Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
3 *
4 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19#include <linux/module.h>
20#include <linux/device.h>
21#include <linux/pci.h>
22#include <linux/ptp_classify.h>
23
24#include "igb.h"
25
26#define INCVALUE_MASK 0x7fffffff
27#define ISGN 0x80000000
28
29/* The 82580 timesync updates the system timer every 8ns by 8ns,
30 * and this update value cannot be reprogrammed.
31 *
32 * Neither the 82576 nor the 82580 offer registers wide enough to hold
33 * nanoseconds time values for very long. For the 82580, SYSTIM always
34 * counts nanoseconds, but the upper 24 bits are not available. The
35 * frequency is adjusted by changing the 32 bit fractional nanoseconds
36 * register, TIMINCA.
37 *
38 * For the 82576, the SYSTIM register time unit is affect by the
39 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
40 * field are needed to provide the nominal 16 nanosecond period,
41 * leaving 19 bits for fractional nanoseconds.
42 *
43 * We scale the NIC clock cycle by a large factor so that relatively
44 * small clock corrections can be added or subtracted at each clock
45 * tick. The drawbacks of a large factor are a) that the clock
46 * register overflows more quickly (not such a big deal) and b) that
47 * the increment per tick has to fit into 24 bits. As a result we
48 * need to use a shift of 19 so we can fit a value of 16 into the
49 * TIMINCA register.
50 *
51 *
52 * SYSTIMH SYSTIML
53 * +--------------+ +---+---+------+
54 * 82576 | 32 | | 8 | 5 | 19 |
55 * +--------------+ +---+---+------+
56 * \________ 45 bits _______/ fract
57 *
58 * +----------+---+ +--------------+
59 * 82580 | 24 | 8 | | 32 |
60 * +----------+---+ +--------------+
61 * reserved \______ 40 bits _____/
62 *
63 *
64 * The 45 bit 82576 SYSTIM overflows every
65 * 2^45 * 10^-9 / 3600 = 9.77 hours.
66 *
67 * The 40 bit 82580 SYSTIM overflows every
68 * 2^40 * 10^-9 / 60 = 18.3 minutes.
69 */
70
71#define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
72#define IGB_PTP_TX_TIMEOUT (HZ * 15)
73#define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
74#define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
75#define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
76#define IGB_NBITS_82580 40
77
78static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
79
80/* SYSTIM read access for the 82576 */
81static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
82{
83 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
84 struct e1000_hw *hw = &igb->hw;
85 u64 val;
86 u32 lo, hi;
87
88 lo = rd32(E1000_SYSTIML);
89 hi = rd32(E1000_SYSTIMH);
90
91 val = ((u64) hi) << 32;
92 val |= lo;
93
94 return val;
95}
96
97/* SYSTIM read access for the 82580 */
98static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
99{
100 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
101 struct e1000_hw *hw = &igb->hw;
102 u32 lo, hi;
103 u64 val;
104
105 /* The timestamp latches on lowest register read. For the 82580
106 * the lowest register is SYSTIMR instead of SYSTIML. However we only
107 * need to provide nanosecond resolution, so we just ignore it.
108 */
109 rd32(E1000_SYSTIMR);
110 lo = rd32(E1000_SYSTIML);
111 hi = rd32(E1000_SYSTIMH);
112
113 val = ((u64) hi) << 32;
114 val |= lo;
115
116 return val;
117}
118
119/* SYSTIM read access for I210/I211 */
120static void igb_ptp_read_i210(struct igb_adapter *adapter,
121 struct timespec64 *ts)
122{
123 struct e1000_hw *hw = &adapter->hw;
124 u32 sec, nsec;
125
126 /* The timestamp latches on lowest register read. For I210/I211, the
127 * lowest register is SYSTIMR. Since we only need to provide nanosecond
128 * resolution, we can ignore it.
129 */
130 rd32(E1000_SYSTIMR);
131 nsec = rd32(E1000_SYSTIML);
132 sec = rd32(E1000_SYSTIMH);
133
134 ts->tv_sec = sec;
135 ts->tv_nsec = nsec;
136}
137
138static void igb_ptp_write_i210(struct igb_adapter *adapter,
139 const struct timespec64 *ts)
140{
141 struct e1000_hw *hw = &adapter->hw;
142
143 /* Writing the SYSTIMR register is not necessary as it only provides
144 * sub-nanosecond resolution.
145 */
146 wr32(E1000_SYSTIML, ts->tv_nsec);
147 wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
148}
149
150/**
151 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
152 * @adapter: board private structure
153 * @hwtstamps: timestamp structure to update
154 * @systim: unsigned 64bit system time value.
155 *
156 * We need to convert the system time value stored in the RX/TXSTMP registers
157 * into a hwtstamp which can be used by the upper level timestamping functions.
158 *
159 * The 'tmreg_lock' spinlock is used to protect the consistency of the
160 * system time value. This is needed because reading the 64 bit time
161 * value involves reading two (or three) 32 bit registers. The first
162 * read latches the value. Ditto for writing.
163 *
164 * In addition, here have extended the system time with an overflow
165 * counter in software.
166 **/
167static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
168 struct skb_shared_hwtstamps *hwtstamps,
169 u64 systim)
170{
171 unsigned long flags;
172 u64 ns;
173
174 switch (adapter->hw.mac.type) {
175 case e1000_82576:
176 case e1000_82580:
177 case e1000_i354:
178 case e1000_i350:
179 spin_lock_irqsave(&adapter->tmreg_lock, flags);
180
181 ns = timecounter_cyc2time(&adapter->tc, systim);
182
183 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
184
185 memset(hwtstamps, 0, sizeof(*hwtstamps));
186 hwtstamps->hwtstamp = ns_to_ktime(ns);
187 break;
188 case e1000_i210:
189 case e1000_i211:
190 memset(hwtstamps, 0, sizeof(*hwtstamps));
191 /* Upper 32 bits contain s, lower 32 bits contain ns. */
192 hwtstamps->hwtstamp = ktime_set(systim >> 32,
193 systim & 0xFFFFFFFF);
194 break;
195 default:
196 break;
197 }
198}
199
200/* PTP clock operations */
201static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
202{
203 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
204 ptp_caps);
205 struct e1000_hw *hw = &igb->hw;
206 int neg_adj = 0;
207 u64 rate;
208 u32 incvalue;
209
210 if (ppb < 0) {
211 neg_adj = 1;
212 ppb = -ppb;
213 }
214 rate = ppb;
215 rate <<= 14;
216 rate = div_u64(rate, 1953125);
217
218 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
219
220 if (neg_adj)
221 incvalue -= rate;
222 else
223 incvalue += rate;
224
225 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
226
227 return 0;
228}
229
230static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
231{
232 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
233 ptp_caps);
234 struct e1000_hw *hw = &igb->hw;
235 int neg_adj = 0;
236 u64 rate;
237 u32 inca;
238
239 if (scaled_ppm < 0) {
240 neg_adj = 1;
241 scaled_ppm = -scaled_ppm;
242 }
243 rate = scaled_ppm;
244 rate <<= 13;
245 rate = div_u64(rate, 15625);
246
247 inca = rate & INCVALUE_MASK;
248 if (neg_adj)
249 inca |= ISGN;
250
251 wr32(E1000_TIMINCA, inca);
252
253 return 0;
254}
255
256static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
257{
258 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
259 ptp_caps);
260 unsigned long flags;
261
262 spin_lock_irqsave(&igb->tmreg_lock, flags);
263 timecounter_adjtime(&igb->tc, delta);
264 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
265
266 return 0;
267}
268
269static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
270{
271 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
272 ptp_caps);
273 unsigned long flags;
274 struct timespec64 now, then = ns_to_timespec64(delta);
275
276 spin_lock_irqsave(&igb->tmreg_lock, flags);
277
278 igb_ptp_read_i210(igb, &now);
279 now = timespec64_add(now, then);
280 igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
281
282 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
283
284 return 0;
285}
286
287static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
288 struct timespec64 *ts)
289{
290 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
291 ptp_caps);
292 unsigned long flags;
293 u64 ns;
294
295 spin_lock_irqsave(&igb->tmreg_lock, flags);
296
297 ns = timecounter_read(&igb->tc);
298
299 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
300
301 *ts = ns_to_timespec64(ns);
302
303 return 0;
304}
305
306static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
307 struct timespec64 *ts)
308{
309 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
310 ptp_caps);
311 unsigned long flags;
312
313 spin_lock_irqsave(&igb->tmreg_lock, flags);
314
315 igb_ptp_read_i210(igb, ts);
316
317 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
318
319 return 0;
320}
321
322static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
323 const struct timespec64 *ts)
324{
325 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
326 ptp_caps);
327 unsigned long flags;
328 u64 ns;
329
330 ns = timespec64_to_ns(ts);
331
332 spin_lock_irqsave(&igb->tmreg_lock, flags);
333
334 timecounter_init(&igb->tc, &igb->cc, ns);
335
336 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
337
338 return 0;
339}
340
341static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
342 const struct timespec64 *ts)
343{
344 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
345 ptp_caps);
346 unsigned long flags;
347
348 spin_lock_irqsave(&igb->tmreg_lock, flags);
349
350 igb_ptp_write_i210(igb, ts);
351
352 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
353
354 return 0;
355}
356
357static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
358{
359 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
360 static const u32 mask[IGB_N_SDP] = {
361 E1000_CTRL_SDP0_DIR,
362 E1000_CTRL_SDP1_DIR,
363 E1000_CTRL_EXT_SDP2_DIR,
364 E1000_CTRL_EXT_SDP3_DIR,
365 };
366
367 if (input)
368 *ptr &= ~mask[pin];
369 else
370 *ptr |= mask[pin];
371}
372
373static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
374{
375 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
376 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
377 };
378 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
379 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
380 };
381 static const u32 ts_sdp_en[IGB_N_SDP] = {
382 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
383 };
384 struct e1000_hw *hw = &igb->hw;
385 u32 ctrl, ctrl_ext, tssdp = 0;
386
387 ctrl = rd32(E1000_CTRL);
388 ctrl_ext = rd32(E1000_CTRL_EXT);
389 tssdp = rd32(E1000_TSSDP);
390
391 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
392
393 /* Make sure this pin is not enabled as an output. */
394 tssdp &= ~ts_sdp_en[pin];
395
396 if (chan == 1) {
397 tssdp &= ~AUX1_SEL_SDP3;
398 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
399 } else {
400 tssdp &= ~AUX0_SEL_SDP3;
401 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
402 }
403
404 wr32(E1000_TSSDP, tssdp);
405 wr32(E1000_CTRL, ctrl);
406 wr32(E1000_CTRL_EXT, ctrl_ext);
407}
408
409static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
410{
411 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
412 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
413 };
414 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
415 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
416 };
417 static const u32 ts_sdp_en[IGB_N_SDP] = {
418 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
419 };
420 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
421 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
422 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
423 };
424 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
425 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
426 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
427 };
428 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
429 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
430 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
431 };
432 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
433 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
434 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
435 };
436 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
437 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
438 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
439 };
440 struct e1000_hw *hw = &igb->hw;
441 u32 ctrl, ctrl_ext, tssdp = 0;
442
443 ctrl = rd32(E1000_CTRL);
444 ctrl_ext = rd32(E1000_CTRL_EXT);
445 tssdp = rd32(E1000_TSSDP);
446
447 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
448
449 /* Make sure this pin is not enabled as an input. */
450 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
451 tssdp &= ~AUX0_TS_SDP_EN;
452
453 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
454 tssdp &= ~AUX1_TS_SDP_EN;
455
456 tssdp &= ~ts_sdp_sel_clr[pin];
457 if (freq) {
458 if (chan == 1)
459 tssdp |= ts_sdp_sel_fc1[pin];
460 else
461 tssdp |= ts_sdp_sel_fc0[pin];
462 } else {
463 if (chan == 1)
464 tssdp |= ts_sdp_sel_tt1[pin];
465 else
466 tssdp |= ts_sdp_sel_tt0[pin];
467 }
468 tssdp |= ts_sdp_en[pin];
469
470 wr32(E1000_TSSDP, tssdp);
471 wr32(E1000_CTRL, ctrl);
472 wr32(E1000_CTRL_EXT, ctrl_ext);
473}
474
475static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
476 struct ptp_clock_request *rq, int on)
477{
478 struct igb_adapter *igb =
479 container_of(ptp, struct igb_adapter, ptp_caps);
480 struct e1000_hw *hw = &igb->hw;
481 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
482 unsigned long flags;
483 struct timespec64 ts;
484 int use_freq = 0, pin = -1;
485 s64 ns;
486
487 switch (rq->type) {
488 case PTP_CLK_REQ_EXTTS:
489 if (on) {
490 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
491 rq->extts.index);
492 if (pin < 0)
493 return -EBUSY;
494 }
495 if (rq->extts.index == 1) {
496 tsauxc_mask = TSAUXC_EN_TS1;
497 tsim_mask = TSINTR_AUTT1;
498 } else {
499 tsauxc_mask = TSAUXC_EN_TS0;
500 tsim_mask = TSINTR_AUTT0;
501 }
502 spin_lock_irqsave(&igb->tmreg_lock, flags);
503 tsauxc = rd32(E1000_TSAUXC);
504 tsim = rd32(E1000_TSIM);
505 if (on) {
506 igb_pin_extts(igb, rq->extts.index, pin);
507 tsauxc |= tsauxc_mask;
508 tsim |= tsim_mask;
509 } else {
510 tsauxc &= ~tsauxc_mask;
511 tsim &= ~tsim_mask;
512 }
513 wr32(E1000_TSAUXC, tsauxc);
514 wr32(E1000_TSIM, tsim);
515 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
516 return 0;
517
518 case PTP_CLK_REQ_PEROUT:
519 if (on) {
520 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
521 rq->perout.index);
522 if (pin < 0)
523 return -EBUSY;
524 }
525 ts.tv_sec = rq->perout.period.sec;
526 ts.tv_nsec = rq->perout.period.nsec;
527 ns = timespec64_to_ns(&ts);
528 ns = ns >> 1;
529 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
530 (ns == 250000000LL) || (ns == 500000000LL))) {
531 if (ns < 8LL)
532 return -EINVAL;
533 use_freq = 1;
534 }
535 ts = ns_to_timespec64(ns);
536 if (rq->perout.index == 1) {
537 if (use_freq) {
538 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
539 tsim_mask = 0;
540 } else {
541 tsauxc_mask = TSAUXC_EN_TT1;
542 tsim_mask = TSINTR_TT1;
543 }
544 trgttiml = E1000_TRGTTIML1;
545 trgttimh = E1000_TRGTTIMH1;
546 freqout = E1000_FREQOUT1;
547 } else {
548 if (use_freq) {
549 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
550 tsim_mask = 0;
551 } else {
552 tsauxc_mask = TSAUXC_EN_TT0;
553 tsim_mask = TSINTR_TT0;
554 }
555 trgttiml = E1000_TRGTTIML0;
556 trgttimh = E1000_TRGTTIMH0;
557 freqout = E1000_FREQOUT0;
558 }
559 spin_lock_irqsave(&igb->tmreg_lock, flags);
560 tsauxc = rd32(E1000_TSAUXC);
561 tsim = rd32(E1000_TSIM);
562 if (rq->perout.index == 1) {
563 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
564 tsim &= ~TSINTR_TT1;
565 } else {
566 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
567 tsim &= ~TSINTR_TT0;
568 }
569 if (on) {
570 int i = rq->perout.index;
571 igb_pin_perout(igb, i, pin, use_freq);
572 igb->perout[i].start.tv_sec = rq->perout.start.sec;
573 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
574 igb->perout[i].period.tv_sec = ts.tv_sec;
575 igb->perout[i].period.tv_nsec = ts.tv_nsec;
576 wr32(trgttimh, rq->perout.start.sec);
577 wr32(trgttiml, rq->perout.start.nsec);
578 if (use_freq)
579 wr32(freqout, ns);
580 tsauxc |= tsauxc_mask;
581 tsim |= tsim_mask;
582 }
583 wr32(E1000_TSAUXC, tsauxc);
584 wr32(E1000_TSIM, tsim);
585 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
586 return 0;
587
588 case PTP_CLK_REQ_PPS:
589 spin_lock_irqsave(&igb->tmreg_lock, flags);
590 tsim = rd32(E1000_TSIM);
591 if (on)
592 tsim |= TSINTR_SYS_WRAP;
593 else
594 tsim &= ~TSINTR_SYS_WRAP;
595 igb->pps_sys_wrap_on = !!on;
596 wr32(E1000_TSIM, tsim);
597 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
598 return 0;
599 }
600
601 return -EOPNOTSUPP;
602}
603
604static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
605 struct ptp_clock_request *rq, int on)
606{
607 return -EOPNOTSUPP;
608}
609
610static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
611 enum ptp_pin_function func, unsigned int chan)
612{
613 switch (func) {
614 case PTP_PF_NONE:
615 case PTP_PF_EXTTS:
616 case PTP_PF_PEROUT:
617 break;
618 case PTP_PF_PHYSYNC:
619 return -1;
620 }
621 return 0;
622}
623
624/**
625 * igb_ptp_tx_work
626 * @work: pointer to work struct
627 *
628 * This work function polls the TSYNCTXCTL valid bit to determine when a
629 * timestamp has been taken for the current stored skb.
630 **/
631static void igb_ptp_tx_work(struct work_struct *work)
632{
633 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
634 ptp_tx_work);
635 struct e1000_hw *hw = &adapter->hw;
636 u32 tsynctxctl;
637
638 if (!adapter->ptp_tx_skb)
639 return;
640
641 if (time_is_before_jiffies(adapter->ptp_tx_start +
642 IGB_PTP_TX_TIMEOUT)) {
643 dev_kfree_skb_any(adapter->ptp_tx_skb);
644 adapter->ptp_tx_skb = NULL;
645 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
646 adapter->tx_hwtstamp_timeouts++;
647 /* Clear the tx valid bit in TSYNCTXCTL register to enable
648 * interrupt
649 */
650 rd32(E1000_TXSTMPH);
651 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
652 return;
653 }
654
655 tsynctxctl = rd32(E1000_TSYNCTXCTL);
656 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
657 igb_ptp_tx_hwtstamp(adapter);
658 else
659 /* reschedule to check later */
660 schedule_work(&adapter->ptp_tx_work);
661}
662
663static void igb_ptp_overflow_check(struct work_struct *work)
664{
665 struct igb_adapter *igb =
666 container_of(work, struct igb_adapter, ptp_overflow_work.work);
667 struct timespec64 ts;
668
669 igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
670
671 pr_debug("igb overflow check at %lld.%09lu\n",
672 (long long) ts.tv_sec, ts.tv_nsec);
673
674 schedule_delayed_work(&igb->ptp_overflow_work,
675 IGB_SYSTIM_OVERFLOW_PERIOD);
676}
677
678/**
679 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
680 * @adapter: private network adapter structure
681 *
682 * This watchdog task is scheduled to detect error case where hardware has
683 * dropped an Rx packet that was timestamped when the ring is full. The
684 * particular error is rare but leaves the device in a state unable to timestamp
685 * any future packets.
686 **/
687void igb_ptp_rx_hang(struct igb_adapter *adapter)
688{
689 struct e1000_hw *hw = &adapter->hw;
690 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
691 unsigned long rx_event;
692
693 /* Other hardware uses per-packet timestamps */
694 if (hw->mac.type != e1000_82576)
695 return;
696
697 /* If we don't have a valid timestamp in the registers, just update the
698 * timeout counter and exit
699 */
700 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
701 adapter->last_rx_ptp_check = jiffies;
702 return;
703 }
704
705 /* Determine the most recent watchdog or rx_timestamp event */
706 rx_event = adapter->last_rx_ptp_check;
707 if (time_after(adapter->last_rx_timestamp, rx_event))
708 rx_event = adapter->last_rx_timestamp;
709
710 /* Only need to read the high RXSTMP register to clear the lock */
711 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
712 rd32(E1000_RXSTMPH);
713 adapter->last_rx_ptp_check = jiffies;
714 adapter->rx_hwtstamp_cleared++;
715 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
716 }
717}
718
719/**
720 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
721 * @adapter: private network adapter structure
722 */
723void igb_ptp_tx_hang(struct igb_adapter *adapter)
724{
725 struct e1000_hw *hw = &adapter->hw;
726 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
727 IGB_PTP_TX_TIMEOUT);
728
729 if (!adapter->ptp_tx_skb)
730 return;
731
732 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
733 return;
734
735 /* If we haven't received a timestamp within the timeout, it is
736 * reasonable to assume that it will never occur, so we can unlock the
737 * timestamp bit when this occurs.
738 */
739 if (timeout) {
740 cancel_work_sync(&adapter->ptp_tx_work);
741 dev_kfree_skb_any(adapter->ptp_tx_skb);
742 adapter->ptp_tx_skb = NULL;
743 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
744 adapter->tx_hwtstamp_timeouts++;
745 /* Clear the tx valid bit in TSYNCTXCTL register to enable
746 * interrupt
747 */
748 rd32(E1000_TXSTMPH);
749 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
750 }
751}
752
753/**
754 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
755 * @adapter: Board private structure.
756 *
757 * If we were asked to do hardware stamping and such a time stamp is
758 * available, then it must have been for this skb here because we only
759 * allow only one such packet into the queue.
760 **/
761static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
762{
763 struct sk_buff *skb = adapter->ptp_tx_skb;
764 struct e1000_hw *hw = &adapter->hw;
765 struct skb_shared_hwtstamps shhwtstamps;
766 u64 regval;
767 int adjust = 0;
768
769 regval = rd32(E1000_TXSTMPL);
770 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
771
772 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
773 /* adjust timestamp for the TX latency based on link speed */
774 if (adapter->hw.mac.type == e1000_i210) {
775 switch (adapter->link_speed) {
776 case SPEED_10:
777 adjust = IGB_I210_TX_LATENCY_10;
778 break;
779 case SPEED_100:
780 adjust = IGB_I210_TX_LATENCY_100;
781 break;
782 case SPEED_1000:
783 adjust = IGB_I210_TX_LATENCY_1000;
784 break;
785 }
786 }
787
788 shhwtstamps.hwtstamp =
789 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
790
791 /* Clear the lock early before calling skb_tstamp_tx so that
792 * applications are not woken up before the lock bit is clear. We use
793 * a copy of the skb pointer to ensure other threads can't change it
794 * while we're notifying the stack.
795 */
796 adapter->ptp_tx_skb = NULL;
797 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
798
799 /* Notify the stack and free the skb after we've unlocked */
800 skb_tstamp_tx(skb, &shhwtstamps);
801 dev_kfree_skb_any(skb);
802}
803
804/**
805 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
806 * @q_vector: Pointer to interrupt specific structure
807 * @va: Pointer to address containing Rx buffer
808 * @skb: Buffer containing timestamp and packet
809 *
810 * This function is meant to retrieve a timestamp from the first buffer of an
811 * incoming frame. The value is stored in little endian format starting on
812 * byte 8.
813 **/
814void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
815 struct sk_buff *skb)
816{
817 __le64 *regval = (__le64 *)va;
818 struct igb_adapter *adapter = q_vector->adapter;
819 int adjust = 0;
820
821 /* The timestamp is recorded in little endian format.
822 * DWORD: 0 1 2 3
823 * Field: Reserved Reserved SYSTIML SYSTIMH
824 */
825 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
826 le64_to_cpu(regval[1]));
827
828 /* adjust timestamp for the RX latency based on link speed */
829 if (adapter->hw.mac.type == e1000_i210) {
830 switch (adapter->link_speed) {
831 case SPEED_10:
832 adjust = IGB_I210_RX_LATENCY_10;
833 break;
834 case SPEED_100:
835 adjust = IGB_I210_RX_LATENCY_100;
836 break;
837 case SPEED_1000:
838 adjust = IGB_I210_RX_LATENCY_1000;
839 break;
840 }
841 }
842 skb_hwtstamps(skb)->hwtstamp =
843 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
844}
845
846/**
847 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
848 * @q_vector: Pointer to interrupt specific structure
849 * @skb: Buffer containing timestamp and packet
850 *
851 * This function is meant to retrieve a timestamp from the internal registers
852 * of the adapter and store it in the skb.
853 **/
854void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
855 struct sk_buff *skb)
856{
857 struct igb_adapter *adapter = q_vector->adapter;
858 struct e1000_hw *hw = &adapter->hw;
859 u64 regval;
860 int adjust = 0;
861
862 /* If this bit is set, then the RX registers contain the time stamp. No
863 * other packet will be time stamped until we read these registers, so
864 * read the registers to make them available again. Because only one
865 * packet can be time stamped at a time, we know that the register
866 * values must belong to this one here and therefore we don't need to
867 * compare any of the additional attributes stored for it.
868 *
869 * If nothing went wrong, then it should have a shared tx_flags that we
870 * can turn into a skb_shared_hwtstamps.
871 */
872 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
873 return;
874
875 regval = rd32(E1000_RXSTMPL);
876 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
877
878 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
879
880 /* adjust timestamp for the RX latency based on link speed */
881 if (adapter->hw.mac.type == e1000_i210) {
882 switch (adapter->link_speed) {
883 case SPEED_10:
884 adjust = IGB_I210_RX_LATENCY_10;
885 break;
886 case SPEED_100:
887 adjust = IGB_I210_RX_LATENCY_100;
888 break;
889 case SPEED_1000:
890 adjust = IGB_I210_RX_LATENCY_1000;
891 break;
892 }
893 }
894 skb_hwtstamps(skb)->hwtstamp =
895 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
896
897 /* Update the last_rx_timestamp timer in order to enable watchdog check
898 * for error case of latched timestamp on a dropped packet.
899 */
900 adapter->last_rx_timestamp = jiffies;
901}
902
903/**
904 * igb_ptp_get_ts_config - get hardware time stamping config
905 * @netdev:
906 * @ifreq:
907 *
908 * Get the hwtstamp_config settings to return to the user. Rather than attempt
909 * to deconstruct the settings from the registers, just return a shadow copy
910 * of the last known settings.
911 **/
912int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
913{
914 struct igb_adapter *adapter = netdev_priv(netdev);
915 struct hwtstamp_config *config = &adapter->tstamp_config;
916
917 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
918 -EFAULT : 0;
919}
920
921/**
922 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
923 * @adapter: networking device structure
924 * @config: hwtstamp configuration
925 *
926 * Outgoing time stamping can be enabled and disabled. Play nice and
927 * disable it when requested, although it shouldn't case any overhead
928 * when no packet needs it. At most one packet in the queue may be
929 * marked for time stamping, otherwise it would be impossible to tell
930 * for sure to which packet the hardware time stamp belongs.
931 *
932 * Incoming time stamping has to be configured via the hardware
933 * filters. Not all combinations are supported, in particular event
934 * type has to be specified. Matching the kind of event packet is
935 * not supported, with the exception of "all V2 events regardless of
936 * level 2 or 4".
937 */
938static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
939 struct hwtstamp_config *config)
940{
941 struct e1000_hw *hw = &adapter->hw;
942 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
943 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
944 u32 tsync_rx_cfg = 0;
945 bool is_l4 = false;
946 bool is_l2 = false;
947 u32 regval;
948
949 /* reserved for future extensions */
950 if (config->flags)
951 return -EINVAL;
952
953 switch (config->tx_type) {
954 case HWTSTAMP_TX_OFF:
955 tsync_tx_ctl = 0;
956 case HWTSTAMP_TX_ON:
957 break;
958 default:
959 return -ERANGE;
960 }
961
962 switch (config->rx_filter) {
963 case HWTSTAMP_FILTER_NONE:
964 tsync_rx_ctl = 0;
965 break;
966 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
967 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
968 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
969 is_l4 = true;
970 break;
971 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
972 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
973 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
974 is_l4 = true;
975 break;
976 case HWTSTAMP_FILTER_PTP_V2_EVENT:
977 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
978 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
979 case HWTSTAMP_FILTER_PTP_V2_SYNC:
980 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
981 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
982 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
983 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
984 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
985 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
986 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
987 is_l2 = true;
988 is_l4 = true;
989 break;
990 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
991 case HWTSTAMP_FILTER_NTP_ALL:
992 case HWTSTAMP_FILTER_ALL:
993 /* 82576 cannot timestamp all packets, which it needs to do to
994 * support both V1 Sync and Delay_Req messages
995 */
996 if (hw->mac.type != e1000_82576) {
997 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
998 config->rx_filter = HWTSTAMP_FILTER_ALL;
999 break;
1000 }
1001 /* fall through */
1002 default:
1003 config->rx_filter = HWTSTAMP_FILTER_NONE;
1004 return -ERANGE;
1005 }
1006
1007 if (hw->mac.type == e1000_82575) {
1008 if (tsync_rx_ctl | tsync_tx_ctl)
1009 return -EINVAL;
1010 return 0;
1011 }
1012
1013 /* Per-packet timestamping only works if all packets are
1014 * timestamped, so enable timestamping in all packets as
1015 * long as one Rx filter was configured.
1016 */
1017 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1018 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1019 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1020 config->rx_filter = HWTSTAMP_FILTER_ALL;
1021 is_l2 = true;
1022 is_l4 = true;
1023
1024 if ((hw->mac.type == e1000_i210) ||
1025 (hw->mac.type == e1000_i211)) {
1026 regval = rd32(E1000_RXPBS);
1027 regval |= E1000_RXPBS_CFG_TS_EN;
1028 wr32(E1000_RXPBS, regval);
1029 }
1030 }
1031
1032 /* enable/disable TX */
1033 regval = rd32(E1000_TSYNCTXCTL);
1034 regval &= ~E1000_TSYNCTXCTL_ENABLED;
1035 regval |= tsync_tx_ctl;
1036 wr32(E1000_TSYNCTXCTL, regval);
1037
1038 /* enable/disable RX */
1039 regval = rd32(E1000_TSYNCRXCTL);
1040 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1041 regval |= tsync_rx_ctl;
1042 wr32(E1000_TSYNCRXCTL, regval);
1043
1044 /* define which PTP packets are time stamped */
1045 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1046
1047 /* define ethertype filter for timestamped packets */
1048 if (is_l2)
1049 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1050 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1051 E1000_ETQF_1588 | /* enable timestamping */
1052 ETH_P_1588)); /* 1588 eth protocol type */
1053 else
1054 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1055
1056 /* L4 Queue Filter[3]: filter by destination port and protocol */
1057 if (is_l4) {
1058 u32 ftqf = (IPPROTO_UDP /* UDP */
1059 | E1000_FTQF_VF_BP /* VF not compared */
1060 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1061 | E1000_FTQF_MASK); /* mask all inputs */
1062 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1063
1064 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1065 wr32(E1000_IMIREXT(3),
1066 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1067 if (hw->mac.type == e1000_82576) {
1068 /* enable source port check */
1069 wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1070 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1071 }
1072 wr32(E1000_FTQF(3), ftqf);
1073 } else {
1074 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1075 }
1076 wrfl();
1077
1078 /* clear TX/RX time stamp registers, just to be sure */
1079 regval = rd32(E1000_TXSTMPL);
1080 regval = rd32(E1000_TXSTMPH);
1081 regval = rd32(E1000_RXSTMPL);
1082 regval = rd32(E1000_RXSTMPH);
1083
1084 return 0;
1085}
1086
1087/**
1088 * igb_ptp_set_ts_config - set hardware time stamping config
1089 * @netdev:
1090 * @ifreq:
1091 *
1092 **/
1093int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1094{
1095 struct igb_adapter *adapter = netdev_priv(netdev);
1096 struct hwtstamp_config config;
1097 int err;
1098
1099 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1100 return -EFAULT;
1101
1102 err = igb_ptp_set_timestamp_mode(adapter, &config);
1103 if (err)
1104 return err;
1105
1106 /* save these settings for future reference */
1107 memcpy(&adapter->tstamp_config, &config,
1108 sizeof(adapter->tstamp_config));
1109
1110 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1111 -EFAULT : 0;
1112}
1113
1114/**
1115 * igb_ptp_init - Initialize PTP functionality
1116 * @adapter: Board private structure
1117 *
1118 * This function is called at device probe to initialize the PTP
1119 * functionality.
1120 */
1121void igb_ptp_init(struct igb_adapter *adapter)
1122{
1123 struct e1000_hw *hw = &adapter->hw;
1124 struct net_device *netdev = adapter->netdev;
1125 int i;
1126
1127 switch (hw->mac.type) {
1128 case e1000_82576:
1129 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1130 adapter->ptp_caps.owner = THIS_MODULE;
1131 adapter->ptp_caps.max_adj = 999999881;
1132 adapter->ptp_caps.n_ext_ts = 0;
1133 adapter->ptp_caps.pps = 0;
1134 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1135 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1136 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1137 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1138 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1139 adapter->cc.read = igb_ptp_read_82576;
1140 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1141 adapter->cc.mult = 1;
1142 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1143 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1144 break;
1145 case e1000_82580:
1146 case e1000_i354:
1147 case e1000_i350:
1148 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1149 adapter->ptp_caps.owner = THIS_MODULE;
1150 adapter->ptp_caps.max_adj = 62499999;
1151 adapter->ptp_caps.n_ext_ts = 0;
1152 adapter->ptp_caps.pps = 0;
1153 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1154 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1155 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1156 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1157 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1158 adapter->cc.read = igb_ptp_read_82580;
1159 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1160 adapter->cc.mult = 1;
1161 adapter->cc.shift = 0;
1162 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1163 break;
1164 case e1000_i210:
1165 case e1000_i211:
1166 for (i = 0; i < IGB_N_SDP; i++) {
1167 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1168
1169 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1170 ppd->index = i;
1171 ppd->func = PTP_PF_NONE;
1172 }
1173 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1174 adapter->ptp_caps.owner = THIS_MODULE;
1175 adapter->ptp_caps.max_adj = 62499999;
1176 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1177 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1178 adapter->ptp_caps.n_pins = IGB_N_SDP;
1179 adapter->ptp_caps.pps = 1;
1180 adapter->ptp_caps.pin_config = adapter->sdp_config;
1181 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1182 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1183 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1184 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1185 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1186 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1187 break;
1188 default:
1189 adapter->ptp_clock = NULL;
1190 return;
1191 }
1192
1193 spin_lock_init(&adapter->tmreg_lock);
1194 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1195
1196 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1197 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1198 igb_ptp_overflow_check);
1199
1200 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1201 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1202
1203 igb_ptp_reset(adapter);
1204
1205 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1206 &adapter->pdev->dev);
1207 if (IS_ERR(adapter->ptp_clock)) {
1208 adapter->ptp_clock = NULL;
1209 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1210 } else if (adapter->ptp_clock) {
1211 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1212 adapter->netdev->name);
1213 adapter->ptp_flags |= IGB_PTP_ENABLED;
1214 }
1215}
1216
1217/**
1218 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1219 * @adapter: Board private structure
1220 *
1221 * This function stops the overflow check work and PTP Tx timestamp work, and
1222 * will prepare the device for OS suspend.
1223 */
1224void igb_ptp_suspend(struct igb_adapter *adapter)
1225{
1226 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1227 return;
1228
1229 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1230 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1231
1232 cancel_work_sync(&adapter->ptp_tx_work);
1233 if (adapter->ptp_tx_skb) {
1234 dev_kfree_skb_any(adapter->ptp_tx_skb);
1235 adapter->ptp_tx_skb = NULL;
1236 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1237 }
1238}
1239
1240/**
1241 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1242 * @adapter: Board private structure.
1243 *
1244 * This function stops the PTP support and cancels the delayed work.
1245 **/
1246void igb_ptp_stop(struct igb_adapter *adapter)
1247{
1248 igb_ptp_suspend(adapter);
1249
1250 if (adapter->ptp_clock) {
1251 ptp_clock_unregister(adapter->ptp_clock);
1252 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1253 adapter->netdev->name);
1254 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1255 }
1256}
1257
1258/**
1259 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1260 * @adapter: Board private structure.
1261 *
1262 * This function handles the reset work required to re-enable the PTP device.
1263 **/
1264void igb_ptp_reset(struct igb_adapter *adapter)
1265{
1266 struct e1000_hw *hw = &adapter->hw;
1267 unsigned long flags;
1268
1269 /* reset the tstamp_config */
1270 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1271
1272 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1273
1274 switch (adapter->hw.mac.type) {
1275 case e1000_82576:
1276 /* Dial the nominal frequency. */
1277 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1278 break;
1279 case e1000_82580:
1280 case e1000_i354:
1281 case e1000_i350:
1282 case e1000_i210:
1283 case e1000_i211:
1284 wr32(E1000_TSAUXC, 0x0);
1285 wr32(E1000_TSSDP, 0x0);
1286 wr32(E1000_TSIM,
1287 TSYNC_INTERRUPTS |
1288 (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1289 wr32(E1000_IMS, E1000_IMS_TS);
1290 break;
1291 default:
1292 /* No work to do. */
1293 goto out;
1294 }
1295
1296 /* Re-initialize the timer. */
1297 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1298 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1299
1300 igb_ptp_write_i210(adapter, &ts);
1301 } else {
1302 timecounter_init(&adapter->tc, &adapter->cc,
1303 ktime_to_ns(ktime_get_real()));
1304 }
1305out:
1306 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1307
1308 wrfl();
1309
1310 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1311 schedule_delayed_work(&adapter->ptp_overflow_work,
1312 IGB_SYSTIM_OVERFLOW_PERIOD);
1313}
1// SPDX-License-Identifier: GPL-2.0+
2/* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3
4#include <linux/module.h>
5#include <linux/device.h>
6#include <linux/pci.h>
7#include <linux/ptp_classify.h>
8
9#include "igb.h"
10
11#define INCVALUE_MASK 0x7fffffff
12#define ISGN 0x80000000
13
14/* The 82580 timesync updates the system timer every 8ns by 8ns,
15 * and this update value cannot be reprogrammed.
16 *
17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
18 * nanoseconds time values for very long. For the 82580, SYSTIM always
19 * counts nanoseconds, but the upper 24 bits are not available. The
20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
21 * register, TIMINCA.
22 *
23 * For the 82576, the SYSTIM register time unit is affect by the
24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25 * field are needed to provide the nominal 16 nanosecond period,
26 * leaving 19 bits for fractional nanoseconds.
27 *
28 * We scale the NIC clock cycle by a large factor so that relatively
29 * small clock corrections can be added or subtracted at each clock
30 * tick. The drawbacks of a large factor are a) that the clock
31 * register overflows more quickly (not such a big deal) and b) that
32 * the increment per tick has to fit into 24 bits. As a result we
33 * need to use a shift of 19 so we can fit a value of 16 into the
34 * TIMINCA register.
35 *
36 *
37 * SYSTIMH SYSTIML
38 * +--------------+ +---+---+------+
39 * 82576 | 32 | | 8 | 5 | 19 |
40 * +--------------+ +---+---+------+
41 * \________ 45 bits _______/ fract
42 *
43 * +----------+---+ +--------------+
44 * 82580 | 24 | 8 | | 32 |
45 * +----------+---+ +--------------+
46 * reserved \______ 40 bits _____/
47 *
48 *
49 * The 45 bit 82576 SYSTIM overflows every
50 * 2^45 * 10^-9 / 3600 = 9.77 hours.
51 *
52 * The 40 bit 82580 SYSTIM overflows every
53 * 2^40 * 10^-9 / 60 = 18.3 minutes.
54 *
55 * SYSTIM is converted to real time using a timecounter. As
56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
57 * to be updated at least once per half of the SYSTIM interval.
58 * Scheduling of delayed work is not very accurate, and also the NIC
59 * clock can be adjusted to run up to 6% faster and the system clock
60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
61 * interval in the NIC time is shorter than 9.16 minutes.
62 */
63
64#define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 6)
65#define IGB_PTP_TX_TIMEOUT (HZ * 15)
66#define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
67#define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68#define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
69#define IGB_NBITS_82580 40
70
71static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
72static void igb_ptp_sdp_init(struct igb_adapter *adapter);
73
74/* SYSTIM read access for the 82576 */
75static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
76{
77 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
78 struct e1000_hw *hw = &igb->hw;
79 u64 val;
80 u32 lo, hi;
81
82 lo = rd32(E1000_SYSTIML);
83 hi = rd32(E1000_SYSTIMH);
84
85 val = ((u64) hi) << 32;
86 val |= lo;
87
88 return val;
89}
90
91/* SYSTIM read access for the 82580 */
92static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
93{
94 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
95 struct e1000_hw *hw = &igb->hw;
96 u32 lo, hi;
97 u64 val;
98
99 /* The timestamp latches on lowest register read. For the 82580
100 * the lowest register is SYSTIMR instead of SYSTIML. However we only
101 * need to provide nanosecond resolution, so we just ignore it.
102 */
103 rd32(E1000_SYSTIMR);
104 lo = rd32(E1000_SYSTIML);
105 hi = rd32(E1000_SYSTIMH);
106
107 val = ((u64) hi) << 32;
108 val |= lo;
109
110 return val;
111}
112
113/* SYSTIM read access for I210/I211 */
114static void igb_ptp_read_i210(struct igb_adapter *adapter,
115 struct timespec64 *ts)
116{
117 struct e1000_hw *hw = &adapter->hw;
118 u32 sec, nsec;
119
120 /* The timestamp latches on lowest register read. For I210/I211, the
121 * lowest register is SYSTIMR. Since we only need to provide nanosecond
122 * resolution, we can ignore it.
123 */
124 rd32(E1000_SYSTIMR);
125 nsec = rd32(E1000_SYSTIML);
126 sec = rd32(E1000_SYSTIMH);
127
128 ts->tv_sec = sec;
129 ts->tv_nsec = nsec;
130}
131
132static void igb_ptp_write_i210(struct igb_adapter *adapter,
133 const struct timespec64 *ts)
134{
135 struct e1000_hw *hw = &adapter->hw;
136
137 /* Writing the SYSTIMR register is not necessary as it only provides
138 * sub-nanosecond resolution.
139 */
140 wr32(E1000_SYSTIML, ts->tv_nsec);
141 wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
142}
143
144/**
145 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
146 * @adapter: board private structure
147 * @hwtstamps: timestamp structure to update
148 * @systim: unsigned 64bit system time value.
149 *
150 * We need to convert the system time value stored in the RX/TXSTMP registers
151 * into a hwtstamp which can be used by the upper level timestamping functions.
152 *
153 * The 'tmreg_lock' spinlock is used to protect the consistency of the
154 * system time value. This is needed because reading the 64 bit time
155 * value involves reading two (or three) 32 bit registers. The first
156 * read latches the value. Ditto for writing.
157 *
158 * In addition, here have extended the system time with an overflow
159 * counter in software.
160 **/
161static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
162 struct skb_shared_hwtstamps *hwtstamps,
163 u64 systim)
164{
165 unsigned long flags;
166 u64 ns;
167
168 memset(hwtstamps, 0, sizeof(*hwtstamps));
169
170 switch (adapter->hw.mac.type) {
171 case e1000_82576:
172 case e1000_82580:
173 case e1000_i354:
174 case e1000_i350:
175 spin_lock_irqsave(&adapter->tmreg_lock, flags);
176 ns = timecounter_cyc2time(&adapter->tc, systim);
177 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
178
179 hwtstamps->hwtstamp = ns_to_ktime(ns);
180 break;
181 case e1000_i210:
182 case e1000_i211:
183 /* Upper 32 bits contain s, lower 32 bits contain ns. */
184 hwtstamps->hwtstamp = ktime_set(systim >> 32,
185 systim & 0xFFFFFFFF);
186 break;
187 default:
188 break;
189 }
190}
191
192/* PTP clock operations */
193static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
194{
195 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
196 ptp_caps);
197 struct e1000_hw *hw = &igb->hw;
198 u64 incvalue;
199
200 incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm);
201
202 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
203
204 return 0;
205}
206
207static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
208{
209 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
210 ptp_caps);
211 struct e1000_hw *hw = &igb->hw;
212 int neg_adj = 0;
213 u64 rate;
214 u32 inca;
215
216 if (scaled_ppm < 0) {
217 neg_adj = 1;
218 scaled_ppm = -scaled_ppm;
219 }
220 rate = scaled_ppm;
221 rate <<= 13;
222 rate = div_u64(rate, 15625);
223
224 inca = rate & INCVALUE_MASK;
225 if (neg_adj)
226 inca |= ISGN;
227
228 wr32(E1000_TIMINCA, inca);
229
230 return 0;
231}
232
233static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
234{
235 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
236 ptp_caps);
237 unsigned long flags;
238
239 spin_lock_irqsave(&igb->tmreg_lock, flags);
240 timecounter_adjtime(&igb->tc, delta);
241 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
242
243 return 0;
244}
245
246static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
247{
248 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
249 ptp_caps);
250 unsigned long flags;
251 struct timespec64 now, then = ns_to_timespec64(delta);
252
253 spin_lock_irqsave(&igb->tmreg_lock, flags);
254
255 igb_ptp_read_i210(igb, &now);
256 now = timespec64_add(now, then);
257 igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
258
259 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
260
261 return 0;
262}
263
264static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
265 struct timespec64 *ts,
266 struct ptp_system_timestamp *sts)
267{
268 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
269 ptp_caps);
270 struct e1000_hw *hw = &igb->hw;
271 unsigned long flags;
272 u32 lo, hi;
273 u64 ns;
274
275 spin_lock_irqsave(&igb->tmreg_lock, flags);
276
277 ptp_read_system_prets(sts);
278 lo = rd32(E1000_SYSTIML);
279 ptp_read_system_postts(sts);
280 hi = rd32(E1000_SYSTIMH);
281
282 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
283
284 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
285
286 *ts = ns_to_timespec64(ns);
287
288 return 0;
289}
290
291static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
292 struct timespec64 *ts,
293 struct ptp_system_timestamp *sts)
294{
295 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
296 ptp_caps);
297 struct e1000_hw *hw = &igb->hw;
298 unsigned long flags;
299 u32 lo, hi;
300 u64 ns;
301
302 spin_lock_irqsave(&igb->tmreg_lock, flags);
303
304 ptp_read_system_prets(sts);
305 rd32(E1000_SYSTIMR);
306 ptp_read_system_postts(sts);
307 lo = rd32(E1000_SYSTIML);
308 hi = rd32(E1000_SYSTIMH);
309
310 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
311
312 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
313
314 *ts = ns_to_timespec64(ns);
315
316 return 0;
317}
318
319static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
320 struct timespec64 *ts,
321 struct ptp_system_timestamp *sts)
322{
323 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
324 ptp_caps);
325 struct e1000_hw *hw = &igb->hw;
326 unsigned long flags;
327
328 spin_lock_irqsave(&igb->tmreg_lock, flags);
329
330 ptp_read_system_prets(sts);
331 rd32(E1000_SYSTIMR);
332 ptp_read_system_postts(sts);
333 ts->tv_nsec = rd32(E1000_SYSTIML);
334 ts->tv_sec = rd32(E1000_SYSTIMH);
335
336 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
337
338 return 0;
339}
340
341static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
342 const struct timespec64 *ts)
343{
344 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
345 ptp_caps);
346 unsigned long flags;
347 u64 ns;
348
349 ns = timespec64_to_ns(ts);
350
351 spin_lock_irqsave(&igb->tmreg_lock, flags);
352
353 timecounter_init(&igb->tc, &igb->cc, ns);
354
355 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
356
357 return 0;
358}
359
360static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
361 const struct timespec64 *ts)
362{
363 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
364 ptp_caps);
365 unsigned long flags;
366
367 spin_lock_irqsave(&igb->tmreg_lock, flags);
368
369 igb_ptp_write_i210(igb, ts);
370
371 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
372
373 return 0;
374}
375
376static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
377{
378 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
379 static const u32 mask[IGB_N_SDP] = {
380 E1000_CTRL_SDP0_DIR,
381 E1000_CTRL_SDP1_DIR,
382 E1000_CTRL_EXT_SDP2_DIR,
383 E1000_CTRL_EXT_SDP3_DIR,
384 };
385
386 if (input)
387 *ptr &= ~mask[pin];
388 else
389 *ptr |= mask[pin];
390}
391
392static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
393{
394 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
395 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
396 };
397 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
398 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
399 };
400 static const u32 ts_sdp_en[IGB_N_SDP] = {
401 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
402 };
403 struct e1000_hw *hw = &igb->hw;
404 u32 ctrl, ctrl_ext, tssdp = 0;
405
406 ctrl = rd32(E1000_CTRL);
407 ctrl_ext = rd32(E1000_CTRL_EXT);
408 tssdp = rd32(E1000_TSSDP);
409
410 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
411
412 /* Make sure this pin is not enabled as an output. */
413 tssdp &= ~ts_sdp_en[pin];
414
415 if (chan == 1) {
416 tssdp &= ~AUX1_SEL_SDP3;
417 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
418 } else {
419 tssdp &= ~AUX0_SEL_SDP3;
420 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
421 }
422
423 wr32(E1000_TSSDP, tssdp);
424 wr32(E1000_CTRL, ctrl);
425 wr32(E1000_CTRL_EXT, ctrl_ext);
426}
427
428static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
429{
430 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
431 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
432 };
433 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
434 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
435 };
436 static const u32 ts_sdp_en[IGB_N_SDP] = {
437 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
438 };
439 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
440 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
441 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
442 };
443 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
444 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
445 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
446 };
447 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
448 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
449 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
450 };
451 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
452 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
453 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
454 };
455 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
456 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
457 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
458 };
459 struct e1000_hw *hw = &igb->hw;
460 u32 ctrl, ctrl_ext, tssdp = 0;
461
462 ctrl = rd32(E1000_CTRL);
463 ctrl_ext = rd32(E1000_CTRL_EXT);
464 tssdp = rd32(E1000_TSSDP);
465
466 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
467
468 /* Make sure this pin is not enabled as an input. */
469 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
470 tssdp &= ~AUX0_TS_SDP_EN;
471
472 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
473 tssdp &= ~AUX1_TS_SDP_EN;
474
475 tssdp &= ~ts_sdp_sel_clr[pin];
476 if (freq) {
477 if (chan == 1)
478 tssdp |= ts_sdp_sel_fc1[pin];
479 else
480 tssdp |= ts_sdp_sel_fc0[pin];
481 } else {
482 if (chan == 1)
483 tssdp |= ts_sdp_sel_tt1[pin];
484 else
485 tssdp |= ts_sdp_sel_tt0[pin];
486 }
487 tssdp |= ts_sdp_en[pin];
488
489 wr32(E1000_TSSDP, tssdp);
490 wr32(E1000_CTRL, ctrl);
491 wr32(E1000_CTRL_EXT, ctrl_ext);
492}
493
494static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
495 struct ptp_clock_request *rq, int on)
496{
497 struct igb_adapter *igb =
498 container_of(ptp, struct igb_adapter, ptp_caps);
499 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
500 systimh, level_mask, level, rem;
501 struct e1000_hw *hw = &igb->hw;
502 struct timespec64 ts, start;
503 unsigned long flags;
504 u64 systim, now;
505 int pin = -1;
506 s64 ns;
507
508 switch (rq->type) {
509 case PTP_CLK_REQ_EXTTS:
510 /* Reject requests with unsupported flags */
511 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
512 PTP_RISING_EDGE |
513 PTP_FALLING_EDGE |
514 PTP_STRICT_FLAGS))
515 return -EOPNOTSUPP;
516
517 if (on) {
518 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
519 rq->extts.index);
520 if (pin < 0)
521 return -EBUSY;
522 }
523 if (rq->extts.index == 1) {
524 tsauxc_mask = TSAUXC_EN_TS1;
525 tsim_mask = TSINTR_AUTT1;
526 } else {
527 tsauxc_mask = TSAUXC_EN_TS0;
528 tsim_mask = TSINTR_AUTT0;
529 }
530 spin_lock_irqsave(&igb->tmreg_lock, flags);
531 tsauxc = rd32(E1000_TSAUXC);
532 tsim = rd32(E1000_TSIM);
533 if (on) {
534 igb_pin_extts(igb, rq->extts.index, pin);
535 tsauxc |= tsauxc_mask;
536 tsim |= tsim_mask;
537 } else {
538 tsauxc &= ~tsauxc_mask;
539 tsim &= ~tsim_mask;
540 }
541 wr32(E1000_TSAUXC, tsauxc);
542 wr32(E1000_TSIM, tsim);
543 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
544 return 0;
545
546 case PTP_CLK_REQ_PEROUT:
547 /* Reject requests with unsupported flags */
548 if (rq->perout.flags)
549 return -EOPNOTSUPP;
550
551 if (on) {
552 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
553 rq->perout.index);
554 if (pin < 0)
555 return -EBUSY;
556 }
557 ts.tv_sec = rq->perout.period.sec;
558 ts.tv_nsec = rq->perout.period.nsec;
559 ns = timespec64_to_ns(&ts);
560 ns = ns >> 1;
561 if (on && ns < 8LL)
562 return -EINVAL;
563 ts = ns_to_timespec64(ns);
564 if (rq->perout.index == 1) {
565 tsauxc_mask = TSAUXC_EN_TT1;
566 tsim_mask = TSINTR_TT1;
567 trgttiml = E1000_TRGTTIML1;
568 trgttimh = E1000_TRGTTIMH1;
569 } else {
570 tsauxc_mask = TSAUXC_EN_TT0;
571 tsim_mask = TSINTR_TT0;
572 trgttiml = E1000_TRGTTIML0;
573 trgttimh = E1000_TRGTTIMH0;
574 }
575 spin_lock_irqsave(&igb->tmreg_lock, flags);
576 tsauxc = rd32(E1000_TSAUXC);
577 tsim = rd32(E1000_TSIM);
578 if (rq->perout.index == 1) {
579 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
580 tsim &= ~TSINTR_TT1;
581 } else {
582 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
583 tsim &= ~TSINTR_TT0;
584 }
585 if (on) {
586 int i = rq->perout.index;
587
588 /* read systim registers in sequence */
589 rd32(E1000_SYSTIMR);
590 systiml = rd32(E1000_SYSTIML);
591 systimh = rd32(E1000_SYSTIMH);
592 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
593 now = timecounter_cyc2time(&igb->tc, systim);
594
595 if (pin < 2) {
596 level_mask = (i == 1) ? 0x80000 : 0x40000;
597 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
598 } else {
599 level_mask = (i == 1) ? 0x80 : 0x40;
600 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
601 }
602
603 div_u64_rem(now, ns, &rem);
604 systim = systim + (ns - rem);
605
606 /* synchronize pin level with rising/falling edges */
607 div_u64_rem(now, ns << 1, &rem);
608 if (rem < ns) {
609 /* first half of period */
610 if (level == 0) {
611 /* output is already low, skip this period */
612 systim += ns;
613 }
614 } else {
615 /* second half of period */
616 if (level == 1) {
617 /* output is already high, skip this period */
618 systim += ns;
619 }
620 }
621
622 start = ns_to_timespec64(systim + (ns - rem));
623 igb_pin_perout(igb, i, pin, 0);
624 igb->perout[i].start.tv_sec = start.tv_sec;
625 igb->perout[i].start.tv_nsec = start.tv_nsec;
626 igb->perout[i].period.tv_sec = ts.tv_sec;
627 igb->perout[i].period.tv_nsec = ts.tv_nsec;
628
629 wr32(trgttiml, (u32)systim);
630 wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
631 tsauxc |= tsauxc_mask;
632 tsim |= tsim_mask;
633 }
634 wr32(E1000_TSAUXC, tsauxc);
635 wr32(E1000_TSIM, tsim);
636 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
637 return 0;
638
639 case PTP_CLK_REQ_PPS:
640 return -EOPNOTSUPP;
641 }
642
643 return -EOPNOTSUPP;
644}
645
646static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
647 struct ptp_clock_request *rq, int on)
648{
649 struct igb_adapter *igb =
650 container_of(ptp, struct igb_adapter, ptp_caps);
651 struct e1000_hw *hw = &igb->hw;
652 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
653 unsigned long flags;
654 struct timespec64 ts;
655 int use_freq = 0, pin = -1;
656 s64 ns;
657
658 switch (rq->type) {
659 case PTP_CLK_REQ_EXTTS:
660 /* Reject requests with unsupported flags */
661 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
662 PTP_RISING_EDGE |
663 PTP_FALLING_EDGE |
664 PTP_STRICT_FLAGS))
665 return -EOPNOTSUPP;
666
667 /* Reject requests failing to enable both edges. */
668 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
669 (rq->extts.flags & PTP_ENABLE_FEATURE) &&
670 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
671 return -EOPNOTSUPP;
672
673 if (on) {
674 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
675 rq->extts.index);
676 if (pin < 0)
677 return -EBUSY;
678 }
679 if (rq->extts.index == 1) {
680 tsauxc_mask = TSAUXC_EN_TS1;
681 tsim_mask = TSINTR_AUTT1;
682 } else {
683 tsauxc_mask = TSAUXC_EN_TS0;
684 tsim_mask = TSINTR_AUTT0;
685 }
686 spin_lock_irqsave(&igb->tmreg_lock, flags);
687 tsauxc = rd32(E1000_TSAUXC);
688 tsim = rd32(E1000_TSIM);
689 if (on) {
690 igb_pin_extts(igb, rq->extts.index, pin);
691 tsauxc |= tsauxc_mask;
692 tsim |= tsim_mask;
693 } else {
694 tsauxc &= ~tsauxc_mask;
695 tsim &= ~tsim_mask;
696 }
697 wr32(E1000_TSAUXC, tsauxc);
698 wr32(E1000_TSIM, tsim);
699 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
700 return 0;
701
702 case PTP_CLK_REQ_PEROUT:
703 /* Reject requests with unsupported flags */
704 if (rq->perout.flags)
705 return -EOPNOTSUPP;
706
707 if (on) {
708 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
709 rq->perout.index);
710 if (pin < 0)
711 return -EBUSY;
712 }
713 ts.tv_sec = rq->perout.period.sec;
714 ts.tv_nsec = rq->perout.period.nsec;
715 ns = timespec64_to_ns(&ts);
716 ns = ns >> 1;
717 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
718 (ns == 250000000LL) || (ns == 500000000LL))) {
719 if (ns < 8LL)
720 return -EINVAL;
721 use_freq = 1;
722 }
723 ts = ns_to_timespec64(ns);
724 if (rq->perout.index == 1) {
725 if (use_freq) {
726 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
727 tsim_mask = 0;
728 } else {
729 tsauxc_mask = TSAUXC_EN_TT1;
730 tsim_mask = TSINTR_TT1;
731 }
732 trgttiml = E1000_TRGTTIML1;
733 trgttimh = E1000_TRGTTIMH1;
734 freqout = E1000_FREQOUT1;
735 } else {
736 if (use_freq) {
737 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
738 tsim_mask = 0;
739 } else {
740 tsauxc_mask = TSAUXC_EN_TT0;
741 tsim_mask = TSINTR_TT0;
742 }
743 trgttiml = E1000_TRGTTIML0;
744 trgttimh = E1000_TRGTTIMH0;
745 freqout = E1000_FREQOUT0;
746 }
747 spin_lock_irqsave(&igb->tmreg_lock, flags);
748 tsauxc = rd32(E1000_TSAUXC);
749 tsim = rd32(E1000_TSIM);
750 if (rq->perout.index == 1) {
751 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
752 tsim &= ~TSINTR_TT1;
753 } else {
754 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
755 tsim &= ~TSINTR_TT0;
756 }
757 if (on) {
758 int i = rq->perout.index;
759 igb_pin_perout(igb, i, pin, use_freq);
760 igb->perout[i].start.tv_sec = rq->perout.start.sec;
761 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
762 igb->perout[i].period.tv_sec = ts.tv_sec;
763 igb->perout[i].period.tv_nsec = ts.tv_nsec;
764 wr32(trgttimh, rq->perout.start.sec);
765 wr32(trgttiml, rq->perout.start.nsec);
766 if (use_freq)
767 wr32(freqout, ns);
768 tsauxc |= tsauxc_mask;
769 tsim |= tsim_mask;
770 }
771 wr32(E1000_TSAUXC, tsauxc);
772 wr32(E1000_TSIM, tsim);
773 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
774 return 0;
775
776 case PTP_CLK_REQ_PPS:
777 spin_lock_irqsave(&igb->tmreg_lock, flags);
778 tsim = rd32(E1000_TSIM);
779 if (on)
780 tsim |= TSINTR_SYS_WRAP;
781 else
782 tsim &= ~TSINTR_SYS_WRAP;
783 igb->pps_sys_wrap_on = !!on;
784 wr32(E1000_TSIM, tsim);
785 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
786 return 0;
787 }
788
789 return -EOPNOTSUPP;
790}
791
792static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
793 struct ptp_clock_request *rq, int on)
794{
795 return -EOPNOTSUPP;
796}
797
798static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
799 enum ptp_pin_function func, unsigned int chan)
800{
801 switch (func) {
802 case PTP_PF_NONE:
803 case PTP_PF_EXTTS:
804 case PTP_PF_PEROUT:
805 break;
806 case PTP_PF_PHYSYNC:
807 return -1;
808 }
809 return 0;
810}
811
812/**
813 * igb_ptp_tx_work
814 * @work: pointer to work struct
815 *
816 * This work function polls the TSYNCTXCTL valid bit to determine when a
817 * timestamp has been taken for the current stored skb.
818 **/
819static void igb_ptp_tx_work(struct work_struct *work)
820{
821 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
822 ptp_tx_work);
823 struct e1000_hw *hw = &adapter->hw;
824 u32 tsynctxctl;
825
826 if (!adapter->ptp_tx_skb)
827 return;
828
829 if (time_is_before_jiffies(adapter->ptp_tx_start +
830 IGB_PTP_TX_TIMEOUT)) {
831 dev_kfree_skb_any(adapter->ptp_tx_skb);
832 adapter->ptp_tx_skb = NULL;
833 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
834 adapter->tx_hwtstamp_timeouts++;
835 /* Clear the tx valid bit in TSYNCTXCTL register to enable
836 * interrupt
837 */
838 rd32(E1000_TXSTMPH);
839 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
840 return;
841 }
842
843 tsynctxctl = rd32(E1000_TSYNCTXCTL);
844 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
845 igb_ptp_tx_hwtstamp(adapter);
846 else
847 /* reschedule to check later */
848 schedule_work(&adapter->ptp_tx_work);
849}
850
851static void igb_ptp_overflow_check(struct work_struct *work)
852{
853 struct igb_adapter *igb =
854 container_of(work, struct igb_adapter, ptp_overflow_work.work);
855 struct timespec64 ts;
856 u64 ns;
857
858 /* Update the timecounter */
859 ns = timecounter_read(&igb->tc);
860
861 ts = ns_to_timespec64(ns);
862 pr_debug("igb overflow check at %lld.%09lu\n",
863 (long long) ts.tv_sec, ts.tv_nsec);
864
865 schedule_delayed_work(&igb->ptp_overflow_work,
866 IGB_SYSTIM_OVERFLOW_PERIOD);
867}
868
869/**
870 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
871 * @adapter: private network adapter structure
872 *
873 * This watchdog task is scheduled to detect error case where hardware has
874 * dropped an Rx packet that was timestamped when the ring is full. The
875 * particular error is rare but leaves the device in a state unable to timestamp
876 * any future packets.
877 **/
878void igb_ptp_rx_hang(struct igb_adapter *adapter)
879{
880 struct e1000_hw *hw = &adapter->hw;
881 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
882 unsigned long rx_event;
883
884 /* Other hardware uses per-packet timestamps */
885 if (hw->mac.type != e1000_82576)
886 return;
887
888 /* If we don't have a valid timestamp in the registers, just update the
889 * timeout counter and exit
890 */
891 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
892 adapter->last_rx_ptp_check = jiffies;
893 return;
894 }
895
896 /* Determine the most recent watchdog or rx_timestamp event */
897 rx_event = adapter->last_rx_ptp_check;
898 if (time_after(adapter->last_rx_timestamp, rx_event))
899 rx_event = adapter->last_rx_timestamp;
900
901 /* Only need to read the high RXSTMP register to clear the lock */
902 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
903 rd32(E1000_RXSTMPH);
904 adapter->last_rx_ptp_check = jiffies;
905 adapter->rx_hwtstamp_cleared++;
906 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
907 }
908}
909
910/**
911 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
912 * @adapter: private network adapter structure
913 */
914void igb_ptp_tx_hang(struct igb_adapter *adapter)
915{
916 struct e1000_hw *hw = &adapter->hw;
917 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
918 IGB_PTP_TX_TIMEOUT);
919
920 if (!adapter->ptp_tx_skb)
921 return;
922
923 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
924 return;
925
926 /* If we haven't received a timestamp within the timeout, it is
927 * reasonable to assume that it will never occur, so we can unlock the
928 * timestamp bit when this occurs.
929 */
930 if (timeout) {
931 cancel_work_sync(&adapter->ptp_tx_work);
932 dev_kfree_skb_any(adapter->ptp_tx_skb);
933 adapter->ptp_tx_skb = NULL;
934 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
935 adapter->tx_hwtstamp_timeouts++;
936 /* Clear the tx valid bit in TSYNCTXCTL register to enable
937 * interrupt
938 */
939 rd32(E1000_TXSTMPH);
940 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
941 }
942}
943
944/**
945 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
946 * @adapter: Board private structure.
947 *
948 * If we were asked to do hardware stamping and such a time stamp is
949 * available, then it must have been for this skb here because we only
950 * allow only one such packet into the queue.
951 **/
952static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
953{
954 struct sk_buff *skb = adapter->ptp_tx_skb;
955 struct e1000_hw *hw = &adapter->hw;
956 struct skb_shared_hwtstamps shhwtstamps;
957 u64 regval;
958 int adjust = 0;
959
960 regval = rd32(E1000_TXSTMPL);
961 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
962
963 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
964 /* adjust timestamp for the TX latency based on link speed */
965 if (adapter->hw.mac.type == e1000_i210) {
966 switch (adapter->link_speed) {
967 case SPEED_10:
968 adjust = IGB_I210_TX_LATENCY_10;
969 break;
970 case SPEED_100:
971 adjust = IGB_I210_TX_LATENCY_100;
972 break;
973 case SPEED_1000:
974 adjust = IGB_I210_TX_LATENCY_1000;
975 break;
976 }
977 }
978
979 shhwtstamps.hwtstamp =
980 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
981
982 /* Clear the lock early before calling skb_tstamp_tx so that
983 * applications are not woken up before the lock bit is clear. We use
984 * a copy of the skb pointer to ensure other threads can't change it
985 * while we're notifying the stack.
986 */
987 adapter->ptp_tx_skb = NULL;
988 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
989
990 /* Notify the stack and free the skb after we've unlocked */
991 skb_tstamp_tx(skb, &shhwtstamps);
992 dev_kfree_skb_any(skb);
993}
994
995/**
996 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
997 * @q_vector: Pointer to interrupt specific structure
998 * @va: Pointer to address containing Rx buffer
999 * @timestamp: Pointer where timestamp will be stored
1000 *
1001 * This function is meant to retrieve a timestamp from the first buffer of an
1002 * incoming frame. The value is stored in little endian format starting on
1003 * byte 8
1004 *
1005 * Returns: The timestamp header length or 0 if not available
1006 **/
1007int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1008 ktime_t *timestamp)
1009{
1010 struct igb_adapter *adapter = q_vector->adapter;
1011 struct skb_shared_hwtstamps ts;
1012 __le64 *regval = (__le64 *)va;
1013 int adjust = 0;
1014
1015 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1016 return 0;
1017
1018 /* The timestamp is recorded in little endian format.
1019 * DWORD: 0 1 2 3
1020 * Field: Reserved Reserved SYSTIML SYSTIMH
1021 */
1022
1023 /* check reserved dwords are zero, be/le doesn't matter for zero */
1024 if (regval[0])
1025 return 0;
1026
1027 igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1028
1029 /* adjust timestamp for the RX latency based on link speed */
1030 if (adapter->hw.mac.type == e1000_i210) {
1031 switch (adapter->link_speed) {
1032 case SPEED_10:
1033 adjust = IGB_I210_RX_LATENCY_10;
1034 break;
1035 case SPEED_100:
1036 adjust = IGB_I210_RX_LATENCY_100;
1037 break;
1038 case SPEED_1000:
1039 adjust = IGB_I210_RX_LATENCY_1000;
1040 break;
1041 }
1042 }
1043
1044 *timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1045
1046 return IGB_TS_HDR_LEN;
1047}
1048
1049/**
1050 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1051 * @q_vector: Pointer to interrupt specific structure
1052 * @skb: Buffer containing timestamp and packet
1053 *
1054 * This function is meant to retrieve a timestamp from the internal registers
1055 * of the adapter and store it in the skb.
1056 **/
1057void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1058{
1059 struct igb_adapter *adapter = q_vector->adapter;
1060 struct e1000_hw *hw = &adapter->hw;
1061 int adjust = 0;
1062 u64 regval;
1063
1064 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1065 return;
1066
1067 /* If this bit is set, then the RX registers contain the time stamp. No
1068 * other packet will be time stamped until we read these registers, so
1069 * read the registers to make them available again. Because only one
1070 * packet can be time stamped at a time, we know that the register
1071 * values must belong to this one here and therefore we don't need to
1072 * compare any of the additional attributes stored for it.
1073 *
1074 * If nothing went wrong, then it should have a shared tx_flags that we
1075 * can turn into a skb_shared_hwtstamps.
1076 */
1077 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1078 return;
1079
1080 regval = rd32(E1000_RXSTMPL);
1081 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1082
1083 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1084
1085 /* adjust timestamp for the RX latency based on link speed */
1086 if (adapter->hw.mac.type == e1000_i210) {
1087 switch (adapter->link_speed) {
1088 case SPEED_10:
1089 adjust = IGB_I210_RX_LATENCY_10;
1090 break;
1091 case SPEED_100:
1092 adjust = IGB_I210_RX_LATENCY_100;
1093 break;
1094 case SPEED_1000:
1095 adjust = IGB_I210_RX_LATENCY_1000;
1096 break;
1097 }
1098 }
1099 skb_hwtstamps(skb)->hwtstamp =
1100 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1101
1102 /* Update the last_rx_timestamp timer in order to enable watchdog check
1103 * for error case of latched timestamp on a dropped packet.
1104 */
1105 adapter->last_rx_timestamp = jiffies;
1106}
1107
1108/**
1109 * igb_ptp_get_ts_config - get hardware time stamping config
1110 * @netdev: netdev struct
1111 * @ifr: interface struct
1112 *
1113 * Get the hwtstamp_config settings to return to the user. Rather than attempt
1114 * to deconstruct the settings from the registers, just return a shadow copy
1115 * of the last known settings.
1116 **/
1117int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1118{
1119 struct igb_adapter *adapter = netdev_priv(netdev);
1120 struct hwtstamp_config *config = &adapter->tstamp_config;
1121
1122 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1123 -EFAULT : 0;
1124}
1125
1126/**
1127 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1128 * @adapter: networking device structure
1129 * @config: hwtstamp configuration
1130 *
1131 * Outgoing time stamping can be enabled and disabled. Play nice and
1132 * disable it when requested, although it shouldn't case any overhead
1133 * when no packet needs it. At most one packet in the queue may be
1134 * marked for time stamping, otherwise it would be impossible to tell
1135 * for sure to which packet the hardware time stamp belongs.
1136 *
1137 * Incoming time stamping has to be configured via the hardware
1138 * filters. Not all combinations are supported, in particular event
1139 * type has to be specified. Matching the kind of event packet is
1140 * not supported, with the exception of "all V2 events regardless of
1141 * level 2 or 4".
1142 */
1143static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1144 struct hwtstamp_config *config)
1145{
1146 struct e1000_hw *hw = &adapter->hw;
1147 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1148 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1149 u32 tsync_rx_cfg = 0;
1150 bool is_l4 = false;
1151 bool is_l2 = false;
1152 u32 regval;
1153
1154 switch (config->tx_type) {
1155 case HWTSTAMP_TX_OFF:
1156 tsync_tx_ctl = 0;
1157 break;
1158 case HWTSTAMP_TX_ON:
1159 break;
1160 default:
1161 return -ERANGE;
1162 }
1163
1164 switch (config->rx_filter) {
1165 case HWTSTAMP_FILTER_NONE:
1166 tsync_rx_ctl = 0;
1167 break;
1168 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1169 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1170 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1171 is_l4 = true;
1172 break;
1173 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1174 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1175 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1176 is_l4 = true;
1177 break;
1178 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1179 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1180 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1181 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1182 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1183 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1184 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1185 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1186 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1187 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1188 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1189 is_l2 = true;
1190 is_l4 = true;
1191 break;
1192 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1193 case HWTSTAMP_FILTER_NTP_ALL:
1194 case HWTSTAMP_FILTER_ALL:
1195 /* 82576 cannot timestamp all packets, which it needs to do to
1196 * support both V1 Sync and Delay_Req messages
1197 */
1198 if (hw->mac.type != e1000_82576) {
1199 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1200 config->rx_filter = HWTSTAMP_FILTER_ALL;
1201 break;
1202 }
1203 fallthrough;
1204 default:
1205 config->rx_filter = HWTSTAMP_FILTER_NONE;
1206 return -ERANGE;
1207 }
1208
1209 if (hw->mac.type == e1000_82575) {
1210 if (tsync_rx_ctl | tsync_tx_ctl)
1211 return -EINVAL;
1212 return 0;
1213 }
1214
1215 /* Per-packet timestamping only works if all packets are
1216 * timestamped, so enable timestamping in all packets as
1217 * long as one Rx filter was configured.
1218 */
1219 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1220 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1221 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1222 config->rx_filter = HWTSTAMP_FILTER_ALL;
1223 is_l2 = true;
1224 is_l4 = true;
1225
1226 if ((hw->mac.type == e1000_i210) ||
1227 (hw->mac.type == e1000_i211)) {
1228 regval = rd32(E1000_RXPBS);
1229 regval |= E1000_RXPBS_CFG_TS_EN;
1230 wr32(E1000_RXPBS, regval);
1231 }
1232 }
1233
1234 /* enable/disable TX */
1235 regval = rd32(E1000_TSYNCTXCTL);
1236 regval &= ~E1000_TSYNCTXCTL_ENABLED;
1237 regval |= tsync_tx_ctl;
1238 wr32(E1000_TSYNCTXCTL, regval);
1239
1240 /* enable/disable RX */
1241 regval = rd32(E1000_TSYNCRXCTL);
1242 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1243 regval |= tsync_rx_ctl;
1244 wr32(E1000_TSYNCRXCTL, regval);
1245
1246 /* define which PTP packets are time stamped */
1247 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1248
1249 /* define ethertype filter for timestamped packets */
1250 if (is_l2)
1251 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1252 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1253 E1000_ETQF_1588 | /* enable timestamping */
1254 ETH_P_1588)); /* 1588 eth protocol type */
1255 else
1256 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1257
1258 /* L4 Queue Filter[3]: filter by destination port and protocol */
1259 if (is_l4) {
1260 u32 ftqf = (IPPROTO_UDP /* UDP */
1261 | E1000_FTQF_VF_BP /* VF not compared */
1262 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1263 | E1000_FTQF_MASK); /* mask all inputs */
1264 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1265
1266 wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1267 wr32(E1000_IMIREXT(3),
1268 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1269 if (hw->mac.type == e1000_82576) {
1270 /* enable source port check */
1271 wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1272 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1273 }
1274 wr32(E1000_FTQF(3), ftqf);
1275 } else {
1276 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1277 }
1278 wrfl();
1279
1280 /* clear TX/RX time stamp registers, just to be sure */
1281 regval = rd32(E1000_TXSTMPL);
1282 regval = rd32(E1000_TXSTMPH);
1283 regval = rd32(E1000_RXSTMPL);
1284 regval = rd32(E1000_RXSTMPH);
1285
1286 return 0;
1287}
1288
1289/**
1290 * igb_ptp_set_ts_config - set hardware time stamping config
1291 * @netdev: netdev struct
1292 * @ifr: interface struct
1293 *
1294 **/
1295int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1296{
1297 struct igb_adapter *adapter = netdev_priv(netdev);
1298 struct hwtstamp_config config;
1299 int err;
1300
1301 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1302 return -EFAULT;
1303
1304 err = igb_ptp_set_timestamp_mode(adapter, &config);
1305 if (err)
1306 return err;
1307
1308 /* save these settings for future reference */
1309 memcpy(&adapter->tstamp_config, &config,
1310 sizeof(adapter->tstamp_config));
1311
1312 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1313 -EFAULT : 0;
1314}
1315
1316/**
1317 * igb_ptp_init - Initialize PTP functionality
1318 * @adapter: Board private structure
1319 *
1320 * This function is called at device probe to initialize the PTP
1321 * functionality.
1322 */
1323void igb_ptp_init(struct igb_adapter *adapter)
1324{
1325 struct e1000_hw *hw = &adapter->hw;
1326 struct net_device *netdev = adapter->netdev;
1327
1328 switch (hw->mac.type) {
1329 case e1000_82576:
1330 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1331 adapter->ptp_caps.owner = THIS_MODULE;
1332 adapter->ptp_caps.max_adj = 999999881;
1333 adapter->ptp_caps.n_ext_ts = 0;
1334 adapter->ptp_caps.pps = 0;
1335 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1336 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1337 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1338 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1339 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1340 adapter->cc.read = igb_ptp_read_82576;
1341 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1342 adapter->cc.mult = 1;
1343 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1344 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1345 break;
1346 case e1000_82580:
1347 case e1000_i354:
1348 case e1000_i350:
1349 igb_ptp_sdp_init(adapter);
1350 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1351 adapter->ptp_caps.owner = THIS_MODULE;
1352 adapter->ptp_caps.max_adj = 62499999;
1353 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1354 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1355 adapter->ptp_caps.n_pins = IGB_N_SDP;
1356 adapter->ptp_caps.pps = 0;
1357 adapter->ptp_caps.pin_config = adapter->sdp_config;
1358 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1359 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1360 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1361 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1362 adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1363 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1364 adapter->cc.read = igb_ptp_read_82580;
1365 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1366 adapter->cc.mult = 1;
1367 adapter->cc.shift = 0;
1368 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1369 break;
1370 case e1000_i210:
1371 case e1000_i211:
1372 igb_ptp_sdp_init(adapter);
1373 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1374 adapter->ptp_caps.owner = THIS_MODULE;
1375 adapter->ptp_caps.max_adj = 62499999;
1376 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1377 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1378 adapter->ptp_caps.n_pins = IGB_N_SDP;
1379 adapter->ptp_caps.pps = 1;
1380 adapter->ptp_caps.pin_config = adapter->sdp_config;
1381 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1382 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1383 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1384 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1385 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1386 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1387 break;
1388 default:
1389 adapter->ptp_clock = NULL;
1390 return;
1391 }
1392
1393 spin_lock_init(&adapter->tmreg_lock);
1394 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1395
1396 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1397 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1398 igb_ptp_overflow_check);
1399
1400 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1401 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1402
1403 igb_ptp_reset(adapter);
1404
1405 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1406 &adapter->pdev->dev);
1407 if (IS_ERR(adapter->ptp_clock)) {
1408 adapter->ptp_clock = NULL;
1409 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1410 } else if (adapter->ptp_clock) {
1411 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1412 adapter->netdev->name);
1413 adapter->ptp_flags |= IGB_PTP_ENABLED;
1414 }
1415}
1416
1417/**
1418 * igb_ptp_sdp_init - utility function which inits the SDP config structs
1419 * @adapter: Board private structure.
1420 **/
1421void igb_ptp_sdp_init(struct igb_adapter *adapter)
1422{
1423 int i;
1424
1425 for (i = 0; i < IGB_N_SDP; i++) {
1426 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1427
1428 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1429 ppd->index = i;
1430 ppd->func = PTP_PF_NONE;
1431 }
1432}
1433
1434/**
1435 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1436 * @adapter: Board private structure
1437 *
1438 * This function stops the overflow check work and PTP Tx timestamp work, and
1439 * will prepare the device for OS suspend.
1440 */
1441void igb_ptp_suspend(struct igb_adapter *adapter)
1442{
1443 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1444 return;
1445
1446 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1447 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1448
1449 cancel_work_sync(&adapter->ptp_tx_work);
1450 if (adapter->ptp_tx_skb) {
1451 dev_kfree_skb_any(adapter->ptp_tx_skb);
1452 adapter->ptp_tx_skb = NULL;
1453 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1454 }
1455}
1456
1457/**
1458 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1459 * @adapter: Board private structure.
1460 *
1461 * This function stops the PTP support and cancels the delayed work.
1462 **/
1463void igb_ptp_stop(struct igb_adapter *adapter)
1464{
1465 igb_ptp_suspend(adapter);
1466
1467 if (adapter->ptp_clock) {
1468 ptp_clock_unregister(adapter->ptp_clock);
1469 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1470 adapter->netdev->name);
1471 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1472 }
1473}
1474
1475/**
1476 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1477 * @adapter: Board private structure.
1478 *
1479 * This function handles the reset work required to re-enable the PTP device.
1480 **/
1481void igb_ptp_reset(struct igb_adapter *adapter)
1482{
1483 struct e1000_hw *hw = &adapter->hw;
1484 unsigned long flags;
1485
1486 /* reset the tstamp_config */
1487 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1488
1489 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1490
1491 switch (adapter->hw.mac.type) {
1492 case e1000_82576:
1493 /* Dial the nominal frequency. */
1494 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1495 break;
1496 case e1000_82580:
1497 case e1000_i354:
1498 case e1000_i350:
1499 case e1000_i210:
1500 case e1000_i211:
1501 wr32(E1000_TSAUXC, 0x0);
1502 wr32(E1000_TSSDP, 0x0);
1503 wr32(E1000_TSIM,
1504 TSYNC_INTERRUPTS |
1505 (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1506 wr32(E1000_IMS, E1000_IMS_TS);
1507 break;
1508 default:
1509 /* No work to do. */
1510 goto out;
1511 }
1512
1513 /* Re-initialize the timer. */
1514 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1515 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1516
1517 igb_ptp_write_i210(adapter, &ts);
1518 } else {
1519 timecounter_init(&adapter->tc, &adapter->cc,
1520 ktime_to_ns(ktime_get_real()));
1521 }
1522out:
1523 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1524
1525 wrfl();
1526
1527 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1528 schedule_delayed_work(&adapter->ptp_overflow_work,
1529 IGB_SYSTIM_OVERFLOW_PERIOD);
1530}