Loading...
1/*
2 * Copyright(c) 2015 EZchip Technologies.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 */
16
17#include <linux/module.h>
18#include <linux/etherdevice.h>
19#include <linux/interrupt.h>
20#include <linux/of_address.h>
21#include <linux/of_irq.h>
22#include <linux/of_net.h>
23#include <linux/of_platform.h>
24#include "nps_enet.h"
25
26#define DRV_NAME "nps_mgt_enet"
27
28static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv)
29{
30 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
31 u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
32
33 return (!tx_ctrl_ct && priv->tx_skb);
34}
35
36static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
37{
38 struct nps_enet_priv *priv = netdev_priv(ndev);
39 u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
40
41 /* Empty Rx FIFO buffer by reading all words */
42 for (i = 0; i < len; i++)
43 nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
44}
45
46static void nps_enet_read_rx_fifo(struct net_device *ndev,
47 unsigned char *dst, u32 length)
48{
49 struct nps_enet_priv *priv = netdev_priv(ndev);
50 s32 i, last = length & (sizeof(u32) - 1);
51 u32 *reg = (u32 *)dst, len = length / sizeof(u32);
52 bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
53
54 /* In case dst is not aligned we need an intermediate buffer */
55 if (dst_is_aligned) {
56 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
57 reg += len;
58 } else { /* !dst_is_aligned */
59 for (i = 0; i < len; i++, reg++) {
60 u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
61
62 put_unaligned_be32(buf, reg);
63 }
64 }
65 /* copy last bytes (if any) */
66 if (last) {
67 u32 buf;
68
69 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
70 memcpy((u8 *)reg, &buf, last);
71 }
72}
73
74static u32 nps_enet_rx_handler(struct net_device *ndev)
75{
76 u32 frame_len, err = 0;
77 u32 work_done = 0;
78 struct nps_enet_priv *priv = netdev_priv(ndev);
79 struct sk_buff *skb;
80 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
81 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
82 u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
83 u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
84
85 frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
86
87 /* Check if we got RX */
88 if (!rx_ctrl_cr)
89 return work_done;
90
91 /* If we got here there is a work for us */
92 work_done++;
93
94 /* Check Rx error */
95 if (rx_ctrl_er) {
96 ndev->stats.rx_errors++;
97 err = 1;
98 }
99
100 /* Check Rx CRC error */
101 if (rx_ctrl_crc) {
102 ndev->stats.rx_crc_errors++;
103 ndev->stats.rx_dropped++;
104 err = 1;
105 }
106
107 /* Check Frame length Min 64b */
108 if (unlikely(frame_len < ETH_ZLEN)) {
109 ndev->stats.rx_length_errors++;
110 ndev->stats.rx_dropped++;
111 err = 1;
112 }
113
114 if (err)
115 goto rx_irq_clean;
116
117 /* Skb allocation */
118 skb = netdev_alloc_skb_ip_align(ndev, frame_len);
119 if (unlikely(!skb)) {
120 ndev->stats.rx_errors++;
121 ndev->stats.rx_dropped++;
122 goto rx_irq_clean;
123 }
124
125 /* Copy frame from Rx fifo into the skb */
126 nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
127
128 skb_put(skb, frame_len);
129 skb->protocol = eth_type_trans(skb, ndev);
130 skb->ip_summed = CHECKSUM_UNNECESSARY;
131
132 ndev->stats.rx_packets++;
133 ndev->stats.rx_bytes += frame_len;
134 netif_receive_skb(skb);
135
136 goto rx_irq_frame_done;
137
138rx_irq_clean:
139 /* Clean Rx fifo */
140 nps_enet_clean_rx_fifo(ndev, frame_len);
141
142rx_irq_frame_done:
143 /* Ack Rx ctrl register */
144 nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
145
146 return work_done;
147}
148
149static void nps_enet_tx_handler(struct net_device *ndev)
150{
151 struct nps_enet_priv *priv = netdev_priv(ndev);
152 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
153 u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
154 u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
155
156 /* Check if we got TX */
157 if (!nps_enet_is_tx_pending(priv))
158 return;
159
160 /* Ack Tx ctrl register */
161 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
162
163 /* Check Tx transmit error */
164 if (unlikely(tx_ctrl_et)) {
165 ndev->stats.tx_errors++;
166 } else {
167 ndev->stats.tx_packets++;
168 ndev->stats.tx_bytes += tx_ctrl_nt;
169 }
170
171 dev_kfree_skb(priv->tx_skb);
172 priv->tx_skb = NULL;
173
174 if (netif_queue_stopped(ndev))
175 netif_wake_queue(ndev);
176}
177
178/**
179 * nps_enet_poll - NAPI poll handler.
180 * @napi: Pointer to napi_struct structure.
181 * @budget: How many frames to process on one call.
182 *
183 * returns: Number of processed frames
184 */
185static int nps_enet_poll(struct napi_struct *napi, int budget)
186{
187 struct net_device *ndev = napi->dev;
188 struct nps_enet_priv *priv = netdev_priv(ndev);
189 u32 work_done;
190
191 nps_enet_tx_handler(ndev);
192 work_done = nps_enet_rx_handler(ndev);
193 if ((work_done < budget) && napi_complete_done(napi, work_done)) {
194 u32 buf_int_enable_value = 0;
195
196 /* set tx_done and rx_rdy bits */
197 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
198 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
199
200 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
201 buf_int_enable_value);
202
203 /* in case we will get a tx interrupt while interrupts
204 * are masked, we will lose it since the tx is edge interrupt.
205 * specifically, while executing the code section above,
206 * between nps_enet_tx_handler and the interrupts enable, all
207 * tx requests will be stuck until we will get an rx interrupt.
208 * the two code lines below will solve this situation by
209 * re-adding ourselves to the poll list.
210 */
211 if (nps_enet_is_tx_pending(priv)) {
212 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
213 napi_reschedule(napi);
214 }
215 }
216
217 return work_done;
218}
219
220/**
221 * nps_enet_irq_handler - Global interrupt handler for ENET.
222 * @irq: irq number.
223 * @dev_instance: device instance.
224 *
225 * returns: IRQ_HANDLED for all cases.
226 *
227 * EZchip ENET has 2 interrupt causes, and depending on bits raised in
228 * CTRL registers we may tell what is a reason for interrupt to fire up.
229 * We got one for RX and the other for TX (completion).
230 */
231static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
232{
233 struct net_device *ndev = dev_instance;
234 struct nps_enet_priv *priv = netdev_priv(ndev);
235 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
236 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
237
238 if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr)
239 if (likely(napi_schedule_prep(&priv->napi))) {
240 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
241 __napi_schedule(&priv->napi);
242 }
243
244 return IRQ_HANDLED;
245}
246
247static void nps_enet_set_hw_mac_address(struct net_device *ndev)
248{
249 struct nps_enet_priv *priv = netdev_priv(ndev);
250 u32 ge_mac_cfg_1_value = 0;
251 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
252
253 /* set MAC address in HW */
254 ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
255 ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
256 ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
257 ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
258 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
259 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
260 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
261 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
262
263 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
264 ge_mac_cfg_1_value);
265
266 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
267 *ge_mac_cfg_2_value);
268}
269
270/**
271 * nps_enet_hw_reset - Reset the network device.
272 * @ndev: Pointer to the network device.
273 *
274 * This function reset the PCS and TX fifo.
275 * The programming model is to set the relevant reset bits
276 * wait for some time for this to propagate and then unset
277 * the reset bits. This way we ensure that reset procedure
278 * is done successfully by device.
279 */
280static void nps_enet_hw_reset(struct net_device *ndev)
281{
282 struct nps_enet_priv *priv = netdev_priv(ndev);
283 u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
284
285 /* Pcs reset sequence*/
286 ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
287 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
288 usleep_range(10, 20);
289 ge_rst_value = 0;
290 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
291
292 /* Tx fifo reset sequence */
293 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
294 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
295 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
296 phase_fifo_ctl_value);
297 usleep_range(10, 20);
298 phase_fifo_ctl_value = 0;
299 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
300 phase_fifo_ctl_value);
301}
302
303static void nps_enet_hw_enable_control(struct net_device *ndev)
304{
305 struct nps_enet_priv *priv = netdev_priv(ndev);
306 u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
307 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
308 u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
309 s32 max_frame_length;
310
311 /* Enable Rx and Tx statistics */
312 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
313 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
314
315 /* Discard packets with different MAC address */
316 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
317 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
318
319 /* Discard multicast packets */
320 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
321 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
322
323 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
324 *ge_mac_cfg_2_value);
325
326 /* Discard Packets bigger than max frame length */
327 max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
328 if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
329 *ge_mac_cfg_3_value =
330 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
331 | max_frame_length << CFG_3_MAX_LEN_SHIFT;
332 }
333
334 /* Enable interrupts */
335 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
336 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
337 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
338 buf_int_enable_value);
339
340 /* Write device MAC address to HW */
341 nps_enet_set_hw_mac_address(ndev);
342
343 /* Rx and Tx HW features */
344 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
345 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
346 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
347
348 /* IFG configuration */
349 ge_mac_cfg_0_value |=
350 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
351 ge_mac_cfg_0_value |=
352 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
353
354 /* preamble configuration */
355 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
356 ge_mac_cfg_0_value |=
357 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
358
359 /* enable flow control frames */
360 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
361 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
362 ge_mac_cfg_0_value |=
363 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
364 *ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
365 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
366
367 /* Enable Rx and Tx */
368 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
369 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
370
371 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
372 *ge_mac_cfg_3_value);
373 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
374 ge_mac_cfg_0_value);
375}
376
377static void nps_enet_hw_disable_control(struct net_device *ndev)
378{
379 struct nps_enet_priv *priv = netdev_priv(ndev);
380
381 /* Disable interrupts */
382 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
383
384 /* Disable Rx and Tx */
385 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
386}
387
388static void nps_enet_send_frame(struct net_device *ndev,
389 struct sk_buff *skb)
390{
391 struct nps_enet_priv *priv = netdev_priv(ndev);
392 u32 tx_ctrl_value = 0;
393 short length = skb->len;
394 u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
395 u32 *src = (void *)skb->data;
396 bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
397
398 /* In case src is not aligned we need an intermediate buffer */
399 if (src_is_aligned)
400 iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
401 else /* !src_is_aligned */
402 for (i = 0; i < len; i++, src++)
403 nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
404 get_unaligned_be32(src));
405
406 /* Write the length of the Frame */
407 tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
408
409 tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
410 /* Send Frame */
411 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
412}
413
414/**
415 * nps_enet_set_mac_address - Set the MAC address for this device.
416 * @ndev: Pointer to net_device structure.
417 * @p: 6 byte Address to be written as MAC address.
418 *
419 * This function copies the HW address from the sockaddr structure to the
420 * net_device structure and updates the address in HW.
421 *
422 * returns: -EBUSY if the net device is busy or 0 if the address is set
423 * successfully.
424 */
425static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
426{
427 struct sockaddr *addr = p;
428 s32 res;
429
430 if (netif_running(ndev))
431 return -EBUSY;
432
433 res = eth_mac_addr(ndev, p);
434 if (!res) {
435 ether_addr_copy(ndev->dev_addr, addr->sa_data);
436 nps_enet_set_hw_mac_address(ndev);
437 }
438
439 return res;
440}
441
442/**
443 * nps_enet_set_rx_mode - Change the receive filtering mode.
444 * @ndev: Pointer to the network device.
445 *
446 * This function enables/disables promiscuous mode
447 */
448static void nps_enet_set_rx_mode(struct net_device *ndev)
449{
450 struct nps_enet_priv *priv = netdev_priv(ndev);
451 u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
452
453 if (ndev->flags & IFF_PROMISC) {
454 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
455 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
456 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
457 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
458
459 } else {
460 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
461 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
462 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
463 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
464 }
465
466 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
467}
468
469/**
470 * nps_enet_open - Open the network device.
471 * @ndev: Pointer to the network device.
472 *
473 * returns: 0, on success or non-zero error value on failure.
474 *
475 * This function sets the MAC address, requests and enables an IRQ
476 * for the ENET device and starts the Tx queue.
477 */
478static s32 nps_enet_open(struct net_device *ndev)
479{
480 struct nps_enet_priv *priv = netdev_priv(ndev);
481 s32 err;
482
483 /* Reset private variables */
484 priv->tx_skb = NULL;
485 priv->ge_mac_cfg_2_value = 0;
486 priv->ge_mac_cfg_3_value = 0;
487
488 /* ge_mac_cfg_3 default values */
489 priv->ge_mac_cfg_3_value |=
490 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
491
492 priv->ge_mac_cfg_3_value |=
493 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
494
495 /* Disable HW device */
496 nps_enet_hw_disable_control(ndev);
497
498 /* irq Rx allocation */
499 err = request_irq(priv->irq, nps_enet_irq_handler,
500 0, "enet-rx-tx", ndev);
501 if (err)
502 return err;
503
504 napi_enable(&priv->napi);
505
506 /* Enable HW device */
507 nps_enet_hw_reset(ndev);
508 nps_enet_hw_enable_control(ndev);
509
510 netif_start_queue(ndev);
511
512 return 0;
513}
514
515/**
516 * nps_enet_stop - Close the network device.
517 * @ndev: Pointer to the network device.
518 *
519 * This function stops the Tx queue, disables interrupts for the ENET device.
520 */
521static s32 nps_enet_stop(struct net_device *ndev)
522{
523 struct nps_enet_priv *priv = netdev_priv(ndev);
524
525 napi_disable(&priv->napi);
526 netif_stop_queue(ndev);
527 nps_enet_hw_disable_control(ndev);
528 free_irq(priv->irq, ndev);
529
530 return 0;
531}
532
533/**
534 * nps_enet_start_xmit - Starts the data transmission.
535 * @skb: sk_buff pointer that contains data to be Transmitted.
536 * @ndev: Pointer to net_device structure.
537 *
538 * returns: NETDEV_TX_OK, on success
539 * NETDEV_TX_BUSY, if any of the descriptors are not free.
540 *
541 * This function is invoked from upper layers to initiate transmission.
542 */
543static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
544 struct net_device *ndev)
545{
546 struct nps_enet_priv *priv = netdev_priv(ndev);
547
548 /* This driver handles one frame at a time */
549 netif_stop_queue(ndev);
550
551 priv->tx_skb = skb;
552
553 /* make sure tx_skb is actually written to the memory
554 * before the HW is informed and the IRQ is fired.
555 */
556 wmb();
557
558 nps_enet_send_frame(ndev, skb);
559
560 return NETDEV_TX_OK;
561}
562
563#ifdef CONFIG_NET_POLL_CONTROLLER
564static void nps_enet_poll_controller(struct net_device *ndev)
565{
566 disable_irq(ndev->irq);
567 nps_enet_irq_handler(ndev->irq, ndev);
568 enable_irq(ndev->irq);
569}
570#endif
571
572static const struct net_device_ops nps_netdev_ops = {
573 .ndo_open = nps_enet_open,
574 .ndo_stop = nps_enet_stop,
575 .ndo_start_xmit = nps_enet_start_xmit,
576 .ndo_set_mac_address = nps_enet_set_mac_address,
577 .ndo_set_rx_mode = nps_enet_set_rx_mode,
578#ifdef CONFIG_NET_POLL_CONTROLLER
579 .ndo_poll_controller = nps_enet_poll_controller,
580#endif
581};
582
583static s32 nps_enet_probe(struct platform_device *pdev)
584{
585 struct device *dev = &pdev->dev;
586 struct net_device *ndev;
587 struct nps_enet_priv *priv;
588 s32 err = 0;
589 const char *mac_addr;
590 struct resource *res_regs;
591
592 if (!dev->of_node)
593 return -ENODEV;
594
595 ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
596 if (!ndev)
597 return -ENOMEM;
598
599 platform_set_drvdata(pdev, ndev);
600 SET_NETDEV_DEV(ndev, dev);
601 priv = netdev_priv(ndev);
602
603 /* The EZ NET specific entries in the device structure. */
604 ndev->netdev_ops = &nps_netdev_ops;
605 ndev->watchdog_timeo = (400 * HZ / 1000);
606 /* FIXME :: no multicast support yet */
607 ndev->flags &= ~IFF_MULTICAST;
608
609 res_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
610 priv->regs_base = devm_ioremap_resource(dev, res_regs);
611 if (IS_ERR(priv->regs_base)) {
612 err = PTR_ERR(priv->regs_base);
613 goto out_netdev;
614 }
615 dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
616
617 /* set kernel MAC address to dev */
618 mac_addr = of_get_mac_address(dev->of_node);
619 if (mac_addr)
620 ether_addr_copy(ndev->dev_addr, mac_addr);
621 else
622 eth_hw_addr_random(ndev);
623
624 /* Get IRQ number */
625 priv->irq = platform_get_irq(pdev, 0);
626 if (!priv->irq) {
627 dev_err(dev, "failed to retrieve <irq Rx-Tx> value from device tree\n");
628 err = -ENODEV;
629 goto out_netdev;
630 }
631
632 netif_napi_add(ndev, &priv->napi, nps_enet_poll,
633 NPS_ENET_NAPI_POLL_WEIGHT);
634
635 /* Register the driver. Should be the last thing in probe */
636 err = register_netdev(ndev);
637 if (err) {
638 dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
639 ndev->name, (s32)err);
640 goto out_netif_api;
641 }
642
643 dev_info(dev, "(rx/tx=%d)\n", priv->irq);
644 return 0;
645
646out_netif_api:
647 netif_napi_del(&priv->napi);
648out_netdev:
649 if (err)
650 free_netdev(ndev);
651
652 return err;
653}
654
655static s32 nps_enet_remove(struct platform_device *pdev)
656{
657 struct net_device *ndev = platform_get_drvdata(pdev);
658 struct nps_enet_priv *priv = netdev_priv(ndev);
659
660 unregister_netdev(ndev);
661 free_netdev(ndev);
662 netif_napi_del(&priv->napi);
663
664 return 0;
665}
666
667static const struct of_device_id nps_enet_dt_ids[] = {
668 { .compatible = "ezchip,nps-mgt-enet" },
669 { /* Sentinel */ }
670};
671MODULE_DEVICE_TABLE(of, nps_enet_dt_ids);
672
673static struct platform_driver nps_enet_driver = {
674 .probe = nps_enet_probe,
675 .remove = nps_enet_remove,
676 .driver = {
677 .name = DRV_NAME,
678 .of_match_table = nps_enet_dt_ids,
679 },
680};
681
682module_platform_driver(nps_enet_driver);
683
684MODULE_AUTHOR("EZchip Semiconductor");
685MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright(c) 2015 EZchip Technologies.
4 */
5
6#include <linux/module.h>
7#include <linux/etherdevice.h>
8#include <linux/interrupt.h>
9#include <linux/of_address.h>
10#include <linux/of_irq.h>
11#include <linux/of_net.h>
12#include <linux/of_platform.h>
13#include "nps_enet.h"
14
15#define DRV_NAME "nps_mgt_enet"
16
17static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv)
18{
19 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
20 u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
21
22 return (!tx_ctrl_ct && priv->tx_skb);
23}
24
25static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
26{
27 struct nps_enet_priv *priv = netdev_priv(ndev);
28 u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
29
30 /* Empty Rx FIFO buffer by reading all words */
31 for (i = 0; i < len; i++)
32 nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
33}
34
35static void nps_enet_read_rx_fifo(struct net_device *ndev,
36 unsigned char *dst, u32 length)
37{
38 struct nps_enet_priv *priv = netdev_priv(ndev);
39 s32 i, last = length & (sizeof(u32) - 1);
40 u32 *reg = (u32 *)dst, len = length / sizeof(u32);
41 bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
42
43 /* In case dst is not aligned we need an intermediate buffer */
44 if (dst_is_aligned) {
45 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
46 reg += len;
47 } else { /* !dst_is_aligned */
48 for (i = 0; i < len; i++, reg++) {
49 u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
50
51 put_unaligned_be32(buf, reg);
52 }
53 }
54 /* copy last bytes (if any) */
55 if (last) {
56 u32 buf;
57
58 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
59 memcpy((u8 *)reg, &buf, last);
60 }
61}
62
63static u32 nps_enet_rx_handler(struct net_device *ndev)
64{
65 u32 frame_len, err = 0;
66 u32 work_done = 0;
67 struct nps_enet_priv *priv = netdev_priv(ndev);
68 struct sk_buff *skb;
69 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
70 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
71 u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
72 u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
73
74 frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
75
76 /* Check if we got RX */
77 if (!rx_ctrl_cr)
78 return work_done;
79
80 /* If we got here there is a work for us */
81 work_done++;
82
83 /* Check Rx error */
84 if (rx_ctrl_er) {
85 ndev->stats.rx_errors++;
86 err = 1;
87 }
88
89 /* Check Rx CRC error */
90 if (rx_ctrl_crc) {
91 ndev->stats.rx_crc_errors++;
92 ndev->stats.rx_dropped++;
93 err = 1;
94 }
95
96 /* Check Frame length Min 64b */
97 if (unlikely(frame_len < ETH_ZLEN)) {
98 ndev->stats.rx_length_errors++;
99 ndev->stats.rx_dropped++;
100 err = 1;
101 }
102
103 if (err)
104 goto rx_irq_clean;
105
106 /* Skb allocation */
107 skb = netdev_alloc_skb_ip_align(ndev, frame_len);
108 if (unlikely(!skb)) {
109 ndev->stats.rx_errors++;
110 ndev->stats.rx_dropped++;
111 goto rx_irq_clean;
112 }
113
114 /* Copy frame from Rx fifo into the skb */
115 nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
116
117 skb_put(skb, frame_len);
118 skb->protocol = eth_type_trans(skb, ndev);
119 skb->ip_summed = CHECKSUM_UNNECESSARY;
120
121 ndev->stats.rx_packets++;
122 ndev->stats.rx_bytes += frame_len;
123 netif_receive_skb(skb);
124
125 goto rx_irq_frame_done;
126
127rx_irq_clean:
128 /* Clean Rx fifo */
129 nps_enet_clean_rx_fifo(ndev, frame_len);
130
131rx_irq_frame_done:
132 /* Ack Rx ctrl register */
133 nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
134
135 return work_done;
136}
137
138static void nps_enet_tx_handler(struct net_device *ndev)
139{
140 struct nps_enet_priv *priv = netdev_priv(ndev);
141 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
142 u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
143 u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
144
145 /* Check if we got TX */
146 if (!nps_enet_is_tx_pending(priv))
147 return;
148
149 /* Ack Tx ctrl register */
150 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
151
152 /* Check Tx transmit error */
153 if (unlikely(tx_ctrl_et)) {
154 ndev->stats.tx_errors++;
155 } else {
156 ndev->stats.tx_packets++;
157 ndev->stats.tx_bytes += tx_ctrl_nt;
158 }
159
160 dev_kfree_skb(priv->tx_skb);
161 priv->tx_skb = NULL;
162
163 if (netif_queue_stopped(ndev))
164 netif_wake_queue(ndev);
165}
166
167/**
168 * nps_enet_poll - NAPI poll handler.
169 * @napi: Pointer to napi_struct structure.
170 * @budget: How many frames to process on one call.
171 *
172 * returns: Number of processed frames
173 */
174static int nps_enet_poll(struct napi_struct *napi, int budget)
175{
176 struct net_device *ndev = napi->dev;
177 struct nps_enet_priv *priv = netdev_priv(ndev);
178 u32 work_done;
179
180 nps_enet_tx_handler(ndev);
181 work_done = nps_enet_rx_handler(ndev);
182 if ((work_done < budget) && napi_complete_done(napi, work_done)) {
183 u32 buf_int_enable_value = 0;
184
185 /* set tx_done and rx_rdy bits */
186 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
187 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
188
189 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
190 buf_int_enable_value);
191
192 /* in case we will get a tx interrupt while interrupts
193 * are masked, we will lose it since the tx is edge interrupt.
194 * specifically, while executing the code section above,
195 * between nps_enet_tx_handler and the interrupts enable, all
196 * tx requests will be stuck until we will get an rx interrupt.
197 * the two code lines below will solve this situation by
198 * re-adding ourselves to the poll list.
199 */
200 if (nps_enet_is_tx_pending(priv)) {
201 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
202 napi_reschedule(napi);
203 }
204 }
205
206 return work_done;
207}
208
209/**
210 * nps_enet_irq_handler - Global interrupt handler for ENET.
211 * @irq: irq number.
212 * @dev_instance: device instance.
213 *
214 * returns: IRQ_HANDLED for all cases.
215 *
216 * EZchip ENET has 2 interrupt causes, and depending on bits raised in
217 * CTRL registers we may tell what is a reason for interrupt to fire up.
218 * We got one for RX and the other for TX (completion).
219 */
220static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
221{
222 struct net_device *ndev = dev_instance;
223 struct nps_enet_priv *priv = netdev_priv(ndev);
224 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
225 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
226
227 if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr)
228 if (likely(napi_schedule_prep(&priv->napi))) {
229 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
230 __napi_schedule(&priv->napi);
231 }
232
233 return IRQ_HANDLED;
234}
235
236static void nps_enet_set_hw_mac_address(struct net_device *ndev)
237{
238 struct nps_enet_priv *priv = netdev_priv(ndev);
239 u32 ge_mac_cfg_1_value = 0;
240 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
241
242 /* set MAC address in HW */
243 ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
244 ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
245 ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
246 ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
247 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
248 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
249 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
250 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
251
252 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
253 ge_mac_cfg_1_value);
254
255 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
256 *ge_mac_cfg_2_value);
257}
258
259/**
260 * nps_enet_hw_reset - Reset the network device.
261 * @ndev: Pointer to the network device.
262 *
263 * This function reset the PCS and TX fifo.
264 * The programming model is to set the relevant reset bits
265 * wait for some time for this to propagate and then unset
266 * the reset bits. This way we ensure that reset procedure
267 * is done successfully by device.
268 */
269static void nps_enet_hw_reset(struct net_device *ndev)
270{
271 struct nps_enet_priv *priv = netdev_priv(ndev);
272 u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
273
274 /* Pcs reset sequence*/
275 ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
276 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
277 usleep_range(10, 20);
278 ge_rst_value = 0;
279 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
280
281 /* Tx fifo reset sequence */
282 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
283 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
284 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
285 phase_fifo_ctl_value);
286 usleep_range(10, 20);
287 phase_fifo_ctl_value = 0;
288 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
289 phase_fifo_ctl_value);
290}
291
292static void nps_enet_hw_enable_control(struct net_device *ndev)
293{
294 struct nps_enet_priv *priv = netdev_priv(ndev);
295 u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
296 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
297 u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
298 s32 max_frame_length;
299
300 /* Enable Rx and Tx statistics */
301 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
302 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
303
304 /* Discard packets with different MAC address */
305 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
306 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
307
308 /* Discard multicast packets */
309 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
310 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
311
312 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
313 *ge_mac_cfg_2_value);
314
315 /* Discard Packets bigger than max frame length */
316 max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
317 if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
318 *ge_mac_cfg_3_value =
319 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
320 | max_frame_length << CFG_3_MAX_LEN_SHIFT;
321 }
322
323 /* Enable interrupts */
324 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
325 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
326 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
327 buf_int_enable_value);
328
329 /* Write device MAC address to HW */
330 nps_enet_set_hw_mac_address(ndev);
331
332 /* Rx and Tx HW features */
333 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
334 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
335 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
336
337 /* IFG configuration */
338 ge_mac_cfg_0_value |=
339 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
340 ge_mac_cfg_0_value |=
341 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
342
343 /* preamble configuration */
344 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
345 ge_mac_cfg_0_value |=
346 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
347
348 /* enable flow control frames */
349 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
350 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
351 ge_mac_cfg_0_value |=
352 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
353 *ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
354 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
355
356 /* Enable Rx and Tx */
357 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
358 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
359
360 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
361 *ge_mac_cfg_3_value);
362 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
363 ge_mac_cfg_0_value);
364}
365
366static void nps_enet_hw_disable_control(struct net_device *ndev)
367{
368 struct nps_enet_priv *priv = netdev_priv(ndev);
369
370 /* Disable interrupts */
371 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
372
373 /* Disable Rx and Tx */
374 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
375}
376
377static void nps_enet_send_frame(struct net_device *ndev,
378 struct sk_buff *skb)
379{
380 struct nps_enet_priv *priv = netdev_priv(ndev);
381 u32 tx_ctrl_value = 0;
382 short length = skb->len;
383 u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
384 u32 *src = (void *)skb->data;
385 bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
386
387 /* In case src is not aligned we need an intermediate buffer */
388 if (src_is_aligned)
389 iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
390 else /* !src_is_aligned */
391 for (i = 0; i < len; i++, src++)
392 nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
393 get_unaligned_be32(src));
394
395 /* Write the length of the Frame */
396 tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
397
398 tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
399 /* Send Frame */
400 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
401}
402
403/**
404 * nps_enet_set_mac_address - Set the MAC address for this device.
405 * @ndev: Pointer to net_device structure.
406 * @p: 6 byte Address to be written as MAC address.
407 *
408 * This function copies the HW address from the sockaddr structure to the
409 * net_device structure and updates the address in HW.
410 *
411 * returns: -EBUSY if the net device is busy or 0 if the address is set
412 * successfully.
413 */
414static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
415{
416 struct sockaddr *addr = p;
417 s32 res;
418
419 if (netif_running(ndev))
420 return -EBUSY;
421
422 res = eth_mac_addr(ndev, p);
423 if (!res) {
424 eth_hw_addr_set(ndev, addr->sa_data);
425 nps_enet_set_hw_mac_address(ndev);
426 }
427
428 return res;
429}
430
431/**
432 * nps_enet_set_rx_mode - Change the receive filtering mode.
433 * @ndev: Pointer to the network device.
434 *
435 * This function enables/disables promiscuous mode
436 */
437static void nps_enet_set_rx_mode(struct net_device *ndev)
438{
439 struct nps_enet_priv *priv = netdev_priv(ndev);
440 u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
441
442 if (ndev->flags & IFF_PROMISC) {
443 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
444 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
445 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
446 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
447
448 } else {
449 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
450 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
451 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
452 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
453 }
454
455 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
456}
457
458/**
459 * nps_enet_open - Open the network device.
460 * @ndev: Pointer to the network device.
461 *
462 * returns: 0, on success or non-zero error value on failure.
463 *
464 * This function sets the MAC address, requests and enables an IRQ
465 * for the ENET device and starts the Tx queue.
466 */
467static s32 nps_enet_open(struct net_device *ndev)
468{
469 struct nps_enet_priv *priv = netdev_priv(ndev);
470 s32 err;
471
472 /* Reset private variables */
473 priv->tx_skb = NULL;
474 priv->ge_mac_cfg_2_value = 0;
475 priv->ge_mac_cfg_3_value = 0;
476
477 /* ge_mac_cfg_3 default values */
478 priv->ge_mac_cfg_3_value |=
479 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
480
481 priv->ge_mac_cfg_3_value |=
482 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
483
484 /* Disable HW device */
485 nps_enet_hw_disable_control(ndev);
486
487 /* irq Rx allocation */
488 err = request_irq(priv->irq, nps_enet_irq_handler,
489 0, "enet-rx-tx", ndev);
490 if (err)
491 return err;
492
493 napi_enable(&priv->napi);
494
495 /* Enable HW device */
496 nps_enet_hw_reset(ndev);
497 nps_enet_hw_enable_control(ndev);
498
499 netif_start_queue(ndev);
500
501 return 0;
502}
503
504/**
505 * nps_enet_stop - Close the network device.
506 * @ndev: Pointer to the network device.
507 *
508 * This function stops the Tx queue, disables interrupts for the ENET device.
509 */
510static s32 nps_enet_stop(struct net_device *ndev)
511{
512 struct nps_enet_priv *priv = netdev_priv(ndev);
513
514 napi_disable(&priv->napi);
515 netif_stop_queue(ndev);
516 nps_enet_hw_disable_control(ndev);
517 free_irq(priv->irq, ndev);
518
519 return 0;
520}
521
522/**
523 * nps_enet_start_xmit - Starts the data transmission.
524 * @skb: sk_buff pointer that contains data to be Transmitted.
525 * @ndev: Pointer to net_device structure.
526 *
527 * returns: NETDEV_TX_OK, on success
528 * NETDEV_TX_BUSY, if any of the descriptors are not free.
529 *
530 * This function is invoked from upper layers to initiate transmission.
531 */
532static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
533 struct net_device *ndev)
534{
535 struct nps_enet_priv *priv = netdev_priv(ndev);
536
537 /* This driver handles one frame at a time */
538 netif_stop_queue(ndev);
539
540 priv->tx_skb = skb;
541
542 /* make sure tx_skb is actually written to the memory
543 * before the HW is informed and the IRQ is fired.
544 */
545 wmb();
546
547 nps_enet_send_frame(ndev, skb);
548
549 return NETDEV_TX_OK;
550}
551
552#ifdef CONFIG_NET_POLL_CONTROLLER
553static void nps_enet_poll_controller(struct net_device *ndev)
554{
555 disable_irq(ndev->irq);
556 nps_enet_irq_handler(ndev->irq, ndev);
557 enable_irq(ndev->irq);
558}
559#endif
560
561static const struct net_device_ops nps_netdev_ops = {
562 .ndo_open = nps_enet_open,
563 .ndo_stop = nps_enet_stop,
564 .ndo_start_xmit = nps_enet_start_xmit,
565 .ndo_set_mac_address = nps_enet_set_mac_address,
566 .ndo_set_rx_mode = nps_enet_set_rx_mode,
567#ifdef CONFIG_NET_POLL_CONTROLLER
568 .ndo_poll_controller = nps_enet_poll_controller,
569#endif
570};
571
572static s32 nps_enet_probe(struct platform_device *pdev)
573{
574 struct device *dev = &pdev->dev;
575 struct net_device *ndev;
576 struct nps_enet_priv *priv;
577 s32 err = 0;
578
579 if (!dev->of_node)
580 return -ENODEV;
581
582 ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
583 if (!ndev)
584 return -ENOMEM;
585
586 platform_set_drvdata(pdev, ndev);
587 SET_NETDEV_DEV(ndev, dev);
588 priv = netdev_priv(ndev);
589
590 /* The EZ NET specific entries in the device structure. */
591 ndev->netdev_ops = &nps_netdev_ops;
592 ndev->watchdog_timeo = (400 * HZ / 1000);
593 /* FIXME :: no multicast support yet */
594 ndev->flags &= ~IFF_MULTICAST;
595
596 priv->regs_base = devm_platform_ioremap_resource(pdev, 0);
597 if (IS_ERR(priv->regs_base)) {
598 err = PTR_ERR(priv->regs_base);
599 goto out_netdev;
600 }
601 dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
602
603 /* set kernel MAC address to dev */
604 err = of_get_ethdev_address(dev->of_node, ndev);
605 if (err)
606 eth_hw_addr_random(ndev);
607
608 /* Get IRQ number */
609 priv->irq = platform_get_irq(pdev, 0);
610 if (priv->irq < 0) {
611 err = -ENODEV;
612 goto out_netdev;
613 }
614
615 netif_napi_add_weight(ndev, &priv->napi, nps_enet_poll,
616 NPS_ENET_NAPI_POLL_WEIGHT);
617
618 /* Register the driver. Should be the last thing in probe */
619 err = register_netdev(ndev);
620 if (err) {
621 dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
622 ndev->name, (s32)err);
623 goto out_netif_api;
624 }
625
626 dev_info(dev, "(rx/tx=%d)\n", priv->irq);
627 return 0;
628
629out_netif_api:
630 netif_napi_del(&priv->napi);
631out_netdev:
632 free_netdev(ndev);
633
634 return err;
635}
636
637static s32 nps_enet_remove(struct platform_device *pdev)
638{
639 struct net_device *ndev = platform_get_drvdata(pdev);
640 struct nps_enet_priv *priv = netdev_priv(ndev);
641
642 unregister_netdev(ndev);
643 netif_napi_del(&priv->napi);
644 free_netdev(ndev);
645
646 return 0;
647}
648
649static const struct of_device_id nps_enet_dt_ids[] = {
650 { .compatible = "ezchip,nps-mgt-enet" },
651 { /* Sentinel */ }
652};
653MODULE_DEVICE_TABLE(of, nps_enet_dt_ids);
654
655static struct platform_driver nps_enet_driver = {
656 .probe = nps_enet_probe,
657 .remove = nps_enet_remove,
658 .driver = {
659 .name = DRV_NAME,
660 .of_match_table = nps_enet_dt_ids,
661 },
662};
663
664module_platform_driver(nps_enet_driver);
665
666MODULE_AUTHOR("EZchip Semiconductor");
667MODULE_LICENSE("GPL v2");