Loading...
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 * Copyright (C) 2016 Mellanox Technologies
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 */
14
15#include <linux/bpf.h>
16#include <linux/capability.h>
17#include <linux/dcache.h>
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/lsm_hooks.h>
22#include <linux/integrity.h>
23#include <linux/ima.h>
24#include <linux/evm.h>
25#include <linux/fsnotify.h>
26#include <linux/mman.h>
27#include <linux/mount.h>
28#include <linux/personality.h>
29#include <linux/backing-dev.h>
30#include <linux/string.h>
31#include <net/flow.h>
32
33#include <trace/events/initcall.h>
34
35#define MAX_LSM_EVM_XATTR 2
36
37/* Maximum number of letters for an LSM name string */
38#define SECURITY_NAME_MAX 10
39
40struct security_hook_heads security_hook_heads __lsm_ro_after_init;
41static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
42
43char *lsm_names;
44/* Boot-time LSM user choice */
45static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
46 CONFIG_DEFAULT_SECURITY;
47
48static void __init do_security_initcalls(void)
49{
50 int ret;
51 initcall_t *call;
52 call = __security_initcall_start;
53 trace_initcall_level("security");
54 while (call < __security_initcall_end) {
55 trace_initcall_start((*call));
56 ret = (*call) ();
57 trace_initcall_finish((*call), ret);
58 call++;
59 }
60}
61
62/**
63 * security_init - initializes the security framework
64 *
65 * This should be called early in the kernel initialization sequence.
66 */
67int __init security_init(void)
68{
69 int i;
70 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
71
72 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
73 i++)
74 INIT_HLIST_HEAD(&list[i]);
75 pr_info("Security Framework initialized\n");
76
77 /*
78 * Load minor LSMs, with the capability module always first.
79 */
80 capability_add_hooks();
81 yama_add_hooks();
82 loadpin_add_hooks();
83
84 /*
85 * Load all the remaining security modules.
86 */
87 do_security_initcalls();
88
89 return 0;
90}
91
92/* Save user chosen LSM */
93static int __init choose_lsm(char *str)
94{
95 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
96 return 1;
97}
98__setup("security=", choose_lsm);
99
100static bool match_last_lsm(const char *list, const char *lsm)
101{
102 const char *last;
103
104 if (WARN_ON(!list || !lsm))
105 return false;
106 last = strrchr(list, ',');
107 if (last)
108 /* Pass the comma, strcmp() will check for '\0' */
109 last++;
110 else
111 last = list;
112 return !strcmp(last, lsm);
113}
114
115static int lsm_append(char *new, char **result)
116{
117 char *cp;
118
119 if (*result == NULL) {
120 *result = kstrdup(new, GFP_KERNEL);
121 } else {
122 /* Check if it is the last registered name */
123 if (match_last_lsm(*result, new))
124 return 0;
125 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
126 if (cp == NULL)
127 return -ENOMEM;
128 kfree(*result);
129 *result = cp;
130 }
131 return 0;
132}
133
134/**
135 * security_module_enable - Load given security module on boot ?
136 * @module: the name of the module
137 *
138 * Each LSM must pass this method before registering its own operations
139 * to avoid security registration races. This method may also be used
140 * to check if your LSM is currently loaded during kernel initialization.
141 *
142 * Returns:
143 *
144 * true if:
145 *
146 * - The passed LSM is the one chosen by user at boot time,
147 * - or the passed LSM is configured as the default and the user did not
148 * choose an alternate LSM at boot time.
149 *
150 * Otherwise, return false.
151 */
152int __init security_module_enable(const char *module)
153{
154 return !strcmp(module, chosen_lsm);
155}
156
157/**
158 * security_add_hooks - Add a modules hooks to the hook lists.
159 * @hooks: the hooks to add
160 * @count: the number of hooks to add
161 * @lsm: the name of the security module
162 *
163 * Each LSM has to register its hooks with the infrastructure.
164 */
165void __init security_add_hooks(struct security_hook_list *hooks, int count,
166 char *lsm)
167{
168 int i;
169
170 for (i = 0; i < count; i++) {
171 hooks[i].lsm = lsm;
172 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
173 }
174 if (lsm_append(lsm, &lsm_names) < 0)
175 panic("%s - Cannot get early memory.\n", __func__);
176}
177
178int call_lsm_notifier(enum lsm_event event, void *data)
179{
180 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
181}
182EXPORT_SYMBOL(call_lsm_notifier);
183
184int register_lsm_notifier(struct notifier_block *nb)
185{
186 return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
187}
188EXPORT_SYMBOL(register_lsm_notifier);
189
190int unregister_lsm_notifier(struct notifier_block *nb)
191{
192 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
193}
194EXPORT_SYMBOL(unregister_lsm_notifier);
195
196/*
197 * Hook list operation macros.
198 *
199 * call_void_hook:
200 * This is a hook that does not return a value.
201 *
202 * call_int_hook:
203 * This is a hook that returns a value.
204 */
205
206#define call_void_hook(FUNC, ...) \
207 do { \
208 struct security_hook_list *P; \
209 \
210 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
211 P->hook.FUNC(__VA_ARGS__); \
212 } while (0)
213
214#define call_int_hook(FUNC, IRC, ...) ({ \
215 int RC = IRC; \
216 do { \
217 struct security_hook_list *P; \
218 \
219 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
220 RC = P->hook.FUNC(__VA_ARGS__); \
221 if (RC != 0) \
222 break; \
223 } \
224 } while (0); \
225 RC; \
226})
227
228/* Security operations */
229
230int security_binder_set_context_mgr(struct task_struct *mgr)
231{
232 return call_int_hook(binder_set_context_mgr, 0, mgr);
233}
234
235int security_binder_transaction(struct task_struct *from,
236 struct task_struct *to)
237{
238 return call_int_hook(binder_transaction, 0, from, to);
239}
240
241int security_binder_transfer_binder(struct task_struct *from,
242 struct task_struct *to)
243{
244 return call_int_hook(binder_transfer_binder, 0, from, to);
245}
246
247int security_binder_transfer_file(struct task_struct *from,
248 struct task_struct *to, struct file *file)
249{
250 return call_int_hook(binder_transfer_file, 0, from, to, file);
251}
252
253int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
254{
255 return call_int_hook(ptrace_access_check, 0, child, mode);
256}
257
258int security_ptrace_traceme(struct task_struct *parent)
259{
260 return call_int_hook(ptrace_traceme, 0, parent);
261}
262
263int security_capget(struct task_struct *target,
264 kernel_cap_t *effective,
265 kernel_cap_t *inheritable,
266 kernel_cap_t *permitted)
267{
268 return call_int_hook(capget, 0, target,
269 effective, inheritable, permitted);
270}
271
272int security_capset(struct cred *new, const struct cred *old,
273 const kernel_cap_t *effective,
274 const kernel_cap_t *inheritable,
275 const kernel_cap_t *permitted)
276{
277 return call_int_hook(capset, 0, new, old,
278 effective, inheritable, permitted);
279}
280
281int security_capable(const struct cred *cred, struct user_namespace *ns,
282 int cap)
283{
284 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
285}
286
287int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
288 int cap)
289{
290 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
291}
292
293int security_quotactl(int cmds, int type, int id, struct super_block *sb)
294{
295 return call_int_hook(quotactl, 0, cmds, type, id, sb);
296}
297
298int security_quota_on(struct dentry *dentry)
299{
300 return call_int_hook(quota_on, 0, dentry);
301}
302
303int security_syslog(int type)
304{
305 return call_int_hook(syslog, 0, type);
306}
307
308int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
309{
310 return call_int_hook(settime, 0, ts, tz);
311}
312
313int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
314{
315 struct security_hook_list *hp;
316 int cap_sys_admin = 1;
317 int rc;
318
319 /*
320 * The module will respond with a positive value if
321 * it thinks the __vm_enough_memory() call should be
322 * made with the cap_sys_admin set. If all of the modules
323 * agree that it should be set it will. If any module
324 * thinks it should not be set it won't.
325 */
326 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
327 rc = hp->hook.vm_enough_memory(mm, pages);
328 if (rc <= 0) {
329 cap_sys_admin = 0;
330 break;
331 }
332 }
333 return __vm_enough_memory(mm, pages, cap_sys_admin);
334}
335
336int security_bprm_set_creds(struct linux_binprm *bprm)
337{
338 return call_int_hook(bprm_set_creds, 0, bprm);
339}
340
341int security_bprm_check(struct linux_binprm *bprm)
342{
343 int ret;
344
345 ret = call_int_hook(bprm_check_security, 0, bprm);
346 if (ret)
347 return ret;
348 return ima_bprm_check(bprm);
349}
350
351void security_bprm_committing_creds(struct linux_binprm *bprm)
352{
353 call_void_hook(bprm_committing_creds, bprm);
354}
355
356void security_bprm_committed_creds(struct linux_binprm *bprm)
357{
358 call_void_hook(bprm_committed_creds, bprm);
359}
360
361int security_sb_alloc(struct super_block *sb)
362{
363 return call_int_hook(sb_alloc_security, 0, sb);
364}
365
366void security_sb_free(struct super_block *sb)
367{
368 call_void_hook(sb_free_security, sb);
369}
370
371int security_sb_copy_data(char *orig, char *copy)
372{
373 return call_int_hook(sb_copy_data, 0, orig, copy);
374}
375EXPORT_SYMBOL(security_sb_copy_data);
376
377int security_sb_remount(struct super_block *sb, void *data)
378{
379 return call_int_hook(sb_remount, 0, sb, data);
380}
381
382int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
383{
384 return call_int_hook(sb_kern_mount, 0, sb, flags, data);
385}
386
387int security_sb_show_options(struct seq_file *m, struct super_block *sb)
388{
389 return call_int_hook(sb_show_options, 0, m, sb);
390}
391
392int security_sb_statfs(struct dentry *dentry)
393{
394 return call_int_hook(sb_statfs, 0, dentry);
395}
396
397int security_sb_mount(const char *dev_name, const struct path *path,
398 const char *type, unsigned long flags, void *data)
399{
400 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
401}
402
403int security_sb_umount(struct vfsmount *mnt, int flags)
404{
405 return call_int_hook(sb_umount, 0, mnt, flags);
406}
407
408int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
409{
410 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
411}
412
413int security_sb_set_mnt_opts(struct super_block *sb,
414 struct security_mnt_opts *opts,
415 unsigned long kern_flags,
416 unsigned long *set_kern_flags)
417{
418 return call_int_hook(sb_set_mnt_opts,
419 opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb,
420 opts, kern_flags, set_kern_flags);
421}
422EXPORT_SYMBOL(security_sb_set_mnt_opts);
423
424int security_sb_clone_mnt_opts(const struct super_block *oldsb,
425 struct super_block *newsb,
426 unsigned long kern_flags,
427 unsigned long *set_kern_flags)
428{
429 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
430 kern_flags, set_kern_flags);
431}
432EXPORT_SYMBOL(security_sb_clone_mnt_opts);
433
434int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
435{
436 return call_int_hook(sb_parse_opts_str, 0, options, opts);
437}
438EXPORT_SYMBOL(security_sb_parse_opts_str);
439
440int security_inode_alloc(struct inode *inode)
441{
442 inode->i_security = NULL;
443 return call_int_hook(inode_alloc_security, 0, inode);
444}
445
446void security_inode_free(struct inode *inode)
447{
448 integrity_inode_free(inode);
449 call_void_hook(inode_free_security, inode);
450}
451
452int security_dentry_init_security(struct dentry *dentry, int mode,
453 const struct qstr *name, void **ctx,
454 u32 *ctxlen)
455{
456 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
457 name, ctx, ctxlen);
458}
459EXPORT_SYMBOL(security_dentry_init_security);
460
461int security_dentry_create_files_as(struct dentry *dentry, int mode,
462 struct qstr *name,
463 const struct cred *old, struct cred *new)
464{
465 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
466 name, old, new);
467}
468EXPORT_SYMBOL(security_dentry_create_files_as);
469
470int security_inode_init_security(struct inode *inode, struct inode *dir,
471 const struct qstr *qstr,
472 const initxattrs initxattrs, void *fs_data)
473{
474 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
475 struct xattr *lsm_xattr, *evm_xattr, *xattr;
476 int ret;
477
478 if (unlikely(IS_PRIVATE(inode)))
479 return 0;
480
481 if (!initxattrs)
482 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
483 dir, qstr, NULL, NULL, NULL);
484 memset(new_xattrs, 0, sizeof(new_xattrs));
485 lsm_xattr = new_xattrs;
486 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
487 &lsm_xattr->name,
488 &lsm_xattr->value,
489 &lsm_xattr->value_len);
490 if (ret)
491 goto out;
492
493 evm_xattr = lsm_xattr + 1;
494 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
495 if (ret)
496 goto out;
497 ret = initxattrs(inode, new_xattrs, fs_data);
498out:
499 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
500 kfree(xattr->value);
501 return (ret == -EOPNOTSUPP) ? 0 : ret;
502}
503EXPORT_SYMBOL(security_inode_init_security);
504
505int security_old_inode_init_security(struct inode *inode, struct inode *dir,
506 const struct qstr *qstr, const char **name,
507 void **value, size_t *len)
508{
509 if (unlikely(IS_PRIVATE(inode)))
510 return -EOPNOTSUPP;
511 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
512 qstr, name, value, len);
513}
514EXPORT_SYMBOL(security_old_inode_init_security);
515
516#ifdef CONFIG_SECURITY_PATH
517int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
518 unsigned int dev)
519{
520 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
521 return 0;
522 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
523}
524EXPORT_SYMBOL(security_path_mknod);
525
526int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
527{
528 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
529 return 0;
530 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
531}
532EXPORT_SYMBOL(security_path_mkdir);
533
534int security_path_rmdir(const struct path *dir, struct dentry *dentry)
535{
536 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
537 return 0;
538 return call_int_hook(path_rmdir, 0, dir, dentry);
539}
540
541int security_path_unlink(const struct path *dir, struct dentry *dentry)
542{
543 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
544 return 0;
545 return call_int_hook(path_unlink, 0, dir, dentry);
546}
547EXPORT_SYMBOL(security_path_unlink);
548
549int security_path_symlink(const struct path *dir, struct dentry *dentry,
550 const char *old_name)
551{
552 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
553 return 0;
554 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
555}
556
557int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
558 struct dentry *new_dentry)
559{
560 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
561 return 0;
562 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
563}
564
565int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
566 const struct path *new_dir, struct dentry *new_dentry,
567 unsigned int flags)
568{
569 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
570 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
571 return 0;
572
573 if (flags & RENAME_EXCHANGE) {
574 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
575 old_dir, old_dentry);
576 if (err)
577 return err;
578 }
579
580 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
581 new_dentry);
582}
583EXPORT_SYMBOL(security_path_rename);
584
585int security_path_truncate(const struct path *path)
586{
587 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
588 return 0;
589 return call_int_hook(path_truncate, 0, path);
590}
591
592int security_path_chmod(const struct path *path, umode_t mode)
593{
594 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
595 return 0;
596 return call_int_hook(path_chmod, 0, path, mode);
597}
598
599int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
600{
601 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
602 return 0;
603 return call_int_hook(path_chown, 0, path, uid, gid);
604}
605
606int security_path_chroot(const struct path *path)
607{
608 return call_int_hook(path_chroot, 0, path);
609}
610#endif
611
612int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
613{
614 if (unlikely(IS_PRIVATE(dir)))
615 return 0;
616 return call_int_hook(inode_create, 0, dir, dentry, mode);
617}
618EXPORT_SYMBOL_GPL(security_inode_create);
619
620int security_inode_link(struct dentry *old_dentry, struct inode *dir,
621 struct dentry *new_dentry)
622{
623 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
624 return 0;
625 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
626}
627
628int security_inode_unlink(struct inode *dir, struct dentry *dentry)
629{
630 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
631 return 0;
632 return call_int_hook(inode_unlink, 0, dir, dentry);
633}
634
635int security_inode_symlink(struct inode *dir, struct dentry *dentry,
636 const char *old_name)
637{
638 if (unlikely(IS_PRIVATE(dir)))
639 return 0;
640 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
641}
642
643int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
644{
645 if (unlikely(IS_PRIVATE(dir)))
646 return 0;
647 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
648}
649EXPORT_SYMBOL_GPL(security_inode_mkdir);
650
651int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
652{
653 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
654 return 0;
655 return call_int_hook(inode_rmdir, 0, dir, dentry);
656}
657
658int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
659{
660 if (unlikely(IS_PRIVATE(dir)))
661 return 0;
662 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
663}
664
665int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
666 struct inode *new_dir, struct dentry *new_dentry,
667 unsigned int flags)
668{
669 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
670 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
671 return 0;
672
673 if (flags & RENAME_EXCHANGE) {
674 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
675 old_dir, old_dentry);
676 if (err)
677 return err;
678 }
679
680 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
681 new_dir, new_dentry);
682}
683
684int security_inode_readlink(struct dentry *dentry)
685{
686 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
687 return 0;
688 return call_int_hook(inode_readlink, 0, dentry);
689}
690
691int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
692 bool rcu)
693{
694 if (unlikely(IS_PRIVATE(inode)))
695 return 0;
696 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
697}
698
699int security_inode_permission(struct inode *inode, int mask)
700{
701 if (unlikely(IS_PRIVATE(inode)))
702 return 0;
703 return call_int_hook(inode_permission, 0, inode, mask);
704}
705
706int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
707{
708 int ret;
709
710 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
711 return 0;
712 ret = call_int_hook(inode_setattr, 0, dentry, attr);
713 if (ret)
714 return ret;
715 return evm_inode_setattr(dentry, attr);
716}
717EXPORT_SYMBOL_GPL(security_inode_setattr);
718
719int security_inode_getattr(const struct path *path)
720{
721 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
722 return 0;
723 return call_int_hook(inode_getattr, 0, path);
724}
725
726int security_inode_setxattr(struct dentry *dentry, const char *name,
727 const void *value, size_t size, int flags)
728{
729 int ret;
730
731 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
732 return 0;
733 /*
734 * SELinux and Smack integrate the cap call,
735 * so assume that all LSMs supplying this call do so.
736 */
737 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
738 flags);
739
740 if (ret == 1)
741 ret = cap_inode_setxattr(dentry, name, value, size, flags);
742 if (ret)
743 return ret;
744 ret = ima_inode_setxattr(dentry, name, value, size);
745 if (ret)
746 return ret;
747 return evm_inode_setxattr(dentry, name, value, size);
748}
749
750void security_inode_post_setxattr(struct dentry *dentry, const char *name,
751 const void *value, size_t size, int flags)
752{
753 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
754 return;
755 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
756 evm_inode_post_setxattr(dentry, name, value, size);
757}
758
759int security_inode_getxattr(struct dentry *dentry, const char *name)
760{
761 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
762 return 0;
763 return call_int_hook(inode_getxattr, 0, dentry, name);
764}
765
766int security_inode_listxattr(struct dentry *dentry)
767{
768 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
769 return 0;
770 return call_int_hook(inode_listxattr, 0, dentry);
771}
772
773int security_inode_removexattr(struct dentry *dentry, const char *name)
774{
775 int ret;
776
777 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
778 return 0;
779 /*
780 * SELinux and Smack integrate the cap call,
781 * so assume that all LSMs supplying this call do so.
782 */
783 ret = call_int_hook(inode_removexattr, 1, dentry, name);
784 if (ret == 1)
785 ret = cap_inode_removexattr(dentry, name);
786 if (ret)
787 return ret;
788 ret = ima_inode_removexattr(dentry, name);
789 if (ret)
790 return ret;
791 return evm_inode_removexattr(dentry, name);
792}
793
794int security_inode_need_killpriv(struct dentry *dentry)
795{
796 return call_int_hook(inode_need_killpriv, 0, dentry);
797}
798
799int security_inode_killpriv(struct dentry *dentry)
800{
801 return call_int_hook(inode_killpriv, 0, dentry);
802}
803
804int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
805{
806 struct security_hook_list *hp;
807 int rc;
808
809 if (unlikely(IS_PRIVATE(inode)))
810 return -EOPNOTSUPP;
811 /*
812 * Only one module will provide an attribute with a given name.
813 */
814 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
815 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
816 if (rc != -EOPNOTSUPP)
817 return rc;
818 }
819 return -EOPNOTSUPP;
820}
821
822int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
823{
824 struct security_hook_list *hp;
825 int rc;
826
827 if (unlikely(IS_PRIVATE(inode)))
828 return -EOPNOTSUPP;
829 /*
830 * Only one module will provide an attribute with a given name.
831 */
832 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
833 rc = hp->hook.inode_setsecurity(inode, name, value, size,
834 flags);
835 if (rc != -EOPNOTSUPP)
836 return rc;
837 }
838 return -EOPNOTSUPP;
839}
840
841int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
842{
843 if (unlikely(IS_PRIVATE(inode)))
844 return 0;
845 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
846}
847EXPORT_SYMBOL(security_inode_listsecurity);
848
849void security_inode_getsecid(struct inode *inode, u32 *secid)
850{
851 call_void_hook(inode_getsecid, inode, secid);
852}
853
854int security_inode_copy_up(struct dentry *src, struct cred **new)
855{
856 return call_int_hook(inode_copy_up, 0, src, new);
857}
858EXPORT_SYMBOL(security_inode_copy_up);
859
860int security_inode_copy_up_xattr(const char *name)
861{
862 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
863}
864EXPORT_SYMBOL(security_inode_copy_up_xattr);
865
866int security_file_permission(struct file *file, int mask)
867{
868 int ret;
869
870 ret = call_int_hook(file_permission, 0, file, mask);
871 if (ret)
872 return ret;
873
874 return fsnotify_perm(file, mask);
875}
876
877int security_file_alloc(struct file *file)
878{
879 return call_int_hook(file_alloc_security, 0, file);
880}
881
882void security_file_free(struct file *file)
883{
884 call_void_hook(file_free_security, file);
885}
886
887int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
888{
889 return call_int_hook(file_ioctl, 0, file, cmd, arg);
890}
891
892static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
893{
894 /*
895 * Does we have PROT_READ and does the application expect
896 * it to imply PROT_EXEC? If not, nothing to talk about...
897 */
898 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
899 return prot;
900 if (!(current->personality & READ_IMPLIES_EXEC))
901 return prot;
902 /*
903 * if that's an anonymous mapping, let it.
904 */
905 if (!file)
906 return prot | PROT_EXEC;
907 /*
908 * ditto if it's not on noexec mount, except that on !MMU we need
909 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
910 */
911 if (!path_noexec(&file->f_path)) {
912#ifndef CONFIG_MMU
913 if (file->f_op->mmap_capabilities) {
914 unsigned caps = file->f_op->mmap_capabilities(file);
915 if (!(caps & NOMMU_MAP_EXEC))
916 return prot;
917 }
918#endif
919 return prot | PROT_EXEC;
920 }
921 /* anything on noexec mount won't get PROT_EXEC */
922 return prot;
923}
924
925int security_mmap_file(struct file *file, unsigned long prot,
926 unsigned long flags)
927{
928 int ret;
929 ret = call_int_hook(mmap_file, 0, file, prot,
930 mmap_prot(file, prot), flags);
931 if (ret)
932 return ret;
933 return ima_file_mmap(file, prot);
934}
935
936int security_mmap_addr(unsigned long addr)
937{
938 return call_int_hook(mmap_addr, 0, addr);
939}
940
941int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
942 unsigned long prot)
943{
944 return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
945}
946
947int security_file_lock(struct file *file, unsigned int cmd)
948{
949 return call_int_hook(file_lock, 0, file, cmd);
950}
951
952int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
953{
954 return call_int_hook(file_fcntl, 0, file, cmd, arg);
955}
956
957void security_file_set_fowner(struct file *file)
958{
959 call_void_hook(file_set_fowner, file);
960}
961
962int security_file_send_sigiotask(struct task_struct *tsk,
963 struct fown_struct *fown, int sig)
964{
965 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
966}
967
968int security_file_receive(struct file *file)
969{
970 return call_int_hook(file_receive, 0, file);
971}
972
973int security_file_open(struct file *file, const struct cred *cred)
974{
975 int ret;
976
977 ret = call_int_hook(file_open, 0, file, cred);
978 if (ret)
979 return ret;
980
981 return fsnotify_perm(file, MAY_OPEN);
982}
983
984int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
985{
986 return call_int_hook(task_alloc, 0, task, clone_flags);
987}
988
989void security_task_free(struct task_struct *task)
990{
991 call_void_hook(task_free, task);
992}
993
994int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
995{
996 return call_int_hook(cred_alloc_blank, 0, cred, gfp);
997}
998
999void security_cred_free(struct cred *cred)
1000{
1001 call_void_hook(cred_free, cred);
1002}
1003
1004int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1005{
1006 return call_int_hook(cred_prepare, 0, new, old, gfp);
1007}
1008
1009void security_transfer_creds(struct cred *new, const struct cred *old)
1010{
1011 call_void_hook(cred_transfer, new, old);
1012}
1013
1014void security_cred_getsecid(const struct cred *c, u32 *secid)
1015{
1016 *secid = 0;
1017 call_void_hook(cred_getsecid, c, secid);
1018}
1019EXPORT_SYMBOL(security_cred_getsecid);
1020
1021int security_kernel_act_as(struct cred *new, u32 secid)
1022{
1023 return call_int_hook(kernel_act_as, 0, new, secid);
1024}
1025
1026int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1027{
1028 return call_int_hook(kernel_create_files_as, 0, new, inode);
1029}
1030
1031int security_kernel_module_request(char *kmod_name)
1032{
1033 return call_int_hook(kernel_module_request, 0, kmod_name);
1034}
1035
1036int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1037{
1038 int ret;
1039
1040 ret = call_int_hook(kernel_read_file, 0, file, id);
1041 if (ret)
1042 return ret;
1043 return ima_read_file(file, id);
1044}
1045EXPORT_SYMBOL_GPL(security_kernel_read_file);
1046
1047int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1048 enum kernel_read_file_id id)
1049{
1050 int ret;
1051
1052 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1053 if (ret)
1054 return ret;
1055 return ima_post_read_file(file, buf, size, id);
1056}
1057EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1058
1059int security_task_fix_setuid(struct cred *new, const struct cred *old,
1060 int flags)
1061{
1062 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1063}
1064
1065int security_task_setpgid(struct task_struct *p, pid_t pgid)
1066{
1067 return call_int_hook(task_setpgid, 0, p, pgid);
1068}
1069
1070int security_task_getpgid(struct task_struct *p)
1071{
1072 return call_int_hook(task_getpgid, 0, p);
1073}
1074
1075int security_task_getsid(struct task_struct *p)
1076{
1077 return call_int_hook(task_getsid, 0, p);
1078}
1079
1080void security_task_getsecid(struct task_struct *p, u32 *secid)
1081{
1082 *secid = 0;
1083 call_void_hook(task_getsecid, p, secid);
1084}
1085EXPORT_SYMBOL(security_task_getsecid);
1086
1087int security_task_setnice(struct task_struct *p, int nice)
1088{
1089 return call_int_hook(task_setnice, 0, p, nice);
1090}
1091
1092int security_task_setioprio(struct task_struct *p, int ioprio)
1093{
1094 return call_int_hook(task_setioprio, 0, p, ioprio);
1095}
1096
1097int security_task_getioprio(struct task_struct *p)
1098{
1099 return call_int_hook(task_getioprio, 0, p);
1100}
1101
1102int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1103 unsigned int flags)
1104{
1105 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1106}
1107
1108int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1109 struct rlimit *new_rlim)
1110{
1111 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1112}
1113
1114int security_task_setscheduler(struct task_struct *p)
1115{
1116 return call_int_hook(task_setscheduler, 0, p);
1117}
1118
1119int security_task_getscheduler(struct task_struct *p)
1120{
1121 return call_int_hook(task_getscheduler, 0, p);
1122}
1123
1124int security_task_movememory(struct task_struct *p)
1125{
1126 return call_int_hook(task_movememory, 0, p);
1127}
1128
1129int security_task_kill(struct task_struct *p, struct siginfo *info,
1130 int sig, const struct cred *cred)
1131{
1132 return call_int_hook(task_kill, 0, p, info, sig, cred);
1133}
1134
1135int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1136 unsigned long arg4, unsigned long arg5)
1137{
1138 int thisrc;
1139 int rc = -ENOSYS;
1140 struct security_hook_list *hp;
1141
1142 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1143 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1144 if (thisrc != -ENOSYS) {
1145 rc = thisrc;
1146 if (thisrc != 0)
1147 break;
1148 }
1149 }
1150 return rc;
1151}
1152
1153void security_task_to_inode(struct task_struct *p, struct inode *inode)
1154{
1155 call_void_hook(task_to_inode, p, inode);
1156}
1157
1158int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1159{
1160 return call_int_hook(ipc_permission, 0, ipcp, flag);
1161}
1162
1163void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1164{
1165 *secid = 0;
1166 call_void_hook(ipc_getsecid, ipcp, secid);
1167}
1168
1169int security_msg_msg_alloc(struct msg_msg *msg)
1170{
1171 return call_int_hook(msg_msg_alloc_security, 0, msg);
1172}
1173
1174void security_msg_msg_free(struct msg_msg *msg)
1175{
1176 call_void_hook(msg_msg_free_security, msg);
1177}
1178
1179int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1180{
1181 return call_int_hook(msg_queue_alloc_security, 0, msq);
1182}
1183
1184void security_msg_queue_free(struct kern_ipc_perm *msq)
1185{
1186 call_void_hook(msg_queue_free_security, msq);
1187}
1188
1189int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1190{
1191 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1192}
1193
1194int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1195{
1196 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1197}
1198
1199int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1200 struct msg_msg *msg, int msqflg)
1201{
1202 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1203}
1204
1205int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1206 struct task_struct *target, long type, int mode)
1207{
1208 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1209}
1210
1211int security_shm_alloc(struct kern_ipc_perm *shp)
1212{
1213 return call_int_hook(shm_alloc_security, 0, shp);
1214}
1215
1216void security_shm_free(struct kern_ipc_perm *shp)
1217{
1218 call_void_hook(shm_free_security, shp);
1219}
1220
1221int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1222{
1223 return call_int_hook(shm_associate, 0, shp, shmflg);
1224}
1225
1226int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1227{
1228 return call_int_hook(shm_shmctl, 0, shp, cmd);
1229}
1230
1231int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1232{
1233 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1234}
1235
1236int security_sem_alloc(struct kern_ipc_perm *sma)
1237{
1238 return call_int_hook(sem_alloc_security, 0, sma);
1239}
1240
1241void security_sem_free(struct kern_ipc_perm *sma)
1242{
1243 call_void_hook(sem_free_security, sma);
1244}
1245
1246int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1247{
1248 return call_int_hook(sem_associate, 0, sma, semflg);
1249}
1250
1251int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1252{
1253 return call_int_hook(sem_semctl, 0, sma, cmd);
1254}
1255
1256int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1257 unsigned nsops, int alter)
1258{
1259 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1260}
1261
1262void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1263{
1264 if (unlikely(inode && IS_PRIVATE(inode)))
1265 return;
1266 call_void_hook(d_instantiate, dentry, inode);
1267}
1268EXPORT_SYMBOL(security_d_instantiate);
1269
1270int security_getprocattr(struct task_struct *p, char *name, char **value)
1271{
1272 return call_int_hook(getprocattr, -EINVAL, p, name, value);
1273}
1274
1275int security_setprocattr(const char *name, void *value, size_t size)
1276{
1277 return call_int_hook(setprocattr, -EINVAL, name, value, size);
1278}
1279
1280int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1281{
1282 return call_int_hook(netlink_send, 0, sk, skb);
1283}
1284
1285int security_ismaclabel(const char *name)
1286{
1287 return call_int_hook(ismaclabel, 0, name);
1288}
1289EXPORT_SYMBOL(security_ismaclabel);
1290
1291int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1292{
1293 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1294 seclen);
1295}
1296EXPORT_SYMBOL(security_secid_to_secctx);
1297
1298int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1299{
1300 *secid = 0;
1301 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1302}
1303EXPORT_SYMBOL(security_secctx_to_secid);
1304
1305void security_release_secctx(char *secdata, u32 seclen)
1306{
1307 call_void_hook(release_secctx, secdata, seclen);
1308}
1309EXPORT_SYMBOL(security_release_secctx);
1310
1311void security_inode_invalidate_secctx(struct inode *inode)
1312{
1313 call_void_hook(inode_invalidate_secctx, inode);
1314}
1315EXPORT_SYMBOL(security_inode_invalidate_secctx);
1316
1317int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1318{
1319 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1320}
1321EXPORT_SYMBOL(security_inode_notifysecctx);
1322
1323int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1324{
1325 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1326}
1327EXPORT_SYMBOL(security_inode_setsecctx);
1328
1329int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1330{
1331 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1332}
1333EXPORT_SYMBOL(security_inode_getsecctx);
1334
1335#ifdef CONFIG_SECURITY_NETWORK
1336
1337int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1338{
1339 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1340}
1341EXPORT_SYMBOL(security_unix_stream_connect);
1342
1343int security_unix_may_send(struct socket *sock, struct socket *other)
1344{
1345 return call_int_hook(unix_may_send, 0, sock, other);
1346}
1347EXPORT_SYMBOL(security_unix_may_send);
1348
1349int security_socket_create(int family, int type, int protocol, int kern)
1350{
1351 return call_int_hook(socket_create, 0, family, type, protocol, kern);
1352}
1353
1354int security_socket_post_create(struct socket *sock, int family,
1355 int type, int protocol, int kern)
1356{
1357 return call_int_hook(socket_post_create, 0, sock, family, type,
1358 protocol, kern);
1359}
1360
1361int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1362{
1363 return call_int_hook(socket_bind, 0, sock, address, addrlen);
1364}
1365
1366int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1367{
1368 return call_int_hook(socket_connect, 0, sock, address, addrlen);
1369}
1370
1371int security_socket_listen(struct socket *sock, int backlog)
1372{
1373 return call_int_hook(socket_listen, 0, sock, backlog);
1374}
1375
1376int security_socket_accept(struct socket *sock, struct socket *newsock)
1377{
1378 return call_int_hook(socket_accept, 0, sock, newsock);
1379}
1380
1381int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1382{
1383 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1384}
1385
1386int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1387 int size, int flags)
1388{
1389 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1390}
1391
1392int security_socket_getsockname(struct socket *sock)
1393{
1394 return call_int_hook(socket_getsockname, 0, sock);
1395}
1396
1397int security_socket_getpeername(struct socket *sock)
1398{
1399 return call_int_hook(socket_getpeername, 0, sock);
1400}
1401
1402int security_socket_getsockopt(struct socket *sock, int level, int optname)
1403{
1404 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1405}
1406
1407int security_socket_setsockopt(struct socket *sock, int level, int optname)
1408{
1409 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1410}
1411
1412int security_socket_shutdown(struct socket *sock, int how)
1413{
1414 return call_int_hook(socket_shutdown, 0, sock, how);
1415}
1416
1417int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1418{
1419 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1420}
1421EXPORT_SYMBOL(security_sock_rcv_skb);
1422
1423int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1424 int __user *optlen, unsigned len)
1425{
1426 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1427 optval, optlen, len);
1428}
1429
1430int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1431{
1432 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1433 skb, secid);
1434}
1435EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1436
1437int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1438{
1439 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
1440}
1441
1442void security_sk_free(struct sock *sk)
1443{
1444 call_void_hook(sk_free_security, sk);
1445}
1446
1447void security_sk_clone(const struct sock *sk, struct sock *newsk)
1448{
1449 call_void_hook(sk_clone_security, sk, newsk);
1450}
1451EXPORT_SYMBOL(security_sk_clone);
1452
1453void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1454{
1455 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1456}
1457EXPORT_SYMBOL(security_sk_classify_flow);
1458
1459void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1460{
1461 call_void_hook(req_classify_flow, req, fl);
1462}
1463EXPORT_SYMBOL(security_req_classify_flow);
1464
1465void security_sock_graft(struct sock *sk, struct socket *parent)
1466{
1467 call_void_hook(sock_graft, sk, parent);
1468}
1469EXPORT_SYMBOL(security_sock_graft);
1470
1471int security_inet_conn_request(struct sock *sk,
1472 struct sk_buff *skb, struct request_sock *req)
1473{
1474 return call_int_hook(inet_conn_request, 0, sk, skb, req);
1475}
1476EXPORT_SYMBOL(security_inet_conn_request);
1477
1478void security_inet_csk_clone(struct sock *newsk,
1479 const struct request_sock *req)
1480{
1481 call_void_hook(inet_csk_clone, newsk, req);
1482}
1483
1484void security_inet_conn_established(struct sock *sk,
1485 struct sk_buff *skb)
1486{
1487 call_void_hook(inet_conn_established, sk, skb);
1488}
1489EXPORT_SYMBOL(security_inet_conn_established);
1490
1491int security_secmark_relabel_packet(u32 secid)
1492{
1493 return call_int_hook(secmark_relabel_packet, 0, secid);
1494}
1495EXPORT_SYMBOL(security_secmark_relabel_packet);
1496
1497void security_secmark_refcount_inc(void)
1498{
1499 call_void_hook(secmark_refcount_inc);
1500}
1501EXPORT_SYMBOL(security_secmark_refcount_inc);
1502
1503void security_secmark_refcount_dec(void)
1504{
1505 call_void_hook(secmark_refcount_dec);
1506}
1507EXPORT_SYMBOL(security_secmark_refcount_dec);
1508
1509int security_tun_dev_alloc_security(void **security)
1510{
1511 return call_int_hook(tun_dev_alloc_security, 0, security);
1512}
1513EXPORT_SYMBOL(security_tun_dev_alloc_security);
1514
1515void security_tun_dev_free_security(void *security)
1516{
1517 call_void_hook(tun_dev_free_security, security);
1518}
1519EXPORT_SYMBOL(security_tun_dev_free_security);
1520
1521int security_tun_dev_create(void)
1522{
1523 return call_int_hook(tun_dev_create, 0);
1524}
1525EXPORT_SYMBOL(security_tun_dev_create);
1526
1527int security_tun_dev_attach_queue(void *security)
1528{
1529 return call_int_hook(tun_dev_attach_queue, 0, security);
1530}
1531EXPORT_SYMBOL(security_tun_dev_attach_queue);
1532
1533int security_tun_dev_attach(struct sock *sk, void *security)
1534{
1535 return call_int_hook(tun_dev_attach, 0, sk, security);
1536}
1537EXPORT_SYMBOL(security_tun_dev_attach);
1538
1539int security_tun_dev_open(void *security)
1540{
1541 return call_int_hook(tun_dev_open, 0, security);
1542}
1543EXPORT_SYMBOL(security_tun_dev_open);
1544
1545int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
1546{
1547 return call_int_hook(sctp_assoc_request, 0, ep, skb);
1548}
1549EXPORT_SYMBOL(security_sctp_assoc_request);
1550
1551int security_sctp_bind_connect(struct sock *sk, int optname,
1552 struct sockaddr *address, int addrlen)
1553{
1554 return call_int_hook(sctp_bind_connect, 0, sk, optname,
1555 address, addrlen);
1556}
1557EXPORT_SYMBOL(security_sctp_bind_connect);
1558
1559void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
1560 struct sock *newsk)
1561{
1562 call_void_hook(sctp_sk_clone, ep, sk, newsk);
1563}
1564EXPORT_SYMBOL(security_sctp_sk_clone);
1565
1566#endif /* CONFIG_SECURITY_NETWORK */
1567
1568#ifdef CONFIG_SECURITY_INFINIBAND
1569
1570int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
1571{
1572 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
1573}
1574EXPORT_SYMBOL(security_ib_pkey_access);
1575
1576int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
1577{
1578 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
1579}
1580EXPORT_SYMBOL(security_ib_endport_manage_subnet);
1581
1582int security_ib_alloc_security(void **sec)
1583{
1584 return call_int_hook(ib_alloc_security, 0, sec);
1585}
1586EXPORT_SYMBOL(security_ib_alloc_security);
1587
1588void security_ib_free_security(void *sec)
1589{
1590 call_void_hook(ib_free_security, sec);
1591}
1592EXPORT_SYMBOL(security_ib_free_security);
1593#endif /* CONFIG_SECURITY_INFINIBAND */
1594
1595#ifdef CONFIG_SECURITY_NETWORK_XFRM
1596
1597int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1598 struct xfrm_user_sec_ctx *sec_ctx,
1599 gfp_t gfp)
1600{
1601 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
1602}
1603EXPORT_SYMBOL(security_xfrm_policy_alloc);
1604
1605int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1606 struct xfrm_sec_ctx **new_ctxp)
1607{
1608 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
1609}
1610
1611void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1612{
1613 call_void_hook(xfrm_policy_free_security, ctx);
1614}
1615EXPORT_SYMBOL(security_xfrm_policy_free);
1616
1617int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1618{
1619 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
1620}
1621
1622int security_xfrm_state_alloc(struct xfrm_state *x,
1623 struct xfrm_user_sec_ctx *sec_ctx)
1624{
1625 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
1626}
1627EXPORT_SYMBOL(security_xfrm_state_alloc);
1628
1629int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1630 struct xfrm_sec_ctx *polsec, u32 secid)
1631{
1632 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
1633}
1634
1635int security_xfrm_state_delete(struct xfrm_state *x)
1636{
1637 return call_int_hook(xfrm_state_delete_security, 0, x);
1638}
1639EXPORT_SYMBOL(security_xfrm_state_delete);
1640
1641void security_xfrm_state_free(struct xfrm_state *x)
1642{
1643 call_void_hook(xfrm_state_free_security, x);
1644}
1645
1646int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1647{
1648 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
1649}
1650
1651int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1652 struct xfrm_policy *xp,
1653 const struct flowi *fl)
1654{
1655 struct security_hook_list *hp;
1656 int rc = 1;
1657
1658 /*
1659 * Since this function is expected to return 0 or 1, the judgment
1660 * becomes difficult if multiple LSMs supply this call. Fortunately,
1661 * we can use the first LSM's judgment because currently only SELinux
1662 * supplies this call.
1663 *
1664 * For speed optimization, we explicitly break the loop rather than
1665 * using the macro
1666 */
1667 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
1668 list) {
1669 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
1670 break;
1671 }
1672 return rc;
1673}
1674
1675int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1676{
1677 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
1678}
1679
1680void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1681{
1682 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
1683 0);
1684
1685 BUG_ON(rc);
1686}
1687EXPORT_SYMBOL(security_skb_classify_flow);
1688
1689#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1690
1691#ifdef CONFIG_KEYS
1692
1693int security_key_alloc(struct key *key, const struct cred *cred,
1694 unsigned long flags)
1695{
1696 return call_int_hook(key_alloc, 0, key, cred, flags);
1697}
1698
1699void security_key_free(struct key *key)
1700{
1701 call_void_hook(key_free, key);
1702}
1703
1704int security_key_permission(key_ref_t key_ref,
1705 const struct cred *cred, unsigned perm)
1706{
1707 return call_int_hook(key_permission, 0, key_ref, cred, perm);
1708}
1709
1710int security_key_getsecurity(struct key *key, char **_buffer)
1711{
1712 *_buffer = NULL;
1713 return call_int_hook(key_getsecurity, 0, key, _buffer);
1714}
1715
1716#endif /* CONFIG_KEYS */
1717
1718#ifdef CONFIG_AUDIT
1719
1720int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1721{
1722 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
1723}
1724
1725int security_audit_rule_known(struct audit_krule *krule)
1726{
1727 return call_int_hook(audit_rule_known, 0, krule);
1728}
1729
1730void security_audit_rule_free(void *lsmrule)
1731{
1732 call_void_hook(audit_rule_free, lsmrule);
1733}
1734
1735int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1736 struct audit_context *actx)
1737{
1738 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
1739 actx);
1740}
1741#endif /* CONFIG_AUDIT */
1742
1743#ifdef CONFIG_BPF_SYSCALL
1744int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
1745{
1746 return call_int_hook(bpf, 0, cmd, attr, size);
1747}
1748int security_bpf_map(struct bpf_map *map, fmode_t fmode)
1749{
1750 return call_int_hook(bpf_map, 0, map, fmode);
1751}
1752int security_bpf_prog(struct bpf_prog *prog)
1753{
1754 return call_int_hook(bpf_prog, 0, prog);
1755}
1756int security_bpf_map_alloc(struct bpf_map *map)
1757{
1758 return call_int_hook(bpf_map_alloc_security, 0, map);
1759}
1760int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
1761{
1762 return call_int_hook(bpf_prog_alloc_security, 0, aux);
1763}
1764void security_bpf_map_free(struct bpf_map *map)
1765{
1766 call_void_hook(bpf_map_free_security, map);
1767}
1768void security_bpf_prog_free(struct bpf_prog_aux *aux)
1769{
1770 call_void_hook(bpf_prog_free_security, aux);
1771}
1772#endif /* CONFIG_BPF_SYSCALL */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11#define pr_fmt(fmt) "LSM: " fmt
12
13#include <linux/bpf.h>
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/export.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/kernel_read_file.h>
20#include <linux/lsm_hooks.h>
21#include <linux/integrity.h>
22#include <linux/ima.h>
23#include <linux/evm.h>
24#include <linux/fsnotify.h>
25#include <linux/mman.h>
26#include <linux/mount.h>
27#include <linux/personality.h>
28#include <linux/backing-dev.h>
29#include <linux/string.h>
30#include <linux/msg.h>
31#include <net/flow.h>
32
33#define MAX_LSM_EVM_XATTR 2
34
35/* How many LSMs were built into the kernel? */
36#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38/*
39 * These are descriptions of the reasons that can be passed to the
40 * security_locked_down() LSM hook. Placing this array here allows
41 * all security modules to use the same descriptions for auditing
42 * purposes.
43 */
44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 [LOCKDOWN_NONE] = "none",
46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 [LOCKDOWN_HIBERNATION] = "hibernation",
51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 [LOCKDOWN_IOPORT] = "raw io port access",
53 [LOCKDOWN_MSR] = "raw MSR access",
54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
56 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
57 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
58 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
59 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
60 [LOCKDOWN_DEBUGFS] = "debugfs access",
61 [LOCKDOWN_XMON_WR] = "xmon write access",
62 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
63 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
64 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
65 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
66 [LOCKDOWN_KCORE] = "/proc/kcore access",
67 [LOCKDOWN_KPROBES] = "use of kprobes",
68 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
69 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
70 [LOCKDOWN_PERF] = "unsafe use of perf",
71 [LOCKDOWN_TRACEFS] = "use of tracefs",
72 [LOCKDOWN_XMON_RW] = "xmon read and write access",
73 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
74 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
75};
76
77struct security_hook_heads security_hook_heads __lsm_ro_after_init;
78static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
79
80static struct kmem_cache *lsm_file_cache;
81static struct kmem_cache *lsm_inode_cache;
82
83char *lsm_names;
84static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
85
86/* Boot-time LSM user choice */
87static __initdata const char *chosen_lsm_order;
88static __initdata const char *chosen_major_lsm;
89
90static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
91
92/* Ordered list of LSMs to initialize. */
93static __initdata struct lsm_info **ordered_lsms;
94static __initdata struct lsm_info *exclusive;
95
96static __initdata bool debug;
97#define init_debug(...) \
98 do { \
99 if (debug) \
100 pr_info(__VA_ARGS__); \
101 } while (0)
102
103static bool __init is_enabled(struct lsm_info *lsm)
104{
105 if (!lsm->enabled)
106 return false;
107
108 return *lsm->enabled;
109}
110
111/* Mark an LSM's enabled flag. */
112static int lsm_enabled_true __initdata = 1;
113static int lsm_enabled_false __initdata = 0;
114static void __init set_enabled(struct lsm_info *lsm, bool enabled)
115{
116 /*
117 * When an LSM hasn't configured an enable variable, we can use
118 * a hard-coded location for storing the default enabled state.
119 */
120 if (!lsm->enabled) {
121 if (enabled)
122 lsm->enabled = &lsm_enabled_true;
123 else
124 lsm->enabled = &lsm_enabled_false;
125 } else if (lsm->enabled == &lsm_enabled_true) {
126 if (!enabled)
127 lsm->enabled = &lsm_enabled_false;
128 } else if (lsm->enabled == &lsm_enabled_false) {
129 if (enabled)
130 lsm->enabled = &lsm_enabled_true;
131 } else {
132 *lsm->enabled = enabled;
133 }
134}
135
136/* Is an LSM already listed in the ordered LSMs list? */
137static bool __init exists_ordered_lsm(struct lsm_info *lsm)
138{
139 struct lsm_info **check;
140
141 for (check = ordered_lsms; *check; check++)
142 if (*check == lsm)
143 return true;
144
145 return false;
146}
147
148/* Append an LSM to the list of ordered LSMs to initialize. */
149static int last_lsm __initdata;
150static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
151{
152 /* Ignore duplicate selections. */
153 if (exists_ordered_lsm(lsm))
154 return;
155
156 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
157 return;
158
159 /* Enable this LSM, if it is not already set. */
160 if (!lsm->enabled)
161 lsm->enabled = &lsm_enabled_true;
162 ordered_lsms[last_lsm++] = lsm;
163
164 init_debug("%s ordered: %s (%s)\n", from, lsm->name,
165 is_enabled(lsm) ? "enabled" : "disabled");
166}
167
168/* Is an LSM allowed to be initialized? */
169static bool __init lsm_allowed(struct lsm_info *lsm)
170{
171 /* Skip if the LSM is disabled. */
172 if (!is_enabled(lsm))
173 return false;
174
175 /* Not allowed if another exclusive LSM already initialized. */
176 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
177 init_debug("exclusive disabled: %s\n", lsm->name);
178 return false;
179 }
180
181 return true;
182}
183
184static void __init lsm_set_blob_size(int *need, int *lbs)
185{
186 int offset;
187
188 if (*need <= 0)
189 return;
190
191 offset = ALIGN(*lbs, sizeof(void *));
192 *lbs = offset + *need;
193 *need = offset;
194}
195
196static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
197{
198 if (!needed)
199 return;
200
201 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
202 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
203 /*
204 * The inode blob gets an rcu_head in addition to
205 * what the modules might need.
206 */
207 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
208 blob_sizes.lbs_inode = sizeof(struct rcu_head);
209 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
210 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
211 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
212 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
213 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
214}
215
216/* Prepare LSM for initialization. */
217static void __init prepare_lsm(struct lsm_info *lsm)
218{
219 int enabled = lsm_allowed(lsm);
220
221 /* Record enablement (to handle any following exclusive LSMs). */
222 set_enabled(lsm, enabled);
223
224 /* If enabled, do pre-initialization work. */
225 if (enabled) {
226 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
227 exclusive = lsm;
228 init_debug("exclusive chosen: %s\n", lsm->name);
229 }
230
231 lsm_set_blob_sizes(lsm->blobs);
232 }
233}
234
235/* Initialize a given LSM, if it is enabled. */
236static void __init initialize_lsm(struct lsm_info *lsm)
237{
238 if (is_enabled(lsm)) {
239 int ret;
240
241 init_debug("initializing %s\n", lsm->name);
242 ret = lsm->init();
243 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
244 }
245}
246
247/* Populate ordered LSMs list from comma-separated LSM name list. */
248static void __init ordered_lsm_parse(const char *order, const char *origin)
249{
250 struct lsm_info *lsm;
251 char *sep, *name, *next;
252
253 /* LSM_ORDER_FIRST is always first. */
254 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
255 if (lsm->order == LSM_ORDER_FIRST)
256 append_ordered_lsm(lsm, " first");
257 }
258
259 /* Process "security=", if given. */
260 if (chosen_major_lsm) {
261 struct lsm_info *major;
262
263 /*
264 * To match the original "security=" behavior, this
265 * explicitly does NOT fallback to another Legacy Major
266 * if the selected one was separately disabled: disable
267 * all non-matching Legacy Major LSMs.
268 */
269 for (major = __start_lsm_info; major < __end_lsm_info;
270 major++) {
271 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
272 strcmp(major->name, chosen_major_lsm) != 0) {
273 set_enabled(major, false);
274 init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
275 chosen_major_lsm, major->name);
276 }
277 }
278 }
279
280 sep = kstrdup(order, GFP_KERNEL);
281 next = sep;
282 /* Walk the list, looking for matching LSMs. */
283 while ((name = strsep(&next, ",")) != NULL) {
284 bool found = false;
285
286 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
287 if (lsm->order == LSM_ORDER_MUTABLE &&
288 strcmp(lsm->name, name) == 0) {
289 append_ordered_lsm(lsm, origin);
290 found = true;
291 }
292 }
293
294 if (!found)
295 init_debug("%s ignored: %s (not built into kernel)\n",
296 origin, name);
297 }
298
299 /* Process "security=", if given. */
300 if (chosen_major_lsm) {
301 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
302 if (exists_ordered_lsm(lsm))
303 continue;
304 if (strcmp(lsm->name, chosen_major_lsm) == 0)
305 append_ordered_lsm(lsm, "security=");
306 }
307 }
308
309 /* Disable all LSMs not in the ordered list. */
310 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
311 if (exists_ordered_lsm(lsm))
312 continue;
313 set_enabled(lsm, false);
314 init_debug("%s skipped: %s (not in requested order)\n",
315 origin, lsm->name);
316 }
317
318 kfree(sep);
319}
320
321static void __init lsm_early_cred(struct cred *cred);
322static void __init lsm_early_task(struct task_struct *task);
323
324static int lsm_append(const char *new, char **result);
325
326static void __init report_lsm_order(void)
327{
328 struct lsm_info **lsm, *early;
329 int first = 0;
330
331 pr_info("initializing lsm=");
332
333 /* Report each enabled LSM name, comma separated. */
334 for (early = __start_early_lsm_info; early < __end_early_lsm_info; early++)
335 if (is_enabled(early))
336 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
337 for (lsm = ordered_lsms; *lsm; lsm++)
338 if (is_enabled(*lsm))
339 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
340
341 pr_cont("\n");
342}
343
344static void __init ordered_lsm_init(void)
345{
346 struct lsm_info **lsm;
347
348 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
349 GFP_KERNEL);
350
351 if (chosen_lsm_order) {
352 if (chosen_major_lsm) {
353 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
354 chosen_major_lsm, chosen_lsm_order);
355 chosen_major_lsm = NULL;
356 }
357 ordered_lsm_parse(chosen_lsm_order, "cmdline");
358 } else
359 ordered_lsm_parse(builtin_lsm_order, "builtin");
360
361 for (lsm = ordered_lsms; *lsm; lsm++)
362 prepare_lsm(*lsm);
363
364 report_lsm_order();
365
366 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
367 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
368 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
369 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
370 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
371 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
372 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
373
374 /*
375 * Create any kmem_caches needed for blobs
376 */
377 if (blob_sizes.lbs_file)
378 lsm_file_cache = kmem_cache_create("lsm_file_cache",
379 blob_sizes.lbs_file, 0,
380 SLAB_PANIC, NULL);
381 if (blob_sizes.lbs_inode)
382 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
383 blob_sizes.lbs_inode, 0,
384 SLAB_PANIC, NULL);
385
386 lsm_early_cred((struct cred *) current->cred);
387 lsm_early_task(current);
388 for (lsm = ordered_lsms; *lsm; lsm++)
389 initialize_lsm(*lsm);
390
391 kfree(ordered_lsms);
392}
393
394int __init early_security_init(void)
395{
396 struct lsm_info *lsm;
397
398#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
399 INIT_HLIST_HEAD(&security_hook_heads.NAME);
400#include "linux/lsm_hook_defs.h"
401#undef LSM_HOOK
402
403 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
404 if (!lsm->enabled)
405 lsm->enabled = &lsm_enabled_true;
406 prepare_lsm(lsm);
407 initialize_lsm(lsm);
408 }
409
410 return 0;
411}
412
413/**
414 * security_init - initializes the security framework
415 *
416 * This should be called early in the kernel initialization sequence.
417 */
418int __init security_init(void)
419{
420 struct lsm_info *lsm;
421
422 init_debug("legacy security=%s\n", chosen_major_lsm ?: " *unspecified*");
423 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order);
424 init_debug("boot arg lsm=%s\n", chosen_lsm_order ?: " *unspecified*");
425
426 /*
427 * Append the names of the early LSM modules now that kmalloc() is
428 * available
429 */
430 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
431 init_debug(" early started: %s (%s)\n", lsm->name,
432 is_enabled(lsm) ? "enabled" : "disabled");
433 if (lsm->enabled)
434 lsm_append(lsm->name, &lsm_names);
435 }
436
437 /* Load LSMs in specified order. */
438 ordered_lsm_init();
439
440 return 0;
441}
442
443/* Save user chosen LSM */
444static int __init choose_major_lsm(char *str)
445{
446 chosen_major_lsm = str;
447 return 1;
448}
449__setup("security=", choose_major_lsm);
450
451/* Explicitly choose LSM initialization order. */
452static int __init choose_lsm_order(char *str)
453{
454 chosen_lsm_order = str;
455 return 1;
456}
457__setup("lsm=", choose_lsm_order);
458
459/* Enable LSM order debugging. */
460static int __init enable_debug(char *str)
461{
462 debug = true;
463 return 1;
464}
465__setup("lsm.debug", enable_debug);
466
467static bool match_last_lsm(const char *list, const char *lsm)
468{
469 const char *last;
470
471 if (WARN_ON(!list || !lsm))
472 return false;
473 last = strrchr(list, ',');
474 if (last)
475 /* Pass the comma, strcmp() will check for '\0' */
476 last++;
477 else
478 last = list;
479 return !strcmp(last, lsm);
480}
481
482static int lsm_append(const char *new, char **result)
483{
484 char *cp;
485
486 if (*result == NULL) {
487 *result = kstrdup(new, GFP_KERNEL);
488 if (*result == NULL)
489 return -ENOMEM;
490 } else {
491 /* Check if it is the last registered name */
492 if (match_last_lsm(*result, new))
493 return 0;
494 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
495 if (cp == NULL)
496 return -ENOMEM;
497 kfree(*result);
498 *result = cp;
499 }
500 return 0;
501}
502
503/**
504 * security_add_hooks - Add a modules hooks to the hook lists.
505 * @hooks: the hooks to add
506 * @count: the number of hooks to add
507 * @lsm: the name of the security module
508 *
509 * Each LSM has to register its hooks with the infrastructure.
510 */
511void __init security_add_hooks(struct security_hook_list *hooks, int count,
512 const char *lsm)
513{
514 int i;
515
516 for (i = 0; i < count; i++) {
517 hooks[i].lsm = lsm;
518 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
519 }
520
521 /*
522 * Don't try to append during early_security_init(), we'll come back
523 * and fix this up afterwards.
524 */
525 if (slab_is_available()) {
526 if (lsm_append(lsm, &lsm_names) < 0)
527 panic("%s - Cannot get early memory.\n", __func__);
528 }
529}
530
531int call_blocking_lsm_notifier(enum lsm_event event, void *data)
532{
533 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
534 event, data);
535}
536EXPORT_SYMBOL(call_blocking_lsm_notifier);
537
538int register_blocking_lsm_notifier(struct notifier_block *nb)
539{
540 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
541 nb);
542}
543EXPORT_SYMBOL(register_blocking_lsm_notifier);
544
545int unregister_blocking_lsm_notifier(struct notifier_block *nb)
546{
547 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
548 nb);
549}
550EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
551
552/**
553 * lsm_cred_alloc - allocate a composite cred blob
554 * @cred: the cred that needs a blob
555 * @gfp: allocation type
556 *
557 * Allocate the cred blob for all the modules
558 *
559 * Returns 0, or -ENOMEM if memory can't be allocated.
560 */
561static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
562{
563 if (blob_sizes.lbs_cred == 0) {
564 cred->security = NULL;
565 return 0;
566 }
567
568 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
569 if (cred->security == NULL)
570 return -ENOMEM;
571 return 0;
572}
573
574/**
575 * lsm_early_cred - during initialization allocate a composite cred blob
576 * @cred: the cred that needs a blob
577 *
578 * Allocate the cred blob for all the modules
579 */
580static void __init lsm_early_cred(struct cred *cred)
581{
582 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
583
584 if (rc)
585 panic("%s: Early cred alloc failed.\n", __func__);
586}
587
588/**
589 * lsm_file_alloc - allocate a composite file blob
590 * @file: the file that needs a blob
591 *
592 * Allocate the file blob for all the modules
593 *
594 * Returns 0, or -ENOMEM if memory can't be allocated.
595 */
596static int lsm_file_alloc(struct file *file)
597{
598 if (!lsm_file_cache) {
599 file->f_security = NULL;
600 return 0;
601 }
602
603 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
604 if (file->f_security == NULL)
605 return -ENOMEM;
606 return 0;
607}
608
609/**
610 * lsm_inode_alloc - allocate a composite inode blob
611 * @inode: the inode that needs a blob
612 *
613 * Allocate the inode blob for all the modules
614 *
615 * Returns 0, or -ENOMEM if memory can't be allocated.
616 */
617int lsm_inode_alloc(struct inode *inode)
618{
619 if (!lsm_inode_cache) {
620 inode->i_security = NULL;
621 return 0;
622 }
623
624 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
625 if (inode->i_security == NULL)
626 return -ENOMEM;
627 return 0;
628}
629
630/**
631 * lsm_task_alloc - allocate a composite task blob
632 * @task: the task that needs a blob
633 *
634 * Allocate the task blob for all the modules
635 *
636 * Returns 0, or -ENOMEM if memory can't be allocated.
637 */
638static int lsm_task_alloc(struct task_struct *task)
639{
640 if (blob_sizes.lbs_task == 0) {
641 task->security = NULL;
642 return 0;
643 }
644
645 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
646 if (task->security == NULL)
647 return -ENOMEM;
648 return 0;
649}
650
651/**
652 * lsm_ipc_alloc - allocate a composite ipc blob
653 * @kip: the ipc that needs a blob
654 *
655 * Allocate the ipc blob for all the modules
656 *
657 * Returns 0, or -ENOMEM if memory can't be allocated.
658 */
659static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
660{
661 if (blob_sizes.lbs_ipc == 0) {
662 kip->security = NULL;
663 return 0;
664 }
665
666 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
667 if (kip->security == NULL)
668 return -ENOMEM;
669 return 0;
670}
671
672/**
673 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
674 * @mp: the msg_msg that needs a blob
675 *
676 * Allocate the ipc blob for all the modules
677 *
678 * Returns 0, or -ENOMEM if memory can't be allocated.
679 */
680static int lsm_msg_msg_alloc(struct msg_msg *mp)
681{
682 if (blob_sizes.lbs_msg_msg == 0) {
683 mp->security = NULL;
684 return 0;
685 }
686
687 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
688 if (mp->security == NULL)
689 return -ENOMEM;
690 return 0;
691}
692
693/**
694 * lsm_early_task - during initialization allocate a composite task blob
695 * @task: the task that needs a blob
696 *
697 * Allocate the task blob for all the modules
698 */
699static void __init lsm_early_task(struct task_struct *task)
700{
701 int rc = lsm_task_alloc(task);
702
703 if (rc)
704 panic("%s: Early task alloc failed.\n", __func__);
705}
706
707/**
708 * lsm_superblock_alloc - allocate a composite superblock blob
709 * @sb: the superblock that needs a blob
710 *
711 * Allocate the superblock blob for all the modules
712 *
713 * Returns 0, or -ENOMEM if memory can't be allocated.
714 */
715static int lsm_superblock_alloc(struct super_block *sb)
716{
717 if (blob_sizes.lbs_superblock == 0) {
718 sb->s_security = NULL;
719 return 0;
720 }
721
722 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
723 if (sb->s_security == NULL)
724 return -ENOMEM;
725 return 0;
726}
727
728/*
729 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
730 * can be accessed with:
731 *
732 * LSM_RET_DEFAULT(<hook_name>)
733 *
734 * The macros below define static constants for the default value of each
735 * LSM hook.
736 */
737#define LSM_RET_DEFAULT(NAME) (NAME##_default)
738#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
739#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
740 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
741#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
742 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
743
744#include <linux/lsm_hook_defs.h>
745#undef LSM_HOOK
746
747/*
748 * Hook list operation macros.
749 *
750 * call_void_hook:
751 * This is a hook that does not return a value.
752 *
753 * call_int_hook:
754 * This is a hook that returns a value.
755 */
756
757#define call_void_hook(FUNC, ...) \
758 do { \
759 struct security_hook_list *P; \
760 \
761 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
762 P->hook.FUNC(__VA_ARGS__); \
763 } while (0)
764
765#define call_int_hook(FUNC, IRC, ...) ({ \
766 int RC = IRC; \
767 do { \
768 struct security_hook_list *P; \
769 \
770 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
771 RC = P->hook.FUNC(__VA_ARGS__); \
772 if (RC != 0) \
773 break; \
774 } \
775 } while (0); \
776 RC; \
777})
778
779/* Security operations */
780
781int security_binder_set_context_mgr(const struct cred *mgr)
782{
783 return call_int_hook(binder_set_context_mgr, 0, mgr);
784}
785
786int security_binder_transaction(const struct cred *from,
787 const struct cred *to)
788{
789 return call_int_hook(binder_transaction, 0, from, to);
790}
791
792int security_binder_transfer_binder(const struct cred *from,
793 const struct cred *to)
794{
795 return call_int_hook(binder_transfer_binder, 0, from, to);
796}
797
798int security_binder_transfer_file(const struct cred *from,
799 const struct cred *to, struct file *file)
800{
801 return call_int_hook(binder_transfer_file, 0, from, to, file);
802}
803
804int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
805{
806 return call_int_hook(ptrace_access_check, 0, child, mode);
807}
808
809int security_ptrace_traceme(struct task_struct *parent)
810{
811 return call_int_hook(ptrace_traceme, 0, parent);
812}
813
814int security_capget(struct task_struct *target,
815 kernel_cap_t *effective,
816 kernel_cap_t *inheritable,
817 kernel_cap_t *permitted)
818{
819 return call_int_hook(capget, 0, target,
820 effective, inheritable, permitted);
821}
822
823int security_capset(struct cred *new, const struct cred *old,
824 const kernel_cap_t *effective,
825 const kernel_cap_t *inheritable,
826 const kernel_cap_t *permitted)
827{
828 return call_int_hook(capset, 0, new, old,
829 effective, inheritable, permitted);
830}
831
832int security_capable(const struct cred *cred,
833 struct user_namespace *ns,
834 int cap,
835 unsigned int opts)
836{
837 return call_int_hook(capable, 0, cred, ns, cap, opts);
838}
839
840int security_quotactl(int cmds, int type, int id, struct super_block *sb)
841{
842 return call_int_hook(quotactl, 0, cmds, type, id, sb);
843}
844
845int security_quota_on(struct dentry *dentry)
846{
847 return call_int_hook(quota_on, 0, dentry);
848}
849
850int security_syslog(int type)
851{
852 return call_int_hook(syslog, 0, type);
853}
854
855int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
856{
857 return call_int_hook(settime, 0, ts, tz);
858}
859
860int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
861{
862 struct security_hook_list *hp;
863 int cap_sys_admin = 1;
864 int rc;
865
866 /*
867 * The module will respond with a positive value if
868 * it thinks the __vm_enough_memory() call should be
869 * made with the cap_sys_admin set. If all of the modules
870 * agree that it should be set it will. If any module
871 * thinks it should not be set it won't.
872 */
873 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
874 rc = hp->hook.vm_enough_memory(mm, pages);
875 if (rc <= 0) {
876 cap_sys_admin = 0;
877 break;
878 }
879 }
880 return __vm_enough_memory(mm, pages, cap_sys_admin);
881}
882
883int security_bprm_creds_for_exec(struct linux_binprm *bprm)
884{
885 return call_int_hook(bprm_creds_for_exec, 0, bprm);
886}
887
888int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
889{
890 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
891}
892
893int security_bprm_check(struct linux_binprm *bprm)
894{
895 int ret;
896
897 ret = call_int_hook(bprm_check_security, 0, bprm);
898 if (ret)
899 return ret;
900 return ima_bprm_check(bprm);
901}
902
903void security_bprm_committing_creds(struct linux_binprm *bprm)
904{
905 call_void_hook(bprm_committing_creds, bprm);
906}
907
908void security_bprm_committed_creds(struct linux_binprm *bprm)
909{
910 call_void_hook(bprm_committed_creds, bprm);
911}
912
913int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
914{
915 return call_int_hook(fs_context_dup, 0, fc, src_fc);
916}
917
918int security_fs_context_parse_param(struct fs_context *fc,
919 struct fs_parameter *param)
920{
921 struct security_hook_list *hp;
922 int trc;
923 int rc = -ENOPARAM;
924
925 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
926 list) {
927 trc = hp->hook.fs_context_parse_param(fc, param);
928 if (trc == 0)
929 rc = 0;
930 else if (trc != -ENOPARAM)
931 return trc;
932 }
933 return rc;
934}
935
936int security_sb_alloc(struct super_block *sb)
937{
938 int rc = lsm_superblock_alloc(sb);
939
940 if (unlikely(rc))
941 return rc;
942 rc = call_int_hook(sb_alloc_security, 0, sb);
943 if (unlikely(rc))
944 security_sb_free(sb);
945 return rc;
946}
947
948void security_sb_delete(struct super_block *sb)
949{
950 call_void_hook(sb_delete, sb);
951}
952
953void security_sb_free(struct super_block *sb)
954{
955 call_void_hook(sb_free_security, sb);
956 kfree(sb->s_security);
957 sb->s_security = NULL;
958}
959
960void security_free_mnt_opts(void **mnt_opts)
961{
962 if (!*mnt_opts)
963 return;
964 call_void_hook(sb_free_mnt_opts, *mnt_opts);
965 *mnt_opts = NULL;
966}
967EXPORT_SYMBOL(security_free_mnt_opts);
968
969int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
970{
971 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
972}
973EXPORT_SYMBOL(security_sb_eat_lsm_opts);
974
975int security_sb_mnt_opts_compat(struct super_block *sb,
976 void *mnt_opts)
977{
978 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
979}
980EXPORT_SYMBOL(security_sb_mnt_opts_compat);
981
982int security_sb_remount(struct super_block *sb,
983 void *mnt_opts)
984{
985 return call_int_hook(sb_remount, 0, sb, mnt_opts);
986}
987EXPORT_SYMBOL(security_sb_remount);
988
989int security_sb_kern_mount(struct super_block *sb)
990{
991 return call_int_hook(sb_kern_mount, 0, sb);
992}
993
994int security_sb_show_options(struct seq_file *m, struct super_block *sb)
995{
996 return call_int_hook(sb_show_options, 0, m, sb);
997}
998
999int security_sb_statfs(struct dentry *dentry)
1000{
1001 return call_int_hook(sb_statfs, 0, dentry);
1002}
1003
1004int security_sb_mount(const char *dev_name, const struct path *path,
1005 const char *type, unsigned long flags, void *data)
1006{
1007 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
1008}
1009
1010int security_sb_umount(struct vfsmount *mnt, int flags)
1011{
1012 return call_int_hook(sb_umount, 0, mnt, flags);
1013}
1014
1015int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
1016{
1017 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
1018}
1019
1020int security_sb_set_mnt_opts(struct super_block *sb,
1021 void *mnt_opts,
1022 unsigned long kern_flags,
1023 unsigned long *set_kern_flags)
1024{
1025 return call_int_hook(sb_set_mnt_opts,
1026 mnt_opts ? -EOPNOTSUPP : 0, sb,
1027 mnt_opts, kern_flags, set_kern_flags);
1028}
1029EXPORT_SYMBOL(security_sb_set_mnt_opts);
1030
1031int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1032 struct super_block *newsb,
1033 unsigned long kern_flags,
1034 unsigned long *set_kern_flags)
1035{
1036 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1037 kern_flags, set_kern_flags);
1038}
1039EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1040
1041int security_move_mount(const struct path *from_path, const struct path *to_path)
1042{
1043 return call_int_hook(move_mount, 0, from_path, to_path);
1044}
1045
1046int security_path_notify(const struct path *path, u64 mask,
1047 unsigned int obj_type)
1048{
1049 return call_int_hook(path_notify, 0, path, mask, obj_type);
1050}
1051
1052int security_inode_alloc(struct inode *inode)
1053{
1054 int rc = lsm_inode_alloc(inode);
1055
1056 if (unlikely(rc))
1057 return rc;
1058 rc = call_int_hook(inode_alloc_security, 0, inode);
1059 if (unlikely(rc))
1060 security_inode_free(inode);
1061 return rc;
1062}
1063
1064static void inode_free_by_rcu(struct rcu_head *head)
1065{
1066 /*
1067 * The rcu head is at the start of the inode blob
1068 */
1069 kmem_cache_free(lsm_inode_cache, head);
1070}
1071
1072void security_inode_free(struct inode *inode)
1073{
1074 integrity_inode_free(inode);
1075 call_void_hook(inode_free_security, inode);
1076 /*
1077 * The inode may still be referenced in a path walk and
1078 * a call to security_inode_permission() can be made
1079 * after inode_free_security() is called. Ideally, the VFS
1080 * wouldn't do this, but fixing that is a much harder
1081 * job. For now, simply free the i_security via RCU, and
1082 * leave the current inode->i_security pointer intact.
1083 * The inode will be freed after the RCU grace period too.
1084 */
1085 if (inode->i_security)
1086 call_rcu((struct rcu_head *)inode->i_security,
1087 inode_free_by_rcu);
1088}
1089
1090int security_dentry_init_security(struct dentry *dentry, int mode,
1091 const struct qstr *name,
1092 const char **xattr_name, void **ctx,
1093 u32 *ctxlen)
1094{
1095 struct security_hook_list *hp;
1096 int rc;
1097
1098 /*
1099 * Only one module will provide a security context.
1100 */
1101 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1102 rc = hp->hook.dentry_init_security(dentry, mode, name,
1103 xattr_name, ctx, ctxlen);
1104 if (rc != LSM_RET_DEFAULT(dentry_init_security))
1105 return rc;
1106 }
1107 return LSM_RET_DEFAULT(dentry_init_security);
1108}
1109EXPORT_SYMBOL(security_dentry_init_security);
1110
1111int security_dentry_create_files_as(struct dentry *dentry, int mode,
1112 struct qstr *name,
1113 const struct cred *old, struct cred *new)
1114{
1115 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1116 name, old, new);
1117}
1118EXPORT_SYMBOL(security_dentry_create_files_as);
1119
1120int security_inode_init_security(struct inode *inode, struct inode *dir,
1121 const struct qstr *qstr,
1122 const initxattrs initxattrs, void *fs_data)
1123{
1124 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1125 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1126 int ret;
1127
1128 if (unlikely(IS_PRIVATE(inode)))
1129 return 0;
1130
1131 if (!initxattrs)
1132 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1133 dir, qstr, NULL, NULL, NULL);
1134 memset(new_xattrs, 0, sizeof(new_xattrs));
1135 lsm_xattr = new_xattrs;
1136 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1137 &lsm_xattr->name,
1138 &lsm_xattr->value,
1139 &lsm_xattr->value_len);
1140 if (ret)
1141 goto out;
1142
1143 evm_xattr = lsm_xattr + 1;
1144 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1145 if (ret)
1146 goto out;
1147 ret = initxattrs(inode, new_xattrs, fs_data);
1148out:
1149 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1150 kfree(xattr->value);
1151 return (ret == -EOPNOTSUPP) ? 0 : ret;
1152}
1153EXPORT_SYMBOL(security_inode_init_security);
1154
1155int security_inode_init_security_anon(struct inode *inode,
1156 const struct qstr *name,
1157 const struct inode *context_inode)
1158{
1159 return call_int_hook(inode_init_security_anon, 0, inode, name,
1160 context_inode);
1161}
1162
1163int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1164 const struct qstr *qstr, const char **name,
1165 void **value, size_t *len)
1166{
1167 if (unlikely(IS_PRIVATE(inode)))
1168 return -EOPNOTSUPP;
1169 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1170 qstr, name, value, len);
1171}
1172EXPORT_SYMBOL(security_old_inode_init_security);
1173
1174#ifdef CONFIG_SECURITY_PATH
1175int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1176 unsigned int dev)
1177{
1178 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1179 return 0;
1180 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1181}
1182EXPORT_SYMBOL(security_path_mknod);
1183
1184int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1185{
1186 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1187 return 0;
1188 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1189}
1190EXPORT_SYMBOL(security_path_mkdir);
1191
1192int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1193{
1194 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1195 return 0;
1196 return call_int_hook(path_rmdir, 0, dir, dentry);
1197}
1198
1199int security_path_unlink(const struct path *dir, struct dentry *dentry)
1200{
1201 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1202 return 0;
1203 return call_int_hook(path_unlink, 0, dir, dentry);
1204}
1205EXPORT_SYMBOL(security_path_unlink);
1206
1207int security_path_symlink(const struct path *dir, struct dentry *dentry,
1208 const char *old_name)
1209{
1210 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1211 return 0;
1212 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1213}
1214
1215int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1216 struct dentry *new_dentry)
1217{
1218 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1219 return 0;
1220 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1221}
1222
1223int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1224 const struct path *new_dir, struct dentry *new_dentry,
1225 unsigned int flags)
1226{
1227 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1228 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1229 return 0;
1230
1231 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1232 new_dentry, flags);
1233}
1234EXPORT_SYMBOL(security_path_rename);
1235
1236int security_path_truncate(const struct path *path)
1237{
1238 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1239 return 0;
1240 return call_int_hook(path_truncate, 0, path);
1241}
1242
1243int security_path_chmod(const struct path *path, umode_t mode)
1244{
1245 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1246 return 0;
1247 return call_int_hook(path_chmod, 0, path, mode);
1248}
1249
1250int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1251{
1252 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1253 return 0;
1254 return call_int_hook(path_chown, 0, path, uid, gid);
1255}
1256
1257int security_path_chroot(const struct path *path)
1258{
1259 return call_int_hook(path_chroot, 0, path);
1260}
1261#endif
1262
1263int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1264{
1265 if (unlikely(IS_PRIVATE(dir)))
1266 return 0;
1267 return call_int_hook(inode_create, 0, dir, dentry, mode);
1268}
1269EXPORT_SYMBOL_GPL(security_inode_create);
1270
1271int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1272 struct dentry *new_dentry)
1273{
1274 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1275 return 0;
1276 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1277}
1278
1279int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1280{
1281 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1282 return 0;
1283 return call_int_hook(inode_unlink, 0, dir, dentry);
1284}
1285
1286int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1287 const char *old_name)
1288{
1289 if (unlikely(IS_PRIVATE(dir)))
1290 return 0;
1291 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1292}
1293
1294int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1295{
1296 if (unlikely(IS_PRIVATE(dir)))
1297 return 0;
1298 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1299}
1300EXPORT_SYMBOL_GPL(security_inode_mkdir);
1301
1302int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1303{
1304 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1305 return 0;
1306 return call_int_hook(inode_rmdir, 0, dir, dentry);
1307}
1308
1309int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1310{
1311 if (unlikely(IS_PRIVATE(dir)))
1312 return 0;
1313 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1314}
1315
1316int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1317 struct inode *new_dir, struct dentry *new_dentry,
1318 unsigned int flags)
1319{
1320 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1321 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1322 return 0;
1323
1324 if (flags & RENAME_EXCHANGE) {
1325 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1326 old_dir, old_dentry);
1327 if (err)
1328 return err;
1329 }
1330
1331 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1332 new_dir, new_dentry);
1333}
1334
1335int security_inode_readlink(struct dentry *dentry)
1336{
1337 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1338 return 0;
1339 return call_int_hook(inode_readlink, 0, dentry);
1340}
1341
1342int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1343 bool rcu)
1344{
1345 if (unlikely(IS_PRIVATE(inode)))
1346 return 0;
1347 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1348}
1349
1350int security_inode_permission(struct inode *inode, int mask)
1351{
1352 if (unlikely(IS_PRIVATE(inode)))
1353 return 0;
1354 return call_int_hook(inode_permission, 0, inode, mask);
1355}
1356
1357int security_inode_setattr(struct user_namespace *mnt_userns,
1358 struct dentry *dentry, struct iattr *attr)
1359{
1360 int ret;
1361
1362 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1363 return 0;
1364 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1365 if (ret)
1366 return ret;
1367 return evm_inode_setattr(mnt_userns, dentry, attr);
1368}
1369EXPORT_SYMBOL_GPL(security_inode_setattr);
1370
1371int security_inode_getattr(const struct path *path)
1372{
1373 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1374 return 0;
1375 return call_int_hook(inode_getattr, 0, path);
1376}
1377
1378int security_inode_setxattr(struct user_namespace *mnt_userns,
1379 struct dentry *dentry, const char *name,
1380 const void *value, size_t size, int flags)
1381{
1382 int ret;
1383
1384 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1385 return 0;
1386 /*
1387 * SELinux and Smack integrate the cap call,
1388 * so assume that all LSMs supplying this call do so.
1389 */
1390 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1391 size, flags);
1392
1393 if (ret == 1)
1394 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1395 if (ret)
1396 return ret;
1397 ret = ima_inode_setxattr(dentry, name, value, size);
1398 if (ret)
1399 return ret;
1400 return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1401}
1402
1403int security_inode_set_acl(struct user_namespace *mnt_userns,
1404 struct dentry *dentry, const char *acl_name,
1405 struct posix_acl *kacl)
1406{
1407 int ret;
1408
1409 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1410 return 0;
1411 ret = call_int_hook(inode_set_acl, 0, mnt_userns, dentry, acl_name,
1412 kacl);
1413 if (ret)
1414 return ret;
1415 ret = ima_inode_set_acl(mnt_userns, dentry, acl_name, kacl);
1416 if (ret)
1417 return ret;
1418 return evm_inode_set_acl(mnt_userns, dentry, acl_name, kacl);
1419}
1420
1421int security_inode_get_acl(struct user_namespace *mnt_userns,
1422 struct dentry *dentry, const char *acl_name)
1423{
1424 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1425 return 0;
1426 return call_int_hook(inode_get_acl, 0, mnt_userns, dentry, acl_name);
1427}
1428
1429int security_inode_remove_acl(struct user_namespace *mnt_userns,
1430 struct dentry *dentry, const char *acl_name)
1431{
1432 int ret;
1433
1434 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1435 return 0;
1436 ret = call_int_hook(inode_remove_acl, 0, mnt_userns, dentry, acl_name);
1437 if (ret)
1438 return ret;
1439 ret = ima_inode_remove_acl(mnt_userns, dentry, acl_name);
1440 if (ret)
1441 return ret;
1442 return evm_inode_remove_acl(mnt_userns, dentry, acl_name);
1443}
1444
1445void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1446 const void *value, size_t size, int flags)
1447{
1448 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1449 return;
1450 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1451 evm_inode_post_setxattr(dentry, name, value, size);
1452}
1453
1454int security_inode_getxattr(struct dentry *dentry, const char *name)
1455{
1456 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1457 return 0;
1458 return call_int_hook(inode_getxattr, 0, dentry, name);
1459}
1460
1461int security_inode_listxattr(struct dentry *dentry)
1462{
1463 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1464 return 0;
1465 return call_int_hook(inode_listxattr, 0, dentry);
1466}
1467
1468int security_inode_removexattr(struct user_namespace *mnt_userns,
1469 struct dentry *dentry, const char *name)
1470{
1471 int ret;
1472
1473 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1474 return 0;
1475 /*
1476 * SELinux and Smack integrate the cap call,
1477 * so assume that all LSMs supplying this call do so.
1478 */
1479 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1480 if (ret == 1)
1481 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1482 if (ret)
1483 return ret;
1484 ret = ima_inode_removexattr(dentry, name);
1485 if (ret)
1486 return ret;
1487 return evm_inode_removexattr(mnt_userns, dentry, name);
1488}
1489
1490int security_inode_need_killpriv(struct dentry *dentry)
1491{
1492 return call_int_hook(inode_need_killpriv, 0, dentry);
1493}
1494
1495int security_inode_killpriv(struct user_namespace *mnt_userns,
1496 struct dentry *dentry)
1497{
1498 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1499}
1500
1501int security_inode_getsecurity(struct user_namespace *mnt_userns,
1502 struct inode *inode, const char *name,
1503 void **buffer, bool alloc)
1504{
1505 struct security_hook_list *hp;
1506 int rc;
1507
1508 if (unlikely(IS_PRIVATE(inode)))
1509 return LSM_RET_DEFAULT(inode_getsecurity);
1510 /*
1511 * Only one module will provide an attribute with a given name.
1512 */
1513 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1514 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1515 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1516 return rc;
1517 }
1518 return LSM_RET_DEFAULT(inode_getsecurity);
1519}
1520
1521int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1522{
1523 struct security_hook_list *hp;
1524 int rc;
1525
1526 if (unlikely(IS_PRIVATE(inode)))
1527 return LSM_RET_DEFAULT(inode_setsecurity);
1528 /*
1529 * Only one module will provide an attribute with a given name.
1530 */
1531 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1532 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1533 flags);
1534 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1535 return rc;
1536 }
1537 return LSM_RET_DEFAULT(inode_setsecurity);
1538}
1539
1540int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1541{
1542 if (unlikely(IS_PRIVATE(inode)))
1543 return 0;
1544 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1545}
1546EXPORT_SYMBOL(security_inode_listsecurity);
1547
1548void security_inode_getsecid(struct inode *inode, u32 *secid)
1549{
1550 call_void_hook(inode_getsecid, inode, secid);
1551}
1552
1553int security_inode_copy_up(struct dentry *src, struct cred **new)
1554{
1555 return call_int_hook(inode_copy_up, 0, src, new);
1556}
1557EXPORT_SYMBOL(security_inode_copy_up);
1558
1559int security_inode_copy_up_xattr(const char *name)
1560{
1561 struct security_hook_list *hp;
1562 int rc;
1563
1564 /*
1565 * The implementation can return 0 (accept the xattr), 1 (discard the
1566 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1567 * any other error code incase of an error.
1568 */
1569 hlist_for_each_entry(hp,
1570 &security_hook_heads.inode_copy_up_xattr, list) {
1571 rc = hp->hook.inode_copy_up_xattr(name);
1572 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1573 return rc;
1574 }
1575
1576 return LSM_RET_DEFAULT(inode_copy_up_xattr);
1577}
1578EXPORT_SYMBOL(security_inode_copy_up_xattr);
1579
1580int security_kernfs_init_security(struct kernfs_node *kn_dir,
1581 struct kernfs_node *kn)
1582{
1583 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1584}
1585
1586int security_file_permission(struct file *file, int mask)
1587{
1588 int ret;
1589
1590 ret = call_int_hook(file_permission, 0, file, mask);
1591 if (ret)
1592 return ret;
1593
1594 return fsnotify_perm(file, mask);
1595}
1596
1597int security_file_alloc(struct file *file)
1598{
1599 int rc = lsm_file_alloc(file);
1600
1601 if (rc)
1602 return rc;
1603 rc = call_int_hook(file_alloc_security, 0, file);
1604 if (unlikely(rc))
1605 security_file_free(file);
1606 return rc;
1607}
1608
1609void security_file_free(struct file *file)
1610{
1611 void *blob;
1612
1613 call_void_hook(file_free_security, file);
1614
1615 blob = file->f_security;
1616 if (blob) {
1617 file->f_security = NULL;
1618 kmem_cache_free(lsm_file_cache, blob);
1619 }
1620}
1621
1622int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1623{
1624 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1625}
1626EXPORT_SYMBOL_GPL(security_file_ioctl);
1627
1628static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1629{
1630 /*
1631 * Does we have PROT_READ and does the application expect
1632 * it to imply PROT_EXEC? If not, nothing to talk about...
1633 */
1634 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1635 return prot;
1636 if (!(current->personality & READ_IMPLIES_EXEC))
1637 return prot;
1638 /*
1639 * if that's an anonymous mapping, let it.
1640 */
1641 if (!file)
1642 return prot | PROT_EXEC;
1643 /*
1644 * ditto if it's not on noexec mount, except that on !MMU we need
1645 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1646 */
1647 if (!path_noexec(&file->f_path)) {
1648#ifndef CONFIG_MMU
1649 if (file->f_op->mmap_capabilities) {
1650 unsigned caps = file->f_op->mmap_capabilities(file);
1651 if (!(caps & NOMMU_MAP_EXEC))
1652 return prot;
1653 }
1654#endif
1655 return prot | PROT_EXEC;
1656 }
1657 /* anything on noexec mount won't get PROT_EXEC */
1658 return prot;
1659}
1660
1661int security_mmap_file(struct file *file, unsigned long prot,
1662 unsigned long flags)
1663{
1664 int ret;
1665 ret = call_int_hook(mmap_file, 0, file, prot,
1666 mmap_prot(file, prot), flags);
1667 if (ret)
1668 return ret;
1669 return ima_file_mmap(file, prot);
1670}
1671
1672int security_mmap_addr(unsigned long addr)
1673{
1674 return call_int_hook(mmap_addr, 0, addr);
1675}
1676
1677int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1678 unsigned long prot)
1679{
1680 int ret;
1681
1682 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1683 if (ret)
1684 return ret;
1685 return ima_file_mprotect(vma, prot);
1686}
1687
1688int security_file_lock(struct file *file, unsigned int cmd)
1689{
1690 return call_int_hook(file_lock, 0, file, cmd);
1691}
1692
1693int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1694{
1695 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1696}
1697
1698void security_file_set_fowner(struct file *file)
1699{
1700 call_void_hook(file_set_fowner, file);
1701}
1702
1703int security_file_send_sigiotask(struct task_struct *tsk,
1704 struct fown_struct *fown, int sig)
1705{
1706 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1707}
1708
1709int security_file_receive(struct file *file)
1710{
1711 return call_int_hook(file_receive, 0, file);
1712}
1713
1714int security_file_open(struct file *file)
1715{
1716 int ret;
1717
1718 ret = call_int_hook(file_open, 0, file);
1719 if (ret)
1720 return ret;
1721
1722 return fsnotify_perm(file, MAY_OPEN);
1723}
1724
1725int security_file_truncate(struct file *file)
1726{
1727 return call_int_hook(file_truncate, 0, file);
1728}
1729
1730int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1731{
1732 int rc = lsm_task_alloc(task);
1733
1734 if (rc)
1735 return rc;
1736 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1737 if (unlikely(rc))
1738 security_task_free(task);
1739 return rc;
1740}
1741
1742void security_task_free(struct task_struct *task)
1743{
1744 call_void_hook(task_free, task);
1745
1746 kfree(task->security);
1747 task->security = NULL;
1748}
1749
1750int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1751{
1752 int rc = lsm_cred_alloc(cred, gfp);
1753
1754 if (rc)
1755 return rc;
1756
1757 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1758 if (unlikely(rc))
1759 security_cred_free(cred);
1760 return rc;
1761}
1762
1763void security_cred_free(struct cred *cred)
1764{
1765 /*
1766 * There is a failure case in prepare_creds() that
1767 * may result in a call here with ->security being NULL.
1768 */
1769 if (unlikely(cred->security == NULL))
1770 return;
1771
1772 call_void_hook(cred_free, cred);
1773
1774 kfree(cred->security);
1775 cred->security = NULL;
1776}
1777
1778int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1779{
1780 int rc = lsm_cred_alloc(new, gfp);
1781
1782 if (rc)
1783 return rc;
1784
1785 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1786 if (unlikely(rc))
1787 security_cred_free(new);
1788 return rc;
1789}
1790
1791void security_transfer_creds(struct cred *new, const struct cred *old)
1792{
1793 call_void_hook(cred_transfer, new, old);
1794}
1795
1796void security_cred_getsecid(const struct cred *c, u32 *secid)
1797{
1798 *secid = 0;
1799 call_void_hook(cred_getsecid, c, secid);
1800}
1801EXPORT_SYMBOL(security_cred_getsecid);
1802
1803int security_kernel_act_as(struct cred *new, u32 secid)
1804{
1805 return call_int_hook(kernel_act_as, 0, new, secid);
1806}
1807
1808int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1809{
1810 return call_int_hook(kernel_create_files_as, 0, new, inode);
1811}
1812
1813int security_kernel_module_request(char *kmod_name)
1814{
1815 int ret;
1816
1817 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1818 if (ret)
1819 return ret;
1820 return integrity_kernel_module_request(kmod_name);
1821}
1822
1823int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1824 bool contents)
1825{
1826 int ret;
1827
1828 ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1829 if (ret)
1830 return ret;
1831 return ima_read_file(file, id, contents);
1832}
1833EXPORT_SYMBOL_GPL(security_kernel_read_file);
1834
1835int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1836 enum kernel_read_file_id id)
1837{
1838 int ret;
1839
1840 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1841 if (ret)
1842 return ret;
1843 return ima_post_read_file(file, buf, size, id);
1844}
1845EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1846
1847int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1848{
1849 int ret;
1850
1851 ret = call_int_hook(kernel_load_data, 0, id, contents);
1852 if (ret)
1853 return ret;
1854 return ima_load_data(id, contents);
1855}
1856EXPORT_SYMBOL_GPL(security_kernel_load_data);
1857
1858int security_kernel_post_load_data(char *buf, loff_t size,
1859 enum kernel_load_data_id id,
1860 char *description)
1861{
1862 int ret;
1863
1864 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1865 description);
1866 if (ret)
1867 return ret;
1868 return ima_post_load_data(buf, size, id, description);
1869}
1870EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1871
1872int security_task_fix_setuid(struct cred *new, const struct cred *old,
1873 int flags)
1874{
1875 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1876}
1877
1878int security_task_fix_setgid(struct cred *new, const struct cred *old,
1879 int flags)
1880{
1881 return call_int_hook(task_fix_setgid, 0, new, old, flags);
1882}
1883
1884int security_task_fix_setgroups(struct cred *new, const struct cred *old)
1885{
1886 return call_int_hook(task_fix_setgroups, 0, new, old);
1887}
1888
1889int security_task_setpgid(struct task_struct *p, pid_t pgid)
1890{
1891 return call_int_hook(task_setpgid, 0, p, pgid);
1892}
1893
1894int security_task_getpgid(struct task_struct *p)
1895{
1896 return call_int_hook(task_getpgid, 0, p);
1897}
1898
1899int security_task_getsid(struct task_struct *p)
1900{
1901 return call_int_hook(task_getsid, 0, p);
1902}
1903
1904void security_current_getsecid_subj(u32 *secid)
1905{
1906 *secid = 0;
1907 call_void_hook(current_getsecid_subj, secid);
1908}
1909EXPORT_SYMBOL(security_current_getsecid_subj);
1910
1911void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1912{
1913 *secid = 0;
1914 call_void_hook(task_getsecid_obj, p, secid);
1915}
1916EXPORT_SYMBOL(security_task_getsecid_obj);
1917
1918int security_task_setnice(struct task_struct *p, int nice)
1919{
1920 return call_int_hook(task_setnice, 0, p, nice);
1921}
1922
1923int security_task_setioprio(struct task_struct *p, int ioprio)
1924{
1925 return call_int_hook(task_setioprio, 0, p, ioprio);
1926}
1927
1928int security_task_getioprio(struct task_struct *p)
1929{
1930 return call_int_hook(task_getioprio, 0, p);
1931}
1932
1933int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1934 unsigned int flags)
1935{
1936 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1937}
1938
1939int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1940 struct rlimit *new_rlim)
1941{
1942 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1943}
1944
1945int security_task_setscheduler(struct task_struct *p)
1946{
1947 return call_int_hook(task_setscheduler, 0, p);
1948}
1949
1950int security_task_getscheduler(struct task_struct *p)
1951{
1952 return call_int_hook(task_getscheduler, 0, p);
1953}
1954
1955int security_task_movememory(struct task_struct *p)
1956{
1957 return call_int_hook(task_movememory, 0, p);
1958}
1959
1960int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1961 int sig, const struct cred *cred)
1962{
1963 return call_int_hook(task_kill, 0, p, info, sig, cred);
1964}
1965
1966int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1967 unsigned long arg4, unsigned long arg5)
1968{
1969 int thisrc;
1970 int rc = LSM_RET_DEFAULT(task_prctl);
1971 struct security_hook_list *hp;
1972
1973 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1974 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1975 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1976 rc = thisrc;
1977 if (thisrc != 0)
1978 break;
1979 }
1980 }
1981 return rc;
1982}
1983
1984void security_task_to_inode(struct task_struct *p, struct inode *inode)
1985{
1986 call_void_hook(task_to_inode, p, inode);
1987}
1988
1989int security_create_user_ns(const struct cred *cred)
1990{
1991 return call_int_hook(userns_create, 0, cred);
1992}
1993
1994int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1995{
1996 return call_int_hook(ipc_permission, 0, ipcp, flag);
1997}
1998
1999void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
2000{
2001 *secid = 0;
2002 call_void_hook(ipc_getsecid, ipcp, secid);
2003}
2004
2005int security_msg_msg_alloc(struct msg_msg *msg)
2006{
2007 int rc = lsm_msg_msg_alloc(msg);
2008
2009 if (unlikely(rc))
2010 return rc;
2011 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
2012 if (unlikely(rc))
2013 security_msg_msg_free(msg);
2014 return rc;
2015}
2016
2017void security_msg_msg_free(struct msg_msg *msg)
2018{
2019 call_void_hook(msg_msg_free_security, msg);
2020 kfree(msg->security);
2021 msg->security = NULL;
2022}
2023
2024int security_msg_queue_alloc(struct kern_ipc_perm *msq)
2025{
2026 int rc = lsm_ipc_alloc(msq);
2027
2028 if (unlikely(rc))
2029 return rc;
2030 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
2031 if (unlikely(rc))
2032 security_msg_queue_free(msq);
2033 return rc;
2034}
2035
2036void security_msg_queue_free(struct kern_ipc_perm *msq)
2037{
2038 call_void_hook(msg_queue_free_security, msq);
2039 kfree(msq->security);
2040 msq->security = NULL;
2041}
2042
2043int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
2044{
2045 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
2046}
2047
2048int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
2049{
2050 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
2051}
2052
2053int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
2054 struct msg_msg *msg, int msqflg)
2055{
2056 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
2057}
2058
2059int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
2060 struct task_struct *target, long type, int mode)
2061{
2062 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
2063}
2064
2065int security_shm_alloc(struct kern_ipc_perm *shp)
2066{
2067 int rc = lsm_ipc_alloc(shp);
2068
2069 if (unlikely(rc))
2070 return rc;
2071 rc = call_int_hook(shm_alloc_security, 0, shp);
2072 if (unlikely(rc))
2073 security_shm_free(shp);
2074 return rc;
2075}
2076
2077void security_shm_free(struct kern_ipc_perm *shp)
2078{
2079 call_void_hook(shm_free_security, shp);
2080 kfree(shp->security);
2081 shp->security = NULL;
2082}
2083
2084int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
2085{
2086 return call_int_hook(shm_associate, 0, shp, shmflg);
2087}
2088
2089int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2090{
2091 return call_int_hook(shm_shmctl, 0, shp, cmd);
2092}
2093
2094int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2095{
2096 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2097}
2098
2099int security_sem_alloc(struct kern_ipc_perm *sma)
2100{
2101 int rc = lsm_ipc_alloc(sma);
2102
2103 if (unlikely(rc))
2104 return rc;
2105 rc = call_int_hook(sem_alloc_security, 0, sma);
2106 if (unlikely(rc))
2107 security_sem_free(sma);
2108 return rc;
2109}
2110
2111void security_sem_free(struct kern_ipc_perm *sma)
2112{
2113 call_void_hook(sem_free_security, sma);
2114 kfree(sma->security);
2115 sma->security = NULL;
2116}
2117
2118int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2119{
2120 return call_int_hook(sem_associate, 0, sma, semflg);
2121}
2122
2123int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2124{
2125 return call_int_hook(sem_semctl, 0, sma, cmd);
2126}
2127
2128int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2129 unsigned nsops, int alter)
2130{
2131 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2132}
2133
2134void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2135{
2136 if (unlikely(inode && IS_PRIVATE(inode)))
2137 return;
2138 call_void_hook(d_instantiate, dentry, inode);
2139}
2140EXPORT_SYMBOL(security_d_instantiate);
2141
2142int security_getprocattr(struct task_struct *p, const char *lsm,
2143 const char *name, char **value)
2144{
2145 struct security_hook_list *hp;
2146
2147 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2148 if (lsm != NULL && strcmp(lsm, hp->lsm))
2149 continue;
2150 return hp->hook.getprocattr(p, name, value);
2151 }
2152 return LSM_RET_DEFAULT(getprocattr);
2153}
2154
2155int security_setprocattr(const char *lsm, const char *name, void *value,
2156 size_t size)
2157{
2158 struct security_hook_list *hp;
2159
2160 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2161 if (lsm != NULL && strcmp(lsm, hp->lsm))
2162 continue;
2163 return hp->hook.setprocattr(name, value, size);
2164 }
2165 return LSM_RET_DEFAULT(setprocattr);
2166}
2167
2168int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2169{
2170 return call_int_hook(netlink_send, 0, sk, skb);
2171}
2172
2173int security_ismaclabel(const char *name)
2174{
2175 return call_int_hook(ismaclabel, 0, name);
2176}
2177EXPORT_SYMBOL(security_ismaclabel);
2178
2179int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2180{
2181 struct security_hook_list *hp;
2182 int rc;
2183
2184 /*
2185 * Currently, only one LSM can implement secid_to_secctx (i.e this
2186 * LSM hook is not "stackable").
2187 */
2188 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2189 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2190 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2191 return rc;
2192 }
2193
2194 return LSM_RET_DEFAULT(secid_to_secctx);
2195}
2196EXPORT_SYMBOL(security_secid_to_secctx);
2197
2198int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2199{
2200 *secid = 0;
2201 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2202}
2203EXPORT_SYMBOL(security_secctx_to_secid);
2204
2205void security_release_secctx(char *secdata, u32 seclen)
2206{
2207 call_void_hook(release_secctx, secdata, seclen);
2208}
2209EXPORT_SYMBOL(security_release_secctx);
2210
2211void security_inode_invalidate_secctx(struct inode *inode)
2212{
2213 call_void_hook(inode_invalidate_secctx, inode);
2214}
2215EXPORT_SYMBOL(security_inode_invalidate_secctx);
2216
2217int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2218{
2219 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2220}
2221EXPORT_SYMBOL(security_inode_notifysecctx);
2222
2223int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2224{
2225 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2226}
2227EXPORT_SYMBOL(security_inode_setsecctx);
2228
2229int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2230{
2231 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2232}
2233EXPORT_SYMBOL(security_inode_getsecctx);
2234
2235#ifdef CONFIG_WATCH_QUEUE
2236int security_post_notification(const struct cred *w_cred,
2237 const struct cred *cred,
2238 struct watch_notification *n)
2239{
2240 return call_int_hook(post_notification, 0, w_cred, cred, n);
2241}
2242#endif /* CONFIG_WATCH_QUEUE */
2243
2244#ifdef CONFIG_KEY_NOTIFICATIONS
2245int security_watch_key(struct key *key)
2246{
2247 return call_int_hook(watch_key, 0, key);
2248}
2249#endif
2250
2251#ifdef CONFIG_SECURITY_NETWORK
2252
2253int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2254{
2255 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2256}
2257EXPORT_SYMBOL(security_unix_stream_connect);
2258
2259int security_unix_may_send(struct socket *sock, struct socket *other)
2260{
2261 return call_int_hook(unix_may_send, 0, sock, other);
2262}
2263EXPORT_SYMBOL(security_unix_may_send);
2264
2265int security_socket_create(int family, int type, int protocol, int kern)
2266{
2267 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2268}
2269
2270int security_socket_post_create(struct socket *sock, int family,
2271 int type, int protocol, int kern)
2272{
2273 return call_int_hook(socket_post_create, 0, sock, family, type,
2274 protocol, kern);
2275}
2276
2277int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2278{
2279 return call_int_hook(socket_socketpair, 0, socka, sockb);
2280}
2281EXPORT_SYMBOL(security_socket_socketpair);
2282
2283int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2284{
2285 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2286}
2287
2288int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2289{
2290 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2291}
2292
2293int security_socket_listen(struct socket *sock, int backlog)
2294{
2295 return call_int_hook(socket_listen, 0, sock, backlog);
2296}
2297
2298int security_socket_accept(struct socket *sock, struct socket *newsock)
2299{
2300 return call_int_hook(socket_accept, 0, sock, newsock);
2301}
2302
2303int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2304{
2305 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2306}
2307
2308int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2309 int size, int flags)
2310{
2311 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2312}
2313
2314int security_socket_getsockname(struct socket *sock)
2315{
2316 return call_int_hook(socket_getsockname, 0, sock);
2317}
2318
2319int security_socket_getpeername(struct socket *sock)
2320{
2321 return call_int_hook(socket_getpeername, 0, sock);
2322}
2323
2324int security_socket_getsockopt(struct socket *sock, int level, int optname)
2325{
2326 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2327}
2328
2329int security_socket_setsockopt(struct socket *sock, int level, int optname)
2330{
2331 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2332}
2333
2334int security_socket_shutdown(struct socket *sock, int how)
2335{
2336 return call_int_hook(socket_shutdown, 0, sock, how);
2337}
2338
2339int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2340{
2341 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2342}
2343EXPORT_SYMBOL(security_sock_rcv_skb);
2344
2345int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
2346 sockptr_t optlen, unsigned int len)
2347{
2348 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2349 optval, optlen, len);
2350}
2351
2352int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2353{
2354 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2355 skb, secid);
2356}
2357EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2358
2359int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2360{
2361 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2362}
2363
2364void security_sk_free(struct sock *sk)
2365{
2366 call_void_hook(sk_free_security, sk);
2367}
2368
2369void security_sk_clone(const struct sock *sk, struct sock *newsk)
2370{
2371 call_void_hook(sk_clone_security, sk, newsk);
2372}
2373EXPORT_SYMBOL(security_sk_clone);
2374
2375void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2376{
2377 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2378}
2379EXPORT_SYMBOL(security_sk_classify_flow);
2380
2381void security_req_classify_flow(const struct request_sock *req,
2382 struct flowi_common *flic)
2383{
2384 call_void_hook(req_classify_flow, req, flic);
2385}
2386EXPORT_SYMBOL(security_req_classify_flow);
2387
2388void security_sock_graft(struct sock *sk, struct socket *parent)
2389{
2390 call_void_hook(sock_graft, sk, parent);
2391}
2392EXPORT_SYMBOL(security_sock_graft);
2393
2394int security_inet_conn_request(const struct sock *sk,
2395 struct sk_buff *skb, struct request_sock *req)
2396{
2397 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2398}
2399EXPORT_SYMBOL(security_inet_conn_request);
2400
2401void security_inet_csk_clone(struct sock *newsk,
2402 const struct request_sock *req)
2403{
2404 call_void_hook(inet_csk_clone, newsk, req);
2405}
2406
2407void security_inet_conn_established(struct sock *sk,
2408 struct sk_buff *skb)
2409{
2410 call_void_hook(inet_conn_established, sk, skb);
2411}
2412EXPORT_SYMBOL(security_inet_conn_established);
2413
2414int security_secmark_relabel_packet(u32 secid)
2415{
2416 return call_int_hook(secmark_relabel_packet, 0, secid);
2417}
2418EXPORT_SYMBOL(security_secmark_relabel_packet);
2419
2420void security_secmark_refcount_inc(void)
2421{
2422 call_void_hook(secmark_refcount_inc);
2423}
2424EXPORT_SYMBOL(security_secmark_refcount_inc);
2425
2426void security_secmark_refcount_dec(void)
2427{
2428 call_void_hook(secmark_refcount_dec);
2429}
2430EXPORT_SYMBOL(security_secmark_refcount_dec);
2431
2432int security_tun_dev_alloc_security(void **security)
2433{
2434 return call_int_hook(tun_dev_alloc_security, 0, security);
2435}
2436EXPORT_SYMBOL(security_tun_dev_alloc_security);
2437
2438void security_tun_dev_free_security(void *security)
2439{
2440 call_void_hook(tun_dev_free_security, security);
2441}
2442EXPORT_SYMBOL(security_tun_dev_free_security);
2443
2444int security_tun_dev_create(void)
2445{
2446 return call_int_hook(tun_dev_create, 0);
2447}
2448EXPORT_SYMBOL(security_tun_dev_create);
2449
2450int security_tun_dev_attach_queue(void *security)
2451{
2452 return call_int_hook(tun_dev_attach_queue, 0, security);
2453}
2454EXPORT_SYMBOL(security_tun_dev_attach_queue);
2455
2456int security_tun_dev_attach(struct sock *sk, void *security)
2457{
2458 return call_int_hook(tun_dev_attach, 0, sk, security);
2459}
2460EXPORT_SYMBOL(security_tun_dev_attach);
2461
2462int security_tun_dev_open(void *security)
2463{
2464 return call_int_hook(tun_dev_open, 0, security);
2465}
2466EXPORT_SYMBOL(security_tun_dev_open);
2467
2468int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2469{
2470 return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2471}
2472EXPORT_SYMBOL(security_sctp_assoc_request);
2473
2474int security_sctp_bind_connect(struct sock *sk, int optname,
2475 struct sockaddr *address, int addrlen)
2476{
2477 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2478 address, addrlen);
2479}
2480EXPORT_SYMBOL(security_sctp_bind_connect);
2481
2482void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2483 struct sock *newsk)
2484{
2485 call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2486}
2487EXPORT_SYMBOL(security_sctp_sk_clone);
2488
2489int security_sctp_assoc_established(struct sctp_association *asoc,
2490 struct sk_buff *skb)
2491{
2492 return call_int_hook(sctp_assoc_established, 0, asoc, skb);
2493}
2494EXPORT_SYMBOL(security_sctp_assoc_established);
2495
2496#endif /* CONFIG_SECURITY_NETWORK */
2497
2498#ifdef CONFIG_SECURITY_INFINIBAND
2499
2500int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2501{
2502 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2503}
2504EXPORT_SYMBOL(security_ib_pkey_access);
2505
2506int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2507{
2508 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2509}
2510EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2511
2512int security_ib_alloc_security(void **sec)
2513{
2514 return call_int_hook(ib_alloc_security, 0, sec);
2515}
2516EXPORT_SYMBOL(security_ib_alloc_security);
2517
2518void security_ib_free_security(void *sec)
2519{
2520 call_void_hook(ib_free_security, sec);
2521}
2522EXPORT_SYMBOL(security_ib_free_security);
2523#endif /* CONFIG_SECURITY_INFINIBAND */
2524
2525#ifdef CONFIG_SECURITY_NETWORK_XFRM
2526
2527int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2528 struct xfrm_user_sec_ctx *sec_ctx,
2529 gfp_t gfp)
2530{
2531 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2532}
2533EXPORT_SYMBOL(security_xfrm_policy_alloc);
2534
2535int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2536 struct xfrm_sec_ctx **new_ctxp)
2537{
2538 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2539}
2540
2541void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2542{
2543 call_void_hook(xfrm_policy_free_security, ctx);
2544}
2545EXPORT_SYMBOL(security_xfrm_policy_free);
2546
2547int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2548{
2549 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2550}
2551
2552int security_xfrm_state_alloc(struct xfrm_state *x,
2553 struct xfrm_user_sec_ctx *sec_ctx)
2554{
2555 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2556}
2557EXPORT_SYMBOL(security_xfrm_state_alloc);
2558
2559int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2560 struct xfrm_sec_ctx *polsec, u32 secid)
2561{
2562 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2563}
2564
2565int security_xfrm_state_delete(struct xfrm_state *x)
2566{
2567 return call_int_hook(xfrm_state_delete_security, 0, x);
2568}
2569EXPORT_SYMBOL(security_xfrm_state_delete);
2570
2571void security_xfrm_state_free(struct xfrm_state *x)
2572{
2573 call_void_hook(xfrm_state_free_security, x);
2574}
2575
2576int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2577{
2578 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2579}
2580
2581int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2582 struct xfrm_policy *xp,
2583 const struct flowi_common *flic)
2584{
2585 struct security_hook_list *hp;
2586 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2587
2588 /*
2589 * Since this function is expected to return 0 or 1, the judgment
2590 * becomes difficult if multiple LSMs supply this call. Fortunately,
2591 * we can use the first LSM's judgment because currently only SELinux
2592 * supplies this call.
2593 *
2594 * For speed optimization, we explicitly break the loop rather than
2595 * using the macro
2596 */
2597 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2598 list) {
2599 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2600 break;
2601 }
2602 return rc;
2603}
2604
2605int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2606{
2607 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2608}
2609
2610void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2611{
2612 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2613 0);
2614
2615 BUG_ON(rc);
2616}
2617EXPORT_SYMBOL(security_skb_classify_flow);
2618
2619#endif /* CONFIG_SECURITY_NETWORK_XFRM */
2620
2621#ifdef CONFIG_KEYS
2622
2623int security_key_alloc(struct key *key, const struct cred *cred,
2624 unsigned long flags)
2625{
2626 return call_int_hook(key_alloc, 0, key, cred, flags);
2627}
2628
2629void security_key_free(struct key *key)
2630{
2631 call_void_hook(key_free, key);
2632}
2633
2634int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2635 enum key_need_perm need_perm)
2636{
2637 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2638}
2639
2640int security_key_getsecurity(struct key *key, char **_buffer)
2641{
2642 *_buffer = NULL;
2643 return call_int_hook(key_getsecurity, 0, key, _buffer);
2644}
2645
2646#endif /* CONFIG_KEYS */
2647
2648#ifdef CONFIG_AUDIT
2649
2650int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2651{
2652 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2653}
2654
2655int security_audit_rule_known(struct audit_krule *krule)
2656{
2657 return call_int_hook(audit_rule_known, 0, krule);
2658}
2659
2660void security_audit_rule_free(void *lsmrule)
2661{
2662 call_void_hook(audit_rule_free, lsmrule);
2663}
2664
2665int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2666{
2667 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2668}
2669#endif /* CONFIG_AUDIT */
2670
2671#ifdef CONFIG_BPF_SYSCALL
2672int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2673{
2674 return call_int_hook(bpf, 0, cmd, attr, size);
2675}
2676int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2677{
2678 return call_int_hook(bpf_map, 0, map, fmode);
2679}
2680int security_bpf_prog(struct bpf_prog *prog)
2681{
2682 return call_int_hook(bpf_prog, 0, prog);
2683}
2684int security_bpf_map_alloc(struct bpf_map *map)
2685{
2686 return call_int_hook(bpf_map_alloc_security, 0, map);
2687}
2688int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2689{
2690 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2691}
2692void security_bpf_map_free(struct bpf_map *map)
2693{
2694 call_void_hook(bpf_map_free_security, map);
2695}
2696void security_bpf_prog_free(struct bpf_prog_aux *aux)
2697{
2698 call_void_hook(bpf_prog_free_security, aux);
2699}
2700#endif /* CONFIG_BPF_SYSCALL */
2701
2702int security_locked_down(enum lockdown_reason what)
2703{
2704 return call_int_hook(locked_down, 0, what);
2705}
2706EXPORT_SYMBOL(security_locked_down);
2707
2708#ifdef CONFIG_PERF_EVENTS
2709int security_perf_event_open(struct perf_event_attr *attr, int type)
2710{
2711 return call_int_hook(perf_event_open, 0, attr, type);
2712}
2713
2714int security_perf_event_alloc(struct perf_event *event)
2715{
2716 return call_int_hook(perf_event_alloc, 0, event);
2717}
2718
2719void security_perf_event_free(struct perf_event *event)
2720{
2721 call_void_hook(perf_event_free, event);
2722}
2723
2724int security_perf_event_read(struct perf_event *event)
2725{
2726 return call_int_hook(perf_event_read, 0, event);
2727}
2728
2729int security_perf_event_write(struct perf_event *event)
2730{
2731 return call_int_hook(perf_event_write, 0, event);
2732}
2733#endif /* CONFIG_PERF_EVENTS */
2734
2735#ifdef CONFIG_IO_URING
2736int security_uring_override_creds(const struct cred *new)
2737{
2738 return call_int_hook(uring_override_creds, 0, new);
2739}
2740
2741int security_uring_sqpoll(void)
2742{
2743 return call_int_hook(uring_sqpoll, 0);
2744}
2745int security_uring_cmd(struct io_uring_cmd *ioucmd)
2746{
2747 return call_int_hook(uring_cmd, 0, ioucmd);
2748}
2749#endif /* CONFIG_IO_URING */