Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Device Memory Migration functionality.
  4 *
  5 * Originally written by Jérôme Glisse.
  6 */
  7#include <linux/export.h>
  8#include <linux/memremap.h>
  9#include <linux/migrate.h>
 10#include <linux/mm.h>
 11#include <linux/mm_inline.h>
 12#include <linux/mmu_notifier.h>
 13#include <linux/oom.h>
 14#include <linux/pagewalk.h>
 15#include <linux/rmap.h>
 16#include <linux/swapops.h>
 17#include <asm/tlbflush.h>
 18#include "internal.h"
 19
 20static int migrate_vma_collect_skip(unsigned long start,
 21				    unsigned long end,
 22				    struct mm_walk *walk)
 23{
 24	struct migrate_vma *migrate = walk->private;
 25	unsigned long addr;
 26
 27	for (addr = start; addr < end; addr += PAGE_SIZE) {
 28		migrate->dst[migrate->npages] = 0;
 29		migrate->src[migrate->npages++] = 0;
 30	}
 31
 32	return 0;
 33}
 34
 35static int migrate_vma_collect_hole(unsigned long start,
 36				    unsigned long end,
 37				    __always_unused int depth,
 38				    struct mm_walk *walk)
 39{
 40	struct migrate_vma *migrate = walk->private;
 41	unsigned long addr;
 42
 43	/* Only allow populating anonymous memory. */
 44	if (!vma_is_anonymous(walk->vma))
 45		return migrate_vma_collect_skip(start, end, walk);
 46
 47	for (addr = start; addr < end; addr += PAGE_SIZE) {
 48		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
 49		migrate->dst[migrate->npages] = 0;
 50		migrate->npages++;
 51		migrate->cpages++;
 52	}
 53
 54	return 0;
 55}
 56
 57static int migrate_vma_collect_pmd(pmd_t *pmdp,
 58				   unsigned long start,
 59				   unsigned long end,
 60				   struct mm_walk *walk)
 61{
 62	struct migrate_vma *migrate = walk->private;
 63	struct vm_area_struct *vma = walk->vma;
 64	struct mm_struct *mm = vma->vm_mm;
 65	unsigned long addr = start, unmapped = 0;
 66	spinlock_t *ptl;
 67	pte_t *ptep;
 68
 69again:
 70	if (pmd_none(*pmdp))
 71		return migrate_vma_collect_hole(start, end, -1, walk);
 72
 73	if (pmd_trans_huge(*pmdp)) {
 74		struct page *page;
 75
 76		ptl = pmd_lock(mm, pmdp);
 77		if (unlikely(!pmd_trans_huge(*pmdp))) {
 78			spin_unlock(ptl);
 79			goto again;
 80		}
 81
 82		page = pmd_page(*pmdp);
 83		if (is_huge_zero_page(page)) {
 84			spin_unlock(ptl);
 85			split_huge_pmd(vma, pmdp, addr);
 86			if (pmd_trans_unstable(pmdp))
 87				return migrate_vma_collect_skip(start, end,
 88								walk);
 89		} else {
 90			int ret;
 91
 92			get_page(page);
 93			spin_unlock(ptl);
 94			if (unlikely(!trylock_page(page)))
 95				return migrate_vma_collect_skip(start, end,
 96								walk);
 97			ret = split_huge_page(page);
 98			unlock_page(page);
 99			put_page(page);
100			if (ret)
101				return migrate_vma_collect_skip(start, end,
102								walk);
103			if (pmd_none(*pmdp))
104				return migrate_vma_collect_hole(start, end, -1,
105								walk);
106		}
107	}
108
109	if (unlikely(pmd_bad(*pmdp)))
110		return migrate_vma_collect_skip(start, end, walk);
111
112	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
113	arch_enter_lazy_mmu_mode();
114
115	for (; addr < end; addr += PAGE_SIZE, ptep++) {
116		unsigned long mpfn = 0, pfn;
117		struct page *page;
118		swp_entry_t entry;
119		pte_t pte;
120
121		pte = *ptep;
122
123		if (pte_none(pte)) {
124			if (vma_is_anonymous(vma)) {
125				mpfn = MIGRATE_PFN_MIGRATE;
126				migrate->cpages++;
127			}
128			goto next;
129		}
130
131		if (!pte_present(pte)) {
132			/*
133			 * Only care about unaddressable device page special
134			 * page table entry. Other special swap entries are not
135			 * migratable, and we ignore regular swapped page.
136			 */
137			entry = pte_to_swp_entry(pte);
138			if (!is_device_private_entry(entry))
139				goto next;
140
141			page = pfn_swap_entry_to_page(entry);
142			if (!(migrate->flags &
143				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
144			    page->pgmap->owner != migrate->pgmap_owner)
145				goto next;
146
147			mpfn = migrate_pfn(page_to_pfn(page)) |
148					MIGRATE_PFN_MIGRATE;
149			if (is_writable_device_private_entry(entry))
150				mpfn |= MIGRATE_PFN_WRITE;
151		} else {
152			pfn = pte_pfn(pte);
153			if (is_zero_pfn(pfn) &&
154			    (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
155				mpfn = MIGRATE_PFN_MIGRATE;
156				migrate->cpages++;
157				goto next;
158			}
159			page = vm_normal_page(migrate->vma, addr, pte);
160			if (page && !is_zone_device_page(page) &&
161			    !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
162				goto next;
163			else if (page && is_device_coherent_page(page) &&
164			    (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
165			     page->pgmap->owner != migrate->pgmap_owner))
166				goto next;
167			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
168			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
169		}
170
171		/* FIXME support THP */
172		if (!page || !page->mapping || PageTransCompound(page)) {
173			mpfn = 0;
174			goto next;
175		}
176
177		/*
178		 * By getting a reference on the page we pin it and that blocks
179		 * any kind of migration. Side effect is that it "freezes" the
180		 * pte.
181		 *
182		 * We drop this reference after isolating the page from the lru
183		 * for non device page (device page are not on the lru and thus
184		 * can't be dropped from it).
185		 */
186		get_page(page);
187
188		/*
189		 * We rely on trylock_page() to avoid deadlock between
190		 * concurrent migrations where each is waiting on the others
191		 * page lock. If we can't immediately lock the page we fail this
192		 * migration as it is only best effort anyway.
193		 *
194		 * If we can lock the page it's safe to set up a migration entry
195		 * now. In the common case where the page is mapped once in a
196		 * single process setting up the migration entry now is an
197		 * optimisation to avoid walking the rmap later with
198		 * try_to_migrate().
199		 */
200		if (trylock_page(page)) {
201			bool anon_exclusive;
202			pte_t swp_pte;
203
204			flush_cache_page(vma, addr, pte_pfn(*ptep));
205			anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
206			if (anon_exclusive) {
207				pte = ptep_clear_flush(vma, addr, ptep);
208
209				if (page_try_share_anon_rmap(page)) {
210					set_pte_at(mm, addr, ptep, pte);
211					unlock_page(page);
212					put_page(page);
213					mpfn = 0;
214					goto next;
215				}
216			} else {
217				pte = ptep_get_and_clear(mm, addr, ptep);
218			}
219
220			migrate->cpages++;
221
222			/* Set the dirty flag on the folio now the pte is gone. */
223			if (pte_dirty(pte))
224				folio_mark_dirty(page_folio(page));
225
226			/* Setup special migration page table entry */
227			if (mpfn & MIGRATE_PFN_WRITE)
228				entry = make_writable_migration_entry(
229							page_to_pfn(page));
230			else if (anon_exclusive)
231				entry = make_readable_exclusive_migration_entry(
232							page_to_pfn(page));
233			else
234				entry = make_readable_migration_entry(
235							page_to_pfn(page));
236			if (pte_present(pte)) {
237				if (pte_young(pte))
238					entry = make_migration_entry_young(entry);
239				if (pte_dirty(pte))
240					entry = make_migration_entry_dirty(entry);
241			}
242			swp_pte = swp_entry_to_pte(entry);
243			if (pte_present(pte)) {
244				if (pte_soft_dirty(pte))
245					swp_pte = pte_swp_mksoft_dirty(swp_pte);
246				if (pte_uffd_wp(pte))
247					swp_pte = pte_swp_mkuffd_wp(swp_pte);
248			} else {
249				if (pte_swp_soft_dirty(pte))
250					swp_pte = pte_swp_mksoft_dirty(swp_pte);
251				if (pte_swp_uffd_wp(pte))
252					swp_pte = pte_swp_mkuffd_wp(swp_pte);
253			}
254			set_pte_at(mm, addr, ptep, swp_pte);
255
256			/*
257			 * This is like regular unmap: we remove the rmap and
258			 * drop page refcount. Page won't be freed, as we took
259			 * a reference just above.
260			 */
261			page_remove_rmap(page, vma, false);
262			put_page(page);
263
264			if (pte_present(pte))
265				unmapped++;
266		} else {
267			put_page(page);
268			mpfn = 0;
269		}
270
271next:
272		migrate->dst[migrate->npages] = 0;
273		migrate->src[migrate->npages++] = mpfn;
274	}
275
276	/* Only flush the TLB if we actually modified any entries */
277	if (unmapped)
278		flush_tlb_range(walk->vma, start, end);
279
280	arch_leave_lazy_mmu_mode();
281	pte_unmap_unlock(ptep - 1, ptl);
282
283	return 0;
284}
285
286static const struct mm_walk_ops migrate_vma_walk_ops = {
287	.pmd_entry		= migrate_vma_collect_pmd,
288	.pte_hole		= migrate_vma_collect_hole,
289};
290
291/*
292 * migrate_vma_collect() - collect pages over a range of virtual addresses
293 * @migrate: migrate struct containing all migration information
294 *
295 * This will walk the CPU page table. For each virtual address backed by a
296 * valid page, it updates the src array and takes a reference on the page, in
297 * order to pin the page until we lock it and unmap it.
298 */
299static void migrate_vma_collect(struct migrate_vma *migrate)
300{
301	struct mmu_notifier_range range;
302
303	/*
304	 * Note that the pgmap_owner is passed to the mmu notifier callback so
305	 * that the registered device driver can skip invalidating device
306	 * private page mappings that won't be migrated.
307	 */
308	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
309		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
310		migrate->pgmap_owner);
311	mmu_notifier_invalidate_range_start(&range);
312
313	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
314			&migrate_vma_walk_ops, migrate);
315
316	mmu_notifier_invalidate_range_end(&range);
317	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
318}
319
320/*
321 * migrate_vma_check_page() - check if page is pinned or not
322 * @page: struct page to check
323 *
324 * Pinned pages cannot be migrated. This is the same test as in
325 * folio_migrate_mapping(), except that here we allow migration of a
326 * ZONE_DEVICE page.
327 */
328static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
329{
330	/*
331	 * One extra ref because caller holds an extra reference, either from
332	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
333	 * a device page.
334	 */
335	int extra = 1 + (page == fault_page);
336
337	/*
338	 * FIXME support THP (transparent huge page), it is bit more complex to
339	 * check them than regular pages, because they can be mapped with a pmd
340	 * or with a pte (split pte mapping).
341	 */
342	if (PageCompound(page))
343		return false;
344
345	/* Page from ZONE_DEVICE have one extra reference */
346	if (is_zone_device_page(page))
347		extra++;
348
349	/* For file back page */
350	if (page_mapping(page))
351		extra += 1 + page_has_private(page);
352
353	if ((page_count(page) - extra) > page_mapcount(page))
354		return false;
355
356	return true;
357}
358
359/*
360 * Unmaps pages for migration. Returns number of source pfns marked as
361 * migrating.
362 */
363static unsigned long migrate_device_unmap(unsigned long *src_pfns,
364					  unsigned long npages,
365					  struct page *fault_page)
366{
367	unsigned long i, restore = 0;
368	bool allow_drain = true;
369	unsigned long unmapped = 0;
370
371	lru_add_drain();
372
373	for (i = 0; i < npages; i++) {
374		struct page *page = migrate_pfn_to_page(src_pfns[i]);
375		struct folio *folio;
376
377		if (!page) {
378			if (src_pfns[i] & MIGRATE_PFN_MIGRATE)
379				unmapped++;
380			continue;
381		}
382
383		/* ZONE_DEVICE pages are not on LRU */
384		if (!is_zone_device_page(page)) {
385			if (!PageLRU(page) && allow_drain) {
386				/* Drain CPU's pagevec */
387				lru_add_drain_all();
388				allow_drain = false;
389			}
390
391			if (isolate_lru_page(page)) {
392				src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
393				restore++;
394				continue;
395			}
396
397			/* Drop the reference we took in collect */
398			put_page(page);
399		}
400
401		folio = page_folio(page);
402		if (folio_mapped(folio))
403			try_to_migrate(folio, 0);
404
405		if (page_mapped(page) ||
406		    !migrate_vma_check_page(page, fault_page)) {
407			if (!is_zone_device_page(page)) {
408				get_page(page);
409				putback_lru_page(page);
410			}
411
412			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
413			restore++;
414			continue;
415		}
416
417		unmapped++;
418	}
419
420	for (i = 0; i < npages && restore; i++) {
421		struct page *page = migrate_pfn_to_page(src_pfns[i]);
422		struct folio *folio;
423
424		if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE))
425			continue;
426
427		folio = page_folio(page);
428		remove_migration_ptes(folio, folio, false);
429
430		src_pfns[i] = 0;
431		folio_unlock(folio);
432		folio_put(folio);
433		restore--;
434	}
435
436	return unmapped;
437}
438
439/*
440 * migrate_vma_unmap() - replace page mapping with special migration pte entry
441 * @migrate: migrate struct containing all migration information
442 *
443 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
444 * special migration pte entry and check if it has been pinned. Pinned pages are
445 * restored because we cannot migrate them.
446 *
447 * This is the last step before we call the device driver callback to allocate
448 * destination memory and copy contents of original page over to new page.
449 */
450static void migrate_vma_unmap(struct migrate_vma *migrate)
451{
452	migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages,
453					migrate->fault_page);
454}
455
456/**
457 * migrate_vma_setup() - prepare to migrate a range of memory
458 * @args: contains the vma, start, and pfns arrays for the migration
459 *
460 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
461 * without an error.
462 *
463 * Prepare to migrate a range of memory virtual address range by collecting all
464 * the pages backing each virtual address in the range, saving them inside the
465 * src array.  Then lock those pages and unmap them. Once the pages are locked
466 * and unmapped, check whether each page is pinned or not.  Pages that aren't
467 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
468 * corresponding src array entry.  Then restores any pages that are pinned, by
469 * remapping and unlocking those pages.
470 *
471 * The caller should then allocate destination memory and copy source memory to
472 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
473 * flag set).  Once these are allocated and copied, the caller must update each
474 * corresponding entry in the dst array with the pfn value of the destination
475 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
476 * lock_page().
477 *
478 * Note that the caller does not have to migrate all the pages that are marked
479 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
480 * device memory to system memory.  If the caller cannot migrate a device page
481 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
482 * consequences for the userspace process, so it must be avoided if at all
483 * possible.
484 *
485 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
486 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
487 * allowing the caller to allocate device memory for those unbacked virtual
488 * addresses.  For this the caller simply has to allocate device memory and
489 * properly set the destination entry like for regular migration.  Note that
490 * this can still fail, and thus inside the device driver you must check if the
491 * migration was successful for those entries after calling migrate_vma_pages(),
492 * just like for regular migration.
493 *
494 * After that, the callers must call migrate_vma_pages() to go over each entry
495 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
496 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
497 * then migrate_vma_pages() to migrate struct page information from the source
498 * struct page to the destination struct page.  If it fails to migrate the
499 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
500 * src array.
501 *
502 * At this point all successfully migrated pages have an entry in the src
503 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
504 * array entry with MIGRATE_PFN_VALID flag set.
505 *
506 * Once migrate_vma_pages() returns the caller may inspect which pages were
507 * successfully migrated, and which were not.  Successfully migrated pages will
508 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
509 *
510 * It is safe to update device page table after migrate_vma_pages() because
511 * both destination and source page are still locked, and the mmap_lock is held
512 * in read mode (hence no one can unmap the range being migrated).
513 *
514 * Once the caller is done cleaning up things and updating its page table (if it
515 * chose to do so, this is not an obligation) it finally calls
516 * migrate_vma_finalize() to update the CPU page table to point to new pages
517 * for successfully migrated pages or otherwise restore the CPU page table to
518 * point to the original source pages.
519 */
520int migrate_vma_setup(struct migrate_vma *args)
521{
522	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
523
524	args->start &= PAGE_MASK;
525	args->end &= PAGE_MASK;
526	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
527	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
528		return -EINVAL;
529	if (nr_pages <= 0)
530		return -EINVAL;
531	if (args->start < args->vma->vm_start ||
532	    args->start >= args->vma->vm_end)
533		return -EINVAL;
534	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
535		return -EINVAL;
536	if (!args->src || !args->dst)
537		return -EINVAL;
538	if (args->fault_page && !is_device_private_page(args->fault_page))
539		return -EINVAL;
540
541	memset(args->src, 0, sizeof(*args->src) * nr_pages);
542	args->cpages = 0;
543	args->npages = 0;
544
545	migrate_vma_collect(args);
546
547	if (args->cpages)
548		migrate_vma_unmap(args);
549
550	/*
551	 * At this point pages are locked and unmapped, and thus they have
552	 * stable content and can safely be copied to destination memory that
553	 * is allocated by the drivers.
554	 */
555	return 0;
556
557}
558EXPORT_SYMBOL(migrate_vma_setup);
559
560/*
561 * This code closely matches the code in:
562 *   __handle_mm_fault()
563 *     handle_pte_fault()
564 *       do_anonymous_page()
565 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
566 * private or coherent page.
567 */
568static void migrate_vma_insert_page(struct migrate_vma *migrate,
569				    unsigned long addr,
570				    struct page *page,
571				    unsigned long *src)
572{
573	struct vm_area_struct *vma = migrate->vma;
574	struct mm_struct *mm = vma->vm_mm;
575	bool flush = false;
576	spinlock_t *ptl;
577	pte_t entry;
578	pgd_t *pgdp;
579	p4d_t *p4dp;
580	pud_t *pudp;
581	pmd_t *pmdp;
582	pte_t *ptep;
583
584	/* Only allow populating anonymous memory */
585	if (!vma_is_anonymous(vma))
586		goto abort;
587
588	pgdp = pgd_offset(mm, addr);
589	p4dp = p4d_alloc(mm, pgdp, addr);
590	if (!p4dp)
591		goto abort;
592	pudp = pud_alloc(mm, p4dp, addr);
593	if (!pudp)
594		goto abort;
595	pmdp = pmd_alloc(mm, pudp, addr);
596	if (!pmdp)
597		goto abort;
598
599	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
600		goto abort;
601
602	/*
603	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
604	 * pte_offset_map() on pmds where a huge pmd might be created
605	 * from a different thread.
606	 *
607	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
608	 * parallel threads are excluded by other means.
609	 *
610	 * Here we only have mmap_read_lock(mm).
611	 */
612	if (pte_alloc(mm, pmdp))
613		goto abort;
614
615	/* See the comment in pte_alloc_one_map() */
616	if (unlikely(pmd_trans_unstable(pmdp)))
617		goto abort;
618
619	if (unlikely(anon_vma_prepare(vma)))
620		goto abort;
621	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
622		goto abort;
623
624	/*
625	 * The memory barrier inside __SetPageUptodate makes sure that
626	 * preceding stores to the page contents become visible before
627	 * the set_pte_at() write.
628	 */
629	__SetPageUptodate(page);
630
631	if (is_device_private_page(page)) {
632		swp_entry_t swp_entry;
633
634		if (vma->vm_flags & VM_WRITE)
635			swp_entry = make_writable_device_private_entry(
636						page_to_pfn(page));
637		else
638			swp_entry = make_readable_device_private_entry(
639						page_to_pfn(page));
640		entry = swp_entry_to_pte(swp_entry);
641	} else {
642		if (is_zone_device_page(page) &&
643		    !is_device_coherent_page(page)) {
644			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
645			goto abort;
646		}
647		entry = mk_pte(page, vma->vm_page_prot);
648		if (vma->vm_flags & VM_WRITE)
649			entry = pte_mkwrite(pte_mkdirty(entry));
650	}
651
652	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
653
654	if (check_stable_address_space(mm))
655		goto unlock_abort;
656
657	if (pte_present(*ptep)) {
658		unsigned long pfn = pte_pfn(*ptep);
659
660		if (!is_zero_pfn(pfn))
661			goto unlock_abort;
662		flush = true;
663	} else if (!pte_none(*ptep))
664		goto unlock_abort;
665
666	/*
667	 * Check for userfaultfd but do not deliver the fault. Instead,
668	 * just back off.
669	 */
670	if (userfaultfd_missing(vma))
671		goto unlock_abort;
672
673	inc_mm_counter(mm, MM_ANONPAGES);
674	page_add_new_anon_rmap(page, vma, addr);
675	if (!is_zone_device_page(page))
676		lru_cache_add_inactive_or_unevictable(page, vma);
677	get_page(page);
678
679	if (flush) {
680		flush_cache_page(vma, addr, pte_pfn(*ptep));
681		ptep_clear_flush_notify(vma, addr, ptep);
682		set_pte_at_notify(mm, addr, ptep, entry);
683		update_mmu_cache(vma, addr, ptep);
684	} else {
685		/* No need to invalidate - it was non-present before */
686		set_pte_at(mm, addr, ptep, entry);
687		update_mmu_cache(vma, addr, ptep);
688	}
689
690	pte_unmap_unlock(ptep, ptl);
691	*src = MIGRATE_PFN_MIGRATE;
692	return;
693
694unlock_abort:
695	pte_unmap_unlock(ptep, ptl);
696abort:
697	*src &= ~MIGRATE_PFN_MIGRATE;
698}
699
700static void __migrate_device_pages(unsigned long *src_pfns,
701				unsigned long *dst_pfns, unsigned long npages,
702				struct migrate_vma *migrate)
703{
704	struct mmu_notifier_range range;
705	unsigned long i;
706	bool notified = false;
707
708	for (i = 0; i < npages; i++) {
709		struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
710		struct page *page = migrate_pfn_to_page(src_pfns[i]);
711		struct address_space *mapping;
712		int r;
713
714		if (!newpage) {
715			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
716			continue;
717		}
718
719		if (!page) {
720			unsigned long addr;
721
722			if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE))
723				continue;
724
725			/*
726			 * The only time there is no vma is when called from
727			 * migrate_device_coherent_page(). However this isn't
728			 * called if the page could not be unmapped.
729			 */
730			VM_BUG_ON(!migrate);
731			addr = migrate->start + i*PAGE_SIZE;
732			if (!notified) {
733				notified = true;
734
735				mmu_notifier_range_init_owner(&range,
736					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
737					migrate->vma->vm_mm, addr, migrate->end,
738					migrate->pgmap_owner);
739				mmu_notifier_invalidate_range_start(&range);
740			}
741			migrate_vma_insert_page(migrate, addr, newpage,
742						&src_pfns[i]);
743			continue;
744		}
745
746		mapping = page_mapping(page);
747
748		if (is_device_private_page(newpage) ||
749		    is_device_coherent_page(newpage)) {
750			/*
751			 * For now only support anonymous memory migrating to
752			 * device private or coherent memory.
753			 */
754			if (mapping) {
755				src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
756				continue;
757			}
758		} else if (is_zone_device_page(newpage)) {
759			/*
760			 * Other types of ZONE_DEVICE page are not supported.
761			 */
762			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
763			continue;
764		}
765
766		if (migrate && migrate->fault_page == page)
767			r = migrate_folio_extra(mapping, page_folio(newpage),
768						page_folio(page),
769						MIGRATE_SYNC_NO_COPY, 1);
770		else
771			r = migrate_folio(mapping, page_folio(newpage),
772					page_folio(page), MIGRATE_SYNC_NO_COPY);
773		if (r != MIGRATEPAGE_SUCCESS)
774			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
775	}
776
777	/*
778	 * No need to double call mmu_notifier->invalidate_range() callback as
779	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
780	 * did already call it.
781	 */
782	if (notified)
783		mmu_notifier_invalidate_range_only_end(&range);
784}
785
786/**
787 * migrate_device_pages() - migrate meta-data from src page to dst page
788 * @src_pfns: src_pfns returned from migrate_device_range()
789 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
790 * @npages: number of pages in the range
791 *
792 * Equivalent to migrate_vma_pages(). This is called to migrate struct page
793 * meta-data from source struct page to destination.
794 */
795void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns,
796			unsigned long npages)
797{
798	__migrate_device_pages(src_pfns, dst_pfns, npages, NULL);
799}
800EXPORT_SYMBOL(migrate_device_pages);
801
802/**
803 * migrate_vma_pages() - migrate meta-data from src page to dst page
804 * @migrate: migrate struct containing all migration information
805 *
806 * This migrates struct page meta-data from source struct page to destination
807 * struct page. This effectively finishes the migration from source page to the
808 * destination page.
809 */
810void migrate_vma_pages(struct migrate_vma *migrate)
811{
812	__migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate);
813}
814EXPORT_SYMBOL(migrate_vma_pages);
815
816/*
817 * migrate_device_finalize() - complete page migration
818 * @src_pfns: src_pfns returned from migrate_device_range()
819 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
820 * @npages: number of pages in the range
821 *
822 * Completes migration of the page by removing special migration entries.
823 * Drivers must ensure copying of page data is complete and visible to the CPU
824 * before calling this.
825 */
826void migrate_device_finalize(unsigned long *src_pfns,
827			unsigned long *dst_pfns, unsigned long npages)
828{
829	unsigned long i;
830
831	for (i = 0; i < npages; i++) {
832		struct folio *dst, *src;
833		struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
834		struct page *page = migrate_pfn_to_page(src_pfns[i]);
835
836		if (!page) {
837			if (newpage) {
838				unlock_page(newpage);
839				put_page(newpage);
840			}
841			continue;
842		}
843
844		if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
845			if (newpage) {
846				unlock_page(newpage);
847				put_page(newpage);
848			}
849			newpage = page;
850		}
851
852		src = page_folio(page);
853		dst = page_folio(newpage);
854		remove_migration_ptes(src, dst, false);
855		folio_unlock(src);
856
857		if (is_zone_device_page(page))
858			put_page(page);
859		else
860			putback_lru_page(page);
861
862		if (newpage != page) {
863			unlock_page(newpage);
864			if (is_zone_device_page(newpage))
865				put_page(newpage);
866			else
867				putback_lru_page(newpage);
868		}
869	}
870}
871EXPORT_SYMBOL(migrate_device_finalize);
872
873/**
874 * migrate_vma_finalize() - restore CPU page table entry
875 * @migrate: migrate struct containing all migration information
876 *
877 * This replaces the special migration pte entry with either a mapping to the
878 * new page if migration was successful for that page, or to the original page
879 * otherwise.
880 *
881 * This also unlocks the pages and puts them back on the lru, or drops the extra
882 * refcount, for device pages.
883 */
884void migrate_vma_finalize(struct migrate_vma *migrate)
885{
886	migrate_device_finalize(migrate->src, migrate->dst, migrate->npages);
887}
888EXPORT_SYMBOL(migrate_vma_finalize);
889
890/**
891 * migrate_device_range() - migrate device private pfns to normal memory.
892 * @src_pfns: array large enough to hold migrating source device private pfns.
893 * @start: starting pfn in the range to migrate.
894 * @npages: number of pages to migrate.
895 *
896 * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
897 * instead of looking up pages based on virtual address mappings a range of
898 * device pfns that should be migrated to system memory is used instead.
899 *
900 * This is useful when a driver needs to free device memory but doesn't know the
901 * virtual mappings of every page that may be in device memory. For example this
902 * is often the case when a driver is being unloaded or unbound from a device.
903 *
904 * Like migrate_vma_setup() this function will take a reference and lock any
905 * migrating pages that aren't free before unmapping them. Drivers may then
906 * allocate destination pages and start copying data from the device to CPU
907 * memory before calling migrate_device_pages().
908 */
909int migrate_device_range(unsigned long *src_pfns, unsigned long start,
910			unsigned long npages)
911{
912	unsigned long i, pfn;
913
914	for (pfn = start, i = 0; i < npages; pfn++, i++) {
915		struct page *page = pfn_to_page(pfn);
916
917		if (!get_page_unless_zero(page)) {
918			src_pfns[i] = 0;
919			continue;
920		}
921
922		if (!trylock_page(page)) {
923			src_pfns[i] = 0;
924			put_page(page);
925			continue;
926		}
927
928		src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
929	}
930
931	migrate_device_unmap(src_pfns, npages, NULL);
932
933	return 0;
934}
935EXPORT_SYMBOL(migrate_device_range);
936
937/*
938 * Migrate a device coherent page back to normal memory. The caller should have
939 * a reference on page which will be copied to the new page if migration is
940 * successful or dropped on failure.
941 */
942int migrate_device_coherent_page(struct page *page)
943{
944	unsigned long src_pfn, dst_pfn = 0;
945	struct page *dpage;
946
947	WARN_ON_ONCE(PageCompound(page));
948
949	lock_page(page);
950	src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE;
951
952	/*
953	 * We don't have a VMA and don't need to walk the page tables to find
954	 * the source page. So call migrate_vma_unmap() directly to unmap the
955	 * page as migrate_vma_setup() will fail if args.vma == NULL.
956	 */
957	migrate_device_unmap(&src_pfn, 1, NULL);
958	if (!(src_pfn & MIGRATE_PFN_MIGRATE))
959		return -EBUSY;
960
961	dpage = alloc_page(GFP_USER | __GFP_NOWARN);
962	if (dpage) {
963		lock_page(dpage);
964		dst_pfn = migrate_pfn(page_to_pfn(dpage));
965	}
966
967	migrate_device_pages(&src_pfn, &dst_pfn, 1);
968	if (src_pfn & MIGRATE_PFN_MIGRATE)
969		copy_highpage(dpage, page);
970	migrate_device_finalize(&src_pfn, &dst_pfn, 1);
971
972	if (src_pfn & MIGRATE_PFN_MIGRATE)
973		return 0;
974	return -EBUSY;
975}