Loading...
1/*
2 * SMP boot-related support
3 *
4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2001, 2004-2005 Intel Corp
7 * Rohit Seth <rohit.seth@intel.com>
8 * Suresh Siddha <suresh.b.siddha@intel.com>
9 * Gordon Jin <gordon.jin@intel.com>
10 * Ashok Raj <ashok.raj@intel.com>
11 *
12 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
13 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
14 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
15 * smp_boot_cpus()/smp_commence() is replaced by
16 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
17 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20 * Add multi-threading and multi-core detection
21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22 * Setup cpu_sibling_map and cpu_core_map
23 */
24
25#include <linux/module.h>
26#include <linux/acpi.h>
27#include <linux/bootmem.h>
28#include <linux/cpu.h>
29#include <linux/delay.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/irq.h>
33#include <linux/kernel.h>
34#include <linux/kernel_stat.h>
35#include <linux/mm.h>
36#include <linux/notifier.h>
37#include <linux/smp.h>
38#include <linux/spinlock.h>
39#include <linux/efi.h>
40#include <linux/percpu.h>
41#include <linux/bitops.h>
42
43#include <linux/atomic.h>
44#include <asm/cache.h>
45#include <asm/current.h>
46#include <asm/delay.h>
47#include <asm/io.h>
48#include <asm/irq.h>
49#include <asm/machvec.h>
50#include <asm/mca.h>
51#include <asm/page.h>
52#include <asm/pgalloc.h>
53#include <asm/pgtable.h>
54#include <asm/processor.h>
55#include <asm/ptrace.h>
56#include <asm/sal.h>
57#include <asm/tlbflush.h>
58#include <asm/unistd.h>
59#include <asm/sn/arch.h>
60
61#define SMP_DEBUG 0
62
63#if SMP_DEBUG
64#define Dprintk(x...) printk(x)
65#else
66#define Dprintk(x...)
67#endif
68
69#ifdef CONFIG_HOTPLUG_CPU
70#ifdef CONFIG_PERMIT_BSP_REMOVE
71#define bsp_remove_ok 1
72#else
73#define bsp_remove_ok 0
74#endif
75
76/*
77 * Global array allocated for NR_CPUS at boot time
78 */
79struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
80
81/*
82 * start_ap in head.S uses this to store current booting cpu
83 * info.
84 */
85struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
86
87#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
88
89#else
90#define set_brendez_area(x)
91#endif
92
93
94/*
95 * ITC synchronization related stuff:
96 */
97#define MASTER (0)
98#define SLAVE (SMP_CACHE_BYTES/8)
99
100#define NUM_ROUNDS 64 /* magic value */
101#define NUM_ITERS 5 /* likewise */
102
103static DEFINE_SPINLOCK(itc_sync_lock);
104static volatile unsigned long go[SLAVE + 1];
105
106#define DEBUG_ITC_SYNC 0
107
108extern void start_ap (void);
109extern unsigned long ia64_iobase;
110
111struct task_struct *task_for_booting_cpu;
112
113/*
114 * State for each CPU
115 */
116DEFINE_PER_CPU(int, cpu_state);
117
118cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
119EXPORT_SYMBOL(cpu_core_map);
120DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
121EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
122
123int smp_num_siblings = 1;
124
125/* which logical CPU number maps to which CPU (physical APIC ID) */
126volatile int ia64_cpu_to_sapicid[NR_CPUS];
127EXPORT_SYMBOL(ia64_cpu_to_sapicid);
128
129static cpumask_t cpu_callin_map;
130
131struct smp_boot_data smp_boot_data __initdata;
132
133unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
134
135char __initdata no_int_routing;
136
137unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
138
139#ifdef CONFIG_FORCE_CPEI_RETARGET
140#define CPEI_OVERRIDE_DEFAULT (1)
141#else
142#define CPEI_OVERRIDE_DEFAULT (0)
143#endif
144
145unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
146
147static int __init
148cmdl_force_cpei(char *str)
149{
150 int value=0;
151
152 get_option (&str, &value);
153 force_cpei_retarget = value;
154
155 return 1;
156}
157
158__setup("force_cpei=", cmdl_force_cpei);
159
160static int __init
161nointroute (char *str)
162{
163 no_int_routing = 1;
164 printk ("no_int_routing on\n");
165 return 1;
166}
167
168__setup("nointroute", nointroute);
169
170static void fix_b0_for_bsp(void)
171{
172#ifdef CONFIG_HOTPLUG_CPU
173 int cpuid;
174 static int fix_bsp_b0 = 1;
175
176 cpuid = smp_processor_id();
177
178 /*
179 * Cache the b0 value on the first AP that comes up
180 */
181 if (!(fix_bsp_b0 && cpuid))
182 return;
183
184 sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
185 printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
186
187 fix_bsp_b0 = 0;
188#endif
189}
190
191void
192sync_master (void *arg)
193{
194 unsigned long flags, i;
195
196 go[MASTER] = 0;
197
198 local_irq_save(flags);
199 {
200 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
201 while (!go[MASTER])
202 cpu_relax();
203 go[MASTER] = 0;
204 go[SLAVE] = ia64_get_itc();
205 }
206 }
207 local_irq_restore(flags);
208}
209
210/*
211 * Return the number of cycles by which our itc differs from the itc on the master
212 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
213 * negative that it is behind.
214 */
215static inline long
216get_delta (long *rt, long *master)
217{
218 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
219 unsigned long tcenter, t0, t1, tm;
220 long i;
221
222 for (i = 0; i < NUM_ITERS; ++i) {
223 t0 = ia64_get_itc();
224 go[MASTER] = 1;
225 while (!(tm = go[SLAVE]))
226 cpu_relax();
227 go[SLAVE] = 0;
228 t1 = ia64_get_itc();
229
230 if (t1 - t0 < best_t1 - best_t0)
231 best_t0 = t0, best_t1 = t1, best_tm = tm;
232 }
233
234 *rt = best_t1 - best_t0;
235 *master = best_tm - best_t0;
236
237 /* average best_t0 and best_t1 without overflow: */
238 tcenter = (best_t0/2 + best_t1/2);
239 if (best_t0 % 2 + best_t1 % 2 == 2)
240 ++tcenter;
241 return tcenter - best_tm;
242}
243
244/*
245 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
246 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
247 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
248 * step). The basic idea is for the slave to ask the master what itc value it has and to
249 * read its own itc before and after the master responds. Each iteration gives us three
250 * timestamps:
251 *
252 * slave master
253 *
254 * t0 ---\
255 * ---\
256 * --->
257 * tm
258 * /---
259 * /---
260 * t1 <---
261 *
262 *
263 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
264 * and t1. If we achieve this, the clocks are synchronized provided the interconnect
265 * between the slave and the master is symmetric. Even if the interconnect were
266 * asymmetric, we would still know that the synchronization error is smaller than the
267 * roundtrip latency (t0 - t1).
268 *
269 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
270 * within one or two cycles. However, we can only *guarantee* that the synchronization is
271 * accurate to within a round-trip time, which is typically in the range of several
272 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
273 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
274 * than half a micro second or so.
275 */
276void
277ia64_sync_itc (unsigned int master)
278{
279 long i, delta, adj, adjust_latency = 0, done = 0;
280 unsigned long flags, rt, master_time_stamp, bound;
281#if DEBUG_ITC_SYNC
282 struct {
283 long rt; /* roundtrip time */
284 long master; /* master's timestamp */
285 long diff; /* difference between midpoint and master's timestamp */
286 long lat; /* estimate of itc adjustment latency */
287 } t[NUM_ROUNDS];
288#endif
289
290 /*
291 * Make sure local timer ticks are disabled while we sync. If
292 * they were enabled, we'd have to worry about nasty issues
293 * like setting the ITC ahead of (or a long time before) the
294 * next scheduled tick.
295 */
296 BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
297
298 go[MASTER] = 1;
299
300 if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
301 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
302 return;
303 }
304
305 while (go[MASTER])
306 cpu_relax(); /* wait for master to be ready */
307
308 spin_lock_irqsave(&itc_sync_lock, flags);
309 {
310 for (i = 0; i < NUM_ROUNDS; ++i) {
311 delta = get_delta(&rt, &master_time_stamp);
312 if (delta == 0) {
313 done = 1; /* let's lock on to this... */
314 bound = rt;
315 }
316
317 if (!done) {
318 if (i > 0) {
319 adjust_latency += -delta;
320 adj = -delta + adjust_latency/4;
321 } else
322 adj = -delta;
323
324 ia64_set_itc(ia64_get_itc() + adj);
325 }
326#if DEBUG_ITC_SYNC
327 t[i].rt = rt;
328 t[i].master = master_time_stamp;
329 t[i].diff = delta;
330 t[i].lat = adjust_latency/4;
331#endif
332 }
333 }
334 spin_unlock_irqrestore(&itc_sync_lock, flags);
335
336#if DEBUG_ITC_SYNC
337 for (i = 0; i < NUM_ROUNDS; ++i)
338 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
339 t[i].rt, t[i].master, t[i].diff, t[i].lat);
340#endif
341
342 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
343 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
344}
345
346/*
347 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
348 */
349static inline void smp_setup_percpu_timer(void)
350{
351}
352
353static void
354smp_callin (void)
355{
356 int cpuid, phys_id, itc_master;
357 struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
358 extern void ia64_init_itm(void);
359 extern volatile int time_keeper_id;
360
361#ifdef CONFIG_PERFMON
362 extern void pfm_init_percpu(void);
363#endif
364
365 cpuid = smp_processor_id();
366 phys_id = hard_smp_processor_id();
367 itc_master = time_keeper_id;
368
369 if (cpu_online(cpuid)) {
370 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
371 phys_id, cpuid);
372 BUG();
373 }
374
375 fix_b0_for_bsp();
376
377 /*
378 * numa_node_id() works after this.
379 */
380 set_numa_node(cpu_to_node_map[cpuid]);
381 set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
382
383 spin_lock(&vector_lock);
384 /* Setup the per cpu irq handling data structures */
385 __setup_vector_irq(cpuid);
386 notify_cpu_starting(cpuid);
387 set_cpu_online(cpuid, true);
388 per_cpu(cpu_state, cpuid) = CPU_ONLINE;
389 spin_unlock(&vector_lock);
390
391 smp_setup_percpu_timer();
392
393 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
394
395#ifdef CONFIG_PERFMON
396 pfm_init_percpu();
397#endif
398
399 local_irq_enable();
400
401 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
402 /*
403 * Synchronize the ITC with the BP. Need to do this after irqs are
404 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
405 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
406 * local_bh_enable(), which bugs out if irqs are not enabled...
407 */
408 Dprintk("Going to syncup ITC with ITC Master.\n");
409 ia64_sync_itc(itc_master);
410 }
411
412 /*
413 * Get our bogomips.
414 */
415 ia64_init_itm();
416
417 /*
418 * Delay calibration can be skipped if new processor is identical to the
419 * previous processor.
420 */
421 last_cpuinfo = cpu_data(cpuid - 1);
422 this_cpuinfo = local_cpu_data;
423 if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
424 last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
425 last_cpuinfo->features != this_cpuinfo->features ||
426 last_cpuinfo->revision != this_cpuinfo->revision ||
427 last_cpuinfo->family != this_cpuinfo->family ||
428 last_cpuinfo->archrev != this_cpuinfo->archrev ||
429 last_cpuinfo->model != this_cpuinfo->model)
430 calibrate_delay();
431 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
432
433 /*
434 * Allow the master to continue.
435 */
436 cpumask_set_cpu(cpuid, &cpu_callin_map);
437 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
438}
439
440
441/*
442 * Activate a secondary processor. head.S calls this.
443 */
444int
445start_secondary (void *unused)
446{
447 /* Early console may use I/O ports */
448 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
449#ifndef CONFIG_PRINTK_TIME
450 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
451#endif
452 efi_map_pal_code();
453 cpu_init();
454 preempt_disable();
455 smp_callin();
456
457 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
458 return 0;
459}
460
461static int
462do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
463{
464 int timeout;
465
466 task_for_booting_cpu = idle;
467 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
468
469 set_brendez_area(cpu);
470 platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
471
472 /*
473 * Wait 10s total for the AP to start
474 */
475 Dprintk("Waiting on callin_map ...");
476 for (timeout = 0; timeout < 100000; timeout++) {
477 if (cpumask_test_cpu(cpu, &cpu_callin_map))
478 break; /* It has booted */
479 barrier(); /* Make sure we re-read cpu_callin_map */
480 udelay(100);
481 }
482 Dprintk("\n");
483
484 if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
485 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
486 ia64_cpu_to_sapicid[cpu] = -1;
487 set_cpu_online(cpu, false); /* was set in smp_callin() */
488 return -EINVAL;
489 }
490 return 0;
491}
492
493static int __init
494decay (char *str)
495{
496 int ticks;
497 get_option (&str, &ticks);
498 return 1;
499}
500
501__setup("decay=", decay);
502
503/*
504 * Initialize the logical CPU number to SAPICID mapping
505 */
506void __init
507smp_build_cpu_map (void)
508{
509 int sapicid, cpu, i;
510 int boot_cpu_id = hard_smp_processor_id();
511
512 for (cpu = 0; cpu < NR_CPUS; cpu++) {
513 ia64_cpu_to_sapicid[cpu] = -1;
514 }
515
516 ia64_cpu_to_sapicid[0] = boot_cpu_id;
517 init_cpu_present(cpumask_of(0));
518 set_cpu_possible(0, true);
519 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
520 sapicid = smp_boot_data.cpu_phys_id[i];
521 if (sapicid == boot_cpu_id)
522 continue;
523 set_cpu_present(cpu, true);
524 set_cpu_possible(cpu, true);
525 ia64_cpu_to_sapicid[cpu] = sapicid;
526 cpu++;
527 }
528}
529
530/*
531 * Cycle through the APs sending Wakeup IPIs to boot each.
532 */
533void __init
534smp_prepare_cpus (unsigned int max_cpus)
535{
536 int boot_cpu_id = hard_smp_processor_id();
537
538 /*
539 * Initialize the per-CPU profiling counter/multiplier
540 */
541
542 smp_setup_percpu_timer();
543
544 cpumask_set_cpu(0, &cpu_callin_map);
545
546 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
547 ia64_cpu_to_sapicid[0] = boot_cpu_id;
548
549 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
550
551 current_thread_info()->cpu = 0;
552
553 /*
554 * If SMP should be disabled, then really disable it!
555 */
556 if (!max_cpus) {
557 printk(KERN_INFO "SMP mode deactivated.\n");
558 init_cpu_online(cpumask_of(0));
559 init_cpu_present(cpumask_of(0));
560 init_cpu_possible(cpumask_of(0));
561 return;
562 }
563}
564
565void smp_prepare_boot_cpu(void)
566{
567 set_cpu_online(smp_processor_id(), true);
568 cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
569 set_numa_node(cpu_to_node_map[smp_processor_id()]);
570 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
571}
572
573#ifdef CONFIG_HOTPLUG_CPU
574static inline void
575clear_cpu_sibling_map(int cpu)
576{
577 int i;
578
579 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
580 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
581 for_each_cpu(i, &cpu_core_map[cpu])
582 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
583
584 per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
585}
586
587static void
588remove_siblinginfo(int cpu)
589{
590 int last = 0;
591
592 if (cpu_data(cpu)->threads_per_core == 1 &&
593 cpu_data(cpu)->cores_per_socket == 1) {
594 cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
595 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
596 return;
597 }
598
599 last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0);
600
601 /* remove it from all sibling map's */
602 clear_cpu_sibling_map(cpu);
603}
604
605extern void fixup_irqs(void);
606
607int migrate_platform_irqs(unsigned int cpu)
608{
609 int new_cpei_cpu;
610 struct irq_data *data = NULL;
611 const struct cpumask *mask;
612 int retval = 0;
613
614 /*
615 * dont permit CPEI target to removed.
616 */
617 if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
618 printk ("CPU (%d) is CPEI Target\n", cpu);
619 if (can_cpei_retarget()) {
620 /*
621 * Now re-target the CPEI to a different processor
622 */
623 new_cpei_cpu = cpumask_any(cpu_online_mask);
624 mask = cpumask_of(new_cpei_cpu);
625 set_cpei_target_cpu(new_cpei_cpu);
626 data = irq_get_irq_data(ia64_cpe_irq);
627 /*
628 * Switch for now, immediately, we need to do fake intr
629 * as other interrupts, but need to study CPEI behaviour with
630 * polling before making changes.
631 */
632 if (data && data->chip) {
633 data->chip->irq_disable(data);
634 data->chip->irq_set_affinity(data, mask, false);
635 data->chip->irq_enable(data);
636 printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
637 }
638 }
639 if (!data) {
640 printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
641 retval = -EBUSY;
642 }
643 }
644 return retval;
645}
646
647/* must be called with cpucontrol mutex held */
648int __cpu_disable(void)
649{
650 int cpu = smp_processor_id();
651
652 /*
653 * dont permit boot processor for now
654 */
655 if (cpu == 0 && !bsp_remove_ok) {
656 printk ("Your platform does not support removal of BSP\n");
657 return (-EBUSY);
658 }
659
660 if (ia64_platform_is("sn2")) {
661 if (!sn_cpu_disable_allowed(cpu))
662 return -EBUSY;
663 }
664
665 set_cpu_online(cpu, false);
666
667 if (migrate_platform_irqs(cpu)) {
668 set_cpu_online(cpu, true);
669 return -EBUSY;
670 }
671
672 remove_siblinginfo(cpu);
673 fixup_irqs();
674 local_flush_tlb_all();
675 cpumask_clear_cpu(cpu, &cpu_callin_map);
676 return 0;
677}
678
679void __cpu_die(unsigned int cpu)
680{
681 unsigned int i;
682
683 for (i = 0; i < 100; i++) {
684 /* They ack this in play_dead by setting CPU_DEAD */
685 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
686 {
687 printk ("CPU %d is now offline\n", cpu);
688 return;
689 }
690 msleep(100);
691 }
692 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
693}
694#endif /* CONFIG_HOTPLUG_CPU */
695
696void
697smp_cpus_done (unsigned int dummy)
698{
699 int cpu;
700 unsigned long bogosum = 0;
701
702 /*
703 * Allow the user to impress friends.
704 */
705
706 for_each_online_cpu(cpu) {
707 bogosum += cpu_data(cpu)->loops_per_jiffy;
708 }
709
710 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
711 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
712}
713
714static inline void set_cpu_sibling_map(int cpu)
715{
716 int i;
717
718 for_each_online_cpu(i) {
719 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
720 cpumask_set_cpu(i, &cpu_core_map[cpu]);
721 cpumask_set_cpu(cpu, &cpu_core_map[i]);
722 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
723 cpumask_set_cpu(i,
724 &per_cpu(cpu_sibling_map, cpu));
725 cpumask_set_cpu(cpu,
726 &per_cpu(cpu_sibling_map, i));
727 }
728 }
729 }
730}
731
732int
733__cpu_up(unsigned int cpu, struct task_struct *tidle)
734{
735 int ret;
736 int sapicid;
737
738 sapicid = ia64_cpu_to_sapicid[cpu];
739 if (sapicid == -1)
740 return -EINVAL;
741
742 /*
743 * Already booted cpu? not valid anymore since we dont
744 * do idle loop tightspin anymore.
745 */
746 if (cpumask_test_cpu(cpu, &cpu_callin_map))
747 return -EINVAL;
748
749 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
750 /* Processor goes to start_secondary(), sets online flag */
751 ret = do_boot_cpu(sapicid, cpu, tidle);
752 if (ret < 0)
753 return ret;
754
755 if (cpu_data(cpu)->threads_per_core == 1 &&
756 cpu_data(cpu)->cores_per_socket == 1) {
757 cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
758 cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
759 return 0;
760 }
761
762 set_cpu_sibling_map(cpu);
763
764 return 0;
765}
766
767/*
768 * Assume that CPUs have been discovered by some platform-dependent interface. For
769 * SoftSDV/Lion, that would be ACPI.
770 *
771 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
772 */
773void __init
774init_smp_config(void)
775{
776 struct fptr {
777 unsigned long fp;
778 unsigned long gp;
779 } *ap_startup;
780 long sal_ret;
781
782 /* Tell SAL where to drop the APs. */
783 ap_startup = (struct fptr *) start_ap;
784 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
785 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
786 if (sal_ret < 0)
787 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
788 ia64_sal_strerror(sal_ret));
789}
790
791/*
792 * identify_siblings(cpu) gets called from identify_cpu. This populates the
793 * information related to logical execution units in per_cpu_data structure.
794 */
795void identify_siblings(struct cpuinfo_ia64 *c)
796{
797 long status;
798 u16 pltid;
799 pal_logical_to_physical_t info;
800
801 status = ia64_pal_logical_to_phys(-1, &info);
802 if (status != PAL_STATUS_SUCCESS) {
803 if (status != PAL_STATUS_UNIMPLEMENTED) {
804 printk(KERN_ERR
805 "ia64_pal_logical_to_phys failed with %ld\n",
806 status);
807 return;
808 }
809
810 info.overview_ppid = 0;
811 info.overview_cpp = 1;
812 info.overview_tpc = 1;
813 }
814
815 status = ia64_sal_physical_id_info(&pltid);
816 if (status != PAL_STATUS_SUCCESS) {
817 if (status != PAL_STATUS_UNIMPLEMENTED)
818 printk(KERN_ERR
819 "ia64_sal_pltid failed with %ld\n",
820 status);
821 return;
822 }
823
824 c->socket_id = (pltid << 8) | info.overview_ppid;
825
826 if (info.overview_cpp == 1 && info.overview_tpc == 1)
827 return;
828
829 c->cores_per_socket = info.overview_cpp;
830 c->threads_per_core = info.overview_tpc;
831 c->num_log = info.overview_num_log;
832
833 c->core_id = info.log1_cid;
834 c->thread_id = info.log1_tid;
835}
836
837/*
838 * returns non zero, if multi-threading is enabled
839 * on at least one physical package. Due to hotplug cpu
840 * and (maxcpus=), all threads may not necessarily be enabled
841 * even though the processor supports multi-threading.
842 */
843int is_multithreading_enabled(void)
844{
845 int i, j;
846
847 for_each_present_cpu(i) {
848 for_each_present_cpu(j) {
849 if (j == i)
850 continue;
851 if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
852 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
853 return 1;
854 }
855 }
856 }
857 return 0;
858}
859EXPORT_SYMBOL_GPL(is_multithreading_enabled);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * SMP boot-related support
4 *
5 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Copyright (C) 2001, 2004-2005 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Ashok Raj <ashok.raj@intel.com>
12 *
13 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
14 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
15 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
16 * smp_boot_cpus()/smp_commence() is replaced by
17 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
18 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
19 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
20 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
21 * Add multi-threading and multi-core detection
22 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
23 * Setup cpu_sibling_map and cpu_core_map
24 */
25
26#include <linux/module.h>
27#include <linux/acpi.h>
28#include <linux/memblock.h>
29#include <linux/cpu.h>
30#include <linux/delay.h>
31#include <linux/init.h>
32#include <linux/interrupt.h>
33#include <linux/irq.h>
34#include <linux/kernel.h>
35#include <linux/kernel_stat.h>
36#include <linux/mm.h>
37#include <linux/notifier.h>
38#include <linux/smp.h>
39#include <linux/spinlock.h>
40#include <linux/efi.h>
41#include <linux/percpu.h>
42#include <linux/bitops.h>
43
44#include <linux/atomic.h>
45#include <asm/cache.h>
46#include <asm/current.h>
47#include <asm/delay.h>
48#include <asm/efi.h>
49#include <asm/io.h>
50#include <asm/irq.h>
51#include <asm/mca.h>
52#include <asm/page.h>
53#include <asm/processor.h>
54#include <asm/ptrace.h>
55#include <asm/sal.h>
56#include <asm/tlbflush.h>
57#include <asm/unistd.h>
58
59#define SMP_DEBUG 0
60
61#if SMP_DEBUG
62#define Dprintk(x...) printk(x)
63#else
64#define Dprintk(x...)
65#endif
66
67#ifdef CONFIG_HOTPLUG_CPU
68#ifdef CONFIG_PERMIT_BSP_REMOVE
69#define bsp_remove_ok 1
70#else
71#define bsp_remove_ok 0
72#endif
73
74/*
75 * Global array allocated for NR_CPUS at boot time
76 */
77struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
78
79/*
80 * start_ap in head.S uses this to store current booting cpu
81 * info.
82 */
83struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
84
85#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
86
87#else
88#define set_brendez_area(x)
89#endif
90
91
92/*
93 * ITC synchronization related stuff:
94 */
95#define MASTER (0)
96#define SLAVE (SMP_CACHE_BYTES/8)
97
98#define NUM_ROUNDS 64 /* magic value */
99#define NUM_ITERS 5 /* likewise */
100
101static DEFINE_SPINLOCK(itc_sync_lock);
102static volatile unsigned long go[SLAVE + 1];
103
104#define DEBUG_ITC_SYNC 0
105
106extern void start_ap (void);
107extern unsigned long ia64_iobase;
108
109struct task_struct *task_for_booting_cpu;
110
111/*
112 * State for each CPU
113 */
114DEFINE_PER_CPU(int, cpu_state);
115
116cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
117EXPORT_SYMBOL(cpu_core_map);
118DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
119EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
120
121int smp_num_siblings = 1;
122
123/* which logical CPU number maps to which CPU (physical APIC ID) */
124volatile int ia64_cpu_to_sapicid[NR_CPUS];
125EXPORT_SYMBOL(ia64_cpu_to_sapicid);
126
127static cpumask_t cpu_callin_map;
128
129struct smp_boot_data smp_boot_data __initdata;
130
131unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
132
133char __initdata no_int_routing;
134
135unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
136
137#ifdef CONFIG_FORCE_CPEI_RETARGET
138#define CPEI_OVERRIDE_DEFAULT (1)
139#else
140#define CPEI_OVERRIDE_DEFAULT (0)
141#endif
142
143unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
144
145static int __init
146cmdl_force_cpei(char *str)
147{
148 int value=0;
149
150 get_option (&str, &value);
151 force_cpei_retarget = value;
152
153 return 1;
154}
155
156__setup("force_cpei=", cmdl_force_cpei);
157
158static int __init
159nointroute (char *str)
160{
161 no_int_routing = 1;
162 printk ("no_int_routing on\n");
163 return 1;
164}
165
166__setup("nointroute", nointroute);
167
168static void fix_b0_for_bsp(void)
169{
170#ifdef CONFIG_HOTPLUG_CPU
171 int cpuid;
172 static int fix_bsp_b0 = 1;
173
174 cpuid = smp_processor_id();
175
176 /*
177 * Cache the b0 value on the first AP that comes up
178 */
179 if (!(fix_bsp_b0 && cpuid))
180 return;
181
182 sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
183 printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
184
185 fix_bsp_b0 = 0;
186#endif
187}
188
189void
190sync_master (void *arg)
191{
192 unsigned long flags, i;
193
194 go[MASTER] = 0;
195
196 local_irq_save(flags);
197 {
198 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
199 while (!go[MASTER])
200 cpu_relax();
201 go[MASTER] = 0;
202 go[SLAVE] = ia64_get_itc();
203 }
204 }
205 local_irq_restore(flags);
206}
207
208/*
209 * Return the number of cycles by which our itc differs from the itc on the master
210 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
211 * negative that it is behind.
212 */
213static inline long
214get_delta (long *rt, long *master)
215{
216 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
217 unsigned long tcenter, t0, t1, tm;
218 long i;
219
220 for (i = 0; i < NUM_ITERS; ++i) {
221 t0 = ia64_get_itc();
222 go[MASTER] = 1;
223 while (!(tm = go[SLAVE]))
224 cpu_relax();
225 go[SLAVE] = 0;
226 t1 = ia64_get_itc();
227
228 if (t1 - t0 < best_t1 - best_t0)
229 best_t0 = t0, best_t1 = t1, best_tm = tm;
230 }
231
232 *rt = best_t1 - best_t0;
233 *master = best_tm - best_t0;
234
235 /* average best_t0 and best_t1 without overflow: */
236 tcenter = (best_t0/2 + best_t1/2);
237 if (best_t0 % 2 + best_t1 % 2 == 2)
238 ++tcenter;
239 return tcenter - best_tm;
240}
241
242/*
243 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
244 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
245 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
246 * step). The basic idea is for the slave to ask the master what itc value it has and to
247 * read its own itc before and after the master responds. Each iteration gives us three
248 * timestamps:
249 *
250 * slave master
251 *
252 * t0 ---\
253 * ---\
254 * --->
255 * tm
256 * /---
257 * /---
258 * t1 <---
259 *
260 *
261 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
262 * and t1. If we achieve this, the clocks are synchronized provided the interconnect
263 * between the slave and the master is symmetric. Even if the interconnect were
264 * asymmetric, we would still know that the synchronization error is smaller than the
265 * roundtrip latency (t0 - t1).
266 *
267 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
268 * within one or two cycles. However, we can only *guarantee* that the synchronization is
269 * accurate to within a round-trip time, which is typically in the range of several
270 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
271 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
272 * than half a micro second or so.
273 */
274void
275ia64_sync_itc (unsigned int master)
276{
277 long i, delta, adj, adjust_latency = 0, done = 0;
278 unsigned long flags, rt, master_time_stamp, bound;
279#if DEBUG_ITC_SYNC
280 struct {
281 long rt; /* roundtrip time */
282 long master; /* master's timestamp */
283 long diff; /* difference between midpoint and master's timestamp */
284 long lat; /* estimate of itc adjustment latency */
285 } t[NUM_ROUNDS];
286#endif
287
288 /*
289 * Make sure local timer ticks are disabled while we sync. If
290 * they were enabled, we'd have to worry about nasty issues
291 * like setting the ITC ahead of (or a long time before) the
292 * next scheduled tick.
293 */
294 BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
295
296 go[MASTER] = 1;
297
298 if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
299 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
300 return;
301 }
302
303 while (go[MASTER])
304 cpu_relax(); /* wait for master to be ready */
305
306 spin_lock_irqsave(&itc_sync_lock, flags);
307 {
308 for (i = 0; i < NUM_ROUNDS; ++i) {
309 delta = get_delta(&rt, &master_time_stamp);
310 if (delta == 0) {
311 done = 1; /* let's lock on to this... */
312 bound = rt;
313 }
314
315 if (!done) {
316 if (i > 0) {
317 adjust_latency += -delta;
318 adj = -delta + adjust_latency/4;
319 } else
320 adj = -delta;
321
322 ia64_set_itc(ia64_get_itc() + adj);
323 }
324#if DEBUG_ITC_SYNC
325 t[i].rt = rt;
326 t[i].master = master_time_stamp;
327 t[i].diff = delta;
328 t[i].lat = adjust_latency/4;
329#endif
330 }
331 }
332 spin_unlock_irqrestore(&itc_sync_lock, flags);
333
334#if DEBUG_ITC_SYNC
335 for (i = 0; i < NUM_ROUNDS; ++i)
336 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
337 t[i].rt, t[i].master, t[i].diff, t[i].lat);
338#endif
339
340 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
341 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
342}
343
344/*
345 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
346 */
347static inline void smp_setup_percpu_timer(void)
348{
349}
350
351static void
352smp_callin (void)
353{
354 int cpuid, phys_id, itc_master;
355 struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
356 extern void ia64_init_itm(void);
357 extern volatile int time_keeper_id;
358
359 cpuid = smp_processor_id();
360 phys_id = hard_smp_processor_id();
361 itc_master = time_keeper_id;
362
363 if (cpu_online(cpuid)) {
364 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
365 phys_id, cpuid);
366 BUG();
367 }
368
369 fix_b0_for_bsp();
370
371 /*
372 * numa_node_id() works after this.
373 */
374 set_numa_node(cpu_to_node_map[cpuid]);
375 set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
376
377 spin_lock(&vector_lock);
378 /* Setup the per cpu irq handling data structures */
379 __setup_vector_irq(cpuid);
380 notify_cpu_starting(cpuid);
381 set_cpu_online(cpuid, true);
382 per_cpu(cpu_state, cpuid) = CPU_ONLINE;
383 spin_unlock(&vector_lock);
384
385 smp_setup_percpu_timer();
386
387 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
388
389 local_irq_enable();
390
391 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
392 /*
393 * Synchronize the ITC with the BP. Need to do this after irqs are
394 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
395 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
396 * local_bh_enable(), which bugs out if irqs are not enabled...
397 */
398 Dprintk("Going to syncup ITC with ITC Master.\n");
399 ia64_sync_itc(itc_master);
400 }
401
402 /*
403 * Get our bogomips.
404 */
405 ia64_init_itm();
406
407 /*
408 * Delay calibration can be skipped if new processor is identical to the
409 * previous processor.
410 */
411 last_cpuinfo = cpu_data(cpuid - 1);
412 this_cpuinfo = local_cpu_data;
413 if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
414 last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
415 last_cpuinfo->features != this_cpuinfo->features ||
416 last_cpuinfo->revision != this_cpuinfo->revision ||
417 last_cpuinfo->family != this_cpuinfo->family ||
418 last_cpuinfo->archrev != this_cpuinfo->archrev ||
419 last_cpuinfo->model != this_cpuinfo->model)
420 calibrate_delay();
421 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
422
423 /*
424 * Allow the master to continue.
425 */
426 cpumask_set_cpu(cpuid, &cpu_callin_map);
427 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
428}
429
430
431/*
432 * Activate a secondary processor. head.S calls this.
433 */
434int
435start_secondary (void *unused)
436{
437 /* Early console may use I/O ports */
438 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
439#ifndef CONFIG_PRINTK_TIME
440 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
441#endif
442 efi_map_pal_code();
443 cpu_init();
444 smp_callin();
445
446 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
447 return 0;
448}
449
450static int
451do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
452{
453 int timeout;
454
455 task_for_booting_cpu = idle;
456 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
457
458 set_brendez_area(cpu);
459 ia64_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
460
461 /*
462 * Wait 10s total for the AP to start
463 */
464 Dprintk("Waiting on callin_map ...");
465 for (timeout = 0; timeout < 100000; timeout++) {
466 if (cpumask_test_cpu(cpu, &cpu_callin_map))
467 break; /* It has booted */
468 barrier(); /* Make sure we re-read cpu_callin_map */
469 udelay(100);
470 }
471 Dprintk("\n");
472
473 if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
474 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
475 ia64_cpu_to_sapicid[cpu] = -1;
476 set_cpu_online(cpu, false); /* was set in smp_callin() */
477 return -EINVAL;
478 }
479 return 0;
480}
481
482static int __init
483decay (char *str)
484{
485 int ticks;
486 get_option (&str, &ticks);
487 return 1;
488}
489
490__setup("decay=", decay);
491
492/*
493 * Initialize the logical CPU number to SAPICID mapping
494 */
495void __init
496smp_build_cpu_map (void)
497{
498 int sapicid, cpu, i;
499 int boot_cpu_id = hard_smp_processor_id();
500
501 for (cpu = 0; cpu < NR_CPUS; cpu++) {
502 ia64_cpu_to_sapicid[cpu] = -1;
503 }
504
505 ia64_cpu_to_sapicid[0] = boot_cpu_id;
506 init_cpu_present(cpumask_of(0));
507 set_cpu_possible(0, true);
508 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
509 sapicid = smp_boot_data.cpu_phys_id[i];
510 if (sapicid == boot_cpu_id)
511 continue;
512 set_cpu_present(cpu, true);
513 set_cpu_possible(cpu, true);
514 ia64_cpu_to_sapicid[cpu] = sapicid;
515 cpu++;
516 }
517}
518
519/*
520 * Cycle through the APs sending Wakeup IPIs to boot each.
521 */
522void __init
523smp_prepare_cpus (unsigned int max_cpus)
524{
525 int boot_cpu_id = hard_smp_processor_id();
526
527 /*
528 * Initialize the per-CPU profiling counter/multiplier
529 */
530
531 smp_setup_percpu_timer();
532
533 cpumask_set_cpu(0, &cpu_callin_map);
534
535 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
536 ia64_cpu_to_sapicid[0] = boot_cpu_id;
537
538 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
539
540 current_thread_info()->cpu = 0;
541
542 /*
543 * If SMP should be disabled, then really disable it!
544 */
545 if (!max_cpus) {
546 printk(KERN_INFO "SMP mode deactivated.\n");
547 init_cpu_online(cpumask_of(0));
548 init_cpu_present(cpumask_of(0));
549 init_cpu_possible(cpumask_of(0));
550 return;
551 }
552}
553
554void smp_prepare_boot_cpu(void)
555{
556 set_cpu_online(smp_processor_id(), true);
557 cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
558 set_numa_node(cpu_to_node_map[smp_processor_id()]);
559 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
560}
561
562#ifdef CONFIG_HOTPLUG_CPU
563static inline void
564clear_cpu_sibling_map(int cpu)
565{
566 int i;
567
568 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
569 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
570 for_each_cpu(i, &cpu_core_map[cpu])
571 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
572
573 per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
574}
575
576static void
577remove_siblinginfo(int cpu)
578{
579 if (cpu_data(cpu)->threads_per_core == 1 &&
580 cpu_data(cpu)->cores_per_socket == 1) {
581 cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
582 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
583 return;
584 }
585
586 /* remove it from all sibling map's */
587 clear_cpu_sibling_map(cpu);
588}
589
590extern void fixup_irqs(void);
591
592int migrate_platform_irqs(unsigned int cpu)
593{
594 int new_cpei_cpu;
595 struct irq_data *data = NULL;
596 const struct cpumask *mask;
597 int retval = 0;
598
599 /*
600 * dont permit CPEI target to removed.
601 */
602 if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
603 printk ("CPU (%d) is CPEI Target\n", cpu);
604 if (can_cpei_retarget()) {
605 /*
606 * Now re-target the CPEI to a different processor
607 */
608 new_cpei_cpu = cpumask_any(cpu_online_mask);
609 mask = cpumask_of(new_cpei_cpu);
610 set_cpei_target_cpu(new_cpei_cpu);
611 data = irq_get_irq_data(ia64_cpe_irq);
612 /*
613 * Switch for now, immediately, we need to do fake intr
614 * as other interrupts, but need to study CPEI behaviour with
615 * polling before making changes.
616 */
617 if (data && data->chip) {
618 data->chip->irq_disable(data);
619 data->chip->irq_set_affinity(data, mask, false);
620 data->chip->irq_enable(data);
621 printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
622 }
623 }
624 if (!data) {
625 printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
626 retval = -EBUSY;
627 }
628 }
629 return retval;
630}
631
632/* must be called with cpucontrol mutex held */
633int __cpu_disable(void)
634{
635 int cpu = smp_processor_id();
636
637 /*
638 * dont permit boot processor for now
639 */
640 if (cpu == 0 && !bsp_remove_ok) {
641 printk ("Your platform does not support removal of BSP\n");
642 return (-EBUSY);
643 }
644
645 set_cpu_online(cpu, false);
646
647 if (migrate_platform_irqs(cpu)) {
648 set_cpu_online(cpu, true);
649 return -EBUSY;
650 }
651
652 remove_siblinginfo(cpu);
653 fixup_irqs();
654 local_flush_tlb_all();
655 cpumask_clear_cpu(cpu, &cpu_callin_map);
656 return 0;
657}
658
659void __cpu_die(unsigned int cpu)
660{
661 unsigned int i;
662
663 for (i = 0; i < 100; i++) {
664 /* They ack this in play_dead by setting CPU_DEAD */
665 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
666 {
667 printk ("CPU %d is now offline\n", cpu);
668 return;
669 }
670 msleep(100);
671 }
672 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
673}
674#endif /* CONFIG_HOTPLUG_CPU */
675
676void
677smp_cpus_done (unsigned int dummy)
678{
679 int cpu;
680 unsigned long bogosum = 0;
681
682 /*
683 * Allow the user to impress friends.
684 */
685
686 for_each_online_cpu(cpu) {
687 bogosum += cpu_data(cpu)->loops_per_jiffy;
688 }
689
690 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
691 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
692}
693
694static inline void set_cpu_sibling_map(int cpu)
695{
696 int i;
697
698 for_each_online_cpu(i) {
699 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
700 cpumask_set_cpu(i, &cpu_core_map[cpu]);
701 cpumask_set_cpu(cpu, &cpu_core_map[i]);
702 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
703 cpumask_set_cpu(i,
704 &per_cpu(cpu_sibling_map, cpu));
705 cpumask_set_cpu(cpu,
706 &per_cpu(cpu_sibling_map, i));
707 }
708 }
709 }
710}
711
712int
713__cpu_up(unsigned int cpu, struct task_struct *tidle)
714{
715 int ret;
716 int sapicid;
717
718 sapicid = ia64_cpu_to_sapicid[cpu];
719 if (sapicid == -1)
720 return -EINVAL;
721
722 /*
723 * Already booted cpu? not valid anymore since we dont
724 * do idle loop tightspin anymore.
725 */
726 if (cpumask_test_cpu(cpu, &cpu_callin_map))
727 return -EINVAL;
728
729 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
730 /* Processor goes to start_secondary(), sets online flag */
731 ret = do_boot_cpu(sapicid, cpu, tidle);
732 if (ret < 0)
733 return ret;
734
735 if (cpu_data(cpu)->threads_per_core == 1 &&
736 cpu_data(cpu)->cores_per_socket == 1) {
737 cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
738 cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
739 return 0;
740 }
741
742 set_cpu_sibling_map(cpu);
743
744 return 0;
745}
746
747/*
748 * Assume that CPUs have been discovered by some platform-dependent interface. For
749 * SoftSDV/Lion, that would be ACPI.
750 *
751 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
752 */
753void __init
754init_smp_config(void)
755{
756 struct fptr {
757 unsigned long fp;
758 unsigned long gp;
759 } *ap_startup;
760 long sal_ret;
761
762 /* Tell SAL where to drop the APs. */
763 ap_startup = (struct fptr *) start_ap;
764 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
765 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
766 if (sal_ret < 0)
767 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
768 ia64_sal_strerror(sal_ret));
769}
770
771/*
772 * identify_siblings(cpu) gets called from identify_cpu. This populates the
773 * information related to logical execution units in per_cpu_data structure.
774 */
775void identify_siblings(struct cpuinfo_ia64 *c)
776{
777 long status;
778 u16 pltid;
779 pal_logical_to_physical_t info;
780
781 status = ia64_pal_logical_to_phys(-1, &info);
782 if (status != PAL_STATUS_SUCCESS) {
783 if (status != PAL_STATUS_UNIMPLEMENTED) {
784 printk(KERN_ERR
785 "ia64_pal_logical_to_phys failed with %ld\n",
786 status);
787 return;
788 }
789
790 info.overview_ppid = 0;
791 info.overview_cpp = 1;
792 info.overview_tpc = 1;
793 }
794
795 status = ia64_sal_physical_id_info(&pltid);
796 if (status != PAL_STATUS_SUCCESS) {
797 if (status != PAL_STATUS_UNIMPLEMENTED)
798 printk(KERN_ERR
799 "ia64_sal_pltid failed with %ld\n",
800 status);
801 return;
802 }
803
804 c->socket_id = (pltid << 8) | info.overview_ppid;
805
806 if (info.overview_cpp == 1 && info.overview_tpc == 1)
807 return;
808
809 c->cores_per_socket = info.overview_cpp;
810 c->threads_per_core = info.overview_tpc;
811 c->num_log = info.overview_num_log;
812
813 c->core_id = info.log1_cid;
814 c->thread_id = info.log1_tid;
815}
816
817/*
818 * returns non zero, if multi-threading is enabled
819 * on at least one physical package. Due to hotplug cpu
820 * and (maxcpus=), all threads may not necessarily be enabled
821 * even though the processor supports multi-threading.
822 */
823int is_multithreading_enabled(void)
824{
825 int i, j;
826
827 for_each_present_cpu(i) {
828 for_each_present_cpu(j) {
829 if (j == i)
830 continue;
831 if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
832 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
833 return 1;
834 }
835 }
836 }
837 return 0;
838}
839EXPORT_SYMBOL_GPL(is_multithreading_enabled);