Loading...
1/* CAN driver for Geschwister Schneider USB/CAN devices
2 * and bytewerk.org candleLight USB CAN interfaces.
3 *
4 * Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
5 * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
6 * Copyright (C) 2016 Hubert Denkmair
7 *
8 * Many thanks to all socketcan devs!
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published
12 * by the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 */
19
20#include <linux/init.h>
21#include <linux/signal.h>
22#include <linux/module.h>
23#include <linux/netdevice.h>
24#include <linux/usb.h>
25
26#include <linux/can.h>
27#include <linux/can/dev.h>
28#include <linux/can/error.h>
29
30/* Device specific constants */
31#define USB_GSUSB_1_VENDOR_ID 0x1d50
32#define USB_GSUSB_1_PRODUCT_ID 0x606f
33
34#define USB_CANDLELIGHT_VENDOR_ID 0x1209
35#define USB_CANDLELIGHT_PRODUCT_ID 0x2323
36
37#define GSUSB_ENDPOINT_IN 1
38#define GSUSB_ENDPOINT_OUT 2
39
40/* Device specific constants */
41enum gs_usb_breq {
42 GS_USB_BREQ_HOST_FORMAT = 0,
43 GS_USB_BREQ_BITTIMING,
44 GS_USB_BREQ_MODE,
45 GS_USB_BREQ_BERR,
46 GS_USB_BREQ_BT_CONST,
47 GS_USB_BREQ_DEVICE_CONFIG,
48 GS_USB_BREQ_TIMESTAMP,
49 GS_USB_BREQ_IDENTIFY,
50};
51
52enum gs_can_mode {
53 /* reset a channel. turns it off */
54 GS_CAN_MODE_RESET = 0,
55 /* starts a channel */
56 GS_CAN_MODE_START
57};
58
59enum gs_can_state {
60 GS_CAN_STATE_ERROR_ACTIVE = 0,
61 GS_CAN_STATE_ERROR_WARNING,
62 GS_CAN_STATE_ERROR_PASSIVE,
63 GS_CAN_STATE_BUS_OFF,
64 GS_CAN_STATE_STOPPED,
65 GS_CAN_STATE_SLEEPING
66};
67
68enum gs_can_identify_mode {
69 GS_CAN_IDENTIFY_OFF = 0,
70 GS_CAN_IDENTIFY_ON
71};
72
73/* data types passed between host and device */
74struct gs_host_config {
75 u32 byte_order;
76} __packed;
77/* All data exchanged between host and device is exchanged in host byte order,
78 * thanks to the struct gs_host_config byte_order member, which is sent first
79 * to indicate the desired byte order.
80 */
81
82struct gs_device_config {
83 u8 reserved1;
84 u8 reserved2;
85 u8 reserved3;
86 u8 icount;
87 u32 sw_version;
88 u32 hw_version;
89} __packed;
90
91#define GS_CAN_MODE_NORMAL 0
92#define GS_CAN_MODE_LISTEN_ONLY BIT(0)
93#define GS_CAN_MODE_LOOP_BACK BIT(1)
94#define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
95#define GS_CAN_MODE_ONE_SHOT BIT(3)
96
97struct gs_device_mode {
98 u32 mode;
99 u32 flags;
100} __packed;
101
102struct gs_device_state {
103 u32 state;
104 u32 rxerr;
105 u32 txerr;
106} __packed;
107
108struct gs_device_bittiming {
109 u32 prop_seg;
110 u32 phase_seg1;
111 u32 phase_seg2;
112 u32 sjw;
113 u32 brp;
114} __packed;
115
116struct gs_identify_mode {
117 u32 mode;
118} __packed;
119
120#define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
121#define GS_CAN_FEATURE_LOOP_BACK BIT(1)
122#define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
123#define GS_CAN_FEATURE_ONE_SHOT BIT(3)
124#define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
125#define GS_CAN_FEATURE_IDENTIFY BIT(5)
126
127struct gs_device_bt_const {
128 u32 feature;
129 u32 fclk_can;
130 u32 tseg1_min;
131 u32 tseg1_max;
132 u32 tseg2_min;
133 u32 tseg2_max;
134 u32 sjw_max;
135 u32 brp_min;
136 u32 brp_max;
137 u32 brp_inc;
138} __packed;
139
140#define GS_CAN_FLAG_OVERFLOW 1
141
142struct gs_host_frame {
143 u32 echo_id;
144 u32 can_id;
145
146 u8 can_dlc;
147 u8 channel;
148 u8 flags;
149 u8 reserved;
150
151 u8 data[8];
152} __packed;
153/* The GS USB devices make use of the same flags and masks as in
154 * linux/can.h and linux/can/error.h, and no additional mapping is necessary.
155 */
156
157/* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
158#define GS_MAX_TX_URBS 10
159/* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
160#define GS_MAX_RX_URBS 30
161/* Maximum number of interfaces the driver supports per device.
162 * Current hardware only supports 2 interfaces. The future may vary.
163 */
164#define GS_MAX_INTF 2
165
166struct gs_tx_context {
167 struct gs_can *dev;
168 unsigned int echo_id;
169};
170
171struct gs_can {
172 struct can_priv can; /* must be the first member */
173
174 struct gs_usb *parent;
175
176 struct net_device *netdev;
177 struct usb_device *udev;
178 struct usb_interface *iface;
179
180 struct can_bittiming_const bt_const;
181 unsigned int channel; /* channel number */
182
183 /* This lock prevents a race condition between xmit and receive. */
184 spinlock_t tx_ctx_lock;
185 struct gs_tx_context tx_context[GS_MAX_TX_URBS];
186
187 struct usb_anchor tx_submitted;
188 atomic_t active_tx_urbs;
189};
190
191/* usb interface struct */
192struct gs_usb {
193 struct gs_can *canch[GS_MAX_INTF];
194 struct usb_anchor rx_submitted;
195 atomic_t active_channels;
196 struct usb_device *udev;
197};
198
199/* 'allocate' a tx context.
200 * returns a valid tx context or NULL if there is no space.
201 */
202static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
203{
204 int i = 0;
205 unsigned long flags;
206
207 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
208
209 for (; i < GS_MAX_TX_URBS; i++) {
210 if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
211 dev->tx_context[i].echo_id = i;
212 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
213 return &dev->tx_context[i];
214 }
215 }
216
217 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
218 return NULL;
219}
220
221/* releases a tx context
222 */
223static void gs_free_tx_context(struct gs_tx_context *txc)
224{
225 txc->echo_id = GS_MAX_TX_URBS;
226}
227
228/* Get a tx context by id.
229 */
230static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
231 unsigned int id)
232{
233 unsigned long flags;
234
235 if (id < GS_MAX_TX_URBS) {
236 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
237 if (dev->tx_context[id].echo_id == id) {
238 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
239 return &dev->tx_context[id];
240 }
241 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
242 }
243 return NULL;
244}
245
246static int gs_cmd_reset(struct gs_can *gsdev)
247{
248 struct gs_device_mode *dm;
249 struct usb_interface *intf = gsdev->iface;
250 int rc;
251
252 dm = kzalloc(sizeof(*dm), GFP_KERNEL);
253 if (!dm)
254 return -ENOMEM;
255
256 dm->mode = GS_CAN_MODE_RESET;
257
258 rc = usb_control_msg(interface_to_usbdev(intf),
259 usb_sndctrlpipe(interface_to_usbdev(intf), 0),
260 GS_USB_BREQ_MODE,
261 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
262 gsdev->channel,
263 0,
264 dm,
265 sizeof(*dm),
266 1000);
267
268 kfree(dm);
269
270 return rc;
271}
272
273static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
274{
275 struct can_device_stats *can_stats = &dev->can.can_stats;
276
277 if (cf->can_id & CAN_ERR_RESTARTED) {
278 dev->can.state = CAN_STATE_ERROR_ACTIVE;
279 can_stats->restarts++;
280 } else if (cf->can_id & CAN_ERR_BUSOFF) {
281 dev->can.state = CAN_STATE_BUS_OFF;
282 can_stats->bus_off++;
283 } else if (cf->can_id & CAN_ERR_CRTL) {
284 if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
285 (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
286 dev->can.state = CAN_STATE_ERROR_WARNING;
287 can_stats->error_warning++;
288 } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
289 (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
290 dev->can.state = CAN_STATE_ERROR_PASSIVE;
291 can_stats->error_passive++;
292 } else {
293 dev->can.state = CAN_STATE_ERROR_ACTIVE;
294 }
295 }
296}
297
298static void gs_usb_receive_bulk_callback(struct urb *urb)
299{
300 struct gs_usb *usbcan = urb->context;
301 struct gs_can *dev;
302 struct net_device *netdev;
303 int rc;
304 struct net_device_stats *stats;
305 struct gs_host_frame *hf = urb->transfer_buffer;
306 struct gs_tx_context *txc;
307 struct can_frame *cf;
308 struct sk_buff *skb;
309
310 BUG_ON(!usbcan);
311
312 switch (urb->status) {
313 case 0: /* success */
314 break;
315 case -ENOENT:
316 case -ESHUTDOWN:
317 return;
318 default:
319 /* do not resubmit aborted urbs. eg: when device goes down */
320 return;
321 }
322
323 /* device reports out of range channel id */
324 if (hf->channel >= GS_MAX_INTF)
325 goto resubmit_urb;
326
327 dev = usbcan->canch[hf->channel];
328
329 netdev = dev->netdev;
330 stats = &netdev->stats;
331
332 if (!netif_device_present(netdev))
333 return;
334
335 if (hf->echo_id == -1) { /* normal rx */
336 skb = alloc_can_skb(dev->netdev, &cf);
337 if (!skb)
338 return;
339
340 cf->can_id = hf->can_id;
341
342 cf->can_dlc = get_can_dlc(hf->can_dlc);
343 memcpy(cf->data, hf->data, 8);
344
345 /* ERROR frames tell us information about the controller */
346 if (hf->can_id & CAN_ERR_FLAG)
347 gs_update_state(dev, cf);
348
349 netdev->stats.rx_packets++;
350 netdev->stats.rx_bytes += hf->can_dlc;
351
352 netif_rx(skb);
353 } else { /* echo_id == hf->echo_id */
354 if (hf->echo_id >= GS_MAX_TX_URBS) {
355 netdev_err(netdev,
356 "Unexpected out of range echo id %d\n",
357 hf->echo_id);
358 goto resubmit_urb;
359 }
360
361 netdev->stats.tx_packets++;
362 netdev->stats.tx_bytes += hf->can_dlc;
363
364 txc = gs_get_tx_context(dev, hf->echo_id);
365
366 /* bad devices send bad echo_ids. */
367 if (!txc) {
368 netdev_err(netdev,
369 "Unexpected unused echo id %d\n",
370 hf->echo_id);
371 goto resubmit_urb;
372 }
373
374 can_get_echo_skb(netdev, hf->echo_id);
375
376 gs_free_tx_context(txc);
377
378 atomic_dec(&dev->active_tx_urbs);
379
380 netif_wake_queue(netdev);
381 }
382
383 if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
384 skb = alloc_can_err_skb(netdev, &cf);
385 if (!skb)
386 goto resubmit_urb;
387
388 cf->can_id |= CAN_ERR_CRTL;
389 cf->can_dlc = CAN_ERR_DLC;
390 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
391 stats->rx_over_errors++;
392 stats->rx_errors++;
393 netif_rx(skb);
394 }
395
396 resubmit_urb:
397 usb_fill_bulk_urb(urb,
398 usbcan->udev,
399 usb_rcvbulkpipe(usbcan->udev, GSUSB_ENDPOINT_IN),
400 hf,
401 sizeof(struct gs_host_frame),
402 gs_usb_receive_bulk_callback,
403 usbcan
404 );
405
406 rc = usb_submit_urb(urb, GFP_ATOMIC);
407
408 /* USB failure take down all interfaces */
409 if (rc == -ENODEV) {
410 for (rc = 0; rc < GS_MAX_INTF; rc++) {
411 if (usbcan->canch[rc])
412 netif_device_detach(usbcan->canch[rc]->netdev);
413 }
414 }
415}
416
417static int gs_usb_set_bittiming(struct net_device *netdev)
418{
419 struct gs_can *dev = netdev_priv(netdev);
420 struct can_bittiming *bt = &dev->can.bittiming;
421 struct usb_interface *intf = dev->iface;
422 int rc;
423 struct gs_device_bittiming *dbt;
424
425 dbt = kmalloc(sizeof(*dbt), GFP_KERNEL);
426 if (!dbt)
427 return -ENOMEM;
428
429 dbt->prop_seg = bt->prop_seg;
430 dbt->phase_seg1 = bt->phase_seg1;
431 dbt->phase_seg2 = bt->phase_seg2;
432 dbt->sjw = bt->sjw;
433 dbt->brp = bt->brp;
434
435 /* request bit timings */
436 rc = usb_control_msg(interface_to_usbdev(intf),
437 usb_sndctrlpipe(interface_to_usbdev(intf), 0),
438 GS_USB_BREQ_BITTIMING,
439 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
440 dev->channel,
441 0,
442 dbt,
443 sizeof(*dbt),
444 1000);
445
446 kfree(dbt);
447
448 if (rc < 0)
449 dev_err(netdev->dev.parent, "Couldn't set bittimings (err=%d)",
450 rc);
451
452 return (rc > 0) ? 0 : rc;
453}
454
455static void gs_usb_xmit_callback(struct urb *urb)
456{
457 struct gs_tx_context *txc = urb->context;
458 struct gs_can *dev = txc->dev;
459 struct net_device *netdev = dev->netdev;
460
461 if (urb->status)
462 netdev_info(netdev, "usb xmit fail %d\n", txc->echo_id);
463
464 usb_free_coherent(urb->dev,
465 urb->transfer_buffer_length,
466 urb->transfer_buffer,
467 urb->transfer_dma);
468}
469
470static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
471 struct net_device *netdev)
472{
473 struct gs_can *dev = netdev_priv(netdev);
474 struct net_device_stats *stats = &dev->netdev->stats;
475 struct urb *urb;
476 struct gs_host_frame *hf;
477 struct can_frame *cf;
478 int rc;
479 unsigned int idx;
480 struct gs_tx_context *txc;
481
482 if (can_dropped_invalid_skb(netdev, skb))
483 return NETDEV_TX_OK;
484
485 /* find an empty context to keep track of transmission */
486 txc = gs_alloc_tx_context(dev);
487 if (!txc)
488 return NETDEV_TX_BUSY;
489
490 /* create a URB, and a buffer for it */
491 urb = usb_alloc_urb(0, GFP_ATOMIC);
492 if (!urb)
493 goto nomem_urb;
494
495 hf = usb_alloc_coherent(dev->udev, sizeof(*hf), GFP_ATOMIC,
496 &urb->transfer_dma);
497 if (!hf) {
498 netdev_err(netdev, "No memory left for USB buffer\n");
499 goto nomem_hf;
500 }
501
502 idx = txc->echo_id;
503
504 if (idx >= GS_MAX_TX_URBS) {
505 netdev_err(netdev, "Invalid tx context %d\n", idx);
506 goto badidx;
507 }
508
509 hf->echo_id = idx;
510 hf->channel = dev->channel;
511
512 cf = (struct can_frame *)skb->data;
513
514 hf->can_id = cf->can_id;
515 hf->can_dlc = cf->can_dlc;
516 memcpy(hf->data, cf->data, cf->can_dlc);
517
518 usb_fill_bulk_urb(urb, dev->udev,
519 usb_sndbulkpipe(dev->udev, GSUSB_ENDPOINT_OUT),
520 hf,
521 sizeof(*hf),
522 gs_usb_xmit_callback,
523 txc);
524
525 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
526 usb_anchor_urb(urb, &dev->tx_submitted);
527
528 can_put_echo_skb(skb, netdev, idx);
529
530 atomic_inc(&dev->active_tx_urbs);
531
532 rc = usb_submit_urb(urb, GFP_ATOMIC);
533 if (unlikely(rc)) { /* usb send failed */
534 atomic_dec(&dev->active_tx_urbs);
535
536 can_free_echo_skb(netdev, idx);
537 gs_free_tx_context(txc);
538
539 usb_unanchor_urb(urb);
540 usb_free_coherent(dev->udev,
541 sizeof(*hf),
542 hf,
543 urb->transfer_dma);
544
545 if (rc == -ENODEV) {
546 netif_device_detach(netdev);
547 } else {
548 netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
549 stats->tx_dropped++;
550 }
551 } else {
552 /* Slow down tx path */
553 if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
554 netif_stop_queue(netdev);
555 }
556
557 /* let usb core take care of this urb */
558 usb_free_urb(urb);
559
560 return NETDEV_TX_OK;
561
562 badidx:
563 usb_free_coherent(dev->udev,
564 sizeof(*hf),
565 hf,
566 urb->transfer_dma);
567 nomem_hf:
568 usb_free_urb(urb);
569
570 nomem_urb:
571 gs_free_tx_context(txc);
572 dev_kfree_skb(skb);
573 stats->tx_dropped++;
574 return NETDEV_TX_OK;
575}
576
577static int gs_can_open(struct net_device *netdev)
578{
579 struct gs_can *dev = netdev_priv(netdev);
580 struct gs_usb *parent = dev->parent;
581 int rc, i;
582 struct gs_device_mode *dm;
583 u32 ctrlmode;
584
585 rc = open_candev(netdev);
586 if (rc)
587 return rc;
588
589 if (atomic_add_return(1, &parent->active_channels) == 1) {
590 for (i = 0; i < GS_MAX_RX_URBS; i++) {
591 struct urb *urb;
592 u8 *buf;
593
594 /* alloc rx urb */
595 urb = usb_alloc_urb(0, GFP_KERNEL);
596 if (!urb)
597 return -ENOMEM;
598
599 /* alloc rx buffer */
600 buf = usb_alloc_coherent(dev->udev,
601 sizeof(struct gs_host_frame),
602 GFP_KERNEL,
603 &urb->transfer_dma);
604 if (!buf) {
605 netdev_err(netdev,
606 "No memory left for USB buffer\n");
607 usb_free_urb(urb);
608 return -ENOMEM;
609 }
610
611 /* fill, anchor, and submit rx urb */
612 usb_fill_bulk_urb(urb,
613 dev->udev,
614 usb_rcvbulkpipe(dev->udev,
615 GSUSB_ENDPOINT_IN),
616 buf,
617 sizeof(struct gs_host_frame),
618 gs_usb_receive_bulk_callback,
619 parent);
620 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
621
622 usb_anchor_urb(urb, &parent->rx_submitted);
623
624 rc = usb_submit_urb(urb, GFP_KERNEL);
625 if (rc) {
626 if (rc == -ENODEV)
627 netif_device_detach(dev->netdev);
628
629 netdev_err(netdev,
630 "usb_submit failed (err=%d)\n",
631 rc);
632
633 usb_unanchor_urb(urb);
634 break;
635 }
636
637 /* Drop reference,
638 * USB core will take care of freeing it
639 */
640 usb_free_urb(urb);
641 }
642 }
643
644 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
645 if (!dm)
646 return -ENOMEM;
647
648 /* flags */
649 ctrlmode = dev->can.ctrlmode;
650 dm->flags = 0;
651
652 if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
653 dm->flags |= GS_CAN_MODE_LOOP_BACK;
654 else if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
655 dm->flags |= GS_CAN_MODE_LISTEN_ONLY;
656
657 /* Controller is not allowed to retry TX
658 * this mode is unavailable on atmels uc3c hardware
659 */
660 if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
661 dm->flags |= GS_CAN_MODE_ONE_SHOT;
662
663 if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
664 dm->flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
665
666 /* finally start device */
667 dm->mode = GS_CAN_MODE_START;
668 rc = usb_control_msg(interface_to_usbdev(dev->iface),
669 usb_sndctrlpipe(interface_to_usbdev(dev->iface), 0),
670 GS_USB_BREQ_MODE,
671 USB_DIR_OUT | USB_TYPE_VENDOR |
672 USB_RECIP_INTERFACE,
673 dev->channel,
674 0,
675 dm,
676 sizeof(*dm),
677 1000);
678
679 if (rc < 0) {
680 netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
681 kfree(dm);
682 return rc;
683 }
684
685 kfree(dm);
686
687 dev->can.state = CAN_STATE_ERROR_ACTIVE;
688
689 if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
690 netif_start_queue(netdev);
691
692 return 0;
693}
694
695static int gs_can_close(struct net_device *netdev)
696{
697 int rc;
698 struct gs_can *dev = netdev_priv(netdev);
699 struct gs_usb *parent = dev->parent;
700
701 netif_stop_queue(netdev);
702
703 /* Stop polling */
704 if (atomic_dec_and_test(&parent->active_channels))
705 usb_kill_anchored_urbs(&parent->rx_submitted);
706
707 /* Stop sending URBs */
708 usb_kill_anchored_urbs(&dev->tx_submitted);
709 atomic_set(&dev->active_tx_urbs, 0);
710
711 /* reset the device */
712 rc = gs_cmd_reset(dev);
713 if (rc < 0)
714 netdev_warn(netdev, "Couldn't shutdown device (err=%d)", rc);
715
716 /* reset tx contexts */
717 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
718 dev->tx_context[rc].dev = dev;
719 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
720 }
721
722 /* close the netdev */
723 close_candev(netdev);
724
725 return 0;
726}
727
728static const struct net_device_ops gs_usb_netdev_ops = {
729 .ndo_open = gs_can_open,
730 .ndo_stop = gs_can_close,
731 .ndo_start_xmit = gs_can_start_xmit,
732 .ndo_change_mtu = can_change_mtu,
733};
734
735static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
736{
737 struct gs_can *dev = netdev_priv(netdev);
738 struct gs_identify_mode *imode;
739 int rc;
740
741 imode = kmalloc(sizeof(*imode), GFP_KERNEL);
742
743 if (!imode)
744 return -ENOMEM;
745
746 if (do_identify)
747 imode->mode = GS_CAN_IDENTIFY_ON;
748 else
749 imode->mode = GS_CAN_IDENTIFY_OFF;
750
751 rc = usb_control_msg(interface_to_usbdev(dev->iface),
752 usb_sndctrlpipe(interface_to_usbdev(dev->iface),
753 0),
754 GS_USB_BREQ_IDENTIFY,
755 USB_DIR_OUT | USB_TYPE_VENDOR |
756 USB_RECIP_INTERFACE,
757 dev->channel,
758 0,
759 imode,
760 sizeof(*imode),
761 100);
762
763 kfree(imode);
764
765 return (rc > 0) ? 0 : rc;
766}
767
768/* blink LED's for finding the this interface */
769static int gs_usb_set_phys_id(struct net_device *dev,
770 enum ethtool_phys_id_state state)
771{
772 int rc = 0;
773
774 switch (state) {
775 case ETHTOOL_ID_ACTIVE:
776 rc = gs_usb_set_identify(dev, GS_CAN_IDENTIFY_ON);
777 break;
778 case ETHTOOL_ID_INACTIVE:
779 rc = gs_usb_set_identify(dev, GS_CAN_IDENTIFY_OFF);
780 break;
781 default:
782 break;
783 }
784
785 return rc;
786}
787
788static const struct ethtool_ops gs_usb_ethtool_ops = {
789 .set_phys_id = gs_usb_set_phys_id,
790};
791
792static struct gs_can *gs_make_candev(unsigned int channel,
793 struct usb_interface *intf,
794 struct gs_device_config *dconf)
795{
796 struct gs_can *dev;
797 struct net_device *netdev;
798 int rc;
799 struct gs_device_bt_const *bt_const;
800
801 bt_const = kmalloc(sizeof(*bt_const), GFP_KERNEL);
802 if (!bt_const)
803 return ERR_PTR(-ENOMEM);
804
805 /* fetch bit timing constants */
806 rc = usb_control_msg(interface_to_usbdev(intf),
807 usb_rcvctrlpipe(interface_to_usbdev(intf), 0),
808 GS_USB_BREQ_BT_CONST,
809 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
810 channel,
811 0,
812 bt_const,
813 sizeof(*bt_const),
814 1000);
815
816 if (rc < 0) {
817 dev_err(&intf->dev,
818 "Couldn't get bit timing const for channel (err=%d)\n",
819 rc);
820 kfree(bt_const);
821 return ERR_PTR(rc);
822 }
823
824 /* create netdev */
825 netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
826 if (!netdev) {
827 dev_err(&intf->dev, "Couldn't allocate candev\n");
828 kfree(bt_const);
829 return ERR_PTR(-ENOMEM);
830 }
831
832 dev = netdev_priv(netdev);
833
834 netdev->netdev_ops = &gs_usb_netdev_ops;
835
836 netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
837
838 /* dev settup */
839 strcpy(dev->bt_const.name, "gs_usb");
840 dev->bt_const.tseg1_min = bt_const->tseg1_min;
841 dev->bt_const.tseg1_max = bt_const->tseg1_max;
842 dev->bt_const.tseg2_min = bt_const->tseg2_min;
843 dev->bt_const.tseg2_max = bt_const->tseg2_max;
844 dev->bt_const.sjw_max = bt_const->sjw_max;
845 dev->bt_const.brp_min = bt_const->brp_min;
846 dev->bt_const.brp_max = bt_const->brp_max;
847 dev->bt_const.brp_inc = bt_const->brp_inc;
848
849 dev->udev = interface_to_usbdev(intf);
850 dev->iface = intf;
851 dev->netdev = netdev;
852 dev->channel = channel;
853
854 init_usb_anchor(&dev->tx_submitted);
855 atomic_set(&dev->active_tx_urbs, 0);
856 spin_lock_init(&dev->tx_ctx_lock);
857 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
858 dev->tx_context[rc].dev = dev;
859 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
860 }
861
862 /* can settup */
863 dev->can.state = CAN_STATE_STOPPED;
864 dev->can.clock.freq = bt_const->fclk_can;
865 dev->can.bittiming_const = &dev->bt_const;
866 dev->can.do_set_bittiming = gs_usb_set_bittiming;
867
868 dev->can.ctrlmode_supported = 0;
869
870 if (bt_const->feature & GS_CAN_FEATURE_LISTEN_ONLY)
871 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
872
873 if (bt_const->feature & GS_CAN_FEATURE_LOOP_BACK)
874 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
875
876 if (bt_const->feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
877 dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
878
879 if (bt_const->feature & GS_CAN_FEATURE_ONE_SHOT)
880 dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
881
882 SET_NETDEV_DEV(netdev, &intf->dev);
883
884 if (dconf->sw_version > 1)
885 if (bt_const->feature & GS_CAN_FEATURE_IDENTIFY)
886 netdev->ethtool_ops = &gs_usb_ethtool_ops;
887
888 kfree(bt_const);
889
890 rc = register_candev(dev->netdev);
891 if (rc) {
892 free_candev(dev->netdev);
893 dev_err(&intf->dev, "Couldn't register candev (err=%d)\n", rc);
894 return ERR_PTR(rc);
895 }
896
897 return dev;
898}
899
900static void gs_destroy_candev(struct gs_can *dev)
901{
902 unregister_candev(dev->netdev);
903 usb_kill_anchored_urbs(&dev->tx_submitted);
904 free_candev(dev->netdev);
905}
906
907static int gs_usb_probe(struct usb_interface *intf,
908 const struct usb_device_id *id)
909{
910 struct gs_usb *dev;
911 int rc = -ENOMEM;
912 unsigned int icount, i;
913 struct gs_host_config *hconf;
914 struct gs_device_config *dconf;
915
916 hconf = kmalloc(sizeof(*hconf), GFP_KERNEL);
917 if (!hconf)
918 return -ENOMEM;
919
920 hconf->byte_order = 0x0000beef;
921
922 /* send host config */
923 rc = usb_control_msg(interface_to_usbdev(intf),
924 usb_sndctrlpipe(interface_to_usbdev(intf), 0),
925 GS_USB_BREQ_HOST_FORMAT,
926 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
927 1,
928 intf->altsetting[0].desc.bInterfaceNumber,
929 hconf,
930 sizeof(*hconf),
931 1000);
932
933 kfree(hconf);
934
935 if (rc < 0) {
936 dev_err(&intf->dev, "Couldn't send data format (err=%d)\n",
937 rc);
938 return rc;
939 }
940
941 dconf = kmalloc(sizeof(*dconf), GFP_KERNEL);
942 if (!dconf)
943 return -ENOMEM;
944
945 /* read device config */
946 rc = usb_control_msg(interface_to_usbdev(intf),
947 usb_rcvctrlpipe(interface_to_usbdev(intf), 0),
948 GS_USB_BREQ_DEVICE_CONFIG,
949 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
950 1,
951 intf->altsetting[0].desc.bInterfaceNumber,
952 dconf,
953 sizeof(*dconf),
954 1000);
955 if (rc < 0) {
956 dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
957 rc);
958 kfree(dconf);
959 return rc;
960 }
961
962 icount = dconf->icount + 1;
963 dev_info(&intf->dev, "Configuring for %d interfaces\n", icount);
964
965 if (icount > GS_MAX_INTF) {
966 dev_err(&intf->dev,
967 "Driver cannot handle more that %d CAN interfaces\n",
968 GS_MAX_INTF);
969 kfree(dconf);
970 return -EINVAL;
971 }
972
973 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
974 if (!dev) {
975 kfree(dconf);
976 return -ENOMEM;
977 }
978
979 init_usb_anchor(&dev->rx_submitted);
980
981 atomic_set(&dev->active_channels, 0);
982
983 usb_set_intfdata(intf, dev);
984 dev->udev = interface_to_usbdev(intf);
985
986 for (i = 0; i < icount; i++) {
987 dev->canch[i] = gs_make_candev(i, intf, dconf);
988 if (IS_ERR_OR_NULL(dev->canch[i])) {
989 /* save error code to return later */
990 rc = PTR_ERR(dev->canch[i]);
991
992 /* on failure destroy previously created candevs */
993 icount = i;
994 for (i = 0; i < icount; i++)
995 gs_destroy_candev(dev->canch[i]);
996
997 usb_kill_anchored_urbs(&dev->rx_submitted);
998 kfree(dconf);
999 kfree(dev);
1000 return rc;
1001 }
1002 dev->canch[i]->parent = dev;
1003 }
1004
1005 kfree(dconf);
1006
1007 return 0;
1008}
1009
1010static void gs_usb_disconnect(struct usb_interface *intf)
1011{
1012 unsigned i;
1013 struct gs_usb *dev = usb_get_intfdata(intf);
1014 usb_set_intfdata(intf, NULL);
1015
1016 if (!dev) {
1017 dev_err(&intf->dev, "Disconnect (nodata)\n");
1018 return;
1019 }
1020
1021 for (i = 0; i < GS_MAX_INTF; i++)
1022 if (dev->canch[i])
1023 gs_destroy_candev(dev->canch[i]);
1024
1025 usb_kill_anchored_urbs(&dev->rx_submitted);
1026 kfree(dev);
1027}
1028
1029static const struct usb_device_id gs_usb_table[] = {
1030 { USB_DEVICE_INTERFACE_NUMBER(USB_GSUSB_1_VENDOR_ID,
1031 USB_GSUSB_1_PRODUCT_ID, 0) },
1032 { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
1033 USB_CANDLELIGHT_PRODUCT_ID, 0) },
1034 {} /* Terminating entry */
1035};
1036
1037MODULE_DEVICE_TABLE(usb, gs_usb_table);
1038
1039static struct usb_driver gs_usb_driver = {
1040 .name = "gs_usb",
1041 .probe = gs_usb_probe,
1042 .disconnect = gs_usb_disconnect,
1043 .id_table = gs_usb_table,
1044};
1045
1046module_usb_driver(gs_usb_driver);
1047
1048MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
1049MODULE_DESCRIPTION(
1050"Socket CAN device driver for Geschwister Schneider Technologie-, "
1051"Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
1052"and bytewerk.org candleLight USB CAN interfaces.");
1053MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0-only
2/* CAN driver for Geschwister Schneider USB/CAN devices
3 * and bytewerk.org candleLight USB CAN interfaces.
4 *
5 * Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
6 * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
7 * Copyright (C) 2016 Hubert Denkmair
8 *
9 * Many thanks to all socketcan devs!
10 */
11
12#include <linux/bitfield.h>
13#include <linux/clocksource.h>
14#include <linux/ethtool.h>
15#include <linux/init.h>
16#include <linux/module.h>
17#include <linux/netdevice.h>
18#include <linux/signal.h>
19#include <linux/timecounter.h>
20#include <linux/units.h>
21#include <linux/usb.h>
22#include <linux/workqueue.h>
23
24#include <linux/can.h>
25#include <linux/can/dev.h>
26#include <linux/can/error.h>
27
28/* Device specific constants */
29#define USB_GS_USB_1_VENDOR_ID 0x1d50
30#define USB_GS_USB_1_PRODUCT_ID 0x606f
31
32#define USB_CANDLELIGHT_VENDOR_ID 0x1209
33#define USB_CANDLELIGHT_PRODUCT_ID 0x2323
34
35#define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2
36#define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f
37
38#define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0
39#define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8
40
41#define GS_USB_ENDPOINT_IN 1
42#define GS_USB_ENDPOINT_OUT 2
43
44/* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts
45 * for timer overflow (will be after ~71 minutes)
46 */
47#define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ)
48#define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800
49static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC <
50 CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2);
51
52/* Device specific constants */
53enum gs_usb_breq {
54 GS_USB_BREQ_HOST_FORMAT = 0,
55 GS_USB_BREQ_BITTIMING,
56 GS_USB_BREQ_MODE,
57 GS_USB_BREQ_BERR,
58 GS_USB_BREQ_BT_CONST,
59 GS_USB_BREQ_DEVICE_CONFIG,
60 GS_USB_BREQ_TIMESTAMP,
61 GS_USB_BREQ_IDENTIFY,
62 GS_USB_BREQ_GET_USER_ID,
63 GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID,
64 GS_USB_BREQ_SET_USER_ID,
65 GS_USB_BREQ_DATA_BITTIMING,
66 GS_USB_BREQ_BT_CONST_EXT,
67 GS_USB_BREQ_SET_TERMINATION,
68 GS_USB_BREQ_GET_TERMINATION,
69 GS_USB_BREQ_GET_STATE,
70};
71
72enum gs_can_mode {
73 /* reset a channel. turns it off */
74 GS_CAN_MODE_RESET = 0,
75 /* starts a channel */
76 GS_CAN_MODE_START
77};
78
79enum gs_can_state {
80 GS_CAN_STATE_ERROR_ACTIVE = 0,
81 GS_CAN_STATE_ERROR_WARNING,
82 GS_CAN_STATE_ERROR_PASSIVE,
83 GS_CAN_STATE_BUS_OFF,
84 GS_CAN_STATE_STOPPED,
85 GS_CAN_STATE_SLEEPING
86};
87
88enum gs_can_identify_mode {
89 GS_CAN_IDENTIFY_OFF = 0,
90 GS_CAN_IDENTIFY_ON
91};
92
93enum gs_can_termination_state {
94 GS_CAN_TERMINATION_STATE_OFF = 0,
95 GS_CAN_TERMINATION_STATE_ON
96};
97
98#define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED
99#define GS_USB_TERMINATION_ENABLED 120
100
101/* data types passed between host and device */
102
103/* The firmware on the original USB2CAN by Geschwister Schneider
104 * Technologie Entwicklungs- und Vertriebs UG exchanges all data
105 * between the host and the device in host byte order. This is done
106 * with the struct gs_host_config::byte_order member, which is sent
107 * first to indicate the desired byte order.
108 *
109 * The widely used open source firmware candleLight doesn't support
110 * this feature and exchanges the data in little endian byte order.
111 */
112struct gs_host_config {
113 __le32 byte_order;
114} __packed;
115
116struct gs_device_config {
117 u8 reserved1;
118 u8 reserved2;
119 u8 reserved3;
120 u8 icount;
121 __le32 sw_version;
122 __le32 hw_version;
123} __packed;
124
125#define GS_CAN_MODE_NORMAL 0
126#define GS_CAN_MODE_LISTEN_ONLY BIT(0)
127#define GS_CAN_MODE_LOOP_BACK BIT(1)
128#define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
129#define GS_CAN_MODE_ONE_SHOT BIT(3)
130#define GS_CAN_MODE_HW_TIMESTAMP BIT(4)
131/* GS_CAN_FEATURE_IDENTIFY BIT(5) */
132/* GS_CAN_FEATURE_USER_ID BIT(6) */
133#define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
134#define GS_CAN_MODE_FD BIT(8)
135/* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */
136/* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */
137/* GS_CAN_FEATURE_TERMINATION BIT(11) */
138#define GS_CAN_MODE_BERR_REPORTING BIT(12)
139/* GS_CAN_FEATURE_GET_STATE BIT(13) */
140
141struct gs_device_mode {
142 __le32 mode;
143 __le32 flags;
144} __packed;
145
146struct gs_device_state {
147 __le32 state;
148 __le32 rxerr;
149 __le32 txerr;
150} __packed;
151
152struct gs_device_bittiming {
153 __le32 prop_seg;
154 __le32 phase_seg1;
155 __le32 phase_seg2;
156 __le32 sjw;
157 __le32 brp;
158} __packed;
159
160struct gs_identify_mode {
161 __le32 mode;
162} __packed;
163
164struct gs_device_termination_state {
165 __le32 state;
166} __packed;
167
168#define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
169#define GS_CAN_FEATURE_LOOP_BACK BIT(1)
170#define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
171#define GS_CAN_FEATURE_ONE_SHOT BIT(3)
172#define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
173#define GS_CAN_FEATURE_IDENTIFY BIT(5)
174#define GS_CAN_FEATURE_USER_ID BIT(6)
175#define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
176#define GS_CAN_FEATURE_FD BIT(8)
177#define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9)
178#define GS_CAN_FEATURE_BT_CONST_EXT BIT(10)
179#define GS_CAN_FEATURE_TERMINATION BIT(11)
180#define GS_CAN_FEATURE_BERR_REPORTING BIT(12)
181#define GS_CAN_FEATURE_GET_STATE BIT(13)
182#define GS_CAN_FEATURE_MASK GENMASK(13, 0)
183
184/* internal quirks - keep in GS_CAN_FEATURE space for now */
185
186/* CANtact Pro original firmware:
187 * BREQ DATA_BITTIMING overlaps with GET_USER_ID
188 */
189#define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31)
190
191struct gs_device_bt_const {
192 __le32 feature;
193 __le32 fclk_can;
194 __le32 tseg1_min;
195 __le32 tseg1_max;
196 __le32 tseg2_min;
197 __le32 tseg2_max;
198 __le32 sjw_max;
199 __le32 brp_min;
200 __le32 brp_max;
201 __le32 brp_inc;
202} __packed;
203
204struct gs_device_bt_const_extended {
205 __le32 feature;
206 __le32 fclk_can;
207 __le32 tseg1_min;
208 __le32 tseg1_max;
209 __le32 tseg2_min;
210 __le32 tseg2_max;
211 __le32 sjw_max;
212 __le32 brp_min;
213 __le32 brp_max;
214 __le32 brp_inc;
215
216 __le32 dtseg1_min;
217 __le32 dtseg1_max;
218 __le32 dtseg2_min;
219 __le32 dtseg2_max;
220 __le32 dsjw_max;
221 __le32 dbrp_min;
222 __le32 dbrp_max;
223 __le32 dbrp_inc;
224} __packed;
225
226#define GS_CAN_FLAG_OVERFLOW BIT(0)
227#define GS_CAN_FLAG_FD BIT(1)
228#define GS_CAN_FLAG_BRS BIT(2)
229#define GS_CAN_FLAG_ESI BIT(3)
230
231struct classic_can {
232 u8 data[8];
233} __packed;
234
235struct classic_can_ts {
236 u8 data[8];
237 __le32 timestamp_us;
238} __packed;
239
240struct classic_can_quirk {
241 u8 data[8];
242 u8 quirk;
243} __packed;
244
245struct canfd {
246 u8 data[64];
247} __packed;
248
249struct canfd_ts {
250 u8 data[64];
251 __le32 timestamp_us;
252} __packed;
253
254struct canfd_quirk {
255 u8 data[64];
256 u8 quirk;
257} __packed;
258
259struct gs_host_frame {
260 u32 echo_id;
261 __le32 can_id;
262
263 u8 can_dlc;
264 u8 channel;
265 u8 flags;
266 u8 reserved;
267
268 union {
269 DECLARE_FLEX_ARRAY(struct classic_can, classic_can);
270 DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts);
271 DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk);
272 DECLARE_FLEX_ARRAY(struct canfd, canfd);
273 DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts);
274 DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk);
275 };
276} __packed;
277/* The GS USB devices make use of the same flags and masks as in
278 * linux/can.h and linux/can/error.h, and no additional mapping is necessary.
279 */
280
281/* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
282#define GS_MAX_TX_URBS 10
283/* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
284#define GS_MAX_RX_URBS 30
285/* Maximum number of interfaces the driver supports per device.
286 * Current hardware only supports 3 interfaces. The future may vary.
287 */
288#define GS_MAX_INTF 3
289
290struct gs_tx_context {
291 struct gs_can *dev;
292 unsigned int echo_id;
293};
294
295struct gs_can {
296 struct can_priv can; /* must be the first member */
297
298 struct gs_usb *parent;
299
300 struct net_device *netdev;
301 struct usb_device *udev;
302
303 struct can_bittiming_const bt_const, data_bt_const;
304 unsigned int channel; /* channel number */
305
306 /* time counter for hardware timestamps */
307 struct cyclecounter cc;
308 struct timecounter tc;
309 spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */
310 struct delayed_work timestamp;
311
312 u32 feature;
313 unsigned int hf_size_tx;
314
315 /* This lock prevents a race condition between xmit and receive. */
316 spinlock_t tx_ctx_lock;
317 struct gs_tx_context tx_context[GS_MAX_TX_URBS];
318
319 struct usb_anchor tx_submitted;
320 atomic_t active_tx_urbs;
321};
322
323/* usb interface struct */
324struct gs_usb {
325 struct gs_can *canch[GS_MAX_INTF];
326 struct usb_anchor rx_submitted;
327 struct usb_device *udev;
328 unsigned int hf_size_rx;
329 u8 active_channels;
330};
331
332/* 'allocate' a tx context.
333 * returns a valid tx context or NULL if there is no space.
334 */
335static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
336{
337 int i = 0;
338 unsigned long flags;
339
340 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
341
342 for (; i < GS_MAX_TX_URBS; i++) {
343 if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
344 dev->tx_context[i].echo_id = i;
345 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
346 return &dev->tx_context[i];
347 }
348 }
349
350 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
351 return NULL;
352}
353
354/* releases a tx context
355 */
356static void gs_free_tx_context(struct gs_tx_context *txc)
357{
358 txc->echo_id = GS_MAX_TX_URBS;
359}
360
361/* Get a tx context by id.
362 */
363static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
364 unsigned int id)
365{
366 unsigned long flags;
367
368 if (id < GS_MAX_TX_URBS) {
369 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
370 if (dev->tx_context[id].echo_id == id) {
371 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
372 return &dev->tx_context[id];
373 }
374 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
375 }
376 return NULL;
377}
378
379static int gs_cmd_reset(struct gs_can *dev)
380{
381 struct gs_device_mode dm = {
382 .mode = GS_CAN_MODE_RESET,
383 };
384
385 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
386 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
387 dev->channel, 0, &dm, sizeof(dm), 1000,
388 GFP_KERNEL);
389}
390
391static inline int gs_usb_get_timestamp(const struct gs_can *dev,
392 u32 *timestamp_p)
393{
394 __le32 timestamp;
395 int rc;
396
397 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_TIMESTAMP,
398 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
399 dev->channel, 0,
400 ×tamp, sizeof(timestamp),
401 USB_CTRL_GET_TIMEOUT,
402 GFP_KERNEL);
403 if (rc)
404 return rc;
405
406 *timestamp_p = le32_to_cpu(timestamp);
407
408 return 0;
409}
410
411static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock)
412{
413 struct gs_can *dev = container_of(cc, struct gs_can, cc);
414 u32 timestamp = 0;
415 int err;
416
417 lockdep_assert_held(&dev->tc_lock);
418
419 /* drop lock for synchronous USB transfer */
420 spin_unlock_bh(&dev->tc_lock);
421 err = gs_usb_get_timestamp(dev, ×tamp);
422 spin_lock_bh(&dev->tc_lock);
423 if (err)
424 netdev_err(dev->netdev,
425 "Error %d while reading timestamp. HW timestamps may be inaccurate.",
426 err);
427
428 return timestamp;
429}
430
431static void gs_usb_timestamp_work(struct work_struct *work)
432{
433 struct delayed_work *delayed_work = to_delayed_work(work);
434 struct gs_can *dev;
435
436 dev = container_of(delayed_work, struct gs_can, timestamp);
437 spin_lock_bh(&dev->tc_lock);
438 timecounter_read(&dev->tc);
439 spin_unlock_bh(&dev->tc_lock);
440
441 schedule_delayed_work(&dev->timestamp,
442 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
443}
444
445static void gs_usb_skb_set_timestamp(struct gs_can *dev,
446 struct sk_buff *skb, u32 timestamp)
447{
448 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
449 u64 ns;
450
451 spin_lock_bh(&dev->tc_lock);
452 ns = timecounter_cyc2time(&dev->tc, timestamp);
453 spin_unlock_bh(&dev->tc_lock);
454
455 hwtstamps->hwtstamp = ns_to_ktime(ns);
456}
457
458static void gs_usb_timestamp_init(struct gs_can *dev)
459{
460 struct cyclecounter *cc = &dev->cc;
461
462 cc->read = gs_usb_timestamp_read;
463 cc->mask = CYCLECOUNTER_MASK(32);
464 cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ);
465 cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift);
466
467 spin_lock_init(&dev->tc_lock);
468 spin_lock_bh(&dev->tc_lock);
469 timecounter_init(&dev->tc, &dev->cc, ktime_get_real_ns());
470 spin_unlock_bh(&dev->tc_lock);
471
472 INIT_DELAYED_WORK(&dev->timestamp, gs_usb_timestamp_work);
473 schedule_delayed_work(&dev->timestamp,
474 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
475}
476
477static void gs_usb_timestamp_stop(struct gs_can *dev)
478{
479 cancel_delayed_work_sync(&dev->timestamp);
480}
481
482static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
483{
484 struct can_device_stats *can_stats = &dev->can.can_stats;
485
486 if (cf->can_id & CAN_ERR_RESTARTED) {
487 dev->can.state = CAN_STATE_ERROR_ACTIVE;
488 can_stats->restarts++;
489 } else if (cf->can_id & CAN_ERR_BUSOFF) {
490 dev->can.state = CAN_STATE_BUS_OFF;
491 can_stats->bus_off++;
492 } else if (cf->can_id & CAN_ERR_CRTL) {
493 if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
494 (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
495 dev->can.state = CAN_STATE_ERROR_WARNING;
496 can_stats->error_warning++;
497 } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
498 (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
499 dev->can.state = CAN_STATE_ERROR_PASSIVE;
500 can_stats->error_passive++;
501 } else {
502 dev->can.state = CAN_STATE_ERROR_ACTIVE;
503 }
504 }
505}
506
507static void gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb,
508 const struct gs_host_frame *hf)
509{
510 u32 timestamp;
511
512 if (!(dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP))
513 return;
514
515 if (hf->flags & GS_CAN_FLAG_FD)
516 timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us);
517 else
518 timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us);
519
520 gs_usb_skb_set_timestamp(dev, skb, timestamp);
521
522 return;
523}
524
525static void gs_usb_receive_bulk_callback(struct urb *urb)
526{
527 struct gs_usb *usbcan = urb->context;
528 struct gs_can *dev;
529 struct net_device *netdev;
530 int rc;
531 struct net_device_stats *stats;
532 struct gs_host_frame *hf = urb->transfer_buffer;
533 struct gs_tx_context *txc;
534 struct can_frame *cf;
535 struct canfd_frame *cfd;
536 struct sk_buff *skb;
537
538 BUG_ON(!usbcan);
539
540 switch (urb->status) {
541 case 0: /* success */
542 break;
543 case -ENOENT:
544 case -ESHUTDOWN:
545 return;
546 default:
547 /* do not resubmit aborted urbs. eg: when device goes down */
548 return;
549 }
550
551 /* device reports out of range channel id */
552 if (hf->channel >= GS_MAX_INTF)
553 goto device_detach;
554
555 dev = usbcan->canch[hf->channel];
556
557 netdev = dev->netdev;
558 stats = &netdev->stats;
559
560 if (!netif_device_present(netdev))
561 return;
562
563 if (hf->echo_id == -1) { /* normal rx */
564 if (hf->flags & GS_CAN_FLAG_FD) {
565 skb = alloc_canfd_skb(dev->netdev, &cfd);
566 if (!skb)
567 return;
568
569 cfd->can_id = le32_to_cpu(hf->can_id);
570 cfd->len = can_fd_dlc2len(hf->can_dlc);
571 if (hf->flags & GS_CAN_FLAG_BRS)
572 cfd->flags |= CANFD_BRS;
573 if (hf->flags & GS_CAN_FLAG_ESI)
574 cfd->flags |= CANFD_ESI;
575
576 memcpy(cfd->data, hf->canfd->data, cfd->len);
577 } else {
578 skb = alloc_can_skb(dev->netdev, &cf);
579 if (!skb)
580 return;
581
582 cf->can_id = le32_to_cpu(hf->can_id);
583 can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode);
584
585 memcpy(cf->data, hf->classic_can->data, 8);
586
587 /* ERROR frames tell us information about the controller */
588 if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG)
589 gs_update_state(dev, cf);
590 }
591
592 gs_usb_set_timestamp(dev, skb, hf);
593
594 netdev->stats.rx_packets++;
595 netdev->stats.rx_bytes += hf->can_dlc;
596
597 netif_rx(skb);
598 } else { /* echo_id == hf->echo_id */
599 if (hf->echo_id >= GS_MAX_TX_URBS) {
600 netdev_err(netdev,
601 "Unexpected out of range echo id %u\n",
602 hf->echo_id);
603 goto resubmit_urb;
604 }
605
606 txc = gs_get_tx_context(dev, hf->echo_id);
607
608 /* bad devices send bad echo_ids. */
609 if (!txc) {
610 netdev_err(netdev,
611 "Unexpected unused echo id %u\n",
612 hf->echo_id);
613 goto resubmit_urb;
614 }
615
616 skb = dev->can.echo_skb[hf->echo_id];
617 gs_usb_set_timestamp(dev, skb, hf);
618
619 netdev->stats.tx_packets++;
620 netdev->stats.tx_bytes += can_get_echo_skb(netdev, hf->echo_id,
621 NULL);
622
623 gs_free_tx_context(txc);
624
625 atomic_dec(&dev->active_tx_urbs);
626
627 netif_wake_queue(netdev);
628 }
629
630 if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
631 skb = alloc_can_err_skb(netdev, &cf);
632 if (!skb)
633 goto resubmit_urb;
634
635 cf->can_id |= CAN_ERR_CRTL;
636 cf->len = CAN_ERR_DLC;
637 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
638 stats->rx_over_errors++;
639 stats->rx_errors++;
640 netif_rx(skb);
641 }
642
643 resubmit_urb:
644 usb_fill_bulk_urb(urb, usbcan->udev,
645 usb_rcvbulkpipe(usbcan->udev, GS_USB_ENDPOINT_IN),
646 hf, dev->parent->hf_size_rx,
647 gs_usb_receive_bulk_callback, usbcan);
648
649 rc = usb_submit_urb(urb, GFP_ATOMIC);
650
651 /* USB failure take down all interfaces */
652 if (rc == -ENODEV) {
653 device_detach:
654 for (rc = 0; rc < GS_MAX_INTF; rc++) {
655 if (usbcan->canch[rc])
656 netif_device_detach(usbcan->canch[rc]->netdev);
657 }
658 }
659}
660
661static int gs_usb_set_bittiming(struct net_device *netdev)
662{
663 struct gs_can *dev = netdev_priv(netdev);
664 struct can_bittiming *bt = &dev->can.bittiming;
665 struct gs_device_bittiming dbt = {
666 .prop_seg = cpu_to_le32(bt->prop_seg),
667 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
668 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
669 .sjw = cpu_to_le32(bt->sjw),
670 .brp = cpu_to_le32(bt->brp),
671 };
672
673 /* request bit timings */
674 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_BITTIMING,
675 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
676 dev->channel, 0, &dbt, sizeof(dbt), 1000,
677 GFP_KERNEL);
678}
679
680static int gs_usb_set_data_bittiming(struct net_device *netdev)
681{
682 struct gs_can *dev = netdev_priv(netdev);
683 struct can_bittiming *bt = &dev->can.data_bittiming;
684 struct gs_device_bittiming dbt = {
685 .prop_seg = cpu_to_le32(bt->prop_seg),
686 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
687 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
688 .sjw = cpu_to_le32(bt->sjw),
689 .brp = cpu_to_le32(bt->brp),
690 };
691 u8 request = GS_USB_BREQ_DATA_BITTIMING;
692
693 if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO)
694 request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING;
695
696 /* request data bit timings */
697 return usb_control_msg_send(dev->udev, 0, request,
698 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
699 dev->channel, 0, &dbt, sizeof(dbt), 1000,
700 GFP_KERNEL);
701}
702
703static void gs_usb_xmit_callback(struct urb *urb)
704{
705 struct gs_tx_context *txc = urb->context;
706 struct gs_can *dev = txc->dev;
707 struct net_device *netdev = dev->netdev;
708
709 if (urb->status)
710 netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id);
711}
712
713static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
714 struct net_device *netdev)
715{
716 struct gs_can *dev = netdev_priv(netdev);
717 struct net_device_stats *stats = &dev->netdev->stats;
718 struct urb *urb;
719 struct gs_host_frame *hf;
720 struct can_frame *cf;
721 struct canfd_frame *cfd;
722 int rc;
723 unsigned int idx;
724 struct gs_tx_context *txc;
725
726 if (can_dev_dropped_skb(netdev, skb))
727 return NETDEV_TX_OK;
728
729 /* find an empty context to keep track of transmission */
730 txc = gs_alloc_tx_context(dev);
731 if (!txc)
732 return NETDEV_TX_BUSY;
733
734 /* create a URB, and a buffer for it */
735 urb = usb_alloc_urb(0, GFP_ATOMIC);
736 if (!urb)
737 goto nomem_urb;
738
739 hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC);
740 if (!hf) {
741 netdev_err(netdev, "No memory left for USB buffer\n");
742 goto nomem_hf;
743 }
744
745 idx = txc->echo_id;
746
747 if (idx >= GS_MAX_TX_URBS) {
748 netdev_err(netdev, "Invalid tx context %u\n", idx);
749 goto badidx;
750 }
751
752 hf->echo_id = idx;
753 hf->channel = dev->channel;
754 hf->flags = 0;
755 hf->reserved = 0;
756
757 if (can_is_canfd_skb(skb)) {
758 cfd = (struct canfd_frame *)skb->data;
759
760 hf->can_id = cpu_to_le32(cfd->can_id);
761 hf->can_dlc = can_fd_len2dlc(cfd->len);
762 hf->flags |= GS_CAN_FLAG_FD;
763 if (cfd->flags & CANFD_BRS)
764 hf->flags |= GS_CAN_FLAG_BRS;
765 if (cfd->flags & CANFD_ESI)
766 hf->flags |= GS_CAN_FLAG_ESI;
767
768 memcpy(hf->canfd->data, cfd->data, cfd->len);
769 } else {
770 cf = (struct can_frame *)skb->data;
771
772 hf->can_id = cpu_to_le32(cf->can_id);
773 hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode);
774
775 memcpy(hf->classic_can->data, cf->data, cf->len);
776 }
777
778 usb_fill_bulk_urb(urb, dev->udev,
779 usb_sndbulkpipe(dev->udev, GS_USB_ENDPOINT_OUT),
780 hf, dev->hf_size_tx,
781 gs_usb_xmit_callback, txc);
782
783 urb->transfer_flags |= URB_FREE_BUFFER;
784 usb_anchor_urb(urb, &dev->tx_submitted);
785
786 can_put_echo_skb(skb, netdev, idx, 0);
787
788 atomic_inc(&dev->active_tx_urbs);
789
790 rc = usb_submit_urb(urb, GFP_ATOMIC);
791 if (unlikely(rc)) { /* usb send failed */
792 atomic_dec(&dev->active_tx_urbs);
793
794 can_free_echo_skb(netdev, idx, NULL);
795 gs_free_tx_context(txc);
796
797 usb_unanchor_urb(urb);
798
799 if (rc == -ENODEV) {
800 netif_device_detach(netdev);
801 } else {
802 netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
803 stats->tx_dropped++;
804 }
805 } else {
806 /* Slow down tx path */
807 if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
808 netif_stop_queue(netdev);
809 }
810
811 /* let usb core take care of this urb */
812 usb_free_urb(urb);
813
814 return NETDEV_TX_OK;
815
816 badidx:
817 kfree(hf);
818 nomem_hf:
819 usb_free_urb(urb);
820
821 nomem_urb:
822 gs_free_tx_context(txc);
823 dev_kfree_skb(skb);
824 stats->tx_dropped++;
825 return NETDEV_TX_OK;
826}
827
828static int gs_can_open(struct net_device *netdev)
829{
830 struct gs_can *dev = netdev_priv(netdev);
831 struct gs_usb *parent = dev->parent;
832 struct gs_device_mode dm = {
833 .mode = cpu_to_le32(GS_CAN_MODE_START),
834 };
835 struct gs_host_frame *hf;
836 u32 ctrlmode;
837 u32 flags = 0;
838 int rc, i;
839
840 rc = open_candev(netdev);
841 if (rc)
842 return rc;
843
844 ctrlmode = dev->can.ctrlmode;
845 if (ctrlmode & CAN_CTRLMODE_FD) {
846 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
847 dev->hf_size_tx = struct_size(hf, canfd_quirk, 1);
848 else
849 dev->hf_size_tx = struct_size(hf, canfd, 1);
850 } else {
851 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
852 dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1);
853 else
854 dev->hf_size_tx = struct_size(hf, classic_can, 1);
855 }
856
857 if (!parent->active_channels) {
858 for (i = 0; i < GS_MAX_RX_URBS; i++) {
859 struct urb *urb;
860 u8 *buf;
861
862 /* alloc rx urb */
863 urb = usb_alloc_urb(0, GFP_KERNEL);
864 if (!urb)
865 return -ENOMEM;
866
867 /* alloc rx buffer */
868 buf = kmalloc(dev->parent->hf_size_rx,
869 GFP_KERNEL);
870 if (!buf) {
871 netdev_err(netdev,
872 "No memory left for USB buffer\n");
873 usb_free_urb(urb);
874 return -ENOMEM;
875 }
876
877 /* fill, anchor, and submit rx urb */
878 usb_fill_bulk_urb(urb,
879 dev->udev,
880 usb_rcvbulkpipe(dev->udev,
881 GS_USB_ENDPOINT_IN),
882 buf,
883 dev->parent->hf_size_rx,
884 gs_usb_receive_bulk_callback, parent);
885 urb->transfer_flags |= URB_FREE_BUFFER;
886
887 usb_anchor_urb(urb, &parent->rx_submitted);
888
889 rc = usb_submit_urb(urb, GFP_KERNEL);
890 if (rc) {
891 if (rc == -ENODEV)
892 netif_device_detach(dev->netdev);
893
894 netdev_err(netdev,
895 "usb_submit failed (err=%d)\n", rc);
896
897 usb_unanchor_urb(urb);
898 usb_free_urb(urb);
899 break;
900 }
901
902 /* Drop reference,
903 * USB core will take care of freeing it
904 */
905 usb_free_urb(urb);
906 }
907 }
908
909 /* flags */
910 if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
911 flags |= GS_CAN_MODE_LOOP_BACK;
912
913 if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
914 flags |= GS_CAN_MODE_LISTEN_ONLY;
915
916 if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
917 flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
918
919 if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
920 flags |= GS_CAN_MODE_ONE_SHOT;
921
922 if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
923 flags |= GS_CAN_MODE_BERR_REPORTING;
924
925 if (ctrlmode & CAN_CTRLMODE_FD)
926 flags |= GS_CAN_MODE_FD;
927
928 /* if hardware supports timestamps, enable it */
929 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
930 flags |= GS_CAN_MODE_HW_TIMESTAMP;
931
932 /* start polling timestamp */
933 gs_usb_timestamp_init(dev);
934 }
935
936 /* finally start device */
937 dev->can.state = CAN_STATE_ERROR_ACTIVE;
938 dm.flags = cpu_to_le32(flags);
939 rc = usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
940 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
941 dev->channel, 0, &dm, sizeof(dm), 1000,
942 GFP_KERNEL);
943 if (rc) {
944 netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
945 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
946 gs_usb_timestamp_stop(dev);
947 dev->can.state = CAN_STATE_STOPPED;
948 return rc;
949 }
950
951 parent->active_channels++;
952 if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
953 netif_start_queue(netdev);
954
955 return 0;
956}
957
958static int gs_usb_get_state(const struct net_device *netdev,
959 struct can_berr_counter *bec,
960 enum can_state *state)
961{
962 struct gs_can *dev = netdev_priv(netdev);
963 struct gs_device_state ds;
964 int rc;
965
966 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_STATE,
967 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
968 dev->channel, 0,
969 &ds, sizeof(ds),
970 USB_CTRL_GET_TIMEOUT,
971 GFP_KERNEL);
972 if (rc)
973 return rc;
974
975 if (le32_to_cpu(ds.state) >= CAN_STATE_MAX)
976 return -EOPNOTSUPP;
977
978 *state = le32_to_cpu(ds.state);
979 bec->txerr = le32_to_cpu(ds.txerr);
980 bec->rxerr = le32_to_cpu(ds.rxerr);
981
982 return 0;
983}
984
985static int gs_usb_can_get_berr_counter(const struct net_device *netdev,
986 struct can_berr_counter *bec)
987{
988 enum can_state state;
989
990 return gs_usb_get_state(netdev, bec, &state);
991}
992
993static int gs_can_close(struct net_device *netdev)
994{
995 int rc;
996 struct gs_can *dev = netdev_priv(netdev);
997 struct gs_usb *parent = dev->parent;
998
999 netif_stop_queue(netdev);
1000
1001 /* stop polling timestamp */
1002 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1003 gs_usb_timestamp_stop(dev);
1004
1005 /* Stop polling */
1006 parent->active_channels--;
1007 if (!parent->active_channels) {
1008 usb_kill_anchored_urbs(&parent->rx_submitted);
1009 }
1010
1011 /* Stop sending URBs */
1012 usb_kill_anchored_urbs(&dev->tx_submitted);
1013 atomic_set(&dev->active_tx_urbs, 0);
1014
1015 /* reset the device */
1016 rc = gs_cmd_reset(dev);
1017 if (rc < 0)
1018 netdev_warn(netdev, "Couldn't shutdown device (err=%d)", rc);
1019
1020 /* reset tx contexts */
1021 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1022 dev->tx_context[rc].dev = dev;
1023 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1024 }
1025
1026 /* close the netdev */
1027 close_candev(netdev);
1028
1029 return 0;
1030}
1031
1032static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1033{
1034 const struct gs_can *dev = netdev_priv(netdev);
1035
1036 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1037 return can_eth_ioctl_hwts(netdev, ifr, cmd);
1038
1039 return -EOPNOTSUPP;
1040}
1041
1042static const struct net_device_ops gs_usb_netdev_ops = {
1043 .ndo_open = gs_can_open,
1044 .ndo_stop = gs_can_close,
1045 .ndo_start_xmit = gs_can_start_xmit,
1046 .ndo_change_mtu = can_change_mtu,
1047 .ndo_eth_ioctl = gs_can_eth_ioctl,
1048};
1049
1050static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
1051{
1052 struct gs_can *dev = netdev_priv(netdev);
1053 struct gs_identify_mode imode;
1054
1055 if (do_identify)
1056 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON);
1057 else
1058 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF);
1059
1060 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_IDENTIFY,
1061 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1062 dev->channel, 0, &imode, sizeof(imode), 100,
1063 GFP_KERNEL);
1064}
1065
1066/* blink LED's for finding the this interface */
1067static int gs_usb_set_phys_id(struct net_device *netdev,
1068 enum ethtool_phys_id_state state)
1069{
1070 const struct gs_can *dev = netdev_priv(netdev);
1071 int rc = 0;
1072
1073 if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY))
1074 return -EOPNOTSUPP;
1075
1076 switch (state) {
1077 case ETHTOOL_ID_ACTIVE:
1078 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON);
1079 break;
1080 case ETHTOOL_ID_INACTIVE:
1081 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF);
1082 break;
1083 default:
1084 break;
1085 }
1086
1087 return rc;
1088}
1089
1090static int gs_usb_get_ts_info(struct net_device *netdev,
1091 struct ethtool_ts_info *info)
1092{
1093 struct gs_can *dev = netdev_priv(netdev);
1094
1095 /* report if device supports HW timestamps */
1096 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1097 return can_ethtool_op_get_ts_info_hwts(netdev, info);
1098
1099 return ethtool_op_get_ts_info(netdev, info);
1100}
1101
1102static const struct ethtool_ops gs_usb_ethtool_ops = {
1103 .set_phys_id = gs_usb_set_phys_id,
1104 .get_ts_info = gs_usb_get_ts_info,
1105};
1106
1107static int gs_usb_get_termination(struct net_device *netdev, u16 *term)
1108{
1109 struct gs_can *dev = netdev_priv(netdev);
1110 struct gs_device_termination_state term_state;
1111 int rc;
1112
1113 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_TERMINATION,
1114 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1115 dev->channel, 0,
1116 &term_state, sizeof(term_state), 1000,
1117 GFP_KERNEL);
1118 if (rc)
1119 return rc;
1120
1121 if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON))
1122 *term = GS_USB_TERMINATION_ENABLED;
1123 else
1124 *term = GS_USB_TERMINATION_DISABLED;
1125
1126 return 0;
1127}
1128
1129static int gs_usb_set_termination(struct net_device *netdev, u16 term)
1130{
1131 struct gs_can *dev = netdev_priv(netdev);
1132 struct gs_device_termination_state term_state;
1133
1134 if (term == GS_USB_TERMINATION_ENABLED)
1135 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON);
1136 else
1137 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF);
1138
1139 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_SET_TERMINATION,
1140 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1141 dev->channel, 0,
1142 &term_state, sizeof(term_state), 1000,
1143 GFP_KERNEL);
1144}
1145
1146static const u16 gs_usb_termination_const[] = {
1147 GS_USB_TERMINATION_DISABLED,
1148 GS_USB_TERMINATION_ENABLED
1149};
1150
1151static struct gs_can *gs_make_candev(unsigned int channel,
1152 struct usb_interface *intf,
1153 struct gs_device_config *dconf)
1154{
1155 struct gs_can *dev;
1156 struct net_device *netdev;
1157 int rc;
1158 struct gs_device_bt_const_extended bt_const_extended;
1159 struct gs_device_bt_const bt_const;
1160 u32 feature;
1161
1162 /* fetch bit timing constants */
1163 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1164 GS_USB_BREQ_BT_CONST,
1165 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1166 channel, 0, &bt_const, sizeof(bt_const), 1000,
1167 GFP_KERNEL);
1168
1169 if (rc) {
1170 dev_err(&intf->dev,
1171 "Couldn't get bit timing const for channel %d (%pe)\n",
1172 channel, ERR_PTR(rc));
1173 return ERR_PTR(rc);
1174 }
1175
1176 /* create netdev */
1177 netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
1178 if (!netdev) {
1179 dev_err(&intf->dev, "Couldn't allocate candev\n");
1180 return ERR_PTR(-ENOMEM);
1181 }
1182
1183 dev = netdev_priv(netdev);
1184
1185 netdev->netdev_ops = &gs_usb_netdev_ops;
1186 netdev->ethtool_ops = &gs_usb_ethtool_ops;
1187
1188 netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
1189 netdev->dev_id = channel;
1190
1191 /* dev setup */
1192 strcpy(dev->bt_const.name, KBUILD_MODNAME);
1193 dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min);
1194 dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max);
1195 dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min);
1196 dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max);
1197 dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max);
1198 dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min);
1199 dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max);
1200 dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc);
1201
1202 dev->udev = interface_to_usbdev(intf);
1203 dev->netdev = netdev;
1204 dev->channel = channel;
1205
1206 init_usb_anchor(&dev->tx_submitted);
1207 atomic_set(&dev->active_tx_urbs, 0);
1208 spin_lock_init(&dev->tx_ctx_lock);
1209 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1210 dev->tx_context[rc].dev = dev;
1211 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1212 }
1213
1214 /* can setup */
1215 dev->can.state = CAN_STATE_STOPPED;
1216 dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can);
1217 dev->can.bittiming_const = &dev->bt_const;
1218 dev->can.do_set_bittiming = gs_usb_set_bittiming;
1219
1220 dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC;
1221
1222 feature = le32_to_cpu(bt_const.feature);
1223 dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature);
1224 if (feature & GS_CAN_FEATURE_LISTEN_ONLY)
1225 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
1226
1227 if (feature & GS_CAN_FEATURE_LOOP_BACK)
1228 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
1229
1230 if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
1231 dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
1232
1233 if (feature & GS_CAN_FEATURE_ONE_SHOT)
1234 dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
1235
1236 if (feature & GS_CAN_FEATURE_FD) {
1237 dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1238 /* The data bit timing will be overwritten, if
1239 * GS_CAN_FEATURE_BT_CONST_EXT is set.
1240 */
1241 dev->can.data_bittiming_const = &dev->bt_const;
1242 dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming;
1243 }
1244
1245 if (feature & GS_CAN_FEATURE_TERMINATION) {
1246 rc = gs_usb_get_termination(netdev, &dev->can.termination);
1247 if (rc) {
1248 dev->feature &= ~GS_CAN_FEATURE_TERMINATION;
1249
1250 dev_info(&intf->dev,
1251 "Disabling termination support for channel %d (%pe)\n",
1252 channel, ERR_PTR(rc));
1253 } else {
1254 dev->can.termination_const = gs_usb_termination_const;
1255 dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const);
1256 dev->can.do_set_termination = gs_usb_set_termination;
1257 }
1258 }
1259
1260 if (feature & GS_CAN_FEATURE_BERR_REPORTING)
1261 dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
1262
1263 if (feature & GS_CAN_FEATURE_GET_STATE)
1264 dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter;
1265
1266 /* The CANtact Pro from LinkLayer Labs is based on the
1267 * LPC54616 µC, which is affected by the NXP LPC USB transfer
1268 * erratum. However, the current firmware (version 2) doesn't
1269 * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the
1270 * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround
1271 * this issue.
1272 *
1273 * For the GS_USB_BREQ_DATA_BITTIMING USB control message the
1274 * CANtact Pro firmware uses a request value, which is already
1275 * used by the candleLight firmware for a different purpose
1276 * (GS_USB_BREQ_GET_USER_ID). Set the feature
1277 * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this
1278 * issue.
1279 */
1280 if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) &&
1281 dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) &&
1282 dev->udev->manufacturer && dev->udev->product &&
1283 !strcmp(dev->udev->manufacturer, "LinkLayer Labs") &&
1284 !strcmp(dev->udev->product, "CANtact Pro") &&
1285 (le32_to_cpu(dconf->sw_version) <= 2))
1286 dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX |
1287 GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO;
1288
1289 /* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */
1290 if (!(le32_to_cpu(dconf->sw_version) > 1 &&
1291 feature & GS_CAN_FEATURE_IDENTIFY))
1292 dev->feature &= ~GS_CAN_FEATURE_IDENTIFY;
1293
1294 /* fetch extended bit timing constants if device has feature
1295 * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT
1296 */
1297 if (feature & GS_CAN_FEATURE_FD &&
1298 feature & GS_CAN_FEATURE_BT_CONST_EXT) {
1299 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1300 GS_USB_BREQ_BT_CONST_EXT,
1301 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1302 channel, 0, &bt_const_extended,
1303 sizeof(bt_const_extended),
1304 1000, GFP_KERNEL);
1305 if (rc) {
1306 dev_err(&intf->dev,
1307 "Couldn't get extended bit timing const for channel %d (%pe)\n",
1308 channel, ERR_PTR(rc));
1309 goto out_free_candev;
1310 }
1311
1312 strcpy(dev->data_bt_const.name, KBUILD_MODNAME);
1313 dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min);
1314 dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max);
1315 dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min);
1316 dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max);
1317 dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max);
1318 dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min);
1319 dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max);
1320 dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc);
1321
1322 dev->can.data_bittiming_const = &dev->data_bt_const;
1323 }
1324
1325 SET_NETDEV_DEV(netdev, &intf->dev);
1326
1327 rc = register_candev(dev->netdev);
1328 if (rc) {
1329 dev_err(&intf->dev,
1330 "Couldn't register candev for channel %d (%pe)\n",
1331 channel, ERR_PTR(rc));
1332 goto out_free_candev;
1333 }
1334
1335 return dev;
1336
1337 out_free_candev:
1338 free_candev(dev->netdev);
1339 return ERR_PTR(rc);
1340}
1341
1342static void gs_destroy_candev(struct gs_can *dev)
1343{
1344 unregister_candev(dev->netdev);
1345 usb_kill_anchored_urbs(&dev->tx_submitted);
1346 free_candev(dev->netdev);
1347}
1348
1349static int gs_usb_probe(struct usb_interface *intf,
1350 const struct usb_device_id *id)
1351{
1352 struct usb_device *udev = interface_to_usbdev(intf);
1353 struct gs_host_frame *hf;
1354 struct gs_usb *dev;
1355 struct gs_host_config hconf = {
1356 .byte_order = cpu_to_le32(0x0000beef),
1357 };
1358 struct gs_device_config dconf;
1359 unsigned int icount, i;
1360 int rc;
1361
1362 /* send host config */
1363 rc = usb_control_msg_send(udev, 0,
1364 GS_USB_BREQ_HOST_FORMAT,
1365 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1366 1, intf->cur_altsetting->desc.bInterfaceNumber,
1367 &hconf, sizeof(hconf), 1000,
1368 GFP_KERNEL);
1369 if (rc) {
1370 dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc);
1371 return rc;
1372 }
1373
1374 /* read device config */
1375 rc = usb_control_msg_recv(udev, 0,
1376 GS_USB_BREQ_DEVICE_CONFIG,
1377 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1378 1, intf->cur_altsetting->desc.bInterfaceNumber,
1379 &dconf, sizeof(dconf), 1000,
1380 GFP_KERNEL);
1381 if (rc) {
1382 dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
1383 rc);
1384 return rc;
1385 }
1386
1387 icount = dconf.icount + 1;
1388 dev_info(&intf->dev, "Configuring for %u interfaces\n", icount);
1389
1390 if (icount > GS_MAX_INTF) {
1391 dev_err(&intf->dev,
1392 "Driver cannot handle more that %u CAN interfaces\n",
1393 GS_MAX_INTF);
1394 return -EINVAL;
1395 }
1396
1397 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1398 if (!dev)
1399 return -ENOMEM;
1400
1401 init_usb_anchor(&dev->rx_submitted);
1402
1403 usb_set_intfdata(intf, dev);
1404 dev->udev = udev;
1405
1406 for (i = 0; i < icount; i++) {
1407 unsigned int hf_size_rx = 0;
1408
1409 dev->canch[i] = gs_make_candev(i, intf, &dconf);
1410 if (IS_ERR_OR_NULL(dev->canch[i])) {
1411 /* save error code to return later */
1412 rc = PTR_ERR(dev->canch[i]);
1413
1414 /* on failure destroy previously created candevs */
1415 icount = i;
1416 for (i = 0; i < icount; i++)
1417 gs_destroy_candev(dev->canch[i]);
1418
1419 usb_kill_anchored_urbs(&dev->rx_submitted);
1420 kfree(dev);
1421 return rc;
1422 }
1423 dev->canch[i]->parent = dev;
1424
1425 /* set RX packet size based on FD and if hardware
1426 * timestamps are supported.
1427 */
1428 if (dev->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
1429 if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1430 hf_size_rx = struct_size(hf, canfd_ts, 1);
1431 else
1432 hf_size_rx = struct_size(hf, canfd, 1);
1433 } else {
1434 if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1435 hf_size_rx = struct_size(hf, classic_can_ts, 1);
1436 else
1437 hf_size_rx = struct_size(hf, classic_can, 1);
1438 }
1439 dev->hf_size_rx = max(dev->hf_size_rx, hf_size_rx);
1440 }
1441
1442 return 0;
1443}
1444
1445static void gs_usb_disconnect(struct usb_interface *intf)
1446{
1447 struct gs_usb *dev = usb_get_intfdata(intf);
1448 unsigned int i;
1449
1450 usb_set_intfdata(intf, NULL);
1451
1452 if (!dev) {
1453 dev_err(&intf->dev, "Disconnect (nodata)\n");
1454 return;
1455 }
1456
1457 for (i = 0; i < GS_MAX_INTF; i++)
1458 if (dev->canch[i])
1459 gs_destroy_candev(dev->canch[i]);
1460
1461 usb_kill_anchored_urbs(&dev->rx_submitted);
1462 kfree(dev);
1463}
1464
1465static const struct usb_device_id gs_usb_table[] = {
1466 { USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID,
1467 USB_GS_USB_1_PRODUCT_ID, 0) },
1468 { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
1469 USB_CANDLELIGHT_PRODUCT_ID, 0) },
1470 { USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID,
1471 USB_CES_CANEXT_FD_PRODUCT_ID, 0) },
1472 { USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID,
1473 USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) },
1474 {} /* Terminating entry */
1475};
1476
1477MODULE_DEVICE_TABLE(usb, gs_usb_table);
1478
1479static struct usb_driver gs_usb_driver = {
1480 .name = KBUILD_MODNAME,
1481 .probe = gs_usb_probe,
1482 .disconnect = gs_usb_disconnect,
1483 .id_table = gs_usb_table,
1484};
1485
1486module_usb_driver(gs_usb_driver);
1487
1488MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
1489MODULE_DESCRIPTION(
1490"Socket CAN device driver for Geschwister Schneider Technologie-, "
1491"Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
1492"and bytewerk.org candleLight USB CAN interfaces.");
1493MODULE_LICENSE("GPL v2");