Loading...
1/*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7#include <linux/sched.h>
8#include <linux/errno.h>
9#include <linux/freezer.h>
10#include <linux/kthread.h>
11#include <linux/slab.h>
12#include <net/sock.h>
13#include <linux/sunrpc/addr.h>
14#include <linux/sunrpc/stats.h>
15#include <linux/sunrpc/svc_xprt.h>
16#include <linux/sunrpc/svcsock.h>
17#include <linux/sunrpc/xprt.h>
18#include <linux/module.h>
19#include <linux/netdevice.h>
20#include <trace/events/sunrpc.h>
21
22#define RPCDBG_FACILITY RPCDBG_SVCXPRT
23
24static unsigned int svc_rpc_per_connection_limit __read_mostly;
25module_param(svc_rpc_per_connection_limit, uint, 0644);
26
27
28static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29static int svc_deferred_recv(struct svc_rqst *rqstp);
30static struct cache_deferred_req *svc_defer(struct cache_req *req);
31static void svc_age_temp_xprts(struct timer_list *t);
32static void svc_delete_xprt(struct svc_xprt *xprt);
33
34/* apparently the "standard" is that clients close
35 * idle connections after 5 minutes, servers after
36 * 6 minutes
37 * http://www.connectathon.org/talks96/nfstcp.pdf
38 */
39static int svc_conn_age_period = 6*60;
40
41/* List of registered transport classes */
42static DEFINE_SPINLOCK(svc_xprt_class_lock);
43static LIST_HEAD(svc_xprt_class_list);
44
45/* SMP locking strategy:
46 *
47 * svc_pool->sp_lock protects most of the fields of that pool.
48 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49 * when both need to be taken (rare), svc_serv->sv_lock is first.
50 * The "service mutex" protects svc_serv->sv_nrthread.
51 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
52 * and the ->sk_info_authunix cache.
53 *
54 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55 * enqueued multiply. During normal transport processing this bit
56 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57 * Providers should not manipulate this bit directly.
58 *
59 * Some flags can be set to certain values at any time
60 * providing that certain rules are followed:
61 *
62 * XPT_CONN, XPT_DATA:
63 * - Can be set or cleared at any time.
64 * - After a set, svc_xprt_enqueue must be called to enqueue
65 * the transport for processing.
66 * - After a clear, the transport must be read/accepted.
67 * If this succeeds, it must be set again.
68 * XPT_CLOSE:
69 * - Can set at any time. It is never cleared.
70 * XPT_DEAD:
71 * - Can only be set while XPT_BUSY is held which ensures
72 * that no other thread will be using the transport or will
73 * try to set XPT_DEAD.
74 */
75int svc_reg_xprt_class(struct svc_xprt_class *xcl)
76{
77 struct svc_xprt_class *cl;
78 int res = -EEXIST;
79
80 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
81
82 INIT_LIST_HEAD(&xcl->xcl_list);
83 spin_lock(&svc_xprt_class_lock);
84 /* Make sure there isn't already a class with the same name */
85 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 goto out;
88 }
89 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 res = 0;
91out:
92 spin_unlock(&svc_xprt_class_lock);
93 return res;
94}
95EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
96
97void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
98{
99 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 spin_lock(&svc_xprt_class_lock);
101 list_del_init(&xcl->xcl_list);
102 spin_unlock(&svc_xprt_class_lock);
103}
104EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
105
106/*
107 * Format the transport list for printing
108 */
109int svc_print_xprts(char *buf, int maxlen)
110{
111 struct svc_xprt_class *xcl;
112 char tmpstr[80];
113 int len = 0;
114 buf[0] = '\0';
115
116 spin_lock(&svc_xprt_class_lock);
117 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
118 int slen;
119
120 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
121 slen = strlen(tmpstr);
122 if (len + slen > maxlen)
123 break;
124 len += slen;
125 strcat(buf, tmpstr);
126 }
127 spin_unlock(&svc_xprt_class_lock);
128
129 return len;
130}
131
132static void svc_xprt_free(struct kref *kref)
133{
134 struct svc_xprt *xprt =
135 container_of(kref, struct svc_xprt, xpt_ref);
136 struct module *owner = xprt->xpt_class->xcl_owner;
137 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
138 svcauth_unix_info_release(xprt);
139 put_net(xprt->xpt_net);
140 /* See comment on corresponding get in xs_setup_bc_tcp(): */
141 if (xprt->xpt_bc_xprt)
142 xprt_put(xprt->xpt_bc_xprt);
143 if (xprt->xpt_bc_xps)
144 xprt_switch_put(xprt->xpt_bc_xps);
145 xprt->xpt_ops->xpo_free(xprt);
146 module_put(owner);
147}
148
149void svc_xprt_put(struct svc_xprt *xprt)
150{
151 kref_put(&xprt->xpt_ref, svc_xprt_free);
152}
153EXPORT_SYMBOL_GPL(svc_xprt_put);
154
155/*
156 * Called by transport drivers to initialize the transport independent
157 * portion of the transport instance.
158 */
159void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
160 struct svc_xprt *xprt, struct svc_serv *serv)
161{
162 memset(xprt, 0, sizeof(*xprt));
163 xprt->xpt_class = xcl;
164 xprt->xpt_ops = xcl->xcl_ops;
165 kref_init(&xprt->xpt_ref);
166 xprt->xpt_server = serv;
167 INIT_LIST_HEAD(&xprt->xpt_list);
168 INIT_LIST_HEAD(&xprt->xpt_ready);
169 INIT_LIST_HEAD(&xprt->xpt_deferred);
170 INIT_LIST_HEAD(&xprt->xpt_users);
171 mutex_init(&xprt->xpt_mutex);
172 spin_lock_init(&xprt->xpt_lock);
173 set_bit(XPT_BUSY, &xprt->xpt_flags);
174 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
175 xprt->xpt_net = get_net(net);
176 strcpy(xprt->xpt_remotebuf, "uninitialized");
177}
178EXPORT_SYMBOL_GPL(svc_xprt_init);
179
180static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
181 struct svc_serv *serv,
182 struct net *net,
183 const int family,
184 const unsigned short port,
185 int flags)
186{
187 struct sockaddr_in sin = {
188 .sin_family = AF_INET,
189 .sin_addr.s_addr = htonl(INADDR_ANY),
190 .sin_port = htons(port),
191 };
192#if IS_ENABLED(CONFIG_IPV6)
193 struct sockaddr_in6 sin6 = {
194 .sin6_family = AF_INET6,
195 .sin6_addr = IN6ADDR_ANY_INIT,
196 .sin6_port = htons(port),
197 };
198#endif
199 struct sockaddr *sap;
200 size_t len;
201
202 switch (family) {
203 case PF_INET:
204 sap = (struct sockaddr *)&sin;
205 len = sizeof(sin);
206 break;
207#if IS_ENABLED(CONFIG_IPV6)
208 case PF_INET6:
209 sap = (struct sockaddr *)&sin6;
210 len = sizeof(sin6);
211 break;
212#endif
213 default:
214 return ERR_PTR(-EAFNOSUPPORT);
215 }
216
217 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
218}
219
220/*
221 * svc_xprt_received conditionally queues the transport for processing
222 * by another thread. The caller must hold the XPT_BUSY bit and must
223 * not thereafter touch transport data.
224 *
225 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
226 * insufficient) data.
227 */
228static void svc_xprt_received(struct svc_xprt *xprt)
229{
230 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
231 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
232 return;
233 }
234
235 /* As soon as we clear busy, the xprt could be closed and
236 * 'put', so we need a reference to call svc_enqueue_xprt with:
237 */
238 svc_xprt_get(xprt);
239 smp_mb__before_atomic();
240 clear_bit(XPT_BUSY, &xprt->xpt_flags);
241 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
242 svc_xprt_put(xprt);
243}
244
245void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
246{
247 clear_bit(XPT_TEMP, &new->xpt_flags);
248 spin_lock_bh(&serv->sv_lock);
249 list_add(&new->xpt_list, &serv->sv_permsocks);
250 spin_unlock_bh(&serv->sv_lock);
251 svc_xprt_received(new);
252}
253
254static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
255 struct net *net, const int family,
256 const unsigned short port, int flags)
257{
258 struct svc_xprt_class *xcl;
259
260 spin_lock(&svc_xprt_class_lock);
261 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
262 struct svc_xprt *newxprt;
263 unsigned short newport;
264
265 if (strcmp(xprt_name, xcl->xcl_name))
266 continue;
267
268 if (!try_module_get(xcl->xcl_owner))
269 goto err;
270
271 spin_unlock(&svc_xprt_class_lock);
272 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
273 if (IS_ERR(newxprt)) {
274 module_put(xcl->xcl_owner);
275 return PTR_ERR(newxprt);
276 }
277 svc_add_new_perm_xprt(serv, newxprt);
278 newport = svc_xprt_local_port(newxprt);
279 return newport;
280 }
281 err:
282 spin_unlock(&svc_xprt_class_lock);
283 /* This errno is exposed to user space. Provide a reasonable
284 * perror msg for a bad transport. */
285 return -EPROTONOSUPPORT;
286}
287
288int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
289 struct net *net, const int family,
290 const unsigned short port, int flags)
291{
292 int err;
293
294 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
295 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
296 if (err == -EPROTONOSUPPORT) {
297 request_module("svc%s", xprt_name);
298 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
299 }
300 if (err)
301 dprintk("svc: transport %s not found, err %d\n",
302 xprt_name, err);
303 return err;
304}
305EXPORT_SYMBOL_GPL(svc_create_xprt);
306
307/*
308 * Copy the local and remote xprt addresses to the rqstp structure
309 */
310void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
311{
312 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
313 rqstp->rq_addrlen = xprt->xpt_remotelen;
314
315 /*
316 * Destination address in request is needed for binding the
317 * source address in RPC replies/callbacks later.
318 */
319 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
320 rqstp->rq_daddrlen = xprt->xpt_locallen;
321}
322EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
323
324/**
325 * svc_print_addr - Format rq_addr field for printing
326 * @rqstp: svc_rqst struct containing address to print
327 * @buf: target buffer for formatted address
328 * @len: length of target buffer
329 *
330 */
331char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
332{
333 return __svc_print_addr(svc_addr(rqstp), buf, len);
334}
335EXPORT_SYMBOL_GPL(svc_print_addr);
336
337static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
338{
339 unsigned int limit = svc_rpc_per_connection_limit;
340 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
341
342 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
343}
344
345static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
346{
347 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
348 if (!svc_xprt_slots_in_range(xprt))
349 return false;
350 atomic_inc(&xprt->xpt_nr_rqsts);
351 set_bit(RQ_DATA, &rqstp->rq_flags);
352 }
353 return true;
354}
355
356static void svc_xprt_release_slot(struct svc_rqst *rqstp)
357{
358 struct svc_xprt *xprt = rqstp->rq_xprt;
359 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
360 atomic_dec(&xprt->xpt_nr_rqsts);
361 svc_xprt_enqueue(xprt);
362 }
363}
364
365static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
366{
367 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
368 return true;
369 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
370 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
371 svc_xprt_slots_in_range(xprt))
372 return true;
373 trace_svc_xprt_no_write_space(xprt);
374 return false;
375 }
376 return false;
377}
378
379void svc_xprt_do_enqueue(struct svc_xprt *xprt)
380{
381 struct svc_pool *pool;
382 struct svc_rqst *rqstp = NULL;
383 int cpu;
384
385 if (!svc_xprt_has_something_to_do(xprt))
386 return;
387
388 /* Mark transport as busy. It will remain in this state until
389 * the provider calls svc_xprt_received. We update XPT_BUSY
390 * atomically because it also guards against trying to enqueue
391 * the transport twice.
392 */
393 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
394 return;
395
396 cpu = get_cpu();
397 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
398
399 atomic_long_inc(&pool->sp_stats.packets);
400
401 spin_lock_bh(&pool->sp_lock);
402 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
403 pool->sp_stats.sockets_queued++;
404 spin_unlock_bh(&pool->sp_lock);
405
406 /* find a thread for this xprt */
407 rcu_read_lock();
408 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
409 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
410 continue;
411 atomic_long_inc(&pool->sp_stats.threads_woken);
412 rqstp->rq_qtime = ktime_get();
413 wake_up_process(rqstp->rq_task);
414 goto out_unlock;
415 }
416 set_bit(SP_CONGESTED, &pool->sp_flags);
417 rqstp = NULL;
418out_unlock:
419 rcu_read_unlock();
420 put_cpu();
421 trace_svc_xprt_do_enqueue(xprt, rqstp);
422}
423EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
424
425/*
426 * Queue up a transport with data pending. If there are idle nfsd
427 * processes, wake 'em up.
428 *
429 */
430void svc_xprt_enqueue(struct svc_xprt *xprt)
431{
432 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
433 return;
434 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
435}
436EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
437
438/*
439 * Dequeue the first transport, if there is one.
440 */
441static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
442{
443 struct svc_xprt *xprt = NULL;
444
445 if (list_empty(&pool->sp_sockets))
446 goto out;
447
448 spin_lock_bh(&pool->sp_lock);
449 if (likely(!list_empty(&pool->sp_sockets))) {
450 xprt = list_first_entry(&pool->sp_sockets,
451 struct svc_xprt, xpt_ready);
452 list_del_init(&xprt->xpt_ready);
453 svc_xprt_get(xprt);
454 }
455 spin_unlock_bh(&pool->sp_lock);
456out:
457 return xprt;
458}
459
460/**
461 * svc_reserve - change the space reserved for the reply to a request.
462 * @rqstp: The request in question
463 * @space: new max space to reserve
464 *
465 * Each request reserves some space on the output queue of the transport
466 * to make sure the reply fits. This function reduces that reserved
467 * space to be the amount of space used already, plus @space.
468 *
469 */
470void svc_reserve(struct svc_rqst *rqstp, int space)
471{
472 space += rqstp->rq_res.head[0].iov_len;
473
474 if (space < rqstp->rq_reserved) {
475 struct svc_xprt *xprt = rqstp->rq_xprt;
476 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
477 rqstp->rq_reserved = space;
478
479 svc_xprt_enqueue(xprt);
480 }
481}
482EXPORT_SYMBOL_GPL(svc_reserve);
483
484static void svc_xprt_release(struct svc_rqst *rqstp)
485{
486 struct svc_xprt *xprt = rqstp->rq_xprt;
487
488 xprt->xpt_ops->xpo_release_rqst(rqstp);
489
490 kfree(rqstp->rq_deferred);
491 rqstp->rq_deferred = NULL;
492
493 svc_free_res_pages(rqstp);
494 rqstp->rq_res.page_len = 0;
495 rqstp->rq_res.page_base = 0;
496
497 /* Reset response buffer and release
498 * the reservation.
499 * But first, check that enough space was reserved
500 * for the reply, otherwise we have a bug!
501 */
502 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
503 printk(KERN_ERR "RPC request reserved %d but used %d\n",
504 rqstp->rq_reserved,
505 rqstp->rq_res.len);
506
507 rqstp->rq_res.head[0].iov_len = 0;
508 svc_reserve(rqstp, 0);
509 svc_xprt_release_slot(rqstp);
510 rqstp->rq_xprt = NULL;
511 svc_xprt_put(xprt);
512}
513
514/*
515 * Some svc_serv's will have occasional work to do, even when a xprt is not
516 * waiting to be serviced. This function is there to "kick" a task in one of
517 * those services so that it can wake up and do that work. Note that we only
518 * bother with pool 0 as we don't need to wake up more than one thread for
519 * this purpose.
520 */
521void svc_wake_up(struct svc_serv *serv)
522{
523 struct svc_rqst *rqstp;
524 struct svc_pool *pool;
525
526 pool = &serv->sv_pools[0];
527
528 rcu_read_lock();
529 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
530 /* skip any that aren't queued */
531 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
532 continue;
533 rcu_read_unlock();
534 wake_up_process(rqstp->rq_task);
535 trace_svc_wake_up(rqstp->rq_task->pid);
536 return;
537 }
538 rcu_read_unlock();
539
540 /* No free entries available */
541 set_bit(SP_TASK_PENDING, &pool->sp_flags);
542 smp_wmb();
543 trace_svc_wake_up(0);
544}
545EXPORT_SYMBOL_GPL(svc_wake_up);
546
547int svc_port_is_privileged(struct sockaddr *sin)
548{
549 switch (sin->sa_family) {
550 case AF_INET:
551 return ntohs(((struct sockaddr_in *)sin)->sin_port)
552 < PROT_SOCK;
553 case AF_INET6:
554 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
555 < PROT_SOCK;
556 default:
557 return 0;
558 }
559}
560
561/*
562 * Make sure that we don't have too many active connections. If we have,
563 * something must be dropped. It's not clear what will happen if we allow
564 * "too many" connections, but when dealing with network-facing software,
565 * we have to code defensively. Here we do that by imposing hard limits.
566 *
567 * There's no point in trying to do random drop here for DoS
568 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
569 * attacker can easily beat that.
570 *
571 * The only somewhat efficient mechanism would be if drop old
572 * connections from the same IP first. But right now we don't even
573 * record the client IP in svc_sock.
574 *
575 * single-threaded services that expect a lot of clients will probably
576 * need to set sv_maxconn to override the default value which is based
577 * on the number of threads
578 */
579static void svc_check_conn_limits(struct svc_serv *serv)
580{
581 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
582 (serv->sv_nrthreads+3) * 20;
583
584 if (serv->sv_tmpcnt > limit) {
585 struct svc_xprt *xprt = NULL;
586 spin_lock_bh(&serv->sv_lock);
587 if (!list_empty(&serv->sv_tempsocks)) {
588 /* Try to help the admin */
589 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
590 serv->sv_name, serv->sv_maxconn ?
591 "max number of connections" :
592 "number of threads");
593 /*
594 * Always select the oldest connection. It's not fair,
595 * but so is life
596 */
597 xprt = list_entry(serv->sv_tempsocks.prev,
598 struct svc_xprt,
599 xpt_list);
600 set_bit(XPT_CLOSE, &xprt->xpt_flags);
601 svc_xprt_get(xprt);
602 }
603 spin_unlock_bh(&serv->sv_lock);
604
605 if (xprt) {
606 svc_xprt_enqueue(xprt);
607 svc_xprt_put(xprt);
608 }
609 }
610}
611
612static int svc_alloc_arg(struct svc_rqst *rqstp)
613{
614 struct svc_serv *serv = rqstp->rq_server;
615 struct xdr_buf *arg;
616 int pages;
617 int i;
618
619 /* now allocate needed pages. If we get a failure, sleep briefly */
620 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
621 if (pages > RPCSVC_MAXPAGES) {
622 pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
623 pages, RPCSVC_MAXPAGES);
624 /* use as many pages as possible */
625 pages = RPCSVC_MAXPAGES;
626 }
627 for (i = 0; i < pages ; i++)
628 while (rqstp->rq_pages[i] == NULL) {
629 struct page *p = alloc_page(GFP_KERNEL);
630 if (!p) {
631 set_current_state(TASK_INTERRUPTIBLE);
632 if (signalled() || kthread_should_stop()) {
633 set_current_state(TASK_RUNNING);
634 return -EINTR;
635 }
636 schedule_timeout(msecs_to_jiffies(500));
637 }
638 rqstp->rq_pages[i] = p;
639 }
640 rqstp->rq_page_end = &rqstp->rq_pages[i];
641 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
642
643 /* Make arg->head point to first page and arg->pages point to rest */
644 arg = &rqstp->rq_arg;
645 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
646 arg->head[0].iov_len = PAGE_SIZE;
647 arg->pages = rqstp->rq_pages + 1;
648 arg->page_base = 0;
649 /* save at least one page for response */
650 arg->page_len = (pages-2)*PAGE_SIZE;
651 arg->len = (pages-1)*PAGE_SIZE;
652 arg->tail[0].iov_len = 0;
653 return 0;
654}
655
656static bool
657rqst_should_sleep(struct svc_rqst *rqstp)
658{
659 struct svc_pool *pool = rqstp->rq_pool;
660
661 /* did someone call svc_wake_up? */
662 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
663 return false;
664
665 /* was a socket queued? */
666 if (!list_empty(&pool->sp_sockets))
667 return false;
668
669 /* are we shutting down? */
670 if (signalled() || kthread_should_stop())
671 return false;
672
673 /* are we freezing? */
674 if (freezing(current))
675 return false;
676
677 return true;
678}
679
680static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
681{
682 struct svc_pool *pool = rqstp->rq_pool;
683 long time_left = 0;
684
685 /* rq_xprt should be clear on entry */
686 WARN_ON_ONCE(rqstp->rq_xprt);
687
688 rqstp->rq_xprt = svc_xprt_dequeue(pool);
689 if (rqstp->rq_xprt)
690 goto out_found;
691
692 /*
693 * We have to be able to interrupt this wait
694 * to bring down the daemons ...
695 */
696 set_current_state(TASK_INTERRUPTIBLE);
697 smp_mb__before_atomic();
698 clear_bit(SP_CONGESTED, &pool->sp_flags);
699 clear_bit(RQ_BUSY, &rqstp->rq_flags);
700 smp_mb__after_atomic();
701
702 if (likely(rqst_should_sleep(rqstp)))
703 time_left = schedule_timeout(timeout);
704 else
705 __set_current_state(TASK_RUNNING);
706
707 try_to_freeze();
708
709 set_bit(RQ_BUSY, &rqstp->rq_flags);
710 smp_mb__after_atomic();
711 rqstp->rq_xprt = svc_xprt_dequeue(pool);
712 if (rqstp->rq_xprt)
713 goto out_found;
714
715 if (!time_left)
716 atomic_long_inc(&pool->sp_stats.threads_timedout);
717
718 if (signalled() || kthread_should_stop())
719 return ERR_PTR(-EINTR);
720 return ERR_PTR(-EAGAIN);
721out_found:
722 /* Normally we will wait up to 5 seconds for any required
723 * cache information to be provided.
724 */
725 if (!test_bit(SP_CONGESTED, &pool->sp_flags))
726 rqstp->rq_chandle.thread_wait = 5*HZ;
727 else
728 rqstp->rq_chandle.thread_wait = 1*HZ;
729 trace_svc_xprt_dequeue(rqstp);
730 return rqstp->rq_xprt;
731}
732
733static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
734{
735 spin_lock_bh(&serv->sv_lock);
736 set_bit(XPT_TEMP, &newxpt->xpt_flags);
737 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
738 serv->sv_tmpcnt++;
739 if (serv->sv_temptimer.function == NULL) {
740 /* setup timer to age temp transports */
741 serv->sv_temptimer.function = svc_age_temp_xprts;
742 mod_timer(&serv->sv_temptimer,
743 jiffies + svc_conn_age_period * HZ);
744 }
745 spin_unlock_bh(&serv->sv_lock);
746 svc_xprt_received(newxpt);
747}
748
749static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
750{
751 struct svc_serv *serv = rqstp->rq_server;
752 int len = 0;
753
754 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
755 dprintk("svc_recv: found XPT_CLOSE\n");
756 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
757 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
758 svc_delete_xprt(xprt);
759 /* Leave XPT_BUSY set on the dead xprt: */
760 goto out;
761 }
762 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
763 struct svc_xprt *newxpt;
764 /*
765 * We know this module_get will succeed because the
766 * listener holds a reference too
767 */
768 __module_get(xprt->xpt_class->xcl_owner);
769 svc_check_conn_limits(xprt->xpt_server);
770 newxpt = xprt->xpt_ops->xpo_accept(xprt);
771 if (newxpt)
772 svc_add_new_temp_xprt(serv, newxpt);
773 else
774 module_put(xprt->xpt_class->xcl_owner);
775 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
776 /* XPT_DATA|XPT_DEFERRED case: */
777 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
778 rqstp, rqstp->rq_pool->sp_id, xprt,
779 kref_read(&xprt->xpt_ref));
780 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
781 if (rqstp->rq_deferred)
782 len = svc_deferred_recv(rqstp);
783 else
784 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
785 rqstp->rq_stime = ktime_get();
786 rqstp->rq_reserved = serv->sv_max_mesg;
787 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
788 }
789 /* clear XPT_BUSY: */
790 svc_xprt_received(xprt);
791out:
792 trace_svc_handle_xprt(xprt, len);
793 return len;
794}
795
796/*
797 * Receive the next request on any transport. This code is carefully
798 * organised not to touch any cachelines in the shared svc_serv
799 * structure, only cachelines in the local svc_pool.
800 */
801int svc_recv(struct svc_rqst *rqstp, long timeout)
802{
803 struct svc_xprt *xprt = NULL;
804 struct svc_serv *serv = rqstp->rq_server;
805 int len, err;
806
807 dprintk("svc: server %p waiting for data (to = %ld)\n",
808 rqstp, timeout);
809
810 if (rqstp->rq_xprt)
811 printk(KERN_ERR
812 "svc_recv: service %p, transport not NULL!\n",
813 rqstp);
814
815 err = svc_alloc_arg(rqstp);
816 if (err)
817 goto out;
818
819 try_to_freeze();
820 cond_resched();
821 err = -EINTR;
822 if (signalled() || kthread_should_stop())
823 goto out;
824
825 xprt = svc_get_next_xprt(rqstp, timeout);
826 if (IS_ERR(xprt)) {
827 err = PTR_ERR(xprt);
828 goto out;
829 }
830
831 len = svc_handle_xprt(rqstp, xprt);
832
833 /* No data, incomplete (TCP) read, or accept() */
834 err = -EAGAIN;
835 if (len <= 0)
836 goto out_release;
837
838 clear_bit(XPT_OLD, &xprt->xpt_flags);
839
840 xprt->xpt_ops->xpo_secure_port(rqstp);
841 rqstp->rq_chandle.defer = svc_defer;
842 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
843
844 if (serv->sv_stats)
845 serv->sv_stats->netcnt++;
846 trace_svc_recv(rqstp, len);
847 return len;
848out_release:
849 rqstp->rq_res.len = 0;
850 svc_xprt_release(rqstp);
851out:
852 return err;
853}
854EXPORT_SYMBOL_GPL(svc_recv);
855
856/*
857 * Drop request
858 */
859void svc_drop(struct svc_rqst *rqstp)
860{
861 trace_svc_drop(rqstp);
862 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
863 svc_xprt_release(rqstp);
864}
865EXPORT_SYMBOL_GPL(svc_drop);
866
867/*
868 * Return reply to client.
869 */
870int svc_send(struct svc_rqst *rqstp)
871{
872 struct svc_xprt *xprt;
873 int len = -EFAULT;
874 struct xdr_buf *xb;
875
876 xprt = rqstp->rq_xprt;
877 if (!xprt)
878 goto out;
879
880 /* release the receive skb before sending the reply */
881 xprt->xpt_ops->xpo_release_rqst(rqstp);
882
883 /* calculate over-all length */
884 xb = &rqstp->rq_res;
885 xb->len = xb->head[0].iov_len +
886 xb->page_len +
887 xb->tail[0].iov_len;
888
889 /* Grab mutex to serialize outgoing data. */
890 mutex_lock(&xprt->xpt_mutex);
891 trace_svc_stats_latency(rqstp);
892 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
893 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
894 len = -ENOTCONN;
895 else
896 len = xprt->xpt_ops->xpo_sendto(rqstp);
897 mutex_unlock(&xprt->xpt_mutex);
898 rpc_wake_up(&xprt->xpt_bc_pending);
899 trace_svc_send(rqstp, len);
900 svc_xprt_release(rqstp);
901
902 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
903 len = 0;
904out:
905 return len;
906}
907
908/*
909 * Timer function to close old temporary transports, using
910 * a mark-and-sweep algorithm.
911 */
912static void svc_age_temp_xprts(struct timer_list *t)
913{
914 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
915 struct svc_xprt *xprt;
916 struct list_head *le, *next;
917
918 dprintk("svc_age_temp_xprts\n");
919
920 if (!spin_trylock_bh(&serv->sv_lock)) {
921 /* busy, try again 1 sec later */
922 dprintk("svc_age_temp_xprts: busy\n");
923 mod_timer(&serv->sv_temptimer, jiffies + HZ);
924 return;
925 }
926
927 list_for_each_safe(le, next, &serv->sv_tempsocks) {
928 xprt = list_entry(le, struct svc_xprt, xpt_list);
929
930 /* First time through, just mark it OLD. Second time
931 * through, close it. */
932 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
933 continue;
934 if (kref_read(&xprt->xpt_ref) > 1 ||
935 test_bit(XPT_BUSY, &xprt->xpt_flags))
936 continue;
937 list_del_init(le);
938 set_bit(XPT_CLOSE, &xprt->xpt_flags);
939 dprintk("queuing xprt %p for closing\n", xprt);
940
941 /* a thread will dequeue and close it soon */
942 svc_xprt_enqueue(xprt);
943 }
944 spin_unlock_bh(&serv->sv_lock);
945
946 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
947}
948
949/* Close temporary transports whose xpt_local matches server_addr immediately
950 * instead of waiting for them to be picked up by the timer.
951 *
952 * This is meant to be called from a notifier_block that runs when an ip
953 * address is deleted.
954 */
955void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
956{
957 struct svc_xprt *xprt;
958 struct list_head *le, *next;
959 LIST_HEAD(to_be_closed);
960
961 spin_lock_bh(&serv->sv_lock);
962 list_for_each_safe(le, next, &serv->sv_tempsocks) {
963 xprt = list_entry(le, struct svc_xprt, xpt_list);
964 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
965 &xprt->xpt_local)) {
966 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
967 list_move(le, &to_be_closed);
968 }
969 }
970 spin_unlock_bh(&serv->sv_lock);
971
972 while (!list_empty(&to_be_closed)) {
973 le = to_be_closed.next;
974 list_del_init(le);
975 xprt = list_entry(le, struct svc_xprt, xpt_list);
976 set_bit(XPT_CLOSE, &xprt->xpt_flags);
977 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
978 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
979 xprt);
980 svc_xprt_enqueue(xprt);
981 }
982}
983EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
984
985static void call_xpt_users(struct svc_xprt *xprt)
986{
987 struct svc_xpt_user *u;
988
989 spin_lock(&xprt->xpt_lock);
990 while (!list_empty(&xprt->xpt_users)) {
991 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
992 list_del(&u->list);
993 u->callback(u);
994 }
995 spin_unlock(&xprt->xpt_lock);
996}
997
998/*
999 * Remove a dead transport
1000 */
1001static void svc_delete_xprt(struct svc_xprt *xprt)
1002{
1003 struct svc_serv *serv = xprt->xpt_server;
1004 struct svc_deferred_req *dr;
1005
1006 /* Only do this once */
1007 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1008 BUG();
1009
1010 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1011 xprt->xpt_ops->xpo_detach(xprt);
1012
1013 spin_lock_bh(&serv->sv_lock);
1014 list_del_init(&xprt->xpt_list);
1015 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1016 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1017 serv->sv_tmpcnt--;
1018 spin_unlock_bh(&serv->sv_lock);
1019
1020 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1021 kfree(dr);
1022
1023 call_xpt_users(xprt);
1024 svc_xprt_put(xprt);
1025}
1026
1027void svc_close_xprt(struct svc_xprt *xprt)
1028{
1029 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1030 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1031 /* someone else will have to effect the close */
1032 return;
1033 /*
1034 * We expect svc_close_xprt() to work even when no threads are
1035 * running (e.g., while configuring the server before starting
1036 * any threads), so if the transport isn't busy, we delete
1037 * it ourself:
1038 */
1039 svc_delete_xprt(xprt);
1040}
1041EXPORT_SYMBOL_GPL(svc_close_xprt);
1042
1043static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1044{
1045 struct svc_xprt *xprt;
1046 int ret = 0;
1047
1048 spin_lock(&serv->sv_lock);
1049 list_for_each_entry(xprt, xprt_list, xpt_list) {
1050 if (xprt->xpt_net != net)
1051 continue;
1052 ret++;
1053 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1054 svc_xprt_enqueue(xprt);
1055 }
1056 spin_unlock(&serv->sv_lock);
1057 return ret;
1058}
1059
1060static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1061{
1062 struct svc_pool *pool;
1063 struct svc_xprt *xprt;
1064 struct svc_xprt *tmp;
1065 int i;
1066
1067 for (i = 0; i < serv->sv_nrpools; i++) {
1068 pool = &serv->sv_pools[i];
1069
1070 spin_lock_bh(&pool->sp_lock);
1071 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1072 if (xprt->xpt_net != net)
1073 continue;
1074 list_del_init(&xprt->xpt_ready);
1075 spin_unlock_bh(&pool->sp_lock);
1076 return xprt;
1077 }
1078 spin_unlock_bh(&pool->sp_lock);
1079 }
1080 return NULL;
1081}
1082
1083static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1084{
1085 struct svc_xprt *xprt;
1086
1087 while ((xprt = svc_dequeue_net(serv, net))) {
1088 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1089 svc_delete_xprt(xprt);
1090 }
1091}
1092
1093/*
1094 * Server threads may still be running (especially in the case where the
1095 * service is still running in other network namespaces).
1096 *
1097 * So we shut down sockets the same way we would on a running server, by
1098 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1099 * the close. In the case there are no such other threads,
1100 * threads running, svc_clean_up_xprts() does a simple version of a
1101 * server's main event loop, and in the case where there are other
1102 * threads, we may need to wait a little while and then check again to
1103 * see if they're done.
1104 */
1105void svc_close_net(struct svc_serv *serv, struct net *net)
1106{
1107 int delay = 0;
1108
1109 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1110 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1111
1112 svc_clean_up_xprts(serv, net);
1113 msleep(delay++);
1114 }
1115}
1116
1117/*
1118 * Handle defer and revisit of requests
1119 */
1120
1121static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1122{
1123 struct svc_deferred_req *dr =
1124 container_of(dreq, struct svc_deferred_req, handle);
1125 struct svc_xprt *xprt = dr->xprt;
1126
1127 spin_lock(&xprt->xpt_lock);
1128 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1129 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1130 spin_unlock(&xprt->xpt_lock);
1131 dprintk("revisit canceled\n");
1132 svc_xprt_put(xprt);
1133 trace_svc_drop_deferred(dr);
1134 kfree(dr);
1135 return;
1136 }
1137 dprintk("revisit queued\n");
1138 dr->xprt = NULL;
1139 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1140 spin_unlock(&xprt->xpt_lock);
1141 svc_xprt_enqueue(xprt);
1142 svc_xprt_put(xprt);
1143}
1144
1145/*
1146 * Save the request off for later processing. The request buffer looks
1147 * like this:
1148 *
1149 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1150 *
1151 * This code can only handle requests that consist of an xprt-header
1152 * and rpc-header.
1153 */
1154static struct cache_deferred_req *svc_defer(struct cache_req *req)
1155{
1156 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1157 struct svc_deferred_req *dr;
1158
1159 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1160 return NULL; /* if more than a page, give up FIXME */
1161 if (rqstp->rq_deferred) {
1162 dr = rqstp->rq_deferred;
1163 rqstp->rq_deferred = NULL;
1164 } else {
1165 size_t skip;
1166 size_t size;
1167 /* FIXME maybe discard if size too large */
1168 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1169 dr = kmalloc(size, GFP_KERNEL);
1170 if (dr == NULL)
1171 return NULL;
1172
1173 dr->handle.owner = rqstp->rq_server;
1174 dr->prot = rqstp->rq_prot;
1175 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1176 dr->addrlen = rqstp->rq_addrlen;
1177 dr->daddr = rqstp->rq_daddr;
1178 dr->argslen = rqstp->rq_arg.len >> 2;
1179 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1180
1181 /* back up head to the start of the buffer and copy */
1182 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1183 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1184 dr->argslen << 2);
1185 }
1186 svc_xprt_get(rqstp->rq_xprt);
1187 dr->xprt = rqstp->rq_xprt;
1188 set_bit(RQ_DROPME, &rqstp->rq_flags);
1189
1190 dr->handle.revisit = svc_revisit;
1191 trace_svc_defer(rqstp);
1192 return &dr->handle;
1193}
1194
1195/*
1196 * recv data from a deferred request into an active one
1197 */
1198static int svc_deferred_recv(struct svc_rqst *rqstp)
1199{
1200 struct svc_deferred_req *dr = rqstp->rq_deferred;
1201
1202 /* setup iov_base past transport header */
1203 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1204 /* The iov_len does not include the transport header bytes */
1205 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1206 rqstp->rq_arg.page_len = 0;
1207 /* The rq_arg.len includes the transport header bytes */
1208 rqstp->rq_arg.len = dr->argslen<<2;
1209 rqstp->rq_prot = dr->prot;
1210 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1211 rqstp->rq_addrlen = dr->addrlen;
1212 /* Save off transport header len in case we get deferred again */
1213 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1214 rqstp->rq_daddr = dr->daddr;
1215 rqstp->rq_respages = rqstp->rq_pages;
1216 return (dr->argslen<<2) - dr->xprt_hlen;
1217}
1218
1219
1220static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1221{
1222 struct svc_deferred_req *dr = NULL;
1223
1224 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1225 return NULL;
1226 spin_lock(&xprt->xpt_lock);
1227 if (!list_empty(&xprt->xpt_deferred)) {
1228 dr = list_entry(xprt->xpt_deferred.next,
1229 struct svc_deferred_req,
1230 handle.recent);
1231 list_del_init(&dr->handle.recent);
1232 trace_svc_revisit_deferred(dr);
1233 } else
1234 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1235 spin_unlock(&xprt->xpt_lock);
1236 return dr;
1237}
1238
1239/**
1240 * svc_find_xprt - find an RPC transport instance
1241 * @serv: pointer to svc_serv to search
1242 * @xcl_name: C string containing transport's class name
1243 * @net: owner net pointer
1244 * @af: Address family of transport's local address
1245 * @port: transport's IP port number
1246 *
1247 * Return the transport instance pointer for the endpoint accepting
1248 * connections/peer traffic from the specified transport class,
1249 * address family and port.
1250 *
1251 * Specifying 0 for the address family or port is effectively a
1252 * wild-card, and will result in matching the first transport in the
1253 * service's list that has a matching class name.
1254 */
1255struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1256 struct net *net, const sa_family_t af,
1257 const unsigned short port)
1258{
1259 struct svc_xprt *xprt;
1260 struct svc_xprt *found = NULL;
1261
1262 /* Sanity check the args */
1263 if (serv == NULL || xcl_name == NULL)
1264 return found;
1265
1266 spin_lock_bh(&serv->sv_lock);
1267 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1268 if (xprt->xpt_net != net)
1269 continue;
1270 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1271 continue;
1272 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1273 continue;
1274 if (port != 0 && port != svc_xprt_local_port(xprt))
1275 continue;
1276 found = xprt;
1277 svc_xprt_get(xprt);
1278 break;
1279 }
1280 spin_unlock_bh(&serv->sv_lock);
1281 return found;
1282}
1283EXPORT_SYMBOL_GPL(svc_find_xprt);
1284
1285static int svc_one_xprt_name(const struct svc_xprt *xprt,
1286 char *pos, int remaining)
1287{
1288 int len;
1289
1290 len = snprintf(pos, remaining, "%s %u\n",
1291 xprt->xpt_class->xcl_name,
1292 svc_xprt_local_port(xprt));
1293 if (len >= remaining)
1294 return -ENAMETOOLONG;
1295 return len;
1296}
1297
1298/**
1299 * svc_xprt_names - format a buffer with a list of transport names
1300 * @serv: pointer to an RPC service
1301 * @buf: pointer to a buffer to be filled in
1302 * @buflen: length of buffer to be filled in
1303 *
1304 * Fills in @buf with a string containing a list of transport names,
1305 * each name terminated with '\n'.
1306 *
1307 * Returns positive length of the filled-in string on success; otherwise
1308 * a negative errno value is returned if an error occurs.
1309 */
1310int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1311{
1312 struct svc_xprt *xprt;
1313 int len, totlen;
1314 char *pos;
1315
1316 /* Sanity check args */
1317 if (!serv)
1318 return 0;
1319
1320 spin_lock_bh(&serv->sv_lock);
1321
1322 pos = buf;
1323 totlen = 0;
1324 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1325 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1326 if (len < 0) {
1327 *buf = '\0';
1328 totlen = len;
1329 }
1330 if (len <= 0)
1331 break;
1332
1333 pos += len;
1334 totlen += len;
1335 }
1336
1337 spin_unlock_bh(&serv->sv_lock);
1338 return totlen;
1339}
1340EXPORT_SYMBOL_GPL(svc_xprt_names);
1341
1342
1343/*----------------------------------------------------------------------------*/
1344
1345static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1346{
1347 unsigned int pidx = (unsigned int)*pos;
1348 struct svc_serv *serv = m->private;
1349
1350 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1351
1352 if (!pidx)
1353 return SEQ_START_TOKEN;
1354 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1355}
1356
1357static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1358{
1359 struct svc_pool *pool = p;
1360 struct svc_serv *serv = m->private;
1361
1362 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1363
1364 if (p == SEQ_START_TOKEN) {
1365 pool = &serv->sv_pools[0];
1366 } else {
1367 unsigned int pidx = (pool - &serv->sv_pools[0]);
1368 if (pidx < serv->sv_nrpools-1)
1369 pool = &serv->sv_pools[pidx+1];
1370 else
1371 pool = NULL;
1372 }
1373 ++*pos;
1374 return pool;
1375}
1376
1377static void svc_pool_stats_stop(struct seq_file *m, void *p)
1378{
1379}
1380
1381static int svc_pool_stats_show(struct seq_file *m, void *p)
1382{
1383 struct svc_pool *pool = p;
1384
1385 if (p == SEQ_START_TOKEN) {
1386 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1387 return 0;
1388 }
1389
1390 seq_printf(m, "%u %lu %lu %lu %lu\n",
1391 pool->sp_id,
1392 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1393 pool->sp_stats.sockets_queued,
1394 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1395 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1396
1397 return 0;
1398}
1399
1400static const struct seq_operations svc_pool_stats_seq_ops = {
1401 .start = svc_pool_stats_start,
1402 .next = svc_pool_stats_next,
1403 .stop = svc_pool_stats_stop,
1404 .show = svc_pool_stats_show,
1405};
1406
1407int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1408{
1409 int err;
1410
1411 err = seq_open(file, &svc_pool_stats_seq_ops);
1412 if (!err)
1413 ((struct seq_file *) file->private_data)->private = serv;
1414 return err;
1415}
1416EXPORT_SYMBOL(svc_pool_stats_open);
1417
1418/*----------------------------------------------------------------------------*/
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/svc_xprt.c
4 *
5 * Author: Tom Tucker <tom@opengridcomputing.com>
6 */
7
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/errno.h>
11#include <linux/freezer.h>
12#include <linux/kthread.h>
13#include <linux/slab.h>
14#include <net/sock.h>
15#include <linux/sunrpc/addr.h>
16#include <linux/sunrpc/stats.h>
17#include <linux/sunrpc/svc_xprt.h>
18#include <linux/sunrpc/svcsock.h>
19#include <linux/sunrpc/xprt.h>
20#include <linux/module.h>
21#include <linux/netdevice.h>
22#include <trace/events/sunrpc.h>
23
24#define RPCDBG_FACILITY RPCDBG_SVCXPRT
25
26static unsigned int svc_rpc_per_connection_limit __read_mostly;
27module_param(svc_rpc_per_connection_limit, uint, 0644);
28
29
30static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31static int svc_deferred_recv(struct svc_rqst *rqstp);
32static struct cache_deferred_req *svc_defer(struct cache_req *req);
33static void svc_age_temp_xprts(struct timer_list *t);
34static void svc_delete_xprt(struct svc_xprt *xprt);
35
36/* apparently the "standard" is that clients close
37 * idle connections after 5 minutes, servers after
38 * 6 minutes
39 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40 */
41static int svc_conn_age_period = 6*60;
42
43/* List of registered transport classes */
44static DEFINE_SPINLOCK(svc_xprt_class_lock);
45static LIST_HEAD(svc_xprt_class_list);
46
47/* SMP locking strategy:
48 *
49 * svc_pool->sp_lock protects most of the fields of that pool.
50 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
51 * when both need to be taken (rare), svc_serv->sv_lock is first.
52 * The "service mutex" protects svc_serv->sv_nrthread.
53 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
54 * and the ->sk_info_authunix cache.
55 *
56 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
57 * enqueued multiply. During normal transport processing this bit
58 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
59 * Providers should not manipulate this bit directly.
60 *
61 * Some flags can be set to certain values at any time
62 * providing that certain rules are followed:
63 *
64 * XPT_CONN, XPT_DATA:
65 * - Can be set or cleared at any time.
66 * - After a set, svc_xprt_enqueue must be called to enqueue
67 * the transport for processing.
68 * - After a clear, the transport must be read/accepted.
69 * If this succeeds, it must be set again.
70 * XPT_CLOSE:
71 * - Can set at any time. It is never cleared.
72 * XPT_DEAD:
73 * - Can only be set while XPT_BUSY is held which ensures
74 * that no other thread will be using the transport or will
75 * try to set XPT_DEAD.
76 */
77int svc_reg_xprt_class(struct svc_xprt_class *xcl)
78{
79 struct svc_xprt_class *cl;
80 int res = -EEXIST;
81
82 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
83
84 INIT_LIST_HEAD(&xcl->xcl_list);
85 spin_lock(&svc_xprt_class_lock);
86 /* Make sure there isn't already a class with the same name */
87 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
88 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
89 goto out;
90 }
91 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
92 res = 0;
93out:
94 spin_unlock(&svc_xprt_class_lock);
95 return res;
96}
97EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
98
99void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
100{
101 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
102 spin_lock(&svc_xprt_class_lock);
103 list_del_init(&xcl->xcl_list);
104 spin_unlock(&svc_xprt_class_lock);
105}
106EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
107
108/**
109 * svc_print_xprts - Format the transport list for printing
110 * @buf: target buffer for formatted address
111 * @maxlen: length of target buffer
112 *
113 * Fills in @buf with a string containing a list of transport names, each name
114 * terminated with '\n'. If the buffer is too small, some entries may be
115 * missing, but it is guaranteed that all lines in the output buffer are
116 * complete.
117 *
118 * Returns positive length of the filled-in string.
119 */
120int svc_print_xprts(char *buf, int maxlen)
121{
122 struct svc_xprt_class *xcl;
123 char tmpstr[80];
124 int len = 0;
125 buf[0] = '\0';
126
127 spin_lock(&svc_xprt_class_lock);
128 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
129 int slen;
130
131 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
132 xcl->xcl_name, xcl->xcl_max_payload);
133 if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
134 break;
135 len += slen;
136 strcat(buf, tmpstr);
137 }
138 spin_unlock(&svc_xprt_class_lock);
139
140 return len;
141}
142
143/**
144 * svc_xprt_deferred_close - Close a transport
145 * @xprt: transport instance
146 *
147 * Used in contexts that need to defer the work of shutting down
148 * the transport to an nfsd thread.
149 */
150void svc_xprt_deferred_close(struct svc_xprt *xprt)
151{
152 if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
153 svc_xprt_enqueue(xprt);
154}
155EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
156
157static void svc_xprt_free(struct kref *kref)
158{
159 struct svc_xprt *xprt =
160 container_of(kref, struct svc_xprt, xpt_ref);
161 struct module *owner = xprt->xpt_class->xcl_owner;
162 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
163 svcauth_unix_info_release(xprt);
164 put_cred(xprt->xpt_cred);
165 put_net_track(xprt->xpt_net, &xprt->ns_tracker);
166 /* See comment on corresponding get in xs_setup_bc_tcp(): */
167 if (xprt->xpt_bc_xprt)
168 xprt_put(xprt->xpt_bc_xprt);
169 if (xprt->xpt_bc_xps)
170 xprt_switch_put(xprt->xpt_bc_xps);
171 trace_svc_xprt_free(xprt);
172 xprt->xpt_ops->xpo_free(xprt);
173 module_put(owner);
174}
175
176void svc_xprt_put(struct svc_xprt *xprt)
177{
178 kref_put(&xprt->xpt_ref, svc_xprt_free);
179}
180EXPORT_SYMBOL_GPL(svc_xprt_put);
181
182/*
183 * Called by transport drivers to initialize the transport independent
184 * portion of the transport instance.
185 */
186void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
187 struct svc_xprt *xprt, struct svc_serv *serv)
188{
189 memset(xprt, 0, sizeof(*xprt));
190 xprt->xpt_class = xcl;
191 xprt->xpt_ops = xcl->xcl_ops;
192 kref_init(&xprt->xpt_ref);
193 xprt->xpt_server = serv;
194 INIT_LIST_HEAD(&xprt->xpt_list);
195 INIT_LIST_HEAD(&xprt->xpt_ready);
196 INIT_LIST_HEAD(&xprt->xpt_deferred);
197 INIT_LIST_HEAD(&xprt->xpt_users);
198 mutex_init(&xprt->xpt_mutex);
199 spin_lock_init(&xprt->xpt_lock);
200 set_bit(XPT_BUSY, &xprt->xpt_flags);
201 xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
202 strcpy(xprt->xpt_remotebuf, "uninitialized");
203}
204EXPORT_SYMBOL_GPL(svc_xprt_init);
205
206static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
207 struct svc_serv *serv,
208 struct net *net,
209 const int family,
210 const unsigned short port,
211 int flags)
212{
213 struct sockaddr_in sin = {
214 .sin_family = AF_INET,
215 .sin_addr.s_addr = htonl(INADDR_ANY),
216 .sin_port = htons(port),
217 };
218#if IS_ENABLED(CONFIG_IPV6)
219 struct sockaddr_in6 sin6 = {
220 .sin6_family = AF_INET6,
221 .sin6_addr = IN6ADDR_ANY_INIT,
222 .sin6_port = htons(port),
223 };
224#endif
225 struct svc_xprt *xprt;
226 struct sockaddr *sap;
227 size_t len;
228
229 switch (family) {
230 case PF_INET:
231 sap = (struct sockaddr *)&sin;
232 len = sizeof(sin);
233 break;
234#if IS_ENABLED(CONFIG_IPV6)
235 case PF_INET6:
236 sap = (struct sockaddr *)&sin6;
237 len = sizeof(sin6);
238 break;
239#endif
240 default:
241 return ERR_PTR(-EAFNOSUPPORT);
242 }
243
244 xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
245 if (IS_ERR(xprt))
246 trace_svc_xprt_create_err(serv->sv_program->pg_name,
247 xcl->xcl_name, sap, len, xprt);
248 return xprt;
249}
250
251/**
252 * svc_xprt_received - start next receiver thread
253 * @xprt: controlling transport
254 *
255 * The caller must hold the XPT_BUSY bit and must
256 * not thereafter touch transport data.
257 *
258 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
259 * insufficient) data.
260 */
261void svc_xprt_received(struct svc_xprt *xprt)
262{
263 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
264 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
265 return;
266 }
267
268 /* As soon as we clear busy, the xprt could be closed and
269 * 'put', so we need a reference to call svc_xprt_enqueue with:
270 */
271 svc_xprt_get(xprt);
272 smp_mb__before_atomic();
273 clear_bit(XPT_BUSY, &xprt->xpt_flags);
274 svc_xprt_enqueue(xprt);
275 svc_xprt_put(xprt);
276}
277EXPORT_SYMBOL_GPL(svc_xprt_received);
278
279void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
280{
281 clear_bit(XPT_TEMP, &new->xpt_flags);
282 spin_lock_bh(&serv->sv_lock);
283 list_add(&new->xpt_list, &serv->sv_permsocks);
284 spin_unlock_bh(&serv->sv_lock);
285 svc_xprt_received(new);
286}
287
288static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
289 struct net *net, const int family,
290 const unsigned short port, int flags,
291 const struct cred *cred)
292{
293 struct svc_xprt_class *xcl;
294
295 spin_lock(&svc_xprt_class_lock);
296 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
297 struct svc_xprt *newxprt;
298 unsigned short newport;
299
300 if (strcmp(xprt_name, xcl->xcl_name))
301 continue;
302
303 if (!try_module_get(xcl->xcl_owner))
304 goto err;
305
306 spin_unlock(&svc_xprt_class_lock);
307 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
308 if (IS_ERR(newxprt)) {
309 module_put(xcl->xcl_owner);
310 return PTR_ERR(newxprt);
311 }
312 newxprt->xpt_cred = get_cred(cred);
313 svc_add_new_perm_xprt(serv, newxprt);
314 newport = svc_xprt_local_port(newxprt);
315 return newport;
316 }
317 err:
318 spin_unlock(&svc_xprt_class_lock);
319 /* This errno is exposed to user space. Provide a reasonable
320 * perror msg for a bad transport. */
321 return -EPROTONOSUPPORT;
322}
323
324/**
325 * svc_xprt_create - Add a new listener to @serv
326 * @serv: target RPC service
327 * @xprt_name: transport class name
328 * @net: network namespace
329 * @family: network address family
330 * @port: listener port
331 * @flags: SVC_SOCK flags
332 * @cred: credential to bind to this transport
333 *
334 * Return values:
335 * %0: New listener added successfully
336 * %-EPROTONOSUPPORT: Requested transport type not supported
337 */
338int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
339 struct net *net, const int family,
340 const unsigned short port, int flags,
341 const struct cred *cred)
342{
343 int err;
344
345 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
346 if (err == -EPROTONOSUPPORT) {
347 request_module("svc%s", xprt_name);
348 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
349 }
350 return err;
351}
352EXPORT_SYMBOL_GPL(svc_xprt_create);
353
354/*
355 * Copy the local and remote xprt addresses to the rqstp structure
356 */
357void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
358{
359 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
360 rqstp->rq_addrlen = xprt->xpt_remotelen;
361
362 /*
363 * Destination address in request is needed for binding the
364 * source address in RPC replies/callbacks later.
365 */
366 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
367 rqstp->rq_daddrlen = xprt->xpt_locallen;
368}
369EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
370
371/**
372 * svc_print_addr - Format rq_addr field for printing
373 * @rqstp: svc_rqst struct containing address to print
374 * @buf: target buffer for formatted address
375 * @len: length of target buffer
376 *
377 */
378char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
379{
380 return __svc_print_addr(svc_addr(rqstp), buf, len);
381}
382EXPORT_SYMBOL_GPL(svc_print_addr);
383
384static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
385{
386 unsigned int limit = svc_rpc_per_connection_limit;
387 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
388
389 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
390}
391
392static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
393{
394 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
395 if (!svc_xprt_slots_in_range(xprt))
396 return false;
397 atomic_inc(&xprt->xpt_nr_rqsts);
398 set_bit(RQ_DATA, &rqstp->rq_flags);
399 }
400 return true;
401}
402
403static void svc_xprt_release_slot(struct svc_rqst *rqstp)
404{
405 struct svc_xprt *xprt = rqstp->rq_xprt;
406 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
407 atomic_dec(&xprt->xpt_nr_rqsts);
408 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
409 svc_xprt_enqueue(xprt);
410 }
411}
412
413static bool svc_xprt_ready(struct svc_xprt *xprt)
414{
415 unsigned long xpt_flags;
416
417 /*
418 * If another cpu has recently updated xpt_flags,
419 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
420 * know about it; otherwise it's possible that both that cpu and
421 * this one could call svc_xprt_enqueue() without either
422 * svc_xprt_enqueue() recognizing that the conditions below
423 * are satisfied, and we could stall indefinitely:
424 */
425 smp_rmb();
426 xpt_flags = READ_ONCE(xprt->xpt_flags);
427
428 if (xpt_flags & BIT(XPT_BUSY))
429 return false;
430 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
431 return true;
432 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
433 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
434 svc_xprt_slots_in_range(xprt))
435 return true;
436 trace_svc_xprt_no_write_space(xprt);
437 return false;
438 }
439 return false;
440}
441
442/**
443 * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
444 * @xprt: transport with data pending
445 *
446 */
447void svc_xprt_enqueue(struct svc_xprt *xprt)
448{
449 struct svc_pool *pool;
450 struct svc_rqst *rqstp = NULL;
451
452 if (!svc_xprt_ready(xprt))
453 return;
454
455 /* Mark transport as busy. It will remain in this state until
456 * the provider calls svc_xprt_received. We update XPT_BUSY
457 * atomically because it also guards against trying to enqueue
458 * the transport twice.
459 */
460 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
461 return;
462
463 pool = svc_pool_for_cpu(xprt->xpt_server);
464
465 atomic_long_inc(&pool->sp_stats.packets);
466
467 spin_lock_bh(&pool->sp_lock);
468 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
469 pool->sp_stats.sockets_queued++;
470 spin_unlock_bh(&pool->sp_lock);
471
472 /* find a thread for this xprt */
473 rcu_read_lock();
474 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
475 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
476 continue;
477 atomic_long_inc(&pool->sp_stats.threads_woken);
478 rqstp->rq_qtime = ktime_get();
479 wake_up_process(rqstp->rq_task);
480 goto out_unlock;
481 }
482 set_bit(SP_CONGESTED, &pool->sp_flags);
483 rqstp = NULL;
484out_unlock:
485 rcu_read_unlock();
486 trace_svc_xprt_enqueue(xprt, rqstp);
487}
488EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
489
490/*
491 * Dequeue the first transport, if there is one.
492 */
493static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
494{
495 struct svc_xprt *xprt = NULL;
496
497 if (list_empty(&pool->sp_sockets))
498 goto out;
499
500 spin_lock_bh(&pool->sp_lock);
501 if (likely(!list_empty(&pool->sp_sockets))) {
502 xprt = list_first_entry(&pool->sp_sockets,
503 struct svc_xprt, xpt_ready);
504 list_del_init(&xprt->xpt_ready);
505 svc_xprt_get(xprt);
506 }
507 spin_unlock_bh(&pool->sp_lock);
508out:
509 return xprt;
510}
511
512/**
513 * svc_reserve - change the space reserved for the reply to a request.
514 * @rqstp: The request in question
515 * @space: new max space to reserve
516 *
517 * Each request reserves some space on the output queue of the transport
518 * to make sure the reply fits. This function reduces that reserved
519 * space to be the amount of space used already, plus @space.
520 *
521 */
522void svc_reserve(struct svc_rqst *rqstp, int space)
523{
524 struct svc_xprt *xprt = rqstp->rq_xprt;
525
526 space += rqstp->rq_res.head[0].iov_len;
527
528 if (xprt && space < rqstp->rq_reserved) {
529 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
530 rqstp->rq_reserved = space;
531 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
532 svc_xprt_enqueue(xprt);
533 }
534}
535EXPORT_SYMBOL_GPL(svc_reserve);
536
537static void svc_xprt_release(struct svc_rqst *rqstp)
538{
539 struct svc_xprt *xprt = rqstp->rq_xprt;
540
541 xprt->xpt_ops->xpo_release_rqst(rqstp);
542
543 kfree(rqstp->rq_deferred);
544 rqstp->rq_deferred = NULL;
545
546 pagevec_release(&rqstp->rq_pvec);
547 svc_free_res_pages(rqstp);
548 rqstp->rq_res.page_len = 0;
549 rqstp->rq_res.page_base = 0;
550
551 /* Reset response buffer and release
552 * the reservation.
553 * But first, check that enough space was reserved
554 * for the reply, otherwise we have a bug!
555 */
556 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
557 printk(KERN_ERR "RPC request reserved %d but used %d\n",
558 rqstp->rq_reserved,
559 rqstp->rq_res.len);
560
561 rqstp->rq_res.head[0].iov_len = 0;
562 svc_reserve(rqstp, 0);
563 svc_xprt_release_slot(rqstp);
564 rqstp->rq_xprt = NULL;
565 svc_xprt_put(xprt);
566}
567
568/*
569 * Some svc_serv's will have occasional work to do, even when a xprt is not
570 * waiting to be serviced. This function is there to "kick" a task in one of
571 * those services so that it can wake up and do that work. Note that we only
572 * bother with pool 0 as we don't need to wake up more than one thread for
573 * this purpose.
574 */
575void svc_wake_up(struct svc_serv *serv)
576{
577 struct svc_rqst *rqstp;
578 struct svc_pool *pool;
579
580 pool = &serv->sv_pools[0];
581
582 rcu_read_lock();
583 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
584 /* skip any that aren't queued */
585 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
586 continue;
587 rcu_read_unlock();
588 wake_up_process(rqstp->rq_task);
589 trace_svc_wake_up(rqstp->rq_task->pid);
590 return;
591 }
592 rcu_read_unlock();
593
594 /* No free entries available */
595 set_bit(SP_TASK_PENDING, &pool->sp_flags);
596 smp_wmb();
597 trace_svc_wake_up(0);
598}
599EXPORT_SYMBOL_GPL(svc_wake_up);
600
601int svc_port_is_privileged(struct sockaddr *sin)
602{
603 switch (sin->sa_family) {
604 case AF_INET:
605 return ntohs(((struct sockaddr_in *)sin)->sin_port)
606 < PROT_SOCK;
607 case AF_INET6:
608 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
609 < PROT_SOCK;
610 default:
611 return 0;
612 }
613}
614
615/*
616 * Make sure that we don't have too many active connections. If we have,
617 * something must be dropped. It's not clear what will happen if we allow
618 * "too many" connections, but when dealing with network-facing software,
619 * we have to code defensively. Here we do that by imposing hard limits.
620 *
621 * There's no point in trying to do random drop here for DoS
622 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
623 * attacker can easily beat that.
624 *
625 * The only somewhat efficient mechanism would be if drop old
626 * connections from the same IP first. But right now we don't even
627 * record the client IP in svc_sock.
628 *
629 * single-threaded services that expect a lot of clients will probably
630 * need to set sv_maxconn to override the default value which is based
631 * on the number of threads
632 */
633static void svc_check_conn_limits(struct svc_serv *serv)
634{
635 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
636 (serv->sv_nrthreads+3) * 20;
637
638 if (serv->sv_tmpcnt > limit) {
639 struct svc_xprt *xprt = NULL;
640 spin_lock_bh(&serv->sv_lock);
641 if (!list_empty(&serv->sv_tempsocks)) {
642 /* Try to help the admin */
643 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
644 serv->sv_name, serv->sv_maxconn ?
645 "max number of connections" :
646 "number of threads");
647 /*
648 * Always select the oldest connection. It's not fair,
649 * but so is life
650 */
651 xprt = list_entry(serv->sv_tempsocks.prev,
652 struct svc_xprt,
653 xpt_list);
654 set_bit(XPT_CLOSE, &xprt->xpt_flags);
655 svc_xprt_get(xprt);
656 }
657 spin_unlock_bh(&serv->sv_lock);
658
659 if (xprt) {
660 svc_xprt_enqueue(xprt);
661 svc_xprt_put(xprt);
662 }
663 }
664}
665
666static int svc_alloc_arg(struct svc_rqst *rqstp)
667{
668 struct svc_serv *serv = rqstp->rq_server;
669 struct xdr_buf *arg = &rqstp->rq_arg;
670 unsigned long pages, filled, ret;
671
672 pagevec_init(&rqstp->rq_pvec);
673
674 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
675 if (pages > RPCSVC_MAXPAGES) {
676 pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
677 pages, RPCSVC_MAXPAGES);
678 /* use as many pages as possible */
679 pages = RPCSVC_MAXPAGES;
680 }
681
682 for (filled = 0; filled < pages; filled = ret) {
683 ret = alloc_pages_bulk_array(GFP_KERNEL, pages,
684 rqstp->rq_pages);
685 if (ret > filled)
686 /* Made progress, don't sleep yet */
687 continue;
688
689 set_current_state(TASK_INTERRUPTIBLE);
690 if (signalled() || kthread_should_stop()) {
691 set_current_state(TASK_RUNNING);
692 return -EINTR;
693 }
694 trace_svc_alloc_arg_err(pages, ret);
695 memalloc_retry_wait(GFP_KERNEL);
696 }
697 rqstp->rq_page_end = &rqstp->rq_pages[pages];
698 rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
699
700 /* Make arg->head point to first page and arg->pages point to rest */
701 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
702 arg->head[0].iov_len = PAGE_SIZE;
703 arg->pages = rqstp->rq_pages + 1;
704 arg->page_base = 0;
705 /* save at least one page for response */
706 arg->page_len = (pages-2)*PAGE_SIZE;
707 arg->len = (pages-1)*PAGE_SIZE;
708 arg->tail[0].iov_len = 0;
709 return 0;
710}
711
712static bool
713rqst_should_sleep(struct svc_rqst *rqstp)
714{
715 struct svc_pool *pool = rqstp->rq_pool;
716
717 /* did someone call svc_wake_up? */
718 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
719 return false;
720
721 /* was a socket queued? */
722 if (!list_empty(&pool->sp_sockets))
723 return false;
724
725 /* are we shutting down? */
726 if (signalled() || kthread_should_stop())
727 return false;
728
729 /* are we freezing? */
730 if (freezing(current))
731 return false;
732
733 return true;
734}
735
736static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
737{
738 struct svc_pool *pool = rqstp->rq_pool;
739 long time_left = 0;
740
741 /* rq_xprt should be clear on entry */
742 WARN_ON_ONCE(rqstp->rq_xprt);
743
744 rqstp->rq_xprt = svc_xprt_dequeue(pool);
745 if (rqstp->rq_xprt)
746 goto out_found;
747
748 /*
749 * We have to be able to interrupt this wait
750 * to bring down the daemons ...
751 */
752 set_current_state(TASK_INTERRUPTIBLE);
753 smp_mb__before_atomic();
754 clear_bit(SP_CONGESTED, &pool->sp_flags);
755 clear_bit(RQ_BUSY, &rqstp->rq_flags);
756 smp_mb__after_atomic();
757
758 if (likely(rqst_should_sleep(rqstp)))
759 time_left = schedule_timeout(timeout);
760 else
761 __set_current_state(TASK_RUNNING);
762
763 try_to_freeze();
764
765 set_bit(RQ_BUSY, &rqstp->rq_flags);
766 smp_mb__after_atomic();
767 rqstp->rq_xprt = svc_xprt_dequeue(pool);
768 if (rqstp->rq_xprt)
769 goto out_found;
770
771 if (!time_left)
772 atomic_long_inc(&pool->sp_stats.threads_timedout);
773
774 if (signalled() || kthread_should_stop())
775 return ERR_PTR(-EINTR);
776 return ERR_PTR(-EAGAIN);
777out_found:
778 /* Normally we will wait up to 5 seconds for any required
779 * cache information to be provided.
780 */
781 if (!test_bit(SP_CONGESTED, &pool->sp_flags))
782 rqstp->rq_chandle.thread_wait = 5*HZ;
783 else
784 rqstp->rq_chandle.thread_wait = 1*HZ;
785 trace_svc_xprt_dequeue(rqstp);
786 return rqstp->rq_xprt;
787}
788
789static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
790{
791 spin_lock_bh(&serv->sv_lock);
792 set_bit(XPT_TEMP, &newxpt->xpt_flags);
793 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
794 serv->sv_tmpcnt++;
795 if (serv->sv_temptimer.function == NULL) {
796 /* setup timer to age temp transports */
797 serv->sv_temptimer.function = svc_age_temp_xprts;
798 mod_timer(&serv->sv_temptimer,
799 jiffies + svc_conn_age_period * HZ);
800 }
801 spin_unlock_bh(&serv->sv_lock);
802 svc_xprt_received(newxpt);
803}
804
805static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
806{
807 struct svc_serv *serv = rqstp->rq_server;
808 int len = 0;
809
810 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
811 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
812 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
813 svc_delete_xprt(xprt);
814 /* Leave XPT_BUSY set on the dead xprt: */
815 goto out;
816 }
817 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
818 struct svc_xprt *newxpt;
819 /*
820 * We know this module_get will succeed because the
821 * listener holds a reference too
822 */
823 __module_get(xprt->xpt_class->xcl_owner);
824 svc_check_conn_limits(xprt->xpt_server);
825 newxpt = xprt->xpt_ops->xpo_accept(xprt);
826 if (newxpt) {
827 newxpt->xpt_cred = get_cred(xprt->xpt_cred);
828 svc_add_new_temp_xprt(serv, newxpt);
829 trace_svc_xprt_accept(newxpt, serv->sv_name);
830 } else {
831 module_put(xprt->xpt_class->xcl_owner);
832 }
833 svc_xprt_received(xprt);
834 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
835 /* XPT_DATA|XPT_DEFERRED case: */
836 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
837 rqstp, rqstp->rq_pool->sp_id, xprt,
838 kref_read(&xprt->xpt_ref));
839 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
840 if (rqstp->rq_deferred)
841 len = svc_deferred_recv(rqstp);
842 else
843 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
844 rqstp->rq_stime = ktime_get();
845 rqstp->rq_reserved = serv->sv_max_mesg;
846 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
847 } else
848 svc_xprt_received(xprt);
849
850out:
851 return len;
852}
853
854/*
855 * Receive the next request on any transport. This code is carefully
856 * organised not to touch any cachelines in the shared svc_serv
857 * structure, only cachelines in the local svc_pool.
858 */
859int svc_recv(struct svc_rqst *rqstp, long timeout)
860{
861 struct svc_xprt *xprt = NULL;
862 struct svc_serv *serv = rqstp->rq_server;
863 int len, err;
864
865 err = svc_alloc_arg(rqstp);
866 if (err)
867 goto out;
868
869 try_to_freeze();
870 cond_resched();
871 err = -EINTR;
872 if (signalled() || kthread_should_stop())
873 goto out;
874
875 xprt = svc_get_next_xprt(rqstp, timeout);
876 if (IS_ERR(xprt)) {
877 err = PTR_ERR(xprt);
878 goto out;
879 }
880
881 len = svc_handle_xprt(rqstp, xprt);
882
883 /* No data, incomplete (TCP) read, or accept() */
884 err = -EAGAIN;
885 if (len <= 0)
886 goto out_release;
887 trace_svc_xdr_recvfrom(&rqstp->rq_arg);
888
889 clear_bit(XPT_OLD, &xprt->xpt_flags);
890
891 xprt->xpt_ops->xpo_secure_port(rqstp);
892 rqstp->rq_chandle.defer = svc_defer;
893 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
894
895 if (serv->sv_stats)
896 serv->sv_stats->netcnt++;
897 return len;
898out_release:
899 rqstp->rq_res.len = 0;
900 svc_xprt_release(rqstp);
901out:
902 return err;
903}
904EXPORT_SYMBOL_GPL(svc_recv);
905
906/*
907 * Drop request
908 */
909void svc_drop(struct svc_rqst *rqstp)
910{
911 trace_svc_drop(rqstp);
912 svc_xprt_release(rqstp);
913}
914EXPORT_SYMBOL_GPL(svc_drop);
915
916/*
917 * Return reply to client.
918 */
919int svc_send(struct svc_rqst *rqstp)
920{
921 struct svc_xprt *xprt;
922 int len = -EFAULT;
923 struct xdr_buf *xb;
924
925 xprt = rqstp->rq_xprt;
926 if (!xprt)
927 goto out;
928
929 /* calculate over-all length */
930 xb = &rqstp->rq_res;
931 xb->len = xb->head[0].iov_len +
932 xb->page_len +
933 xb->tail[0].iov_len;
934 trace_svc_xdr_sendto(rqstp->rq_xid, xb);
935 trace_svc_stats_latency(rqstp);
936
937 len = xprt->xpt_ops->xpo_sendto(rqstp);
938
939 trace_svc_send(rqstp, len);
940 svc_xprt_release(rqstp);
941
942 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
943 len = 0;
944out:
945 return len;
946}
947
948/*
949 * Timer function to close old temporary transports, using
950 * a mark-and-sweep algorithm.
951 */
952static void svc_age_temp_xprts(struct timer_list *t)
953{
954 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
955 struct svc_xprt *xprt;
956 struct list_head *le, *next;
957
958 dprintk("svc_age_temp_xprts\n");
959
960 if (!spin_trylock_bh(&serv->sv_lock)) {
961 /* busy, try again 1 sec later */
962 dprintk("svc_age_temp_xprts: busy\n");
963 mod_timer(&serv->sv_temptimer, jiffies + HZ);
964 return;
965 }
966
967 list_for_each_safe(le, next, &serv->sv_tempsocks) {
968 xprt = list_entry(le, struct svc_xprt, xpt_list);
969
970 /* First time through, just mark it OLD. Second time
971 * through, close it. */
972 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
973 continue;
974 if (kref_read(&xprt->xpt_ref) > 1 ||
975 test_bit(XPT_BUSY, &xprt->xpt_flags))
976 continue;
977 list_del_init(le);
978 set_bit(XPT_CLOSE, &xprt->xpt_flags);
979 dprintk("queuing xprt %p for closing\n", xprt);
980
981 /* a thread will dequeue and close it soon */
982 svc_xprt_enqueue(xprt);
983 }
984 spin_unlock_bh(&serv->sv_lock);
985
986 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
987}
988
989/* Close temporary transports whose xpt_local matches server_addr immediately
990 * instead of waiting for them to be picked up by the timer.
991 *
992 * This is meant to be called from a notifier_block that runs when an ip
993 * address is deleted.
994 */
995void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
996{
997 struct svc_xprt *xprt;
998 struct list_head *le, *next;
999 LIST_HEAD(to_be_closed);
1000
1001 spin_lock_bh(&serv->sv_lock);
1002 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1003 xprt = list_entry(le, struct svc_xprt, xpt_list);
1004 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1005 &xprt->xpt_local)) {
1006 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1007 list_move(le, &to_be_closed);
1008 }
1009 }
1010 spin_unlock_bh(&serv->sv_lock);
1011
1012 while (!list_empty(&to_be_closed)) {
1013 le = to_be_closed.next;
1014 list_del_init(le);
1015 xprt = list_entry(le, struct svc_xprt, xpt_list);
1016 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1017 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1018 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1019 xprt);
1020 svc_xprt_enqueue(xprt);
1021 }
1022}
1023EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1024
1025static void call_xpt_users(struct svc_xprt *xprt)
1026{
1027 struct svc_xpt_user *u;
1028
1029 spin_lock(&xprt->xpt_lock);
1030 while (!list_empty(&xprt->xpt_users)) {
1031 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1032 list_del_init(&u->list);
1033 u->callback(u);
1034 }
1035 spin_unlock(&xprt->xpt_lock);
1036}
1037
1038/*
1039 * Remove a dead transport
1040 */
1041static void svc_delete_xprt(struct svc_xprt *xprt)
1042{
1043 struct svc_serv *serv = xprt->xpt_server;
1044 struct svc_deferred_req *dr;
1045
1046 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1047 return;
1048
1049 trace_svc_xprt_detach(xprt);
1050 xprt->xpt_ops->xpo_detach(xprt);
1051 if (xprt->xpt_bc_xprt)
1052 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1053
1054 spin_lock_bh(&serv->sv_lock);
1055 list_del_init(&xprt->xpt_list);
1056 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1057 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1058 serv->sv_tmpcnt--;
1059 spin_unlock_bh(&serv->sv_lock);
1060
1061 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1062 kfree(dr);
1063
1064 call_xpt_users(xprt);
1065 svc_xprt_put(xprt);
1066}
1067
1068/**
1069 * svc_xprt_close - Close a client connection
1070 * @xprt: transport to disconnect
1071 *
1072 */
1073void svc_xprt_close(struct svc_xprt *xprt)
1074{
1075 trace_svc_xprt_close(xprt);
1076 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1077 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1078 /* someone else will have to effect the close */
1079 return;
1080 /*
1081 * We expect svc_close_xprt() to work even when no threads are
1082 * running (e.g., while configuring the server before starting
1083 * any threads), so if the transport isn't busy, we delete
1084 * it ourself:
1085 */
1086 svc_delete_xprt(xprt);
1087}
1088EXPORT_SYMBOL_GPL(svc_xprt_close);
1089
1090static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1091{
1092 struct svc_xprt *xprt;
1093 int ret = 0;
1094
1095 spin_lock_bh(&serv->sv_lock);
1096 list_for_each_entry(xprt, xprt_list, xpt_list) {
1097 if (xprt->xpt_net != net)
1098 continue;
1099 ret++;
1100 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1101 svc_xprt_enqueue(xprt);
1102 }
1103 spin_unlock_bh(&serv->sv_lock);
1104 return ret;
1105}
1106
1107static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1108{
1109 struct svc_pool *pool;
1110 struct svc_xprt *xprt;
1111 struct svc_xprt *tmp;
1112 int i;
1113
1114 for (i = 0; i < serv->sv_nrpools; i++) {
1115 pool = &serv->sv_pools[i];
1116
1117 spin_lock_bh(&pool->sp_lock);
1118 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1119 if (xprt->xpt_net != net)
1120 continue;
1121 list_del_init(&xprt->xpt_ready);
1122 spin_unlock_bh(&pool->sp_lock);
1123 return xprt;
1124 }
1125 spin_unlock_bh(&pool->sp_lock);
1126 }
1127 return NULL;
1128}
1129
1130static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1131{
1132 struct svc_xprt *xprt;
1133
1134 while ((xprt = svc_dequeue_net(serv, net))) {
1135 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1136 svc_delete_xprt(xprt);
1137 }
1138}
1139
1140/**
1141 * svc_xprt_destroy_all - Destroy transports associated with @serv
1142 * @serv: RPC service to be shut down
1143 * @net: target network namespace
1144 *
1145 * Server threads may still be running (especially in the case where the
1146 * service is still running in other network namespaces).
1147 *
1148 * So we shut down sockets the same way we would on a running server, by
1149 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1150 * the close. In the case there are no such other threads,
1151 * threads running, svc_clean_up_xprts() does a simple version of a
1152 * server's main event loop, and in the case where there are other
1153 * threads, we may need to wait a little while and then check again to
1154 * see if they're done.
1155 */
1156void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1157{
1158 int delay = 0;
1159
1160 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1161 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1162
1163 svc_clean_up_xprts(serv, net);
1164 msleep(delay++);
1165 }
1166}
1167EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1168
1169/*
1170 * Handle defer and revisit of requests
1171 */
1172
1173static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1174{
1175 struct svc_deferred_req *dr =
1176 container_of(dreq, struct svc_deferred_req, handle);
1177 struct svc_xprt *xprt = dr->xprt;
1178
1179 spin_lock(&xprt->xpt_lock);
1180 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1181 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1182 spin_unlock(&xprt->xpt_lock);
1183 trace_svc_defer_drop(dr);
1184 svc_xprt_put(xprt);
1185 kfree(dr);
1186 return;
1187 }
1188 dr->xprt = NULL;
1189 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1190 spin_unlock(&xprt->xpt_lock);
1191 trace_svc_defer_queue(dr);
1192 svc_xprt_enqueue(xprt);
1193 svc_xprt_put(xprt);
1194}
1195
1196/*
1197 * Save the request off for later processing. The request buffer looks
1198 * like this:
1199 *
1200 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1201 *
1202 * This code can only handle requests that consist of an xprt-header
1203 * and rpc-header.
1204 */
1205static struct cache_deferred_req *svc_defer(struct cache_req *req)
1206{
1207 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1208 struct svc_deferred_req *dr;
1209
1210 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1211 return NULL; /* if more than a page, give up FIXME */
1212 if (rqstp->rq_deferred) {
1213 dr = rqstp->rq_deferred;
1214 rqstp->rq_deferred = NULL;
1215 } else {
1216 size_t skip;
1217 size_t size;
1218 /* FIXME maybe discard if size too large */
1219 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1220 dr = kmalloc(size, GFP_KERNEL);
1221 if (dr == NULL)
1222 return NULL;
1223
1224 dr->handle.owner = rqstp->rq_server;
1225 dr->prot = rqstp->rq_prot;
1226 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1227 dr->addrlen = rqstp->rq_addrlen;
1228 dr->daddr = rqstp->rq_daddr;
1229 dr->argslen = rqstp->rq_arg.len >> 2;
1230 dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1231 rqstp->rq_xprt_ctxt = NULL;
1232
1233 /* back up head to the start of the buffer and copy */
1234 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1235 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1236 dr->argslen << 2);
1237 }
1238 trace_svc_defer(rqstp);
1239 svc_xprt_get(rqstp->rq_xprt);
1240 dr->xprt = rqstp->rq_xprt;
1241 set_bit(RQ_DROPME, &rqstp->rq_flags);
1242
1243 dr->handle.revisit = svc_revisit;
1244 return &dr->handle;
1245}
1246
1247/*
1248 * recv data from a deferred request into an active one
1249 */
1250static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1251{
1252 struct svc_deferred_req *dr = rqstp->rq_deferred;
1253
1254 trace_svc_defer_recv(dr);
1255
1256 /* setup iov_base past transport header */
1257 rqstp->rq_arg.head[0].iov_base = dr->args;
1258 /* The iov_len does not include the transport header bytes */
1259 rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1260 rqstp->rq_arg.page_len = 0;
1261 /* The rq_arg.len includes the transport header bytes */
1262 rqstp->rq_arg.len = dr->argslen << 2;
1263 rqstp->rq_prot = dr->prot;
1264 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1265 rqstp->rq_addrlen = dr->addrlen;
1266 /* Save off transport header len in case we get deferred again */
1267 rqstp->rq_daddr = dr->daddr;
1268 rqstp->rq_respages = rqstp->rq_pages;
1269 rqstp->rq_xprt_ctxt = dr->xprt_ctxt;
1270 svc_xprt_received(rqstp->rq_xprt);
1271 return dr->argslen << 2;
1272}
1273
1274
1275static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1276{
1277 struct svc_deferred_req *dr = NULL;
1278
1279 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1280 return NULL;
1281 spin_lock(&xprt->xpt_lock);
1282 if (!list_empty(&xprt->xpt_deferred)) {
1283 dr = list_entry(xprt->xpt_deferred.next,
1284 struct svc_deferred_req,
1285 handle.recent);
1286 list_del_init(&dr->handle.recent);
1287 } else
1288 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1289 spin_unlock(&xprt->xpt_lock);
1290 return dr;
1291}
1292
1293/**
1294 * svc_find_xprt - find an RPC transport instance
1295 * @serv: pointer to svc_serv to search
1296 * @xcl_name: C string containing transport's class name
1297 * @net: owner net pointer
1298 * @af: Address family of transport's local address
1299 * @port: transport's IP port number
1300 *
1301 * Return the transport instance pointer for the endpoint accepting
1302 * connections/peer traffic from the specified transport class,
1303 * address family and port.
1304 *
1305 * Specifying 0 for the address family or port is effectively a
1306 * wild-card, and will result in matching the first transport in the
1307 * service's list that has a matching class name.
1308 */
1309struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1310 struct net *net, const sa_family_t af,
1311 const unsigned short port)
1312{
1313 struct svc_xprt *xprt;
1314 struct svc_xprt *found = NULL;
1315
1316 /* Sanity check the args */
1317 if (serv == NULL || xcl_name == NULL)
1318 return found;
1319
1320 spin_lock_bh(&serv->sv_lock);
1321 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1322 if (xprt->xpt_net != net)
1323 continue;
1324 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1325 continue;
1326 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1327 continue;
1328 if (port != 0 && port != svc_xprt_local_port(xprt))
1329 continue;
1330 found = xprt;
1331 svc_xprt_get(xprt);
1332 break;
1333 }
1334 spin_unlock_bh(&serv->sv_lock);
1335 return found;
1336}
1337EXPORT_SYMBOL_GPL(svc_find_xprt);
1338
1339static int svc_one_xprt_name(const struct svc_xprt *xprt,
1340 char *pos, int remaining)
1341{
1342 int len;
1343
1344 len = snprintf(pos, remaining, "%s %u\n",
1345 xprt->xpt_class->xcl_name,
1346 svc_xprt_local_port(xprt));
1347 if (len >= remaining)
1348 return -ENAMETOOLONG;
1349 return len;
1350}
1351
1352/**
1353 * svc_xprt_names - format a buffer with a list of transport names
1354 * @serv: pointer to an RPC service
1355 * @buf: pointer to a buffer to be filled in
1356 * @buflen: length of buffer to be filled in
1357 *
1358 * Fills in @buf with a string containing a list of transport names,
1359 * each name terminated with '\n'.
1360 *
1361 * Returns positive length of the filled-in string on success; otherwise
1362 * a negative errno value is returned if an error occurs.
1363 */
1364int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1365{
1366 struct svc_xprt *xprt;
1367 int len, totlen;
1368 char *pos;
1369
1370 /* Sanity check args */
1371 if (!serv)
1372 return 0;
1373
1374 spin_lock_bh(&serv->sv_lock);
1375
1376 pos = buf;
1377 totlen = 0;
1378 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1379 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1380 if (len < 0) {
1381 *buf = '\0';
1382 totlen = len;
1383 }
1384 if (len <= 0)
1385 break;
1386
1387 pos += len;
1388 totlen += len;
1389 }
1390
1391 spin_unlock_bh(&serv->sv_lock);
1392 return totlen;
1393}
1394EXPORT_SYMBOL_GPL(svc_xprt_names);
1395
1396
1397/*----------------------------------------------------------------------------*/
1398
1399static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1400{
1401 unsigned int pidx = (unsigned int)*pos;
1402 struct svc_serv *serv = m->private;
1403
1404 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1405
1406 if (!pidx)
1407 return SEQ_START_TOKEN;
1408 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1409}
1410
1411static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1412{
1413 struct svc_pool *pool = p;
1414 struct svc_serv *serv = m->private;
1415
1416 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1417
1418 if (p == SEQ_START_TOKEN) {
1419 pool = &serv->sv_pools[0];
1420 } else {
1421 unsigned int pidx = (pool - &serv->sv_pools[0]);
1422 if (pidx < serv->sv_nrpools-1)
1423 pool = &serv->sv_pools[pidx+1];
1424 else
1425 pool = NULL;
1426 }
1427 ++*pos;
1428 return pool;
1429}
1430
1431static void svc_pool_stats_stop(struct seq_file *m, void *p)
1432{
1433}
1434
1435static int svc_pool_stats_show(struct seq_file *m, void *p)
1436{
1437 struct svc_pool *pool = p;
1438
1439 if (p == SEQ_START_TOKEN) {
1440 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1441 return 0;
1442 }
1443
1444 seq_printf(m, "%u %lu %lu %lu %lu\n",
1445 pool->sp_id,
1446 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1447 pool->sp_stats.sockets_queued,
1448 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1449 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1450
1451 return 0;
1452}
1453
1454static const struct seq_operations svc_pool_stats_seq_ops = {
1455 .start = svc_pool_stats_start,
1456 .next = svc_pool_stats_next,
1457 .stop = svc_pool_stats_stop,
1458 .show = svc_pool_stats_show,
1459};
1460
1461int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1462{
1463 int err;
1464
1465 err = seq_open(file, &svc_pool_stats_seq_ops);
1466 if (!err)
1467 ((struct seq_file *) file->private_data)->private = serv;
1468 return err;
1469}
1470EXPORT_SYMBOL(svc_pool_stats_open);
1471
1472/*----------------------------------------------------------------------------*/