set
346 * @nr: bit number to test
347 * @addr: Address to start counting from
348 */
349static bool test_bit(int nr, const volatile unsigned long *addr);
350#endif
351
352#define test_bit(nr, addr)			\
353	(__builtin_constant_p((nr))		\
354	 ? constant_test_bit((nr), (addr))	\
355	 : variable_test_bit((nr), (addr)))
 
 
 
 
 
 
 
 
 
 
356
357/**
358 * __ffs - find first set bit in word
359 * @word: The word to search
360 *
361 * Undefined if no bit exists, so code should check against 0 first.
362 */
363static __always_inline unsigned long __ffs(unsigned long word)
 
 
 
 
 
364{
365	asm("rep; bsf %1,%0"
366		: "=r" (word)
367		: "rm" (word));
368	return word;
369}
370
371/**
372 * ffz - find first zero bit in word
373 * @word: The word to search
374 *
375 * Undefined if no zero exists, so code should check against ~0UL first.
376 */
377static __always_inline unsigned long ffz(unsigned long word)
378{
379	asm("rep; bsf %1,%0"
380		: "=r" (word)
381		: "r" (~word));
382	return word;
383}
384
385/*
386 * __fls: find last set bit in word
387 * @word: The word to search
388 *
389 * Undefined if no set bit exists, so code should check against 0 first.
390 */
391static __always_inline unsigned long __fls(unsigned long word)
392{
393	asm("bsr %1,%0"
394	    : "=r" (word)
395	    : "rm" (word));
396	return word;
397}
398
399#undef ADDR
400
401#ifdef __KERNEL__
402/**
403 * ffs - find first set bit in word
404 * @x: the word to search
405 *
406 * This is defined the same way as the libc and compiler builtin ffs
407 * routines, therefore differs in spirit from the other bitops.
408 *
409 * ffs(value) returns 0 if value is 0 or the position of the first
410 * set bit if value is nonzero. The first (least significant) bit
411 * is at position 1.
412 */
413static __always_inline int ffs(int x)
414{
415	int r;
416
417#ifdef CONFIG_X86_64
418	/*
419	 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
420	 * dest reg is undefined if x==0, but their CPU architect says its
421	 * value is written to set it to the same as before, except that the
422	 * top 32 bits will be cleared.
423	 *
424	 * We cannot do this on 32 bits because at the very least some
425	 * 486 CPUs did not behave this way.
426	 */
427	asm("bsfl %1,%0"
428	    : "=r" (r)
429	    : "rm" (x), "0" (-1));
430#elif defined(CONFIG_X86_CMOV)
431	asm("bsfl %1,%0\n\t"
432	    "cmovzl %2,%0"
433	    : "=&r" (r) : "rm" (x), "r" (-1));
434#else
435	asm("bsfl %1,%0\n\t"
436	    "jnz 1f\n\t"
437	    "movl $-1,%0\n"
438	    "1:" : "=r" (r) : "rm" (x));
439#endif
440	return r + 1;
441}
442
443/**
 
 
 
 
 
 
 
 
 
 
 
 
 
444 * fls - find last set bit in word
445 * @x: the word to search
446 *
447 * This is defined in a similar way as the libc and compiler builtin
448 * ffs, but returns the position of the most significant set bit.
449 *
450 * fls(value) returns 0 if value is 0 or the position of the last
451 * set bit if value is nonzero. The last (most significant) bit is
452 * at position 32.
453 */
454static __always_inline int fls(int x)
455{
456	int r;
457
458#ifdef CONFIG_X86_64
459	/*
460	 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
461	 * dest reg is undefined if x==0, but their CPU architect says its
462	 * value is written to set it to the same as before, except that the
463	 * top 32 bits will be cleared.
464	 *
465	 * We cannot do this on 32 bits because at the very least some
466	 * 486 CPUs did not behave this way.
467	 */
468	asm("bsrl %1,%0"
469	    : "=r" (r)
470	    : "rm" (x), "0" (-1));
471#elif defined(CONFIG_X86_CMOV)
472	asm("bsrl %1,%0\n\t"
473	    "cmovzl %2,%0"
474	    : "=&r" (r) : "rm" (x), "rm" (-1));
475#else
476	asm("bsrl %1,%0\n\t"
477	    "jnz 1f\n\t"
478	    "movl $-1,%0\n"
479	    "1:" : "=r" (r) : "rm" (x));
480#endif
481	return r + 1;
482}
483
484/**
485 * fls64 - find last set bit in a 64-bit word
486 * @x: the word to search
487 *
488 * This is defined in a similar way as the libc and compiler builtin
489 * ffsll, but returns the position of the most significant set bit.
490 *
491 * fls64(value) returns 0 if value is 0 or the position of the last
492 * set bit if value is nonzero. The last (most significant) bit is
493 * at position 64.
494 */
495#ifdef CONFIG_X86_64
496static __always_inline int fls64(__u64 x)
497{
498	int bitpos = -1;
499	/*
500	 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
501	 * dest reg is undefined if x==0, but their CPU architect says its
502	 * value is written to set it to the same as before.
503	 */
504	asm("bsrq %1,%q0"
505	    : "+r" (bitpos)
506	    : "rm" (x));
507	return bitpos + 1;
508}
509#else
510#include <asm-generic/bitops/fls64.h>
511#endif
512
513#include <asm-generic/bitops/find.h>
514
515#include <asm-generic/bitops/sched.h>
516
517#include <asm/arch_hweight.h>
518
519#include <asm-generic/bitops/const_hweight.h>
 
 
 
 
520
521#include <asm-generic/bitops/le.h>
522
523#include <asm-generic/bitops/ext2-atomic-setbit.h>
524
525#endif /* __KERNEL__ */
526#endif /* _ASM_X86_BITOPS_H */
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_X86_BITOPS_H
  3#define _ASM_X86_BITOPS_H
  4
  5/*
  6 * Copyright 1992, Linus Torvalds.
  7 *
  8 * Note: inlines with more than a single statement should be marked
  9 * __always_inline to avoid problems with older gcc's inlining heuristics.
 10 */
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 16#include <linux/compiler.h>
 17#include <asm/alternative.h>
 18#include <asm/rmwcc.h>
 19#include <asm/barrier.h>
 20
 21#if BITS_PER_LONG == 32
 22# define _BITOPS_LONG_SHIFT 5
 23#elif BITS_PER_LONG == 64
 24# define _BITOPS_LONG_SHIFT 6
 25#else
 26# error "Unexpected BITS_PER_LONG"
 27#endif
 28
 29#define BIT_64(n)			(U64_C(1) << (n))
 30
 31/*
 32 * These have to be done with inline assembly: that way the bit-setting
 33 * is guaranteed to be atomic. All bit operations return 0 if the bit
 34 * was cleared before the operation and != 0 if it was not.
 35 *
 36 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 37 */
 38
 39#define RLONG_ADDR(x)			 "m" (*(volatile long *) (x))
 40#define WBYTE_ADDR(x)			"+m" (*(volatile char *) (x))
 
 
 
 
 
 41
 42#define ADDR				RLONG_ADDR(addr)
 43
 44/*
 45 * We do the locked ops that don't return the old value as
 46 * a mask operation on a byte.
 47 */
 48#define CONST_MASK_ADDR(nr, addr)	WBYTE_ADDR((void *)(addr) + ((nr)>>3))
 
 49#define CONST_MASK(nr)			(1 << ((nr) & 7))
 50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 51static __always_inline void
 52arch_set_bit(long nr, volatile unsigned long *addr)
 53{
 54	if (__builtin_constant_p(nr)) {
 55		asm volatile(LOCK_PREFIX "orb %b1,%0"
 56			: CONST_MASK_ADDR(nr, addr)
 57			: "iq" (CONST_MASK(nr))
 58			: "memory");
 59	} else {
 60		asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0"
 61			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
 62	}
 63}
 64
 65static __always_inline void
 66arch___set_bit(unsigned long nr, volatile unsigned long *addr)
 
 
 
 
 
 
 
 
 67{
 68	asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
 69}
 70
 
 
 
 
 
 
 
 
 
 
 71static __always_inline void
 72arch_clear_bit(long nr, volatile unsigned long *addr)
 73{
 74	if (__builtin_constant_p(nr)) {
 75		asm volatile(LOCK_PREFIX "andb %b1,%0"
 76			: CONST_MASK_ADDR(nr, addr)
 77			: "iq" (~CONST_MASK(nr)));
 78	} else {
 79		asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0"
 80			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
 
 81	}
 82}
 83
 84static __always_inline void
 85arch_clear_bit_unlock(long nr, volatile unsigned long *addr)
 
 
 
 
 
 
 
 86{
 87	barrier();
 88	arch_clear_bit(nr, addr);
 89}
 90
 91static __always_inline void
 92arch___clear_bit(unsigned long nr, volatile unsigned long *addr)
 93{
 94	asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
 95}
 96
 97static __always_inline bool
 98arch_clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
 99{
100	bool negative;
101	asm volatile(LOCK_PREFIX "andb %2,%1"
102		CC_SET(s)
103		: CC_OUT(s) (negative), WBYTE_ADDR(addr)
104		: "ir" ((char) ~(1 << nr)) : "memory");
105	return negative;
106}
107#define arch_clear_bit_unlock_is_negative_byte                                 \
108	arch_clear_bit_unlock_is_negative_byte
109
110static __always_inline void
111arch___clear_bit_unlock(long nr, volatile unsigned long *addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112{
113	arch___clear_bit(nr, addr);
 
114}
115
116static __always_inline void
117arch___change_bit(unsigned long nr, volatile unsigned long *addr)
 
 
 
 
 
 
 
 
118{
119	asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
120}
121
122static __always_inline void
123arch_change_bit(long nr, volatile unsigned long *addr)
 
 
 
 
 
 
 
 
124{
125	if (__builtin_constant_p(nr)) {
126		asm volatile(LOCK_PREFIX "xorb %b1,%0"
127			: CONST_MASK_ADDR(nr, addr)
128			: "iq" (CONST_MASK(nr)));
129	} else {
130		asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0"
131			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
 
132	}
133}
134
135static __always_inline bool
136arch_test_and_set_bit(long nr, volatile unsigned long *addr)
 
 
 
 
 
 
 
137{
138	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr);
 
139}
140
 
 
 
 
 
 
 
141static __always_inline bool
142arch_test_and_set_bit_lock(long nr, volatile unsigned long *addr)
143{
144	return arch_test_and_set_bit(nr, addr);
145}
146
147static __always_inline bool
148arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
 
 
 
 
 
 
 
 
149{
150	bool oldbit;
151
152	asm(__ASM_SIZE(bts) " %2,%1"
153	    CC_SET(c)
154	    : CC_OUT(c) (oldbit)
155	    : ADDR, "Ir" (nr) : "memory");
156	return oldbit;
157}
158
159static __always_inline bool
160arch_test_and_clear_bit(long nr, volatile unsigned long *addr)
 
 
 
 
 
 
 
161{
162	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr);
 
163}
164
165/*
 
 
 
 
 
 
 
 
166 * Note: the operation is performed atomically with respect to
167 * the local CPU, but not other CPUs. Portable code should not
168 * rely on this behaviour.
169 * KVM relies on this behaviour on x86 for modifying memory that is also
170 * accessed from a hypervisor on the same CPU if running in a VM: don't change
171 * this without also updating arch/x86/kernel/kvm.c
172 */
173static __always_inline bool
174arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
175{
176	bool oldbit;
177
178	asm volatile(__ASM_SIZE(btr) " %2,%1"
179		     CC_SET(c)
180		     : CC_OUT(c) (oldbit)
181		     : ADDR, "Ir" (nr) : "memory");
182	return oldbit;
183}
184
185static __always_inline bool
186arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
187{
188	bool oldbit;
189
190	asm volatile(__ASM_SIZE(btc) " %2,%1"
191		     CC_SET(c)
192		     : CC_OUT(c) (oldbit)
193		     : ADDR, "Ir" (nr) : "memory");
194
195	return oldbit;
196}
197
198static __always_inline bool
199arch_test_and_change_bit(long nr, volatile unsigned long *addr)
 
 
 
 
 
 
 
200{
201	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr);
 
202}
203
204static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
205{
206	return ((1UL << (nr & (BITS_PER_LONG-1))) &
207		(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
208}
209
210static __always_inline bool constant_test_bit_acquire(long nr, const volatile unsigned long *addr)
211{
212	bool oldbit;
213
214	asm volatile("testb %2,%1"
215		     CC_SET(nz)
216		     : CC_OUT(nz) (oldbit)
217		     : "m" (((unsigned char *)addr)[nr >> 3]),
218		       "i" (1 << (nr & 7))
219		     :"memory");
220
221	return oldbit;
222}
223
224static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
225{
226	bool oldbit;
227
228	asm volatile(__ASM_SIZE(bt) " %2,%1"
229		     CC_SET(c)
230		     : CC_OUT(c) (oldbit)
231		     : "m" (*(unsigned long *)addr), "Ir" (nr) : "memory");
232
233	return oldbit;
234}
235
236static __always_inline bool
237arch_test_bit(unsigned long nr, const volatile unsigned long *addr)
238{
239	return __builtin_constant_p(nr) ? constant_test_bit(nr, addr) :
240					  variable_test_bit(nr, addr);
241}
 
 
242
243static __always_inline bool
244arch_test_bit_acquire(unsigned long nr, const volatile unsigned long *addr)
245{
246	return __builtin_constant_p(nr) ? constant_test_bit_acquire(nr, addr) :
247					  variable_test_bit(nr, addr);
248}
249
250static __always_inline unsigned long variable__ffs(unsigned long word)
251{
252	asm("rep; bsf %1,%0"
253		: "=r" (word)
254		: "rm" (word));
255	return word;
256}
257
258/**
259 * __ffs - find first set bit in word
260 * @word: The word to search
261 *
262 * Undefined if no bit exists, so code should check against 0 first.
263 */
264#define __ffs(word)				\
265	(__builtin_constant_p(word) ?		\
266	 (unsigned long)__builtin_ctzl(word) :	\
267	 variable__ffs(word))
268
269static __always_inline unsigned long variable_ffz(unsigned long word)
270{
271	asm("rep; bsf %1,%0"
272		: "=r" (word)
273		: "r" (~word));
274	return word;
275}
276
277/**
278 * ffz - find first zero bit in word
279 * @word: The word to search
280 *
281 * Undefined if no zero exists, so code should check against ~0UL first.
282 */
283#define ffz(word)				\
284	(__builtin_constant_p(word) ?		\
285	 (unsigned long)__builtin_ctzl(~word) :	\
286	 variable_ffz(word))
 
 
 
287
288/*
289 * __fls: find last set bit in word
290 * @word: The word to search
291 *
292 * Undefined if no set bit exists, so code should check against 0 first.
293 */
294static __always_inline unsigned long __fls(unsigned long word)
295{
296	asm("bsr %1,%0"
297	    : "=r" (word)
298	    : "rm" (word));
299	return word;
300}
301
302#undef ADDR
303
304#ifdef __KERNEL__
305static __always_inline int variable_ffs(int x)
 
 
 
 
 
 
 
 
 
 
 
306{
307	int r;
308
309#ifdef CONFIG_X86_64
310	/*
311	 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
312	 * dest reg is undefined if x==0, but their CPU architect says its
313	 * value is written to set it to the same as before, except that the
314	 * top 32 bits will be cleared.
315	 *
316	 * We cannot do this on 32 bits because at the very least some
317	 * 486 CPUs did not behave this way.
318	 */
319	asm("bsfl %1,%0"
320	    : "=r" (r)
321	    : "rm" (x), "0" (-1));
322#elif defined(CONFIG_X86_CMOV)
323	asm("bsfl %1,%0\n\t"
324	    "cmovzl %2,%0"
325	    : "=&r" (r) : "rm" (x), "r" (-1));
326#else
327	asm("bsfl %1,%0\n\t"
328	    "jnz 1f\n\t"
329	    "movl $-1,%0\n"
330	    "1:" : "=r" (r) : "rm" (x));
331#endif
332	return r + 1;
333}
334
335/**
336 * ffs - find first set bit in word
337 * @x: the word to search
338 *
339 * This is defined the same way as the libc and compiler builtin ffs
340 * routines, therefore differs in spirit from the other bitops.
341 *
342 * ffs(value) returns 0 if value is 0 or the position of the first
343 * set bit if value is nonzero. The first (least significant) bit
344 * is at position 1.
345 */
346#define ffs(x) (__builtin_constant_p(x) ? __builtin_ffs(x) : variable_ffs(x))
347
348/**
349 * fls - find last set bit in word
350 * @x: the word to search
351 *
352 * This is defined in a similar way as the libc and compiler builtin
353 * ffs, but returns the position of the most significant set bit.
354 *
355 * fls(value) returns 0 if value is 0 or the position of the last
356 * set bit if value is nonzero. The last (most significant) bit is
357 * at position 32.
358 */
359static __always_inline int fls(unsigned int x)
360{
361	int r;
362
363#ifdef CONFIG_X86_64
364	/*
365	 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
366	 * dest reg is undefined if x==0, but their CPU architect says its
367	 * value is written to set it to the same as before, except that the
368	 * top 32 bits will be cleared.
369	 *
370	 * We cannot do this on 32 bits because at the very least some
371	 * 486 CPUs did not behave this way.
372	 */
373	asm("bsrl %1,%0"
374	    : "=r" (r)
375	    : "rm" (x), "0" (-1));
376#elif defined(CONFIG_X86_CMOV)
377	asm("bsrl %1,%0\n\t"
378	    "cmovzl %2,%0"
379	    : "=&r" (r) : "rm" (x), "rm" (-1));
380#else
381	asm("bsrl %1,%0\n\t"
382	    "jnz 1f\n\t"
383	    "movl $-1,%0\n"
384	    "1:" : "=r" (r) : "rm" (x));
385#endif
386	return r + 1;
387}
388
389/**
390 * fls64 - find last set bit in a 64-bit word
391 * @x: the word to search
392 *
393 * This is defined in a similar way as the libc and compiler builtin
394 * ffsll, but returns the position of the most significant set bit.
395 *
396 * fls64(value) returns 0 if value is 0 or the position of the last
397 * set bit if value is nonzero. The last (most significant) bit is
398 * at position 64.
399 */
400#ifdef CONFIG_X86_64
401static __always_inline int fls64(__u64 x)
402{
403	int bitpos = -1;
404	/*
405	 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
406	 * dest reg is undefined if x==0, but their CPU architect says its
407	 * value is written to set it to the same as before.
408	 */
409	asm("bsrq %1,%q0"
410	    : "+r" (bitpos)
411	    : "rm" (x));
412	return bitpos + 1;
413}
414#else
415#include <asm-generic/bitops/fls64.h>
416#endif
417
 
 
418#include <asm-generic/bitops/sched.h>
419
420#include <asm/arch_hweight.h>
421
422#include <asm-generic/bitops/const_hweight.h>
423
424#include <asm-generic/bitops/instrumented-atomic.h>
425#include <asm-generic/bitops/instrumented-non-atomic.h>
426#include <asm-generic/bitops/instrumented-lock.h>
427
428#include <asm-generic/bitops/le.h>
429
430#include <asm-generic/bitops/ext2-atomic-setbit.h>
431
432#endif /* __KERNEL__ */
433#endif /* _ASM_X86_BITOPS_H */