Linux Audio

Check our new training course

Loading...
v4.17
 
   1config ARM64
   2	def_bool y
 
   3	select ACPI_CCA_REQUIRED if ACPI
   4	select ACPI_GENERIC_GSI if ACPI
   5	select ACPI_GTDT if ACPI
   6	select ACPI_IORT if ACPI
   7	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
   8	select ACPI_MCFG if ACPI
   9	select ACPI_SPCR_TABLE if ACPI
  10	select ARCH_CLOCKSOURCE_DATA
 
 
 
 
 
 
 
 
 
 
 
  11	select ARCH_HAS_DEBUG_VIRTUAL
  12	select ARCH_HAS_DEVMEM_IS_ALLOWED
 
  13	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
  14	select ARCH_HAS_ELF_RANDOMIZE
  15	select ARCH_HAS_FORTIFY_SOURCE
  16	select ARCH_HAS_GCOV_PROFILE_ALL
  17	select ARCH_HAS_GIGANTIC_PAGE if (MEMORY_ISOLATION && COMPACTION) || CMA
  18	select ARCH_HAS_KCOV
 
  19	select ARCH_HAS_MEMBARRIER_SYNC_CORE
 
 
 
 
 
 
  20	select ARCH_HAS_SET_MEMORY
  21	select ARCH_HAS_SG_CHAIN
  22	select ARCH_HAS_STRICT_KERNEL_RWX
  23	select ARCH_HAS_STRICT_MODULE_RWX
 
 
 
 
  24	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
 
 
  25	select ARCH_HAVE_NMI_SAFE_CMPXCHG
  26	select ARCH_INLINE_READ_LOCK if !PREEMPT
  27	select ARCH_INLINE_READ_LOCK_BH if !PREEMPT
  28	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPT
  29	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPT
  30	select ARCH_INLINE_READ_UNLOCK if !PREEMPT
  31	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPT
  32	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPT
  33	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPT
  34	select ARCH_INLINE_WRITE_LOCK if !PREEMPT
  35	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPT
  36	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPT
  37	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPT
  38	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPT
  39	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPT
  40	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPT
  41	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPT
 
 
 
 
 
 
 
 
 
 
 
 
  42	select ARCH_USE_CMPXCHG_LOCKREF
 
 
  43	select ARCH_USE_QUEUED_RWLOCKS
 
 
 
 
  44	select ARCH_SUPPORTS_MEMORY_FAILURE
 
 
 
 
  45	select ARCH_SUPPORTS_ATOMIC_RMW
 
  46	select ARCH_SUPPORTS_NUMA_BALANCING
  47	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION
 
 
 
  48	select ARCH_WANT_FRAME_POINTERS
 
 
 
 
 
  49	select ARCH_HAS_UBSAN_SANITIZE_ALL
  50	select ARM_AMBA
  51	select ARM_ARCH_TIMER
  52	select ARM_GIC
  53	select AUDIT_ARCH_COMPAT_GENERIC
  54	select ARM_GIC_V2M if PCI
  55	select ARM_GIC_V3
  56	select ARM_GIC_V3_ITS if PCI
  57	select ARM_PSCI_FW
  58	select BUILDTIME_EXTABLE_SORT
  59	select CLONE_BACKWARDS
  60	select COMMON_CLK
  61	select CPU_PM if (SUSPEND || CPU_IDLE)
 
  62	select DCACHE_WORD_ACCESS
  63	select DMA_DIRECT_OPS
 
  64	select EDAC_SUPPORT
  65	select FRAME_POINTER
  66	select GENERIC_ALLOCATOR
  67	select GENERIC_ARCH_TOPOLOGY
  68	select GENERIC_CLOCKEVENTS
  69	select GENERIC_CLOCKEVENTS_BROADCAST
  70	select GENERIC_CPU_AUTOPROBE
 
  71	select GENERIC_EARLY_IOREMAP
  72	select GENERIC_IDLE_POLL_SETUP
 
 
  73	select GENERIC_IRQ_PROBE
  74	select GENERIC_IRQ_SHOW
  75	select GENERIC_IRQ_SHOW_LEVEL
 
  76	select GENERIC_PCI_IOMAP
 
  77	select GENERIC_SCHED_CLOCK
  78	select GENERIC_SMP_IDLE_THREAD
  79	select GENERIC_STRNCPY_FROM_USER
  80	select GENERIC_STRNLEN_USER
  81	select GENERIC_TIME_VSYSCALL
  82	select HANDLE_DOMAIN_IRQ
 
  83	select HARDIRQS_SW_RESEND
 
 
 
  84	select HAVE_ACPI_APEI if (ACPI && EFI)
  85	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
  86	select HAVE_ARCH_AUDITSYSCALL
  87	select HAVE_ARCH_BITREVERSE
 
 
  88	select HAVE_ARCH_HUGE_VMAP
  89	select HAVE_ARCH_JUMP_LABEL
 
  90	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
 
 
 
 
 
 
  91	select HAVE_ARCH_KGDB
  92	select HAVE_ARCH_MMAP_RND_BITS
  93	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
 
 
  94	select HAVE_ARCH_SECCOMP_FILTER
 
  95	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
  96	select HAVE_ARCH_TRACEHOOK
  97	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
  98	select HAVE_ARCH_VMAP_STACK
  99	select HAVE_ARM_SMCCC
 
 100	select HAVE_EBPF_JIT
 101	select HAVE_C_RECORDMCOUNT
 102	select HAVE_CC_STACKPROTECTOR
 103	select HAVE_CMPXCHG_DOUBLE
 104	select HAVE_CMPXCHG_LOCAL
 105	select HAVE_CONTEXT_TRACKING
 106	select HAVE_DEBUG_BUGVERBOSE
 107	select HAVE_DEBUG_KMEMLEAK
 108	select HAVE_DMA_API_DEBUG
 109	select HAVE_DMA_CONTIGUOUS
 110	select HAVE_DYNAMIC_FTRACE
 
 
 111	select HAVE_EFFICIENT_UNALIGNED_ACCESS
 
 112	select HAVE_FTRACE_MCOUNT_RECORD
 113	select HAVE_FUNCTION_TRACER
 
 114	select HAVE_FUNCTION_GRAPH_TRACER
 115	select HAVE_GCC_PLUGINS
 116	select HAVE_GENERIC_DMA_COHERENT
 117	select HAVE_HW_BREAKPOINT if PERF_EVENTS
 
 118	select HAVE_IRQ_TIME_ACCOUNTING
 119	select HAVE_MEMBLOCK
 120	select HAVE_MEMBLOCK_NODE_MAP if NUMA
 121	select HAVE_NMI
 122	select HAVE_PATA_PLATFORM
 123	select HAVE_PERF_EVENTS
 124	select HAVE_PERF_REGS
 125	select HAVE_PERF_USER_STACK_DUMP
 
 126	select HAVE_REGS_AND_STACK_ACCESS_API
 127	select HAVE_RCU_TABLE_FREE
 
 
 
 
 128	select HAVE_SYSCALL_TRACEPOINTS
 129	select HAVE_KPROBES
 130	select HAVE_KRETPROBES
 131	select IOMMU_DMA if IOMMU_SUPPORT
 132	select IRQ_DOMAIN
 133	select IRQ_FORCED_THREADING
 
 134	select MODULES_USE_ELF_RELA
 135	select MULTI_IRQ_HANDLER
 136	select NO_BOOTMEM
 137	select OF
 138	select OF_EARLY_FLATTREE
 139	select OF_RESERVED_MEM
 140	select PCI_ECAM if ACPI
 
 141	select POWER_RESET
 142	select POWER_SUPPLY
 143	select REFCOUNT_FULL
 144	select SPARSE_IRQ
 
 145	select SYSCTL_EXCEPTION_TRACE
 146	select THREAD_INFO_IN_TASK
 
 
 
 
 147	help
 148	  ARM 64-bit (AArch64) Linux support.
 149
 150config 64BIT
 151	def_bool y
 
 
 
 
 
 
 
 
 152
 153config ARCH_PHYS_ADDR_T_64BIT
 154	def_bool y
 155
 156config MMU
 157	def_bool y
 158
 159config ARM64_PAGE_SHIFT
 160	int
 161	default 16 if ARM64_64K_PAGES
 162	default 14 if ARM64_16K_PAGES
 163	default 12
 164
 165config ARM64_CONT_SHIFT
 166	int
 167	default 5 if ARM64_64K_PAGES
 168	default 7 if ARM64_16K_PAGES
 169	default 4
 170
 
 
 
 
 
 
 171config ARCH_MMAP_RND_BITS_MIN
 172       default 14 if ARM64_64K_PAGES
 173       default 16 if ARM64_16K_PAGES
 174       default 18
 175
 176# max bits determined by the following formula:
 177#  VA_BITS - PAGE_SHIFT - 3
 178config ARCH_MMAP_RND_BITS_MAX
 179       default 19 if ARM64_VA_BITS=36
 180       default 24 if ARM64_VA_BITS=39
 181       default 27 if ARM64_VA_BITS=42
 182       default 30 if ARM64_VA_BITS=47
 183       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
 184       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
 185       default 33 if ARM64_VA_BITS=48
 186       default 14 if ARM64_64K_PAGES
 187       default 16 if ARM64_16K_PAGES
 188       default 18
 189
 190config ARCH_MMAP_RND_COMPAT_BITS_MIN
 191       default 7 if ARM64_64K_PAGES
 192       default 9 if ARM64_16K_PAGES
 193       default 11
 194
 195config ARCH_MMAP_RND_COMPAT_BITS_MAX
 196       default 16
 197
 198config NO_IOPORT_MAP
 199	def_bool y if !PCI
 200
 201config STACKTRACE_SUPPORT
 202	def_bool y
 203
 204config ILLEGAL_POINTER_VALUE
 205	hex
 206	default 0xdead000000000000
 207
 208config LOCKDEP_SUPPORT
 209	def_bool y
 210
 211config TRACE_IRQFLAGS_SUPPORT
 212	def_bool y
 213
 214config RWSEM_XCHGADD_ALGORITHM
 215	def_bool y
 216
 217config GENERIC_BUG
 218	def_bool y
 219	depends on BUG
 220
 221config GENERIC_BUG_RELATIVE_POINTERS
 222	def_bool y
 223	depends on GENERIC_BUG
 224
 225config GENERIC_HWEIGHT
 226	def_bool y
 227
 228config GENERIC_CSUM
 229        def_bool y
 230
 231config GENERIC_CALIBRATE_DELAY
 232	def_bool y
 233
 234config ZONE_DMA32
 235	def_bool y
 236
 237config HAVE_GENERIC_GUP
 238	def_bool y
 239
 240config ARCH_DMA_ADDR_T_64BIT
 241	def_bool y
 242
 243config NEED_DMA_MAP_STATE
 244	def_bool y
 245
 246config NEED_SG_DMA_LENGTH
 247	def_bool y
 248
 249config SMP
 250	def_bool y
 251
 252config SWIOTLB
 253	def_bool y
 254
 255config IOMMU_HELPER
 256	def_bool SWIOTLB
 257
 258config KERNEL_MODE_NEON
 259	def_bool y
 260
 261config FIX_EARLYCON_MEM
 262	def_bool y
 263
 264config PGTABLE_LEVELS
 265	int
 266	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
 267	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
 268	default 3 if ARM64_64K_PAGES && ARM64_VA_BITS_48
 269	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
 270	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
 271	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
 272
 273config ARCH_SUPPORTS_UPROBES
 274	def_bool y
 275
 276config ARCH_PROC_KCORE_TEXT
 277	def_bool y
 278
 279config MULTI_IRQ_HANDLER
 280	def_bool y
 281
 282source "init/Kconfig"
 
 
 
 
 
 
 
 
 
 
 
 
 
 283
 284source "kernel/Kconfig.freezer"
 
 285
 286source "arch/arm64/Kconfig.platforms"
 287
 288menu "Bus support"
 289
 290config PCI
 291	bool "PCI support"
 292	help
 293	  This feature enables support for PCI bus system. If you say Y
 294	  here, the kernel will include drivers and infrastructure code
 295	  to support PCI bus devices.
 296
 297config PCI_DOMAINS
 298	def_bool PCI
 299
 300config PCI_DOMAINS_GENERIC
 301	def_bool PCI
 302
 303config PCI_SYSCALL
 304	def_bool PCI
 305
 306source "drivers/pci/Kconfig"
 307
 308endmenu
 309
 310menu "Kernel Features"
 311
 312menu "ARM errata workarounds via the alternatives framework"
 313
 
 
 
 314config ARM64_ERRATUM_826319
 315	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
 316	default y
 
 317	help
 318	  This option adds an alternative code sequence to work around ARM
 319	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
 320	  AXI master interface and an L2 cache.
 321
 322	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
 323	  and is unable to accept a certain write via this interface, it will
 324	  not progress on read data presented on the read data channel and the
 325	  system can deadlock.
 326
 327	  The workaround promotes data cache clean instructions to
 328	  data cache clean-and-invalidate.
 329	  Please note that this does not necessarily enable the workaround,
 330	  as it depends on the alternative framework, which will only patch
 331	  the kernel if an affected CPU is detected.
 332
 333	  If unsure, say Y.
 334
 335config ARM64_ERRATUM_827319
 336	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
 337	default y
 
 338	help
 339	  This option adds an alternative code sequence to work around ARM
 340	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
 341	  master interface and an L2 cache.
 342
 343	  Under certain conditions this erratum can cause a clean line eviction
 344	  to occur at the same time as another transaction to the same address
 345	  on the AMBA 5 CHI interface, which can cause data corruption if the
 346	  interconnect reorders the two transactions.
 347
 348	  The workaround promotes data cache clean instructions to
 349	  data cache clean-and-invalidate.
 350	  Please note that this does not necessarily enable the workaround,
 351	  as it depends on the alternative framework, which will only patch
 352	  the kernel if an affected CPU is detected.
 353
 354	  If unsure, say Y.
 355
 356config ARM64_ERRATUM_824069
 357	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
 358	default y
 
 359	help
 360	  This option adds an alternative code sequence to work around ARM
 361	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
 362	  to a coherent interconnect.
 363
 364	  If a Cortex-A53 processor is executing a store or prefetch for
 365	  write instruction at the same time as a processor in another
 366	  cluster is executing a cache maintenance operation to the same
 367	  address, then this erratum might cause a clean cache line to be
 368	  incorrectly marked as dirty.
 369
 370	  The workaround promotes data cache clean instructions to
 371	  data cache clean-and-invalidate.
 372	  Please note that this option does not necessarily enable the
 373	  workaround, as it depends on the alternative framework, which will
 374	  only patch the kernel if an affected CPU is detected.
 375
 376	  If unsure, say Y.
 377
 378config ARM64_ERRATUM_819472
 379	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
 380	default y
 
 381	help
 382	  This option adds an alternative code sequence to work around ARM
 383	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
 384	  present when it is connected to a coherent interconnect.
 385
 386	  If the processor is executing a load and store exclusive sequence at
 387	  the same time as a processor in another cluster is executing a cache
 388	  maintenance operation to the same address, then this erratum might
 389	  cause data corruption.
 390
 391	  The workaround promotes data cache clean instructions to
 392	  data cache clean-and-invalidate.
 393	  Please note that this does not necessarily enable the workaround,
 394	  as it depends on the alternative framework, which will only patch
 395	  the kernel if an affected CPU is detected.
 396
 397	  If unsure, say Y.
 398
 399config ARM64_ERRATUM_832075
 400	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
 401	default y
 402	help
 403	  This option adds an alternative code sequence to work around ARM
 404	  erratum 832075 on Cortex-A57 parts up to r1p2.
 405
 406	  Affected Cortex-A57 parts might deadlock when exclusive load/store
 407	  instructions to Write-Back memory are mixed with Device loads.
 408
 409	  The workaround is to promote device loads to use Load-Acquire
 410	  semantics.
 411	  Please note that this does not necessarily enable the workaround,
 412	  as it depends on the alternative framework, which will only patch
 413	  the kernel if an affected CPU is detected.
 414
 415	  If unsure, say Y.
 416
 417config ARM64_ERRATUM_834220
 418	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
 419	depends on KVM
 420	default y
 421	help
 422	  This option adds an alternative code sequence to work around ARM
 423	  erratum 834220 on Cortex-A57 parts up to r1p2.
 424
 425	  Affected Cortex-A57 parts might report a Stage 2 translation
 426	  fault as the result of a Stage 1 fault for load crossing a
 427	  page boundary when there is a permission or device memory
 428	  alignment fault at Stage 1 and a translation fault at Stage 2.
 429
 430	  The workaround is to verify that the Stage 1 translation
 431	  doesn't generate a fault before handling the Stage 2 fault.
 432	  Please note that this does not necessarily enable the workaround,
 433	  as it depends on the alternative framework, which will only patch
 434	  the kernel if an affected CPU is detected.
 435
 436	  If unsure, say Y.
 437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438config ARM64_ERRATUM_845719
 439	bool "Cortex-A53: 845719: a load might read incorrect data"
 440	depends on COMPAT
 441	default y
 442	help
 443	  This option adds an alternative code sequence to work around ARM
 444	  erratum 845719 on Cortex-A53 parts up to r0p4.
 445
 446	  When running a compat (AArch32) userspace on an affected Cortex-A53
 447	  part, a load at EL0 from a virtual address that matches the bottom 32
 448	  bits of the virtual address used by a recent load at (AArch64) EL1
 449	  might return incorrect data.
 450
 451	  The workaround is to write the contextidr_el1 register on exception
 452	  return to a 32-bit task.
 453	  Please note that this does not necessarily enable the workaround,
 454	  as it depends on the alternative framework, which will only patch
 455	  the kernel if an affected CPU is detected.
 456
 457	  If unsure, say Y.
 458
 459config ARM64_ERRATUM_843419
 460	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
 461	default y
 462	select ARM64_MODULE_PLTS if MODULES
 463	help
 464	  This option links the kernel with '--fix-cortex-a53-843419' and
 465	  enables PLT support to replace certain ADRP instructions, which can
 466	  cause subsequent memory accesses to use an incorrect address on
 467	  Cortex-A53 parts up to r0p4.
 468
 469	  If unsure, say Y.
 470
 
 
 
 471config ARM64_ERRATUM_1024718
 472	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
 473	default y
 474	help
 475	  This option adds work around for Arm Cortex-A55 Erratum 1024718.
 476
 477	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect
 478	  update of the hardware dirty bit when the DBM/AP bits are updated
 479	  without a break-before-make. The work around is to disable the usage
 480	  of hardware DBM locally on the affected cores. CPUs not affected by
 481	  erratum will continue to use the feature.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482
 483	  If unsure, say Y.
 484
 485config CAVIUM_ERRATUM_22375
 486	bool "Cavium erratum 22375, 24313"
 487	default y
 488	help
 489	  Enable workaround for erratum 22375, 24313.
 490
 491	  This implements two gicv3-its errata workarounds for ThunderX. Both
 492	  with small impact affecting only ITS table allocation.
 493
 494	    erratum 22375: only alloc 8MB table size
 495	    erratum 24313: ignore memory access type
 496
 497	  The fixes are in ITS initialization and basically ignore memory access
 498	  type and table size provided by the TYPER and BASER registers.
 499
 500	  If unsure, say Y.
 501
 502config CAVIUM_ERRATUM_23144
 503	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
 504	depends on NUMA
 505	default y
 506	help
 507	  ITS SYNC command hang for cross node io and collections/cpu mapping.
 508
 509	  If unsure, say Y.
 510
 511config CAVIUM_ERRATUM_23154
 512	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
 513	default y
 514	help
 515	  The gicv3 of ThunderX requires a modified version for
 516	  reading the IAR status to ensure data synchronization
 517	  (access to icc_iar1_el1 is not sync'ed before and after).
 518
 
 
 
 
 519	  If unsure, say Y.
 520
 521config CAVIUM_ERRATUM_27456
 522	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
 523	default y
 524	help
 525	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
 526	  instructions may cause the icache to become corrupted if it
 527	  contains data for a non-current ASID.  The fix is to
 528	  invalidate the icache when changing the mm context.
 529
 530	  If unsure, say Y.
 531
 532config CAVIUM_ERRATUM_30115
 533	bool "Cavium erratum 30115: Guest may disable interrupts in host"
 534	default y
 535	help
 536	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
 537	  1.2, and T83 Pass 1.0, KVM guest execution may disable
 538	  interrupts in host. Trapping both GICv3 group-0 and group-1
 539	  accesses sidesteps the issue.
 540
 541	  If unsure, say Y.
 542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543config QCOM_FALKOR_ERRATUM_1003
 544	bool "Falkor E1003: Incorrect translation due to ASID change"
 545	default y
 546	help
 547	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
 548	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
 549	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
 550	  then only for entries in the walk cache, since the leaf translation
 551	  is unchanged. Work around the erratum by invalidating the walk cache
 552	  entries for the trampoline before entering the kernel proper.
 553
 554config QCOM_FALKOR_ERRATUM_1009
 555	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
 556	default y
 
 557	help
 558	  On Falkor v1, the CPU may prematurely complete a DSB following a
 559	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
 560	  one more time to fix the issue.
 561
 562	  If unsure, say Y.
 563
 564config QCOM_QDF2400_ERRATUM_0065
 565	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
 566	default y
 567	help
 568	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
 569	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
 570	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
 571
 572	  If unsure, say Y.
 573
 574config SOCIONEXT_SYNQUACER_PREITS
 575	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
 576	default y
 577	help
 578	  Socionext Synquacer SoCs implement a separate h/w block to generate
 579	  MSI doorbell writes with non-zero values for the device ID.
 
 580
 581	  If unsure, say Y.
 582
 583config HISILICON_ERRATUM_161600802
 584	bool "Hip07 161600802: Erroneous redistributor VLPI base"
 585	default y
 586	help
 587	  The HiSilicon Hip07 SoC usees the wrong redistributor base
 588	  when issued ITS commands such as VMOVP and VMAPP, and requires
 589	  a 128kB offset to be applied to the target address in this commands.
 590
 591	  If unsure, say Y.
 592
 593config QCOM_FALKOR_ERRATUM_E1041
 594	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
 595	default y
 596	help
 597	  Falkor CPU may speculatively fetch instructions from an improper
 598	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
 599	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
 600
 601	  If unsure, say Y.
 602
 603endmenu
 604
 605
 606choice
 607	prompt "Page size"
 608	default ARM64_4K_PAGES
 609	help
 610	  Page size (translation granule) configuration.
 611
 612config ARM64_4K_PAGES
 613	bool "4KB"
 614	help
 615	  This feature enables 4KB pages support.
 616
 617config ARM64_16K_PAGES
 618	bool "16KB"
 619	help
 620	  The system will use 16KB pages support. AArch32 emulation
 621	  requires applications compiled with 16K (or a multiple of 16K)
 622	  aligned segments.
 623
 624config ARM64_64K_PAGES
 625	bool "64KB"
 626	help
 627	  This feature enables 64KB pages support (4KB by default)
 628	  allowing only two levels of page tables and faster TLB
 629	  look-up. AArch32 emulation requires applications compiled
 630	  with 64K aligned segments.
 631
 632endchoice
 633
 634choice
 635	prompt "Virtual address space size"
 636	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
 637	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
 638	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
 639	help
 640	  Allows choosing one of multiple possible virtual address
 641	  space sizes. The level of translation table is determined by
 642	  a combination of page size and virtual address space size.
 643
 644config ARM64_VA_BITS_36
 645	bool "36-bit" if EXPERT
 646	depends on ARM64_16K_PAGES
 647
 648config ARM64_VA_BITS_39
 649	bool "39-bit"
 650	depends on ARM64_4K_PAGES
 651
 652config ARM64_VA_BITS_42
 653	bool "42-bit"
 654	depends on ARM64_64K_PAGES
 655
 656config ARM64_VA_BITS_47
 657	bool "47-bit"
 658	depends on ARM64_16K_PAGES
 659
 660config ARM64_VA_BITS_48
 661	bool "48-bit"
 662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663endchoice
 664
 
 
 
 
 
 
 
 
 
 
 
 
 
 665config ARM64_VA_BITS
 666	int
 667	default 36 if ARM64_VA_BITS_36
 668	default 39 if ARM64_VA_BITS_39
 669	default 42 if ARM64_VA_BITS_42
 670	default 47 if ARM64_VA_BITS_47
 671	default 48 if ARM64_VA_BITS_48
 
 672
 673choice
 674	prompt "Physical address space size"
 675	default ARM64_PA_BITS_48
 676	help
 677	  Choose the maximum physical address range that the kernel will
 678	  support.
 679
 680config ARM64_PA_BITS_48
 681	bool "48-bit"
 682
 683config ARM64_PA_BITS_52
 684	bool "52-bit (ARMv8.2)"
 685	depends on ARM64_64K_PAGES
 686	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
 687	help
 688	  Enable support for a 52-bit physical address space, introduced as
 689	  part of the ARMv8.2-LPA extension.
 690
 691	  With this enabled, the kernel will also continue to work on CPUs that
 692	  do not support ARMv8.2-LPA, but with some added memory overhead (and
 693	  minor performance overhead).
 694
 695endchoice
 696
 697config ARM64_PA_BITS
 698	int
 699	default 48 if ARM64_PA_BITS_48
 700	default 52 if ARM64_PA_BITS_52
 701
 
 
 
 
 
 
 
 
 702config CPU_BIG_ENDIAN
 703       bool "Build big-endian kernel"
 704       help
 705         Say Y if you plan on running a kernel in big-endian mode.
 
 
 
 
 
 
 
 
 
 706
 707config SCHED_MC
 708	bool "Multi-core scheduler support"
 709	help
 710	  Multi-core scheduler support improves the CPU scheduler's decision
 711	  making when dealing with multi-core CPU chips at a cost of slightly
 712	  increased overhead in some places. If unsure say N here.
 713
 
 
 
 
 
 
 
 
 
 714config SCHED_SMT
 715	bool "SMT scheduler support"
 716	help
 717	  Improves the CPU scheduler's decision making when dealing with
 718	  MultiThreading at a cost of slightly increased overhead in some
 719	  places. If unsure say N here.
 720
 721config NR_CPUS
 722	int "Maximum number of CPUs (2-4096)"
 723	range 2 4096
 724	# These have to remain sorted largest to smallest
 725	default "64"
 726
 727config HOTPLUG_CPU
 728	bool "Support for hot-pluggable CPUs"
 729	select GENERIC_IRQ_MIGRATION
 730	help
 731	  Say Y here to experiment with turning CPUs off and on.  CPUs
 732	  can be controlled through /sys/devices/system/cpu.
 733
 734# Common NUMA Features
 735config NUMA
 736	bool "Numa Memory Allocation and Scheduler Support"
 
 737	select ACPI_NUMA if ACPI
 738	select OF_NUMA
 
 
 
 
 739	help
 740	  Enable NUMA (Non Uniform Memory Access) support.
 741
 742	  The kernel will try to allocate memory used by a CPU on the
 743	  local memory of the CPU and add some more
 744	  NUMA awareness to the kernel.
 745
 746config NODES_SHIFT
 747	int "Maximum NUMA Nodes (as a power of 2)"
 748	range 1 10
 749	default "2"
 750	depends on NEED_MULTIPLE_NODES
 751	help
 752	  Specify the maximum number of NUMA Nodes available on the target
 753	  system.  Increases memory reserved to accommodate various tables.
 754
 755config USE_PERCPU_NUMA_NODE_ID
 756	def_bool y
 757	depends on NUMA
 758
 759config HAVE_SETUP_PER_CPU_AREA
 760	def_bool y
 761	depends on NUMA
 762
 763config NEED_PER_CPU_EMBED_FIRST_CHUNK
 764	def_bool y
 765	depends on NUMA
 766
 767config HOLES_IN_ZONE
 768	def_bool y
 769	depends on NUMA
 770
 771source kernel/Kconfig.preempt
 772source kernel/Kconfig.hz
 773
 774config ARCH_SUPPORTS_DEBUG_PAGEALLOC
 775	def_bool y
 776
 777config ARCH_HAS_HOLES_MEMORYMODEL
 778	def_bool y if SPARSEMEM
 779
 780config ARCH_SPARSEMEM_ENABLE
 781	def_bool y
 782	select SPARSEMEM_VMEMMAP_ENABLE
 783
 784config ARCH_SPARSEMEM_DEFAULT
 785	def_bool ARCH_SPARSEMEM_ENABLE
 786
 787config ARCH_SELECT_MEMORY_MODEL
 788	def_bool ARCH_SPARSEMEM_ENABLE
 789
 790config HAVE_ARCH_PFN_VALID
 791	def_bool ARCH_HAS_HOLES_MEMORYMODEL || !SPARSEMEM
 792
 793config HW_PERF_EVENTS
 794	def_bool y
 795	depends on ARM_PMU
 796
 797config SYS_SUPPORTS_HUGETLBFS
 798	def_bool y
 799
 800config ARCH_WANT_HUGE_PMD_SHARE
 801	def_bool y if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
 802
 803config ARCH_HAS_CACHE_LINE_SIZE
 804	def_bool y
 805
 806source "mm/Kconfig"
 807
 808config SECCOMP
 809	bool "Enable seccomp to safely compute untrusted bytecode"
 810	---help---
 811	  This kernel feature is useful for number crunching applications
 812	  that may need to compute untrusted bytecode during their
 813	  execution. By using pipes or other transports made available to
 814	  the process as file descriptors supporting the read/write
 815	  syscalls, it's possible to isolate those applications in
 816	  their own address space using seccomp. Once seccomp is
 817	  enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
 818	  and the task is only allowed to execute a few safe syscalls
 819	  defined by each seccomp mode.
 820
 821config PARAVIRT
 822	bool "Enable paravirtualization code"
 823	help
 824	  This changes the kernel so it can modify itself when it is run
 825	  under a hypervisor, potentially improving performance significantly
 826	  over full virtualization.
 827
 828config PARAVIRT_TIME_ACCOUNTING
 829	bool "Paravirtual steal time accounting"
 830	select PARAVIRT
 831	default n
 832	help
 833	  Select this option to enable fine granularity task steal time
 834	  accounting. Time spent executing other tasks in parallel with
 835	  the current vCPU is discounted from the vCPU power. To account for
 836	  that, there can be a small performance impact.
 837
 838	  If in doubt, say N here.
 839
 840config KEXEC
 841	depends on PM_SLEEP_SMP
 842	select KEXEC_CORE
 843	bool "kexec system call"
 844	---help---
 845	  kexec is a system call that implements the ability to shutdown your
 846	  current kernel, and to start another kernel.  It is like a reboot
 847	  but it is independent of the system firmware.   And like a reboot
 848	  you can start any kernel with it, not just Linux.
 849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850config CRASH_DUMP
 851	bool "Build kdump crash kernel"
 852	help
 853	  Generate crash dump after being started by kexec. This should
 854	  be normally only set in special crash dump kernels which are
 855	  loaded in the main kernel with kexec-tools into a specially
 856	  reserved region and then later executed after a crash by
 857	  kdump/kexec.
 858
 859	  For more details see Documentation/kdump/kdump.txt
 
 
 
 
 860
 861config XEN_DOM0
 862	def_bool y
 863	depends on XEN
 864
 865config XEN
 866	bool "Xen guest support on ARM64"
 867	depends on ARM64 && OF
 868	select SWIOTLB_XEN
 869	select PARAVIRT
 870	help
 871	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
 872
 873config FORCE_MAX_ZONEORDER
 874	int
 875	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
 876	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
 877	default "11"
 878	help
 879	  The kernel memory allocator divides physically contiguous memory
 880	  blocks into "zones", where each zone is a power of two number of
 881	  pages.  This option selects the largest power of two that the kernel
 882	  keeps in the memory allocator.  If you need to allocate very large
 883	  blocks of physically contiguous memory, then you may need to
 884	  increase this value.
 885
 886	  This config option is actually maximum order plus one. For example,
 887	  a value of 11 means that the largest free memory block is 2^10 pages.
 888
 889	  We make sure that we can allocate upto a HugePage size for each configuration.
 890	  Hence we have :
 891		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
 892
 893	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
 894	  4M allocations matching the default size used by generic code.
 895
 896config UNMAP_KERNEL_AT_EL0
 897	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
 898	default y
 899	help
 900	  Speculation attacks against some high-performance processors can
 901	  be used to bypass MMU permission checks and leak kernel data to
 902	  userspace. This can be defended against by unmapping the kernel
 903	  when running in userspace, mapping it back in on exception entry
 904	  via a trampoline page in the vector table.
 905
 906	  If unsure, say Y.
 907
 908config HARDEN_BRANCH_PREDICTOR
 909	bool "Harden the branch predictor against aliasing attacks" if EXPERT
 910	default y
 911	help
 912	  Speculation attacks against some high-performance processors rely on
 913	  being able to manipulate the branch predictor for a victim context by
 914	  executing aliasing branches in the attacker context.  Such attacks
 915	  can be partially mitigated against by clearing internal branch
 916	  predictor state and limiting the prediction logic in some situations.
 
 
 
 
 
 
 
 
 
 
 917
 918	  This config option will take CPU-specific actions to harden the
 919	  branch predictor against aliasing attacks and may rely on specific
 920	  instruction sequences or control bits being set by the system
 921	  firmware.
 922
 923	  If unsure, say Y.
 
 
 
 
 
 
 924
 925config HARDEN_EL2_VECTORS
 926	bool "Harden EL2 vector mapping against system register leak" if EXPERT
 927	default y
 928	help
 929	  Speculation attacks against some high-performance processors can
 930	  be used to leak privileged information such as the vector base
 931	  register, resulting in a potential defeat of the EL2 layout
 932	  randomization.
 933
 934	  This config option will map the vectors to a fixed location,
 935	  independent of the EL2 code mapping, so that revealing VBAR_EL2
 936	  to an attacker does not give away any extra information. This
 937	  only gets enabled on affected CPUs.
 938
 939	  If unsure, say Y.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940
 941menuconfig ARMV8_DEPRECATED
 942	bool "Emulate deprecated/obsolete ARMv8 instructions"
 943	depends on COMPAT
 944	depends on SYSCTL
 945	help
 946	  Legacy software support may require certain instructions
 947	  that have been deprecated or obsoleted in the architecture.
 948
 949	  Enable this config to enable selective emulation of these
 950	  features.
 951
 952	  If unsure, say Y
 953
 954if ARMV8_DEPRECATED
 955
 956config SWP_EMULATION
 957	bool "Emulate SWP/SWPB instructions"
 958	help
 959	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
 960	  they are always undefined. Say Y here to enable software
 961	  emulation of these instructions for userspace using LDXR/STXR.
 
 
 962
 963	  In some older versions of glibc [<=2.8] SWP is used during futex
 964	  trylock() operations with the assumption that the code will not
 965	  be preempted. This invalid assumption may be more likely to fail
 966	  with SWP emulation enabled, leading to deadlock of the user
 967	  application.
 968
 969	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
 970	  on an external transaction monitoring block called a global
 971	  monitor to maintain update atomicity. If your system does not
 972	  implement a global monitor, this option can cause programs that
 973	  perform SWP operations to uncached memory to deadlock.
 974
 975	  If unsure, say Y
 976
 977config CP15_BARRIER_EMULATION
 978	bool "Emulate CP15 Barrier instructions"
 979	help
 980	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
 981	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
 982	  strongly recommended to use the ISB, DSB, and DMB
 983	  instructions instead.
 984
 985	  Say Y here to enable software emulation of these
 986	  instructions for AArch32 userspace code. When this option is
 987	  enabled, CP15 barrier usage is traced which can help
 988	  identify software that needs updating.
 
 989
 990	  If unsure, say Y
 991
 992config SETEND_EMULATION
 993	bool "Emulate SETEND instruction"
 994	help
 995	  The SETEND instruction alters the data-endianness of the
 996	  AArch32 EL0, and is deprecated in ARMv8.
 997
 998	  Say Y here to enable software emulation of the instruction
 999	  for AArch32 userspace code.
 
1000
1001	  Note: All the cpus on the system must have mixed endian support at EL0
1002	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1003	  endian - is hotplugged in after this feature has been enabled, there could
1004	  be unexpected results in the applications.
1005
1006	  If unsure, say Y
1007endif
1008
1009config ARM64_SW_TTBR0_PAN
1010	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1011	help
1012	  Enabling this option prevents the kernel from accessing
1013	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1014	  zeroed area and reserved ASID. The user access routines
1015	  restore the valid TTBR0_EL1 temporarily.
1016
1017menu "ARMv8.1 architectural features"
1018
1019config ARM64_HW_AFDBM
1020	bool "Support for hardware updates of the Access and Dirty page flags"
1021	default y
1022	help
1023	  The ARMv8.1 architecture extensions introduce support for
1024	  hardware updates of the access and dirty information in page
1025	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1026	  capable processors, accesses to pages with PTE_AF cleared will
1027	  set this bit instead of raising an access flag fault.
1028	  Similarly, writes to read-only pages with the DBM bit set will
1029	  clear the read-only bit (AP[2]) instead of raising a
1030	  permission fault.
1031
1032	  Kernels built with this configuration option enabled continue
1033	  to work on pre-ARMv8.1 hardware and the performance impact is
1034	  minimal. If unsure, say Y.
1035
1036config ARM64_PAN
1037	bool "Enable support for Privileged Access Never (PAN)"
1038	default y
1039	help
1040	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1041	 prevents the kernel or hypervisor from accessing user-space (EL0)
1042	 memory directly.
 
 
 
1043
1044	 Choosing this option will cause any unprotected (not using
1045	 copy_to_user et al) memory access to fail with a permission fault.
1046
1047	 The feature is detected at runtime, and will remain as a 'nop'
1048	 instruction if the cpu does not implement the feature.
 
 
 
1049
1050config ARM64_LSE_ATOMICS
 
 
 
 
 
1051	bool "Atomic instructions"
 
1052	help
1053	  As part of the Large System Extensions, ARMv8.1 introduces new
1054	  atomic instructions that are designed specifically to scale in
1055	  very large systems.
1056
1057	  Say Y here to make use of these instructions for the in-kernel
1058	  atomic routines. This incurs a small overhead on CPUs that do
1059	  not support these instructions and requires the kernel to be
1060	  built with binutils >= 2.25.
1061
1062config ARM64_VHE
1063	bool "Enable support for Virtualization Host Extensions (VHE)"
1064	default y
1065	help
1066	  Virtualization Host Extensions (VHE) allow the kernel to run
1067	  directly at EL2 (instead of EL1) on processors that support
1068	  it. This leads to better performance for KVM, as they reduce
1069	  the cost of the world switch.
1070
1071	  Selecting this option allows the VHE feature to be detected
1072	  at runtime, and does not affect processors that do not
1073	  implement this feature.
1074
1075endmenu
1076
1077menu "ARMv8.2 architectural features"
1078
1079config ARM64_UAO
1080	bool "Enable support for User Access Override (UAO)"
1081	default y
1082	help
1083	  User Access Override (UAO; part of the ARMv8.2 Extensions)
1084	  causes the 'unprivileged' variant of the load/store instructions to
1085	  be overridden to be privileged.
1086
1087	  This option changes get_user() and friends to use the 'unprivileged'
1088	  variant of the load/store instructions. This ensures that user-space
1089	  really did have access to the supplied memory. When addr_limit is
1090	  set to kernel memory the UAO bit will be set, allowing privileged
1091	  access to kernel memory.
1092
1093	  Choosing this option will cause copy_to_user() et al to use user-space
1094	  memory permissions.
1095
1096	  The feature is detected at runtime, the kernel will use the
1097	  regular load/store instructions if the cpu does not implement the
1098	  feature.
1099
1100config ARM64_PMEM
1101	bool "Enable support for persistent memory"
1102	select ARCH_HAS_PMEM_API
1103	select ARCH_HAS_UACCESS_FLUSHCACHE
1104	help
1105	  Say Y to enable support for the persistent memory API based on the
1106	  ARMv8.2 DCPoP feature.
1107
1108	  The feature is detected at runtime, and the kernel will use DC CVAC
1109	  operations if DC CVAP is not supported (following the behaviour of
1110	  DC CVAP itself if the system does not define a point of persistence).
1111
1112config ARM64_RAS_EXTN
1113	bool "Enable support for RAS CPU Extensions"
1114	default y
1115	help
1116	  CPUs that support the Reliability, Availability and Serviceability
1117	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1118	  errors, classify them and report them to software.
1119
1120	  On CPUs with these extensions system software can use additional
1121	  barriers to determine if faults are pending and read the
1122	  classification from a new set of registers.
1123
1124	  Selecting this feature will allow the kernel to use these barriers
1125	  and access the new registers if the system supports the extension.
1126	  Platform RAS features may additionally depend on firmware support.
1127
1128endmenu
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129
1130config ARM64_SVE
1131	bool "ARM Scalable Vector Extension support"
1132	default y
1133	help
1134	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1135	  execution state which complements and extends the SIMD functionality
1136	  of the base architecture to support much larger vectors and to enable
1137	  additional vectorisation opportunities.
1138
1139	  To enable use of this extension on CPUs that implement it, say Y.
1140
 
 
 
1141	  Note that for architectural reasons, firmware _must_ implement SVE
1142	  support when running on SVE capable hardware.  The required support
1143	  is present in:
1144
1145	    * version 1.5 and later of the ARM Trusted Firmware
1146	    * the AArch64 boot wrapper since commit 5e1261e08abf
1147	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1148
1149	  For other firmware implementations, consult the firmware documentation
1150	  or vendor.
1151
1152	  If you need the kernel to boot on SVE-capable hardware with broken
1153	  firmware, you may need to say N here until you get your firmware
1154	  fixed.  Otherwise, you may experience firmware panics or lockups when
1155	  booting the kernel.  If unsure and you are not observing these
1156	  symptoms, you should assume that it is safe to say Y.
1157
 
 
 
 
 
 
 
 
 
 
 
1158config ARM64_MODULE_PLTS
1159	bool
 
1160	select HAVE_MOD_ARCH_SPECIFIC
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1161
1162config RELOCATABLE
1163	bool
 
 
1164	help
1165	  This builds the kernel as a Position Independent Executable (PIE),
1166	  which retains all relocation metadata required to relocate the
1167	  kernel binary at runtime to a different virtual address than the
1168	  address it was linked at.
1169	  Since AArch64 uses the RELA relocation format, this requires a
1170	  relocation pass at runtime even if the kernel is loaded at the
1171	  same address it was linked at.
1172
1173config RANDOMIZE_BASE
1174	bool "Randomize the address of the kernel image"
1175	select ARM64_MODULE_PLTS if MODULES
1176	select RELOCATABLE
1177	help
1178	  Randomizes the virtual address at which the kernel image is
1179	  loaded, as a security feature that deters exploit attempts
1180	  relying on knowledge of the location of kernel internals.
1181
1182	  It is the bootloader's job to provide entropy, by passing a
1183	  random u64 value in /chosen/kaslr-seed at kernel entry.
1184
1185	  When booting via the UEFI stub, it will invoke the firmware's
1186	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1187	  to the kernel proper. In addition, it will randomise the physical
1188	  location of the kernel Image as well.
1189
1190	  If unsure, say N.
1191
1192config RANDOMIZE_MODULE_REGION_FULL
1193	bool "Randomize the module region over a 4 GB range"
1194	depends on RANDOMIZE_BASE
1195	default y
1196	help
1197	  Randomizes the location of the module region inside a 4 GB window
1198	  covering the core kernel. This way, it is less likely for modules
1199	  to leak information about the location of core kernel data structures
1200	  but it does imply that function calls between modules and the core
1201	  kernel will need to be resolved via veneers in the module PLT.
1202
1203	  When this option is not set, the module region will be randomized over
1204	  a limited range that contains the [_stext, _etext] interval of the
1205	  core kernel, so branch relocations are always in range.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1206
1207endmenu
1208
1209menu "Boot options"
1210
1211config ARM64_ACPI_PARKING_PROTOCOL
1212	bool "Enable support for the ARM64 ACPI parking protocol"
1213	depends on ACPI
1214	help
1215	  Enable support for the ARM64 ACPI parking protocol. If disabled
1216	  the kernel will not allow booting through the ARM64 ACPI parking
1217	  protocol even if the corresponding data is present in the ACPI
1218	  MADT table.
1219
1220config CMDLINE
1221	string "Default kernel command string"
1222	default ""
1223	help
1224	  Provide a set of default command-line options at build time by
1225	  entering them here. As a minimum, you should specify the the
1226	  root device (e.g. root=/dev/nfs).
1227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228config CMDLINE_FORCE
1229	bool "Always use the default kernel command string"
1230	help
1231	  Always use the default kernel command string, even if the boot
1232	  loader passes other arguments to the kernel.
1233	  This is useful if you cannot or don't want to change the
1234	  command-line options your boot loader passes to the kernel.
1235
 
 
1236config EFI_STUB
1237	bool
1238
1239config EFI
1240	bool "UEFI runtime support"
1241	depends on OF && !CPU_BIG_ENDIAN
1242	depends on KERNEL_MODE_NEON
 
1243	select LIBFDT
1244	select UCS2_STRING
1245	select EFI_PARAMS_FROM_FDT
1246	select EFI_RUNTIME_WRAPPERS
1247	select EFI_STUB
1248	select EFI_ARMSTUB
 
1249	default y
1250	help
1251	  This option provides support for runtime services provided
1252	  by UEFI firmware (such as non-volatile variables, realtime
1253          clock, and platform reset). A UEFI stub is also provided to
1254	  allow the kernel to be booted as an EFI application. This
1255	  is only useful on systems that have UEFI firmware.
1256
1257config DMI
1258	bool "Enable support for SMBIOS (DMI) tables"
1259	depends on EFI
1260	default y
1261	help
1262	  This enables SMBIOS/DMI feature for systems.
1263
1264	  This option is only useful on systems that have UEFI firmware.
1265	  However, even with this option, the resultant kernel should
1266	  continue to boot on existing non-UEFI platforms.
1267
1268endmenu
1269
1270menu "Userspace binary formats"
1271
1272source "fs/Kconfig.binfmt"
1273
1274config COMPAT
1275	bool "Kernel support for 32-bit EL0"
1276	depends on ARM64_4K_PAGES || EXPERT
1277	select COMPAT_BINFMT_ELF if BINFMT_ELF
1278	select HAVE_UID16
1279	select OLD_SIGSUSPEND3
1280	select COMPAT_OLD_SIGACTION
1281	help
1282	  This option enables support for a 32-bit EL0 running under a 64-bit
1283	  kernel at EL1. AArch32-specific components such as system calls,
1284	  the user helper functions, VFP support and the ptrace interface are
1285	  handled appropriately by the kernel.
1286
1287	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1288	  that you will only be able to execute AArch32 binaries that were compiled
1289	  with page size aligned segments.
1290
1291	  If you want to execute 32-bit userspace applications, say Y.
1292
1293config SYSVIPC_COMPAT
1294	def_bool y
1295	depends on COMPAT && SYSVIPC
1296
1297endmenu
1298
1299menu "Power management options"
1300
1301source "kernel/power/Kconfig"
1302
1303config ARCH_HIBERNATION_POSSIBLE
1304	def_bool y
1305	depends on CPU_PM
1306
1307config ARCH_HIBERNATION_HEADER
1308	def_bool y
1309	depends on HIBERNATION
1310
1311config ARCH_SUSPEND_POSSIBLE
1312	def_bool y
1313
1314endmenu
1315
1316menu "CPU Power Management"
1317
1318source "drivers/cpuidle/Kconfig"
1319
1320source "drivers/cpufreq/Kconfig"
1321
1322endmenu
1323
1324source "net/Kconfig"
1325
1326source "drivers/Kconfig"
1327
1328source "drivers/firmware/Kconfig"
1329
1330source "drivers/acpi/Kconfig"
1331
1332source "fs/Kconfig"
1333
1334source "arch/arm64/kvm/Kconfig"
1335
1336source "arch/arm64/Kconfig.debug"
1337
1338source "security/Kconfig"
1339
1340source "crypto/Kconfig"
1341if CRYPTO
1342source "arch/arm64/crypto/Kconfig"
1343endif
1344
1345source "lib/Kconfig"
v6.2
   1# SPDX-License-Identifier: GPL-2.0-only
   2config ARM64
   3	def_bool y
   4	select ACPI_APMT if ACPI
   5	select ACPI_CCA_REQUIRED if ACPI
   6	select ACPI_GENERIC_GSI if ACPI
   7	select ACPI_GTDT if ACPI
   8	select ACPI_IORT if ACPI
   9	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
  10	select ACPI_MCFG if (ACPI && PCI)
  11	select ACPI_SPCR_TABLE if ACPI
  12	select ACPI_PPTT if ACPI
  13	select ARCH_HAS_DEBUG_WX
  14	select ARCH_BINFMT_ELF_EXTRA_PHDRS
  15	select ARCH_BINFMT_ELF_STATE
  16	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
  17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
  18	select ARCH_ENABLE_MEMORY_HOTPLUG
  19	select ARCH_ENABLE_MEMORY_HOTREMOVE
  20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
  21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
  22	select ARCH_HAS_CACHE_LINE_SIZE
  23	select ARCH_HAS_CURRENT_STACK_POINTER
  24	select ARCH_HAS_DEBUG_VIRTUAL
  25	select ARCH_HAS_DEBUG_VM_PGTABLE
  26	select ARCH_HAS_DMA_PREP_COHERENT
  27	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
  28	select ARCH_HAS_FAST_MULTIPLIER
  29	select ARCH_HAS_FORTIFY_SOURCE
  30	select ARCH_HAS_GCOV_PROFILE_ALL
  31	select ARCH_HAS_GIGANTIC_PAGE
  32	select ARCH_HAS_KCOV
  33	select ARCH_HAS_KEEPINITRD
  34	select ARCH_HAS_MEMBARRIER_SYNC_CORE
  35	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
  36	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
  37	select ARCH_HAS_PTE_DEVMAP
  38	select ARCH_HAS_PTE_SPECIAL
  39	select ARCH_HAS_SETUP_DMA_OPS
  40	select ARCH_HAS_SET_DIRECT_MAP
  41	select ARCH_HAS_SET_MEMORY
  42	select ARCH_STACKWALK
  43	select ARCH_HAS_STRICT_KERNEL_RWX
  44	select ARCH_HAS_STRICT_MODULE_RWX
  45	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
  46	select ARCH_HAS_SYNC_DMA_FOR_CPU
  47	select ARCH_HAS_SYSCALL_WRAPPER
  48	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
  49	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
  50	select ARCH_HAS_ZONE_DMA_SET if EXPERT
  51	select ARCH_HAVE_ELF_PROT
  52	select ARCH_HAVE_NMI_SAFE_CMPXCHG
  53	select ARCH_HAVE_TRACE_MMIO_ACCESS
  54	select ARCH_INLINE_READ_LOCK if !PREEMPTION
  55	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
  56	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
  57	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
  58	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
  59	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
  60	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
  61	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
  62	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
  63	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
  64	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
  65	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
  66	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
  67	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
  68	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
  69	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
  70	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
  71	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
  72	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
  73	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
  74	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
  75	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
  76	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
  77	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
  78	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
  79	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
  80	select ARCH_KEEP_MEMBLOCK
  81	select ARCH_USE_CMPXCHG_LOCKREF
  82	select ARCH_USE_GNU_PROPERTY
  83	select ARCH_USE_MEMTEST
  84	select ARCH_USE_QUEUED_RWLOCKS
  85	select ARCH_USE_QUEUED_SPINLOCKS
  86	select ARCH_USE_SYM_ANNOTATIONS
  87	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
  88	select ARCH_SUPPORTS_HUGETLBFS
  89	select ARCH_SUPPORTS_MEMORY_FAILURE
  90	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
  91	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
  92	select ARCH_SUPPORTS_LTO_CLANG_THIN
  93	select ARCH_SUPPORTS_CFI_CLANG
  94	select ARCH_SUPPORTS_ATOMIC_RMW
  95	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
  96	select ARCH_SUPPORTS_NUMA_BALANCING
  97	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
  98	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
  99	select ARCH_WANT_DEFAULT_BPF_JIT
 100	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
 101	select ARCH_WANT_FRAME_POINTERS
 102	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
 103	select ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
 104	select ARCH_WANT_LD_ORPHAN_WARN
 105	select ARCH_WANTS_NO_INSTR
 106	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
 107	select ARCH_HAS_UBSAN_SANITIZE_ALL
 108	select ARM_AMBA
 109	select ARM_ARCH_TIMER
 110	select ARM_GIC
 111	select AUDIT_ARCH_COMPAT_GENERIC
 112	select ARM_GIC_V2M if PCI
 113	select ARM_GIC_V3
 114	select ARM_GIC_V3_ITS if PCI
 115	select ARM_PSCI_FW
 116	select BUILDTIME_TABLE_SORT
 117	select CLONE_BACKWARDS
 118	select COMMON_CLK
 119	select CPU_PM if (SUSPEND || CPU_IDLE)
 120	select CRC32
 121	select DCACHE_WORD_ACCESS
 122	select DYNAMIC_FTRACE if FUNCTION_TRACER
 123	select DMA_DIRECT_REMAP
 124	select EDAC_SUPPORT
 125	select FRAME_POINTER
 126	select GENERIC_ALLOCATOR
 127	select GENERIC_ARCH_TOPOLOGY
 
 128	select GENERIC_CLOCKEVENTS_BROADCAST
 129	select GENERIC_CPU_AUTOPROBE
 130	select GENERIC_CPU_VULNERABILITIES
 131	select GENERIC_EARLY_IOREMAP
 132	select GENERIC_IDLE_POLL_SETUP
 133	select GENERIC_IOREMAP
 134	select GENERIC_IRQ_IPI
 135	select GENERIC_IRQ_PROBE
 136	select GENERIC_IRQ_SHOW
 137	select GENERIC_IRQ_SHOW_LEVEL
 138	select GENERIC_LIB_DEVMEM_IS_ALLOWED
 139	select GENERIC_PCI_IOMAP
 140	select GENERIC_PTDUMP
 141	select GENERIC_SCHED_CLOCK
 142	select GENERIC_SMP_IDLE_THREAD
 
 
 143	select GENERIC_TIME_VSYSCALL
 144	select GENERIC_GETTIMEOFDAY
 145	select GENERIC_VDSO_TIME_NS
 146	select HARDIRQS_SW_RESEND
 147	select HAVE_MOVE_PMD
 148	select HAVE_MOVE_PUD
 149	select HAVE_PCI
 150	select HAVE_ACPI_APEI if (ACPI && EFI)
 151	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
 152	select HAVE_ARCH_AUDITSYSCALL
 153	select HAVE_ARCH_BITREVERSE
 154	select HAVE_ARCH_COMPILER_H
 155	select HAVE_ARCH_HUGE_VMALLOC
 156	select HAVE_ARCH_HUGE_VMAP
 157	select HAVE_ARCH_JUMP_LABEL
 158	select HAVE_ARCH_JUMP_LABEL_RELATIVE
 159	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
 160	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
 161	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
 162	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
 163	# Some instrumentation may be unsound, hence EXPERT
 164	select HAVE_ARCH_KCSAN if EXPERT
 165	select HAVE_ARCH_KFENCE
 166	select HAVE_ARCH_KGDB
 167	select HAVE_ARCH_MMAP_RND_BITS
 168	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
 169	select HAVE_ARCH_PREL32_RELOCATIONS
 170	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
 171	select HAVE_ARCH_SECCOMP_FILTER
 172	select HAVE_ARCH_STACKLEAK
 173	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
 174	select HAVE_ARCH_TRACEHOOK
 175	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
 176	select HAVE_ARCH_VMAP_STACK
 177	select HAVE_ARM_SMCCC
 178	select HAVE_ASM_MODVERSIONS
 179	select HAVE_EBPF_JIT
 180	select HAVE_C_RECORDMCOUNT
 
 181	select HAVE_CMPXCHG_DOUBLE
 182	select HAVE_CMPXCHG_LOCAL
 183	select HAVE_CONTEXT_TRACKING_USER
 
 184	select HAVE_DEBUG_KMEMLEAK
 
 185	select HAVE_DMA_CONTIGUOUS
 186	select HAVE_DYNAMIC_FTRACE
 187	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
 188		if DYNAMIC_FTRACE_WITH_ARGS
 189	select HAVE_EFFICIENT_UNALIGNED_ACCESS
 190	select HAVE_FAST_GUP
 191	select HAVE_FTRACE_MCOUNT_RECORD
 192	select HAVE_FUNCTION_TRACER
 193	select HAVE_FUNCTION_ERROR_INJECTION
 194	select HAVE_FUNCTION_GRAPH_TRACER
 195	select HAVE_GCC_PLUGINS
 
 196	select HAVE_HW_BREAKPOINT if PERF_EVENTS
 197	select HAVE_IOREMAP_PROT
 198	select HAVE_IRQ_TIME_ACCOUNTING
 199	select HAVE_KVM
 
 200	select HAVE_NMI
 
 201	select HAVE_PERF_EVENTS
 202	select HAVE_PERF_REGS
 203	select HAVE_PERF_USER_STACK_DUMP
 204	select HAVE_PREEMPT_DYNAMIC_KEY
 205	select HAVE_REGS_AND_STACK_ACCESS_API
 206	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
 207	select HAVE_FUNCTION_ARG_ACCESS_API
 208	select MMU_GATHER_RCU_TABLE_FREE
 209	select HAVE_RSEQ
 210	select HAVE_STACKPROTECTOR
 211	select HAVE_SYSCALL_TRACEPOINTS
 212	select HAVE_KPROBES
 213	select HAVE_KRETPROBES
 214	select HAVE_GENERIC_VDSO
 215	select IRQ_DOMAIN
 216	select IRQ_FORCED_THREADING
 217	select KASAN_VMALLOC if KASAN
 218	select MODULES_USE_ELF_RELA
 219	select NEED_DMA_MAP_STATE
 220	select NEED_SG_DMA_LENGTH
 221	select OF
 222	select OF_EARLY_FLATTREE
 223	select PCI_DOMAINS_GENERIC if PCI
 224	select PCI_ECAM if (ACPI && PCI)
 225	select PCI_SYSCALL if PCI
 226	select POWER_RESET
 227	select POWER_SUPPLY
 
 228	select SPARSE_IRQ
 229	select SWIOTLB
 230	select SYSCTL_EXCEPTION_TRACE
 231	select THREAD_INFO_IN_TASK
 232	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
 233	select TRACE_IRQFLAGS_SUPPORT
 234	select TRACE_IRQFLAGS_NMI_SUPPORT
 235	select HAVE_SOFTIRQ_ON_OWN_STACK
 236	help
 237	  ARM 64-bit (AArch64) Linux support.
 238
 239config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
 240	def_bool CC_IS_CLANG
 241	# https://github.com/ClangBuiltLinux/linux/issues/1507
 242	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
 243	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
 244
 245config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
 246	def_bool CC_IS_GCC
 247	depends on $(cc-option,-fpatchable-function-entry=2)
 248	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
 249
 250config 64BIT
 251	def_bool y
 252
 253config MMU
 254	def_bool y
 255
 256config ARM64_PAGE_SHIFT
 257	int
 258	default 16 if ARM64_64K_PAGES
 259	default 14 if ARM64_16K_PAGES
 260	default 12
 261
 262config ARM64_CONT_PTE_SHIFT
 263	int
 264	default 5 if ARM64_64K_PAGES
 265	default 7 if ARM64_16K_PAGES
 266	default 4
 267
 268config ARM64_CONT_PMD_SHIFT
 269	int
 270	default 5 if ARM64_64K_PAGES
 271	default 5 if ARM64_16K_PAGES
 272	default 4
 273
 274config ARCH_MMAP_RND_BITS_MIN
 275	default 14 if ARM64_64K_PAGES
 276	default 16 if ARM64_16K_PAGES
 277	default 18
 278
 279# max bits determined by the following formula:
 280#  VA_BITS - PAGE_SHIFT - 3
 281config ARCH_MMAP_RND_BITS_MAX
 282	default 19 if ARM64_VA_BITS=36
 283	default 24 if ARM64_VA_BITS=39
 284	default 27 if ARM64_VA_BITS=42
 285	default 30 if ARM64_VA_BITS=47
 286	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
 287	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
 288	default 33 if ARM64_VA_BITS=48
 289	default 14 if ARM64_64K_PAGES
 290	default 16 if ARM64_16K_PAGES
 291	default 18
 292
 293config ARCH_MMAP_RND_COMPAT_BITS_MIN
 294	default 7 if ARM64_64K_PAGES
 295	default 9 if ARM64_16K_PAGES
 296	default 11
 297
 298config ARCH_MMAP_RND_COMPAT_BITS_MAX
 299	default 16
 300
 301config NO_IOPORT_MAP
 302	def_bool y if !PCI
 303
 304config STACKTRACE_SUPPORT
 305	def_bool y
 306
 307config ILLEGAL_POINTER_VALUE
 308	hex
 309	default 0xdead000000000000
 310
 311config LOCKDEP_SUPPORT
 312	def_bool y
 313
 
 
 
 
 
 
 314config GENERIC_BUG
 315	def_bool y
 316	depends on BUG
 317
 318config GENERIC_BUG_RELATIVE_POINTERS
 319	def_bool y
 320	depends on GENERIC_BUG
 321
 322config GENERIC_HWEIGHT
 323	def_bool y
 324
 325config GENERIC_CSUM
 
 
 
 
 
 
 326	def_bool y
 327
 328config GENERIC_CALIBRATE_DELAY
 
 
 
 
 
 
 329	def_bool y
 330
 331config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
 332	def_bool y
 333
 334config SMP
 335	def_bool y
 336
 
 
 
 
 
 
 337config KERNEL_MODE_NEON
 338	def_bool y
 339
 340config FIX_EARLYCON_MEM
 341	def_bool y
 342
 343config PGTABLE_LEVELS
 344	int
 345	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
 346	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
 347	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
 348	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
 349	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
 350	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
 351
 352config ARCH_SUPPORTS_UPROBES
 353	def_bool y
 354
 355config ARCH_PROC_KCORE_TEXT
 356	def_bool y
 357
 358config BROKEN_GAS_INST
 359	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
 360
 361config KASAN_SHADOW_OFFSET
 362	hex
 363	depends on KASAN_GENERIC || KASAN_SW_TAGS
 364	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
 365	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
 366	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
 367	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
 368	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
 369	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
 370	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
 371	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
 372	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
 373	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
 374	default 0xffffffffffffffff
 375
 376config UNWIND_TABLES
 377	bool
 378
 379source "arch/arm64/Kconfig.platforms"
 380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381menu "Kernel Features"
 382
 383menu "ARM errata workarounds via the alternatives framework"
 384
 385config ARM64_WORKAROUND_CLEAN_CACHE
 386	bool
 387
 388config ARM64_ERRATUM_826319
 389	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
 390	default y
 391	select ARM64_WORKAROUND_CLEAN_CACHE
 392	help
 393	  This option adds an alternative code sequence to work around ARM
 394	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
 395	  AXI master interface and an L2 cache.
 396
 397	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
 398	  and is unable to accept a certain write via this interface, it will
 399	  not progress on read data presented on the read data channel and the
 400	  system can deadlock.
 401
 402	  The workaround promotes data cache clean instructions to
 403	  data cache clean-and-invalidate.
 404	  Please note that this does not necessarily enable the workaround,
 405	  as it depends on the alternative framework, which will only patch
 406	  the kernel if an affected CPU is detected.
 407
 408	  If unsure, say Y.
 409
 410config ARM64_ERRATUM_827319
 411	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
 412	default y
 413	select ARM64_WORKAROUND_CLEAN_CACHE
 414	help
 415	  This option adds an alternative code sequence to work around ARM
 416	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
 417	  master interface and an L2 cache.
 418
 419	  Under certain conditions this erratum can cause a clean line eviction
 420	  to occur at the same time as another transaction to the same address
 421	  on the AMBA 5 CHI interface, which can cause data corruption if the
 422	  interconnect reorders the two transactions.
 423
 424	  The workaround promotes data cache clean instructions to
 425	  data cache clean-and-invalidate.
 426	  Please note that this does not necessarily enable the workaround,
 427	  as it depends on the alternative framework, which will only patch
 428	  the kernel if an affected CPU is detected.
 429
 430	  If unsure, say Y.
 431
 432config ARM64_ERRATUM_824069
 433	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
 434	default y
 435	select ARM64_WORKAROUND_CLEAN_CACHE
 436	help
 437	  This option adds an alternative code sequence to work around ARM
 438	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
 439	  to a coherent interconnect.
 440
 441	  If a Cortex-A53 processor is executing a store or prefetch for
 442	  write instruction at the same time as a processor in another
 443	  cluster is executing a cache maintenance operation to the same
 444	  address, then this erratum might cause a clean cache line to be
 445	  incorrectly marked as dirty.
 446
 447	  The workaround promotes data cache clean instructions to
 448	  data cache clean-and-invalidate.
 449	  Please note that this option does not necessarily enable the
 450	  workaround, as it depends on the alternative framework, which will
 451	  only patch the kernel if an affected CPU is detected.
 452
 453	  If unsure, say Y.
 454
 455config ARM64_ERRATUM_819472
 456	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
 457	default y
 458	select ARM64_WORKAROUND_CLEAN_CACHE
 459	help
 460	  This option adds an alternative code sequence to work around ARM
 461	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
 462	  present when it is connected to a coherent interconnect.
 463
 464	  If the processor is executing a load and store exclusive sequence at
 465	  the same time as a processor in another cluster is executing a cache
 466	  maintenance operation to the same address, then this erratum might
 467	  cause data corruption.
 468
 469	  The workaround promotes data cache clean instructions to
 470	  data cache clean-and-invalidate.
 471	  Please note that this does not necessarily enable the workaround,
 472	  as it depends on the alternative framework, which will only patch
 473	  the kernel if an affected CPU is detected.
 474
 475	  If unsure, say Y.
 476
 477config ARM64_ERRATUM_832075
 478	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
 479	default y
 480	help
 481	  This option adds an alternative code sequence to work around ARM
 482	  erratum 832075 on Cortex-A57 parts up to r1p2.
 483
 484	  Affected Cortex-A57 parts might deadlock when exclusive load/store
 485	  instructions to Write-Back memory are mixed with Device loads.
 486
 487	  The workaround is to promote device loads to use Load-Acquire
 488	  semantics.
 489	  Please note that this does not necessarily enable the workaround,
 490	  as it depends on the alternative framework, which will only patch
 491	  the kernel if an affected CPU is detected.
 492
 493	  If unsure, say Y.
 494
 495config ARM64_ERRATUM_834220
 496	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
 497	depends on KVM
 498	default y
 499	help
 500	  This option adds an alternative code sequence to work around ARM
 501	  erratum 834220 on Cortex-A57 parts up to r1p2.
 502
 503	  Affected Cortex-A57 parts might report a Stage 2 translation
 504	  fault as the result of a Stage 1 fault for load crossing a
 505	  page boundary when there is a permission or device memory
 506	  alignment fault at Stage 1 and a translation fault at Stage 2.
 507
 508	  The workaround is to verify that the Stage 1 translation
 509	  doesn't generate a fault before handling the Stage 2 fault.
 510	  Please note that this does not necessarily enable the workaround,
 511	  as it depends on the alternative framework, which will only patch
 512	  the kernel if an affected CPU is detected.
 513
 514	  If unsure, say Y.
 515
 516config ARM64_ERRATUM_1742098
 517	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
 518	depends on COMPAT
 519	default y
 520	help
 521	  This option removes the AES hwcap for aarch32 user-space to
 522	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
 523
 524	  Affected parts may corrupt the AES state if an interrupt is
 525	  taken between a pair of AES instructions. These instructions
 526	  are only present if the cryptography extensions are present.
 527	  All software should have a fallback implementation for CPUs
 528	  that don't implement the cryptography extensions.
 529
 530	  If unsure, say Y.
 531
 532config ARM64_ERRATUM_845719
 533	bool "Cortex-A53: 845719: a load might read incorrect data"
 534	depends on COMPAT
 535	default y
 536	help
 537	  This option adds an alternative code sequence to work around ARM
 538	  erratum 845719 on Cortex-A53 parts up to r0p4.
 539
 540	  When running a compat (AArch32) userspace on an affected Cortex-A53
 541	  part, a load at EL0 from a virtual address that matches the bottom 32
 542	  bits of the virtual address used by a recent load at (AArch64) EL1
 543	  might return incorrect data.
 544
 545	  The workaround is to write the contextidr_el1 register on exception
 546	  return to a 32-bit task.
 547	  Please note that this does not necessarily enable the workaround,
 548	  as it depends on the alternative framework, which will only patch
 549	  the kernel if an affected CPU is detected.
 550
 551	  If unsure, say Y.
 552
 553config ARM64_ERRATUM_843419
 554	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
 555	default y
 556	select ARM64_MODULE_PLTS if MODULES
 557	help
 558	  This option links the kernel with '--fix-cortex-a53-843419' and
 559	  enables PLT support to replace certain ADRP instructions, which can
 560	  cause subsequent memory accesses to use an incorrect address on
 561	  Cortex-A53 parts up to r0p4.
 562
 563	  If unsure, say Y.
 564
 565config ARM64_LD_HAS_FIX_ERRATUM_843419
 566	def_bool $(ld-option,--fix-cortex-a53-843419)
 567
 568config ARM64_ERRATUM_1024718
 569	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
 570	default y
 571	help
 572	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
 573
 574	  Affected Cortex-A55 cores (all revisions) could cause incorrect
 575	  update of the hardware dirty bit when the DBM/AP bits are updated
 576	  without a break-before-make. The workaround is to disable the usage
 577	  of hardware DBM locally on the affected cores. CPUs not affected by
 578	  this erratum will continue to use the feature.
 579
 580	  If unsure, say Y.
 581
 582config ARM64_ERRATUM_1418040
 583	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
 584	default y
 585	depends on COMPAT
 586	help
 587	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
 588	  errata 1188873 and 1418040.
 589
 590	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
 591	  cause register corruption when accessing the timer registers
 592	  from AArch32 userspace.
 593
 594	  If unsure, say Y.
 595
 596config ARM64_WORKAROUND_SPECULATIVE_AT
 597	bool
 598
 599config ARM64_ERRATUM_1165522
 600	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
 601	default y
 602	select ARM64_WORKAROUND_SPECULATIVE_AT
 603	help
 604	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
 605
 606	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
 607	  corrupted TLBs by speculating an AT instruction during a guest
 608	  context switch.
 609
 610	  If unsure, say Y.
 611
 612config ARM64_ERRATUM_1319367
 613	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
 614	default y
 615	select ARM64_WORKAROUND_SPECULATIVE_AT
 616	help
 617	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
 618	  and A72 erratum 1319367
 619
 620	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
 621	  speculating an AT instruction during a guest context switch.
 622
 623	  If unsure, say Y.
 624
 625config ARM64_ERRATUM_1530923
 626	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
 627	default y
 628	select ARM64_WORKAROUND_SPECULATIVE_AT
 629	help
 630	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
 631
 632	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
 633	  corrupted TLBs by speculating an AT instruction during a guest
 634	  context switch.
 635
 636	  If unsure, say Y.
 637
 638config ARM64_WORKAROUND_REPEAT_TLBI
 639	bool
 640
 641config ARM64_ERRATUM_2441007
 642	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
 643	default y
 644	select ARM64_WORKAROUND_REPEAT_TLBI
 645	help
 646	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
 647
 648	  Under very rare circumstances, affected Cortex-A55 CPUs
 649	  may not handle a race between a break-before-make sequence on one
 650	  CPU, and another CPU accessing the same page. This could allow a
 651	  store to a page that has been unmapped.
 652
 653	  Work around this by adding the affected CPUs to the list that needs
 654	  TLB sequences to be done twice.
 655
 656	  If unsure, say Y.
 657
 658config ARM64_ERRATUM_1286807
 659	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
 660	default y
 661	select ARM64_WORKAROUND_REPEAT_TLBI
 662	help
 663	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
 664
 665	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
 666	  address for a cacheable mapping of a location is being
 667	  accessed by a core while another core is remapping the virtual
 668	  address to a new physical page using the recommended
 669	  break-before-make sequence, then under very rare circumstances
 670	  TLBI+DSB completes before a read using the translation being
 671	  invalidated has been observed by other observers. The
 672	  workaround repeats the TLBI+DSB operation.
 673
 674config ARM64_ERRATUM_1463225
 675	bool "Cortex-A76: Software Step might prevent interrupt recognition"
 676	default y
 677	help
 678	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
 679
 680	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
 681	  of a system call instruction (SVC) can prevent recognition of
 682	  subsequent interrupts when software stepping is disabled in the
 683	  exception handler of the system call and either kernel debugging
 684	  is enabled or VHE is in use.
 685
 686	  Work around the erratum by triggering a dummy step exception
 687	  when handling a system call from a task that is being stepped
 688	  in a VHE configuration of the kernel.
 689
 690	  If unsure, say Y.
 691
 692config ARM64_ERRATUM_1542419
 693	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
 694	default y
 695	help
 696	  This option adds a workaround for ARM Neoverse-N1 erratum
 697	  1542419.
 698
 699	  Affected Neoverse-N1 cores could execute a stale instruction when
 700	  modified by another CPU. The workaround depends on a firmware
 701	  counterpart.
 702
 703	  Workaround the issue by hiding the DIC feature from EL0. This
 704	  forces user-space to perform cache maintenance.
 705
 706	  If unsure, say Y.
 707
 708config ARM64_ERRATUM_1508412
 709	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
 710	default y
 711	help
 712	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
 713
 714	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
 715	  of a store-exclusive or read of PAR_EL1 and a load with device or
 716	  non-cacheable memory attributes. The workaround depends on a firmware
 717	  counterpart.
 718
 719	  KVM guests must also have the workaround implemented or they can
 720	  deadlock the system.
 721
 722	  Work around the issue by inserting DMB SY barriers around PAR_EL1
 723	  register reads and warning KVM users. The DMB barrier is sufficient
 724	  to prevent a speculative PAR_EL1 read.
 725
 726	  If unsure, say Y.
 727
 728config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
 729	bool
 730
 731config ARM64_ERRATUM_2051678
 732	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
 733	default y
 734	help
 735	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
 736	  Affected Cortex-A510 might not respect the ordering rules for
 737	  hardware update of the page table's dirty bit. The workaround
 738	  is to not enable the feature on affected CPUs.
 739
 740	  If unsure, say Y.
 741
 742config ARM64_ERRATUM_2077057
 743	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
 744	default y
 745	help
 746	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
 747	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
 748	  expected, but a Pointer Authentication trap is taken instead. The
 749	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
 750	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
 751
 752	  This can only happen when EL2 is stepping EL1.
 753
 754	  When these conditions occur, the SPSR_EL2 value is unchanged from the
 755	  previous guest entry, and can be restored from the in-memory copy.
 756
 757	  If unsure, say Y.
 758
 759config ARM64_ERRATUM_2658417
 760	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
 761	default y
 762	help
 763	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
 764	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
 765	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
 766	  A510 CPUs are using shared neon hardware. As the sharing is not
 767	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
 768	  user-space should not be using these instructions.
 769
 770	  If unsure, say Y.
 771
 772config ARM64_ERRATUM_2119858
 773	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
 774	default y
 775	depends on CORESIGHT_TRBE
 776	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
 777	help
 778	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
 779
 780	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
 781	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
 782	  the event of a WRAP event.
 783
 784	  Work around the issue by always making sure we move the TRBPTR_EL1 by
 785	  256 bytes before enabling the buffer and filling the first 256 bytes of
 786	  the buffer with ETM ignore packets upon disabling.
 787
 788	  If unsure, say Y.
 789
 790config ARM64_ERRATUM_2139208
 791	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
 792	default y
 793	depends on CORESIGHT_TRBE
 794	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
 795	help
 796	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
 797
 798	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
 799	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
 800	  the event of a WRAP event.
 801
 802	  Work around the issue by always making sure we move the TRBPTR_EL1 by
 803	  256 bytes before enabling the buffer and filling the first 256 bytes of
 804	  the buffer with ETM ignore packets upon disabling.
 805
 806	  If unsure, say Y.
 807
 808config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
 809	bool
 810
 811config ARM64_ERRATUM_2054223
 812	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
 813	default y
 814	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
 815	help
 816	  Enable workaround for ARM Cortex-A710 erratum 2054223
 817
 818	  Affected cores may fail to flush the trace data on a TSB instruction, when
 819	  the PE is in trace prohibited state. This will cause losing a few bytes
 820	  of the trace cached.
 821
 822	  Workaround is to issue two TSB consecutively on affected cores.
 823
 824	  If unsure, say Y.
 825
 826config ARM64_ERRATUM_2067961
 827	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
 828	default y
 829	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
 830	help
 831	  Enable workaround for ARM Neoverse-N2 erratum 2067961
 832
 833	  Affected cores may fail to flush the trace data on a TSB instruction, when
 834	  the PE is in trace prohibited state. This will cause losing a few bytes
 835	  of the trace cached.
 836
 837	  Workaround is to issue two TSB consecutively on affected cores.
 838
 839	  If unsure, say Y.
 840
 841config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
 842	bool
 843
 844config ARM64_ERRATUM_2253138
 845	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
 846	depends on CORESIGHT_TRBE
 847	default y
 848	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
 849	help
 850	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
 851
 852	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
 853	  for TRBE. Under some conditions, the TRBE might generate a write to the next
 854	  virtually addressed page following the last page of the TRBE address space
 855	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
 856
 857	  Work around this in the driver by always making sure that there is a
 858	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
 859
 860	  If unsure, say Y.
 861
 862config ARM64_ERRATUM_2224489
 863	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
 864	depends on CORESIGHT_TRBE
 865	default y
 866	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
 867	help
 868	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
 869
 870	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
 871	  for TRBE. Under some conditions, the TRBE might generate a write to the next
 872	  virtually addressed page following the last page of the TRBE address space
 873	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
 874
 875	  Work around this in the driver by always making sure that there is a
 876	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
 877
 878	  If unsure, say Y.
 879
 880config ARM64_ERRATUM_2441009
 881	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
 882	default y
 883	select ARM64_WORKAROUND_REPEAT_TLBI
 884	help
 885	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
 886
 887	  Under very rare circumstances, affected Cortex-A510 CPUs
 888	  may not handle a race between a break-before-make sequence on one
 889	  CPU, and another CPU accessing the same page. This could allow a
 890	  store to a page that has been unmapped.
 891
 892	  Work around this by adding the affected CPUs to the list that needs
 893	  TLB sequences to be done twice.
 894
 895	  If unsure, say Y.
 896
 897config ARM64_ERRATUM_2064142
 898	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
 899	depends on CORESIGHT_TRBE
 900	default y
 901	help
 902	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
 903
 904	  Affected Cortex-A510 core might fail to write into system registers after the
 905	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
 906	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
 907	  and TRBTRG_EL1 will be ignored and will not be effected.
 908
 909	  Work around this in the driver by executing TSB CSYNC and DSB after collection
 910	  is stopped and before performing a system register write to one of the affected
 911	  registers.
 912
 913	  If unsure, say Y.
 914
 915config ARM64_ERRATUM_2038923
 916	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
 917	depends on CORESIGHT_TRBE
 918	default y
 919	help
 920	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
 921
 922	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
 923	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
 924	  might be corrupted. This happens after TRBE buffer has been enabled by setting
 925	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
 926	  execution changes from a context, in which trace is prohibited to one where it
 927	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
 928	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
 929	  the trace buffer state might be corrupted.
 930
 931	  Work around this in the driver by preventing an inconsistent view of whether the
 932	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
 933	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
 934	  two ISB instructions if no ERET is to take place.
 935
 936	  If unsure, say Y.
 937
 938config ARM64_ERRATUM_1902691
 939	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
 940	depends on CORESIGHT_TRBE
 941	default y
 942	help
 943	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
 944
 945	  Affected Cortex-A510 core might cause trace data corruption, when being written
 946	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
 947	  trace data.
 948
 949	  Work around this problem in the driver by just preventing TRBE initialization on
 950	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
 951	  on such implementations. This will cover the kernel for any firmware that doesn't
 952	  do this already.
 953
 954	  If unsure, say Y.
 955
 956config ARM64_ERRATUM_2457168
 957	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
 958	depends on ARM64_AMU_EXTN
 959	default y
 960	help
 961	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
 962
 963	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
 964	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
 965	  incorrectly giving a significantly higher output value.
 966
 967	  Work around this problem by returning 0 when reading the affected counter in
 968	  key locations that results in disabling all users of this counter. This effect
 969	  is the same to firmware disabling affected counters.
 970
 971	  If unsure, say Y.
 972
 973config ARM64_ERRATUM_2645198
 974	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
 975	default y
 976	help
 977	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
 978
 979	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
 980	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
 981	  next instruction abort caused by permission fault.
 982
 983	  Only user-space does executable to non-executable permission transition via
 984	  mprotect() system call. Workaround the problem by doing a break-before-make
 985	  TLB invalidation, for all changes to executable user space mappings.
 986
 987	  If unsure, say Y.
 988
 989config CAVIUM_ERRATUM_22375
 990	bool "Cavium erratum 22375, 24313"
 991	default y
 992	help
 993	  Enable workaround for errata 22375 and 24313.
 994
 995	  This implements two gicv3-its errata workarounds for ThunderX. Both
 996	  with a small impact affecting only ITS table allocation.
 997
 998	    erratum 22375: only alloc 8MB table size
 999	    erratum 24313: ignore memory access type
1000
1001	  The fixes are in ITS initialization and basically ignore memory access
1002	  type and table size provided by the TYPER and BASER registers.
1003
1004	  If unsure, say Y.
1005
1006config CAVIUM_ERRATUM_23144
1007	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1008	depends on NUMA
1009	default y
1010	help
1011	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1012
1013	  If unsure, say Y.
1014
1015config CAVIUM_ERRATUM_23154
1016	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1017	default y
1018	help
1019	  The ThunderX GICv3 implementation requires a modified version for
1020	  reading the IAR status to ensure data synchronization
1021	  (access to icc_iar1_el1 is not sync'ed before and after).
1022
1023	  It also suffers from erratum 38545 (also present on Marvell's
1024	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1025	  spuriously presented to the CPU interface.
1026
1027	  If unsure, say Y.
1028
1029config CAVIUM_ERRATUM_27456
1030	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1031	default y
1032	help
1033	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1034	  instructions may cause the icache to become corrupted if it
1035	  contains data for a non-current ASID.  The fix is to
1036	  invalidate the icache when changing the mm context.
1037
1038	  If unsure, say Y.
1039
1040config CAVIUM_ERRATUM_30115
1041	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1042	default y
1043	help
1044	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1045	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1046	  interrupts in host. Trapping both GICv3 group-0 and group-1
1047	  accesses sidesteps the issue.
1048
1049	  If unsure, say Y.
1050
1051config CAVIUM_TX2_ERRATUM_219
1052	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1053	default y
1054	help
1055	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1056	  TTBR update and the corresponding context synchronizing operation can
1057	  cause a spurious Data Abort to be delivered to any hardware thread in
1058	  the CPU core.
1059
1060	  Work around the issue by avoiding the problematic code sequence and
1061	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1062	  trap handler performs the corresponding register access, skips the
1063	  instruction and ensures context synchronization by virtue of the
1064	  exception return.
1065
1066	  If unsure, say Y.
1067
1068config FUJITSU_ERRATUM_010001
1069	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1070	default y
1071	help
1072	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1073	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1074	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1075	  This fault occurs under a specific hardware condition when a
1076	  load/store instruction performs an address translation using:
1077	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1078	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1079	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1080	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1081
1082	  The workaround is to ensure these bits are clear in TCR_ELx.
1083	  The workaround only affects the Fujitsu-A64FX.
1084
1085	  If unsure, say Y.
1086
1087config HISILICON_ERRATUM_161600802
1088	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1089	default y
1090	help
1091	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1092	  when issued ITS commands such as VMOVP and VMAPP, and requires
1093	  a 128kB offset to be applied to the target address in this commands.
1094
1095	  If unsure, say Y.
1096
1097config QCOM_FALKOR_ERRATUM_1003
1098	bool "Falkor E1003: Incorrect translation due to ASID change"
1099	default y
1100	help
1101	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1102	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1103	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1104	  then only for entries in the walk cache, since the leaf translation
1105	  is unchanged. Work around the erratum by invalidating the walk cache
1106	  entries for the trampoline before entering the kernel proper.
1107
1108config QCOM_FALKOR_ERRATUM_1009
1109	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1110	default y
1111	select ARM64_WORKAROUND_REPEAT_TLBI
1112	help
1113	  On Falkor v1, the CPU may prematurely complete a DSB following a
1114	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1115	  one more time to fix the issue.
1116
1117	  If unsure, say Y.
1118
1119config QCOM_QDF2400_ERRATUM_0065
1120	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1121	default y
1122	help
1123	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1124	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1125	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1126
1127	  If unsure, say Y.
1128
1129config QCOM_FALKOR_ERRATUM_E1041
1130	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1131	default y
1132	help
1133	  Falkor CPU may speculatively fetch instructions from an improper
1134	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1135	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1136
1137	  If unsure, say Y.
1138
1139config NVIDIA_CARMEL_CNP_ERRATUM
1140	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1141	default y
1142	help
1143	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1144	  invalidate shared TLB entries installed by a different core, as it would
1145	  on standard ARM cores.
1146
1147	  If unsure, say Y.
1148
1149config SOCIONEXT_SYNQUACER_PREITS
1150	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1151	default y
1152	help
1153	  Socionext Synquacer SoCs implement a separate h/w block to generate
1154	  MSI doorbell writes with non-zero values for the device ID.
 
1155
1156	  If unsure, say Y.
1157
1158endmenu # "ARM errata workarounds via the alternatives framework"
 
1159
1160choice
1161	prompt "Page size"
1162	default ARM64_4K_PAGES
1163	help
1164	  Page size (translation granule) configuration.
1165
1166config ARM64_4K_PAGES
1167	bool "4KB"
1168	help
1169	  This feature enables 4KB pages support.
1170
1171config ARM64_16K_PAGES
1172	bool "16KB"
1173	help
1174	  The system will use 16KB pages support. AArch32 emulation
1175	  requires applications compiled with 16K (or a multiple of 16K)
1176	  aligned segments.
1177
1178config ARM64_64K_PAGES
1179	bool "64KB"
1180	help
1181	  This feature enables 64KB pages support (4KB by default)
1182	  allowing only two levels of page tables and faster TLB
1183	  look-up. AArch32 emulation requires applications compiled
1184	  with 64K aligned segments.
1185
1186endchoice
1187
1188choice
1189	prompt "Virtual address space size"
1190	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1191	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1192	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1193	help
1194	  Allows choosing one of multiple possible virtual address
1195	  space sizes. The level of translation table is determined by
1196	  a combination of page size and virtual address space size.
1197
1198config ARM64_VA_BITS_36
1199	bool "36-bit" if EXPERT
1200	depends on ARM64_16K_PAGES
1201
1202config ARM64_VA_BITS_39
1203	bool "39-bit"
1204	depends on ARM64_4K_PAGES
1205
1206config ARM64_VA_BITS_42
1207	bool "42-bit"
1208	depends on ARM64_64K_PAGES
1209
1210config ARM64_VA_BITS_47
1211	bool "47-bit"
1212	depends on ARM64_16K_PAGES
1213
1214config ARM64_VA_BITS_48
1215	bool "48-bit"
1216
1217config ARM64_VA_BITS_52
1218	bool "52-bit"
1219	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1220	help
1221	  Enable 52-bit virtual addressing for userspace when explicitly
1222	  requested via a hint to mmap(). The kernel will also use 52-bit
1223	  virtual addresses for its own mappings (provided HW support for
1224	  this feature is available, otherwise it reverts to 48-bit).
1225
1226	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1227	  ARMv8.3 Pointer Authentication will result in the PAC being
1228	  reduced from 7 bits to 3 bits, which may have a significant
1229	  impact on its susceptibility to brute-force attacks.
1230
1231	  If unsure, select 48-bit virtual addressing instead.
1232
1233endchoice
1234
1235config ARM64_FORCE_52BIT
1236	bool "Force 52-bit virtual addresses for userspace"
1237	depends on ARM64_VA_BITS_52 && EXPERT
1238	help
1239	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1240	  to maintain compatibility with older software by providing 48-bit VAs
1241	  unless a hint is supplied to mmap.
1242
1243	  This configuration option disables the 48-bit compatibility logic, and
1244	  forces all userspace addresses to be 52-bit on HW that supports it. One
1245	  should only enable this configuration option for stress testing userspace
1246	  memory management code. If unsure say N here.
1247
1248config ARM64_VA_BITS
1249	int
1250	default 36 if ARM64_VA_BITS_36
1251	default 39 if ARM64_VA_BITS_39
1252	default 42 if ARM64_VA_BITS_42
1253	default 47 if ARM64_VA_BITS_47
1254	default 48 if ARM64_VA_BITS_48
1255	default 52 if ARM64_VA_BITS_52
1256
1257choice
1258	prompt "Physical address space size"
1259	default ARM64_PA_BITS_48
1260	help
1261	  Choose the maximum physical address range that the kernel will
1262	  support.
1263
1264config ARM64_PA_BITS_48
1265	bool "48-bit"
1266
1267config ARM64_PA_BITS_52
1268	bool "52-bit (ARMv8.2)"
1269	depends on ARM64_64K_PAGES
1270	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1271	help
1272	  Enable support for a 52-bit physical address space, introduced as
1273	  part of the ARMv8.2-LPA extension.
1274
1275	  With this enabled, the kernel will also continue to work on CPUs that
1276	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1277	  minor performance overhead).
1278
1279endchoice
1280
1281config ARM64_PA_BITS
1282	int
1283	default 48 if ARM64_PA_BITS_48
1284	default 52 if ARM64_PA_BITS_52
1285
1286choice
1287	prompt "Endianness"
1288	default CPU_LITTLE_ENDIAN
1289	help
1290	  Select the endianness of data accesses performed by the CPU. Userspace
1291	  applications will need to be compiled and linked for the endianness
1292	  that is selected here.
1293
1294config CPU_BIG_ENDIAN
1295	bool "Build big-endian kernel"
1296	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1297	help
1298	  Say Y if you plan on running a kernel with a big-endian userspace.
1299
1300config CPU_LITTLE_ENDIAN
1301	bool "Build little-endian kernel"
1302	help
1303	  Say Y if you plan on running a kernel with a little-endian userspace.
1304	  This is usually the case for distributions targeting arm64.
1305
1306endchoice
1307
1308config SCHED_MC
1309	bool "Multi-core scheduler support"
1310	help
1311	  Multi-core scheduler support improves the CPU scheduler's decision
1312	  making when dealing with multi-core CPU chips at a cost of slightly
1313	  increased overhead in some places. If unsure say N here.
1314
1315config SCHED_CLUSTER
1316	bool "Cluster scheduler support"
1317	help
1318	  Cluster scheduler support improves the CPU scheduler's decision
1319	  making when dealing with machines that have clusters of CPUs.
1320	  Cluster usually means a couple of CPUs which are placed closely
1321	  by sharing mid-level caches, last-level cache tags or internal
1322	  busses.
1323
1324config SCHED_SMT
1325	bool "SMT scheduler support"
1326	help
1327	  Improves the CPU scheduler's decision making when dealing with
1328	  MultiThreading at a cost of slightly increased overhead in some
1329	  places. If unsure say N here.
1330
1331config NR_CPUS
1332	int "Maximum number of CPUs (2-4096)"
1333	range 2 4096
1334	default "256"
 
1335
1336config HOTPLUG_CPU
1337	bool "Support for hot-pluggable CPUs"
1338	select GENERIC_IRQ_MIGRATION
1339	help
1340	  Say Y here to experiment with turning CPUs off and on.  CPUs
1341	  can be controlled through /sys/devices/system/cpu.
1342
1343# Common NUMA Features
1344config NUMA
1345	bool "NUMA Memory Allocation and Scheduler Support"
1346	select GENERIC_ARCH_NUMA
1347	select ACPI_NUMA if ACPI
1348	select OF_NUMA
1349	select HAVE_SETUP_PER_CPU_AREA
1350	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1351	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1352	select USE_PERCPU_NUMA_NODE_ID
1353	help
1354	  Enable NUMA (Non-Uniform Memory Access) support.
1355
1356	  The kernel will try to allocate memory used by a CPU on the
1357	  local memory of the CPU and add some more
1358	  NUMA awareness to the kernel.
1359
1360config NODES_SHIFT
1361	int "Maximum NUMA Nodes (as a power of 2)"
1362	range 1 10
1363	default "4"
1364	depends on NUMA
1365	help
1366	  Specify the maximum number of NUMA Nodes available on the target
1367	  system.  Increases memory reserved to accommodate various tables.
1368
1369source "kernel/Kconfig.hz"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1370
1371config ARCH_SPARSEMEM_ENABLE
1372	def_bool y
1373	select SPARSEMEM_VMEMMAP_ENABLE
1374	select SPARSEMEM_VMEMMAP
 
 
 
 
 
 
 
 
1375
1376config HW_PERF_EVENTS
1377	def_bool y
1378	depends on ARM_PMU
1379
1380# Supported by clang >= 7.0 or GCC >= 12.0.0
1381config CC_HAVE_SHADOW_CALL_STACK
1382	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383
1384config PARAVIRT
1385	bool "Enable paravirtualization code"
1386	help
1387	  This changes the kernel so it can modify itself when it is run
1388	  under a hypervisor, potentially improving performance significantly
1389	  over full virtualization.
1390
1391config PARAVIRT_TIME_ACCOUNTING
1392	bool "Paravirtual steal time accounting"
1393	select PARAVIRT
 
1394	help
1395	  Select this option to enable fine granularity task steal time
1396	  accounting. Time spent executing other tasks in parallel with
1397	  the current vCPU is discounted from the vCPU power. To account for
1398	  that, there can be a small performance impact.
1399
1400	  If in doubt, say N here.
1401
1402config KEXEC
1403	depends on PM_SLEEP_SMP
1404	select KEXEC_CORE
1405	bool "kexec system call"
1406	help
1407	  kexec is a system call that implements the ability to shutdown your
1408	  current kernel, and to start another kernel.  It is like a reboot
1409	  but it is independent of the system firmware.   And like a reboot
1410	  you can start any kernel with it, not just Linux.
1411
1412config KEXEC_FILE
1413	bool "kexec file based system call"
1414	select KEXEC_CORE
1415	select HAVE_IMA_KEXEC if IMA
1416	help
1417	  This is new version of kexec system call. This system call is
1418	  file based and takes file descriptors as system call argument
1419	  for kernel and initramfs as opposed to list of segments as
1420	  accepted by previous system call.
1421
1422config KEXEC_SIG
1423	bool "Verify kernel signature during kexec_file_load() syscall"
1424	depends on KEXEC_FILE
1425	help
1426	  Select this option to verify a signature with loaded kernel
1427	  image. If configured, any attempt of loading a image without
1428	  valid signature will fail.
1429
1430	  In addition to that option, you need to enable signature
1431	  verification for the corresponding kernel image type being
1432	  loaded in order for this to work.
1433
1434config KEXEC_IMAGE_VERIFY_SIG
1435	bool "Enable Image signature verification support"
1436	default y
1437	depends on KEXEC_SIG
1438	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1439	help
1440	  Enable Image signature verification support.
1441
1442comment "Support for PE file signature verification disabled"
1443	depends on KEXEC_SIG
1444	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1445
1446config CRASH_DUMP
1447	bool "Build kdump crash kernel"
1448	help
1449	  Generate crash dump after being started by kexec. This should
1450	  be normally only set in special crash dump kernels which are
1451	  loaded in the main kernel with kexec-tools into a specially
1452	  reserved region and then later executed after a crash by
1453	  kdump/kexec.
1454
1455	  For more details see Documentation/admin-guide/kdump/kdump.rst
1456
1457config TRANS_TABLE
1458	def_bool y
1459	depends on HIBERNATION || KEXEC_CORE
1460
1461config XEN_DOM0
1462	def_bool y
1463	depends on XEN
1464
1465config XEN
1466	bool "Xen guest support on ARM64"
1467	depends on ARM64 && OF
1468	select SWIOTLB_XEN
1469	select PARAVIRT
1470	help
1471	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1472
1473config ARCH_FORCE_MAX_ORDER
1474	int
1475	default "14" if ARM64_64K_PAGES
1476	default "12" if ARM64_16K_PAGES
1477	default "11"
1478	help
1479	  The kernel memory allocator divides physically contiguous memory
1480	  blocks into "zones", where each zone is a power of two number of
1481	  pages.  This option selects the largest power of two that the kernel
1482	  keeps in the memory allocator.  If you need to allocate very large
1483	  blocks of physically contiguous memory, then you may need to
1484	  increase this value.
1485
1486	  This config option is actually maximum order plus one. For example,
1487	  a value of 11 means that the largest free memory block is 2^10 pages.
1488
1489	  We make sure that we can allocate upto a HugePage size for each configuration.
1490	  Hence we have :
1491		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1492
1493	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1494	  4M allocations matching the default size used by generic code.
1495
1496config UNMAP_KERNEL_AT_EL0
1497	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1498	default y
1499	help
1500	  Speculation attacks against some high-performance processors can
1501	  be used to bypass MMU permission checks and leak kernel data to
1502	  userspace. This can be defended against by unmapping the kernel
1503	  when running in userspace, mapping it back in on exception entry
1504	  via a trampoline page in the vector table.
1505
1506	  If unsure, say Y.
1507
1508config MITIGATE_SPECTRE_BRANCH_HISTORY
1509	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1510	default y
1511	help
1512	  Speculation attacks against some high-performance processors can
1513	  make use of branch history to influence future speculation.
1514	  When taking an exception from user-space, a sequence of branches
1515	  or a firmware call overwrites the branch history.
1516
1517config RODATA_FULL_DEFAULT_ENABLED
1518	bool "Apply r/o permissions of VM areas also to their linear aliases"
1519	default y
1520	help
1521	  Apply read-only attributes of VM areas to the linear alias of
1522	  the backing pages as well. This prevents code or read-only data
1523	  from being modified (inadvertently or intentionally) via another
1524	  mapping of the same memory page. This additional enhancement can
1525	  be turned off at runtime by passing rodata=[off|on] (and turned on
1526	  with rodata=full if this option is set to 'n')
1527
1528	  This requires the linear region to be mapped down to pages,
1529	  which may adversely affect performance in some cases.
 
 
1530
1531config ARM64_SW_TTBR0_PAN
1532	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1533	help
1534	  Enabling this option prevents the kernel from accessing
1535	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1536	  zeroed area and reserved ASID. The user access routines
1537	  restore the valid TTBR0_EL1 temporarily.
1538
1539config ARM64_TAGGED_ADDR_ABI
1540	bool "Enable the tagged user addresses syscall ABI"
1541	default y
1542	help
1543	  When this option is enabled, user applications can opt in to a
1544	  relaxed ABI via prctl() allowing tagged addresses to be passed
1545	  to system calls as pointer arguments. For details, see
1546	  Documentation/arm64/tagged-address-abi.rst.
 
 
 
 
 
1547
1548menuconfig COMPAT
1549	bool "Kernel support for 32-bit EL0"
1550	depends on ARM64_4K_PAGES || EXPERT
1551	select HAVE_UID16
1552	select OLD_SIGSUSPEND3
1553	select COMPAT_OLD_SIGACTION
1554	help
1555	  This option enables support for a 32-bit EL0 running under a 64-bit
1556	  kernel at EL1. AArch32-specific components such as system calls,
1557	  the user helper functions, VFP support and the ptrace interface are
1558	  handled appropriately by the kernel.
1559
1560	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1561	  that you will only be able to execute AArch32 binaries that were compiled
1562	  with page size aligned segments.
1563
1564	  If you want to execute 32-bit userspace applications, say Y.
1565
1566if COMPAT
1567
1568config KUSER_HELPERS
1569	bool "Enable kuser helpers page for 32-bit applications"
1570	default y
1571	help
1572	  Warning: disabling this option may break 32-bit user programs.
1573
1574	  Provide kuser helpers to compat tasks. The kernel provides
1575	  helper code to userspace in read only form at a fixed location
1576	  to allow userspace to be independent of the CPU type fitted to
1577	  the system. This permits binaries to be run on ARMv4 through
1578	  to ARMv8 without modification.
1579
1580	  See Documentation/arm/kernel_user_helpers.rst for details.
1581
1582	  However, the fixed address nature of these helpers can be used
1583	  by ROP (return orientated programming) authors when creating
1584	  exploits.
1585
1586	  If all of the binaries and libraries which run on your platform
1587	  are built specifically for your platform, and make no use of
1588	  these helpers, then you can turn this option off to hinder
1589	  such exploits. However, in that case, if a binary or library
1590	  relying on those helpers is run, it will not function correctly.
1591
1592	  Say N here only if you are absolutely certain that you do not
1593	  need these helpers; otherwise, the safe option is to say Y.
1594
1595config COMPAT_VDSO
1596	bool "Enable vDSO for 32-bit applications"
1597	depends on !CPU_BIG_ENDIAN
1598	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1599	select GENERIC_COMPAT_VDSO
1600	default y
1601	help
1602	  Place in the process address space of 32-bit applications an
1603	  ELF shared object providing fast implementations of gettimeofday
1604	  and clock_gettime.
1605
1606	  You must have a 32-bit build of glibc 2.22 or later for programs
1607	  to seamlessly take advantage of this.
1608
1609config THUMB2_COMPAT_VDSO
1610	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1611	depends on COMPAT_VDSO
1612	default y
1613	help
1614	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1615	  otherwise with '-marm'.
1616
1617config COMPAT_ALIGNMENT_FIXUPS
1618	bool "Fix up misaligned multi-word loads and stores in user space"
1619
1620menuconfig ARMV8_DEPRECATED
1621	bool "Emulate deprecated/obsolete ARMv8 instructions"
 
1622	depends on SYSCTL
1623	help
1624	  Legacy software support may require certain instructions
1625	  that have been deprecated or obsoleted in the architecture.
1626
1627	  Enable this config to enable selective emulation of these
1628	  features.
1629
1630	  If unsure, say Y
1631
1632if ARMV8_DEPRECATED
1633
1634config SWP_EMULATION
1635	bool "Emulate SWP/SWPB instructions"
1636	help
1637	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1638	  they are always undefined. Say Y here to enable software
1639	  emulation of these instructions for userspace using LDXR/STXR.
1640	  This feature can be controlled at runtime with the abi.swp
1641	  sysctl which is disabled by default.
1642
1643	  In some older versions of glibc [<=2.8] SWP is used during futex
1644	  trylock() operations with the assumption that the code will not
1645	  be preempted. This invalid assumption may be more likely to fail
1646	  with SWP emulation enabled, leading to deadlock of the user
1647	  application.
1648
1649	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1650	  on an external transaction monitoring block called a global
1651	  monitor to maintain update atomicity. If your system does not
1652	  implement a global monitor, this option can cause programs that
1653	  perform SWP operations to uncached memory to deadlock.
1654
1655	  If unsure, say Y
1656
1657config CP15_BARRIER_EMULATION
1658	bool "Emulate CP15 Barrier instructions"
1659	help
1660	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1661	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1662	  strongly recommended to use the ISB, DSB, and DMB
1663	  instructions instead.
1664
1665	  Say Y here to enable software emulation of these
1666	  instructions for AArch32 userspace code. When this option is
1667	  enabled, CP15 barrier usage is traced which can help
1668	  identify software that needs updating. This feature can be
1669	  controlled at runtime with the abi.cp15_barrier sysctl.
1670
1671	  If unsure, say Y
1672
1673config SETEND_EMULATION
1674	bool "Emulate SETEND instruction"
1675	help
1676	  The SETEND instruction alters the data-endianness of the
1677	  AArch32 EL0, and is deprecated in ARMv8.
1678
1679	  Say Y here to enable software emulation of the instruction
1680	  for AArch32 userspace code. This feature can be controlled
1681	  at runtime with the abi.setend sysctl.
1682
1683	  Note: All the cpus on the system must have mixed endian support at EL0
1684	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1685	  endian - is hotplugged in after this feature has been enabled, there could
1686	  be unexpected results in the applications.
1687
1688	  If unsure, say Y
1689endif # ARMV8_DEPRECATED
1690
1691endif # COMPAT
 
 
 
 
 
 
1692
1693menu "ARMv8.1 architectural features"
1694
1695config ARM64_HW_AFDBM
1696	bool "Support for hardware updates of the Access and Dirty page flags"
1697	default y
1698	help
1699	  The ARMv8.1 architecture extensions introduce support for
1700	  hardware updates of the access and dirty information in page
1701	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1702	  capable processors, accesses to pages with PTE_AF cleared will
1703	  set this bit instead of raising an access flag fault.
1704	  Similarly, writes to read-only pages with the DBM bit set will
1705	  clear the read-only bit (AP[2]) instead of raising a
1706	  permission fault.
1707
1708	  Kernels built with this configuration option enabled continue
1709	  to work on pre-ARMv8.1 hardware and the performance impact is
1710	  minimal. If unsure, say Y.
1711
1712config ARM64_PAN
1713	bool "Enable support for Privileged Access Never (PAN)"
1714	default y
1715	help
1716	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1717	  prevents the kernel or hypervisor from accessing user-space (EL0)
1718	  memory directly.
1719
1720	  Choosing this option will cause any unprotected (not using
1721	  copy_to_user et al) memory access to fail with a permission fault.
1722
1723	  The feature is detected at runtime, and will remain as a 'nop'
1724	  instruction if the cpu does not implement the feature.
1725
1726config AS_HAS_LDAPR
1727	def_bool $(as-instr,.arch_extension rcpc)
1728
1729config AS_HAS_LSE_ATOMICS
1730	def_bool $(as-instr,.arch_extension lse)
1731
1732config ARM64_LSE_ATOMICS
1733	bool
1734	default ARM64_USE_LSE_ATOMICS
1735	depends on AS_HAS_LSE_ATOMICS
1736
1737config ARM64_USE_LSE_ATOMICS
1738	bool "Atomic instructions"
1739	default y
1740	help
1741	  As part of the Large System Extensions, ARMv8.1 introduces new
1742	  atomic instructions that are designed specifically to scale in
1743	  very large systems.
1744
1745	  Say Y here to make use of these instructions for the in-kernel
1746	  atomic routines. This incurs a small overhead on CPUs that do
1747	  not support these instructions and requires the kernel to be
1748	  built with binutils >= 2.25 in order for the new instructions
1749	  to be used.
 
 
 
 
 
 
 
 
1750
1751endmenu # "ARMv8.1 architectural features"
 
 
 
 
1752
1753menu "ARMv8.2 architectural features"
1754
1755config AS_HAS_ARMV8_2
1756	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1757
1758config AS_HAS_SHA3
1759	def_bool $(as-instr,.arch armv8.2-a+sha3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1760
1761config ARM64_PMEM
1762	bool "Enable support for persistent memory"
1763	select ARCH_HAS_PMEM_API
1764	select ARCH_HAS_UACCESS_FLUSHCACHE
1765	help
1766	  Say Y to enable support for the persistent memory API based on the
1767	  ARMv8.2 DCPoP feature.
1768
1769	  The feature is detected at runtime, and the kernel will use DC CVAC
1770	  operations if DC CVAP is not supported (following the behaviour of
1771	  DC CVAP itself if the system does not define a point of persistence).
1772
1773config ARM64_RAS_EXTN
1774	bool "Enable support for RAS CPU Extensions"
1775	default y
1776	help
1777	  CPUs that support the Reliability, Availability and Serviceability
1778	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1779	  errors, classify them and report them to software.
1780
1781	  On CPUs with these extensions system software can use additional
1782	  barriers to determine if faults are pending and read the
1783	  classification from a new set of registers.
1784
1785	  Selecting this feature will allow the kernel to use these barriers
1786	  and access the new registers if the system supports the extension.
1787	  Platform RAS features may additionally depend on firmware support.
1788
1789config ARM64_CNP
1790	bool "Enable support for Common Not Private (CNP) translations"
1791	default y
1792	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1793	help
1794	  Common Not Private (CNP) allows translation table entries to
1795	  be shared between different PEs in the same inner shareable
1796	  domain, so the hardware can use this fact to optimise the
1797	  caching of such entries in the TLB.
1798
1799	  Selecting this option allows the CNP feature to be detected
1800	  at runtime, and does not affect PEs that do not implement
1801	  this feature.
1802
1803endmenu # "ARMv8.2 architectural features"
1804
1805menu "ARMv8.3 architectural features"
1806
1807config ARM64_PTR_AUTH
1808	bool "Enable support for pointer authentication"
1809	default y
1810	help
1811	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1812	  instructions for signing and authenticating pointers against secret
1813	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1814	  and other attacks.
1815
1816	  This option enables these instructions at EL0 (i.e. for userspace).
1817	  Choosing this option will cause the kernel to initialise secret keys
1818	  for each process at exec() time, with these keys being
1819	  context-switched along with the process.
1820
1821	  The feature is detected at runtime. If the feature is not present in
1822	  hardware it will not be advertised to userspace/KVM guest nor will it
1823	  be enabled.
1824
1825	  If the feature is present on the boot CPU but not on a late CPU, then
1826	  the late CPU will be parked. Also, if the boot CPU does not have
1827	  address auth and the late CPU has then the late CPU will still boot
1828	  but with the feature disabled. On such a system, this option should
1829	  not be selected.
1830
1831config ARM64_PTR_AUTH_KERNEL
1832	bool "Use pointer authentication for kernel"
1833	default y
1834	depends on ARM64_PTR_AUTH
1835	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1836	# Modern compilers insert a .note.gnu.property section note for PAC
1837	# which is only understood by binutils starting with version 2.33.1.
1838	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1839	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1840	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1841	help
1842	  If the compiler supports the -mbranch-protection or
1843	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1844	  will cause the kernel itself to be compiled with return address
1845	  protection. In this case, and if the target hardware is known to
1846	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1847	  disabled with minimal loss of protection.
1848
1849	  This feature works with FUNCTION_GRAPH_TRACER option only if
1850	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1851
1852config CC_HAS_BRANCH_PROT_PAC_RET
1853	# GCC 9 or later, clang 8 or later
1854	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1855
1856config CC_HAS_SIGN_RETURN_ADDRESS
1857	# GCC 7, 8
1858	def_bool $(cc-option,-msign-return-address=all)
1859
1860config AS_HAS_PAC
1861	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1862
1863config AS_HAS_CFI_NEGATE_RA_STATE
1864	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1865
1866endmenu # "ARMv8.3 architectural features"
1867
1868menu "ARMv8.4 architectural features"
1869
1870config ARM64_AMU_EXTN
1871	bool "Enable support for the Activity Monitors Unit CPU extension"
1872	default y
1873	help
1874	  The activity monitors extension is an optional extension introduced
1875	  by the ARMv8.4 CPU architecture. This enables support for version 1
1876	  of the activity monitors architecture, AMUv1.
1877
1878	  To enable the use of this extension on CPUs that implement it, say Y.
1879
1880	  Note that for architectural reasons, firmware _must_ implement AMU
1881	  support when running on CPUs that present the activity monitors
1882	  extension. The required support is present in:
1883	    * Version 1.5 and later of the ARM Trusted Firmware
1884
1885	  For kernels that have this configuration enabled but boot with broken
1886	  firmware, you may need to say N here until the firmware is fixed.
1887	  Otherwise you may experience firmware panics or lockups when
1888	  accessing the counter registers. Even if you are not observing these
1889	  symptoms, the values returned by the register reads might not
1890	  correctly reflect reality. Most commonly, the value read will be 0,
1891	  indicating that the counter is not enabled.
1892
1893config AS_HAS_ARMV8_4
1894	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1895
1896config ARM64_TLB_RANGE
1897	bool "Enable support for tlbi range feature"
1898	default y
1899	depends on AS_HAS_ARMV8_4
1900	help
1901	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1902	  range of input addresses.
1903
1904	  The feature introduces new assembly instructions, and they were
1905	  support when binutils >= 2.30.
1906
1907endmenu # "ARMv8.4 architectural features"
1908
1909menu "ARMv8.5 architectural features"
1910
1911config AS_HAS_ARMV8_5
1912	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1913
1914config ARM64_BTI
1915	bool "Branch Target Identification support"
1916	default y
1917	help
1918	  Branch Target Identification (part of the ARMv8.5 Extensions)
1919	  provides a mechanism to limit the set of locations to which computed
1920	  branch instructions such as BR or BLR can jump.
1921
1922	  To make use of BTI on CPUs that support it, say Y.
1923
1924	  BTI is intended to provide complementary protection to other control
1925	  flow integrity protection mechanisms, such as the Pointer
1926	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1927	  For this reason, it does not make sense to enable this option without
1928	  also enabling support for pointer authentication.  Thus, when
1929	  enabling this option you should also select ARM64_PTR_AUTH=y.
1930
1931	  Userspace binaries must also be specifically compiled to make use of
1932	  this mechanism.  If you say N here or the hardware does not support
1933	  BTI, such binaries can still run, but you get no additional
1934	  enforcement of branch destinations.
1935
1936config ARM64_BTI_KERNEL
1937	bool "Use Branch Target Identification for kernel"
1938	default y
1939	depends on ARM64_BTI
1940	depends on ARM64_PTR_AUTH_KERNEL
1941	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1942	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1943	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1944	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
1945	depends on !CC_IS_GCC
1946	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1947	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1948	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1949	help
1950	  Build the kernel with Branch Target Identification annotations
1951	  and enable enforcement of this for kernel code. When this option
1952	  is enabled and the system supports BTI all kernel code including
1953	  modular code must have BTI enabled.
1954
1955config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1956	# GCC 9 or later, clang 8 or later
1957	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1958
1959config ARM64_E0PD
1960	bool "Enable support for E0PD"
1961	default y
1962	help
1963	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1964	  that EL0 accesses made via TTBR1 always fault in constant time,
1965	  providing similar benefits to KASLR as those provided by KPTI, but
1966	  with lower overhead and without disrupting legitimate access to
1967	  kernel memory such as SPE.
1968
1969	  This option enables E0PD for TTBR1 where available.
1970
1971config ARM64_AS_HAS_MTE
1972	# Initial support for MTE went in binutils 2.32.0, checked with
1973	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1974	# as a late addition to the final architecture spec (LDGM/STGM)
1975	# is only supported in the newer 2.32.x and 2.33 binutils
1976	# versions, hence the extra "stgm" instruction check below.
1977	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1978
1979config ARM64_MTE
1980	bool "Memory Tagging Extension support"
1981	default y
1982	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1983	depends on AS_HAS_ARMV8_5
1984	depends on AS_HAS_LSE_ATOMICS
1985	# Required for tag checking in the uaccess routines
1986	depends on ARM64_PAN
1987	select ARCH_HAS_SUBPAGE_FAULTS
1988	select ARCH_USES_HIGH_VMA_FLAGS
1989	select ARCH_USES_PG_ARCH_X
1990	help
1991	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1992	  architectural support for run-time, always-on detection of
1993	  various classes of memory error to aid with software debugging
1994	  to eliminate vulnerabilities arising from memory-unsafe
1995	  languages.
1996
1997	  This option enables the support for the Memory Tagging
1998	  Extension at EL0 (i.e. for userspace).
1999
2000	  Selecting this option allows the feature to be detected at
2001	  runtime. Any secondary CPU not implementing this feature will
2002	  not be allowed a late bring-up.
2003
2004	  Userspace binaries that want to use this feature must
2005	  explicitly opt in. The mechanism for the userspace is
2006	  described in:
2007
2008	  Documentation/arm64/memory-tagging-extension.rst.
2009
2010endmenu # "ARMv8.5 architectural features"
2011
2012menu "ARMv8.7 architectural features"
2013
2014config ARM64_EPAN
2015	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2016	default y
2017	depends on ARM64_PAN
2018	help
2019	  Enhanced Privileged Access Never (EPAN) allows Privileged
2020	  Access Never to be used with Execute-only mappings.
2021
2022	  The feature is detected at runtime, and will remain disabled
2023	  if the cpu does not implement the feature.
2024endmenu # "ARMv8.7 architectural features"
2025
2026config ARM64_SVE
2027	bool "ARM Scalable Vector Extension support"
2028	default y
2029	help
2030	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2031	  execution state which complements and extends the SIMD functionality
2032	  of the base architecture to support much larger vectors and to enable
2033	  additional vectorisation opportunities.
2034
2035	  To enable use of this extension on CPUs that implement it, say Y.
2036
2037	  On CPUs that support the SVE2 extensions, this option will enable
2038	  those too.
2039
2040	  Note that for architectural reasons, firmware _must_ implement SVE
2041	  support when running on SVE capable hardware.  The required support
2042	  is present in:
2043
2044	    * version 1.5 and later of the ARM Trusted Firmware
2045	    * the AArch64 boot wrapper since commit 5e1261e08abf
2046	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2047
2048	  For other firmware implementations, consult the firmware documentation
2049	  or vendor.
2050
2051	  If you need the kernel to boot on SVE-capable hardware with broken
2052	  firmware, you may need to say N here until you get your firmware
2053	  fixed.  Otherwise, you may experience firmware panics or lockups when
2054	  booting the kernel.  If unsure and you are not observing these
2055	  symptoms, you should assume that it is safe to say Y.
2056
2057config ARM64_SME
2058	bool "ARM Scalable Matrix Extension support"
2059	default y
2060	depends on ARM64_SVE
2061	help
2062	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2063	  execution state which utilises a substantial subset of the SVE
2064	  instruction set, together with the addition of new architectural
2065	  register state capable of holding two dimensional matrix tiles to
2066	  enable various matrix operations.
2067
2068config ARM64_MODULE_PLTS
2069	bool "Use PLTs to allow module memory to spill over into vmalloc area"
2070	depends on MODULES
2071	select HAVE_MOD_ARCH_SPECIFIC
2072	help
2073	  Allocate PLTs when loading modules so that jumps and calls whose
2074	  targets are too far away for their relative offsets to be encoded
2075	  in the instructions themselves can be bounced via veneers in the
2076	  module's PLT. This allows modules to be allocated in the generic
2077	  vmalloc area after the dedicated module memory area has been
2078	  exhausted.
2079
2080	  When running with address space randomization (KASLR), the module
2081	  region itself may be too far away for ordinary relative jumps and
2082	  calls, and so in that case, module PLTs are required and cannot be
2083	  disabled.
2084
2085	  Specific errata workaround(s) might also force module PLTs to be
2086	  enabled (ARM64_ERRATUM_843419).
2087
2088config ARM64_PSEUDO_NMI
2089	bool "Support for NMI-like interrupts"
2090	select ARM_GIC_V3
2091	help
2092	  Adds support for mimicking Non-Maskable Interrupts through the use of
2093	  GIC interrupt priority. This support requires version 3 or later of
2094	  ARM GIC.
2095
2096	  This high priority configuration for interrupts needs to be
2097	  explicitly enabled by setting the kernel parameter
2098	  "irqchip.gicv3_pseudo_nmi" to 1.
2099
2100	  If unsure, say N
2101
2102if ARM64_PSEUDO_NMI
2103config ARM64_DEBUG_PRIORITY_MASKING
2104	bool "Debug interrupt priority masking"
2105	help
2106	  This adds runtime checks to functions enabling/disabling
2107	  interrupts when using priority masking. The additional checks verify
2108	  the validity of ICC_PMR_EL1 when calling concerned functions.
2109
2110	  If unsure, say N
2111endif # ARM64_PSEUDO_NMI
2112
2113config RELOCATABLE
2114	bool "Build a relocatable kernel image" if EXPERT
2115	select ARCH_HAS_RELR
2116	default y
2117	help
2118	  This builds the kernel as a Position Independent Executable (PIE),
2119	  which retains all relocation metadata required to relocate the
2120	  kernel binary at runtime to a different virtual address than the
2121	  address it was linked at.
2122	  Since AArch64 uses the RELA relocation format, this requires a
2123	  relocation pass at runtime even if the kernel is loaded at the
2124	  same address it was linked at.
2125
2126config RANDOMIZE_BASE
2127	bool "Randomize the address of the kernel image"
2128	select ARM64_MODULE_PLTS if MODULES
2129	select RELOCATABLE
2130	help
2131	  Randomizes the virtual address at which the kernel image is
2132	  loaded, as a security feature that deters exploit attempts
2133	  relying on knowledge of the location of kernel internals.
2134
2135	  It is the bootloader's job to provide entropy, by passing a
2136	  random u64 value in /chosen/kaslr-seed at kernel entry.
2137
2138	  When booting via the UEFI stub, it will invoke the firmware's
2139	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2140	  to the kernel proper. In addition, it will randomise the physical
2141	  location of the kernel Image as well.
2142
2143	  If unsure, say N.
2144
2145config RANDOMIZE_MODULE_REGION_FULL
2146	bool "Randomize the module region over a 2 GB range"
2147	depends on RANDOMIZE_BASE
2148	default y
2149	help
2150	  Randomizes the location of the module region inside a 2 GB window
2151	  covering the core kernel. This way, it is less likely for modules
2152	  to leak information about the location of core kernel data structures
2153	  but it does imply that function calls between modules and the core
2154	  kernel will need to be resolved via veneers in the module PLT.
2155
2156	  When this option is not set, the module region will be randomized over
2157	  a limited range that contains the [_stext, _etext] interval of the
2158	  core kernel, so branch relocations are almost always in range unless
2159	  ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
2160	  particular case of region exhaustion, modules might be able to fall
2161	  back to a larger 2GB area.
2162
2163config CC_HAVE_STACKPROTECTOR_SYSREG
2164	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2165
2166config STACKPROTECTOR_PER_TASK
2167	def_bool y
2168	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2169
2170config UNWIND_PATCH_PAC_INTO_SCS
2171	bool "Enable shadow call stack dynamically using code patching"
2172	# needs Clang with https://reviews.llvm.org/D111780 incorporated
2173	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2174	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2175	depends on SHADOW_CALL_STACK
2176	select UNWIND_TABLES
2177	select DYNAMIC_SCS
2178
2179endmenu # "Kernel Features"
2180
2181menu "Boot options"
2182
2183config ARM64_ACPI_PARKING_PROTOCOL
2184	bool "Enable support for the ARM64 ACPI parking protocol"
2185	depends on ACPI
2186	help
2187	  Enable support for the ARM64 ACPI parking protocol. If disabled
2188	  the kernel will not allow booting through the ARM64 ACPI parking
2189	  protocol even if the corresponding data is present in the ACPI
2190	  MADT table.
2191
2192config CMDLINE
2193	string "Default kernel command string"
2194	default ""
2195	help
2196	  Provide a set of default command-line options at build time by
2197	  entering them here. As a minimum, you should specify the the
2198	  root device (e.g. root=/dev/nfs).
2199
2200choice
2201	prompt "Kernel command line type" if CMDLINE != ""
2202	default CMDLINE_FROM_BOOTLOADER
2203	help
2204	  Choose how the kernel will handle the provided default kernel
2205	  command line string.
2206
2207config CMDLINE_FROM_BOOTLOADER
2208	bool "Use bootloader kernel arguments if available"
2209	help
2210	  Uses the command-line options passed by the boot loader. If
2211	  the boot loader doesn't provide any, the default kernel command
2212	  string provided in CMDLINE will be used.
2213
2214config CMDLINE_FORCE
2215	bool "Always use the default kernel command string"
2216	help
2217	  Always use the default kernel command string, even if the boot
2218	  loader passes other arguments to the kernel.
2219	  This is useful if you cannot or don't want to change the
2220	  command-line options your boot loader passes to the kernel.
2221
2222endchoice
2223
2224config EFI_STUB
2225	bool
2226
2227config EFI
2228	bool "UEFI runtime support"
2229	depends on OF && !CPU_BIG_ENDIAN
2230	depends on KERNEL_MODE_NEON
2231	select ARCH_SUPPORTS_ACPI
2232	select LIBFDT
2233	select UCS2_STRING
2234	select EFI_PARAMS_FROM_FDT
2235	select EFI_RUNTIME_WRAPPERS
2236	select EFI_STUB
2237	select EFI_GENERIC_STUB
2238	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2239	default y
2240	help
2241	  This option provides support for runtime services provided
2242	  by UEFI firmware (such as non-volatile variables, realtime
2243	  clock, and platform reset). A UEFI stub is also provided to
2244	  allow the kernel to be booted as an EFI application. This
2245	  is only useful on systems that have UEFI firmware.
2246
2247config DMI
2248	bool "Enable support for SMBIOS (DMI) tables"
2249	depends on EFI
2250	default y
2251	help
2252	  This enables SMBIOS/DMI feature for systems.
2253
2254	  This option is only useful on systems that have UEFI firmware.
2255	  However, even with this option, the resultant kernel should
2256	  continue to boot on existing non-UEFI platforms.
2257
2258endmenu # "Boot options"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2259
2260menu "Power management options"
2261
2262source "kernel/power/Kconfig"
2263
2264config ARCH_HIBERNATION_POSSIBLE
2265	def_bool y
2266	depends on CPU_PM
2267
2268config ARCH_HIBERNATION_HEADER
2269	def_bool y
2270	depends on HIBERNATION
2271
2272config ARCH_SUSPEND_POSSIBLE
2273	def_bool y
2274
2275endmenu # "Power management options"
2276
2277menu "CPU Power Management"
2278
2279source "drivers/cpuidle/Kconfig"
2280
2281source "drivers/cpufreq/Kconfig"
2282
2283endmenu # "CPU Power Management"
 
 
 
 
 
 
2284
2285source "drivers/acpi/Kconfig"
2286
 
 
2287source "arch/arm64/kvm/Kconfig"
2288