Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * fs/f2fs/segment.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/blkdev.h>
 12#include <linux/backing-dev.h>
 13
 14/* constant macro */
 15#define NULL_SEGNO			((unsigned int)(~0))
 16#define NULL_SECNO			((unsigned int)(~0))
 17
 18#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 19#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
 20
 21#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 
 22
 23/* L: Logical segment # in volume, R: Relative segment # in main area */
 24#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
 25#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
 26
 27#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
 28#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE)
 
 
 
 
 
 
 
 29
 30#define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
 31#define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
 32#define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
 33
 34#define IS_CURSEG(sbi, seg)						\
 35	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 36	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 37	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 38	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 39	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 40	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 
 
 41
 42#define IS_CURSEC(sbi, secno)						\
 43	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 44	  (sbi)->segs_per_sec) ||	\
 45	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 46	  (sbi)->segs_per_sec) ||	\
 47	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 48	  (sbi)->segs_per_sec) ||	\
 49	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 50	  (sbi)->segs_per_sec) ||	\
 51	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 52	  (sbi)->segs_per_sec) ||	\
 53	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 54	  (sbi)->segs_per_sec))	\
 
 
 
 
 55
 56#define MAIN_BLKADDR(sbi)						\
 57	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
 58		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
 59#define SEG0_BLKADDR(sbi)						\
 60	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
 61		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
 62
 63#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 64#define MAIN_SECS(sbi)	((sbi)->total_sections)
 65
 66#define TOTAL_SEGS(sbi)							\
 67	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
 68		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
 69#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
 70
 71#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 72#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
 73					(sbi)->log_blocks_per_seg))
 74
 75#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 76	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
 77
 78#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 79	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
 80
 81#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 82#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 83	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
 84#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 85	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
 86
 87#define GET_SEGNO(sbi, blk_addr)					\
 88	((((blk_addr) == NULL_ADDR) || ((blk_addr) == NEW_ADDR)) ?	\
 89	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 90		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 91#define BLKS_PER_SEC(sbi)					\
 92	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
 
 
 
 93#define GET_SEC_FROM_SEG(sbi, segno)				\
 94	((segno) / (sbi)->segs_per_sec)
 95#define GET_SEG_FROM_SEC(sbi, secno)				\
 96	((secno) * (sbi)->segs_per_sec)
 97#define GET_ZONE_FROM_SEC(sbi, secno)				\
 98	((secno) / (sbi)->secs_per_zone)
 99#define GET_ZONE_FROM_SEG(sbi, segno)				\
100	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
101
102#define GET_SUM_BLOCK(sbi, segno)				\
103	((sbi)->sm_info->ssa_blkaddr + (segno))
104
105#define GET_SUM_TYPE(footer) ((footer)->entry_type)
106#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
107
108#define SIT_ENTRY_OFFSET(sit_i, segno)					\
109	((segno) % (sit_i)->sents_per_block)
110#define SIT_BLOCK_OFFSET(segno)					\
111	((segno) / SIT_ENTRY_PER_BLOCK)
112#define	START_SEGNO(segno)		\
113	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
114#define SIT_BLK_CNT(sbi)			\
115	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
116#define f2fs_bitmap_size(nr)			\
117	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
118
119#define SECTOR_FROM_BLOCK(blk_addr)					\
120	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
121#define SECTOR_TO_BLOCK(sectors)					\
122	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
123
124/*
125 * indicate a block allocation direction: RIGHT and LEFT.
126 * RIGHT means allocating new sections towards the end of volume.
127 * LEFT means the opposite direction.
128 */
129enum {
130	ALLOC_RIGHT = 0,
131	ALLOC_LEFT
132};
133
134/*
135 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
136 * LFS writes data sequentially with cleaning operations.
137 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 
 
138 */
139enum {
140	LFS = 0,
141	SSR
 
142};
143
144/*
145 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
146 * GC_CB is based on cost-benefit algorithm.
147 * GC_GREEDY is based on greedy algorithm.
 
148 */
149enum {
150	GC_CB = 0,
151	GC_GREEDY,
 
152	ALLOC_NEXT,
153	FLUSH_DEVICE,
154	MAX_GC_POLICY,
155};
156
157/*
158 * BG_GC means the background cleaning job.
159 * FG_GC means the on-demand cleaning job.
160 * FORCE_FG_GC means on-demand cleaning job in background.
161 */
162enum {
163	BG_GC = 0,
164	FG_GC,
165	FORCE_FG_GC,
166};
167
168/* for a function parameter to select a victim segment */
169struct victim_sel_policy {
170	int alloc_mode;			/* LFS or SSR */
171	int gc_mode;			/* GC_CB or GC_GREEDY */
172	unsigned long *dirty_segmap;	/* dirty segment bitmap */
173	unsigned int max_search;	/* maximum # of segments to search */
 
 
 
174	unsigned int offset;		/* last scanned bitmap offset */
175	unsigned int ofs_unit;		/* bitmap search unit */
176	unsigned int min_cost;		/* minimum cost */
 
177	unsigned int min_segno;		/* segment # having min. cost */
 
 
178};
179
180struct seg_entry {
181	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
182	unsigned int valid_blocks:10;	/* # of valid blocks */
183	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
184	unsigned int padding:6;		/* padding */
185	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
186#ifdef CONFIG_F2FS_CHECK_FS
187	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
188#endif
189	/*
190	 * # of valid blocks and the validity bitmap stored in the the last
191	 * checkpoint pack. This information is used by the SSR mode.
192	 */
193	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
194	unsigned char *discard_map;
195	unsigned long long mtime;	/* modification time of the segment */
196};
197
198struct sec_entry {
199	unsigned int valid_blocks;	/* # of valid blocks in a section */
200};
201
202struct segment_allocation {
203	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
204};
205
206/*
207 * this value is set in page as a private data which indicate that
208 * the page is atomically written, and it is in inmem_pages list.
209 */
210#define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
211#define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
212
213#define IS_ATOMIC_WRITTEN_PAGE(page)			\
214		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
215#define IS_DUMMY_WRITTEN_PAGE(page)			\
216		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
217
218struct inmem_pages {
219	struct list_head list;
220	struct page *page;
221	block_t old_addr;		/* for revoking when fail to commit */
 
222};
223
224struct sit_info {
225	const struct segment_allocation *s_ops;
226
227	block_t sit_base_addr;		/* start block address of SIT area */
228	block_t sit_blocks;		/* # of blocks used by SIT area */
229	block_t written_valid_blocks;	/* # of valid blocks in main area */
 
230	char *sit_bitmap;		/* SIT bitmap pointer */
231#ifdef CONFIG_F2FS_CHECK_FS
232	char *sit_bitmap_mir;		/* SIT bitmap mirror */
 
 
 
233#endif
234	unsigned int bitmap_size;	/* SIT bitmap size */
235
236	unsigned long *tmp_map;			/* bitmap for temporal use */
237	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
238	unsigned int dirty_sentries;		/* # of dirty sentries */
239	unsigned int sents_per_block;		/* # of SIT entries per block */
240	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
241	struct seg_entry *sentries;		/* SIT segment-level cache */
242	struct sec_entry *sec_entries;		/* SIT section-level cache */
243
244	/* for cost-benefit algorithm in cleaning procedure */
245	unsigned long long elapsed_time;	/* elapsed time after mount */
246	unsigned long long mounted_time;	/* mount time */
247	unsigned long long min_mtime;		/* min. modification time */
248	unsigned long long max_mtime;		/* max. modification time */
 
 
249
250	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
251};
252
253struct free_segmap_info {
254	unsigned int start_segno;	/* start segment number logically */
255	unsigned int free_segments;	/* # of free segments */
256	unsigned int free_sections;	/* # of free sections */
257	spinlock_t segmap_lock;		/* free segmap lock */
258	unsigned long *free_segmap;	/* free segment bitmap */
259	unsigned long *free_secmap;	/* free section bitmap */
260};
261
262/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
263enum dirty_type {
264	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
265	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
266	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
267	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
268	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
269	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
270	DIRTY,			/* to count # of dirty segments */
271	PRE,			/* to count # of entirely obsolete segments */
272	NR_DIRTY_TYPE
273};
274
275struct dirty_seglist_info {
276	const struct victim_selection *v_ops;	/* victim selction operation */
277	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
 
278	struct mutex seglist_lock;		/* lock for segment bitmaps */
279	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
280	unsigned long *victim_secmap;		/* background GC victims */
 
 
 
281};
282
283/* victim selection function for cleaning and SSR */
284struct victim_selection {
285	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
286							int, int, char);
287};
288
289/* for active log information */
290struct curseg_info {
291	struct mutex curseg_mutex;		/* lock for consistency */
292	struct f2fs_summary_block *sum_blk;	/* cached summary block */
293	struct rw_semaphore journal_rwsem;	/* protect journal area */
294	struct f2fs_journal *journal;		/* cached journal info */
295	unsigned char alloc_type;		/* current allocation type */
 
296	unsigned int segno;			/* current segment number */
297	unsigned short next_blkoff;		/* next block offset to write */
298	unsigned int zone;			/* current zone number */
299	unsigned int next_segno;		/* preallocated segment */
 
 
300};
301
302struct sit_entry_set {
303	struct list_head set_list;	/* link with all sit sets */
304	unsigned int start_segno;	/* start segno of sits in set */
305	unsigned int entry_cnt;		/* the # of sit entries in set */
306};
307
308/*
309 * inline functions
310 */
311static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
312{
313	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
314}
315
316static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
317						unsigned int segno)
318{
319	struct sit_info *sit_i = SIT_I(sbi);
320	return &sit_i->sentries[segno];
321}
322
323static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
324						unsigned int segno)
325{
326	struct sit_info *sit_i = SIT_I(sbi);
327	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
328}
329
330static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
331				unsigned int segno, bool use_section)
332{
333	/*
334	 * In order to get # of valid blocks in a section instantly from many
335	 * segments, f2fs manages two counting structures separately.
336	 */
337	if (use_section && sbi->segs_per_sec > 1)
338		return get_sec_entry(sbi, segno)->valid_blocks;
339	else
340		return get_seg_entry(sbi, segno)->valid_blocks;
341}
342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
343static inline void seg_info_from_raw_sit(struct seg_entry *se,
344					struct f2fs_sit_entry *rs)
345{
346	se->valid_blocks = GET_SIT_VBLOCKS(rs);
347	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
348	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
349	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
350#ifdef CONFIG_F2FS_CHECK_FS
351	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
352#endif
353	se->type = GET_SIT_TYPE(rs);
354	se->mtime = le64_to_cpu(rs->mtime);
355}
356
357static inline void __seg_info_to_raw_sit(struct seg_entry *se,
358					struct f2fs_sit_entry *rs)
359{
360	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
361					se->valid_blocks;
362	rs->vblocks = cpu_to_le16(raw_vblocks);
363	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
364	rs->mtime = cpu_to_le64(se->mtime);
365}
366
367static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
368				struct page *page, unsigned int start)
369{
370	struct f2fs_sit_block *raw_sit;
371	struct seg_entry *se;
372	struct f2fs_sit_entry *rs;
373	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
374					(unsigned long)MAIN_SEGS(sbi));
375	int i;
376
377	raw_sit = (struct f2fs_sit_block *)page_address(page);
 
378	for (i = 0; i < end - start; i++) {
379		rs = &raw_sit->entries[i];
380		se = get_seg_entry(sbi, start + i);
381		__seg_info_to_raw_sit(se, rs);
382	}
383}
384
385static inline void seg_info_to_raw_sit(struct seg_entry *se,
386					struct f2fs_sit_entry *rs)
387{
388	__seg_info_to_raw_sit(se, rs);
389
390	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
391	se->ckpt_valid_blocks = se->valid_blocks;
392}
393
394static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
395		unsigned int max, unsigned int segno)
396{
397	unsigned int ret;
398	spin_lock(&free_i->segmap_lock);
399	ret = find_next_bit(free_i->free_segmap, max, segno);
400	spin_unlock(&free_i->segmap_lock);
401	return ret;
402}
403
404static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
405{
406	struct free_segmap_info *free_i = FREE_I(sbi);
407	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
408	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
409	unsigned int next;
 
410
411	spin_lock(&free_i->segmap_lock);
412	clear_bit(segno, free_i->free_segmap);
413	free_i->free_segments++;
414
415	next = find_next_bit(free_i->free_segmap,
416			start_segno + sbi->segs_per_sec, start_segno);
417	if (next >= start_segno + sbi->segs_per_sec) {
418		clear_bit(secno, free_i->free_secmap);
419		free_i->free_sections++;
420	}
421	spin_unlock(&free_i->segmap_lock);
422}
423
424static inline void __set_inuse(struct f2fs_sb_info *sbi,
425		unsigned int segno)
426{
427	struct free_segmap_info *free_i = FREE_I(sbi);
428	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
429
430	set_bit(segno, free_i->free_segmap);
431	free_i->free_segments--;
432	if (!test_and_set_bit(secno, free_i->free_secmap))
433		free_i->free_sections--;
434}
435
436static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
437		unsigned int segno)
438{
439	struct free_segmap_info *free_i = FREE_I(sbi);
440	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
441	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
442	unsigned int next;
 
443
444	spin_lock(&free_i->segmap_lock);
445	if (test_and_clear_bit(segno, free_i->free_segmap)) {
446		free_i->free_segments++;
447
 
 
448		next = find_next_bit(free_i->free_segmap,
449				start_segno + sbi->segs_per_sec, start_segno);
450		if (next >= start_segno + sbi->segs_per_sec) {
451			if (test_and_clear_bit(secno, free_i->free_secmap))
452				free_i->free_sections++;
453		}
454	}
 
455	spin_unlock(&free_i->segmap_lock);
456}
457
458static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
459		unsigned int segno)
460{
461	struct free_segmap_info *free_i = FREE_I(sbi);
462	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
463
464	spin_lock(&free_i->segmap_lock);
465	if (!test_and_set_bit(segno, free_i->free_segmap)) {
466		free_i->free_segments--;
467		if (!test_and_set_bit(secno, free_i->free_secmap))
468			free_i->free_sections--;
469	}
470	spin_unlock(&free_i->segmap_lock);
471}
472
473static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
474		void *dst_addr)
475{
476	struct sit_info *sit_i = SIT_I(sbi);
477
478#ifdef CONFIG_F2FS_CHECK_FS
479	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
480						sit_i->bitmap_size))
481		f2fs_bug_on(sbi, 1);
482#endif
483	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
484}
485
486static inline block_t written_block_count(struct f2fs_sb_info *sbi)
487{
488	return SIT_I(sbi)->written_valid_blocks;
489}
490
491static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
492{
493	return FREE_I(sbi)->free_segments;
494}
495
496static inline int reserved_segments(struct f2fs_sb_info *sbi)
497{
498	return SM_I(sbi)->reserved_segments;
 
499}
500
501static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
502{
503	return FREE_I(sbi)->free_sections;
504}
505
506static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
507{
508	return DIRTY_I(sbi)->nr_dirty[PRE];
509}
510
511static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
512{
513	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
514		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
515		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
516		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
517		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
518		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
519}
520
521static inline int overprovision_segments(struct f2fs_sb_info *sbi)
522{
523	return SM_I(sbi)->ovp_segments;
524}
525
526static inline int reserved_sections(struct f2fs_sb_info *sbi)
527{
528	return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
529}
530
531static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
 
532{
533	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
534					get_pages(sbi, F2FS_DIRTY_DENTS);
535	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
536	unsigned int segno, left_blocks;
537	int i;
538
539	/* check current node segment */
540	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
541		segno = CURSEG_I(sbi, i)->segno;
542		left_blocks = sbi->blocks_per_seg -
543			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
544
545		if (node_blocks > left_blocks)
546			return false;
547	}
548
549	/* check current data segment */
550	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
551	left_blocks = sbi->blocks_per_seg -
552			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
553	if (dent_blocks > left_blocks)
554		return false;
555	return true;
556}
557
558static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
559					int freed, int needed)
560{
561	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
562	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
563	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 
 
 
 
 
 
564
565	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
566		return false;
567
568	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
569			has_curseg_enough_space(sbi))
 
 
 
570		return false;
571	return (free_sections(sbi) + freed) <=
572		(node_secs + 2 * dent_secs + imeta_secs +
573		reserved_sections(sbi) + needed);
 
 
 
 
 
 
 
 
 
574}
575
576static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
577{
578	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
579}
580
581static inline int utilization(struct f2fs_sb_info *sbi)
582{
583	return div_u64((u64)valid_user_blocks(sbi) * 100,
584					sbi->user_block_count);
585}
586
587/*
588 * Sometimes f2fs may be better to drop out-of-place update policy.
589 * And, users can control the policy through sysfs entries.
590 * There are five policies with triggering conditions as follows.
591 * F2FS_IPU_FORCE - all the time,
592 * F2FS_IPU_SSR - if SSR mode is activated,
593 * F2FS_IPU_UTIL - if FS utilization is over threashold,
594 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
595 *                     threashold,
596 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
597 *                     storages. IPU will be triggered only if the # of dirty
598 *                     pages over min_fsync_blocks.
599 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
 
 
 
 
600 */
601#define DEF_MIN_IPU_UTIL	70
602#define DEF_MIN_FSYNC_BLOCKS	8
603#define DEF_MIN_HOT_BLOCKS	16
604
605#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
606
607enum {
608	F2FS_IPU_FORCE,
609	F2FS_IPU_SSR,
610	F2FS_IPU_UTIL,
611	F2FS_IPU_SSR_UTIL,
612	F2FS_IPU_FSYNC,
613	F2FS_IPU_ASYNC,
 
 
614};
615
616static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
617		int type)
618{
619	struct curseg_info *curseg = CURSEG_I(sbi, type);
620	return curseg->segno;
621}
622
623static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
624		int type)
625{
626	struct curseg_info *curseg = CURSEG_I(sbi, type);
627	return curseg->alloc_type;
628}
629
630static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
631{
632	struct curseg_info *curseg = CURSEG_I(sbi, type);
633	return curseg->next_blkoff;
634}
635
636static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
637{
638	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
639}
640
641static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr)
642{
643	struct f2fs_sb_info *sbi = fio->sbi;
644
645	if (PAGE_TYPE_OF_BIO(fio->type) == META &&
646				(!is_read_io(fio->op) || fio->is_meta))
647		BUG_ON(blk_addr < SEG0_BLKADDR(sbi) ||
648				blk_addr >= MAIN_BLKADDR(sbi));
649	else
650		BUG_ON(blk_addr < MAIN_BLKADDR(sbi) ||
651				blk_addr >= MAX_BLKADDR(sbi));
652}
653
654/*
655 * Summary block is always treated as an invalid block
656 */
657static inline int check_block_count(struct f2fs_sb_info *sbi,
658		int segno, struct f2fs_sit_entry *raw_sit)
659{
660#ifdef CONFIG_F2FS_CHECK_FS
661	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
662	int valid_blocks = 0;
663	int cur_pos = 0, next_pos;
 
664
665	/* check bitmap with valid block count */
666	do {
667		if (is_valid) {
668			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
669					sbi->blocks_per_seg,
670					cur_pos);
671			valid_blocks += next_pos - cur_pos;
672		} else
673			next_pos = find_next_bit_le(&raw_sit->valid_map,
674					sbi->blocks_per_seg,
675					cur_pos);
676		cur_pos = next_pos;
677		is_valid = !is_valid;
678	} while (cur_pos < sbi->blocks_per_seg);
679
680	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
681		f2fs_msg(sbi->sb, KERN_ERR,
682				"Mismatch valid blocks %d vs. %d",
683					GET_SIT_VBLOCKS(raw_sit), valid_blocks);
684		set_sbi_flag(sbi, SBI_NEED_FSCK);
685		return -EINVAL;
 
686	}
687#endif
 
 
 
 
 
688	/* check segment usage, and check boundary of a given segment number */
689	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
690					|| segno > TOTAL_SEGS(sbi) - 1)) {
691		f2fs_msg(sbi->sb, KERN_ERR,
692				"Wrong valid blocks %d or segno %u",
693					GET_SIT_VBLOCKS(raw_sit), segno);
694		set_sbi_flag(sbi, SBI_NEED_FSCK);
695		return -EINVAL;
 
696	}
697	return 0;
698}
699
700static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
701						unsigned int start)
702{
703	struct sit_info *sit_i = SIT_I(sbi);
704	unsigned int offset = SIT_BLOCK_OFFSET(start);
705	block_t blk_addr = sit_i->sit_base_addr + offset;
706
707	check_seg_range(sbi, start);
708
709#ifdef CONFIG_F2FS_CHECK_FS
710	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
711			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
712		f2fs_bug_on(sbi, 1);
713#endif
714
715	/* calculate sit block address */
716	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
717		blk_addr += sit_i->sit_blocks;
718
719	return blk_addr;
720}
721
722static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
723						pgoff_t block_addr)
724{
725	struct sit_info *sit_i = SIT_I(sbi);
726	block_addr -= sit_i->sit_base_addr;
727	if (block_addr < sit_i->sit_blocks)
728		block_addr += sit_i->sit_blocks;
729	else
730		block_addr -= sit_i->sit_blocks;
731
732	return block_addr + sit_i->sit_base_addr;
733}
734
735static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
736{
737	unsigned int block_off = SIT_BLOCK_OFFSET(start);
738
739	f2fs_change_bit(block_off, sit_i->sit_bitmap);
740#ifdef CONFIG_F2FS_CHECK_FS
741	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
742#endif
743}
744
745static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
 
746{
747	struct sit_info *sit_i = SIT_I(sbi);
748	time64_t now = ktime_get_real_seconds();
749
750	return sit_i->elapsed_time + now - sit_i->mounted_time;
 
 
 
 
 
 
 
 
 
 
751}
752
753static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
754			unsigned int ofs_in_node, unsigned char version)
755{
756	sum->nid = cpu_to_le32(nid);
757	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
758	sum->version = version;
759}
760
761static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
762{
763	return __start_cp_addr(sbi) +
764		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
765}
766
767static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
768{
769	return __start_cp_addr(sbi) +
770		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
771				- (base + 1) + type;
772}
773
774static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi,
775						unsigned int secno)
776{
777	if (get_valid_blocks(sbi, GET_SEG_FROM_SEC(sbi, secno), true) >
778						sbi->fggc_threshold)
779		return true;
780	return false;
781}
782
783static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
784{
785	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
786		return true;
787	return false;
788}
789
790/*
791 * It is very important to gather dirty pages and write at once, so that we can
792 * submit a big bio without interfering other data writes.
793 * By default, 512 pages for directory data,
794 * 512 pages (2MB) * 8 for nodes, and
795 * 256 pages * 8 for meta are set.
796 */
797static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
798{
799	if (sbi->sb->s_bdi->wb.dirty_exceeded)
800		return 0;
801
802	if (type == DATA)
803		return sbi->blocks_per_seg;
804	else if (type == NODE)
805		return 8 * sbi->blocks_per_seg;
806	else if (type == META)
807		return 8 * BIO_MAX_PAGES;
808	else
809		return 0;
810}
811
812/*
813 * When writing pages, it'd better align nr_to_write for segment size.
814 */
815static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
816					struct writeback_control *wbc)
817{
818	long nr_to_write, desired;
819
820	if (wbc->sync_mode != WB_SYNC_NONE)
821		return 0;
822
823	nr_to_write = wbc->nr_to_write;
824	desired = BIO_MAX_PAGES;
825	if (type == NODE)
826		desired <<= 1;
827
828	wbc->nr_to_write = desired;
829	return desired - nr_to_write;
830}
831
832static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
833{
834	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
835	bool wakeup = false;
836	int i;
837
838	if (force)
839		goto wake_up;
840
841	mutex_lock(&dcc->cmd_lock);
842	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
843		if (i + 1 < dcc->discard_granularity)
844			break;
845		if (!list_empty(&dcc->pend_list[i])) {
846			wakeup = true;
847			break;
848		}
849	}
850	mutex_unlock(&dcc->cmd_lock);
851	if (!wakeup)
852		return;
853wake_up:
854	dcc->discard_wake = 1;
855	wake_up_interruptible_all(&dcc->discard_wait_queue);
856}
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fs/f2fs/segment.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
 
 
 
 
  7 */
  8#include <linux/blkdev.h>
  9#include <linux/backing-dev.h>
 10
 11/* constant macro */
 12#define NULL_SEGNO			((unsigned int)(~0))
 13#define NULL_SECNO			((unsigned int)(~0))
 14
 15#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
 17
 18#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 19#define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
 20
 21/* L: Logical segment # in volume, R: Relative segment # in main area */
 22#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
 23#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
 24
 25#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
 26#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
 27#define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
 28
 29static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
 30						unsigned short seg_type)
 31{
 32	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
 33}
 34
 35#define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
 36#define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
 37#define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
 38
 39#define IS_CURSEG(sbi, seg)						\
 40	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 41	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 42	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 43	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 44	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 45	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
 46	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
 47	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
 48
 49#define IS_CURSEC(sbi, secno)						\
 50	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 51	  (sbi)->segs_per_sec) ||	\
 52	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 53	  (sbi)->segs_per_sec) ||	\
 54	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 55	  (sbi)->segs_per_sec) ||	\
 56	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 57	  (sbi)->segs_per_sec) ||	\
 58	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 59	  (sbi)->segs_per_sec) ||	\
 60	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 61	  (sbi)->segs_per_sec) ||	\
 62	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
 63	  (sbi)->segs_per_sec) ||	\
 64	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
 65	  (sbi)->segs_per_sec))
 66
 67#define MAIN_BLKADDR(sbi)						\
 68	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
 69		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
 70#define SEG0_BLKADDR(sbi)						\
 71	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
 72		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
 73
 74#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 75#define MAIN_SECS(sbi)	((sbi)->total_sections)
 76
 77#define TOTAL_SEGS(sbi)							\
 78	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
 79		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
 80#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
 81
 82#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 83#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
 84					(sbi)->log_blocks_per_seg))
 85
 86#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 87	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
 88
 89#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 90	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
 91
 92#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 93#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 94	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
 95#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 96	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
 97
 98#define GET_SEGNO(sbi, blk_addr)					\
 99	((!__is_valid_data_blkaddr(blk_addr)) ?			\
100	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
101		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102#define BLKS_PER_SEC(sbi)					\
103	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104#define CAP_BLKS_PER_SEC(sbi)					\
105	((sbi)->segs_per_sec * (sbi)->blocks_per_seg -		\
106	 (sbi)->unusable_blocks_per_sec)
107#define GET_SEC_FROM_SEG(sbi, segno)				\
108	(((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
109#define GET_SEG_FROM_SEC(sbi, secno)				\
110	((secno) * (sbi)->segs_per_sec)
111#define GET_ZONE_FROM_SEC(sbi, secno)				\
112	(((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
113#define GET_ZONE_FROM_SEG(sbi, segno)				\
114	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
115
116#define GET_SUM_BLOCK(sbi, segno)				\
117	((sbi)->sm_info->ssa_blkaddr + (segno))
118
119#define GET_SUM_TYPE(footer) ((footer)->entry_type)
120#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
121
122#define SIT_ENTRY_OFFSET(sit_i, segno)					\
123	((segno) % (sit_i)->sents_per_block)
124#define SIT_BLOCK_OFFSET(segno)					\
125	((segno) / SIT_ENTRY_PER_BLOCK)
126#define	START_SEGNO(segno)		\
127	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
128#define SIT_BLK_CNT(sbi)			\
129	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
130#define f2fs_bitmap_size(nr)			\
131	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
132
133#define SECTOR_FROM_BLOCK(blk_addr)					\
134	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
135#define SECTOR_TO_BLOCK(sectors)					\
136	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
137
138/*
139 * indicate a block allocation direction: RIGHT and LEFT.
140 * RIGHT means allocating new sections towards the end of volume.
141 * LEFT means the opposite direction.
142 */
143enum {
144	ALLOC_RIGHT = 0,
145	ALLOC_LEFT
146};
147
148/*
149 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
150 * LFS writes data sequentially with cleaning operations.
151 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
152 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
153 * fragmented segment which has similar aging degree.
154 */
155enum {
156	LFS = 0,
157	SSR,
158	AT_SSR,
159};
160
161/*
162 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
163 * GC_CB is based on cost-benefit algorithm.
164 * GC_GREEDY is based on greedy algorithm.
165 * GC_AT is based on age-threshold algorithm.
166 */
167enum {
168	GC_CB = 0,
169	GC_GREEDY,
170	GC_AT,
171	ALLOC_NEXT,
172	FLUSH_DEVICE,
173	MAX_GC_POLICY,
174};
175
176/*
177 * BG_GC means the background cleaning job.
178 * FG_GC means the on-demand cleaning job.
 
179 */
180enum {
181	BG_GC = 0,
182	FG_GC,
 
183};
184
185/* for a function parameter to select a victim segment */
186struct victim_sel_policy {
187	int alloc_mode;			/* LFS or SSR */
188	int gc_mode;			/* GC_CB or GC_GREEDY */
189	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
190	unsigned int max_search;	/*
191					 * maximum # of segments/sections
192					 * to search
193					 */
194	unsigned int offset;		/* last scanned bitmap offset */
195	unsigned int ofs_unit;		/* bitmap search unit */
196	unsigned int min_cost;		/* minimum cost */
197	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
198	unsigned int min_segno;		/* segment # having min. cost */
199	unsigned long long age;		/* mtime of GCed section*/
200	unsigned long long age_threshold;/* age threshold */
201};
202
203struct seg_entry {
204	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
205	unsigned int valid_blocks:10;	/* # of valid blocks */
206	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
207	unsigned int padding:6;		/* padding */
208	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
209#ifdef CONFIG_F2FS_CHECK_FS
210	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
211#endif
212	/*
213	 * # of valid blocks and the validity bitmap stored in the last
214	 * checkpoint pack. This information is used by the SSR mode.
215	 */
216	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
217	unsigned char *discard_map;
218	unsigned long long mtime;	/* modification time of the segment */
219};
220
221struct sec_entry {
222	unsigned int valid_blocks;	/* # of valid blocks in a section */
223};
224
225#define MAX_SKIP_GC_COUNT			16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226
227struct revoke_entry {
228	struct list_head list;
 
229	block_t old_addr;		/* for revoking when fail to commit */
230	pgoff_t index;
231};
232
233struct sit_info {
 
 
234	block_t sit_base_addr;		/* start block address of SIT area */
235	block_t sit_blocks;		/* # of blocks used by SIT area */
236	block_t written_valid_blocks;	/* # of valid blocks in main area */
237	char *bitmap;			/* all bitmaps pointer */
238	char *sit_bitmap;		/* SIT bitmap pointer */
239#ifdef CONFIG_F2FS_CHECK_FS
240	char *sit_bitmap_mir;		/* SIT bitmap mirror */
241
242	/* bitmap of segments to be ignored by GC in case of errors */
243	unsigned long *invalid_segmap;
244#endif
245	unsigned int bitmap_size;	/* SIT bitmap size */
246
247	unsigned long *tmp_map;			/* bitmap for temporal use */
248	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
249	unsigned int dirty_sentries;		/* # of dirty sentries */
250	unsigned int sents_per_block;		/* # of SIT entries per block */
251	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
252	struct seg_entry *sentries;		/* SIT segment-level cache */
253	struct sec_entry *sec_entries;		/* SIT section-level cache */
254
255	/* for cost-benefit algorithm in cleaning procedure */
256	unsigned long long elapsed_time;	/* elapsed time after mount */
257	unsigned long long mounted_time;	/* mount time */
258	unsigned long long min_mtime;		/* min. modification time */
259	unsigned long long max_mtime;		/* max. modification time */
260	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
261	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
262
263	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
264};
265
266struct free_segmap_info {
267	unsigned int start_segno;	/* start segment number logically */
268	unsigned int free_segments;	/* # of free segments */
269	unsigned int free_sections;	/* # of free sections */
270	spinlock_t segmap_lock;		/* free segmap lock */
271	unsigned long *free_segmap;	/* free segment bitmap */
272	unsigned long *free_secmap;	/* free section bitmap */
273};
274
275/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
276enum dirty_type {
277	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
278	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
279	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
280	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
281	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
282	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
283	DIRTY,			/* to count # of dirty segments */
284	PRE,			/* to count # of entirely obsolete segments */
285	NR_DIRTY_TYPE
286};
287
288struct dirty_seglist_info {
289	const struct victim_selection *v_ops;	/* victim selction operation */
290	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
291	unsigned long *dirty_secmap;
292	struct mutex seglist_lock;		/* lock for segment bitmaps */
293	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
294	unsigned long *victim_secmap;		/* background GC victims */
295	unsigned long *pinned_secmap;		/* pinned victims from foreground GC */
296	unsigned int pinned_secmap_cnt;		/* count of victims which has pinned data */
297	bool enable_pin_section;		/* enable pinning section */
298};
299
300/* victim selection function for cleaning and SSR */
301struct victim_selection {
302	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
303					int, int, char, unsigned long long);
304};
305
306/* for active log information */
307struct curseg_info {
308	struct mutex curseg_mutex;		/* lock for consistency */
309	struct f2fs_summary_block *sum_blk;	/* cached summary block */
310	struct rw_semaphore journal_rwsem;	/* protect journal area */
311	struct f2fs_journal *journal;		/* cached journal info */
312	unsigned char alloc_type;		/* current allocation type */
313	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
314	unsigned int segno;			/* current segment number */
315	unsigned short next_blkoff;		/* next block offset to write */
316	unsigned int zone;			/* current zone number */
317	unsigned int next_segno;		/* preallocated segment */
318	int fragment_remained_chunk;		/* remained block size in a chunk for block fragmentation mode */
319	bool inited;				/* indicate inmem log is inited */
320};
321
322struct sit_entry_set {
323	struct list_head set_list;	/* link with all sit sets */
324	unsigned int start_segno;	/* start segno of sits in set */
325	unsigned int entry_cnt;		/* the # of sit entries in set */
326};
327
328/*
329 * inline functions
330 */
331static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
332{
333	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
334}
335
336static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
337						unsigned int segno)
338{
339	struct sit_info *sit_i = SIT_I(sbi);
340	return &sit_i->sentries[segno];
341}
342
343static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
344						unsigned int segno)
345{
346	struct sit_info *sit_i = SIT_I(sbi);
347	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
348}
349
350static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
351				unsigned int segno, bool use_section)
352{
353	/*
354	 * In order to get # of valid blocks in a section instantly from many
355	 * segments, f2fs manages two counting structures separately.
356	 */
357	if (use_section && __is_large_section(sbi))
358		return get_sec_entry(sbi, segno)->valid_blocks;
359	else
360		return get_seg_entry(sbi, segno)->valid_blocks;
361}
362
363static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
364				unsigned int segno, bool use_section)
365{
366	if (use_section && __is_large_section(sbi)) {
367		unsigned int start_segno = START_SEGNO(segno);
368		unsigned int blocks = 0;
369		int i;
370
371		for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
372			struct seg_entry *se = get_seg_entry(sbi, start_segno);
373
374			blocks += se->ckpt_valid_blocks;
375		}
376		return blocks;
377	}
378	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
379}
380
381static inline void seg_info_from_raw_sit(struct seg_entry *se,
382					struct f2fs_sit_entry *rs)
383{
384	se->valid_blocks = GET_SIT_VBLOCKS(rs);
385	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
386	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
387	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
388#ifdef CONFIG_F2FS_CHECK_FS
389	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
390#endif
391	se->type = GET_SIT_TYPE(rs);
392	se->mtime = le64_to_cpu(rs->mtime);
393}
394
395static inline void __seg_info_to_raw_sit(struct seg_entry *se,
396					struct f2fs_sit_entry *rs)
397{
398	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
399					se->valid_blocks;
400	rs->vblocks = cpu_to_le16(raw_vblocks);
401	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
402	rs->mtime = cpu_to_le64(se->mtime);
403}
404
405static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
406				struct page *page, unsigned int start)
407{
408	struct f2fs_sit_block *raw_sit;
409	struct seg_entry *se;
410	struct f2fs_sit_entry *rs;
411	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
412					(unsigned long)MAIN_SEGS(sbi));
413	int i;
414
415	raw_sit = (struct f2fs_sit_block *)page_address(page);
416	memset(raw_sit, 0, PAGE_SIZE);
417	for (i = 0; i < end - start; i++) {
418		rs = &raw_sit->entries[i];
419		se = get_seg_entry(sbi, start + i);
420		__seg_info_to_raw_sit(se, rs);
421	}
422}
423
424static inline void seg_info_to_raw_sit(struct seg_entry *se,
425					struct f2fs_sit_entry *rs)
426{
427	__seg_info_to_raw_sit(se, rs);
428
429	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
430	se->ckpt_valid_blocks = se->valid_blocks;
431}
432
433static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
434		unsigned int max, unsigned int segno)
435{
436	unsigned int ret;
437	spin_lock(&free_i->segmap_lock);
438	ret = find_next_bit(free_i->free_segmap, max, segno);
439	spin_unlock(&free_i->segmap_lock);
440	return ret;
441}
442
443static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
444{
445	struct free_segmap_info *free_i = FREE_I(sbi);
446	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
447	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
448	unsigned int next;
449	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
450
451	spin_lock(&free_i->segmap_lock);
452	clear_bit(segno, free_i->free_segmap);
453	free_i->free_segments++;
454
455	next = find_next_bit(free_i->free_segmap,
456			start_segno + sbi->segs_per_sec, start_segno);
457	if (next >= start_segno + usable_segs) {
458		clear_bit(secno, free_i->free_secmap);
459		free_i->free_sections++;
460	}
461	spin_unlock(&free_i->segmap_lock);
462}
463
464static inline void __set_inuse(struct f2fs_sb_info *sbi,
465		unsigned int segno)
466{
467	struct free_segmap_info *free_i = FREE_I(sbi);
468	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
469
470	set_bit(segno, free_i->free_segmap);
471	free_i->free_segments--;
472	if (!test_and_set_bit(secno, free_i->free_secmap))
473		free_i->free_sections--;
474}
475
476static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
477		unsigned int segno, bool inmem)
478{
479	struct free_segmap_info *free_i = FREE_I(sbi);
480	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
481	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
482	unsigned int next;
483	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
484
485	spin_lock(&free_i->segmap_lock);
486	if (test_and_clear_bit(segno, free_i->free_segmap)) {
487		free_i->free_segments++;
488
489		if (!inmem && IS_CURSEC(sbi, secno))
490			goto skip_free;
491		next = find_next_bit(free_i->free_segmap,
492				start_segno + sbi->segs_per_sec, start_segno);
493		if (next >= start_segno + usable_segs) {
494			if (test_and_clear_bit(secno, free_i->free_secmap))
495				free_i->free_sections++;
496		}
497	}
498skip_free:
499	spin_unlock(&free_i->segmap_lock);
500}
501
502static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
503		unsigned int segno)
504{
505	struct free_segmap_info *free_i = FREE_I(sbi);
506	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
507
508	spin_lock(&free_i->segmap_lock);
509	if (!test_and_set_bit(segno, free_i->free_segmap)) {
510		free_i->free_segments--;
511		if (!test_and_set_bit(secno, free_i->free_secmap))
512			free_i->free_sections--;
513	}
514	spin_unlock(&free_i->segmap_lock);
515}
516
517static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
518		void *dst_addr)
519{
520	struct sit_info *sit_i = SIT_I(sbi);
521
522#ifdef CONFIG_F2FS_CHECK_FS
523	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
524						sit_i->bitmap_size))
525		f2fs_bug_on(sbi, 1);
526#endif
527	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
528}
529
530static inline block_t written_block_count(struct f2fs_sb_info *sbi)
531{
532	return SIT_I(sbi)->written_valid_blocks;
533}
534
535static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
536{
537	return FREE_I(sbi)->free_segments;
538}
539
540static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
541{
542	return SM_I(sbi)->reserved_segments +
543			SM_I(sbi)->additional_reserved_segments;
544}
545
546static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
547{
548	return FREE_I(sbi)->free_sections;
549}
550
551static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
552{
553	return DIRTY_I(sbi)->nr_dirty[PRE];
554}
555
556static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
557{
558	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
559		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
560		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
561		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
562		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
563		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
564}
565
566static inline int overprovision_segments(struct f2fs_sb_info *sbi)
567{
568	return SM_I(sbi)->ovp_segments;
569}
570
571static inline int reserved_sections(struct f2fs_sb_info *sbi)
572{
573	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
574}
575
576static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
577			unsigned int node_blocks, unsigned int dent_blocks)
578{
579
 
 
580	unsigned int segno, left_blocks;
581	int i;
582
583	/* check current node segment */
584	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
585		segno = CURSEG_I(sbi, i)->segno;
586		left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
587				get_seg_entry(sbi, segno)->ckpt_valid_blocks;
588
589		if (node_blocks > left_blocks)
590			return false;
591	}
592
593	/* check current data segment */
594	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
595	left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
596			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
597	if (dent_blocks > left_blocks)
598		return false;
599	return true;
600}
601
602static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
603					int freed, int needed)
604{
605	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
606					get_pages(sbi, F2FS_DIRTY_DENTS) +
607					get_pages(sbi, F2FS_DIRTY_IMETA);
608	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
609	unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
610	unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
611	unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
612	unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
613	unsigned int free, need_lower, need_upper;
614
615	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
616		return false;
617
618	free = free_sections(sbi) + freed;
619	need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
620	need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
621
622	if (free > need_upper)
623		return false;
624	else if (free <= need_lower)
625		return true;
626	return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
627}
628
629static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
630{
631	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
632		return true;
633	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
634		return true;
635	return false;
636}
637
638static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
639{
640	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
641}
642
643static inline int utilization(struct f2fs_sb_info *sbi)
644{
645	return div_u64((u64)valid_user_blocks(sbi) * 100,
646					sbi->user_block_count);
647}
648
649/*
650 * Sometimes f2fs may be better to drop out-of-place update policy.
651 * And, users can control the policy through sysfs entries.
652 * There are five policies with triggering conditions as follows.
653 * F2FS_IPU_FORCE - all the time,
654 * F2FS_IPU_SSR - if SSR mode is activated,
655 * F2FS_IPU_UTIL - if FS utilization is over threashold,
656 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
657 *                     threashold,
658 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
659 *                     storages. IPU will be triggered only if the # of dirty
660 *                     pages over min_fsync_blocks. (=default option)
661 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
662 * F2FS_IPU_NOCACHE - disable IPU bio cache.
663 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
664 *                            FI_OPU_WRITE flag.
665 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
666 */
667#define DEF_MIN_IPU_UTIL	70
668#define DEF_MIN_FSYNC_BLOCKS	8
669#define DEF_MIN_HOT_BLOCKS	16
670
671#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
672
673enum {
674	F2FS_IPU_FORCE,
675	F2FS_IPU_SSR,
676	F2FS_IPU_UTIL,
677	F2FS_IPU_SSR_UTIL,
678	F2FS_IPU_FSYNC,
679	F2FS_IPU_ASYNC,
680	F2FS_IPU_NOCACHE,
681	F2FS_IPU_HONOR_OPU_WRITE,
682};
683
684static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
685		int type)
686{
687	struct curseg_info *curseg = CURSEG_I(sbi, type);
688	return curseg->segno;
689}
690
691static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
692		int type)
693{
694	struct curseg_info *curseg = CURSEG_I(sbi, type);
695	return curseg->alloc_type;
696}
697
698static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
699{
700	struct curseg_info *curseg = CURSEG_I(sbi, type);
701	return curseg->next_blkoff;
702}
703
704static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
705{
706	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
707}
708
709static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
710{
711	struct f2fs_sb_info *sbi = fio->sbi;
712
713	if (__is_valid_data_blkaddr(fio->old_blkaddr))
714		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
715					META_GENERIC : DATA_GENERIC);
716	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
717					META_GENERIC : DATA_GENERIC_ENHANCE);
 
 
718}
719
720/*
721 * Summary block is always treated as an invalid block
722 */
723static inline int check_block_count(struct f2fs_sb_info *sbi,
724		int segno, struct f2fs_sit_entry *raw_sit)
725{
 
726	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
727	int valid_blocks = 0;
728	int cur_pos = 0, next_pos;
729	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
730
731	/* check bitmap with valid block count */
732	do {
733		if (is_valid) {
734			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
735					usable_blks_per_seg,
736					cur_pos);
737			valid_blocks += next_pos - cur_pos;
738		} else
739			next_pos = find_next_bit_le(&raw_sit->valid_map,
740					usable_blks_per_seg,
741					cur_pos);
742		cur_pos = next_pos;
743		is_valid = !is_valid;
744	} while (cur_pos < usable_blks_per_seg);
745
746	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
747		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
748			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
 
749		set_sbi_flag(sbi, SBI_NEED_FSCK);
750		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
751		return -EFSCORRUPTED;
752	}
753
754	if (usable_blks_per_seg < sbi->blocks_per_seg)
755		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
756				sbi->blocks_per_seg,
757				usable_blks_per_seg) != sbi->blocks_per_seg);
758
759	/* check segment usage, and check boundary of a given segment number */
760	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
761					|| segno > TOTAL_SEGS(sbi) - 1)) {
762		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
763			 GET_SIT_VBLOCKS(raw_sit), segno);
 
764		set_sbi_flag(sbi, SBI_NEED_FSCK);
765		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
766		return -EFSCORRUPTED;
767	}
768	return 0;
769}
770
771static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
772						unsigned int start)
773{
774	struct sit_info *sit_i = SIT_I(sbi);
775	unsigned int offset = SIT_BLOCK_OFFSET(start);
776	block_t blk_addr = sit_i->sit_base_addr + offset;
777
778	check_seg_range(sbi, start);
779
780#ifdef CONFIG_F2FS_CHECK_FS
781	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
782			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
783		f2fs_bug_on(sbi, 1);
784#endif
785
786	/* calculate sit block address */
787	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
788		blk_addr += sit_i->sit_blocks;
789
790	return blk_addr;
791}
792
793static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
794						pgoff_t block_addr)
795{
796	struct sit_info *sit_i = SIT_I(sbi);
797	block_addr -= sit_i->sit_base_addr;
798	if (block_addr < sit_i->sit_blocks)
799		block_addr += sit_i->sit_blocks;
800	else
801		block_addr -= sit_i->sit_blocks;
802
803	return block_addr + sit_i->sit_base_addr;
804}
805
806static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
807{
808	unsigned int block_off = SIT_BLOCK_OFFSET(start);
809
810	f2fs_change_bit(block_off, sit_i->sit_bitmap);
811#ifdef CONFIG_F2FS_CHECK_FS
812	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
813#endif
814}
815
816static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
817						bool base_time)
818{
819	struct sit_info *sit_i = SIT_I(sbi);
820	time64_t diff, now = ktime_get_boottime_seconds();
821
822	if (now >= sit_i->mounted_time)
823		return sit_i->elapsed_time + now - sit_i->mounted_time;
824
825	/* system time is set to the past */
826	if (!base_time) {
827		diff = sit_i->mounted_time - now;
828		if (sit_i->elapsed_time >= diff)
829			return sit_i->elapsed_time - diff;
830		return 0;
831	}
832	return sit_i->elapsed_time;
833}
834
835static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
836			unsigned int ofs_in_node, unsigned char version)
837{
838	sum->nid = cpu_to_le32(nid);
839	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
840	sum->version = version;
841}
842
843static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
844{
845	return __start_cp_addr(sbi) +
846		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
847}
848
849static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
850{
851	return __start_cp_addr(sbi) +
852		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
853				- (base + 1) + type;
854}
855
 
 
 
 
 
 
 
 
 
856static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
857{
858	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
859		return true;
860	return false;
861}
862
863/*
864 * It is very important to gather dirty pages and write at once, so that we can
865 * submit a big bio without interfering other data writes.
866 * By default, 512 pages for directory data,
867 * 512 pages (2MB) * 8 for nodes, and
868 * 256 pages * 8 for meta are set.
869 */
870static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
871{
872	if (sbi->sb->s_bdi->wb.dirty_exceeded)
873		return 0;
874
875	if (type == DATA)
876		return sbi->blocks_per_seg;
877	else if (type == NODE)
878		return 8 * sbi->blocks_per_seg;
879	else if (type == META)
880		return 8 * BIO_MAX_VECS;
881	else
882		return 0;
883}
884
885/*
886 * When writing pages, it'd better align nr_to_write for segment size.
887 */
888static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
889					struct writeback_control *wbc)
890{
891	long nr_to_write, desired;
892
893	if (wbc->sync_mode != WB_SYNC_NONE)
894		return 0;
895
896	nr_to_write = wbc->nr_to_write;
897	desired = BIO_MAX_VECS;
898	if (type == NODE)
899		desired <<= 1;
900
901	wbc->nr_to_write = desired;
902	return desired - nr_to_write;
903}
904
905static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
906{
907	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
908	bool wakeup = false;
909	int i;
910
911	if (force)
912		goto wake_up;
913
914	mutex_lock(&dcc->cmd_lock);
915	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
916		if (i + 1 < dcc->discard_granularity)
917			break;
918		if (!list_empty(&dcc->pend_list[i])) {
919			wakeup = true;
920			break;
921		}
922	}
923	mutex_unlock(&dcc->cmd_lock);
924	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
925		return;
926wake_up:
927	dcc->discard_wake = 1;
928	wake_up_interruptible_all(&dcc->discard_wait_queue);
929}