Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2010 Red Hat, Inc.
  4 * Copyright (c) 2016-2021 Christoph Hellwig.
  5 */
  6#include <linux/module.h>
  7#include <linux/compiler.h>
  8#include <linux/fs.h>
  9#include <linux/fscrypt.h>
 10#include <linux/pagemap.h>
 11#include <linux/iomap.h>
 12#include <linux/backing-dev.h>
 13#include <linux/uio.h>
 14#include <linux/task_io_accounting_ops.h>
 15#include "trace.h"
 16
 17#include "../internal.h"
 18
 19/*
 20 * Private flags for iomap_dio, must not overlap with the public ones in
 21 * iomap.h:
 22 */
 23#define IOMAP_DIO_WRITE_FUA	(1 << 28)
 24#define IOMAP_DIO_NEED_SYNC	(1 << 29)
 25#define IOMAP_DIO_WRITE		(1 << 30)
 26#define IOMAP_DIO_DIRTY		(1 << 31)
 27
 28struct iomap_dio {
 29	struct kiocb		*iocb;
 30	const struct iomap_dio_ops *dops;
 31	loff_t			i_size;
 32	loff_t			size;
 33	atomic_t		ref;
 34	unsigned		flags;
 35	int			error;
 36	size_t			done_before;
 37	bool			wait_for_completion;
 38
 39	union {
 40		/* used during submission and for synchronous completion: */
 41		struct {
 42			struct iov_iter		*iter;
 43			struct task_struct	*waiter;
 44			struct bio		*poll_bio;
 45		} submit;
 46
 47		/* used for aio completion: */
 48		struct {
 49			struct work_struct	work;
 50		} aio;
 51	};
 52};
 53
 54static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter,
 55		struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf)
 56{
 57	if (dio->dops && dio->dops->bio_set)
 58		return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf,
 59					GFP_KERNEL, dio->dops->bio_set);
 60	return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL);
 61}
 62
 63static void iomap_dio_submit_bio(const struct iomap_iter *iter,
 64		struct iomap_dio *dio, struct bio *bio, loff_t pos)
 65{
 66	atomic_inc(&dio->ref);
 67
 68	/* Sync dio can't be polled reliably */
 69	if ((dio->iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(dio->iocb)) {
 70		bio_set_polled(bio, dio->iocb);
 71		dio->submit.poll_bio = bio;
 72	}
 73
 74	if (dio->dops && dio->dops->submit_io)
 75		dio->dops->submit_io(iter, bio, pos);
 76	else
 77		submit_bio(bio);
 78}
 79
 80ssize_t iomap_dio_complete(struct iomap_dio *dio)
 81{
 82	const struct iomap_dio_ops *dops = dio->dops;
 83	struct kiocb *iocb = dio->iocb;
 84	struct inode *inode = file_inode(iocb->ki_filp);
 85	loff_t offset = iocb->ki_pos;
 86	ssize_t ret = dio->error;
 87
 88	if (dops && dops->end_io)
 89		ret = dops->end_io(iocb, dio->size, ret, dio->flags);
 90
 91	if (likely(!ret)) {
 92		ret = dio->size;
 93		/* check for short read */
 94		if (offset + ret > dio->i_size &&
 95		    !(dio->flags & IOMAP_DIO_WRITE))
 96			ret = dio->i_size - offset;
 97		iocb->ki_pos += ret;
 98	}
 99
100	/*
101	 * Try again to invalidate clean pages which might have been cached by
102	 * non-direct readahead, or faulted in by get_user_pages() if the source
103	 * of the write was an mmap'ed region of the file we're writing.  Either
104	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
105	 * this invalidation fails, tough, the write still worked...
106	 *
107	 * And this page cache invalidation has to be after ->end_io(), as some
108	 * filesystems convert unwritten extents to real allocations in
109	 * ->end_io() when necessary, otherwise a racing buffer read would cache
110	 * zeros from unwritten extents.
111	 */
112	if (!dio->error && dio->size &&
113	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
114		int err;
115		err = invalidate_inode_pages2_range(inode->i_mapping,
116				offset >> PAGE_SHIFT,
117				(offset + dio->size - 1) >> PAGE_SHIFT);
118		if (err)
119			dio_warn_stale_pagecache(iocb->ki_filp);
120	}
121
122	inode_dio_end(file_inode(iocb->ki_filp));
123	/*
124	 * If this is a DSYNC write, make sure we push it to stable storage now
125	 * that we've written data.
126	 */
127	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
128		ret = generic_write_sync(iocb, ret);
129
130	if (ret > 0)
131		ret += dio->done_before;
132
133	kfree(dio);
134
135	return ret;
136}
137EXPORT_SYMBOL_GPL(iomap_dio_complete);
138
139static void iomap_dio_complete_work(struct work_struct *work)
140{
141	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
142	struct kiocb *iocb = dio->iocb;
143
144	iocb->ki_complete(iocb, iomap_dio_complete(dio));
145}
146
147/*
148 * Set an error in the dio if none is set yet.  We have to use cmpxchg
149 * as the submission context and the completion context(s) can race to
150 * update the error.
151 */
152static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
153{
154	cmpxchg(&dio->error, 0, ret);
155}
156
157void iomap_dio_bio_end_io(struct bio *bio)
158{
159	struct iomap_dio *dio = bio->bi_private;
160	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
161
162	if (bio->bi_status)
163		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
164
165	if (atomic_dec_and_test(&dio->ref)) {
166		if (dio->wait_for_completion) {
167			struct task_struct *waiter = dio->submit.waiter;
168			WRITE_ONCE(dio->submit.waiter, NULL);
169			blk_wake_io_task(waiter);
170		} else if (dio->flags & IOMAP_DIO_WRITE) {
171			struct inode *inode = file_inode(dio->iocb->ki_filp);
172
173			WRITE_ONCE(dio->iocb->private, NULL);
174			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
175			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
176		} else {
177			WRITE_ONCE(dio->iocb->private, NULL);
178			iomap_dio_complete_work(&dio->aio.work);
179		}
180	}
181
182	if (should_dirty) {
183		bio_check_pages_dirty(bio);
184	} else {
185		bio_release_pages(bio, false);
186		bio_put(bio);
187	}
188}
189EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io);
190
191static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio,
192		loff_t pos, unsigned len)
193{
194	struct inode *inode = file_inode(dio->iocb->ki_filp);
195	struct page *page = ZERO_PAGE(0);
196	struct bio *bio;
197
198	bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE);
199	fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
200				  GFP_KERNEL);
201	bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos);
202	bio->bi_private = dio;
203	bio->bi_end_io = iomap_dio_bio_end_io;
204
205	get_page(page);
206	__bio_add_page(bio, page, len, 0);
207	iomap_dio_submit_bio(iter, dio, bio, pos);
208}
209
210/*
211 * Figure out the bio's operation flags from the dio request, the
212 * mapping, and whether or not we want FUA.  Note that we can end up
213 * clearing the WRITE_FUA flag in the dio request.
214 */
215static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio,
216		const struct iomap *iomap, bool use_fua)
217{
218	blk_opf_t opflags = REQ_SYNC | REQ_IDLE;
219
220	if (!(dio->flags & IOMAP_DIO_WRITE)) {
221		WARN_ON_ONCE(iomap->flags & IOMAP_F_ZONE_APPEND);
222		return REQ_OP_READ;
223	}
224
225	if (iomap->flags & IOMAP_F_ZONE_APPEND)
226		opflags |= REQ_OP_ZONE_APPEND;
227	else
228		opflags |= REQ_OP_WRITE;
229
230	if (use_fua)
231		opflags |= REQ_FUA;
232	else
233		dio->flags &= ~IOMAP_DIO_WRITE_FUA;
234
235	return opflags;
236}
237
238static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter,
239		struct iomap_dio *dio)
240{
241	const struct iomap *iomap = &iter->iomap;
242	struct inode *inode = iter->inode;
243	unsigned int fs_block_size = i_blocksize(inode), pad;
244	loff_t length = iomap_length(iter);
245	loff_t pos = iter->pos;
246	blk_opf_t bio_opf;
247	struct bio *bio;
248	bool need_zeroout = false;
249	bool use_fua = false;
250	int nr_pages, ret = 0;
251	size_t copied = 0;
252	size_t orig_count;
253
254	if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) ||
255	    !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter))
256		return -EINVAL;
257
258	if (iomap->type == IOMAP_UNWRITTEN) {
259		dio->flags |= IOMAP_DIO_UNWRITTEN;
260		need_zeroout = true;
261	}
262
263	if (iomap->flags & IOMAP_F_SHARED)
264		dio->flags |= IOMAP_DIO_COW;
265
266	if (iomap->flags & IOMAP_F_NEW) {
267		need_zeroout = true;
268	} else if (iomap->type == IOMAP_MAPPED) {
269		/*
270		 * Use a FUA write if we need datasync semantics, this is a pure
271		 * data IO that doesn't require any metadata updates (including
272		 * after IO completion such as unwritten extent conversion) and
273		 * the underlying device supports FUA. This allows us to avoid
274		 * cache flushes on IO completion.
275		 */
276		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
277		    (dio->flags & IOMAP_DIO_WRITE_FUA) && bdev_fua(iomap->bdev))
278			use_fua = true;
279	}
280
281	/*
282	 * Save the original count and trim the iter to just the extent we
283	 * are operating on right now.  The iter will be re-expanded once
284	 * we are done.
285	 */
286	orig_count = iov_iter_count(dio->submit.iter);
287	iov_iter_truncate(dio->submit.iter, length);
288
289	if (!iov_iter_count(dio->submit.iter))
290		goto out;
291
292	/*
293	 * We can only poll for single bio I/Os.
294	 */
295	if (need_zeroout ||
296	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode)))
297		dio->iocb->ki_flags &= ~IOCB_HIPRI;
298
299	if (need_zeroout) {
300		/* zero out from the start of the block to the write offset */
301		pad = pos & (fs_block_size - 1);
302		if (pad)
303			iomap_dio_zero(iter, dio, pos - pad, pad);
304	}
305
306	/*
307	 * Set the operation flags early so that bio_iov_iter_get_pages
308	 * can set up the page vector appropriately for a ZONE_APPEND
309	 * operation.
310	 */
311	bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua);
312
313	nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS);
314	do {
315		size_t n;
316		if (dio->error) {
317			iov_iter_revert(dio->submit.iter, copied);
318			copied = ret = 0;
319			goto out;
320		}
321
322		bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf);
323		fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
324					  GFP_KERNEL);
325		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
326		bio->bi_ioprio = dio->iocb->ki_ioprio;
327		bio->bi_private = dio;
328		bio->bi_end_io = iomap_dio_bio_end_io;
329
330		ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
331		if (unlikely(ret)) {
332			/*
333			 * We have to stop part way through an IO. We must fall
334			 * through to the sub-block tail zeroing here, otherwise
335			 * this short IO may expose stale data in the tail of
336			 * the block we haven't written data to.
337			 */
338			bio_put(bio);
339			goto zero_tail;
340		}
341
342		n = bio->bi_iter.bi_size;
343		if (dio->flags & IOMAP_DIO_WRITE) {
344			task_io_account_write(n);
345		} else {
346			if (dio->flags & IOMAP_DIO_DIRTY)
347				bio_set_pages_dirty(bio);
348		}
349
350		dio->size += n;
351		copied += n;
352
353		nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter,
354						 BIO_MAX_VECS);
355		/*
356		 * We can only poll for single bio I/Os.
357		 */
358		if (nr_pages)
359			dio->iocb->ki_flags &= ~IOCB_HIPRI;
360		iomap_dio_submit_bio(iter, dio, bio, pos);
361		pos += n;
362	} while (nr_pages);
363
364	/*
365	 * We need to zeroout the tail of a sub-block write if the extent type
366	 * requires zeroing or the write extends beyond EOF. If we don't zero
367	 * the block tail in the latter case, we can expose stale data via mmap
368	 * reads of the EOF block.
369	 */
370zero_tail:
371	if (need_zeroout ||
372	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
373		/* zero out from the end of the write to the end of the block */
374		pad = pos & (fs_block_size - 1);
375		if (pad)
376			iomap_dio_zero(iter, dio, pos, fs_block_size - pad);
377	}
378out:
379	/* Undo iter limitation to current extent */
380	iov_iter_reexpand(dio->submit.iter, orig_count - copied);
381	if (copied)
382		return copied;
383	return ret;
384}
385
386static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter,
387		struct iomap_dio *dio)
388{
389	loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter);
390
391	dio->size += length;
392	if (!length)
393		return -EFAULT;
394	return length;
395}
396
397static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi,
398		struct iomap_dio *dio)
399{
400	const struct iomap *iomap = &iomi->iomap;
401	struct iov_iter *iter = dio->submit.iter;
402	void *inline_data = iomap_inline_data(iomap, iomi->pos);
403	loff_t length = iomap_length(iomi);
404	loff_t pos = iomi->pos;
405	size_t copied;
406
407	if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap)))
408		return -EIO;
409
410	if (dio->flags & IOMAP_DIO_WRITE) {
411		loff_t size = iomi->inode->i_size;
412
413		if (pos > size)
414			memset(iomap_inline_data(iomap, size), 0, pos - size);
415		copied = copy_from_iter(inline_data, length, iter);
416		if (copied) {
417			if (pos + copied > size)
418				i_size_write(iomi->inode, pos + copied);
419			mark_inode_dirty(iomi->inode);
420		}
421	} else {
422		copied = copy_to_iter(inline_data, length, iter);
423	}
424	dio->size += copied;
425	if (!copied)
426		return -EFAULT;
427	return copied;
428}
429
430static loff_t iomap_dio_iter(const struct iomap_iter *iter,
431		struct iomap_dio *dio)
432{
433	switch (iter->iomap.type) {
434	case IOMAP_HOLE:
435		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
436			return -EIO;
437		return iomap_dio_hole_iter(iter, dio);
438	case IOMAP_UNWRITTEN:
439		if (!(dio->flags & IOMAP_DIO_WRITE))
440			return iomap_dio_hole_iter(iter, dio);
441		return iomap_dio_bio_iter(iter, dio);
442	case IOMAP_MAPPED:
443		return iomap_dio_bio_iter(iter, dio);
444	case IOMAP_INLINE:
445		return iomap_dio_inline_iter(iter, dio);
446	case IOMAP_DELALLOC:
447		/*
448		 * DIO is not serialised against mmap() access at all, and so
449		 * if the page_mkwrite occurs between the writeback and the
450		 * iomap_iter() call in the DIO path, then it will see the
451		 * DELALLOC block that the page-mkwrite allocated.
452		 */
453		pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n",
454				    dio->iocb->ki_filp, current->comm);
455		return -EIO;
456	default:
457		WARN_ON_ONCE(1);
458		return -EIO;
459	}
460}
461
462/*
463 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
464 * is being issued as AIO or not.  This allows us to optimise pure data writes
465 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
466 * REQ_FLUSH post write. This is slightly tricky because a single request here
467 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
468 * may be pure data writes. In that case, we still need to do a full data sync
469 * completion.
470 *
471 * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL,
472 * __iomap_dio_rw can return a partial result if it encounters a non-resident
473 * page in @iter after preparing a transfer.  In that case, the non-resident
474 * pages can be faulted in and the request resumed with @done_before set to the
475 * number of bytes previously transferred.  The request will then complete with
476 * the correct total number of bytes transferred; this is essential for
477 * completing partial requests asynchronously.
478 *
479 * Returns -ENOTBLK In case of a page invalidation invalidation failure for
480 * writes.  The callers needs to fall back to buffered I/O in this case.
481 */
482struct iomap_dio *
483__iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
484		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
485		unsigned int dio_flags, void *private, size_t done_before)
486{
487	struct address_space *mapping = iocb->ki_filp->f_mapping;
488	struct inode *inode = file_inode(iocb->ki_filp);
489	struct iomap_iter iomi = {
490		.inode		= inode,
491		.pos		= iocb->ki_pos,
492		.len		= iov_iter_count(iter),
493		.flags		= IOMAP_DIRECT,
494		.private	= private,
495	};
496	loff_t end = iomi.pos + iomi.len - 1, ret = 0;
497	bool wait_for_completion =
498		is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT);
499	struct blk_plug plug;
500	struct iomap_dio *dio;
501
502	if (!iomi.len)
503		return NULL;
504
505	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
506	if (!dio)
507		return ERR_PTR(-ENOMEM);
508
509	dio->iocb = iocb;
510	atomic_set(&dio->ref, 1);
511	dio->size = 0;
512	dio->i_size = i_size_read(inode);
513	dio->dops = dops;
514	dio->error = 0;
515	dio->flags = 0;
516	dio->done_before = done_before;
517
518	dio->submit.iter = iter;
519	dio->submit.waiter = current;
520	dio->submit.poll_bio = NULL;
521
522	if (iov_iter_rw(iter) == READ) {
523		if (iomi.pos >= dio->i_size)
524			goto out_free_dio;
525
526		if (iocb->ki_flags & IOCB_NOWAIT) {
527			if (filemap_range_needs_writeback(mapping, iomi.pos,
528					end)) {
529				ret = -EAGAIN;
530				goto out_free_dio;
531			}
532			iomi.flags |= IOMAP_NOWAIT;
533		}
534
535		if (user_backed_iter(iter))
536			dio->flags |= IOMAP_DIO_DIRTY;
537	} else {
538		iomi.flags |= IOMAP_WRITE;
539		dio->flags |= IOMAP_DIO_WRITE;
540
541		if (iocb->ki_flags & IOCB_NOWAIT) {
542			if (filemap_range_has_page(mapping, iomi.pos, end)) {
543				ret = -EAGAIN;
544				goto out_free_dio;
545			}
546			iomi.flags |= IOMAP_NOWAIT;
547		}
548
549		/* for data sync or sync, we need sync completion processing */
550		if (iocb_is_dsync(iocb) && !(dio_flags & IOMAP_DIO_NOSYNC)) {
551			dio->flags |= IOMAP_DIO_NEED_SYNC;
552
553		       /*
554			* For datasync only writes, we optimistically try
555			* using FUA for this IO.  Any non-FUA write that
556			* occurs will clear this flag, hence we know before
557			* completion whether a cache flush is necessary.
558			*/
559			if (!(iocb->ki_flags & IOCB_SYNC))
560				dio->flags |= IOMAP_DIO_WRITE_FUA;
561		}
562	}
563
564	if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) {
565		ret = -EAGAIN;
566		if (iomi.pos >= dio->i_size ||
567		    iomi.pos + iomi.len > dio->i_size)
568			goto out_free_dio;
569		iomi.flags |= IOMAP_OVERWRITE_ONLY;
570	}
571
572	ret = filemap_write_and_wait_range(mapping, iomi.pos, end);
573	if (ret)
574		goto out_free_dio;
575
576	if (iov_iter_rw(iter) == WRITE) {
577		/*
578		 * Try to invalidate cache pages for the range we are writing.
579		 * If this invalidation fails, let the caller fall back to
580		 * buffered I/O.
581		 */
582		if (invalidate_inode_pages2_range(mapping,
583				iomi.pos >> PAGE_SHIFT, end >> PAGE_SHIFT)) {
584			trace_iomap_dio_invalidate_fail(inode, iomi.pos,
585							iomi.len);
586			ret = -ENOTBLK;
587			goto out_free_dio;
588		}
589
590		if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) {
591			ret = sb_init_dio_done_wq(inode->i_sb);
592			if (ret < 0)
593				goto out_free_dio;
594		}
595	}
596
597	inode_dio_begin(inode);
598
599	blk_start_plug(&plug);
600	while ((ret = iomap_iter(&iomi, ops)) > 0) {
601		iomi.processed = iomap_dio_iter(&iomi, dio);
602
603		/*
604		 * We can only poll for single bio I/Os.
605		 */
606		iocb->ki_flags &= ~IOCB_HIPRI;
607	}
608
609	blk_finish_plug(&plug);
610
611	/*
612	 * We only report that we've read data up to i_size.
613	 * Revert iter to a state corresponding to that as some callers (such
614	 * as the splice code) rely on it.
615	 */
616	if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size)
617		iov_iter_revert(iter, iomi.pos - dio->i_size);
618
619	if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) {
620		if (!(iocb->ki_flags & IOCB_NOWAIT))
621			wait_for_completion = true;
622		ret = 0;
623	}
624
625	/* magic error code to fall back to buffered I/O */
626	if (ret == -ENOTBLK) {
627		wait_for_completion = true;
628		ret = 0;
629	}
630	if (ret < 0)
631		iomap_dio_set_error(dio, ret);
632
633	/*
634	 * If all the writes we issued were FUA, we don't need to flush the
635	 * cache on IO completion. Clear the sync flag for this case.
636	 */
637	if (dio->flags & IOMAP_DIO_WRITE_FUA)
638		dio->flags &= ~IOMAP_DIO_NEED_SYNC;
639
640	WRITE_ONCE(iocb->private, dio->submit.poll_bio);
641
642	/*
643	 * We are about to drop our additional submission reference, which
644	 * might be the last reference to the dio.  There are three different
645	 * ways we can progress here:
646	 *
647	 *  (a) If this is the last reference we will always complete and free
648	 *	the dio ourselves.
649	 *  (b) If this is not the last reference, and we serve an asynchronous
650	 *	iocb, we must never touch the dio after the decrement, the
651	 *	I/O completion handler will complete and free it.
652	 *  (c) If this is not the last reference, but we serve a synchronous
653	 *	iocb, the I/O completion handler will wake us up on the drop
654	 *	of the final reference, and we will complete and free it here
655	 *	after we got woken by the I/O completion handler.
656	 */
657	dio->wait_for_completion = wait_for_completion;
658	if (!atomic_dec_and_test(&dio->ref)) {
659		if (!wait_for_completion)
660			return ERR_PTR(-EIOCBQUEUED);
661
662		for (;;) {
663			set_current_state(TASK_UNINTERRUPTIBLE);
664			if (!READ_ONCE(dio->submit.waiter))
665				break;
666
667			blk_io_schedule();
668		}
669		__set_current_state(TASK_RUNNING);
670	}
671
672	return dio;
673
674out_free_dio:
675	kfree(dio);
676	if (ret)
677		return ERR_PTR(ret);
678	return NULL;
679}
680EXPORT_SYMBOL_GPL(__iomap_dio_rw);
681
682ssize_t
683iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
684		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
685		unsigned int dio_flags, void *private, size_t done_before)
686{
687	struct iomap_dio *dio;
688
689	dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private,
690			     done_before);
691	if (IS_ERR_OR_NULL(dio))
692		return PTR_ERR_OR_ZERO(dio);
693	return iomap_dio_complete(dio);
694}
695EXPORT_SYMBOL_GPL(iomap_dio_rw);