Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * kaslr.c
  4 *
  5 * This contains the routines needed to generate a reasonable level of
  6 * entropy to choose a randomized kernel base address offset in support
  7 * of Kernel Address Space Layout Randomization (KASLR). Additionally
  8 * handles walking the physical memory maps (and tracking memory regions
  9 * to avoid) in order to select a physical memory location that can
 10 * contain the entire properly aligned running kernel image.
 11 *
 12 */
 13
 14/*
 15 * isspace() in linux/ctype.h is expected by next_args() to filter
 16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
 17 * since isdigit() is implemented in both of them. Hence disable it
 18 * here.
 19 */
 20#define BOOT_CTYPE_H
 21
 22/*
 23 * _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h.
 24 * While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL
 25 * which is meaningless and will cause compiling error in some cases.
 26 * So do not include linux/export.h and define EXPORT_SYMBOL(sym)
 27 * as empty.
 28 */
 29#define _LINUX_EXPORT_H
 30#define EXPORT_SYMBOL(sym)
 31
 32#include "misc.h"
 33#include "error.h"
 34#include "../string.h"
 
 35
 36#include <generated/compile.h>
 37#include <linux/module.h>
 38#include <linux/uts.h>
 39#include <linux/utsname.h>
 40#include <linux/ctype.h>
 41#include <linux/efi.h>
 42#include <generated/utsrelease.h>
 43#include <asm/efi.h>
 44
 45/* Macros used by the included decompressor code below. */
 46#define STATIC
 47#include <linux/decompress/mm.h>
 48
 49#ifdef CONFIG_X86_5LEVEL
 50unsigned int pgtable_l5_enabled __ro_after_init;
 51unsigned int pgdir_shift __ro_after_init = 39;
 52unsigned int ptrs_per_p4d __ro_after_init = 1;
 53#endif
 54
 55extern unsigned long get_cmd_line_ptr(void);
 56
 57/* Used by PAGE_KERN* macros: */
 58pteval_t __default_kernel_pte_mask __read_mostly = ~0;
 59
 60/* Simplified build-specific string for starting entropy. */
 61static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
 62		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
 63
 64static unsigned long rotate_xor(unsigned long hash, const void *area,
 65				size_t size)
 66{
 67	size_t i;
 68	unsigned long *ptr = (unsigned long *)area;
 69
 70	for (i = 0; i < size / sizeof(hash); i++) {
 71		/* Rotate by odd number of bits and XOR. */
 72		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
 73		hash ^= ptr[i];
 74	}
 75
 76	return hash;
 77}
 78
 79/* Attempt to create a simple but unpredictable starting entropy. */
 80static unsigned long get_boot_seed(void)
 81{
 82	unsigned long hash = 0;
 83
 84	hash = rotate_xor(hash, build_str, sizeof(build_str));
 85	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
 86
 87	return hash;
 88}
 89
 90#define KASLR_COMPRESSED_BOOT
 91#include "../../lib/kaslr.c"
 92
 93struct mem_vector {
 94	unsigned long long start;
 95	unsigned long long size;
 96};
 97
 98/* Only supporting at most 4 unusable memmap regions with kaslr */
 99#define MAX_MEMMAP_REGIONS	4
100
101static bool memmap_too_large;
102
103
104/* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */
105unsigned long long mem_limit = ULLONG_MAX;
 
 
 
106
 
 
107
108enum mem_avoid_index {
109	MEM_AVOID_ZO_RANGE = 0,
110	MEM_AVOID_INITRD,
111	MEM_AVOID_CMDLINE,
112	MEM_AVOID_BOOTPARAMS,
113	MEM_AVOID_MEMMAP_BEGIN,
114	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
115	MEM_AVOID_MAX,
116};
117
118static struct mem_vector mem_avoid[MEM_AVOID_MAX];
119
120static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
121{
122	/* Item one is entirely before item two. */
123	if (one->start + one->size <= two->start)
124		return false;
125	/* Item one is entirely after item two. */
126	if (one->start >= two->start + two->size)
127		return false;
128	return true;
129}
130
131char *skip_spaces(const char *str)
132{
133	while (isspace(*str))
134		++str;
135	return (char *)str;
136}
137#include "../../../../lib/ctype.c"
138#include "../../../../lib/cmdline.c"
139
 
 
 
 
 
140static int
141parse_memmap(char *p, unsigned long long *start, unsigned long long *size)
142{
143	char *oldp;
144
145	if (!p)
146		return -EINVAL;
147
148	/* We don't care about this option here */
149	if (!strncmp(p, "exactmap", 8))
150		return -EINVAL;
151
152	oldp = p;
153	*size = memparse(p, &p);
154	if (p == oldp)
155		return -EINVAL;
156
157	switch (*p) {
158	case '#':
159	case '$':
160	case '!':
161		*start = memparse(p + 1, &p);
162		return 0;
163	case '@':
164		/* memmap=nn@ss specifies usable region, should be skipped */
165		*size = 0;
166		/* Fall through */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167	default:
168		/*
169		 * If w/o offset, only size specified, memmap=nn[KMG] has the
170		 * same behaviour as mem=nn[KMG]. It limits the max address
171		 * system can use. Region above the limit should be avoided.
172		 */
173		*start = 0;
174		return 0;
175	}
176
177	return -EINVAL;
178}
179
180static void mem_avoid_memmap(char *str)
181{
182	static int i;
183
184	if (i >= MAX_MEMMAP_REGIONS)
185		return;
186
187	while (str && (i < MAX_MEMMAP_REGIONS)) {
188		int rc;
189		unsigned long long start, size;
190		char *k = strchr(str, ',');
191
192		if (k)
193			*k++ = 0;
194
195		rc = parse_memmap(str, &start, &size);
196		if (rc < 0)
197			break;
198		str = k;
199
200		if (start == 0) {
201			/* Store the specified memory limit if size > 0 */
202			if (size > 0)
203				mem_limit = size;
204
205			continue;
206		}
207
208		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
209		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
210		i++;
211	}
212
213	/* More than 4 memmaps, fail kaslr */
214	if ((i >= MAX_MEMMAP_REGIONS) && str)
215		memmap_too_large = true;
216}
217
218static int handle_mem_memmap(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219{
220	char *args = (char *)get_cmd_line_ptr();
221	size_t len = strlen((char *)args);
222	char *tmp_cmdline;
223	char *param, *val;
224	u64 mem_size;
225
226	if (!strstr(args, "memmap=") && !strstr(args, "mem="))
227		return 0;
228
 
229	tmp_cmdline = malloc(len + 1);
230	if (!tmp_cmdline)
231		error("Failed to allocate space for tmp_cmdline");
232
233	memcpy(tmp_cmdline, args, len);
234	tmp_cmdline[len] = 0;
235	args = tmp_cmdline;
236
237	/* Chew leading spaces */
238	args = skip_spaces(args);
239
240	while (*args) {
241		args = next_arg(args, &param, &val);
242		/* Stop at -- */
243		if (!val && strcmp(param, "--") == 0) {
244			warn("Only '--' specified in cmdline");
245			free(tmp_cmdline);
246			return -1;
247		}
248
249		if (!strcmp(param, "memmap")) {
250			mem_avoid_memmap(val);
 
 
251		} else if (!strcmp(param, "mem")) {
252			char *p = val;
253
254			if (!strcmp(p, "nopentium"))
255				continue;
256			mem_size = memparse(p, &p);
257			if (mem_size == 0) {
258				free(tmp_cmdline);
259				return -EINVAL;
260			}
261			mem_limit = mem_size;
 
 
262		}
263	}
264
265	free(tmp_cmdline);
266	return 0;
267}
268
269/*
270 * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
 
 
271 * The mem_avoid array is used to store the ranges that need to be avoided
272 * when KASLR searches for an appropriate random address. We must avoid any
273 * regions that are unsafe to overlap with during decompression, and other
274 * things like the initrd, cmdline and boot_params. This comment seeks to
275 * explain mem_avoid as clearly as possible since incorrect mem_avoid
276 * memory ranges lead to really hard to debug boot failures.
277 *
278 * The initrd, cmdline, and boot_params are trivial to identify for
279 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
280 * MEM_AVOID_BOOTPARAMS respectively below.
281 *
282 * What is not obvious how to avoid is the range of memory that is used
283 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
284 * the compressed kernel (ZO) and its run space, which is used to extract
285 * the uncompressed kernel (VO) and relocs.
286 *
287 * ZO's full run size sits against the end of the decompression buffer, so
288 * we can calculate where text, data, bss, etc of ZO are positioned more
289 * easily.
290 *
291 * For additional background, the decompression calculations can be found
292 * in header.S, and the memory diagram is based on the one found in misc.c.
293 *
294 * The following conditions are already enforced by the image layouts and
295 * associated code:
296 *  - input + input_size >= output + output_size
297 *  - kernel_total_size <= init_size
298 *  - kernel_total_size <= output_size (see Note below)
299 *  - output + init_size >= output + output_size
300 *
301 * (Note that kernel_total_size and output_size have no fundamental
302 * relationship, but output_size is passed to choose_random_location
303 * as a maximum of the two. The diagram is showing a case where
304 * kernel_total_size is larger than output_size, but this case is
305 * handled by bumping output_size.)
306 *
307 * The above conditions can be illustrated by a diagram:
308 *
309 * 0   output            input            input+input_size    output+init_size
310 * |     |                 |                             |             |
311 * |     |                 |                             |             |
312 * |-----|--------|--------|--------------|-----------|--|-------------|
313 *                |                       |           |
314 *                |                       |           |
315 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
316 *
317 * [output, output+init_size) is the entire memory range used for
318 * extracting the compressed image.
319 *
320 * [output, output+kernel_total_size) is the range needed for the
321 * uncompressed kernel (VO) and its run size (bss, brk, etc).
322 *
323 * [output, output+output_size) is VO plus relocs (i.e. the entire
324 * uncompressed payload contained by ZO). This is the area of the buffer
325 * written to during decompression.
326 *
327 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
328 * range of the copied ZO and decompression code. (i.e. the range
329 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
330 *
331 * [input, input+input_size) is the original copied compressed image (ZO)
332 * (i.e. it does not include its run size). This range must be avoided
333 * because it contains the data used for decompression.
334 *
335 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
336 * range includes ZO's heap and stack, and must be avoided since it
337 * performs the decompression.
338 *
339 * Since the above two ranges need to be avoided and they are adjacent,
340 * they can be merged, resulting in: [input, output+init_size) which
341 * becomes the MEM_AVOID_ZO_RANGE below.
342 */
343static void mem_avoid_init(unsigned long input, unsigned long input_size,
344			   unsigned long output)
345{
346	unsigned long init_size = boot_params->hdr.init_size;
347	u64 initrd_start, initrd_size;
348	u64 cmd_line, cmd_line_size;
349	char *ptr;
350
351	/*
352	 * Avoid the region that is unsafe to overlap during
353	 * decompression.
354	 */
355	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
356	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
357	add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
358			 mem_avoid[MEM_AVOID_ZO_RANGE].size);
359
360	/* Avoid initrd. */
361	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
362	initrd_start |= boot_params->hdr.ramdisk_image;
363	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
364	initrd_size |= boot_params->hdr.ramdisk_size;
365	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
366	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
367	/* No need to set mapping for initrd, it will be handled in VO. */
368
369	/* Avoid kernel command line. */
370	cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
371	cmd_line |= boot_params->hdr.cmd_line_ptr;
372	/* Calculate size of cmd_line. */
373	ptr = (char *)(unsigned long)cmd_line;
374	for (cmd_line_size = 0; ptr[cmd_line_size++];)
375		;
376	mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
377	mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
378	add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
379			 mem_avoid[MEM_AVOID_CMDLINE].size);
380
381	/* Avoid boot parameters. */
382	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
383	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
384	add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
385			 mem_avoid[MEM_AVOID_BOOTPARAMS].size);
386
387	/* We don't need to set a mapping for setup_data. */
388
389	/* Mark the memmap regions we need to avoid */
390	handle_mem_memmap();
391
392#ifdef CONFIG_X86_VERBOSE_BOOTUP
393	/* Make sure video RAM can be used. */
394	add_identity_map(0, PMD_SIZE);
395#endif
396}
397
398/*
399 * Does this memory vector overlap a known avoided area? If so, record the
400 * overlap region with the lowest address.
401 */
402static bool mem_avoid_overlap(struct mem_vector *img,
403			      struct mem_vector *overlap)
404{
405	int i;
406	struct setup_data *ptr;
407	unsigned long earliest = img->start + img->size;
408	bool is_overlapping = false;
409
410	for (i = 0; i < MEM_AVOID_MAX; i++) {
411		if (mem_overlaps(img, &mem_avoid[i]) &&
412		    mem_avoid[i].start < earliest) {
413			*overlap = mem_avoid[i];
414			earliest = overlap->start;
415			is_overlapping = true;
416		}
417	}
418
419	/* Avoid all entries in the setup_data linked list. */
420	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
421	while (ptr) {
422		struct mem_vector avoid;
423
424		avoid.start = (unsigned long)ptr;
425		avoid.size = sizeof(*ptr) + ptr->len;
426
427		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
428			*overlap = avoid;
429			earliest = overlap->start;
430			is_overlapping = true;
431		}
432
 
 
 
 
 
 
 
 
 
 
 
 
433		ptr = (struct setup_data *)(unsigned long)ptr->next;
434	}
435
436	return is_overlapping;
437}
438
439struct slot_area {
440	unsigned long addr;
441	int num;
442};
443
444#define MAX_SLOT_AREA 100
445
446static struct slot_area slot_areas[MAX_SLOT_AREA];
447
448static unsigned long slot_max;
449
450static unsigned long slot_area_index;
451
452static void store_slot_info(struct mem_vector *region, unsigned long image_size)
453{
454	struct slot_area slot_area;
455
456	if (slot_area_index == MAX_SLOT_AREA)
457		return;
458
459	slot_area.addr = region->start;
460	slot_area.num = (region->size - image_size) /
461			CONFIG_PHYSICAL_ALIGN + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462
463	if (slot_area.num > 0) {
464		slot_areas[slot_area_index++] = slot_area;
465		slot_max += slot_area.num;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466	}
467}
468
469static unsigned long slots_fetch_random(void)
470{
471	unsigned long slot;
472	int i;
473
474	/* Handle case of no slots stored. */
475	if (slot_max == 0)
476		return 0;
477
478	slot = kaslr_get_random_long("Physical") % slot_max;
479
480	for (i = 0; i < slot_area_index; i++) {
481		if (slot >= slot_areas[i].num) {
482			slot -= slot_areas[i].num;
483			continue;
484		}
485		return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
486	}
487
488	if (i == slot_area_index)
489		debug_putstr("slots_fetch_random() failed!?\n");
490	return 0;
491}
492
493static void process_mem_region(struct mem_vector *entry,
494			       unsigned long minimum,
495			       unsigned long image_size)
496{
497	struct mem_vector region, overlap;
498	struct slot_area slot_area;
499	unsigned long start_orig, end;
500	struct mem_vector cur_entry;
501
502	/* On 32-bit, ignore entries entirely above our maximum. */
503	if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE)
504		return;
505
506	/* Ignore entries entirely below our minimum. */
507	if (entry->start + entry->size < minimum)
508		return;
509
510	/* Ignore entries above memory limit */
511	end = min(entry->size + entry->start, mem_limit);
512	if (entry->start >= end)
513		return;
514	cur_entry.start = entry->start;
515	cur_entry.size = end - entry->start;
516
517	region.start = cur_entry.start;
518	region.size = cur_entry.size;
519
520	/* Give up if slot area array is full. */
521	while (slot_area_index < MAX_SLOT_AREA) {
522		start_orig = region.start;
523
524		/* Potentially raise address to minimum location. */
525		if (region.start < minimum)
526			region.start = minimum;
527
528		/* Potentially raise address to meet alignment needs. */
529		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
530
531		/* Did we raise the address above the passed in memory entry? */
532		if (region.start > cur_entry.start + cur_entry.size)
533			return;
534
535		/* Reduce size by any delta from the original address. */
536		region.size -= region.start - start_orig;
537
538		/* On 32-bit, reduce region size to fit within max size. */
539		if (IS_ENABLED(CONFIG_X86_32) &&
540		    region.start + region.size > KERNEL_IMAGE_SIZE)
541			region.size = KERNEL_IMAGE_SIZE - region.start;
542
543		/* Return if region can't contain decompressed kernel */
544		if (region.size < image_size)
545			return;
546
547		/* If nothing overlaps, store the region and return. */
548		if (!mem_avoid_overlap(&region, &overlap)) {
549			store_slot_info(&region, image_size);
550			return;
551		}
552
553		/* Store beginning of region if holds at least image_size. */
554		if (overlap.start > region.start + image_size) {
555			struct mem_vector beginning;
556
557			beginning.start = region.start;
558			beginning.size = overlap.start - region.start;
559			store_slot_info(&beginning, image_size);
560		}
561
562		/* Return if overlap extends to or past end of region. */
563		if (overlap.start + overlap.size >= region.start + region.size)
564			return;
565
566		/* Clip off the overlapping region and start over. */
567		region.size -= overlap.start - region.start + overlap.size;
568		region.start = overlap.start + overlap.size;
569	}
570}
571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572#ifdef CONFIG_EFI
573/*
574 * Returns true if mirror region found (and must have been processed
575 * for slots adding)
576 */
577static bool
578process_efi_entries(unsigned long minimum, unsigned long image_size)
579{
580	struct efi_info *e = &boot_params->efi_info;
581	bool efi_mirror_found = false;
582	struct mem_vector region;
583	efi_memory_desc_t *md;
584	unsigned long pmap;
585	char *signature;
586	u32 nr_desc;
587	int i;
588
589	signature = (char *)&e->efi_loader_signature;
590	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
591	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
592		return false;
593
594#ifdef CONFIG_X86_32
595	/* Can't handle data above 4GB at this time */
596	if (e->efi_memmap_hi) {
597		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
598		return false;
599	}
600	pmap =  e->efi_memmap;
601#else
602	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
603#endif
604
605	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
606	for (i = 0; i < nr_desc; i++) {
607		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
608		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
609			efi_mirror_found = true;
610			break;
611		}
612	}
613
614	for (i = 0; i < nr_desc; i++) {
615		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
616
617		/*
618		 * Here we are more conservative in picking free memory than
619		 * the EFI spec allows:
620		 *
621		 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
622		 * free memory and thus available to place the kernel image into,
623		 * but in practice there's firmware where using that memory leads
624		 * to crashes.
625		 *
626		 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
627		 */
628		if (md->type != EFI_CONVENTIONAL_MEMORY)
629			continue;
630
 
 
 
 
631		if (efi_mirror_found &&
632		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
633			continue;
634
635		region.start = md->phys_addr;
636		region.size = md->num_pages << EFI_PAGE_SHIFT;
637		process_mem_region(&region, minimum, image_size);
638		if (slot_area_index == MAX_SLOT_AREA) {
639			debug_putstr("Aborted EFI scan (slot_areas full)!\n");
640			break;
641		}
642	}
643	return true;
644}
645#else
646static inline bool
647process_efi_entries(unsigned long minimum, unsigned long image_size)
648{
649	return false;
650}
651#endif
652
653static void process_e820_entries(unsigned long minimum,
654				 unsigned long image_size)
655{
656	int i;
657	struct mem_vector region;
658	struct boot_e820_entry *entry;
659
660	/* Verify potential e820 positions, appending to slots list. */
661	for (i = 0; i < boot_params->e820_entries; i++) {
662		entry = &boot_params->e820_table[i];
663		/* Skip non-RAM entries. */
664		if (entry->type != E820_TYPE_RAM)
665			continue;
666		region.start = entry->addr;
667		region.size = entry->size;
668		process_mem_region(&region, minimum, image_size);
669		if (slot_area_index == MAX_SLOT_AREA) {
670			debug_putstr("Aborted e820 scan (slot_areas full)!\n");
671			break;
672		}
673	}
674}
675
676static unsigned long find_random_phys_addr(unsigned long minimum,
677					   unsigned long image_size)
678{
 
 
 
 
 
 
679	/* Check if we had too many memmaps. */
680	if (memmap_too_large) {
681		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
682		return 0;
683	}
684
685	/* Make sure minimum is aligned. */
686	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
687
688	if (process_efi_entries(minimum, image_size))
689		return slots_fetch_random();
 
 
 
 
 
690
691	process_e820_entries(minimum, image_size);
692	return slots_fetch_random();
693}
694
695static unsigned long find_random_virt_addr(unsigned long minimum,
696					   unsigned long image_size)
697{
698	unsigned long slots, random_addr;
699
700	/* Make sure minimum is aligned. */
701	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
702	/* Align image_size for easy slot calculations. */
703	image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
704
705	/*
706	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
707	 * that can hold image_size within the range of minimum to
708	 * KERNEL_IMAGE_SIZE?
709	 */
710	slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
711		 CONFIG_PHYSICAL_ALIGN + 1;
712
713	random_addr = kaslr_get_random_long("Virtual") % slots;
714
715	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
716}
717
718/*
719 * Since this function examines addresses much more numerically,
720 * it takes the input and output pointers as 'unsigned long'.
721 */
722void choose_random_location(unsigned long input,
723			    unsigned long input_size,
724			    unsigned long *output,
725			    unsigned long output_size,
726			    unsigned long *virt_addr)
727{
728	unsigned long random_addr, min_addr;
729
730	if (cmdline_find_option_bool("nokaslr")) {
731		warn("KASLR disabled: 'nokaslr' on cmdline.");
732		return;
733	}
734
735#ifdef CONFIG_X86_5LEVEL
736	if (__read_cr4() & X86_CR4_LA57) {
737		pgtable_l5_enabled = 1;
738		pgdir_shift = 48;
739		ptrs_per_p4d = 512;
740	}
741#endif
742
743	boot_params->hdr.loadflags |= KASLR_FLAG;
744
745	/* Prepare to add new identity pagetables on demand. */
746	initialize_identity_maps();
 
 
747
748	/* Record the various known unsafe memory ranges. */
749	mem_avoid_init(input, input_size, *output);
750
751	/*
752	 * Low end of the randomization range should be the
753	 * smaller of 512M or the initial kernel image
754	 * location:
755	 */
756	min_addr = min(*output, 512UL << 20);
 
 
757
758	/* Walk available memory entries to find a random address. */
759	random_addr = find_random_phys_addr(min_addr, output_size);
760	if (!random_addr) {
761		warn("Physical KASLR disabled: no suitable memory region!");
762	} else {
763		/* Update the new physical address location. */
764		if (*output != random_addr) {
765			add_identity_map(random_addr, output_size);
766			*output = random_addr;
767		}
768
769		/*
770		 * This loads the identity mapping page table.
771		 * This should only be done if a new physical address
772		 * is found for the kernel, otherwise we should keep
773		 * the old page table to make it be like the "nokaslr"
774		 * case.
775		 */
776		finalize_identity_maps();
777	}
778
779
780	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
781	if (IS_ENABLED(CONFIG_X86_64))
782		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
783	*virt_addr = random_addr;
784}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * kaslr.c
  4 *
  5 * This contains the routines needed to generate a reasonable level of
  6 * entropy to choose a randomized kernel base address offset in support
  7 * of Kernel Address Space Layout Randomization (KASLR). Additionally
  8 * handles walking the physical memory maps (and tracking memory regions
  9 * to avoid) in order to select a physical memory location that can
 10 * contain the entire properly aligned running kernel image.
 11 *
 12 */
 13
 14/*
 15 * isspace() in linux/ctype.h is expected by next_args() to filter
 16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
 17 * since isdigit() is implemented in both of them. Hence disable it
 18 * here.
 19 */
 20#define BOOT_CTYPE_H
 21
 
 
 
 
 
 
 
 
 
 
 22#include "misc.h"
 23#include "error.h"
 24#include "../string.h"
 25#include "efi.h"
 26
 27#include <generated/compile.h>
 28#include <linux/module.h>
 29#include <linux/uts.h>
 30#include <linux/utsname.h>
 31#include <linux/ctype.h>
 32#include <generated/utsversion.h>
 33#include <generated/utsrelease.h>
 
 34
 35#define _SETUP
 36#include <asm/setup.h>	/* For COMMAND_LINE_SIZE */
 37#undef _SETUP
 
 
 
 
 
 
 38
 39extern unsigned long get_cmd_line_ptr(void);
 40
 
 
 
 41/* Simplified build-specific string for starting entropy. */
 42static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
 43		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
 44
 45static unsigned long rotate_xor(unsigned long hash, const void *area,
 46				size_t size)
 47{
 48	size_t i;
 49	unsigned long *ptr = (unsigned long *)area;
 50
 51	for (i = 0; i < size / sizeof(hash); i++) {
 52		/* Rotate by odd number of bits and XOR. */
 53		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
 54		hash ^= ptr[i];
 55	}
 56
 57	return hash;
 58}
 59
 60/* Attempt to create a simple but unpredictable starting entropy. */
 61static unsigned long get_boot_seed(void)
 62{
 63	unsigned long hash = 0;
 64
 65	hash = rotate_xor(hash, build_str, sizeof(build_str));
 66	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
 67
 68	return hash;
 69}
 70
 71#define KASLR_COMPRESSED_BOOT
 72#include "../../lib/kaslr.c"
 73
 
 
 
 
 74
 75/* Only supporting at most 4 unusable memmap regions with kaslr */
 76#define MAX_MEMMAP_REGIONS	4
 77
 78static bool memmap_too_large;
 79
 80
 81/*
 82 * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit.
 83 * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options.
 84 */
 85static u64 mem_limit;
 86
 87/* Number of immovable memory regions */
 88static int num_immovable_mem;
 89
 90enum mem_avoid_index {
 91	MEM_AVOID_ZO_RANGE = 0,
 92	MEM_AVOID_INITRD,
 93	MEM_AVOID_CMDLINE,
 94	MEM_AVOID_BOOTPARAMS,
 95	MEM_AVOID_MEMMAP_BEGIN,
 96	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
 97	MEM_AVOID_MAX,
 98};
 99
100static struct mem_vector mem_avoid[MEM_AVOID_MAX];
101
102static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
103{
104	/* Item one is entirely before item two. */
105	if (one->start + one->size <= two->start)
106		return false;
107	/* Item one is entirely after item two. */
108	if (one->start >= two->start + two->size)
109		return false;
110	return true;
111}
112
113char *skip_spaces(const char *str)
114{
115	while (isspace(*str))
116		++str;
117	return (char *)str;
118}
119#include "../../../../lib/ctype.c"
120#include "../../../../lib/cmdline.c"
121
122enum parse_mode {
123	PARSE_MEMMAP,
124	PARSE_EFI,
125};
126
127static int
128parse_memmap(char *p, u64 *start, u64 *size, enum parse_mode mode)
129{
130	char *oldp;
131
132	if (!p)
133		return -EINVAL;
134
135	/* We don't care about this option here */
136	if (!strncmp(p, "exactmap", 8))
137		return -EINVAL;
138
139	oldp = p;
140	*size = memparse(p, &p);
141	if (p == oldp)
142		return -EINVAL;
143
144	switch (*p) {
145	case '#':
146	case '$':
147	case '!':
148		*start = memparse(p + 1, &p);
149		return 0;
150	case '@':
151		if (mode == PARSE_MEMMAP) {
152			/*
153			 * memmap=nn@ss specifies usable region, should
154			 * be skipped
155			 */
156			*size = 0;
157		} else {
158			u64 flags;
159
160			/*
161			 * efi_fake_mem=nn@ss:attr the attr specifies
162			 * flags that might imply a soft-reservation.
163			 */
164			*start = memparse(p + 1, &p);
165			if (p && *p == ':') {
166				p++;
167				if (kstrtoull(p, 0, &flags) < 0)
168					*size = 0;
169				else if (flags & EFI_MEMORY_SP)
170					return 0;
171			}
172			*size = 0;
173		}
174		fallthrough;
175	default:
176		/*
177		 * If w/o offset, only size specified, memmap=nn[KMG] has the
178		 * same behaviour as mem=nn[KMG]. It limits the max address
179		 * system can use. Region above the limit should be avoided.
180		 */
181		*start = 0;
182		return 0;
183	}
184
185	return -EINVAL;
186}
187
188static void mem_avoid_memmap(enum parse_mode mode, char *str)
189{
190	static int i;
191
192	if (i >= MAX_MEMMAP_REGIONS)
193		return;
194
195	while (str && (i < MAX_MEMMAP_REGIONS)) {
196		int rc;
197		u64 start, size;
198		char *k = strchr(str, ',');
199
200		if (k)
201			*k++ = 0;
202
203		rc = parse_memmap(str, &start, &size, mode);
204		if (rc < 0)
205			break;
206		str = k;
207
208		if (start == 0) {
209			/* Store the specified memory limit if size > 0 */
210			if (size > 0 && size < mem_limit)
211				mem_limit = size;
212
213			continue;
214		}
215
216		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
217		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
218		i++;
219	}
220
221	/* More than 4 memmaps, fail kaslr */
222	if ((i >= MAX_MEMMAP_REGIONS) && str)
223		memmap_too_large = true;
224}
225
226/* Store the number of 1GB huge pages which users specified: */
227static unsigned long max_gb_huge_pages;
228
229static void parse_gb_huge_pages(char *param, char *val)
230{
231	static bool gbpage_sz;
232	char *p;
233
234	if (!strcmp(param, "hugepagesz")) {
235		p = val;
236		if (memparse(p, &p) != PUD_SIZE) {
237			gbpage_sz = false;
238			return;
239		}
240
241		if (gbpage_sz)
242			warn("Repeatedly set hugeTLB page size of 1G!\n");
243		gbpage_sz = true;
244		return;
245	}
246
247	if (!strcmp(param, "hugepages") && gbpage_sz) {
248		p = val;
249		max_gb_huge_pages = simple_strtoull(p, &p, 0);
250		return;
251	}
252}
253
254static void handle_mem_options(void)
255{
256	char *args = (char *)get_cmd_line_ptr();
257	size_t len;
258	char *tmp_cmdline;
259	char *param, *val;
260	u64 mem_size;
261
262	if (!args)
263		return;
264
265	len = strnlen(args, COMMAND_LINE_SIZE-1);
266	tmp_cmdline = malloc(len + 1);
267	if (!tmp_cmdline)
268		error("Failed to allocate space for tmp_cmdline");
269
270	memcpy(tmp_cmdline, args, len);
271	tmp_cmdline[len] = 0;
272	args = tmp_cmdline;
273
274	/* Chew leading spaces */
275	args = skip_spaces(args);
276
277	while (*args) {
278		args = next_arg(args, &param, &val);
279		/* Stop at -- */
280		if (!val && strcmp(param, "--") == 0)
281			break;
 
 
 
282
283		if (!strcmp(param, "memmap")) {
284			mem_avoid_memmap(PARSE_MEMMAP, val);
285		} else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) {
286			parse_gb_huge_pages(param, val);
287		} else if (!strcmp(param, "mem")) {
288			char *p = val;
289
290			if (!strcmp(p, "nopentium"))
291				continue;
292			mem_size = memparse(p, &p);
293			if (mem_size == 0)
294				break;
295
296			if (mem_size < mem_limit)
297				mem_limit = mem_size;
298		} else if (!strcmp(param, "efi_fake_mem")) {
299			mem_avoid_memmap(PARSE_EFI, val);
300		}
301	}
302
303	free(tmp_cmdline);
304	return;
305}
306
307/*
308 * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM)
309 * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit.
310 *
311 * The mem_avoid array is used to store the ranges that need to be avoided
312 * when KASLR searches for an appropriate random address. We must avoid any
313 * regions that are unsafe to overlap with during decompression, and other
314 * things like the initrd, cmdline and boot_params. This comment seeks to
315 * explain mem_avoid as clearly as possible since incorrect mem_avoid
316 * memory ranges lead to really hard to debug boot failures.
317 *
318 * The initrd, cmdline, and boot_params are trivial to identify for
319 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
320 * MEM_AVOID_BOOTPARAMS respectively below.
321 *
322 * What is not obvious how to avoid is the range of memory that is used
323 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
324 * the compressed kernel (ZO) and its run space, which is used to extract
325 * the uncompressed kernel (VO) and relocs.
326 *
327 * ZO's full run size sits against the end of the decompression buffer, so
328 * we can calculate where text, data, bss, etc of ZO are positioned more
329 * easily.
330 *
331 * For additional background, the decompression calculations can be found
332 * in header.S, and the memory diagram is based on the one found in misc.c.
333 *
334 * The following conditions are already enforced by the image layouts and
335 * associated code:
336 *  - input + input_size >= output + output_size
337 *  - kernel_total_size <= init_size
338 *  - kernel_total_size <= output_size (see Note below)
339 *  - output + init_size >= output + output_size
340 *
341 * (Note that kernel_total_size and output_size have no fundamental
342 * relationship, but output_size is passed to choose_random_location
343 * as a maximum of the two. The diagram is showing a case where
344 * kernel_total_size is larger than output_size, but this case is
345 * handled by bumping output_size.)
346 *
347 * The above conditions can be illustrated by a diagram:
348 *
349 * 0   output            input            input+input_size    output+init_size
350 * |     |                 |                             |             |
351 * |     |                 |                             |             |
352 * |-----|--------|--------|--------------|-----------|--|-------------|
353 *                |                       |           |
354 *                |                       |           |
355 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
356 *
357 * [output, output+init_size) is the entire memory range used for
358 * extracting the compressed image.
359 *
360 * [output, output+kernel_total_size) is the range needed for the
361 * uncompressed kernel (VO) and its run size (bss, brk, etc).
362 *
363 * [output, output+output_size) is VO plus relocs (i.e. the entire
364 * uncompressed payload contained by ZO). This is the area of the buffer
365 * written to during decompression.
366 *
367 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
368 * range of the copied ZO and decompression code. (i.e. the range
369 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
370 *
371 * [input, input+input_size) is the original copied compressed image (ZO)
372 * (i.e. it does not include its run size). This range must be avoided
373 * because it contains the data used for decompression.
374 *
375 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
376 * range includes ZO's heap and stack, and must be avoided since it
377 * performs the decompression.
378 *
379 * Since the above two ranges need to be avoided and they are adjacent,
380 * they can be merged, resulting in: [input, output+init_size) which
381 * becomes the MEM_AVOID_ZO_RANGE below.
382 */
383static void mem_avoid_init(unsigned long input, unsigned long input_size,
384			   unsigned long output)
385{
386	unsigned long init_size = boot_params->hdr.init_size;
387	u64 initrd_start, initrd_size;
388	unsigned long cmd_line, cmd_line_size;
 
389
390	/*
391	 * Avoid the region that is unsafe to overlap during
392	 * decompression.
393	 */
394	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
395	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
 
 
396
397	/* Avoid initrd. */
398	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
399	initrd_start |= boot_params->hdr.ramdisk_image;
400	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
401	initrd_size |= boot_params->hdr.ramdisk_size;
402	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
403	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
404	/* No need to set mapping for initrd, it will be handled in VO. */
405
406	/* Avoid kernel command line. */
407	cmd_line = get_cmd_line_ptr();
 
408	/* Calculate size of cmd_line. */
409	if (cmd_line) {
410		cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1;
411		mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
412		mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
413	}
 
 
414
415	/* Avoid boot parameters. */
416	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
417	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
 
 
418
419	/* We don't need to set a mapping for setup_data. */
420
421	/* Mark the memmap regions we need to avoid */
422	handle_mem_options();
423
424	/* Enumerate the immovable memory regions */
425	num_immovable_mem = count_immovable_mem_regions();
 
 
426}
427
428/*
429 * Does this memory vector overlap a known avoided area? If so, record the
430 * overlap region with the lowest address.
431 */
432static bool mem_avoid_overlap(struct mem_vector *img,
433			      struct mem_vector *overlap)
434{
435	int i;
436	struct setup_data *ptr;
437	u64 earliest = img->start + img->size;
438	bool is_overlapping = false;
439
440	for (i = 0; i < MEM_AVOID_MAX; i++) {
441		if (mem_overlaps(img, &mem_avoid[i]) &&
442		    mem_avoid[i].start < earliest) {
443			*overlap = mem_avoid[i];
444			earliest = overlap->start;
445			is_overlapping = true;
446		}
447	}
448
449	/* Avoid all entries in the setup_data linked list. */
450	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
451	while (ptr) {
452		struct mem_vector avoid;
453
454		avoid.start = (unsigned long)ptr;
455		avoid.size = sizeof(*ptr) + ptr->len;
456
457		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
458			*overlap = avoid;
459			earliest = overlap->start;
460			is_overlapping = true;
461		}
462
463		if (ptr->type == SETUP_INDIRECT &&
464		    ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
465			avoid.start = ((struct setup_indirect *)ptr->data)->addr;
466			avoid.size = ((struct setup_indirect *)ptr->data)->len;
467
468			if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
469				*overlap = avoid;
470				earliest = overlap->start;
471				is_overlapping = true;
472			}
473		}
474
475		ptr = (struct setup_data *)(unsigned long)ptr->next;
476	}
477
478	return is_overlapping;
479}
480
481struct slot_area {
482	u64 addr;
483	unsigned long num;
484};
485
486#define MAX_SLOT_AREA 100
487
488static struct slot_area slot_areas[MAX_SLOT_AREA];
489static unsigned int slot_area_index;
490static unsigned long slot_max;
491
 
 
492static void store_slot_info(struct mem_vector *region, unsigned long image_size)
493{
494	struct slot_area slot_area;
495
496	if (slot_area_index == MAX_SLOT_AREA)
497		return;
498
499	slot_area.addr = region->start;
500	slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN;
501
502	slot_areas[slot_area_index++] = slot_area;
503	slot_max += slot_area.num;
504}
505
506/*
507 * Skip as many 1GB huge pages as possible in the passed region
508 * according to the number which users specified:
509 */
510static void
511process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
512{
513	u64 pud_start, pud_end;
514	unsigned long gb_huge_pages;
515	struct mem_vector tmp;
516
517	if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) {
518		store_slot_info(region, image_size);
519		return;
520	}
521
522	/* Are there any 1GB pages in the region? */
523	pud_start = ALIGN(region->start, PUD_SIZE);
524	pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE);
525
526	/* No good 1GB huge pages found: */
527	if (pud_start >= pud_end) {
528		store_slot_info(region, image_size);
529		return;
530	}
531
532	/* Check if the head part of the region is usable. */
533	if (pud_start >= region->start + image_size) {
534		tmp.start = region->start;
535		tmp.size = pud_start - region->start;
536		store_slot_info(&tmp, image_size);
537	}
538
539	/* Skip the good 1GB pages. */
540	gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT;
541	if (gb_huge_pages > max_gb_huge_pages) {
542		pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT);
543		max_gb_huge_pages = 0;
544	} else {
545		max_gb_huge_pages -= gb_huge_pages;
546	}
547
548	/* Check if the tail part of the region is usable. */
549	if (region->start + region->size >= pud_end + image_size) {
550		tmp.start = pud_end;
551		tmp.size = region->start + region->size - pud_end;
552		store_slot_info(&tmp, image_size);
553	}
554}
555
556static u64 slots_fetch_random(void)
557{
558	unsigned long slot;
559	unsigned int i;
560
561	/* Handle case of no slots stored. */
562	if (slot_max == 0)
563		return 0;
564
565	slot = kaslr_get_random_long("Physical") % slot_max;
566
567	for (i = 0; i < slot_area_index; i++) {
568		if (slot >= slot_areas[i].num) {
569			slot -= slot_areas[i].num;
570			continue;
571		}
572		return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN);
573	}
574
575	if (i == slot_area_index)
576		debug_putstr("slots_fetch_random() failed!?\n");
577	return 0;
578}
579
580static void __process_mem_region(struct mem_vector *entry,
581				 unsigned long minimum,
582				 unsigned long image_size)
583{
584	struct mem_vector region, overlap;
585	u64 region_end;
 
 
586
587	/* Enforce minimum and memory limit. */
588	region.start = max_t(u64, entry->start, minimum);
589	region_end = min(entry->start + entry->size, mem_limit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590
591	/* Give up if slot area array is full. */
592	while (slot_area_index < MAX_SLOT_AREA) {
 
 
 
 
 
 
593		/* Potentially raise address to meet alignment needs. */
594		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
595
596		/* Did we raise the address above the passed in memory entry? */
597		if (region.start > region_end)
598			return;
599
600		/* Reduce size by any delta from the original address. */
601		region.size = region_end - region.start;
 
 
 
 
 
602
603		/* Return if region can't contain decompressed kernel */
604		if (region.size < image_size)
605			return;
606
607		/* If nothing overlaps, store the region and return. */
608		if (!mem_avoid_overlap(&region, &overlap)) {
609			process_gb_huge_pages(&region, image_size);
610			return;
611		}
612
613		/* Store beginning of region if holds at least image_size. */
614		if (overlap.start >= region.start + image_size) {
615			region.size = overlap.start - region.start;
616			process_gb_huge_pages(&region, image_size);
 
 
 
617		}
618
 
 
 
 
619		/* Clip off the overlapping region and start over. */
 
620		region.start = overlap.start + overlap.size;
621	}
622}
623
624static bool process_mem_region(struct mem_vector *region,
625			       unsigned long minimum,
626			       unsigned long image_size)
627{
628	int i;
629	/*
630	 * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
631	 * use @region directly.
632	 */
633	if (!num_immovable_mem) {
634		__process_mem_region(region, minimum, image_size);
635
636		if (slot_area_index == MAX_SLOT_AREA) {
637			debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
638			return true;
639		}
640		return false;
641	}
642
643#if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
644	/*
645	 * If immovable memory found, filter the intersection between
646	 * immovable memory and @region.
647	 */
648	for (i = 0; i < num_immovable_mem; i++) {
649		u64 start, end, entry_end, region_end;
650		struct mem_vector entry;
651
652		if (!mem_overlaps(region, &immovable_mem[i]))
653			continue;
654
655		start = immovable_mem[i].start;
656		end = start + immovable_mem[i].size;
657		region_end = region->start + region->size;
658
659		entry.start = clamp(region->start, start, end);
660		entry_end = clamp(region_end, start, end);
661		entry.size = entry_end - entry.start;
662
663		__process_mem_region(&entry, minimum, image_size);
664
665		if (slot_area_index == MAX_SLOT_AREA) {
666			debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
667			return true;
668		}
669	}
670#endif
671	return false;
672}
673
674#ifdef CONFIG_EFI
675/*
676 * Returns true if we processed the EFI memmap, which we prefer over the E820
677 * table if it is available.
678 */
679static bool
680process_efi_entries(unsigned long minimum, unsigned long image_size)
681{
682	struct efi_info *e = &boot_params->efi_info;
683	bool efi_mirror_found = false;
684	struct mem_vector region;
685	efi_memory_desc_t *md;
686	unsigned long pmap;
687	char *signature;
688	u32 nr_desc;
689	int i;
690
691	signature = (char *)&e->efi_loader_signature;
692	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
693	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
694		return false;
695
696#ifdef CONFIG_X86_32
697	/* Can't handle data above 4GB at this time */
698	if (e->efi_memmap_hi) {
699		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
700		return false;
701	}
702	pmap =  e->efi_memmap;
703#else
704	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
705#endif
706
707	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
708	for (i = 0; i < nr_desc; i++) {
709		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
710		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
711			efi_mirror_found = true;
712			break;
713		}
714	}
715
716	for (i = 0; i < nr_desc; i++) {
717		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
718
719		/*
720		 * Here we are more conservative in picking free memory than
721		 * the EFI spec allows:
722		 *
723		 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
724		 * free memory and thus available to place the kernel image into,
725		 * but in practice there's firmware where using that memory leads
726		 * to crashes.
727		 *
728		 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
729		 */
730		if (md->type != EFI_CONVENTIONAL_MEMORY)
731			continue;
732
733		if (efi_soft_reserve_enabled() &&
734		    (md->attribute & EFI_MEMORY_SP))
735			continue;
736
737		if (efi_mirror_found &&
738		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
739			continue;
740
741		region.start = md->phys_addr;
742		region.size = md->num_pages << EFI_PAGE_SHIFT;
743		if (process_mem_region(&region, minimum, image_size))
 
 
744			break;
 
745	}
746	return true;
747}
748#else
749static inline bool
750process_efi_entries(unsigned long minimum, unsigned long image_size)
751{
752	return false;
753}
754#endif
755
756static void process_e820_entries(unsigned long minimum,
757				 unsigned long image_size)
758{
759	int i;
760	struct mem_vector region;
761	struct boot_e820_entry *entry;
762
763	/* Verify potential e820 positions, appending to slots list. */
764	for (i = 0; i < boot_params->e820_entries; i++) {
765		entry = &boot_params->e820_table[i];
766		/* Skip non-RAM entries. */
767		if (entry->type != E820_TYPE_RAM)
768			continue;
769		region.start = entry->addr;
770		region.size = entry->size;
771		if (process_mem_region(&region, minimum, image_size))
 
 
772			break;
 
773	}
774}
775
776static unsigned long find_random_phys_addr(unsigned long minimum,
777					   unsigned long image_size)
778{
779	u64 phys_addr;
780
781	/* Bail out early if it's impossible to succeed. */
782	if (minimum + image_size > mem_limit)
783		return 0;
784
785	/* Check if we had too many memmaps. */
786	if (memmap_too_large) {
787		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
788		return 0;
789	}
790
791	if (!process_efi_entries(minimum, image_size))
792		process_e820_entries(minimum, image_size);
793
794	phys_addr = slots_fetch_random();
795
796	/* Perform a final check to make sure the address is in range. */
797	if (phys_addr < minimum || phys_addr + image_size > mem_limit) {
798		warn("Invalid physical address chosen!\n");
799		return 0;
800	}
801
802	return (unsigned long)phys_addr;
 
803}
804
805static unsigned long find_random_virt_addr(unsigned long minimum,
806					   unsigned long image_size)
807{
808	unsigned long slots, random_addr;
809
 
 
 
 
 
810	/*
811	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
812	 * that can hold image_size within the range of minimum to
813	 * KERNEL_IMAGE_SIZE?
814	 */
815	slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN;
 
816
817	random_addr = kaslr_get_random_long("Virtual") % slots;
818
819	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
820}
821
822/*
823 * Since this function examines addresses much more numerically,
824 * it takes the input and output pointers as 'unsigned long'.
825 */
826void choose_random_location(unsigned long input,
827			    unsigned long input_size,
828			    unsigned long *output,
829			    unsigned long output_size,
830			    unsigned long *virt_addr)
831{
832	unsigned long random_addr, min_addr;
833
834	if (cmdline_find_option_bool("nokaslr")) {
835		warn("KASLR disabled: 'nokaslr' on cmdline.");
836		return;
837	}
838
 
 
 
 
 
 
 
 
839	boot_params->hdr.loadflags |= KASLR_FLAG;
840
841	if (IS_ENABLED(CONFIG_X86_32))
842		mem_limit = KERNEL_IMAGE_SIZE;
843	else
844		mem_limit = MAXMEM;
845
846	/* Record the various known unsafe memory ranges. */
847	mem_avoid_init(input, input_size, *output);
848
849	/*
850	 * Low end of the randomization range should be the
851	 * smaller of 512M or the initial kernel image
852	 * location:
853	 */
854	min_addr = min(*output, 512UL << 20);
855	/* Make sure minimum is aligned. */
856	min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN);
857
858	/* Walk available memory entries to find a random address. */
859	random_addr = find_random_phys_addr(min_addr, output_size);
860	if (!random_addr) {
861		warn("Physical KASLR disabled: no suitable memory region!");
862	} else {
863		/* Update the new physical address location. */
864		if (*output != random_addr)
 
865			*output = random_addr;
 
 
 
 
 
 
 
 
 
 
866	}
867
868
869	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
870	if (IS_ENABLED(CONFIG_X86_64))
871		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
872	*virt_addr = random_addr;
873}