Loading...
1/*
2 * Single-step support.
3 *
4 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
12#include <linux/kprobes.h>
13#include <linux/ptrace.h>
14#include <linux/prefetch.h>
15#include <asm/sstep.h>
16#include <asm/processor.h>
17#include <linux/uaccess.h>
18#include <asm/cpu_has_feature.h>
19#include <asm/cputable.h>
20
21extern char system_call_common[];
22
23#ifdef CONFIG_PPC64
24/* Bits in SRR1 that are copied from MSR */
25#define MSR_MASK 0xffffffff87c0ffffUL
26#else
27#define MSR_MASK 0x87c0ffff
28#endif
29
30/* Bits in XER */
31#define XER_SO 0x80000000U
32#define XER_OV 0x40000000U
33#define XER_CA 0x20000000U
34#define XER_OV32 0x00080000U
35#define XER_CA32 0x00040000U
36
37#ifdef CONFIG_PPC_FPU
38/*
39 * Functions in ldstfp.S
40 */
41extern void get_fpr(int rn, double *p);
42extern void put_fpr(int rn, const double *p);
43extern void get_vr(int rn, __vector128 *p);
44extern void put_vr(int rn, __vector128 *p);
45extern void load_vsrn(int vsr, const void *p);
46extern void store_vsrn(int vsr, void *p);
47extern void conv_sp_to_dp(const float *sp, double *dp);
48extern void conv_dp_to_sp(const double *dp, float *sp);
49#endif
50
51#ifdef __powerpc64__
52/*
53 * Functions in quad.S
54 */
55extern int do_lq(unsigned long ea, unsigned long *regs);
56extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
57extern int do_lqarx(unsigned long ea, unsigned long *regs);
58extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
59 unsigned int *crp);
60#endif
61
62#ifdef __LITTLE_ENDIAN__
63#define IS_LE 1
64#define IS_BE 0
65#else
66#define IS_LE 0
67#define IS_BE 1
68#endif
69
70/*
71 * Emulate the truncation of 64 bit values in 32-bit mode.
72 */
73static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
74 unsigned long val)
75{
76#ifdef __powerpc64__
77 if ((msr & MSR_64BIT) == 0)
78 val &= 0xffffffffUL;
79#endif
80 return val;
81}
82
83/*
84 * Determine whether a conditional branch instruction would branch.
85 */
86static nokprobe_inline int branch_taken(unsigned int instr,
87 const struct pt_regs *regs,
88 struct instruction_op *op)
89{
90 unsigned int bo = (instr >> 21) & 0x1f;
91 unsigned int bi;
92
93 if ((bo & 4) == 0) {
94 /* decrement counter */
95 op->type |= DECCTR;
96 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
97 return 0;
98 }
99 if ((bo & 0x10) == 0) {
100 /* check bit from CR */
101 bi = (instr >> 16) & 0x1f;
102 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
103 return 0;
104 }
105 return 1;
106}
107
108static nokprobe_inline long address_ok(struct pt_regs *regs,
109 unsigned long ea, int nb)
110{
111 if (!user_mode(regs))
112 return 1;
113 if (__access_ok(ea, nb, USER_DS))
114 return 1;
115 if (__access_ok(ea, 1, USER_DS))
116 /* Access overlaps the end of the user region */
117 regs->dar = USER_DS.seg;
118 else
119 regs->dar = ea;
120 return 0;
121}
122
123/*
124 * Calculate effective address for a D-form instruction
125 */
126static nokprobe_inline unsigned long dform_ea(unsigned int instr,
127 const struct pt_regs *regs)
128{
129 int ra;
130 unsigned long ea;
131
132 ra = (instr >> 16) & 0x1f;
133 ea = (signed short) instr; /* sign-extend */
134 if (ra)
135 ea += regs->gpr[ra];
136
137 return ea;
138}
139
140#ifdef __powerpc64__
141/*
142 * Calculate effective address for a DS-form instruction
143 */
144static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
145 const struct pt_regs *regs)
146{
147 int ra;
148 unsigned long ea;
149
150 ra = (instr >> 16) & 0x1f;
151 ea = (signed short) (instr & ~3); /* sign-extend */
152 if (ra)
153 ea += regs->gpr[ra];
154
155 return ea;
156}
157
158/*
159 * Calculate effective address for a DQ-form instruction
160 */
161static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
162 const struct pt_regs *regs)
163{
164 int ra;
165 unsigned long ea;
166
167 ra = (instr >> 16) & 0x1f;
168 ea = (signed short) (instr & ~0xf); /* sign-extend */
169 if (ra)
170 ea += regs->gpr[ra];
171
172 return ea;
173}
174#endif /* __powerpc64 */
175
176/*
177 * Calculate effective address for an X-form instruction
178 */
179static nokprobe_inline unsigned long xform_ea(unsigned int instr,
180 const struct pt_regs *regs)
181{
182 int ra, rb;
183 unsigned long ea;
184
185 ra = (instr >> 16) & 0x1f;
186 rb = (instr >> 11) & 0x1f;
187 ea = regs->gpr[rb];
188 if (ra)
189 ea += regs->gpr[ra];
190
191 return ea;
192}
193
194/*
195 * Return the largest power of 2, not greater than sizeof(unsigned long),
196 * such that x is a multiple of it.
197 */
198static nokprobe_inline unsigned long max_align(unsigned long x)
199{
200 x |= sizeof(unsigned long);
201 return x & -x; /* isolates rightmost bit */
202}
203
204static nokprobe_inline unsigned long byterev_2(unsigned long x)
205{
206 return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
207}
208
209static nokprobe_inline unsigned long byterev_4(unsigned long x)
210{
211 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
212 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
213}
214
215#ifdef __powerpc64__
216static nokprobe_inline unsigned long byterev_8(unsigned long x)
217{
218 return (byterev_4(x) << 32) | byterev_4(x >> 32);
219}
220#endif
221
222static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
223{
224 switch (nb) {
225 case 2:
226 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
227 break;
228 case 4:
229 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
230 break;
231#ifdef __powerpc64__
232 case 8:
233 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
234 break;
235 case 16: {
236 unsigned long *up = (unsigned long *)ptr;
237 unsigned long tmp;
238 tmp = byterev_8(up[0]);
239 up[0] = byterev_8(up[1]);
240 up[1] = tmp;
241 break;
242 }
243#endif
244 default:
245 WARN_ON_ONCE(1);
246 }
247}
248
249static nokprobe_inline int read_mem_aligned(unsigned long *dest,
250 unsigned long ea, int nb,
251 struct pt_regs *regs)
252{
253 int err = 0;
254 unsigned long x = 0;
255
256 switch (nb) {
257 case 1:
258 err = __get_user(x, (unsigned char __user *) ea);
259 break;
260 case 2:
261 err = __get_user(x, (unsigned short __user *) ea);
262 break;
263 case 4:
264 err = __get_user(x, (unsigned int __user *) ea);
265 break;
266#ifdef __powerpc64__
267 case 8:
268 err = __get_user(x, (unsigned long __user *) ea);
269 break;
270#endif
271 }
272 if (!err)
273 *dest = x;
274 else
275 regs->dar = ea;
276 return err;
277}
278
279/*
280 * Copy from userspace to a buffer, using the largest possible
281 * aligned accesses, up to sizeof(long).
282 */
283static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
284 struct pt_regs *regs)
285{
286 int err = 0;
287 int c;
288
289 for (; nb > 0; nb -= c) {
290 c = max_align(ea);
291 if (c > nb)
292 c = max_align(nb);
293 switch (c) {
294 case 1:
295 err = __get_user(*dest, (unsigned char __user *) ea);
296 break;
297 case 2:
298 err = __get_user(*(u16 *)dest,
299 (unsigned short __user *) ea);
300 break;
301 case 4:
302 err = __get_user(*(u32 *)dest,
303 (unsigned int __user *) ea);
304 break;
305#ifdef __powerpc64__
306 case 8:
307 err = __get_user(*(unsigned long *)dest,
308 (unsigned long __user *) ea);
309 break;
310#endif
311 }
312 if (err) {
313 regs->dar = ea;
314 return err;
315 }
316 dest += c;
317 ea += c;
318 }
319 return 0;
320}
321
322static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
323 unsigned long ea, int nb,
324 struct pt_regs *regs)
325{
326 union {
327 unsigned long ul;
328 u8 b[sizeof(unsigned long)];
329 } u;
330 int i;
331 int err;
332
333 u.ul = 0;
334 i = IS_BE ? sizeof(unsigned long) - nb : 0;
335 err = copy_mem_in(&u.b[i], ea, nb, regs);
336 if (!err)
337 *dest = u.ul;
338 return err;
339}
340
341/*
342 * Read memory at address ea for nb bytes, return 0 for success
343 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
344 * If nb < sizeof(long), the result is right-justified on BE systems.
345 */
346static int read_mem(unsigned long *dest, unsigned long ea, int nb,
347 struct pt_regs *regs)
348{
349 if (!address_ok(regs, ea, nb))
350 return -EFAULT;
351 if ((ea & (nb - 1)) == 0)
352 return read_mem_aligned(dest, ea, nb, regs);
353 return read_mem_unaligned(dest, ea, nb, regs);
354}
355NOKPROBE_SYMBOL(read_mem);
356
357static nokprobe_inline int write_mem_aligned(unsigned long val,
358 unsigned long ea, int nb,
359 struct pt_regs *regs)
360{
361 int err = 0;
362
363 switch (nb) {
364 case 1:
365 err = __put_user(val, (unsigned char __user *) ea);
366 break;
367 case 2:
368 err = __put_user(val, (unsigned short __user *) ea);
369 break;
370 case 4:
371 err = __put_user(val, (unsigned int __user *) ea);
372 break;
373#ifdef __powerpc64__
374 case 8:
375 err = __put_user(val, (unsigned long __user *) ea);
376 break;
377#endif
378 }
379 if (err)
380 regs->dar = ea;
381 return err;
382}
383
384/*
385 * Copy from a buffer to userspace, using the largest possible
386 * aligned accesses, up to sizeof(long).
387 */
388static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
389 struct pt_regs *regs)
390{
391 int err = 0;
392 int c;
393
394 for (; nb > 0; nb -= c) {
395 c = max_align(ea);
396 if (c > nb)
397 c = max_align(nb);
398 switch (c) {
399 case 1:
400 err = __put_user(*dest, (unsigned char __user *) ea);
401 break;
402 case 2:
403 err = __put_user(*(u16 *)dest,
404 (unsigned short __user *) ea);
405 break;
406 case 4:
407 err = __put_user(*(u32 *)dest,
408 (unsigned int __user *) ea);
409 break;
410#ifdef __powerpc64__
411 case 8:
412 err = __put_user(*(unsigned long *)dest,
413 (unsigned long __user *) ea);
414 break;
415#endif
416 }
417 if (err) {
418 regs->dar = ea;
419 return err;
420 }
421 dest += c;
422 ea += c;
423 }
424 return 0;
425}
426
427static nokprobe_inline int write_mem_unaligned(unsigned long val,
428 unsigned long ea, int nb,
429 struct pt_regs *regs)
430{
431 union {
432 unsigned long ul;
433 u8 b[sizeof(unsigned long)];
434 } u;
435 int i;
436
437 u.ul = val;
438 i = IS_BE ? sizeof(unsigned long) - nb : 0;
439 return copy_mem_out(&u.b[i], ea, nb, regs);
440}
441
442/*
443 * Write memory at address ea for nb bytes, return 0 for success
444 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
445 */
446static int write_mem(unsigned long val, unsigned long ea, int nb,
447 struct pt_regs *regs)
448{
449 if (!address_ok(regs, ea, nb))
450 return -EFAULT;
451 if ((ea & (nb - 1)) == 0)
452 return write_mem_aligned(val, ea, nb, regs);
453 return write_mem_unaligned(val, ea, nb, regs);
454}
455NOKPROBE_SYMBOL(write_mem);
456
457#ifdef CONFIG_PPC_FPU
458/*
459 * These access either the real FP register or the image in the
460 * thread_struct, depending on regs->msr & MSR_FP.
461 */
462static int do_fp_load(struct instruction_op *op, unsigned long ea,
463 struct pt_regs *regs, bool cross_endian)
464{
465 int err, rn, nb;
466 union {
467 int i;
468 unsigned int u;
469 float f;
470 double d[2];
471 unsigned long l[2];
472 u8 b[2 * sizeof(double)];
473 } u;
474
475 nb = GETSIZE(op->type);
476 if (!address_ok(regs, ea, nb))
477 return -EFAULT;
478 rn = op->reg;
479 err = copy_mem_in(u.b, ea, nb, regs);
480 if (err)
481 return err;
482 if (unlikely(cross_endian)) {
483 do_byte_reverse(u.b, min(nb, 8));
484 if (nb == 16)
485 do_byte_reverse(&u.b[8], 8);
486 }
487 preempt_disable();
488 if (nb == 4) {
489 if (op->type & FPCONV)
490 conv_sp_to_dp(&u.f, &u.d[0]);
491 else if (op->type & SIGNEXT)
492 u.l[0] = u.i;
493 else
494 u.l[0] = u.u;
495 }
496 if (regs->msr & MSR_FP)
497 put_fpr(rn, &u.d[0]);
498 else
499 current->thread.TS_FPR(rn) = u.l[0];
500 if (nb == 16) {
501 /* lfdp */
502 rn |= 1;
503 if (regs->msr & MSR_FP)
504 put_fpr(rn, &u.d[1]);
505 else
506 current->thread.TS_FPR(rn) = u.l[1];
507 }
508 preempt_enable();
509 return 0;
510}
511NOKPROBE_SYMBOL(do_fp_load);
512
513static int do_fp_store(struct instruction_op *op, unsigned long ea,
514 struct pt_regs *regs, bool cross_endian)
515{
516 int rn, nb;
517 union {
518 unsigned int u;
519 float f;
520 double d[2];
521 unsigned long l[2];
522 u8 b[2 * sizeof(double)];
523 } u;
524
525 nb = GETSIZE(op->type);
526 if (!address_ok(regs, ea, nb))
527 return -EFAULT;
528 rn = op->reg;
529 preempt_disable();
530 if (regs->msr & MSR_FP)
531 get_fpr(rn, &u.d[0]);
532 else
533 u.l[0] = current->thread.TS_FPR(rn);
534 if (nb == 4) {
535 if (op->type & FPCONV)
536 conv_dp_to_sp(&u.d[0], &u.f);
537 else
538 u.u = u.l[0];
539 }
540 if (nb == 16) {
541 rn |= 1;
542 if (regs->msr & MSR_FP)
543 get_fpr(rn, &u.d[1]);
544 else
545 u.l[1] = current->thread.TS_FPR(rn);
546 }
547 preempt_enable();
548 if (unlikely(cross_endian)) {
549 do_byte_reverse(u.b, min(nb, 8));
550 if (nb == 16)
551 do_byte_reverse(&u.b[8], 8);
552 }
553 return copy_mem_out(u.b, ea, nb, regs);
554}
555NOKPROBE_SYMBOL(do_fp_store);
556#endif
557
558#ifdef CONFIG_ALTIVEC
559/* For Altivec/VMX, no need to worry about alignment */
560static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
561 int size, struct pt_regs *regs,
562 bool cross_endian)
563{
564 int err;
565 union {
566 __vector128 v;
567 u8 b[sizeof(__vector128)];
568 } u = {};
569
570 if (!address_ok(regs, ea & ~0xfUL, 16))
571 return -EFAULT;
572 /* align to multiple of size */
573 ea &= ~(size - 1);
574 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
575 if (err)
576 return err;
577 if (unlikely(cross_endian))
578 do_byte_reverse(&u.b[ea & 0xf], size);
579 preempt_disable();
580 if (regs->msr & MSR_VEC)
581 put_vr(rn, &u.v);
582 else
583 current->thread.vr_state.vr[rn] = u.v;
584 preempt_enable();
585 return 0;
586}
587
588static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
589 int size, struct pt_regs *regs,
590 bool cross_endian)
591{
592 union {
593 __vector128 v;
594 u8 b[sizeof(__vector128)];
595 } u;
596
597 if (!address_ok(regs, ea & ~0xfUL, 16))
598 return -EFAULT;
599 /* align to multiple of size */
600 ea &= ~(size - 1);
601
602 preempt_disable();
603 if (regs->msr & MSR_VEC)
604 get_vr(rn, &u.v);
605 else
606 u.v = current->thread.vr_state.vr[rn];
607 preempt_enable();
608 if (unlikely(cross_endian))
609 do_byte_reverse(&u.b[ea & 0xf], size);
610 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
611}
612#endif /* CONFIG_ALTIVEC */
613
614#ifdef __powerpc64__
615static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
616 int reg, bool cross_endian)
617{
618 int err;
619
620 if (!address_ok(regs, ea, 16))
621 return -EFAULT;
622 /* if aligned, should be atomic */
623 if ((ea & 0xf) == 0) {
624 err = do_lq(ea, ®s->gpr[reg]);
625 } else {
626 err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs);
627 if (!err)
628 err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs);
629 }
630 if (!err && unlikely(cross_endian))
631 do_byte_reverse(®s->gpr[reg], 16);
632 return err;
633}
634
635static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
636 int reg, bool cross_endian)
637{
638 int err;
639 unsigned long vals[2];
640
641 if (!address_ok(regs, ea, 16))
642 return -EFAULT;
643 vals[0] = regs->gpr[reg];
644 vals[1] = regs->gpr[reg + 1];
645 if (unlikely(cross_endian))
646 do_byte_reverse(vals, 16);
647
648 /* if aligned, should be atomic */
649 if ((ea & 0xf) == 0)
650 return do_stq(ea, vals[0], vals[1]);
651
652 err = write_mem(vals[IS_LE], ea, 8, regs);
653 if (!err)
654 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
655 return err;
656}
657#endif /* __powerpc64 */
658
659#ifdef CONFIG_VSX
660void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
661 const void *mem, bool rev)
662{
663 int size, read_size;
664 int i, j;
665 const unsigned int *wp;
666 const unsigned short *hp;
667 const unsigned char *bp;
668
669 size = GETSIZE(op->type);
670 reg->d[0] = reg->d[1] = 0;
671
672 switch (op->element_size) {
673 case 16:
674 /* whole vector; lxv[x] or lxvl[l] */
675 if (size == 0)
676 break;
677 memcpy(reg, mem, size);
678 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
679 rev = !rev;
680 if (rev)
681 do_byte_reverse(reg, 16);
682 break;
683 case 8:
684 /* scalar loads, lxvd2x, lxvdsx */
685 read_size = (size >= 8) ? 8 : size;
686 i = IS_LE ? 8 : 8 - read_size;
687 memcpy(®->b[i], mem, read_size);
688 if (rev)
689 do_byte_reverse(®->b[i], 8);
690 if (size < 8) {
691 if (op->type & SIGNEXT) {
692 /* size == 4 is the only case here */
693 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
694 } else if (op->vsx_flags & VSX_FPCONV) {
695 preempt_disable();
696 conv_sp_to_dp(®->fp[1 + IS_LE],
697 ®->dp[IS_LE]);
698 preempt_enable();
699 }
700 } else {
701 if (size == 16) {
702 unsigned long v = *(unsigned long *)(mem + 8);
703 reg->d[IS_BE] = !rev ? v : byterev_8(v);
704 } else if (op->vsx_flags & VSX_SPLAT)
705 reg->d[IS_BE] = reg->d[IS_LE];
706 }
707 break;
708 case 4:
709 /* lxvw4x, lxvwsx */
710 wp = mem;
711 for (j = 0; j < size / 4; ++j) {
712 i = IS_LE ? 3 - j : j;
713 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
714 }
715 if (op->vsx_flags & VSX_SPLAT) {
716 u32 val = reg->w[IS_LE ? 3 : 0];
717 for (; j < 4; ++j) {
718 i = IS_LE ? 3 - j : j;
719 reg->w[i] = val;
720 }
721 }
722 break;
723 case 2:
724 /* lxvh8x */
725 hp = mem;
726 for (j = 0; j < size / 2; ++j) {
727 i = IS_LE ? 7 - j : j;
728 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
729 }
730 break;
731 case 1:
732 /* lxvb16x */
733 bp = mem;
734 for (j = 0; j < size; ++j) {
735 i = IS_LE ? 15 - j : j;
736 reg->b[i] = *bp++;
737 }
738 break;
739 }
740}
741EXPORT_SYMBOL_GPL(emulate_vsx_load);
742NOKPROBE_SYMBOL(emulate_vsx_load);
743
744void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
745 void *mem, bool rev)
746{
747 int size, write_size;
748 int i, j;
749 union vsx_reg buf;
750 unsigned int *wp;
751 unsigned short *hp;
752 unsigned char *bp;
753
754 size = GETSIZE(op->type);
755
756 switch (op->element_size) {
757 case 16:
758 /* stxv, stxvx, stxvl, stxvll */
759 if (size == 0)
760 break;
761 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
762 rev = !rev;
763 if (rev) {
764 /* reverse 16 bytes */
765 buf.d[0] = byterev_8(reg->d[1]);
766 buf.d[1] = byterev_8(reg->d[0]);
767 reg = &buf;
768 }
769 memcpy(mem, reg, size);
770 break;
771 case 8:
772 /* scalar stores, stxvd2x */
773 write_size = (size >= 8) ? 8 : size;
774 i = IS_LE ? 8 : 8 - write_size;
775 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
776 buf.d[0] = buf.d[1] = 0;
777 preempt_disable();
778 conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]);
779 preempt_enable();
780 reg = &buf;
781 }
782 memcpy(mem, ®->b[i], write_size);
783 if (size == 16)
784 memcpy(mem + 8, ®->d[IS_BE], 8);
785 if (unlikely(rev)) {
786 do_byte_reverse(mem, write_size);
787 if (size == 16)
788 do_byte_reverse(mem + 8, 8);
789 }
790 break;
791 case 4:
792 /* stxvw4x */
793 wp = mem;
794 for (j = 0; j < size / 4; ++j) {
795 i = IS_LE ? 3 - j : j;
796 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
797 }
798 break;
799 case 2:
800 /* stxvh8x */
801 hp = mem;
802 for (j = 0; j < size / 2; ++j) {
803 i = IS_LE ? 7 - j : j;
804 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
805 }
806 break;
807 case 1:
808 /* stvxb16x */
809 bp = mem;
810 for (j = 0; j < size; ++j) {
811 i = IS_LE ? 15 - j : j;
812 *bp++ = reg->b[i];
813 }
814 break;
815 }
816}
817EXPORT_SYMBOL_GPL(emulate_vsx_store);
818NOKPROBE_SYMBOL(emulate_vsx_store);
819
820static nokprobe_inline int do_vsx_load(struct instruction_op *op,
821 unsigned long ea, struct pt_regs *regs,
822 bool cross_endian)
823{
824 int reg = op->reg;
825 u8 mem[16];
826 union vsx_reg buf;
827 int size = GETSIZE(op->type);
828
829 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
830 return -EFAULT;
831
832 emulate_vsx_load(op, &buf, mem, cross_endian);
833 preempt_disable();
834 if (reg < 32) {
835 /* FP regs + extensions */
836 if (regs->msr & MSR_FP) {
837 load_vsrn(reg, &buf);
838 } else {
839 current->thread.fp_state.fpr[reg][0] = buf.d[0];
840 current->thread.fp_state.fpr[reg][1] = buf.d[1];
841 }
842 } else {
843 if (regs->msr & MSR_VEC)
844 load_vsrn(reg, &buf);
845 else
846 current->thread.vr_state.vr[reg - 32] = buf.v;
847 }
848 preempt_enable();
849 return 0;
850}
851
852static nokprobe_inline int do_vsx_store(struct instruction_op *op,
853 unsigned long ea, struct pt_regs *regs,
854 bool cross_endian)
855{
856 int reg = op->reg;
857 u8 mem[16];
858 union vsx_reg buf;
859 int size = GETSIZE(op->type);
860
861 if (!address_ok(regs, ea, size))
862 return -EFAULT;
863
864 preempt_disable();
865 if (reg < 32) {
866 /* FP regs + extensions */
867 if (regs->msr & MSR_FP) {
868 store_vsrn(reg, &buf);
869 } else {
870 buf.d[0] = current->thread.fp_state.fpr[reg][0];
871 buf.d[1] = current->thread.fp_state.fpr[reg][1];
872 }
873 } else {
874 if (regs->msr & MSR_VEC)
875 store_vsrn(reg, &buf);
876 else
877 buf.v = current->thread.vr_state.vr[reg - 32];
878 }
879 preempt_enable();
880 emulate_vsx_store(op, &buf, mem, cross_endian);
881 return copy_mem_out(mem, ea, size, regs);
882}
883#endif /* CONFIG_VSX */
884
885int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
886{
887 int err;
888 unsigned long i, size;
889
890#ifdef __powerpc64__
891 size = ppc64_caches.l1d.block_size;
892 if (!(regs->msr & MSR_64BIT))
893 ea &= 0xffffffffUL;
894#else
895 size = L1_CACHE_BYTES;
896#endif
897 ea &= ~(size - 1);
898 if (!address_ok(regs, ea, size))
899 return -EFAULT;
900 for (i = 0; i < size; i += sizeof(long)) {
901 err = __put_user(0, (unsigned long __user *) (ea + i));
902 if (err) {
903 regs->dar = ea;
904 return err;
905 }
906 }
907 return 0;
908}
909NOKPROBE_SYMBOL(emulate_dcbz);
910
911#define __put_user_asmx(x, addr, err, op, cr) \
912 __asm__ __volatile__( \
913 "1: " op " %2,0,%3\n" \
914 " mfcr %1\n" \
915 "2:\n" \
916 ".section .fixup,\"ax\"\n" \
917 "3: li %0,%4\n" \
918 " b 2b\n" \
919 ".previous\n" \
920 EX_TABLE(1b, 3b) \
921 : "=r" (err), "=r" (cr) \
922 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
923
924#define __get_user_asmx(x, addr, err, op) \
925 __asm__ __volatile__( \
926 "1: "op" %1,0,%2\n" \
927 "2:\n" \
928 ".section .fixup,\"ax\"\n" \
929 "3: li %0,%3\n" \
930 " b 2b\n" \
931 ".previous\n" \
932 EX_TABLE(1b, 3b) \
933 : "=r" (err), "=r" (x) \
934 : "r" (addr), "i" (-EFAULT), "0" (err))
935
936#define __cacheop_user_asmx(addr, err, op) \
937 __asm__ __volatile__( \
938 "1: "op" 0,%1\n" \
939 "2:\n" \
940 ".section .fixup,\"ax\"\n" \
941 "3: li %0,%3\n" \
942 " b 2b\n" \
943 ".previous\n" \
944 EX_TABLE(1b, 3b) \
945 : "=r" (err) \
946 : "r" (addr), "i" (-EFAULT), "0" (err))
947
948static nokprobe_inline void set_cr0(const struct pt_regs *regs,
949 struct instruction_op *op)
950{
951 long val = op->val;
952
953 op->type |= SETCC;
954 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
955#ifdef __powerpc64__
956 if (!(regs->msr & MSR_64BIT))
957 val = (int) val;
958#endif
959 if (val < 0)
960 op->ccval |= 0x80000000;
961 else if (val > 0)
962 op->ccval |= 0x40000000;
963 else
964 op->ccval |= 0x20000000;
965}
966
967static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
968{
969 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
970 if (val)
971 op->xerval |= XER_CA32;
972 else
973 op->xerval &= ~XER_CA32;
974 }
975}
976
977static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
978 struct instruction_op *op, int rd,
979 unsigned long val1, unsigned long val2,
980 unsigned long carry_in)
981{
982 unsigned long val = val1 + val2;
983
984 if (carry_in)
985 ++val;
986 op->type = COMPUTE + SETREG + SETXER;
987 op->reg = rd;
988 op->val = val;
989#ifdef __powerpc64__
990 if (!(regs->msr & MSR_64BIT)) {
991 val = (unsigned int) val;
992 val1 = (unsigned int) val1;
993 }
994#endif
995 op->xerval = regs->xer;
996 if (val < val1 || (carry_in && val == val1))
997 op->xerval |= XER_CA;
998 else
999 op->xerval &= ~XER_CA;
1000
1001 set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1002 (carry_in && (unsigned int)val == (unsigned int)val1));
1003}
1004
1005static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1006 struct instruction_op *op,
1007 long v1, long v2, int crfld)
1008{
1009 unsigned int crval, shift;
1010
1011 op->type = COMPUTE + SETCC;
1012 crval = (regs->xer >> 31) & 1; /* get SO bit */
1013 if (v1 < v2)
1014 crval |= 8;
1015 else if (v1 > v2)
1016 crval |= 4;
1017 else
1018 crval |= 2;
1019 shift = (7 - crfld) * 4;
1020 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1021}
1022
1023static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1024 struct instruction_op *op,
1025 unsigned long v1,
1026 unsigned long v2, int crfld)
1027{
1028 unsigned int crval, shift;
1029
1030 op->type = COMPUTE + SETCC;
1031 crval = (regs->xer >> 31) & 1; /* get SO bit */
1032 if (v1 < v2)
1033 crval |= 8;
1034 else if (v1 > v2)
1035 crval |= 4;
1036 else
1037 crval |= 2;
1038 shift = (7 - crfld) * 4;
1039 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1040}
1041
1042static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1043 struct instruction_op *op,
1044 unsigned long v1, unsigned long v2)
1045{
1046 unsigned long long out_val, mask;
1047 int i;
1048
1049 out_val = 0;
1050 for (i = 0; i < 8; i++) {
1051 mask = 0xffUL << (i * 8);
1052 if ((v1 & mask) == (v2 & mask))
1053 out_val |= mask;
1054 }
1055 op->val = out_val;
1056}
1057
1058/*
1059 * The size parameter is used to adjust the equivalent popcnt instruction.
1060 * popcntb = 8, popcntw = 32, popcntd = 64
1061 */
1062static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1063 struct instruction_op *op,
1064 unsigned long v1, int size)
1065{
1066 unsigned long long out = v1;
1067
1068 out -= (out >> 1) & 0x5555555555555555;
1069 out = (0x3333333333333333 & out) + (0x3333333333333333 & (out >> 2));
1070 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0f;
1071
1072 if (size == 8) { /* popcntb */
1073 op->val = out;
1074 return;
1075 }
1076 out += out >> 8;
1077 out += out >> 16;
1078 if (size == 32) { /* popcntw */
1079 op->val = out & 0x0000003f0000003f;
1080 return;
1081 }
1082
1083 out = (out + (out >> 32)) & 0x7f;
1084 op->val = out; /* popcntd */
1085}
1086
1087#ifdef CONFIG_PPC64
1088static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1089 struct instruction_op *op,
1090 unsigned long v1, unsigned long v2)
1091{
1092 unsigned char perm, idx;
1093 unsigned int i;
1094
1095 perm = 0;
1096 for (i = 0; i < 8; i++) {
1097 idx = (v1 >> (i * 8)) & 0xff;
1098 if (idx < 64)
1099 if (v2 & PPC_BIT(idx))
1100 perm |= 1 << i;
1101 }
1102 op->val = perm;
1103}
1104#endif /* CONFIG_PPC64 */
1105/*
1106 * The size parameter adjusts the equivalent prty instruction.
1107 * prtyw = 32, prtyd = 64
1108 */
1109static nokprobe_inline void do_prty(const struct pt_regs *regs,
1110 struct instruction_op *op,
1111 unsigned long v, int size)
1112{
1113 unsigned long long res = v ^ (v >> 8);
1114
1115 res ^= res >> 16;
1116 if (size == 32) { /* prtyw */
1117 op->val = res & 0x0000000100000001;
1118 return;
1119 }
1120
1121 res ^= res >> 32;
1122 op->val = res & 1; /*prtyd */
1123}
1124
1125static nokprobe_inline int trap_compare(long v1, long v2)
1126{
1127 int ret = 0;
1128
1129 if (v1 < v2)
1130 ret |= 0x10;
1131 else if (v1 > v2)
1132 ret |= 0x08;
1133 else
1134 ret |= 0x04;
1135 if ((unsigned long)v1 < (unsigned long)v2)
1136 ret |= 0x02;
1137 else if ((unsigned long)v1 > (unsigned long)v2)
1138 ret |= 0x01;
1139 return ret;
1140}
1141
1142/*
1143 * Elements of 32-bit rotate and mask instructions.
1144 */
1145#define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
1146 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1147#ifdef __powerpc64__
1148#define MASK64_L(mb) (~0UL >> (mb))
1149#define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
1150#define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1151#define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1152#else
1153#define DATA32(x) (x)
1154#endif
1155#define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1156
1157/*
1158 * Decode an instruction, and return information about it in *op
1159 * without changing *regs.
1160 * Integer arithmetic and logical instructions, branches, and barrier
1161 * instructions can be emulated just using the information in *op.
1162 *
1163 * Return value is 1 if the instruction can be emulated just by
1164 * updating *regs with the information in *op, -1 if we need the
1165 * GPRs but *regs doesn't contain the full register set, or 0
1166 * otherwise.
1167 */
1168int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1169 unsigned int instr)
1170{
1171 unsigned int opcode, ra, rb, rd, spr, u;
1172 unsigned long int imm;
1173 unsigned long int val, val2;
1174 unsigned int mb, me, sh;
1175 long ival;
1176
1177 op->type = COMPUTE;
1178
1179 opcode = instr >> 26;
1180 switch (opcode) {
1181 case 16: /* bc */
1182 op->type = BRANCH;
1183 imm = (signed short)(instr & 0xfffc);
1184 if ((instr & 2) == 0)
1185 imm += regs->nip;
1186 op->val = truncate_if_32bit(regs->msr, imm);
1187 if (instr & 1)
1188 op->type |= SETLK;
1189 if (branch_taken(instr, regs, op))
1190 op->type |= BRTAKEN;
1191 return 1;
1192#ifdef CONFIG_PPC64
1193 case 17: /* sc */
1194 if ((instr & 0xfe2) == 2)
1195 op->type = SYSCALL;
1196 else
1197 op->type = UNKNOWN;
1198 return 0;
1199#endif
1200 case 18: /* b */
1201 op->type = BRANCH | BRTAKEN;
1202 imm = instr & 0x03fffffc;
1203 if (imm & 0x02000000)
1204 imm -= 0x04000000;
1205 if ((instr & 2) == 0)
1206 imm += regs->nip;
1207 op->val = truncate_if_32bit(regs->msr, imm);
1208 if (instr & 1)
1209 op->type |= SETLK;
1210 return 1;
1211 case 19:
1212 switch ((instr >> 1) & 0x3ff) {
1213 case 0: /* mcrf */
1214 op->type = COMPUTE + SETCC;
1215 rd = 7 - ((instr >> 23) & 0x7);
1216 ra = 7 - ((instr >> 18) & 0x7);
1217 rd *= 4;
1218 ra *= 4;
1219 val = (regs->ccr >> ra) & 0xf;
1220 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1221 return 1;
1222
1223 case 16: /* bclr */
1224 case 528: /* bcctr */
1225 op->type = BRANCH;
1226 imm = (instr & 0x400)? regs->ctr: regs->link;
1227 op->val = truncate_if_32bit(regs->msr, imm);
1228 if (instr & 1)
1229 op->type |= SETLK;
1230 if (branch_taken(instr, regs, op))
1231 op->type |= BRTAKEN;
1232 return 1;
1233
1234 case 18: /* rfid, scary */
1235 if (regs->msr & MSR_PR)
1236 goto priv;
1237 op->type = RFI;
1238 return 0;
1239
1240 case 150: /* isync */
1241 op->type = BARRIER | BARRIER_ISYNC;
1242 return 1;
1243
1244 case 33: /* crnor */
1245 case 129: /* crandc */
1246 case 193: /* crxor */
1247 case 225: /* crnand */
1248 case 257: /* crand */
1249 case 289: /* creqv */
1250 case 417: /* crorc */
1251 case 449: /* cror */
1252 op->type = COMPUTE + SETCC;
1253 ra = (instr >> 16) & 0x1f;
1254 rb = (instr >> 11) & 0x1f;
1255 rd = (instr >> 21) & 0x1f;
1256 ra = (regs->ccr >> (31 - ra)) & 1;
1257 rb = (regs->ccr >> (31 - rb)) & 1;
1258 val = (instr >> (6 + ra * 2 + rb)) & 1;
1259 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1260 (val << (31 - rd));
1261 return 1;
1262 }
1263 break;
1264 case 31:
1265 switch ((instr >> 1) & 0x3ff) {
1266 case 598: /* sync */
1267 op->type = BARRIER + BARRIER_SYNC;
1268#ifdef __powerpc64__
1269 switch ((instr >> 21) & 3) {
1270 case 1: /* lwsync */
1271 op->type = BARRIER + BARRIER_LWSYNC;
1272 break;
1273 case 2: /* ptesync */
1274 op->type = BARRIER + BARRIER_PTESYNC;
1275 break;
1276 }
1277#endif
1278 return 1;
1279
1280 case 854: /* eieio */
1281 op->type = BARRIER + BARRIER_EIEIO;
1282 return 1;
1283 }
1284 break;
1285 }
1286
1287 /* Following cases refer to regs->gpr[], so we need all regs */
1288 if (!FULL_REGS(regs))
1289 return -1;
1290
1291 rd = (instr >> 21) & 0x1f;
1292 ra = (instr >> 16) & 0x1f;
1293 rb = (instr >> 11) & 0x1f;
1294
1295 switch (opcode) {
1296#ifdef __powerpc64__
1297 case 2: /* tdi */
1298 if (rd & trap_compare(regs->gpr[ra], (short) instr))
1299 goto trap;
1300 return 1;
1301#endif
1302 case 3: /* twi */
1303 if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
1304 goto trap;
1305 return 1;
1306
1307 case 7: /* mulli */
1308 op->val = regs->gpr[ra] * (short) instr;
1309 goto compute_done;
1310
1311 case 8: /* subfic */
1312 imm = (short) instr;
1313 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1314 return 1;
1315
1316 case 10: /* cmpli */
1317 imm = (unsigned short) instr;
1318 val = regs->gpr[ra];
1319#ifdef __powerpc64__
1320 if ((rd & 1) == 0)
1321 val = (unsigned int) val;
1322#endif
1323 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1324 return 1;
1325
1326 case 11: /* cmpi */
1327 imm = (short) instr;
1328 val = regs->gpr[ra];
1329#ifdef __powerpc64__
1330 if ((rd & 1) == 0)
1331 val = (int) val;
1332#endif
1333 do_cmp_signed(regs, op, val, imm, rd >> 2);
1334 return 1;
1335
1336 case 12: /* addic */
1337 imm = (short) instr;
1338 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1339 return 1;
1340
1341 case 13: /* addic. */
1342 imm = (short) instr;
1343 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1344 set_cr0(regs, op);
1345 return 1;
1346
1347 case 14: /* addi */
1348 imm = (short) instr;
1349 if (ra)
1350 imm += regs->gpr[ra];
1351 op->val = imm;
1352 goto compute_done;
1353
1354 case 15: /* addis */
1355 imm = ((short) instr) << 16;
1356 if (ra)
1357 imm += regs->gpr[ra];
1358 op->val = imm;
1359 goto compute_done;
1360
1361 case 19:
1362 if (((instr >> 1) & 0x1f) == 2) {
1363 /* addpcis */
1364 imm = (short) (instr & 0xffc1); /* d0 + d2 fields */
1365 imm |= (instr >> 15) & 0x3e; /* d1 field */
1366 op->val = regs->nip + (imm << 16) + 4;
1367 goto compute_done;
1368 }
1369 op->type = UNKNOWN;
1370 return 0;
1371
1372 case 20: /* rlwimi */
1373 mb = (instr >> 6) & 0x1f;
1374 me = (instr >> 1) & 0x1f;
1375 val = DATA32(regs->gpr[rd]);
1376 imm = MASK32(mb, me);
1377 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1378 goto logical_done;
1379
1380 case 21: /* rlwinm */
1381 mb = (instr >> 6) & 0x1f;
1382 me = (instr >> 1) & 0x1f;
1383 val = DATA32(regs->gpr[rd]);
1384 op->val = ROTATE(val, rb) & MASK32(mb, me);
1385 goto logical_done;
1386
1387 case 23: /* rlwnm */
1388 mb = (instr >> 6) & 0x1f;
1389 me = (instr >> 1) & 0x1f;
1390 rb = regs->gpr[rb] & 0x1f;
1391 val = DATA32(regs->gpr[rd]);
1392 op->val = ROTATE(val, rb) & MASK32(mb, me);
1393 goto logical_done;
1394
1395 case 24: /* ori */
1396 op->val = regs->gpr[rd] | (unsigned short) instr;
1397 goto logical_done_nocc;
1398
1399 case 25: /* oris */
1400 imm = (unsigned short) instr;
1401 op->val = regs->gpr[rd] | (imm << 16);
1402 goto logical_done_nocc;
1403
1404 case 26: /* xori */
1405 op->val = regs->gpr[rd] ^ (unsigned short) instr;
1406 goto logical_done_nocc;
1407
1408 case 27: /* xoris */
1409 imm = (unsigned short) instr;
1410 op->val = regs->gpr[rd] ^ (imm << 16);
1411 goto logical_done_nocc;
1412
1413 case 28: /* andi. */
1414 op->val = regs->gpr[rd] & (unsigned short) instr;
1415 set_cr0(regs, op);
1416 goto logical_done_nocc;
1417
1418 case 29: /* andis. */
1419 imm = (unsigned short) instr;
1420 op->val = regs->gpr[rd] & (imm << 16);
1421 set_cr0(regs, op);
1422 goto logical_done_nocc;
1423
1424#ifdef __powerpc64__
1425 case 30: /* rld* */
1426 mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
1427 val = regs->gpr[rd];
1428 if ((instr & 0x10) == 0) {
1429 sh = rb | ((instr & 2) << 4);
1430 val = ROTATE(val, sh);
1431 switch ((instr >> 2) & 3) {
1432 case 0: /* rldicl */
1433 val &= MASK64_L(mb);
1434 break;
1435 case 1: /* rldicr */
1436 val &= MASK64_R(mb);
1437 break;
1438 case 2: /* rldic */
1439 val &= MASK64(mb, 63 - sh);
1440 break;
1441 case 3: /* rldimi */
1442 imm = MASK64(mb, 63 - sh);
1443 val = (regs->gpr[ra] & ~imm) |
1444 (val & imm);
1445 }
1446 op->val = val;
1447 goto logical_done;
1448 } else {
1449 sh = regs->gpr[rb] & 0x3f;
1450 val = ROTATE(val, sh);
1451 switch ((instr >> 1) & 7) {
1452 case 0: /* rldcl */
1453 op->val = val & MASK64_L(mb);
1454 goto logical_done;
1455 case 1: /* rldcr */
1456 op->val = val & MASK64_R(mb);
1457 goto logical_done;
1458 }
1459 }
1460#endif
1461 op->type = UNKNOWN; /* illegal instruction */
1462 return 0;
1463
1464 case 31:
1465 /* isel occupies 32 minor opcodes */
1466 if (((instr >> 1) & 0x1f) == 15) {
1467 mb = (instr >> 6) & 0x1f; /* bc field */
1468 val = (regs->ccr >> (31 - mb)) & 1;
1469 val2 = (ra) ? regs->gpr[ra] : 0;
1470
1471 op->val = (val) ? val2 : regs->gpr[rb];
1472 goto compute_done;
1473 }
1474
1475 switch ((instr >> 1) & 0x3ff) {
1476 case 4: /* tw */
1477 if (rd == 0x1f ||
1478 (rd & trap_compare((int)regs->gpr[ra],
1479 (int)regs->gpr[rb])))
1480 goto trap;
1481 return 1;
1482#ifdef __powerpc64__
1483 case 68: /* td */
1484 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1485 goto trap;
1486 return 1;
1487#endif
1488 case 83: /* mfmsr */
1489 if (regs->msr & MSR_PR)
1490 goto priv;
1491 op->type = MFMSR;
1492 op->reg = rd;
1493 return 0;
1494 case 146: /* mtmsr */
1495 if (regs->msr & MSR_PR)
1496 goto priv;
1497 op->type = MTMSR;
1498 op->reg = rd;
1499 op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1500 return 0;
1501#ifdef CONFIG_PPC64
1502 case 178: /* mtmsrd */
1503 if (regs->msr & MSR_PR)
1504 goto priv;
1505 op->type = MTMSR;
1506 op->reg = rd;
1507 /* only MSR_EE and MSR_RI get changed if bit 15 set */
1508 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1509 imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1510 op->val = imm;
1511 return 0;
1512#endif
1513
1514 case 19: /* mfcr */
1515 imm = 0xffffffffUL;
1516 if ((instr >> 20) & 1) {
1517 imm = 0xf0000000UL;
1518 for (sh = 0; sh < 8; ++sh) {
1519 if (instr & (0x80000 >> sh))
1520 break;
1521 imm >>= 4;
1522 }
1523 }
1524 op->val = regs->ccr & imm;
1525 goto compute_done;
1526
1527 case 144: /* mtcrf */
1528 op->type = COMPUTE + SETCC;
1529 imm = 0xf0000000UL;
1530 val = regs->gpr[rd];
1531 op->ccval = regs->ccr;
1532 for (sh = 0; sh < 8; ++sh) {
1533 if (instr & (0x80000 >> sh))
1534 op->ccval = (op->ccval & ~imm) |
1535 (val & imm);
1536 imm >>= 4;
1537 }
1538 return 1;
1539
1540 case 339: /* mfspr */
1541 spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1542 op->type = MFSPR;
1543 op->reg = rd;
1544 op->spr = spr;
1545 if (spr == SPRN_XER || spr == SPRN_LR ||
1546 spr == SPRN_CTR)
1547 return 1;
1548 return 0;
1549
1550 case 467: /* mtspr */
1551 spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1552 op->type = MTSPR;
1553 op->val = regs->gpr[rd];
1554 op->spr = spr;
1555 if (spr == SPRN_XER || spr == SPRN_LR ||
1556 spr == SPRN_CTR)
1557 return 1;
1558 return 0;
1559
1560/*
1561 * Compare instructions
1562 */
1563 case 0: /* cmp */
1564 val = regs->gpr[ra];
1565 val2 = regs->gpr[rb];
1566#ifdef __powerpc64__
1567 if ((rd & 1) == 0) {
1568 /* word (32-bit) compare */
1569 val = (int) val;
1570 val2 = (int) val2;
1571 }
1572#endif
1573 do_cmp_signed(regs, op, val, val2, rd >> 2);
1574 return 1;
1575
1576 case 32: /* cmpl */
1577 val = regs->gpr[ra];
1578 val2 = regs->gpr[rb];
1579#ifdef __powerpc64__
1580 if ((rd & 1) == 0) {
1581 /* word (32-bit) compare */
1582 val = (unsigned int) val;
1583 val2 = (unsigned int) val2;
1584 }
1585#endif
1586 do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1587 return 1;
1588
1589 case 508: /* cmpb */
1590 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1591 goto logical_done_nocc;
1592
1593/*
1594 * Arithmetic instructions
1595 */
1596 case 8: /* subfc */
1597 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1598 regs->gpr[rb], 1);
1599 goto arith_done;
1600#ifdef __powerpc64__
1601 case 9: /* mulhdu */
1602 asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1603 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1604 goto arith_done;
1605#endif
1606 case 10: /* addc */
1607 add_with_carry(regs, op, rd, regs->gpr[ra],
1608 regs->gpr[rb], 0);
1609 goto arith_done;
1610
1611 case 11: /* mulhwu */
1612 asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1613 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1614 goto arith_done;
1615
1616 case 40: /* subf */
1617 op->val = regs->gpr[rb] - regs->gpr[ra];
1618 goto arith_done;
1619#ifdef __powerpc64__
1620 case 73: /* mulhd */
1621 asm("mulhd %0,%1,%2" : "=r" (op->val) :
1622 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1623 goto arith_done;
1624#endif
1625 case 75: /* mulhw */
1626 asm("mulhw %0,%1,%2" : "=r" (op->val) :
1627 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1628 goto arith_done;
1629
1630 case 104: /* neg */
1631 op->val = -regs->gpr[ra];
1632 goto arith_done;
1633
1634 case 136: /* subfe */
1635 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1636 regs->gpr[rb], regs->xer & XER_CA);
1637 goto arith_done;
1638
1639 case 138: /* adde */
1640 add_with_carry(regs, op, rd, regs->gpr[ra],
1641 regs->gpr[rb], regs->xer & XER_CA);
1642 goto arith_done;
1643
1644 case 200: /* subfze */
1645 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1646 regs->xer & XER_CA);
1647 goto arith_done;
1648
1649 case 202: /* addze */
1650 add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1651 regs->xer & XER_CA);
1652 goto arith_done;
1653
1654 case 232: /* subfme */
1655 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1656 regs->xer & XER_CA);
1657 goto arith_done;
1658#ifdef __powerpc64__
1659 case 233: /* mulld */
1660 op->val = regs->gpr[ra] * regs->gpr[rb];
1661 goto arith_done;
1662#endif
1663 case 234: /* addme */
1664 add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1665 regs->xer & XER_CA);
1666 goto arith_done;
1667
1668 case 235: /* mullw */
1669 op->val = (long)(int) regs->gpr[ra] *
1670 (int) regs->gpr[rb];
1671
1672 goto arith_done;
1673
1674 case 266: /* add */
1675 op->val = regs->gpr[ra] + regs->gpr[rb];
1676 goto arith_done;
1677#ifdef __powerpc64__
1678 case 457: /* divdu */
1679 op->val = regs->gpr[ra] / regs->gpr[rb];
1680 goto arith_done;
1681#endif
1682 case 459: /* divwu */
1683 op->val = (unsigned int) regs->gpr[ra] /
1684 (unsigned int) regs->gpr[rb];
1685 goto arith_done;
1686#ifdef __powerpc64__
1687 case 489: /* divd */
1688 op->val = (long int) regs->gpr[ra] /
1689 (long int) regs->gpr[rb];
1690 goto arith_done;
1691#endif
1692 case 491: /* divw */
1693 op->val = (int) regs->gpr[ra] /
1694 (int) regs->gpr[rb];
1695 goto arith_done;
1696
1697
1698/*
1699 * Logical instructions
1700 */
1701 case 26: /* cntlzw */
1702 val = (unsigned int) regs->gpr[rd];
1703 op->val = ( val ? __builtin_clz(val) : 32 );
1704 goto logical_done;
1705#ifdef __powerpc64__
1706 case 58: /* cntlzd */
1707 val = regs->gpr[rd];
1708 op->val = ( val ? __builtin_clzl(val) : 64 );
1709 goto logical_done;
1710#endif
1711 case 28: /* and */
1712 op->val = regs->gpr[rd] & regs->gpr[rb];
1713 goto logical_done;
1714
1715 case 60: /* andc */
1716 op->val = regs->gpr[rd] & ~regs->gpr[rb];
1717 goto logical_done;
1718
1719 case 122: /* popcntb */
1720 do_popcnt(regs, op, regs->gpr[rd], 8);
1721 goto logical_done_nocc;
1722
1723 case 124: /* nor */
1724 op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1725 goto logical_done;
1726
1727 case 154: /* prtyw */
1728 do_prty(regs, op, regs->gpr[rd], 32);
1729 goto logical_done_nocc;
1730
1731 case 186: /* prtyd */
1732 do_prty(regs, op, regs->gpr[rd], 64);
1733 goto logical_done_nocc;
1734#ifdef CONFIG_PPC64
1735 case 252: /* bpermd */
1736 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1737 goto logical_done_nocc;
1738#endif
1739 case 284: /* xor */
1740 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1741 goto logical_done;
1742
1743 case 316: /* xor */
1744 op->val = regs->gpr[rd] ^ regs->gpr[rb];
1745 goto logical_done;
1746
1747 case 378: /* popcntw */
1748 do_popcnt(regs, op, regs->gpr[rd], 32);
1749 goto logical_done_nocc;
1750
1751 case 412: /* orc */
1752 op->val = regs->gpr[rd] | ~regs->gpr[rb];
1753 goto logical_done;
1754
1755 case 444: /* or */
1756 op->val = regs->gpr[rd] | regs->gpr[rb];
1757 goto logical_done;
1758
1759 case 476: /* nand */
1760 op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1761 goto logical_done;
1762#ifdef CONFIG_PPC64
1763 case 506: /* popcntd */
1764 do_popcnt(regs, op, regs->gpr[rd], 64);
1765 goto logical_done_nocc;
1766#endif
1767 case 922: /* extsh */
1768 op->val = (signed short) regs->gpr[rd];
1769 goto logical_done;
1770
1771 case 954: /* extsb */
1772 op->val = (signed char) regs->gpr[rd];
1773 goto logical_done;
1774#ifdef __powerpc64__
1775 case 986: /* extsw */
1776 op->val = (signed int) regs->gpr[rd];
1777 goto logical_done;
1778#endif
1779
1780/*
1781 * Shift instructions
1782 */
1783 case 24: /* slw */
1784 sh = regs->gpr[rb] & 0x3f;
1785 if (sh < 32)
1786 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1787 else
1788 op->val = 0;
1789 goto logical_done;
1790
1791 case 536: /* srw */
1792 sh = regs->gpr[rb] & 0x3f;
1793 if (sh < 32)
1794 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1795 else
1796 op->val = 0;
1797 goto logical_done;
1798
1799 case 792: /* sraw */
1800 op->type = COMPUTE + SETREG + SETXER;
1801 sh = regs->gpr[rb] & 0x3f;
1802 ival = (signed int) regs->gpr[rd];
1803 op->val = ival >> (sh < 32 ? sh : 31);
1804 op->xerval = regs->xer;
1805 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1806 op->xerval |= XER_CA;
1807 else
1808 op->xerval &= ~XER_CA;
1809 set_ca32(op, op->xerval & XER_CA);
1810 goto logical_done;
1811
1812 case 824: /* srawi */
1813 op->type = COMPUTE + SETREG + SETXER;
1814 sh = rb;
1815 ival = (signed int) regs->gpr[rd];
1816 op->val = ival >> sh;
1817 op->xerval = regs->xer;
1818 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1819 op->xerval |= XER_CA;
1820 else
1821 op->xerval &= ~XER_CA;
1822 set_ca32(op, op->xerval & XER_CA);
1823 goto logical_done;
1824
1825#ifdef __powerpc64__
1826 case 27: /* sld */
1827 sh = regs->gpr[rb] & 0x7f;
1828 if (sh < 64)
1829 op->val = regs->gpr[rd] << sh;
1830 else
1831 op->val = 0;
1832 goto logical_done;
1833
1834 case 539: /* srd */
1835 sh = regs->gpr[rb] & 0x7f;
1836 if (sh < 64)
1837 op->val = regs->gpr[rd] >> sh;
1838 else
1839 op->val = 0;
1840 goto logical_done;
1841
1842 case 794: /* srad */
1843 op->type = COMPUTE + SETREG + SETXER;
1844 sh = regs->gpr[rb] & 0x7f;
1845 ival = (signed long int) regs->gpr[rd];
1846 op->val = ival >> (sh < 64 ? sh : 63);
1847 op->xerval = regs->xer;
1848 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1849 op->xerval |= XER_CA;
1850 else
1851 op->xerval &= ~XER_CA;
1852 set_ca32(op, op->xerval & XER_CA);
1853 goto logical_done;
1854
1855 case 826: /* sradi with sh_5 = 0 */
1856 case 827: /* sradi with sh_5 = 1 */
1857 op->type = COMPUTE + SETREG + SETXER;
1858 sh = rb | ((instr & 2) << 4);
1859 ival = (signed long int) regs->gpr[rd];
1860 op->val = ival >> sh;
1861 op->xerval = regs->xer;
1862 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1863 op->xerval |= XER_CA;
1864 else
1865 op->xerval &= ~XER_CA;
1866 set_ca32(op, op->xerval & XER_CA);
1867 goto logical_done;
1868#endif /* __powerpc64__ */
1869
1870/*
1871 * Cache instructions
1872 */
1873 case 54: /* dcbst */
1874 op->type = MKOP(CACHEOP, DCBST, 0);
1875 op->ea = xform_ea(instr, regs);
1876 return 0;
1877
1878 case 86: /* dcbf */
1879 op->type = MKOP(CACHEOP, DCBF, 0);
1880 op->ea = xform_ea(instr, regs);
1881 return 0;
1882
1883 case 246: /* dcbtst */
1884 op->type = MKOP(CACHEOP, DCBTST, 0);
1885 op->ea = xform_ea(instr, regs);
1886 op->reg = rd;
1887 return 0;
1888
1889 case 278: /* dcbt */
1890 op->type = MKOP(CACHEOP, DCBTST, 0);
1891 op->ea = xform_ea(instr, regs);
1892 op->reg = rd;
1893 return 0;
1894
1895 case 982: /* icbi */
1896 op->type = MKOP(CACHEOP, ICBI, 0);
1897 op->ea = xform_ea(instr, regs);
1898 return 0;
1899
1900 case 1014: /* dcbz */
1901 op->type = MKOP(CACHEOP, DCBZ, 0);
1902 op->ea = xform_ea(instr, regs);
1903 return 0;
1904 }
1905 break;
1906 }
1907
1908/*
1909 * Loads and stores.
1910 */
1911 op->type = UNKNOWN;
1912 op->update_reg = ra;
1913 op->reg = rd;
1914 op->val = regs->gpr[rd];
1915 u = (instr >> 20) & UPDATE;
1916 op->vsx_flags = 0;
1917
1918 switch (opcode) {
1919 case 31:
1920 u = instr & UPDATE;
1921 op->ea = xform_ea(instr, regs);
1922 switch ((instr >> 1) & 0x3ff) {
1923 case 20: /* lwarx */
1924 op->type = MKOP(LARX, 0, 4);
1925 break;
1926
1927 case 150: /* stwcx. */
1928 op->type = MKOP(STCX, 0, 4);
1929 break;
1930
1931#ifdef __powerpc64__
1932 case 84: /* ldarx */
1933 op->type = MKOP(LARX, 0, 8);
1934 break;
1935
1936 case 214: /* stdcx. */
1937 op->type = MKOP(STCX, 0, 8);
1938 break;
1939
1940 case 52: /* lbarx */
1941 op->type = MKOP(LARX, 0, 1);
1942 break;
1943
1944 case 694: /* stbcx. */
1945 op->type = MKOP(STCX, 0, 1);
1946 break;
1947
1948 case 116: /* lharx */
1949 op->type = MKOP(LARX, 0, 2);
1950 break;
1951
1952 case 726: /* sthcx. */
1953 op->type = MKOP(STCX, 0, 2);
1954 break;
1955
1956 case 276: /* lqarx */
1957 if (!((rd & 1) || rd == ra || rd == rb))
1958 op->type = MKOP(LARX, 0, 16);
1959 break;
1960
1961 case 182: /* stqcx. */
1962 if (!(rd & 1))
1963 op->type = MKOP(STCX, 0, 16);
1964 break;
1965#endif
1966
1967 case 23: /* lwzx */
1968 case 55: /* lwzux */
1969 op->type = MKOP(LOAD, u, 4);
1970 break;
1971
1972 case 87: /* lbzx */
1973 case 119: /* lbzux */
1974 op->type = MKOP(LOAD, u, 1);
1975 break;
1976
1977#ifdef CONFIG_ALTIVEC
1978 /*
1979 * Note: for the load/store vector element instructions,
1980 * bits of the EA say which field of the VMX register to use.
1981 */
1982 case 7: /* lvebx */
1983 op->type = MKOP(LOAD_VMX, 0, 1);
1984 op->element_size = 1;
1985 break;
1986
1987 case 39: /* lvehx */
1988 op->type = MKOP(LOAD_VMX, 0, 2);
1989 op->element_size = 2;
1990 break;
1991
1992 case 71: /* lvewx */
1993 op->type = MKOP(LOAD_VMX, 0, 4);
1994 op->element_size = 4;
1995 break;
1996
1997 case 103: /* lvx */
1998 case 359: /* lvxl */
1999 op->type = MKOP(LOAD_VMX, 0, 16);
2000 op->element_size = 16;
2001 break;
2002
2003 case 135: /* stvebx */
2004 op->type = MKOP(STORE_VMX, 0, 1);
2005 op->element_size = 1;
2006 break;
2007
2008 case 167: /* stvehx */
2009 op->type = MKOP(STORE_VMX, 0, 2);
2010 op->element_size = 2;
2011 break;
2012
2013 case 199: /* stvewx */
2014 op->type = MKOP(STORE_VMX, 0, 4);
2015 op->element_size = 4;
2016 break;
2017
2018 case 231: /* stvx */
2019 case 487: /* stvxl */
2020 op->type = MKOP(STORE_VMX, 0, 16);
2021 break;
2022#endif /* CONFIG_ALTIVEC */
2023
2024#ifdef __powerpc64__
2025 case 21: /* ldx */
2026 case 53: /* ldux */
2027 op->type = MKOP(LOAD, u, 8);
2028 break;
2029
2030 case 149: /* stdx */
2031 case 181: /* stdux */
2032 op->type = MKOP(STORE, u, 8);
2033 break;
2034#endif
2035
2036 case 151: /* stwx */
2037 case 183: /* stwux */
2038 op->type = MKOP(STORE, u, 4);
2039 break;
2040
2041 case 215: /* stbx */
2042 case 247: /* stbux */
2043 op->type = MKOP(STORE, u, 1);
2044 break;
2045
2046 case 279: /* lhzx */
2047 case 311: /* lhzux */
2048 op->type = MKOP(LOAD, u, 2);
2049 break;
2050
2051#ifdef __powerpc64__
2052 case 341: /* lwax */
2053 case 373: /* lwaux */
2054 op->type = MKOP(LOAD, SIGNEXT | u, 4);
2055 break;
2056#endif
2057
2058 case 343: /* lhax */
2059 case 375: /* lhaux */
2060 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2061 break;
2062
2063 case 407: /* sthx */
2064 case 439: /* sthux */
2065 op->type = MKOP(STORE, u, 2);
2066 break;
2067
2068#ifdef __powerpc64__
2069 case 532: /* ldbrx */
2070 op->type = MKOP(LOAD, BYTEREV, 8);
2071 break;
2072
2073#endif
2074 case 533: /* lswx */
2075 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2076 break;
2077
2078 case 534: /* lwbrx */
2079 op->type = MKOP(LOAD, BYTEREV, 4);
2080 break;
2081
2082 case 597: /* lswi */
2083 if (rb == 0)
2084 rb = 32; /* # bytes to load */
2085 op->type = MKOP(LOAD_MULTI, 0, rb);
2086 op->ea = ra ? regs->gpr[ra] : 0;
2087 break;
2088
2089#ifdef CONFIG_PPC_FPU
2090 case 535: /* lfsx */
2091 case 567: /* lfsux */
2092 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2093 break;
2094
2095 case 599: /* lfdx */
2096 case 631: /* lfdux */
2097 op->type = MKOP(LOAD_FP, u, 8);
2098 break;
2099
2100 case 663: /* stfsx */
2101 case 695: /* stfsux */
2102 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2103 break;
2104
2105 case 727: /* stfdx */
2106 case 759: /* stfdux */
2107 op->type = MKOP(STORE_FP, u, 8);
2108 break;
2109
2110#ifdef __powerpc64__
2111 case 791: /* lfdpx */
2112 op->type = MKOP(LOAD_FP, 0, 16);
2113 break;
2114
2115 case 855: /* lfiwax */
2116 op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2117 break;
2118
2119 case 887: /* lfiwzx */
2120 op->type = MKOP(LOAD_FP, 0, 4);
2121 break;
2122
2123 case 919: /* stfdpx */
2124 op->type = MKOP(STORE_FP, 0, 16);
2125 break;
2126
2127 case 983: /* stfiwx */
2128 op->type = MKOP(STORE_FP, 0, 4);
2129 break;
2130#endif /* __powerpc64 */
2131#endif /* CONFIG_PPC_FPU */
2132
2133#ifdef __powerpc64__
2134 case 660: /* stdbrx */
2135 op->type = MKOP(STORE, BYTEREV, 8);
2136 op->val = byterev_8(regs->gpr[rd]);
2137 break;
2138
2139#endif
2140 case 661: /* stswx */
2141 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2142 break;
2143
2144 case 662: /* stwbrx */
2145 op->type = MKOP(STORE, BYTEREV, 4);
2146 op->val = byterev_4(regs->gpr[rd]);
2147 break;
2148
2149 case 725: /* stswi */
2150 if (rb == 0)
2151 rb = 32; /* # bytes to store */
2152 op->type = MKOP(STORE_MULTI, 0, rb);
2153 op->ea = ra ? regs->gpr[ra] : 0;
2154 break;
2155
2156 case 790: /* lhbrx */
2157 op->type = MKOP(LOAD, BYTEREV, 2);
2158 break;
2159
2160 case 918: /* sthbrx */
2161 op->type = MKOP(STORE, BYTEREV, 2);
2162 op->val = byterev_2(regs->gpr[rd]);
2163 break;
2164
2165#ifdef CONFIG_VSX
2166 case 12: /* lxsiwzx */
2167 op->reg = rd | ((instr & 1) << 5);
2168 op->type = MKOP(LOAD_VSX, 0, 4);
2169 op->element_size = 8;
2170 break;
2171
2172 case 76: /* lxsiwax */
2173 op->reg = rd | ((instr & 1) << 5);
2174 op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2175 op->element_size = 8;
2176 break;
2177
2178 case 140: /* stxsiwx */
2179 op->reg = rd | ((instr & 1) << 5);
2180 op->type = MKOP(STORE_VSX, 0, 4);
2181 op->element_size = 8;
2182 break;
2183
2184 case 268: /* lxvx */
2185 op->reg = rd | ((instr & 1) << 5);
2186 op->type = MKOP(LOAD_VSX, 0, 16);
2187 op->element_size = 16;
2188 op->vsx_flags = VSX_CHECK_VEC;
2189 break;
2190
2191 case 269: /* lxvl */
2192 case 301: { /* lxvll */
2193 int nb;
2194 op->reg = rd | ((instr & 1) << 5);
2195 op->ea = ra ? regs->gpr[ra] : 0;
2196 nb = regs->gpr[rb] & 0xff;
2197 if (nb > 16)
2198 nb = 16;
2199 op->type = MKOP(LOAD_VSX, 0, nb);
2200 op->element_size = 16;
2201 op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2202 VSX_CHECK_VEC;
2203 break;
2204 }
2205 case 332: /* lxvdsx */
2206 op->reg = rd | ((instr & 1) << 5);
2207 op->type = MKOP(LOAD_VSX, 0, 8);
2208 op->element_size = 8;
2209 op->vsx_flags = VSX_SPLAT;
2210 break;
2211
2212 case 364: /* lxvwsx */
2213 op->reg = rd | ((instr & 1) << 5);
2214 op->type = MKOP(LOAD_VSX, 0, 4);
2215 op->element_size = 4;
2216 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2217 break;
2218
2219 case 396: /* stxvx */
2220 op->reg = rd | ((instr & 1) << 5);
2221 op->type = MKOP(STORE_VSX, 0, 16);
2222 op->element_size = 16;
2223 op->vsx_flags = VSX_CHECK_VEC;
2224 break;
2225
2226 case 397: /* stxvl */
2227 case 429: { /* stxvll */
2228 int nb;
2229 op->reg = rd | ((instr & 1) << 5);
2230 op->ea = ra ? regs->gpr[ra] : 0;
2231 nb = regs->gpr[rb] & 0xff;
2232 if (nb > 16)
2233 nb = 16;
2234 op->type = MKOP(STORE_VSX, 0, nb);
2235 op->element_size = 16;
2236 op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2237 VSX_CHECK_VEC;
2238 break;
2239 }
2240 case 524: /* lxsspx */
2241 op->reg = rd | ((instr & 1) << 5);
2242 op->type = MKOP(LOAD_VSX, 0, 4);
2243 op->element_size = 8;
2244 op->vsx_flags = VSX_FPCONV;
2245 break;
2246
2247 case 588: /* lxsdx */
2248 op->reg = rd | ((instr & 1) << 5);
2249 op->type = MKOP(LOAD_VSX, 0, 8);
2250 op->element_size = 8;
2251 break;
2252
2253 case 652: /* stxsspx */
2254 op->reg = rd | ((instr & 1) << 5);
2255 op->type = MKOP(STORE_VSX, 0, 4);
2256 op->element_size = 8;
2257 op->vsx_flags = VSX_FPCONV;
2258 break;
2259
2260 case 716: /* stxsdx */
2261 op->reg = rd | ((instr & 1) << 5);
2262 op->type = MKOP(STORE_VSX, 0, 8);
2263 op->element_size = 8;
2264 break;
2265
2266 case 780: /* lxvw4x */
2267 op->reg = rd | ((instr & 1) << 5);
2268 op->type = MKOP(LOAD_VSX, 0, 16);
2269 op->element_size = 4;
2270 break;
2271
2272 case 781: /* lxsibzx */
2273 op->reg = rd | ((instr & 1) << 5);
2274 op->type = MKOP(LOAD_VSX, 0, 1);
2275 op->element_size = 8;
2276 op->vsx_flags = VSX_CHECK_VEC;
2277 break;
2278
2279 case 812: /* lxvh8x */
2280 op->reg = rd | ((instr & 1) << 5);
2281 op->type = MKOP(LOAD_VSX, 0, 16);
2282 op->element_size = 2;
2283 op->vsx_flags = VSX_CHECK_VEC;
2284 break;
2285
2286 case 813: /* lxsihzx */
2287 op->reg = rd | ((instr & 1) << 5);
2288 op->type = MKOP(LOAD_VSX, 0, 2);
2289 op->element_size = 8;
2290 op->vsx_flags = VSX_CHECK_VEC;
2291 break;
2292
2293 case 844: /* lxvd2x */
2294 op->reg = rd | ((instr & 1) << 5);
2295 op->type = MKOP(LOAD_VSX, 0, 16);
2296 op->element_size = 8;
2297 break;
2298
2299 case 876: /* lxvb16x */
2300 op->reg = rd | ((instr & 1) << 5);
2301 op->type = MKOP(LOAD_VSX, 0, 16);
2302 op->element_size = 1;
2303 op->vsx_flags = VSX_CHECK_VEC;
2304 break;
2305
2306 case 908: /* stxvw4x */
2307 op->reg = rd | ((instr & 1) << 5);
2308 op->type = MKOP(STORE_VSX, 0, 16);
2309 op->element_size = 4;
2310 break;
2311
2312 case 909: /* stxsibx */
2313 op->reg = rd | ((instr & 1) << 5);
2314 op->type = MKOP(STORE_VSX, 0, 1);
2315 op->element_size = 8;
2316 op->vsx_flags = VSX_CHECK_VEC;
2317 break;
2318
2319 case 940: /* stxvh8x */
2320 op->reg = rd | ((instr & 1) << 5);
2321 op->type = MKOP(STORE_VSX, 0, 16);
2322 op->element_size = 2;
2323 op->vsx_flags = VSX_CHECK_VEC;
2324 break;
2325
2326 case 941: /* stxsihx */
2327 op->reg = rd | ((instr & 1) << 5);
2328 op->type = MKOP(STORE_VSX, 0, 2);
2329 op->element_size = 8;
2330 op->vsx_flags = VSX_CHECK_VEC;
2331 break;
2332
2333 case 972: /* stxvd2x */
2334 op->reg = rd | ((instr & 1) << 5);
2335 op->type = MKOP(STORE_VSX, 0, 16);
2336 op->element_size = 8;
2337 break;
2338
2339 case 1004: /* stxvb16x */
2340 op->reg = rd | ((instr & 1) << 5);
2341 op->type = MKOP(STORE_VSX, 0, 16);
2342 op->element_size = 1;
2343 op->vsx_flags = VSX_CHECK_VEC;
2344 break;
2345
2346#endif /* CONFIG_VSX */
2347 }
2348 break;
2349
2350 case 32: /* lwz */
2351 case 33: /* lwzu */
2352 op->type = MKOP(LOAD, u, 4);
2353 op->ea = dform_ea(instr, regs);
2354 break;
2355
2356 case 34: /* lbz */
2357 case 35: /* lbzu */
2358 op->type = MKOP(LOAD, u, 1);
2359 op->ea = dform_ea(instr, regs);
2360 break;
2361
2362 case 36: /* stw */
2363 case 37: /* stwu */
2364 op->type = MKOP(STORE, u, 4);
2365 op->ea = dform_ea(instr, regs);
2366 break;
2367
2368 case 38: /* stb */
2369 case 39: /* stbu */
2370 op->type = MKOP(STORE, u, 1);
2371 op->ea = dform_ea(instr, regs);
2372 break;
2373
2374 case 40: /* lhz */
2375 case 41: /* lhzu */
2376 op->type = MKOP(LOAD, u, 2);
2377 op->ea = dform_ea(instr, regs);
2378 break;
2379
2380 case 42: /* lha */
2381 case 43: /* lhau */
2382 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2383 op->ea = dform_ea(instr, regs);
2384 break;
2385
2386 case 44: /* sth */
2387 case 45: /* sthu */
2388 op->type = MKOP(STORE, u, 2);
2389 op->ea = dform_ea(instr, regs);
2390 break;
2391
2392 case 46: /* lmw */
2393 if (ra >= rd)
2394 break; /* invalid form, ra in range to load */
2395 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2396 op->ea = dform_ea(instr, regs);
2397 break;
2398
2399 case 47: /* stmw */
2400 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2401 op->ea = dform_ea(instr, regs);
2402 break;
2403
2404#ifdef CONFIG_PPC_FPU
2405 case 48: /* lfs */
2406 case 49: /* lfsu */
2407 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2408 op->ea = dform_ea(instr, regs);
2409 break;
2410
2411 case 50: /* lfd */
2412 case 51: /* lfdu */
2413 op->type = MKOP(LOAD_FP, u, 8);
2414 op->ea = dform_ea(instr, regs);
2415 break;
2416
2417 case 52: /* stfs */
2418 case 53: /* stfsu */
2419 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2420 op->ea = dform_ea(instr, regs);
2421 break;
2422
2423 case 54: /* stfd */
2424 case 55: /* stfdu */
2425 op->type = MKOP(STORE_FP, u, 8);
2426 op->ea = dform_ea(instr, regs);
2427 break;
2428#endif
2429
2430#ifdef __powerpc64__
2431 case 56: /* lq */
2432 if (!((rd & 1) || (rd == ra)))
2433 op->type = MKOP(LOAD, 0, 16);
2434 op->ea = dqform_ea(instr, regs);
2435 break;
2436#endif
2437
2438#ifdef CONFIG_VSX
2439 case 57: /* lfdp, lxsd, lxssp */
2440 op->ea = dsform_ea(instr, regs);
2441 switch (instr & 3) {
2442 case 0: /* lfdp */
2443 if (rd & 1)
2444 break; /* reg must be even */
2445 op->type = MKOP(LOAD_FP, 0, 16);
2446 break;
2447 case 2: /* lxsd */
2448 op->reg = rd + 32;
2449 op->type = MKOP(LOAD_VSX, 0, 8);
2450 op->element_size = 8;
2451 op->vsx_flags = VSX_CHECK_VEC;
2452 break;
2453 case 3: /* lxssp */
2454 op->reg = rd + 32;
2455 op->type = MKOP(LOAD_VSX, 0, 4);
2456 op->element_size = 8;
2457 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2458 break;
2459 }
2460 break;
2461#endif /* CONFIG_VSX */
2462
2463#ifdef __powerpc64__
2464 case 58: /* ld[u], lwa */
2465 op->ea = dsform_ea(instr, regs);
2466 switch (instr & 3) {
2467 case 0: /* ld */
2468 op->type = MKOP(LOAD, 0, 8);
2469 break;
2470 case 1: /* ldu */
2471 op->type = MKOP(LOAD, UPDATE, 8);
2472 break;
2473 case 2: /* lwa */
2474 op->type = MKOP(LOAD, SIGNEXT, 4);
2475 break;
2476 }
2477 break;
2478#endif
2479
2480#ifdef CONFIG_VSX
2481 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
2482 switch (instr & 7) {
2483 case 0: /* stfdp with LSB of DS field = 0 */
2484 case 4: /* stfdp with LSB of DS field = 1 */
2485 op->ea = dsform_ea(instr, regs);
2486 op->type = MKOP(STORE_FP, 0, 16);
2487 break;
2488
2489 case 1: /* lxv */
2490 op->ea = dqform_ea(instr, regs);
2491 if (instr & 8)
2492 op->reg = rd + 32;
2493 op->type = MKOP(LOAD_VSX, 0, 16);
2494 op->element_size = 16;
2495 op->vsx_flags = VSX_CHECK_VEC;
2496 break;
2497
2498 case 2: /* stxsd with LSB of DS field = 0 */
2499 case 6: /* stxsd with LSB of DS field = 1 */
2500 op->ea = dsform_ea(instr, regs);
2501 op->reg = rd + 32;
2502 op->type = MKOP(STORE_VSX, 0, 8);
2503 op->element_size = 8;
2504 op->vsx_flags = VSX_CHECK_VEC;
2505 break;
2506
2507 case 3: /* stxssp with LSB of DS field = 0 */
2508 case 7: /* stxssp with LSB of DS field = 1 */
2509 op->ea = dsform_ea(instr, regs);
2510 op->reg = rd + 32;
2511 op->type = MKOP(STORE_VSX, 0, 4);
2512 op->element_size = 8;
2513 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2514 break;
2515
2516 case 5: /* stxv */
2517 op->ea = dqform_ea(instr, regs);
2518 if (instr & 8)
2519 op->reg = rd + 32;
2520 op->type = MKOP(STORE_VSX, 0, 16);
2521 op->element_size = 16;
2522 op->vsx_flags = VSX_CHECK_VEC;
2523 break;
2524 }
2525 break;
2526#endif /* CONFIG_VSX */
2527
2528#ifdef __powerpc64__
2529 case 62: /* std[u] */
2530 op->ea = dsform_ea(instr, regs);
2531 switch (instr & 3) {
2532 case 0: /* std */
2533 op->type = MKOP(STORE, 0, 8);
2534 break;
2535 case 1: /* stdu */
2536 op->type = MKOP(STORE, UPDATE, 8);
2537 break;
2538 case 2: /* stq */
2539 if (!(rd & 1))
2540 op->type = MKOP(STORE, 0, 16);
2541 break;
2542 }
2543 break;
2544#endif /* __powerpc64__ */
2545
2546 }
2547 return 0;
2548
2549 logical_done:
2550 if (instr & 1)
2551 set_cr0(regs, op);
2552 logical_done_nocc:
2553 op->reg = ra;
2554 op->type |= SETREG;
2555 return 1;
2556
2557 arith_done:
2558 if (instr & 1)
2559 set_cr0(regs, op);
2560 compute_done:
2561 op->reg = rd;
2562 op->type |= SETREG;
2563 return 1;
2564
2565 priv:
2566 op->type = INTERRUPT | 0x700;
2567 op->val = SRR1_PROGPRIV;
2568 return 0;
2569
2570 trap:
2571 op->type = INTERRUPT | 0x700;
2572 op->val = SRR1_PROGTRAP;
2573 return 0;
2574}
2575EXPORT_SYMBOL_GPL(analyse_instr);
2576NOKPROBE_SYMBOL(analyse_instr);
2577
2578/*
2579 * For PPC32 we always use stwu with r1 to change the stack pointer.
2580 * So this emulated store may corrupt the exception frame, now we
2581 * have to provide the exception frame trampoline, which is pushed
2582 * below the kprobed function stack. So we only update gpr[1] but
2583 * don't emulate the real store operation. We will do real store
2584 * operation safely in exception return code by checking this flag.
2585 */
2586static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2587{
2588#ifdef CONFIG_PPC32
2589 /*
2590 * Check if we will touch kernel stack overflow
2591 */
2592 if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2593 printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2594 return -EINVAL;
2595 }
2596#endif /* CONFIG_PPC32 */
2597 /*
2598 * Check if we already set since that means we'll
2599 * lose the previous value.
2600 */
2601 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2602 set_thread_flag(TIF_EMULATE_STACK_STORE);
2603 return 0;
2604}
2605
2606static nokprobe_inline void do_signext(unsigned long *valp, int size)
2607{
2608 switch (size) {
2609 case 2:
2610 *valp = (signed short) *valp;
2611 break;
2612 case 4:
2613 *valp = (signed int) *valp;
2614 break;
2615 }
2616}
2617
2618static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2619{
2620 switch (size) {
2621 case 2:
2622 *valp = byterev_2(*valp);
2623 break;
2624 case 4:
2625 *valp = byterev_4(*valp);
2626 break;
2627#ifdef __powerpc64__
2628 case 8:
2629 *valp = byterev_8(*valp);
2630 break;
2631#endif
2632 }
2633}
2634
2635/*
2636 * Emulate an instruction that can be executed just by updating
2637 * fields in *regs.
2638 */
2639void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2640{
2641 unsigned long next_pc;
2642
2643 next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
2644 switch (op->type & INSTR_TYPE_MASK) {
2645 case COMPUTE:
2646 if (op->type & SETREG)
2647 regs->gpr[op->reg] = op->val;
2648 if (op->type & SETCC)
2649 regs->ccr = op->ccval;
2650 if (op->type & SETXER)
2651 regs->xer = op->xerval;
2652 break;
2653
2654 case BRANCH:
2655 if (op->type & SETLK)
2656 regs->link = next_pc;
2657 if (op->type & BRTAKEN)
2658 next_pc = op->val;
2659 if (op->type & DECCTR)
2660 --regs->ctr;
2661 break;
2662
2663 case BARRIER:
2664 switch (op->type & BARRIER_MASK) {
2665 case BARRIER_SYNC:
2666 mb();
2667 break;
2668 case BARRIER_ISYNC:
2669 isync();
2670 break;
2671 case BARRIER_EIEIO:
2672 eieio();
2673 break;
2674 case BARRIER_LWSYNC:
2675 asm volatile("lwsync" : : : "memory");
2676 break;
2677 case BARRIER_PTESYNC:
2678 asm volatile("ptesync" : : : "memory");
2679 break;
2680 }
2681 break;
2682
2683 case MFSPR:
2684 switch (op->spr) {
2685 case SPRN_XER:
2686 regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2687 break;
2688 case SPRN_LR:
2689 regs->gpr[op->reg] = regs->link;
2690 break;
2691 case SPRN_CTR:
2692 regs->gpr[op->reg] = regs->ctr;
2693 break;
2694 default:
2695 WARN_ON_ONCE(1);
2696 }
2697 break;
2698
2699 case MTSPR:
2700 switch (op->spr) {
2701 case SPRN_XER:
2702 regs->xer = op->val & 0xffffffffUL;
2703 break;
2704 case SPRN_LR:
2705 regs->link = op->val;
2706 break;
2707 case SPRN_CTR:
2708 regs->ctr = op->val;
2709 break;
2710 default:
2711 WARN_ON_ONCE(1);
2712 }
2713 break;
2714
2715 default:
2716 WARN_ON_ONCE(1);
2717 }
2718 regs->nip = next_pc;
2719}
2720NOKPROBE_SYMBOL(emulate_update_regs);
2721
2722/*
2723 * Emulate a previously-analysed load or store instruction.
2724 * Return values are:
2725 * 0 = instruction emulated successfully
2726 * -EFAULT = address out of range or access faulted (regs->dar
2727 * contains the faulting address)
2728 * -EACCES = misaligned access, instruction requires alignment
2729 * -EINVAL = unknown operation in *op
2730 */
2731int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
2732{
2733 int err, size, type;
2734 int i, rd, nb;
2735 unsigned int cr;
2736 unsigned long val;
2737 unsigned long ea;
2738 bool cross_endian;
2739
2740 err = 0;
2741 size = GETSIZE(op->type);
2742 type = op->type & INSTR_TYPE_MASK;
2743 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
2744 ea = truncate_if_32bit(regs->msr, op->ea);
2745
2746 switch (type) {
2747 case LARX:
2748 if (ea & (size - 1))
2749 return -EACCES; /* can't handle misaligned */
2750 if (!address_ok(regs, ea, size))
2751 return -EFAULT;
2752 err = 0;
2753 val = 0;
2754 switch (size) {
2755#ifdef __powerpc64__
2756 case 1:
2757 __get_user_asmx(val, ea, err, "lbarx");
2758 break;
2759 case 2:
2760 __get_user_asmx(val, ea, err, "lharx");
2761 break;
2762#endif
2763 case 4:
2764 __get_user_asmx(val, ea, err, "lwarx");
2765 break;
2766#ifdef __powerpc64__
2767 case 8:
2768 __get_user_asmx(val, ea, err, "ldarx");
2769 break;
2770 case 16:
2771 err = do_lqarx(ea, ®s->gpr[op->reg]);
2772 break;
2773#endif
2774 default:
2775 return -EINVAL;
2776 }
2777 if (err) {
2778 regs->dar = ea;
2779 break;
2780 }
2781 if (size < 16)
2782 regs->gpr[op->reg] = val;
2783 break;
2784
2785 case STCX:
2786 if (ea & (size - 1))
2787 return -EACCES; /* can't handle misaligned */
2788 if (!address_ok(regs, ea, size))
2789 return -EFAULT;
2790 err = 0;
2791 switch (size) {
2792#ifdef __powerpc64__
2793 case 1:
2794 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2795 break;
2796 case 2:
2797 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2798 break;
2799#endif
2800 case 4:
2801 __put_user_asmx(op->val, ea, err, "stwcx.", cr);
2802 break;
2803#ifdef __powerpc64__
2804 case 8:
2805 __put_user_asmx(op->val, ea, err, "stdcx.", cr);
2806 break;
2807 case 16:
2808 err = do_stqcx(ea, regs->gpr[op->reg],
2809 regs->gpr[op->reg + 1], &cr);
2810 break;
2811#endif
2812 default:
2813 return -EINVAL;
2814 }
2815 if (!err)
2816 regs->ccr = (regs->ccr & 0x0fffffff) |
2817 (cr & 0xe0000000) |
2818 ((regs->xer >> 3) & 0x10000000);
2819 else
2820 regs->dar = ea;
2821 break;
2822
2823 case LOAD:
2824#ifdef __powerpc64__
2825 if (size == 16) {
2826 err = emulate_lq(regs, ea, op->reg, cross_endian);
2827 break;
2828 }
2829#endif
2830 err = read_mem(®s->gpr[op->reg], ea, size, regs);
2831 if (!err) {
2832 if (op->type & SIGNEXT)
2833 do_signext(®s->gpr[op->reg], size);
2834 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
2835 do_byterev(®s->gpr[op->reg], size);
2836 }
2837 break;
2838
2839#ifdef CONFIG_PPC_FPU
2840 case LOAD_FP:
2841 /*
2842 * If the instruction is in userspace, we can emulate it even
2843 * if the VMX state is not live, because we have the state
2844 * stored in the thread_struct. If the instruction is in
2845 * the kernel, we must not touch the state in the thread_struct.
2846 */
2847 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2848 return 0;
2849 err = do_fp_load(op, ea, regs, cross_endian);
2850 break;
2851#endif
2852#ifdef CONFIG_ALTIVEC
2853 case LOAD_VMX:
2854 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2855 return 0;
2856 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
2857 break;
2858#endif
2859#ifdef CONFIG_VSX
2860 case LOAD_VSX: {
2861 unsigned long msrbit = MSR_VSX;
2862
2863 /*
2864 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2865 * when the target of the instruction is a vector register.
2866 */
2867 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2868 msrbit = MSR_VEC;
2869 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2870 return 0;
2871 err = do_vsx_load(op, ea, regs, cross_endian);
2872 break;
2873 }
2874#endif
2875 case LOAD_MULTI:
2876 if (!address_ok(regs, ea, size))
2877 return -EFAULT;
2878 rd = op->reg;
2879 for (i = 0; i < size; i += 4) {
2880 unsigned int v32 = 0;
2881
2882 nb = size - i;
2883 if (nb > 4)
2884 nb = 4;
2885 err = copy_mem_in((u8 *) &v32, ea, nb, regs);
2886 if (err)
2887 break;
2888 if (unlikely(cross_endian))
2889 v32 = byterev_4(v32);
2890 regs->gpr[rd] = v32;
2891 ea += 4;
2892 /* reg number wraps from 31 to 0 for lsw[ix] */
2893 rd = (rd + 1) & 0x1f;
2894 }
2895 break;
2896
2897 case STORE:
2898#ifdef __powerpc64__
2899 if (size == 16) {
2900 err = emulate_stq(regs, ea, op->reg, cross_endian);
2901 break;
2902 }
2903#endif
2904 if ((op->type & UPDATE) && size == sizeof(long) &&
2905 op->reg == 1 && op->update_reg == 1 &&
2906 !(regs->msr & MSR_PR) &&
2907 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
2908 err = handle_stack_update(ea, regs);
2909 break;
2910 }
2911 if (unlikely(cross_endian))
2912 do_byterev(&op->val, size);
2913 err = write_mem(op->val, ea, size, regs);
2914 break;
2915
2916#ifdef CONFIG_PPC_FPU
2917 case STORE_FP:
2918 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2919 return 0;
2920 err = do_fp_store(op, ea, regs, cross_endian);
2921 break;
2922#endif
2923#ifdef CONFIG_ALTIVEC
2924 case STORE_VMX:
2925 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2926 return 0;
2927 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
2928 break;
2929#endif
2930#ifdef CONFIG_VSX
2931 case STORE_VSX: {
2932 unsigned long msrbit = MSR_VSX;
2933
2934 /*
2935 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2936 * when the target of the instruction is a vector register.
2937 */
2938 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2939 msrbit = MSR_VEC;
2940 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2941 return 0;
2942 err = do_vsx_store(op, ea, regs, cross_endian);
2943 break;
2944 }
2945#endif
2946 case STORE_MULTI:
2947 if (!address_ok(regs, ea, size))
2948 return -EFAULT;
2949 rd = op->reg;
2950 for (i = 0; i < size; i += 4) {
2951 unsigned int v32 = regs->gpr[rd];
2952
2953 nb = size - i;
2954 if (nb > 4)
2955 nb = 4;
2956 if (unlikely(cross_endian))
2957 v32 = byterev_4(v32);
2958 err = copy_mem_out((u8 *) &v32, ea, nb, regs);
2959 if (err)
2960 break;
2961 ea += 4;
2962 /* reg number wraps from 31 to 0 for stsw[ix] */
2963 rd = (rd + 1) & 0x1f;
2964 }
2965 break;
2966
2967 default:
2968 return -EINVAL;
2969 }
2970
2971 if (err)
2972 return err;
2973
2974 if (op->type & UPDATE)
2975 regs->gpr[op->update_reg] = op->ea;
2976
2977 return 0;
2978}
2979NOKPROBE_SYMBOL(emulate_loadstore);
2980
2981/*
2982 * Emulate instructions that cause a transfer of control,
2983 * loads and stores, and a few other instructions.
2984 * Returns 1 if the step was emulated, 0 if not,
2985 * or -1 if the instruction is one that should not be stepped,
2986 * such as an rfid, or a mtmsrd that would clear MSR_RI.
2987 */
2988int emulate_step(struct pt_regs *regs, unsigned int instr)
2989{
2990 struct instruction_op op;
2991 int r, err, type;
2992 unsigned long val;
2993 unsigned long ea;
2994
2995 r = analyse_instr(&op, regs, instr);
2996 if (r < 0)
2997 return r;
2998 if (r > 0) {
2999 emulate_update_regs(regs, &op);
3000 return 1;
3001 }
3002
3003 err = 0;
3004 type = op.type & INSTR_TYPE_MASK;
3005
3006 if (OP_IS_LOAD_STORE(type)) {
3007 err = emulate_loadstore(regs, &op);
3008 if (err)
3009 return 0;
3010 goto instr_done;
3011 }
3012
3013 switch (type) {
3014 case CACHEOP:
3015 ea = truncate_if_32bit(regs->msr, op.ea);
3016 if (!address_ok(regs, ea, 8))
3017 return 0;
3018 switch (op.type & CACHEOP_MASK) {
3019 case DCBST:
3020 __cacheop_user_asmx(ea, err, "dcbst");
3021 break;
3022 case DCBF:
3023 __cacheop_user_asmx(ea, err, "dcbf");
3024 break;
3025 case DCBTST:
3026 if (op.reg == 0)
3027 prefetchw((void *) ea);
3028 break;
3029 case DCBT:
3030 if (op.reg == 0)
3031 prefetch((void *) ea);
3032 break;
3033 case ICBI:
3034 __cacheop_user_asmx(ea, err, "icbi");
3035 break;
3036 case DCBZ:
3037 err = emulate_dcbz(ea, regs);
3038 break;
3039 }
3040 if (err) {
3041 regs->dar = ea;
3042 return 0;
3043 }
3044 goto instr_done;
3045
3046 case MFMSR:
3047 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3048 goto instr_done;
3049
3050 case MTMSR:
3051 val = regs->gpr[op.reg];
3052 if ((val & MSR_RI) == 0)
3053 /* can't step mtmsr[d] that would clear MSR_RI */
3054 return -1;
3055 /* here op.val is the mask of bits to change */
3056 regs->msr = (regs->msr & ~op.val) | (val & op.val);
3057 goto instr_done;
3058
3059#ifdef CONFIG_PPC64
3060 case SYSCALL: /* sc */
3061 /*
3062 * N.B. this uses knowledge about how the syscall
3063 * entry code works. If that is changed, this will
3064 * need to be changed also.
3065 */
3066 if (regs->gpr[0] == 0x1ebe &&
3067 cpu_has_feature(CPU_FTR_REAL_LE)) {
3068 regs->msr ^= MSR_LE;
3069 goto instr_done;
3070 }
3071 regs->gpr[9] = regs->gpr[13];
3072 regs->gpr[10] = MSR_KERNEL;
3073 regs->gpr[11] = regs->nip + 4;
3074 regs->gpr[12] = regs->msr & MSR_MASK;
3075 regs->gpr[13] = (unsigned long) get_paca();
3076 regs->nip = (unsigned long) &system_call_common;
3077 regs->msr = MSR_KERNEL;
3078 return 1;
3079
3080 case RFI:
3081 return -1;
3082#endif
3083 }
3084 return 0;
3085
3086 instr_done:
3087 regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
3088 return 1;
3089}
3090NOKPROBE_SYMBOL(emulate_step);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Single-step support.
4 *
5 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6 */
7#include <linux/kernel.h>
8#include <linux/kprobes.h>
9#include <linux/ptrace.h>
10#include <linux/prefetch.h>
11#include <asm/sstep.h>
12#include <asm/processor.h>
13#include <linux/uaccess.h>
14#include <asm/cpu_has_feature.h>
15#include <asm/cputable.h>
16#include <asm/disassemble.h>
17
18#ifdef CONFIG_PPC64
19/* Bits in SRR1 that are copied from MSR */
20#define MSR_MASK 0xffffffff87c0ffffUL
21#else
22#define MSR_MASK 0x87c0ffff
23#endif
24
25/* Bits in XER */
26#define XER_SO 0x80000000U
27#define XER_OV 0x40000000U
28#define XER_CA 0x20000000U
29#define XER_OV32 0x00080000U
30#define XER_CA32 0x00040000U
31
32#ifdef CONFIG_VSX
33#define VSX_REGISTER_XTP(rd) ((((rd) & 1) << 5) | ((rd) & 0xfe))
34#endif
35
36#ifdef CONFIG_PPC_FPU
37/*
38 * Functions in ldstfp.S
39 */
40extern void get_fpr(int rn, double *p);
41extern void put_fpr(int rn, const double *p);
42extern void get_vr(int rn, __vector128 *p);
43extern void put_vr(int rn, __vector128 *p);
44extern void load_vsrn(int vsr, const void *p);
45extern void store_vsrn(int vsr, void *p);
46extern void conv_sp_to_dp(const float *sp, double *dp);
47extern void conv_dp_to_sp(const double *dp, float *sp);
48#endif
49
50#ifdef __powerpc64__
51/*
52 * Functions in quad.S
53 */
54extern int do_lq(unsigned long ea, unsigned long *regs);
55extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
56extern int do_lqarx(unsigned long ea, unsigned long *regs);
57extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
58 unsigned int *crp);
59#endif
60
61#ifdef __LITTLE_ENDIAN__
62#define IS_LE 1
63#define IS_BE 0
64#else
65#define IS_LE 0
66#define IS_BE 1
67#endif
68
69/*
70 * Emulate the truncation of 64 bit values in 32-bit mode.
71 */
72static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
73 unsigned long val)
74{
75 if ((msr & MSR_64BIT) == 0)
76 val &= 0xffffffffUL;
77 return val;
78}
79
80/*
81 * Determine whether a conditional branch instruction would branch.
82 */
83static nokprobe_inline int branch_taken(unsigned int instr,
84 const struct pt_regs *regs,
85 struct instruction_op *op)
86{
87 unsigned int bo = (instr >> 21) & 0x1f;
88 unsigned int bi;
89
90 if ((bo & 4) == 0) {
91 /* decrement counter */
92 op->type |= DECCTR;
93 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
94 return 0;
95 }
96 if ((bo & 0x10) == 0) {
97 /* check bit from CR */
98 bi = (instr >> 16) & 0x1f;
99 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
100 return 0;
101 }
102 return 1;
103}
104
105static nokprobe_inline long address_ok(struct pt_regs *regs,
106 unsigned long ea, int nb)
107{
108 if (!user_mode(regs))
109 return 1;
110 if (access_ok((void __user *)ea, nb))
111 return 1;
112 if (access_ok((void __user *)ea, 1))
113 /* Access overlaps the end of the user region */
114 regs->dar = TASK_SIZE_MAX - 1;
115 else
116 regs->dar = ea;
117 return 0;
118}
119
120/*
121 * Calculate effective address for a D-form instruction
122 */
123static nokprobe_inline unsigned long dform_ea(unsigned int instr,
124 const struct pt_regs *regs)
125{
126 int ra;
127 unsigned long ea;
128
129 ra = (instr >> 16) & 0x1f;
130 ea = (signed short) instr; /* sign-extend */
131 if (ra)
132 ea += regs->gpr[ra];
133
134 return ea;
135}
136
137#ifdef __powerpc64__
138/*
139 * Calculate effective address for a DS-form instruction
140 */
141static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
142 const struct pt_regs *regs)
143{
144 int ra;
145 unsigned long ea;
146
147 ra = (instr >> 16) & 0x1f;
148 ea = (signed short) (instr & ~3); /* sign-extend */
149 if (ra)
150 ea += regs->gpr[ra];
151
152 return ea;
153}
154
155/*
156 * Calculate effective address for a DQ-form instruction
157 */
158static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
159 const struct pt_regs *regs)
160{
161 int ra;
162 unsigned long ea;
163
164 ra = (instr >> 16) & 0x1f;
165 ea = (signed short) (instr & ~0xf); /* sign-extend */
166 if (ra)
167 ea += regs->gpr[ra];
168
169 return ea;
170}
171#endif /* __powerpc64 */
172
173/*
174 * Calculate effective address for an X-form instruction
175 */
176static nokprobe_inline unsigned long xform_ea(unsigned int instr,
177 const struct pt_regs *regs)
178{
179 int ra, rb;
180 unsigned long ea;
181
182 ra = (instr >> 16) & 0x1f;
183 rb = (instr >> 11) & 0x1f;
184 ea = regs->gpr[rb];
185 if (ra)
186 ea += regs->gpr[ra];
187
188 return ea;
189}
190
191/*
192 * Calculate effective address for a MLS:D-form / 8LS:D-form
193 * prefixed instruction
194 */
195static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
196 unsigned int suffix,
197 const struct pt_regs *regs)
198{
199 int ra, prefix_r;
200 unsigned int dd;
201 unsigned long ea, d0, d1, d;
202
203 prefix_r = GET_PREFIX_R(instr);
204 ra = GET_PREFIX_RA(suffix);
205
206 d0 = instr & 0x3ffff;
207 d1 = suffix & 0xffff;
208 d = (d0 << 16) | d1;
209
210 /*
211 * sign extend a 34 bit number
212 */
213 dd = (unsigned int)(d >> 2);
214 ea = (signed int)dd;
215 ea = (ea << 2) | (d & 0x3);
216
217 if (!prefix_r && ra)
218 ea += regs->gpr[ra];
219 else if (!prefix_r && !ra)
220 ; /* Leave ea as is */
221 else if (prefix_r)
222 ea += regs->nip;
223
224 /*
225 * (prefix_r && ra) is an invalid form. Should already be
226 * checked for by caller!
227 */
228
229 return ea;
230}
231
232/*
233 * Return the largest power of 2, not greater than sizeof(unsigned long),
234 * such that x is a multiple of it.
235 */
236static nokprobe_inline unsigned long max_align(unsigned long x)
237{
238 x |= sizeof(unsigned long);
239 return x & -x; /* isolates rightmost bit */
240}
241
242static nokprobe_inline unsigned long byterev_2(unsigned long x)
243{
244 return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
245}
246
247static nokprobe_inline unsigned long byterev_4(unsigned long x)
248{
249 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
250 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
251}
252
253#ifdef __powerpc64__
254static nokprobe_inline unsigned long byterev_8(unsigned long x)
255{
256 return (byterev_4(x) << 32) | byterev_4(x >> 32);
257}
258#endif
259
260static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
261{
262 switch (nb) {
263 case 2:
264 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
265 break;
266 case 4:
267 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
268 break;
269#ifdef __powerpc64__
270 case 8:
271 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
272 break;
273 case 16: {
274 unsigned long *up = (unsigned long *)ptr;
275 unsigned long tmp;
276 tmp = byterev_8(up[0]);
277 up[0] = byterev_8(up[1]);
278 up[1] = tmp;
279 break;
280 }
281 case 32: {
282 unsigned long *up = (unsigned long *)ptr;
283 unsigned long tmp;
284
285 tmp = byterev_8(up[0]);
286 up[0] = byterev_8(up[3]);
287 up[3] = tmp;
288 tmp = byterev_8(up[2]);
289 up[2] = byterev_8(up[1]);
290 up[1] = tmp;
291 break;
292 }
293
294#endif
295 default:
296 WARN_ON_ONCE(1);
297 }
298}
299
300static __always_inline int
301__read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
302{
303 unsigned long x = 0;
304
305 switch (nb) {
306 case 1:
307 unsafe_get_user(x, (unsigned char __user *)ea, Efault);
308 break;
309 case 2:
310 unsafe_get_user(x, (unsigned short __user *)ea, Efault);
311 break;
312 case 4:
313 unsafe_get_user(x, (unsigned int __user *)ea, Efault);
314 break;
315#ifdef __powerpc64__
316 case 8:
317 unsafe_get_user(x, (unsigned long __user *)ea, Efault);
318 break;
319#endif
320 }
321 *dest = x;
322 return 0;
323
324Efault:
325 regs->dar = ea;
326 return -EFAULT;
327}
328
329static nokprobe_inline int
330read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
331{
332 int err;
333
334 if (is_kernel_addr(ea))
335 return __read_mem_aligned(dest, ea, nb, regs);
336
337 if (user_read_access_begin((void __user *)ea, nb)) {
338 err = __read_mem_aligned(dest, ea, nb, regs);
339 user_read_access_end();
340 } else {
341 err = -EFAULT;
342 regs->dar = ea;
343 }
344
345 return err;
346}
347
348/*
349 * Copy from userspace to a buffer, using the largest possible
350 * aligned accesses, up to sizeof(long).
351 */
352static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
353{
354 int c;
355
356 for (; nb > 0; nb -= c) {
357 c = max_align(ea);
358 if (c > nb)
359 c = max_align(nb);
360 switch (c) {
361 case 1:
362 unsafe_get_user(*dest, (u8 __user *)ea, Efault);
363 break;
364 case 2:
365 unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault);
366 break;
367 case 4:
368 unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault);
369 break;
370#ifdef __powerpc64__
371 case 8:
372 unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault);
373 break;
374#endif
375 }
376 dest += c;
377 ea += c;
378 }
379 return 0;
380
381Efault:
382 regs->dar = ea;
383 return -EFAULT;
384}
385
386static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
387{
388 int err;
389
390 if (is_kernel_addr(ea))
391 return __copy_mem_in(dest, ea, nb, regs);
392
393 if (user_read_access_begin((void __user *)ea, nb)) {
394 err = __copy_mem_in(dest, ea, nb, regs);
395 user_read_access_end();
396 } else {
397 err = -EFAULT;
398 regs->dar = ea;
399 }
400
401 return err;
402}
403
404static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
405 unsigned long ea, int nb,
406 struct pt_regs *regs)
407{
408 union {
409 unsigned long ul;
410 u8 b[sizeof(unsigned long)];
411 } u;
412 int i;
413 int err;
414
415 u.ul = 0;
416 i = IS_BE ? sizeof(unsigned long) - nb : 0;
417 err = copy_mem_in(&u.b[i], ea, nb, regs);
418 if (!err)
419 *dest = u.ul;
420 return err;
421}
422
423/*
424 * Read memory at address ea for nb bytes, return 0 for success
425 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
426 * If nb < sizeof(long), the result is right-justified on BE systems.
427 */
428static int read_mem(unsigned long *dest, unsigned long ea, int nb,
429 struct pt_regs *regs)
430{
431 if (!address_ok(regs, ea, nb))
432 return -EFAULT;
433 if ((ea & (nb - 1)) == 0)
434 return read_mem_aligned(dest, ea, nb, regs);
435 return read_mem_unaligned(dest, ea, nb, regs);
436}
437NOKPROBE_SYMBOL(read_mem);
438
439static __always_inline int
440__write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
441{
442 switch (nb) {
443 case 1:
444 unsafe_put_user(val, (unsigned char __user *)ea, Efault);
445 break;
446 case 2:
447 unsafe_put_user(val, (unsigned short __user *)ea, Efault);
448 break;
449 case 4:
450 unsafe_put_user(val, (unsigned int __user *)ea, Efault);
451 break;
452#ifdef __powerpc64__
453 case 8:
454 unsafe_put_user(val, (unsigned long __user *)ea, Efault);
455 break;
456#endif
457 }
458 return 0;
459
460Efault:
461 regs->dar = ea;
462 return -EFAULT;
463}
464
465static nokprobe_inline int
466write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
467{
468 int err;
469
470 if (is_kernel_addr(ea))
471 return __write_mem_aligned(val, ea, nb, regs);
472
473 if (user_write_access_begin((void __user *)ea, nb)) {
474 err = __write_mem_aligned(val, ea, nb, regs);
475 user_write_access_end();
476 } else {
477 err = -EFAULT;
478 regs->dar = ea;
479 }
480
481 return err;
482}
483
484/*
485 * Copy from a buffer to userspace, using the largest possible
486 * aligned accesses, up to sizeof(long).
487 */
488static nokprobe_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
489{
490 int c;
491
492 for (; nb > 0; nb -= c) {
493 c = max_align(ea);
494 if (c > nb)
495 c = max_align(nb);
496 switch (c) {
497 case 1:
498 unsafe_put_user(*dest, (u8 __user *)ea, Efault);
499 break;
500 case 2:
501 unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault);
502 break;
503 case 4:
504 unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault);
505 break;
506#ifdef __powerpc64__
507 case 8:
508 unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault);
509 break;
510#endif
511 }
512 dest += c;
513 ea += c;
514 }
515 return 0;
516
517Efault:
518 regs->dar = ea;
519 return -EFAULT;
520}
521
522static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
523{
524 int err;
525
526 if (is_kernel_addr(ea))
527 return __copy_mem_out(dest, ea, nb, regs);
528
529 if (user_write_access_begin((void __user *)ea, nb)) {
530 err = __copy_mem_out(dest, ea, nb, regs);
531 user_write_access_end();
532 } else {
533 err = -EFAULT;
534 regs->dar = ea;
535 }
536
537 return err;
538}
539
540static nokprobe_inline int write_mem_unaligned(unsigned long val,
541 unsigned long ea, int nb,
542 struct pt_regs *regs)
543{
544 union {
545 unsigned long ul;
546 u8 b[sizeof(unsigned long)];
547 } u;
548 int i;
549
550 u.ul = val;
551 i = IS_BE ? sizeof(unsigned long) - nb : 0;
552 return copy_mem_out(&u.b[i], ea, nb, regs);
553}
554
555/*
556 * Write memory at address ea for nb bytes, return 0 for success
557 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
558 */
559static int write_mem(unsigned long val, unsigned long ea, int nb,
560 struct pt_regs *regs)
561{
562 if (!address_ok(regs, ea, nb))
563 return -EFAULT;
564 if ((ea & (nb - 1)) == 0)
565 return write_mem_aligned(val, ea, nb, regs);
566 return write_mem_unaligned(val, ea, nb, regs);
567}
568NOKPROBE_SYMBOL(write_mem);
569
570#ifdef CONFIG_PPC_FPU
571/*
572 * These access either the real FP register or the image in the
573 * thread_struct, depending on regs->msr & MSR_FP.
574 */
575static int do_fp_load(struct instruction_op *op, unsigned long ea,
576 struct pt_regs *regs, bool cross_endian)
577{
578 int err, rn, nb;
579 union {
580 int i;
581 unsigned int u;
582 float f;
583 double d[2];
584 unsigned long l[2];
585 u8 b[2 * sizeof(double)];
586 } u;
587
588 nb = GETSIZE(op->type);
589 if (!address_ok(regs, ea, nb))
590 return -EFAULT;
591 rn = op->reg;
592 err = copy_mem_in(u.b, ea, nb, regs);
593 if (err)
594 return err;
595 if (unlikely(cross_endian)) {
596 do_byte_reverse(u.b, min(nb, 8));
597 if (nb == 16)
598 do_byte_reverse(&u.b[8], 8);
599 }
600 preempt_disable();
601 if (nb == 4) {
602 if (op->type & FPCONV)
603 conv_sp_to_dp(&u.f, &u.d[0]);
604 else if (op->type & SIGNEXT)
605 u.l[0] = u.i;
606 else
607 u.l[0] = u.u;
608 }
609 if (regs->msr & MSR_FP)
610 put_fpr(rn, &u.d[0]);
611 else
612 current->thread.TS_FPR(rn) = u.l[0];
613 if (nb == 16) {
614 /* lfdp */
615 rn |= 1;
616 if (regs->msr & MSR_FP)
617 put_fpr(rn, &u.d[1]);
618 else
619 current->thread.TS_FPR(rn) = u.l[1];
620 }
621 preempt_enable();
622 return 0;
623}
624NOKPROBE_SYMBOL(do_fp_load);
625
626static int do_fp_store(struct instruction_op *op, unsigned long ea,
627 struct pt_regs *regs, bool cross_endian)
628{
629 int rn, nb;
630 union {
631 unsigned int u;
632 float f;
633 double d[2];
634 unsigned long l[2];
635 u8 b[2 * sizeof(double)];
636 } u;
637
638 nb = GETSIZE(op->type);
639 if (!address_ok(regs, ea, nb))
640 return -EFAULT;
641 rn = op->reg;
642 preempt_disable();
643 if (regs->msr & MSR_FP)
644 get_fpr(rn, &u.d[0]);
645 else
646 u.l[0] = current->thread.TS_FPR(rn);
647 if (nb == 4) {
648 if (op->type & FPCONV)
649 conv_dp_to_sp(&u.d[0], &u.f);
650 else
651 u.u = u.l[0];
652 }
653 if (nb == 16) {
654 rn |= 1;
655 if (regs->msr & MSR_FP)
656 get_fpr(rn, &u.d[1]);
657 else
658 u.l[1] = current->thread.TS_FPR(rn);
659 }
660 preempt_enable();
661 if (unlikely(cross_endian)) {
662 do_byte_reverse(u.b, min(nb, 8));
663 if (nb == 16)
664 do_byte_reverse(&u.b[8], 8);
665 }
666 return copy_mem_out(u.b, ea, nb, regs);
667}
668NOKPROBE_SYMBOL(do_fp_store);
669#endif
670
671#ifdef CONFIG_ALTIVEC
672/* For Altivec/VMX, no need to worry about alignment */
673static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
674 int size, struct pt_regs *regs,
675 bool cross_endian)
676{
677 int err;
678 union {
679 __vector128 v;
680 u8 b[sizeof(__vector128)];
681 } u = {};
682
683 if (!address_ok(regs, ea & ~0xfUL, 16))
684 return -EFAULT;
685 /* align to multiple of size */
686 ea &= ~(size - 1);
687 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
688 if (err)
689 return err;
690 if (unlikely(cross_endian))
691 do_byte_reverse(&u.b[ea & 0xf], size);
692 preempt_disable();
693 if (regs->msr & MSR_VEC)
694 put_vr(rn, &u.v);
695 else
696 current->thread.vr_state.vr[rn] = u.v;
697 preempt_enable();
698 return 0;
699}
700
701static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
702 int size, struct pt_regs *regs,
703 bool cross_endian)
704{
705 union {
706 __vector128 v;
707 u8 b[sizeof(__vector128)];
708 } u;
709
710 if (!address_ok(regs, ea & ~0xfUL, 16))
711 return -EFAULT;
712 /* align to multiple of size */
713 ea &= ~(size - 1);
714
715 preempt_disable();
716 if (regs->msr & MSR_VEC)
717 get_vr(rn, &u.v);
718 else
719 u.v = current->thread.vr_state.vr[rn];
720 preempt_enable();
721 if (unlikely(cross_endian))
722 do_byte_reverse(&u.b[ea & 0xf], size);
723 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
724}
725#endif /* CONFIG_ALTIVEC */
726
727#ifdef __powerpc64__
728static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
729 int reg, bool cross_endian)
730{
731 int err;
732
733 if (!address_ok(regs, ea, 16))
734 return -EFAULT;
735 /* if aligned, should be atomic */
736 if ((ea & 0xf) == 0) {
737 err = do_lq(ea, ®s->gpr[reg]);
738 } else {
739 err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs);
740 if (!err)
741 err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs);
742 }
743 if (!err && unlikely(cross_endian))
744 do_byte_reverse(®s->gpr[reg], 16);
745 return err;
746}
747
748static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
749 int reg, bool cross_endian)
750{
751 int err;
752 unsigned long vals[2];
753
754 if (!address_ok(regs, ea, 16))
755 return -EFAULT;
756 vals[0] = regs->gpr[reg];
757 vals[1] = regs->gpr[reg + 1];
758 if (unlikely(cross_endian))
759 do_byte_reverse(vals, 16);
760
761 /* if aligned, should be atomic */
762 if ((ea & 0xf) == 0)
763 return do_stq(ea, vals[0], vals[1]);
764
765 err = write_mem(vals[IS_LE], ea, 8, regs);
766 if (!err)
767 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
768 return err;
769}
770#endif /* __powerpc64 */
771
772#ifdef CONFIG_VSX
773void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
774 const void *mem, bool rev)
775{
776 int size, read_size;
777 int i, j;
778 const unsigned int *wp;
779 const unsigned short *hp;
780 const unsigned char *bp;
781
782 size = GETSIZE(op->type);
783 reg->d[0] = reg->d[1] = 0;
784
785 switch (op->element_size) {
786 case 32:
787 /* [p]lxvp[x] */
788 case 16:
789 /* whole vector; lxv[x] or lxvl[l] */
790 if (size == 0)
791 break;
792 memcpy(reg, mem, size);
793 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
794 rev = !rev;
795 if (rev)
796 do_byte_reverse(reg, size);
797 break;
798 case 8:
799 /* scalar loads, lxvd2x, lxvdsx */
800 read_size = (size >= 8) ? 8 : size;
801 i = IS_LE ? 8 : 8 - read_size;
802 memcpy(®->b[i], mem, read_size);
803 if (rev)
804 do_byte_reverse(®->b[i], 8);
805 if (size < 8) {
806 if (op->type & SIGNEXT) {
807 /* size == 4 is the only case here */
808 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
809 } else if (op->vsx_flags & VSX_FPCONV) {
810 preempt_disable();
811 conv_sp_to_dp(®->fp[1 + IS_LE],
812 ®->dp[IS_LE]);
813 preempt_enable();
814 }
815 } else {
816 if (size == 16) {
817 unsigned long v = *(unsigned long *)(mem + 8);
818 reg->d[IS_BE] = !rev ? v : byterev_8(v);
819 } else if (op->vsx_flags & VSX_SPLAT)
820 reg->d[IS_BE] = reg->d[IS_LE];
821 }
822 break;
823 case 4:
824 /* lxvw4x, lxvwsx */
825 wp = mem;
826 for (j = 0; j < size / 4; ++j) {
827 i = IS_LE ? 3 - j : j;
828 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
829 }
830 if (op->vsx_flags & VSX_SPLAT) {
831 u32 val = reg->w[IS_LE ? 3 : 0];
832 for (; j < 4; ++j) {
833 i = IS_LE ? 3 - j : j;
834 reg->w[i] = val;
835 }
836 }
837 break;
838 case 2:
839 /* lxvh8x */
840 hp = mem;
841 for (j = 0; j < size / 2; ++j) {
842 i = IS_LE ? 7 - j : j;
843 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
844 }
845 break;
846 case 1:
847 /* lxvb16x */
848 bp = mem;
849 for (j = 0; j < size; ++j) {
850 i = IS_LE ? 15 - j : j;
851 reg->b[i] = *bp++;
852 }
853 break;
854 }
855}
856EXPORT_SYMBOL_GPL(emulate_vsx_load);
857NOKPROBE_SYMBOL(emulate_vsx_load);
858
859void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
860 void *mem, bool rev)
861{
862 int size, write_size;
863 int i, j;
864 union vsx_reg buf;
865 unsigned int *wp;
866 unsigned short *hp;
867 unsigned char *bp;
868
869 size = GETSIZE(op->type);
870
871 switch (op->element_size) {
872 case 32:
873 /* [p]stxvp[x] */
874 if (size == 0)
875 break;
876 if (rev) {
877 /* reverse 32 bytes */
878 union vsx_reg buf32[2];
879 buf32[0].d[0] = byterev_8(reg[1].d[1]);
880 buf32[0].d[1] = byterev_8(reg[1].d[0]);
881 buf32[1].d[0] = byterev_8(reg[0].d[1]);
882 buf32[1].d[1] = byterev_8(reg[0].d[0]);
883 memcpy(mem, buf32, size);
884 } else {
885 memcpy(mem, reg, size);
886 }
887 break;
888 case 16:
889 /* stxv, stxvx, stxvl, stxvll */
890 if (size == 0)
891 break;
892 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
893 rev = !rev;
894 if (rev) {
895 /* reverse 16 bytes */
896 buf.d[0] = byterev_8(reg->d[1]);
897 buf.d[1] = byterev_8(reg->d[0]);
898 reg = &buf;
899 }
900 memcpy(mem, reg, size);
901 break;
902 case 8:
903 /* scalar stores, stxvd2x */
904 write_size = (size >= 8) ? 8 : size;
905 i = IS_LE ? 8 : 8 - write_size;
906 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
907 buf.d[0] = buf.d[1] = 0;
908 preempt_disable();
909 conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]);
910 preempt_enable();
911 reg = &buf;
912 }
913 memcpy(mem, ®->b[i], write_size);
914 if (size == 16)
915 memcpy(mem + 8, ®->d[IS_BE], 8);
916 if (unlikely(rev)) {
917 do_byte_reverse(mem, write_size);
918 if (size == 16)
919 do_byte_reverse(mem + 8, 8);
920 }
921 break;
922 case 4:
923 /* stxvw4x */
924 wp = mem;
925 for (j = 0; j < size / 4; ++j) {
926 i = IS_LE ? 3 - j : j;
927 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
928 }
929 break;
930 case 2:
931 /* stxvh8x */
932 hp = mem;
933 for (j = 0; j < size / 2; ++j) {
934 i = IS_LE ? 7 - j : j;
935 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
936 }
937 break;
938 case 1:
939 /* stvxb16x */
940 bp = mem;
941 for (j = 0; j < size; ++j) {
942 i = IS_LE ? 15 - j : j;
943 *bp++ = reg->b[i];
944 }
945 break;
946 }
947}
948EXPORT_SYMBOL_GPL(emulate_vsx_store);
949NOKPROBE_SYMBOL(emulate_vsx_store);
950
951static nokprobe_inline int do_vsx_load(struct instruction_op *op,
952 unsigned long ea, struct pt_regs *regs,
953 bool cross_endian)
954{
955 int reg = op->reg;
956 int i, j, nr_vsx_regs;
957 u8 mem[32];
958 union vsx_reg buf[2];
959 int size = GETSIZE(op->type);
960
961 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
962 return -EFAULT;
963
964 nr_vsx_regs = max(1ul, size / sizeof(__vector128));
965 emulate_vsx_load(op, buf, mem, cross_endian);
966 preempt_disable();
967 if (reg < 32) {
968 /* FP regs + extensions */
969 if (regs->msr & MSR_FP) {
970 for (i = 0; i < nr_vsx_regs; i++) {
971 j = IS_LE ? nr_vsx_regs - i - 1 : i;
972 load_vsrn(reg + i, &buf[j].v);
973 }
974 } else {
975 for (i = 0; i < nr_vsx_regs; i++) {
976 j = IS_LE ? nr_vsx_regs - i - 1 : i;
977 current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
978 current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
979 }
980 }
981 } else {
982 if (regs->msr & MSR_VEC) {
983 for (i = 0; i < nr_vsx_regs; i++) {
984 j = IS_LE ? nr_vsx_regs - i - 1 : i;
985 load_vsrn(reg + i, &buf[j].v);
986 }
987 } else {
988 for (i = 0; i < nr_vsx_regs; i++) {
989 j = IS_LE ? nr_vsx_regs - i - 1 : i;
990 current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
991 }
992 }
993 }
994 preempt_enable();
995 return 0;
996}
997
998static nokprobe_inline int do_vsx_store(struct instruction_op *op,
999 unsigned long ea, struct pt_regs *regs,
1000 bool cross_endian)
1001{
1002 int reg = op->reg;
1003 int i, j, nr_vsx_regs;
1004 u8 mem[32];
1005 union vsx_reg buf[2];
1006 int size = GETSIZE(op->type);
1007
1008 if (!address_ok(regs, ea, size))
1009 return -EFAULT;
1010
1011 nr_vsx_regs = max(1ul, size / sizeof(__vector128));
1012 preempt_disable();
1013 if (reg < 32) {
1014 /* FP regs + extensions */
1015 if (regs->msr & MSR_FP) {
1016 for (i = 0; i < nr_vsx_regs; i++) {
1017 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1018 store_vsrn(reg + i, &buf[j].v);
1019 }
1020 } else {
1021 for (i = 0; i < nr_vsx_regs; i++) {
1022 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1023 buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
1024 buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
1025 }
1026 }
1027 } else {
1028 if (regs->msr & MSR_VEC) {
1029 for (i = 0; i < nr_vsx_regs; i++) {
1030 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1031 store_vsrn(reg + i, &buf[j].v);
1032 }
1033 } else {
1034 for (i = 0; i < nr_vsx_regs; i++) {
1035 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1036 buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
1037 }
1038 }
1039 }
1040 preempt_enable();
1041 emulate_vsx_store(op, buf, mem, cross_endian);
1042 return copy_mem_out(mem, ea, size, regs);
1043}
1044#endif /* CONFIG_VSX */
1045
1046static int __emulate_dcbz(unsigned long ea)
1047{
1048 unsigned long i;
1049 unsigned long size = l1_dcache_bytes();
1050
1051 for (i = 0; i < size; i += sizeof(long))
1052 unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault);
1053
1054 return 0;
1055
1056Efault:
1057 return -EFAULT;
1058}
1059
1060int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
1061{
1062 int err;
1063 unsigned long size = l1_dcache_bytes();
1064
1065 ea = truncate_if_32bit(regs->msr, ea);
1066 ea &= ~(size - 1);
1067 if (!address_ok(regs, ea, size))
1068 return -EFAULT;
1069
1070 if (is_kernel_addr(ea)) {
1071 err = __emulate_dcbz(ea);
1072 } else if (user_write_access_begin((void __user *)ea, size)) {
1073 err = __emulate_dcbz(ea);
1074 user_write_access_end();
1075 } else {
1076 err = -EFAULT;
1077 }
1078
1079 if (err)
1080 regs->dar = ea;
1081
1082
1083 return err;
1084}
1085NOKPROBE_SYMBOL(emulate_dcbz);
1086
1087#define __put_user_asmx(x, addr, err, op, cr) \
1088 __asm__ __volatile__( \
1089 ".machine push\n" \
1090 ".machine power8\n" \
1091 "1: " op " %2,0,%3\n" \
1092 ".machine pop\n" \
1093 " mfcr %1\n" \
1094 "2:\n" \
1095 ".section .fixup,\"ax\"\n" \
1096 "3: li %0,%4\n" \
1097 " b 2b\n" \
1098 ".previous\n" \
1099 EX_TABLE(1b, 3b) \
1100 : "=r" (err), "=r" (cr) \
1101 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1102
1103#define __get_user_asmx(x, addr, err, op) \
1104 __asm__ __volatile__( \
1105 ".machine push\n" \
1106 ".machine power8\n" \
1107 "1: "op" %1,0,%2\n" \
1108 ".machine pop\n" \
1109 "2:\n" \
1110 ".section .fixup,\"ax\"\n" \
1111 "3: li %0,%3\n" \
1112 " b 2b\n" \
1113 ".previous\n" \
1114 EX_TABLE(1b, 3b) \
1115 : "=r" (err), "=r" (x) \
1116 : "r" (addr), "i" (-EFAULT), "0" (err))
1117
1118#define __cacheop_user_asmx(addr, err, op) \
1119 __asm__ __volatile__( \
1120 "1: "op" 0,%1\n" \
1121 "2:\n" \
1122 ".section .fixup,\"ax\"\n" \
1123 "3: li %0,%3\n" \
1124 " b 2b\n" \
1125 ".previous\n" \
1126 EX_TABLE(1b, 3b) \
1127 : "=r" (err) \
1128 : "r" (addr), "i" (-EFAULT), "0" (err))
1129
1130static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1131 struct instruction_op *op)
1132{
1133 long val = op->val;
1134
1135 op->type |= SETCC;
1136 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1137 if (!(regs->msr & MSR_64BIT))
1138 val = (int) val;
1139 if (val < 0)
1140 op->ccval |= 0x80000000;
1141 else if (val > 0)
1142 op->ccval |= 0x40000000;
1143 else
1144 op->ccval |= 0x20000000;
1145}
1146
1147static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1148{
1149 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1150 if (val)
1151 op->xerval |= XER_CA32;
1152 else
1153 op->xerval &= ~XER_CA32;
1154 }
1155}
1156
1157static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1158 struct instruction_op *op, int rd,
1159 unsigned long val1, unsigned long val2,
1160 unsigned long carry_in)
1161{
1162 unsigned long val = val1 + val2;
1163
1164 if (carry_in)
1165 ++val;
1166 op->type = COMPUTE | SETREG | SETXER;
1167 op->reg = rd;
1168 op->val = val;
1169 val = truncate_if_32bit(regs->msr, val);
1170 val1 = truncate_if_32bit(regs->msr, val1);
1171 op->xerval = regs->xer;
1172 if (val < val1 || (carry_in && val == val1))
1173 op->xerval |= XER_CA;
1174 else
1175 op->xerval &= ~XER_CA;
1176
1177 set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1178 (carry_in && (unsigned int)val == (unsigned int)val1));
1179}
1180
1181static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1182 struct instruction_op *op,
1183 long v1, long v2, int crfld)
1184{
1185 unsigned int crval, shift;
1186
1187 op->type = COMPUTE | SETCC;
1188 crval = (regs->xer >> 31) & 1; /* get SO bit */
1189 if (v1 < v2)
1190 crval |= 8;
1191 else if (v1 > v2)
1192 crval |= 4;
1193 else
1194 crval |= 2;
1195 shift = (7 - crfld) * 4;
1196 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1197}
1198
1199static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1200 struct instruction_op *op,
1201 unsigned long v1,
1202 unsigned long v2, int crfld)
1203{
1204 unsigned int crval, shift;
1205
1206 op->type = COMPUTE | SETCC;
1207 crval = (regs->xer >> 31) & 1; /* get SO bit */
1208 if (v1 < v2)
1209 crval |= 8;
1210 else if (v1 > v2)
1211 crval |= 4;
1212 else
1213 crval |= 2;
1214 shift = (7 - crfld) * 4;
1215 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1216}
1217
1218static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1219 struct instruction_op *op,
1220 unsigned long v1, unsigned long v2)
1221{
1222 unsigned long long out_val, mask;
1223 int i;
1224
1225 out_val = 0;
1226 for (i = 0; i < 8; i++) {
1227 mask = 0xffUL << (i * 8);
1228 if ((v1 & mask) == (v2 & mask))
1229 out_val |= mask;
1230 }
1231 op->val = out_val;
1232}
1233
1234/*
1235 * The size parameter is used to adjust the equivalent popcnt instruction.
1236 * popcntb = 8, popcntw = 32, popcntd = 64
1237 */
1238static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1239 struct instruction_op *op,
1240 unsigned long v1, int size)
1241{
1242 unsigned long long out = v1;
1243
1244 out -= (out >> 1) & 0x5555555555555555ULL;
1245 out = (0x3333333333333333ULL & out) +
1246 (0x3333333333333333ULL & (out >> 2));
1247 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1248
1249 if (size == 8) { /* popcntb */
1250 op->val = out;
1251 return;
1252 }
1253 out += out >> 8;
1254 out += out >> 16;
1255 if (size == 32) { /* popcntw */
1256 op->val = out & 0x0000003f0000003fULL;
1257 return;
1258 }
1259
1260 out = (out + (out >> 32)) & 0x7f;
1261 op->val = out; /* popcntd */
1262}
1263
1264#ifdef CONFIG_PPC64
1265static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1266 struct instruction_op *op,
1267 unsigned long v1, unsigned long v2)
1268{
1269 unsigned char perm, idx;
1270 unsigned int i;
1271
1272 perm = 0;
1273 for (i = 0; i < 8; i++) {
1274 idx = (v1 >> (i * 8)) & 0xff;
1275 if (idx < 64)
1276 if (v2 & PPC_BIT(idx))
1277 perm |= 1 << i;
1278 }
1279 op->val = perm;
1280}
1281#endif /* CONFIG_PPC64 */
1282/*
1283 * The size parameter adjusts the equivalent prty instruction.
1284 * prtyw = 32, prtyd = 64
1285 */
1286static nokprobe_inline void do_prty(const struct pt_regs *regs,
1287 struct instruction_op *op,
1288 unsigned long v, int size)
1289{
1290 unsigned long long res = v ^ (v >> 8);
1291
1292 res ^= res >> 16;
1293 if (size == 32) { /* prtyw */
1294 op->val = res & 0x0000000100000001ULL;
1295 return;
1296 }
1297
1298 res ^= res >> 32;
1299 op->val = res & 1; /*prtyd */
1300}
1301
1302static nokprobe_inline int trap_compare(long v1, long v2)
1303{
1304 int ret = 0;
1305
1306 if (v1 < v2)
1307 ret |= 0x10;
1308 else if (v1 > v2)
1309 ret |= 0x08;
1310 else
1311 ret |= 0x04;
1312 if ((unsigned long)v1 < (unsigned long)v2)
1313 ret |= 0x02;
1314 else if ((unsigned long)v1 > (unsigned long)v2)
1315 ret |= 0x01;
1316 return ret;
1317}
1318
1319/*
1320 * Elements of 32-bit rotate and mask instructions.
1321 */
1322#define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
1323 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1324#ifdef __powerpc64__
1325#define MASK64_L(mb) (~0UL >> (mb))
1326#define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
1327#define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1328#define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1329#else
1330#define DATA32(x) (x)
1331#endif
1332#define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1333
1334/*
1335 * Decode an instruction, and return information about it in *op
1336 * without changing *regs.
1337 * Integer arithmetic and logical instructions, branches, and barrier
1338 * instructions can be emulated just using the information in *op.
1339 *
1340 * Return value is 1 if the instruction can be emulated just by
1341 * updating *regs with the information in *op, -1 if we need the
1342 * GPRs but *regs doesn't contain the full register set, or 0
1343 * otherwise.
1344 */
1345int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1346 ppc_inst_t instr)
1347{
1348#ifdef CONFIG_PPC64
1349 unsigned int suffixopcode, prefixtype, prefix_r;
1350#endif
1351 unsigned int opcode, ra, rb, rc, rd, spr, u;
1352 unsigned long int imm;
1353 unsigned long int val, val2;
1354 unsigned int mb, me, sh;
1355 unsigned int word, suffix;
1356 long ival;
1357
1358 word = ppc_inst_val(instr);
1359 suffix = ppc_inst_suffix(instr);
1360
1361 op->type = COMPUTE;
1362
1363 opcode = ppc_inst_primary_opcode(instr);
1364 switch (opcode) {
1365 case 16: /* bc */
1366 op->type = BRANCH;
1367 imm = (signed short)(word & 0xfffc);
1368 if ((word & 2) == 0)
1369 imm += regs->nip;
1370 op->val = truncate_if_32bit(regs->msr, imm);
1371 if (word & 1)
1372 op->type |= SETLK;
1373 if (branch_taken(word, regs, op))
1374 op->type |= BRTAKEN;
1375 return 1;
1376 case 17: /* sc */
1377 if ((word & 0xfe2) == 2)
1378 op->type = SYSCALL;
1379 else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1380 (word & 0xfe3) == 1) { /* scv */
1381 op->type = SYSCALL_VECTORED_0;
1382 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1383 goto unknown_opcode;
1384 } else
1385 op->type = UNKNOWN;
1386 return 0;
1387 case 18: /* b */
1388 op->type = BRANCH | BRTAKEN;
1389 imm = word & 0x03fffffc;
1390 if (imm & 0x02000000)
1391 imm -= 0x04000000;
1392 if ((word & 2) == 0)
1393 imm += regs->nip;
1394 op->val = truncate_if_32bit(regs->msr, imm);
1395 if (word & 1)
1396 op->type |= SETLK;
1397 return 1;
1398 case 19:
1399 switch ((word >> 1) & 0x3ff) {
1400 case 0: /* mcrf */
1401 op->type = COMPUTE + SETCC;
1402 rd = 7 - ((word >> 23) & 0x7);
1403 ra = 7 - ((word >> 18) & 0x7);
1404 rd *= 4;
1405 ra *= 4;
1406 val = (regs->ccr >> ra) & 0xf;
1407 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1408 return 1;
1409
1410 case 16: /* bclr */
1411 case 528: /* bcctr */
1412 op->type = BRANCH;
1413 imm = (word & 0x400)? regs->ctr: regs->link;
1414 op->val = truncate_if_32bit(regs->msr, imm);
1415 if (word & 1)
1416 op->type |= SETLK;
1417 if (branch_taken(word, regs, op))
1418 op->type |= BRTAKEN;
1419 return 1;
1420
1421 case 18: /* rfid, scary */
1422 if (regs->msr & MSR_PR)
1423 goto priv;
1424 op->type = RFI;
1425 return 0;
1426
1427 case 150: /* isync */
1428 op->type = BARRIER | BARRIER_ISYNC;
1429 return 1;
1430
1431 case 33: /* crnor */
1432 case 129: /* crandc */
1433 case 193: /* crxor */
1434 case 225: /* crnand */
1435 case 257: /* crand */
1436 case 289: /* creqv */
1437 case 417: /* crorc */
1438 case 449: /* cror */
1439 op->type = COMPUTE + SETCC;
1440 ra = (word >> 16) & 0x1f;
1441 rb = (word >> 11) & 0x1f;
1442 rd = (word >> 21) & 0x1f;
1443 ra = (regs->ccr >> (31 - ra)) & 1;
1444 rb = (regs->ccr >> (31 - rb)) & 1;
1445 val = (word >> (6 + ra * 2 + rb)) & 1;
1446 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1447 (val << (31 - rd));
1448 return 1;
1449 }
1450 break;
1451 case 31:
1452 switch ((word >> 1) & 0x3ff) {
1453 case 598: /* sync */
1454 op->type = BARRIER + BARRIER_SYNC;
1455#ifdef __powerpc64__
1456 switch ((word >> 21) & 3) {
1457 case 1: /* lwsync */
1458 op->type = BARRIER + BARRIER_LWSYNC;
1459 break;
1460 case 2: /* ptesync */
1461 op->type = BARRIER + BARRIER_PTESYNC;
1462 break;
1463 }
1464#endif
1465 return 1;
1466
1467 case 854: /* eieio */
1468 op->type = BARRIER + BARRIER_EIEIO;
1469 return 1;
1470 }
1471 break;
1472 }
1473
1474 rd = (word >> 21) & 0x1f;
1475 ra = (word >> 16) & 0x1f;
1476 rb = (word >> 11) & 0x1f;
1477 rc = (word >> 6) & 0x1f;
1478
1479 switch (opcode) {
1480#ifdef __powerpc64__
1481 case 1:
1482 if (!cpu_has_feature(CPU_FTR_ARCH_31))
1483 goto unknown_opcode;
1484
1485 prefix_r = GET_PREFIX_R(word);
1486 ra = GET_PREFIX_RA(suffix);
1487 rd = (suffix >> 21) & 0x1f;
1488 op->reg = rd;
1489 op->val = regs->gpr[rd];
1490 suffixopcode = get_op(suffix);
1491 prefixtype = (word >> 24) & 0x3;
1492 switch (prefixtype) {
1493 case 2:
1494 if (prefix_r && ra)
1495 return 0;
1496 switch (suffixopcode) {
1497 case 14: /* paddi */
1498 op->type = COMPUTE | PREFIXED;
1499 op->val = mlsd_8lsd_ea(word, suffix, regs);
1500 goto compute_done;
1501 }
1502 }
1503 break;
1504 case 2: /* tdi */
1505 if (rd & trap_compare(regs->gpr[ra], (short) word))
1506 goto trap;
1507 return 1;
1508#endif
1509 case 3: /* twi */
1510 if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1511 goto trap;
1512 return 1;
1513
1514#ifdef __powerpc64__
1515 case 4:
1516 /*
1517 * There are very many instructions with this primary opcode
1518 * introduced in the ISA as early as v2.03. However, the ones
1519 * we currently emulate were all introduced with ISA 3.0
1520 */
1521 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1522 goto unknown_opcode;
1523
1524 switch (word & 0x3f) {
1525 case 48: /* maddhd */
1526 asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1527 "=r" (op->val) : "r" (regs->gpr[ra]),
1528 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1529 goto compute_done;
1530
1531 case 49: /* maddhdu */
1532 asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1533 "=r" (op->val) : "r" (regs->gpr[ra]),
1534 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1535 goto compute_done;
1536
1537 case 51: /* maddld */
1538 asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1539 "=r" (op->val) : "r" (regs->gpr[ra]),
1540 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1541 goto compute_done;
1542 }
1543
1544 /*
1545 * There are other instructions from ISA 3.0 with the same
1546 * primary opcode which do not have emulation support yet.
1547 */
1548 goto unknown_opcode;
1549#endif
1550
1551 case 7: /* mulli */
1552 op->val = regs->gpr[ra] * (short) word;
1553 goto compute_done;
1554
1555 case 8: /* subfic */
1556 imm = (short) word;
1557 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1558 return 1;
1559
1560 case 10: /* cmpli */
1561 imm = (unsigned short) word;
1562 val = regs->gpr[ra];
1563#ifdef __powerpc64__
1564 if ((rd & 1) == 0)
1565 val = (unsigned int) val;
1566#endif
1567 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1568 return 1;
1569
1570 case 11: /* cmpi */
1571 imm = (short) word;
1572 val = regs->gpr[ra];
1573#ifdef __powerpc64__
1574 if ((rd & 1) == 0)
1575 val = (int) val;
1576#endif
1577 do_cmp_signed(regs, op, val, imm, rd >> 2);
1578 return 1;
1579
1580 case 12: /* addic */
1581 imm = (short) word;
1582 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1583 return 1;
1584
1585 case 13: /* addic. */
1586 imm = (short) word;
1587 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1588 set_cr0(regs, op);
1589 return 1;
1590
1591 case 14: /* addi */
1592 imm = (short) word;
1593 if (ra)
1594 imm += regs->gpr[ra];
1595 op->val = imm;
1596 goto compute_done;
1597
1598 case 15: /* addis */
1599 imm = ((short) word) << 16;
1600 if (ra)
1601 imm += regs->gpr[ra];
1602 op->val = imm;
1603 goto compute_done;
1604
1605 case 19:
1606 if (((word >> 1) & 0x1f) == 2) {
1607 /* addpcis */
1608 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1609 goto unknown_opcode;
1610 imm = (short) (word & 0xffc1); /* d0 + d2 fields */
1611 imm |= (word >> 15) & 0x3e; /* d1 field */
1612 op->val = regs->nip + (imm << 16) + 4;
1613 goto compute_done;
1614 }
1615 op->type = UNKNOWN;
1616 return 0;
1617
1618 case 20: /* rlwimi */
1619 mb = (word >> 6) & 0x1f;
1620 me = (word >> 1) & 0x1f;
1621 val = DATA32(regs->gpr[rd]);
1622 imm = MASK32(mb, me);
1623 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1624 goto logical_done;
1625
1626 case 21: /* rlwinm */
1627 mb = (word >> 6) & 0x1f;
1628 me = (word >> 1) & 0x1f;
1629 val = DATA32(regs->gpr[rd]);
1630 op->val = ROTATE(val, rb) & MASK32(mb, me);
1631 goto logical_done;
1632
1633 case 23: /* rlwnm */
1634 mb = (word >> 6) & 0x1f;
1635 me = (word >> 1) & 0x1f;
1636 rb = regs->gpr[rb] & 0x1f;
1637 val = DATA32(regs->gpr[rd]);
1638 op->val = ROTATE(val, rb) & MASK32(mb, me);
1639 goto logical_done;
1640
1641 case 24: /* ori */
1642 op->val = regs->gpr[rd] | (unsigned short) word;
1643 goto logical_done_nocc;
1644
1645 case 25: /* oris */
1646 imm = (unsigned short) word;
1647 op->val = regs->gpr[rd] | (imm << 16);
1648 goto logical_done_nocc;
1649
1650 case 26: /* xori */
1651 op->val = regs->gpr[rd] ^ (unsigned short) word;
1652 goto logical_done_nocc;
1653
1654 case 27: /* xoris */
1655 imm = (unsigned short) word;
1656 op->val = regs->gpr[rd] ^ (imm << 16);
1657 goto logical_done_nocc;
1658
1659 case 28: /* andi. */
1660 op->val = regs->gpr[rd] & (unsigned short) word;
1661 set_cr0(regs, op);
1662 goto logical_done_nocc;
1663
1664 case 29: /* andis. */
1665 imm = (unsigned short) word;
1666 op->val = regs->gpr[rd] & (imm << 16);
1667 set_cr0(regs, op);
1668 goto logical_done_nocc;
1669
1670#ifdef __powerpc64__
1671 case 30: /* rld* */
1672 mb = ((word >> 6) & 0x1f) | (word & 0x20);
1673 val = regs->gpr[rd];
1674 if ((word & 0x10) == 0) {
1675 sh = rb | ((word & 2) << 4);
1676 val = ROTATE(val, sh);
1677 switch ((word >> 2) & 3) {
1678 case 0: /* rldicl */
1679 val &= MASK64_L(mb);
1680 break;
1681 case 1: /* rldicr */
1682 val &= MASK64_R(mb);
1683 break;
1684 case 2: /* rldic */
1685 val &= MASK64(mb, 63 - sh);
1686 break;
1687 case 3: /* rldimi */
1688 imm = MASK64(mb, 63 - sh);
1689 val = (regs->gpr[ra] & ~imm) |
1690 (val & imm);
1691 }
1692 op->val = val;
1693 goto logical_done;
1694 } else {
1695 sh = regs->gpr[rb] & 0x3f;
1696 val = ROTATE(val, sh);
1697 switch ((word >> 1) & 7) {
1698 case 0: /* rldcl */
1699 op->val = val & MASK64_L(mb);
1700 goto logical_done;
1701 case 1: /* rldcr */
1702 op->val = val & MASK64_R(mb);
1703 goto logical_done;
1704 }
1705 }
1706#endif
1707 op->type = UNKNOWN; /* illegal instruction */
1708 return 0;
1709
1710 case 31:
1711 /* isel occupies 32 minor opcodes */
1712 if (((word >> 1) & 0x1f) == 15) {
1713 mb = (word >> 6) & 0x1f; /* bc field */
1714 val = (regs->ccr >> (31 - mb)) & 1;
1715 val2 = (ra) ? regs->gpr[ra] : 0;
1716
1717 op->val = (val) ? val2 : regs->gpr[rb];
1718 goto compute_done;
1719 }
1720
1721 switch ((word >> 1) & 0x3ff) {
1722 case 4: /* tw */
1723 if (rd == 0x1f ||
1724 (rd & trap_compare((int)regs->gpr[ra],
1725 (int)regs->gpr[rb])))
1726 goto trap;
1727 return 1;
1728#ifdef __powerpc64__
1729 case 68: /* td */
1730 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1731 goto trap;
1732 return 1;
1733#endif
1734 case 83: /* mfmsr */
1735 if (regs->msr & MSR_PR)
1736 goto priv;
1737 op->type = MFMSR;
1738 op->reg = rd;
1739 return 0;
1740 case 146: /* mtmsr */
1741 if (regs->msr & MSR_PR)
1742 goto priv;
1743 op->type = MTMSR;
1744 op->reg = rd;
1745 op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1746 return 0;
1747#ifdef CONFIG_PPC64
1748 case 178: /* mtmsrd */
1749 if (regs->msr & MSR_PR)
1750 goto priv;
1751 op->type = MTMSR;
1752 op->reg = rd;
1753 /* only MSR_EE and MSR_RI get changed if bit 15 set */
1754 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1755 imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1756 op->val = imm;
1757 return 0;
1758#endif
1759
1760 case 19: /* mfcr */
1761 imm = 0xffffffffUL;
1762 if ((word >> 20) & 1) {
1763 imm = 0xf0000000UL;
1764 for (sh = 0; sh < 8; ++sh) {
1765 if (word & (0x80000 >> sh))
1766 break;
1767 imm >>= 4;
1768 }
1769 }
1770 op->val = regs->ccr & imm;
1771 goto compute_done;
1772
1773 case 128: /* setb */
1774 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1775 goto unknown_opcode;
1776 /*
1777 * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1778 * Since each CR field is 4 bits,
1779 * we can simply mask off the bottom two bits (bfa * 4)
1780 * to yield the first bit in the CR field.
1781 */
1782 ra = ra & ~0x3;
1783 /* 'val' stores bits of the CR field (bfa) */
1784 val = regs->ccr >> (CR0_SHIFT - ra);
1785 /* checks if the LT bit of CR field (bfa) is set */
1786 if (val & 8)
1787 op->val = -1;
1788 /* checks if the GT bit of CR field (bfa) is set */
1789 else if (val & 4)
1790 op->val = 1;
1791 else
1792 op->val = 0;
1793 goto compute_done;
1794
1795 case 144: /* mtcrf */
1796 op->type = COMPUTE + SETCC;
1797 imm = 0xf0000000UL;
1798 val = regs->gpr[rd];
1799 op->ccval = regs->ccr;
1800 for (sh = 0; sh < 8; ++sh) {
1801 if (word & (0x80000 >> sh))
1802 op->ccval = (op->ccval & ~imm) |
1803 (val & imm);
1804 imm >>= 4;
1805 }
1806 return 1;
1807
1808 case 339: /* mfspr */
1809 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1810 op->type = MFSPR;
1811 op->reg = rd;
1812 op->spr = spr;
1813 if (spr == SPRN_XER || spr == SPRN_LR ||
1814 spr == SPRN_CTR)
1815 return 1;
1816 return 0;
1817
1818 case 467: /* mtspr */
1819 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1820 op->type = MTSPR;
1821 op->val = regs->gpr[rd];
1822 op->spr = spr;
1823 if (spr == SPRN_XER || spr == SPRN_LR ||
1824 spr == SPRN_CTR)
1825 return 1;
1826 return 0;
1827
1828/*
1829 * Compare instructions
1830 */
1831 case 0: /* cmp */
1832 val = regs->gpr[ra];
1833 val2 = regs->gpr[rb];
1834#ifdef __powerpc64__
1835 if ((rd & 1) == 0) {
1836 /* word (32-bit) compare */
1837 val = (int) val;
1838 val2 = (int) val2;
1839 }
1840#endif
1841 do_cmp_signed(regs, op, val, val2, rd >> 2);
1842 return 1;
1843
1844 case 32: /* cmpl */
1845 val = regs->gpr[ra];
1846 val2 = regs->gpr[rb];
1847#ifdef __powerpc64__
1848 if ((rd & 1) == 0) {
1849 /* word (32-bit) compare */
1850 val = (unsigned int) val;
1851 val2 = (unsigned int) val2;
1852 }
1853#endif
1854 do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1855 return 1;
1856
1857 case 508: /* cmpb */
1858 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1859 goto logical_done_nocc;
1860
1861/*
1862 * Arithmetic instructions
1863 */
1864 case 8: /* subfc */
1865 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1866 regs->gpr[rb], 1);
1867 goto arith_done;
1868#ifdef __powerpc64__
1869 case 9: /* mulhdu */
1870 asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1871 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1872 goto arith_done;
1873#endif
1874 case 10: /* addc */
1875 add_with_carry(regs, op, rd, regs->gpr[ra],
1876 regs->gpr[rb], 0);
1877 goto arith_done;
1878
1879 case 11: /* mulhwu */
1880 asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1881 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1882 goto arith_done;
1883
1884 case 40: /* subf */
1885 op->val = regs->gpr[rb] - regs->gpr[ra];
1886 goto arith_done;
1887#ifdef __powerpc64__
1888 case 73: /* mulhd */
1889 asm("mulhd %0,%1,%2" : "=r" (op->val) :
1890 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1891 goto arith_done;
1892#endif
1893 case 75: /* mulhw */
1894 asm("mulhw %0,%1,%2" : "=r" (op->val) :
1895 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1896 goto arith_done;
1897
1898 case 104: /* neg */
1899 op->val = -regs->gpr[ra];
1900 goto arith_done;
1901
1902 case 136: /* subfe */
1903 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1904 regs->gpr[rb], regs->xer & XER_CA);
1905 goto arith_done;
1906
1907 case 138: /* adde */
1908 add_with_carry(regs, op, rd, regs->gpr[ra],
1909 regs->gpr[rb], regs->xer & XER_CA);
1910 goto arith_done;
1911
1912 case 200: /* subfze */
1913 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1914 regs->xer & XER_CA);
1915 goto arith_done;
1916
1917 case 202: /* addze */
1918 add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1919 regs->xer & XER_CA);
1920 goto arith_done;
1921
1922 case 232: /* subfme */
1923 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1924 regs->xer & XER_CA);
1925 goto arith_done;
1926#ifdef __powerpc64__
1927 case 233: /* mulld */
1928 op->val = regs->gpr[ra] * regs->gpr[rb];
1929 goto arith_done;
1930#endif
1931 case 234: /* addme */
1932 add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1933 regs->xer & XER_CA);
1934 goto arith_done;
1935
1936 case 235: /* mullw */
1937 op->val = (long)(int) regs->gpr[ra] *
1938 (int) regs->gpr[rb];
1939
1940 goto arith_done;
1941#ifdef __powerpc64__
1942 case 265: /* modud */
1943 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1944 goto unknown_opcode;
1945 op->val = regs->gpr[ra] % regs->gpr[rb];
1946 goto compute_done;
1947#endif
1948 case 266: /* add */
1949 op->val = regs->gpr[ra] + regs->gpr[rb];
1950 goto arith_done;
1951
1952 case 267: /* moduw */
1953 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1954 goto unknown_opcode;
1955 op->val = (unsigned int) regs->gpr[ra] %
1956 (unsigned int) regs->gpr[rb];
1957 goto compute_done;
1958#ifdef __powerpc64__
1959 case 457: /* divdu */
1960 op->val = regs->gpr[ra] / regs->gpr[rb];
1961 goto arith_done;
1962#endif
1963 case 459: /* divwu */
1964 op->val = (unsigned int) regs->gpr[ra] /
1965 (unsigned int) regs->gpr[rb];
1966 goto arith_done;
1967#ifdef __powerpc64__
1968 case 489: /* divd */
1969 op->val = (long int) regs->gpr[ra] /
1970 (long int) regs->gpr[rb];
1971 goto arith_done;
1972#endif
1973 case 491: /* divw */
1974 op->val = (int) regs->gpr[ra] /
1975 (int) regs->gpr[rb];
1976 goto arith_done;
1977#ifdef __powerpc64__
1978 case 425: /* divde[.] */
1979 asm volatile(PPC_DIVDE(%0, %1, %2) :
1980 "=r" (op->val) : "r" (regs->gpr[ra]),
1981 "r" (regs->gpr[rb]));
1982 goto arith_done;
1983 case 393: /* divdeu[.] */
1984 asm volatile(PPC_DIVDEU(%0, %1, %2) :
1985 "=r" (op->val) : "r" (regs->gpr[ra]),
1986 "r" (regs->gpr[rb]));
1987 goto arith_done;
1988#endif
1989 case 755: /* darn */
1990 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1991 goto unknown_opcode;
1992 switch (ra & 0x3) {
1993 case 0:
1994 /* 32-bit conditioned */
1995 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1996 goto compute_done;
1997
1998 case 1:
1999 /* 64-bit conditioned */
2000 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
2001 goto compute_done;
2002
2003 case 2:
2004 /* 64-bit raw */
2005 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
2006 goto compute_done;
2007 }
2008
2009 goto unknown_opcode;
2010#ifdef __powerpc64__
2011 case 777: /* modsd */
2012 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2013 goto unknown_opcode;
2014 op->val = (long int) regs->gpr[ra] %
2015 (long int) regs->gpr[rb];
2016 goto compute_done;
2017#endif
2018 case 779: /* modsw */
2019 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2020 goto unknown_opcode;
2021 op->val = (int) regs->gpr[ra] %
2022 (int) regs->gpr[rb];
2023 goto compute_done;
2024
2025
2026/*
2027 * Logical instructions
2028 */
2029 case 26: /* cntlzw */
2030 val = (unsigned int) regs->gpr[rd];
2031 op->val = ( val ? __builtin_clz(val) : 32 );
2032 goto logical_done;
2033#ifdef __powerpc64__
2034 case 58: /* cntlzd */
2035 val = regs->gpr[rd];
2036 op->val = ( val ? __builtin_clzl(val) : 64 );
2037 goto logical_done;
2038#endif
2039 case 28: /* and */
2040 op->val = regs->gpr[rd] & regs->gpr[rb];
2041 goto logical_done;
2042
2043 case 60: /* andc */
2044 op->val = regs->gpr[rd] & ~regs->gpr[rb];
2045 goto logical_done;
2046
2047 case 122: /* popcntb */
2048 do_popcnt(regs, op, regs->gpr[rd], 8);
2049 goto logical_done_nocc;
2050
2051 case 124: /* nor */
2052 op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
2053 goto logical_done;
2054
2055 case 154: /* prtyw */
2056 do_prty(regs, op, regs->gpr[rd], 32);
2057 goto logical_done_nocc;
2058
2059 case 186: /* prtyd */
2060 do_prty(regs, op, regs->gpr[rd], 64);
2061 goto logical_done_nocc;
2062#ifdef CONFIG_PPC64
2063 case 252: /* bpermd */
2064 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
2065 goto logical_done_nocc;
2066#endif
2067 case 284: /* xor */
2068 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
2069 goto logical_done;
2070
2071 case 316: /* xor */
2072 op->val = regs->gpr[rd] ^ regs->gpr[rb];
2073 goto logical_done;
2074
2075 case 378: /* popcntw */
2076 do_popcnt(regs, op, regs->gpr[rd], 32);
2077 goto logical_done_nocc;
2078
2079 case 412: /* orc */
2080 op->val = regs->gpr[rd] | ~regs->gpr[rb];
2081 goto logical_done;
2082
2083 case 444: /* or */
2084 op->val = regs->gpr[rd] | regs->gpr[rb];
2085 goto logical_done;
2086
2087 case 476: /* nand */
2088 op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2089 goto logical_done;
2090#ifdef CONFIG_PPC64
2091 case 506: /* popcntd */
2092 do_popcnt(regs, op, regs->gpr[rd], 64);
2093 goto logical_done_nocc;
2094#endif
2095 case 538: /* cnttzw */
2096 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2097 goto unknown_opcode;
2098 val = (unsigned int) regs->gpr[rd];
2099 op->val = (val ? __builtin_ctz(val) : 32);
2100 goto logical_done;
2101#ifdef __powerpc64__
2102 case 570: /* cnttzd */
2103 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2104 goto unknown_opcode;
2105 val = regs->gpr[rd];
2106 op->val = (val ? __builtin_ctzl(val) : 64);
2107 goto logical_done;
2108#endif
2109 case 922: /* extsh */
2110 op->val = (signed short) regs->gpr[rd];
2111 goto logical_done;
2112
2113 case 954: /* extsb */
2114 op->val = (signed char) regs->gpr[rd];
2115 goto logical_done;
2116#ifdef __powerpc64__
2117 case 986: /* extsw */
2118 op->val = (signed int) regs->gpr[rd];
2119 goto logical_done;
2120#endif
2121
2122/*
2123 * Shift instructions
2124 */
2125 case 24: /* slw */
2126 sh = regs->gpr[rb] & 0x3f;
2127 if (sh < 32)
2128 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2129 else
2130 op->val = 0;
2131 goto logical_done;
2132
2133 case 536: /* srw */
2134 sh = regs->gpr[rb] & 0x3f;
2135 if (sh < 32)
2136 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2137 else
2138 op->val = 0;
2139 goto logical_done;
2140
2141 case 792: /* sraw */
2142 op->type = COMPUTE + SETREG + SETXER;
2143 sh = regs->gpr[rb] & 0x3f;
2144 ival = (signed int) regs->gpr[rd];
2145 op->val = ival >> (sh < 32 ? sh : 31);
2146 op->xerval = regs->xer;
2147 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2148 op->xerval |= XER_CA;
2149 else
2150 op->xerval &= ~XER_CA;
2151 set_ca32(op, op->xerval & XER_CA);
2152 goto logical_done;
2153
2154 case 824: /* srawi */
2155 op->type = COMPUTE + SETREG + SETXER;
2156 sh = rb;
2157 ival = (signed int) regs->gpr[rd];
2158 op->val = ival >> sh;
2159 op->xerval = regs->xer;
2160 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2161 op->xerval |= XER_CA;
2162 else
2163 op->xerval &= ~XER_CA;
2164 set_ca32(op, op->xerval & XER_CA);
2165 goto logical_done;
2166
2167#ifdef __powerpc64__
2168 case 27: /* sld */
2169 sh = regs->gpr[rb] & 0x7f;
2170 if (sh < 64)
2171 op->val = regs->gpr[rd] << sh;
2172 else
2173 op->val = 0;
2174 goto logical_done;
2175
2176 case 539: /* srd */
2177 sh = regs->gpr[rb] & 0x7f;
2178 if (sh < 64)
2179 op->val = regs->gpr[rd] >> sh;
2180 else
2181 op->val = 0;
2182 goto logical_done;
2183
2184 case 794: /* srad */
2185 op->type = COMPUTE + SETREG + SETXER;
2186 sh = regs->gpr[rb] & 0x7f;
2187 ival = (signed long int) regs->gpr[rd];
2188 op->val = ival >> (sh < 64 ? sh : 63);
2189 op->xerval = regs->xer;
2190 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2191 op->xerval |= XER_CA;
2192 else
2193 op->xerval &= ~XER_CA;
2194 set_ca32(op, op->xerval & XER_CA);
2195 goto logical_done;
2196
2197 case 826: /* sradi with sh_5 = 0 */
2198 case 827: /* sradi with sh_5 = 1 */
2199 op->type = COMPUTE + SETREG + SETXER;
2200 sh = rb | ((word & 2) << 4);
2201 ival = (signed long int) regs->gpr[rd];
2202 op->val = ival >> sh;
2203 op->xerval = regs->xer;
2204 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2205 op->xerval |= XER_CA;
2206 else
2207 op->xerval &= ~XER_CA;
2208 set_ca32(op, op->xerval & XER_CA);
2209 goto logical_done;
2210
2211 case 890: /* extswsli with sh_5 = 0 */
2212 case 891: /* extswsli with sh_5 = 1 */
2213 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2214 goto unknown_opcode;
2215 op->type = COMPUTE + SETREG;
2216 sh = rb | ((word & 2) << 4);
2217 val = (signed int) regs->gpr[rd];
2218 if (sh)
2219 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2220 else
2221 op->val = val;
2222 goto logical_done;
2223
2224#endif /* __powerpc64__ */
2225
2226/*
2227 * Cache instructions
2228 */
2229 case 54: /* dcbst */
2230 op->type = MKOP(CACHEOP, DCBST, 0);
2231 op->ea = xform_ea(word, regs);
2232 return 0;
2233
2234 case 86: /* dcbf */
2235 op->type = MKOP(CACHEOP, DCBF, 0);
2236 op->ea = xform_ea(word, regs);
2237 return 0;
2238
2239 case 246: /* dcbtst */
2240 op->type = MKOP(CACHEOP, DCBTST, 0);
2241 op->ea = xform_ea(word, regs);
2242 op->reg = rd;
2243 return 0;
2244
2245 case 278: /* dcbt */
2246 op->type = MKOP(CACHEOP, DCBTST, 0);
2247 op->ea = xform_ea(word, regs);
2248 op->reg = rd;
2249 return 0;
2250
2251 case 982: /* icbi */
2252 op->type = MKOP(CACHEOP, ICBI, 0);
2253 op->ea = xform_ea(word, regs);
2254 return 0;
2255
2256 case 1014: /* dcbz */
2257 op->type = MKOP(CACHEOP, DCBZ, 0);
2258 op->ea = xform_ea(word, regs);
2259 return 0;
2260 }
2261 break;
2262 }
2263
2264/*
2265 * Loads and stores.
2266 */
2267 op->type = UNKNOWN;
2268 op->update_reg = ra;
2269 op->reg = rd;
2270 op->val = regs->gpr[rd];
2271 u = (word >> 20) & UPDATE;
2272 op->vsx_flags = 0;
2273
2274 switch (opcode) {
2275 case 31:
2276 u = word & UPDATE;
2277 op->ea = xform_ea(word, regs);
2278 switch ((word >> 1) & 0x3ff) {
2279 case 20: /* lwarx */
2280 op->type = MKOP(LARX, 0, 4);
2281 break;
2282
2283 case 150: /* stwcx. */
2284 op->type = MKOP(STCX, 0, 4);
2285 break;
2286
2287#ifdef CONFIG_PPC_HAS_LBARX_LHARX
2288 case 52: /* lbarx */
2289 op->type = MKOP(LARX, 0, 1);
2290 break;
2291
2292 case 694: /* stbcx. */
2293 op->type = MKOP(STCX, 0, 1);
2294 break;
2295
2296 case 116: /* lharx */
2297 op->type = MKOP(LARX, 0, 2);
2298 break;
2299
2300 case 726: /* sthcx. */
2301 op->type = MKOP(STCX, 0, 2);
2302 break;
2303#endif
2304#ifdef __powerpc64__
2305 case 84: /* ldarx */
2306 op->type = MKOP(LARX, 0, 8);
2307 break;
2308
2309 case 214: /* stdcx. */
2310 op->type = MKOP(STCX, 0, 8);
2311 break;
2312
2313 case 276: /* lqarx */
2314 if (!((rd & 1) || rd == ra || rd == rb))
2315 op->type = MKOP(LARX, 0, 16);
2316 break;
2317
2318 case 182: /* stqcx. */
2319 if (!(rd & 1))
2320 op->type = MKOP(STCX, 0, 16);
2321 break;
2322#endif
2323
2324 case 23: /* lwzx */
2325 case 55: /* lwzux */
2326 op->type = MKOP(LOAD, u, 4);
2327 break;
2328
2329 case 87: /* lbzx */
2330 case 119: /* lbzux */
2331 op->type = MKOP(LOAD, u, 1);
2332 break;
2333
2334#ifdef CONFIG_ALTIVEC
2335 /*
2336 * Note: for the load/store vector element instructions,
2337 * bits of the EA say which field of the VMX register to use.
2338 */
2339 case 7: /* lvebx */
2340 op->type = MKOP(LOAD_VMX, 0, 1);
2341 op->element_size = 1;
2342 break;
2343
2344 case 39: /* lvehx */
2345 op->type = MKOP(LOAD_VMX, 0, 2);
2346 op->element_size = 2;
2347 break;
2348
2349 case 71: /* lvewx */
2350 op->type = MKOP(LOAD_VMX, 0, 4);
2351 op->element_size = 4;
2352 break;
2353
2354 case 103: /* lvx */
2355 case 359: /* lvxl */
2356 op->type = MKOP(LOAD_VMX, 0, 16);
2357 op->element_size = 16;
2358 break;
2359
2360 case 135: /* stvebx */
2361 op->type = MKOP(STORE_VMX, 0, 1);
2362 op->element_size = 1;
2363 break;
2364
2365 case 167: /* stvehx */
2366 op->type = MKOP(STORE_VMX, 0, 2);
2367 op->element_size = 2;
2368 break;
2369
2370 case 199: /* stvewx */
2371 op->type = MKOP(STORE_VMX, 0, 4);
2372 op->element_size = 4;
2373 break;
2374
2375 case 231: /* stvx */
2376 case 487: /* stvxl */
2377 op->type = MKOP(STORE_VMX, 0, 16);
2378 break;
2379#endif /* CONFIG_ALTIVEC */
2380
2381#ifdef __powerpc64__
2382 case 21: /* ldx */
2383 case 53: /* ldux */
2384 op->type = MKOP(LOAD, u, 8);
2385 break;
2386
2387 case 149: /* stdx */
2388 case 181: /* stdux */
2389 op->type = MKOP(STORE, u, 8);
2390 break;
2391#endif
2392
2393 case 151: /* stwx */
2394 case 183: /* stwux */
2395 op->type = MKOP(STORE, u, 4);
2396 break;
2397
2398 case 215: /* stbx */
2399 case 247: /* stbux */
2400 op->type = MKOP(STORE, u, 1);
2401 break;
2402
2403 case 279: /* lhzx */
2404 case 311: /* lhzux */
2405 op->type = MKOP(LOAD, u, 2);
2406 break;
2407
2408#ifdef __powerpc64__
2409 case 341: /* lwax */
2410 case 373: /* lwaux */
2411 op->type = MKOP(LOAD, SIGNEXT | u, 4);
2412 break;
2413#endif
2414
2415 case 343: /* lhax */
2416 case 375: /* lhaux */
2417 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2418 break;
2419
2420 case 407: /* sthx */
2421 case 439: /* sthux */
2422 op->type = MKOP(STORE, u, 2);
2423 break;
2424
2425#ifdef __powerpc64__
2426 case 532: /* ldbrx */
2427 op->type = MKOP(LOAD, BYTEREV, 8);
2428 break;
2429
2430#endif
2431 case 533: /* lswx */
2432 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2433 break;
2434
2435 case 534: /* lwbrx */
2436 op->type = MKOP(LOAD, BYTEREV, 4);
2437 break;
2438
2439 case 597: /* lswi */
2440 if (rb == 0)
2441 rb = 32; /* # bytes to load */
2442 op->type = MKOP(LOAD_MULTI, 0, rb);
2443 op->ea = ra ? regs->gpr[ra] : 0;
2444 break;
2445
2446#ifdef CONFIG_PPC_FPU
2447 case 535: /* lfsx */
2448 case 567: /* lfsux */
2449 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2450 break;
2451
2452 case 599: /* lfdx */
2453 case 631: /* lfdux */
2454 op->type = MKOP(LOAD_FP, u, 8);
2455 break;
2456
2457 case 663: /* stfsx */
2458 case 695: /* stfsux */
2459 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2460 break;
2461
2462 case 727: /* stfdx */
2463 case 759: /* stfdux */
2464 op->type = MKOP(STORE_FP, u, 8);
2465 break;
2466
2467#ifdef __powerpc64__
2468 case 791: /* lfdpx */
2469 op->type = MKOP(LOAD_FP, 0, 16);
2470 break;
2471
2472 case 855: /* lfiwax */
2473 op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2474 break;
2475
2476 case 887: /* lfiwzx */
2477 op->type = MKOP(LOAD_FP, 0, 4);
2478 break;
2479
2480 case 919: /* stfdpx */
2481 op->type = MKOP(STORE_FP, 0, 16);
2482 break;
2483
2484 case 983: /* stfiwx */
2485 op->type = MKOP(STORE_FP, 0, 4);
2486 break;
2487#endif /* __powerpc64 */
2488#endif /* CONFIG_PPC_FPU */
2489
2490#ifdef __powerpc64__
2491 case 660: /* stdbrx */
2492 op->type = MKOP(STORE, BYTEREV, 8);
2493 op->val = byterev_8(regs->gpr[rd]);
2494 break;
2495
2496#endif
2497 case 661: /* stswx */
2498 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2499 break;
2500
2501 case 662: /* stwbrx */
2502 op->type = MKOP(STORE, BYTEREV, 4);
2503 op->val = byterev_4(regs->gpr[rd]);
2504 break;
2505
2506 case 725: /* stswi */
2507 if (rb == 0)
2508 rb = 32; /* # bytes to store */
2509 op->type = MKOP(STORE_MULTI, 0, rb);
2510 op->ea = ra ? regs->gpr[ra] : 0;
2511 break;
2512
2513 case 790: /* lhbrx */
2514 op->type = MKOP(LOAD, BYTEREV, 2);
2515 break;
2516
2517 case 918: /* sthbrx */
2518 op->type = MKOP(STORE, BYTEREV, 2);
2519 op->val = byterev_2(regs->gpr[rd]);
2520 break;
2521
2522#ifdef CONFIG_VSX
2523 case 12: /* lxsiwzx */
2524 op->reg = rd | ((word & 1) << 5);
2525 op->type = MKOP(LOAD_VSX, 0, 4);
2526 op->element_size = 8;
2527 break;
2528
2529 case 76: /* lxsiwax */
2530 op->reg = rd | ((word & 1) << 5);
2531 op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2532 op->element_size = 8;
2533 break;
2534
2535 case 140: /* stxsiwx */
2536 op->reg = rd | ((word & 1) << 5);
2537 op->type = MKOP(STORE_VSX, 0, 4);
2538 op->element_size = 8;
2539 break;
2540
2541 case 268: /* lxvx */
2542 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2543 goto unknown_opcode;
2544 op->reg = rd | ((word & 1) << 5);
2545 op->type = MKOP(LOAD_VSX, 0, 16);
2546 op->element_size = 16;
2547 op->vsx_flags = VSX_CHECK_VEC;
2548 break;
2549
2550 case 269: /* lxvl */
2551 case 301: { /* lxvll */
2552 int nb;
2553 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2554 goto unknown_opcode;
2555 op->reg = rd | ((word & 1) << 5);
2556 op->ea = ra ? regs->gpr[ra] : 0;
2557 nb = regs->gpr[rb] & 0xff;
2558 if (nb > 16)
2559 nb = 16;
2560 op->type = MKOP(LOAD_VSX, 0, nb);
2561 op->element_size = 16;
2562 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2563 VSX_CHECK_VEC;
2564 break;
2565 }
2566 case 332: /* lxvdsx */
2567 op->reg = rd | ((word & 1) << 5);
2568 op->type = MKOP(LOAD_VSX, 0, 8);
2569 op->element_size = 8;
2570 op->vsx_flags = VSX_SPLAT;
2571 break;
2572
2573 case 333: /* lxvpx */
2574 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2575 goto unknown_opcode;
2576 op->reg = VSX_REGISTER_XTP(rd);
2577 op->type = MKOP(LOAD_VSX, 0, 32);
2578 op->element_size = 32;
2579 break;
2580
2581 case 364: /* lxvwsx */
2582 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2583 goto unknown_opcode;
2584 op->reg = rd | ((word & 1) << 5);
2585 op->type = MKOP(LOAD_VSX, 0, 4);
2586 op->element_size = 4;
2587 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2588 break;
2589
2590 case 396: /* stxvx */
2591 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2592 goto unknown_opcode;
2593 op->reg = rd | ((word & 1) << 5);
2594 op->type = MKOP(STORE_VSX, 0, 16);
2595 op->element_size = 16;
2596 op->vsx_flags = VSX_CHECK_VEC;
2597 break;
2598
2599 case 397: /* stxvl */
2600 case 429: { /* stxvll */
2601 int nb;
2602 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2603 goto unknown_opcode;
2604 op->reg = rd | ((word & 1) << 5);
2605 op->ea = ra ? regs->gpr[ra] : 0;
2606 nb = regs->gpr[rb] & 0xff;
2607 if (nb > 16)
2608 nb = 16;
2609 op->type = MKOP(STORE_VSX, 0, nb);
2610 op->element_size = 16;
2611 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2612 VSX_CHECK_VEC;
2613 break;
2614 }
2615 case 461: /* stxvpx */
2616 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2617 goto unknown_opcode;
2618 op->reg = VSX_REGISTER_XTP(rd);
2619 op->type = MKOP(STORE_VSX, 0, 32);
2620 op->element_size = 32;
2621 break;
2622 case 524: /* lxsspx */
2623 op->reg = rd | ((word & 1) << 5);
2624 op->type = MKOP(LOAD_VSX, 0, 4);
2625 op->element_size = 8;
2626 op->vsx_flags = VSX_FPCONV;
2627 break;
2628
2629 case 588: /* lxsdx */
2630 op->reg = rd | ((word & 1) << 5);
2631 op->type = MKOP(LOAD_VSX, 0, 8);
2632 op->element_size = 8;
2633 break;
2634
2635 case 652: /* stxsspx */
2636 op->reg = rd | ((word & 1) << 5);
2637 op->type = MKOP(STORE_VSX, 0, 4);
2638 op->element_size = 8;
2639 op->vsx_flags = VSX_FPCONV;
2640 break;
2641
2642 case 716: /* stxsdx */
2643 op->reg = rd | ((word & 1) << 5);
2644 op->type = MKOP(STORE_VSX, 0, 8);
2645 op->element_size = 8;
2646 break;
2647
2648 case 780: /* lxvw4x */
2649 op->reg = rd | ((word & 1) << 5);
2650 op->type = MKOP(LOAD_VSX, 0, 16);
2651 op->element_size = 4;
2652 break;
2653
2654 case 781: /* lxsibzx */
2655 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2656 goto unknown_opcode;
2657 op->reg = rd | ((word & 1) << 5);
2658 op->type = MKOP(LOAD_VSX, 0, 1);
2659 op->element_size = 8;
2660 op->vsx_flags = VSX_CHECK_VEC;
2661 break;
2662
2663 case 812: /* lxvh8x */
2664 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2665 goto unknown_opcode;
2666 op->reg = rd | ((word & 1) << 5);
2667 op->type = MKOP(LOAD_VSX, 0, 16);
2668 op->element_size = 2;
2669 op->vsx_flags = VSX_CHECK_VEC;
2670 break;
2671
2672 case 813: /* lxsihzx */
2673 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2674 goto unknown_opcode;
2675 op->reg = rd | ((word & 1) << 5);
2676 op->type = MKOP(LOAD_VSX, 0, 2);
2677 op->element_size = 8;
2678 op->vsx_flags = VSX_CHECK_VEC;
2679 break;
2680
2681 case 844: /* lxvd2x */
2682 op->reg = rd | ((word & 1) << 5);
2683 op->type = MKOP(LOAD_VSX, 0, 16);
2684 op->element_size = 8;
2685 break;
2686
2687 case 876: /* lxvb16x */
2688 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2689 goto unknown_opcode;
2690 op->reg = rd | ((word & 1) << 5);
2691 op->type = MKOP(LOAD_VSX, 0, 16);
2692 op->element_size = 1;
2693 op->vsx_flags = VSX_CHECK_VEC;
2694 break;
2695
2696 case 908: /* stxvw4x */
2697 op->reg = rd | ((word & 1) << 5);
2698 op->type = MKOP(STORE_VSX, 0, 16);
2699 op->element_size = 4;
2700 break;
2701
2702 case 909: /* stxsibx */
2703 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2704 goto unknown_opcode;
2705 op->reg = rd | ((word & 1) << 5);
2706 op->type = MKOP(STORE_VSX, 0, 1);
2707 op->element_size = 8;
2708 op->vsx_flags = VSX_CHECK_VEC;
2709 break;
2710
2711 case 940: /* stxvh8x */
2712 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2713 goto unknown_opcode;
2714 op->reg = rd | ((word & 1) << 5);
2715 op->type = MKOP(STORE_VSX, 0, 16);
2716 op->element_size = 2;
2717 op->vsx_flags = VSX_CHECK_VEC;
2718 break;
2719
2720 case 941: /* stxsihx */
2721 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2722 goto unknown_opcode;
2723 op->reg = rd | ((word & 1) << 5);
2724 op->type = MKOP(STORE_VSX, 0, 2);
2725 op->element_size = 8;
2726 op->vsx_flags = VSX_CHECK_VEC;
2727 break;
2728
2729 case 972: /* stxvd2x */
2730 op->reg = rd | ((word & 1) << 5);
2731 op->type = MKOP(STORE_VSX, 0, 16);
2732 op->element_size = 8;
2733 break;
2734
2735 case 1004: /* stxvb16x */
2736 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2737 goto unknown_opcode;
2738 op->reg = rd | ((word & 1) << 5);
2739 op->type = MKOP(STORE_VSX, 0, 16);
2740 op->element_size = 1;
2741 op->vsx_flags = VSX_CHECK_VEC;
2742 break;
2743
2744#endif /* CONFIG_VSX */
2745 }
2746 break;
2747
2748 case 32: /* lwz */
2749 case 33: /* lwzu */
2750 op->type = MKOP(LOAD, u, 4);
2751 op->ea = dform_ea(word, regs);
2752 break;
2753
2754 case 34: /* lbz */
2755 case 35: /* lbzu */
2756 op->type = MKOP(LOAD, u, 1);
2757 op->ea = dform_ea(word, regs);
2758 break;
2759
2760 case 36: /* stw */
2761 case 37: /* stwu */
2762 op->type = MKOP(STORE, u, 4);
2763 op->ea = dform_ea(word, regs);
2764 break;
2765
2766 case 38: /* stb */
2767 case 39: /* stbu */
2768 op->type = MKOP(STORE, u, 1);
2769 op->ea = dform_ea(word, regs);
2770 break;
2771
2772 case 40: /* lhz */
2773 case 41: /* lhzu */
2774 op->type = MKOP(LOAD, u, 2);
2775 op->ea = dform_ea(word, regs);
2776 break;
2777
2778 case 42: /* lha */
2779 case 43: /* lhau */
2780 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2781 op->ea = dform_ea(word, regs);
2782 break;
2783
2784 case 44: /* sth */
2785 case 45: /* sthu */
2786 op->type = MKOP(STORE, u, 2);
2787 op->ea = dform_ea(word, regs);
2788 break;
2789
2790 case 46: /* lmw */
2791 if (ra >= rd)
2792 break; /* invalid form, ra in range to load */
2793 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2794 op->ea = dform_ea(word, regs);
2795 break;
2796
2797 case 47: /* stmw */
2798 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2799 op->ea = dform_ea(word, regs);
2800 break;
2801
2802#ifdef CONFIG_PPC_FPU
2803 case 48: /* lfs */
2804 case 49: /* lfsu */
2805 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2806 op->ea = dform_ea(word, regs);
2807 break;
2808
2809 case 50: /* lfd */
2810 case 51: /* lfdu */
2811 op->type = MKOP(LOAD_FP, u, 8);
2812 op->ea = dform_ea(word, regs);
2813 break;
2814
2815 case 52: /* stfs */
2816 case 53: /* stfsu */
2817 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2818 op->ea = dform_ea(word, regs);
2819 break;
2820
2821 case 54: /* stfd */
2822 case 55: /* stfdu */
2823 op->type = MKOP(STORE_FP, u, 8);
2824 op->ea = dform_ea(word, regs);
2825 break;
2826#endif
2827
2828#ifdef __powerpc64__
2829 case 56: /* lq */
2830 if (!((rd & 1) || (rd == ra)))
2831 op->type = MKOP(LOAD, 0, 16);
2832 op->ea = dqform_ea(word, regs);
2833 break;
2834#endif
2835
2836#ifdef CONFIG_VSX
2837 case 57: /* lfdp, lxsd, lxssp */
2838 op->ea = dsform_ea(word, regs);
2839 switch (word & 3) {
2840 case 0: /* lfdp */
2841 if (rd & 1)
2842 break; /* reg must be even */
2843 op->type = MKOP(LOAD_FP, 0, 16);
2844 break;
2845 case 2: /* lxsd */
2846 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2847 goto unknown_opcode;
2848 op->reg = rd + 32;
2849 op->type = MKOP(LOAD_VSX, 0, 8);
2850 op->element_size = 8;
2851 op->vsx_flags = VSX_CHECK_VEC;
2852 break;
2853 case 3: /* lxssp */
2854 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2855 goto unknown_opcode;
2856 op->reg = rd + 32;
2857 op->type = MKOP(LOAD_VSX, 0, 4);
2858 op->element_size = 8;
2859 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2860 break;
2861 }
2862 break;
2863#endif /* CONFIG_VSX */
2864
2865#ifdef __powerpc64__
2866 case 58: /* ld[u], lwa */
2867 op->ea = dsform_ea(word, regs);
2868 switch (word & 3) {
2869 case 0: /* ld */
2870 op->type = MKOP(LOAD, 0, 8);
2871 break;
2872 case 1: /* ldu */
2873 op->type = MKOP(LOAD, UPDATE, 8);
2874 break;
2875 case 2: /* lwa */
2876 op->type = MKOP(LOAD, SIGNEXT, 4);
2877 break;
2878 }
2879 break;
2880#endif
2881
2882#ifdef CONFIG_VSX
2883 case 6:
2884 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2885 goto unknown_opcode;
2886 op->ea = dqform_ea(word, regs);
2887 op->reg = VSX_REGISTER_XTP(rd);
2888 op->element_size = 32;
2889 switch (word & 0xf) {
2890 case 0: /* lxvp */
2891 op->type = MKOP(LOAD_VSX, 0, 32);
2892 break;
2893 case 1: /* stxvp */
2894 op->type = MKOP(STORE_VSX, 0, 32);
2895 break;
2896 }
2897 break;
2898
2899 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
2900 switch (word & 7) {
2901 case 0: /* stfdp with LSB of DS field = 0 */
2902 case 4: /* stfdp with LSB of DS field = 1 */
2903 op->ea = dsform_ea(word, regs);
2904 op->type = MKOP(STORE_FP, 0, 16);
2905 break;
2906
2907 case 1: /* lxv */
2908 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2909 goto unknown_opcode;
2910 op->ea = dqform_ea(word, regs);
2911 if (word & 8)
2912 op->reg = rd + 32;
2913 op->type = MKOP(LOAD_VSX, 0, 16);
2914 op->element_size = 16;
2915 op->vsx_flags = VSX_CHECK_VEC;
2916 break;
2917
2918 case 2: /* stxsd with LSB of DS field = 0 */
2919 case 6: /* stxsd with LSB of DS field = 1 */
2920 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2921 goto unknown_opcode;
2922 op->ea = dsform_ea(word, regs);
2923 op->reg = rd + 32;
2924 op->type = MKOP(STORE_VSX, 0, 8);
2925 op->element_size = 8;
2926 op->vsx_flags = VSX_CHECK_VEC;
2927 break;
2928
2929 case 3: /* stxssp with LSB of DS field = 0 */
2930 case 7: /* stxssp with LSB of DS field = 1 */
2931 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2932 goto unknown_opcode;
2933 op->ea = dsform_ea(word, regs);
2934 op->reg = rd + 32;
2935 op->type = MKOP(STORE_VSX, 0, 4);
2936 op->element_size = 8;
2937 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2938 break;
2939
2940 case 5: /* stxv */
2941 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2942 goto unknown_opcode;
2943 op->ea = dqform_ea(word, regs);
2944 if (word & 8)
2945 op->reg = rd + 32;
2946 op->type = MKOP(STORE_VSX, 0, 16);
2947 op->element_size = 16;
2948 op->vsx_flags = VSX_CHECK_VEC;
2949 break;
2950 }
2951 break;
2952#endif /* CONFIG_VSX */
2953
2954#ifdef __powerpc64__
2955 case 62: /* std[u] */
2956 op->ea = dsform_ea(word, regs);
2957 switch (word & 3) {
2958 case 0: /* std */
2959 op->type = MKOP(STORE, 0, 8);
2960 break;
2961 case 1: /* stdu */
2962 op->type = MKOP(STORE, UPDATE, 8);
2963 break;
2964 case 2: /* stq */
2965 if (!(rd & 1))
2966 op->type = MKOP(STORE, 0, 16);
2967 break;
2968 }
2969 break;
2970 case 1: /* Prefixed instructions */
2971 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2972 goto unknown_opcode;
2973
2974 prefix_r = GET_PREFIX_R(word);
2975 ra = GET_PREFIX_RA(suffix);
2976 op->update_reg = ra;
2977 rd = (suffix >> 21) & 0x1f;
2978 op->reg = rd;
2979 op->val = regs->gpr[rd];
2980
2981 suffixopcode = get_op(suffix);
2982 prefixtype = (word >> 24) & 0x3;
2983 switch (prefixtype) {
2984 case 0: /* Type 00 Eight-Byte Load/Store */
2985 if (prefix_r && ra)
2986 break;
2987 op->ea = mlsd_8lsd_ea(word, suffix, regs);
2988 switch (suffixopcode) {
2989 case 41: /* plwa */
2990 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2991 break;
2992#ifdef CONFIG_VSX
2993 case 42: /* plxsd */
2994 op->reg = rd + 32;
2995 op->type = MKOP(LOAD_VSX, PREFIXED, 8);
2996 op->element_size = 8;
2997 op->vsx_flags = VSX_CHECK_VEC;
2998 break;
2999 case 43: /* plxssp */
3000 op->reg = rd + 32;
3001 op->type = MKOP(LOAD_VSX, PREFIXED, 4);
3002 op->element_size = 8;
3003 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3004 break;
3005 case 46: /* pstxsd */
3006 op->reg = rd + 32;
3007 op->type = MKOP(STORE_VSX, PREFIXED, 8);
3008 op->element_size = 8;
3009 op->vsx_flags = VSX_CHECK_VEC;
3010 break;
3011 case 47: /* pstxssp */
3012 op->reg = rd + 32;
3013 op->type = MKOP(STORE_VSX, PREFIXED, 4);
3014 op->element_size = 8;
3015 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3016 break;
3017 case 51: /* plxv1 */
3018 op->reg += 32;
3019 fallthrough;
3020 case 50: /* plxv0 */
3021 op->type = MKOP(LOAD_VSX, PREFIXED, 16);
3022 op->element_size = 16;
3023 op->vsx_flags = VSX_CHECK_VEC;
3024 break;
3025 case 55: /* pstxv1 */
3026 op->reg = rd + 32;
3027 fallthrough;
3028 case 54: /* pstxv0 */
3029 op->type = MKOP(STORE_VSX, PREFIXED, 16);
3030 op->element_size = 16;
3031 op->vsx_flags = VSX_CHECK_VEC;
3032 break;
3033#endif /* CONFIG_VSX */
3034 case 56: /* plq */
3035 op->type = MKOP(LOAD, PREFIXED, 16);
3036 break;
3037 case 57: /* pld */
3038 op->type = MKOP(LOAD, PREFIXED, 8);
3039 break;
3040#ifdef CONFIG_VSX
3041 case 58: /* plxvp */
3042 op->reg = VSX_REGISTER_XTP(rd);
3043 op->type = MKOP(LOAD_VSX, PREFIXED, 32);
3044 op->element_size = 32;
3045 break;
3046#endif /* CONFIG_VSX */
3047 case 60: /* pstq */
3048 op->type = MKOP(STORE, PREFIXED, 16);
3049 break;
3050 case 61: /* pstd */
3051 op->type = MKOP(STORE, PREFIXED, 8);
3052 break;
3053#ifdef CONFIG_VSX
3054 case 62: /* pstxvp */
3055 op->reg = VSX_REGISTER_XTP(rd);
3056 op->type = MKOP(STORE_VSX, PREFIXED, 32);
3057 op->element_size = 32;
3058 break;
3059#endif /* CONFIG_VSX */
3060 }
3061 break;
3062 case 1: /* Type 01 Eight-Byte Register-to-Register */
3063 break;
3064 case 2: /* Type 10 Modified Load/Store */
3065 if (prefix_r && ra)
3066 break;
3067 op->ea = mlsd_8lsd_ea(word, suffix, regs);
3068 switch (suffixopcode) {
3069 case 32: /* plwz */
3070 op->type = MKOP(LOAD, PREFIXED, 4);
3071 break;
3072 case 34: /* plbz */
3073 op->type = MKOP(LOAD, PREFIXED, 1);
3074 break;
3075 case 36: /* pstw */
3076 op->type = MKOP(STORE, PREFIXED, 4);
3077 break;
3078 case 38: /* pstb */
3079 op->type = MKOP(STORE, PREFIXED, 1);
3080 break;
3081 case 40: /* plhz */
3082 op->type = MKOP(LOAD, PREFIXED, 2);
3083 break;
3084 case 42: /* plha */
3085 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3086 break;
3087 case 44: /* psth */
3088 op->type = MKOP(STORE, PREFIXED, 2);
3089 break;
3090 case 48: /* plfs */
3091 op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3092 break;
3093 case 50: /* plfd */
3094 op->type = MKOP(LOAD_FP, PREFIXED, 8);
3095 break;
3096 case 52: /* pstfs */
3097 op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3098 break;
3099 case 54: /* pstfd */
3100 op->type = MKOP(STORE_FP, PREFIXED, 8);
3101 break;
3102 }
3103 break;
3104 case 3: /* Type 11 Modified Register-to-Register */
3105 break;
3106 }
3107#endif /* __powerpc64__ */
3108
3109 }
3110
3111 if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3112 switch (GETTYPE(op->type)) {
3113 case LOAD:
3114 if (ra == rd)
3115 goto unknown_opcode;
3116 fallthrough;
3117 case STORE:
3118 case LOAD_FP:
3119 case STORE_FP:
3120 if (ra == 0)
3121 goto unknown_opcode;
3122 }
3123 }
3124
3125#ifdef CONFIG_VSX
3126 if ((GETTYPE(op->type) == LOAD_VSX ||
3127 GETTYPE(op->type) == STORE_VSX) &&
3128 !cpu_has_feature(CPU_FTR_VSX)) {
3129 return -1;
3130 }
3131#endif /* CONFIG_VSX */
3132
3133 return 0;
3134
3135 unknown_opcode:
3136 op->type = UNKNOWN;
3137 return 0;
3138
3139 logical_done:
3140 if (word & 1)
3141 set_cr0(regs, op);
3142 logical_done_nocc:
3143 op->reg = ra;
3144 op->type |= SETREG;
3145 return 1;
3146
3147 arith_done:
3148 if (word & 1)
3149 set_cr0(regs, op);
3150 compute_done:
3151 op->reg = rd;
3152 op->type |= SETREG;
3153 return 1;
3154
3155 priv:
3156 op->type = INTERRUPT | 0x700;
3157 op->val = SRR1_PROGPRIV;
3158 return 0;
3159
3160 trap:
3161 op->type = INTERRUPT | 0x700;
3162 op->val = SRR1_PROGTRAP;
3163 return 0;
3164}
3165EXPORT_SYMBOL_GPL(analyse_instr);
3166NOKPROBE_SYMBOL(analyse_instr);
3167
3168/*
3169 * For PPC32 we always use stwu with r1 to change the stack pointer.
3170 * So this emulated store may corrupt the exception frame, now we
3171 * have to provide the exception frame trampoline, which is pushed
3172 * below the kprobed function stack. So we only update gpr[1] but
3173 * don't emulate the real store operation. We will do real store
3174 * operation safely in exception return code by checking this flag.
3175 */
3176static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3177{
3178 /*
3179 * Check if we already set since that means we'll
3180 * lose the previous value.
3181 */
3182 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3183 set_thread_flag(TIF_EMULATE_STACK_STORE);
3184 return 0;
3185}
3186
3187static nokprobe_inline void do_signext(unsigned long *valp, int size)
3188{
3189 switch (size) {
3190 case 2:
3191 *valp = (signed short) *valp;
3192 break;
3193 case 4:
3194 *valp = (signed int) *valp;
3195 break;
3196 }
3197}
3198
3199static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3200{
3201 switch (size) {
3202 case 2:
3203 *valp = byterev_2(*valp);
3204 break;
3205 case 4:
3206 *valp = byterev_4(*valp);
3207 break;
3208#ifdef __powerpc64__
3209 case 8:
3210 *valp = byterev_8(*valp);
3211 break;
3212#endif
3213 }
3214}
3215
3216/*
3217 * Emulate an instruction that can be executed just by updating
3218 * fields in *regs.
3219 */
3220void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3221{
3222 unsigned long next_pc;
3223
3224 next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3225 switch (GETTYPE(op->type)) {
3226 case COMPUTE:
3227 if (op->type & SETREG)
3228 regs->gpr[op->reg] = op->val;
3229 if (op->type & SETCC)
3230 regs->ccr = op->ccval;
3231 if (op->type & SETXER)
3232 regs->xer = op->xerval;
3233 break;
3234
3235 case BRANCH:
3236 if (op->type & SETLK)
3237 regs->link = next_pc;
3238 if (op->type & BRTAKEN)
3239 next_pc = op->val;
3240 if (op->type & DECCTR)
3241 --regs->ctr;
3242 break;
3243
3244 case BARRIER:
3245 switch (op->type & BARRIER_MASK) {
3246 case BARRIER_SYNC:
3247 mb();
3248 break;
3249 case BARRIER_ISYNC:
3250 isync();
3251 break;
3252 case BARRIER_EIEIO:
3253 eieio();
3254 break;
3255#ifdef CONFIG_PPC64
3256 case BARRIER_LWSYNC:
3257 asm volatile("lwsync" : : : "memory");
3258 break;
3259 case BARRIER_PTESYNC:
3260 asm volatile("ptesync" : : : "memory");
3261 break;
3262#endif
3263 }
3264 break;
3265
3266 case MFSPR:
3267 switch (op->spr) {
3268 case SPRN_XER:
3269 regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3270 break;
3271 case SPRN_LR:
3272 regs->gpr[op->reg] = regs->link;
3273 break;
3274 case SPRN_CTR:
3275 regs->gpr[op->reg] = regs->ctr;
3276 break;
3277 default:
3278 WARN_ON_ONCE(1);
3279 }
3280 break;
3281
3282 case MTSPR:
3283 switch (op->spr) {
3284 case SPRN_XER:
3285 regs->xer = op->val & 0xffffffffUL;
3286 break;
3287 case SPRN_LR:
3288 regs->link = op->val;
3289 break;
3290 case SPRN_CTR:
3291 regs->ctr = op->val;
3292 break;
3293 default:
3294 WARN_ON_ONCE(1);
3295 }
3296 break;
3297
3298 default:
3299 WARN_ON_ONCE(1);
3300 }
3301 regs_set_return_ip(regs, next_pc);
3302}
3303NOKPROBE_SYMBOL(emulate_update_regs);
3304
3305/*
3306 * Emulate a previously-analysed load or store instruction.
3307 * Return values are:
3308 * 0 = instruction emulated successfully
3309 * -EFAULT = address out of range or access faulted (regs->dar
3310 * contains the faulting address)
3311 * -EACCES = misaligned access, instruction requires alignment
3312 * -EINVAL = unknown operation in *op
3313 */
3314int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3315{
3316 int err, size, type;
3317 int i, rd, nb;
3318 unsigned int cr;
3319 unsigned long val;
3320 unsigned long ea;
3321 bool cross_endian;
3322
3323 err = 0;
3324 size = GETSIZE(op->type);
3325 type = GETTYPE(op->type);
3326 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3327 ea = truncate_if_32bit(regs->msr, op->ea);
3328
3329 switch (type) {
3330 case LARX:
3331 if (ea & (size - 1))
3332 return -EACCES; /* can't handle misaligned */
3333 if (!address_ok(regs, ea, size))
3334 return -EFAULT;
3335 err = 0;
3336 val = 0;
3337 switch (size) {
3338#ifdef CONFIG_PPC_HAS_LBARX_LHARX
3339 case 1:
3340 __get_user_asmx(val, ea, err, "lbarx");
3341 break;
3342 case 2:
3343 __get_user_asmx(val, ea, err, "lharx");
3344 break;
3345#endif
3346 case 4:
3347 __get_user_asmx(val, ea, err, "lwarx");
3348 break;
3349#ifdef __powerpc64__
3350 case 8:
3351 __get_user_asmx(val, ea, err, "ldarx");
3352 break;
3353 case 16:
3354 err = do_lqarx(ea, ®s->gpr[op->reg]);
3355 break;
3356#endif
3357 default:
3358 return -EINVAL;
3359 }
3360 if (err) {
3361 regs->dar = ea;
3362 break;
3363 }
3364 if (size < 16)
3365 regs->gpr[op->reg] = val;
3366 break;
3367
3368 case STCX:
3369 if (ea & (size - 1))
3370 return -EACCES; /* can't handle misaligned */
3371 if (!address_ok(regs, ea, size))
3372 return -EFAULT;
3373 err = 0;
3374 switch (size) {
3375#ifdef __powerpc64__
3376 case 1:
3377 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3378 break;
3379 case 2:
3380 __put_user_asmx(op->val, ea, err, "sthcx.", cr);
3381 break;
3382#endif
3383 case 4:
3384 __put_user_asmx(op->val, ea, err, "stwcx.", cr);
3385 break;
3386#ifdef __powerpc64__
3387 case 8:
3388 __put_user_asmx(op->val, ea, err, "stdcx.", cr);
3389 break;
3390 case 16:
3391 err = do_stqcx(ea, regs->gpr[op->reg],
3392 regs->gpr[op->reg + 1], &cr);
3393 break;
3394#endif
3395 default:
3396 return -EINVAL;
3397 }
3398 if (!err)
3399 regs->ccr = (regs->ccr & 0x0fffffff) |
3400 (cr & 0xe0000000) |
3401 ((regs->xer >> 3) & 0x10000000);
3402 else
3403 regs->dar = ea;
3404 break;
3405
3406 case LOAD:
3407#ifdef __powerpc64__
3408 if (size == 16) {
3409 err = emulate_lq(regs, ea, op->reg, cross_endian);
3410 break;
3411 }
3412#endif
3413 err = read_mem(®s->gpr[op->reg], ea, size, regs);
3414 if (!err) {
3415 if (op->type & SIGNEXT)
3416 do_signext(®s->gpr[op->reg], size);
3417 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3418 do_byterev(®s->gpr[op->reg], size);
3419 }
3420 break;
3421
3422#ifdef CONFIG_PPC_FPU
3423 case LOAD_FP:
3424 /*
3425 * If the instruction is in userspace, we can emulate it even
3426 * if the VMX state is not live, because we have the state
3427 * stored in the thread_struct. If the instruction is in
3428 * the kernel, we must not touch the state in the thread_struct.
3429 */
3430 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3431 return 0;
3432 err = do_fp_load(op, ea, regs, cross_endian);
3433 break;
3434#endif
3435#ifdef CONFIG_ALTIVEC
3436 case LOAD_VMX:
3437 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3438 return 0;
3439 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3440 break;
3441#endif
3442#ifdef CONFIG_VSX
3443 case LOAD_VSX: {
3444 unsigned long msrbit = MSR_VSX;
3445
3446 /*
3447 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3448 * when the target of the instruction is a vector register.
3449 */
3450 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3451 msrbit = MSR_VEC;
3452 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3453 return 0;
3454 err = do_vsx_load(op, ea, regs, cross_endian);
3455 break;
3456 }
3457#endif
3458 case LOAD_MULTI:
3459 if (!address_ok(regs, ea, size))
3460 return -EFAULT;
3461 rd = op->reg;
3462 for (i = 0; i < size; i += 4) {
3463 unsigned int v32 = 0;
3464
3465 nb = size - i;
3466 if (nb > 4)
3467 nb = 4;
3468 err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3469 if (err)
3470 break;
3471 if (unlikely(cross_endian))
3472 v32 = byterev_4(v32);
3473 regs->gpr[rd] = v32;
3474 ea += 4;
3475 /* reg number wraps from 31 to 0 for lsw[ix] */
3476 rd = (rd + 1) & 0x1f;
3477 }
3478 break;
3479
3480 case STORE:
3481#ifdef __powerpc64__
3482 if (size == 16) {
3483 err = emulate_stq(regs, ea, op->reg, cross_endian);
3484 break;
3485 }
3486#endif
3487 if ((op->type & UPDATE) && size == sizeof(long) &&
3488 op->reg == 1 && op->update_reg == 1 &&
3489 !(regs->msr & MSR_PR) &&
3490 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3491 err = handle_stack_update(ea, regs);
3492 break;
3493 }
3494 if (unlikely(cross_endian))
3495 do_byterev(&op->val, size);
3496 err = write_mem(op->val, ea, size, regs);
3497 break;
3498
3499#ifdef CONFIG_PPC_FPU
3500 case STORE_FP:
3501 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3502 return 0;
3503 err = do_fp_store(op, ea, regs, cross_endian);
3504 break;
3505#endif
3506#ifdef CONFIG_ALTIVEC
3507 case STORE_VMX:
3508 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3509 return 0;
3510 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3511 break;
3512#endif
3513#ifdef CONFIG_VSX
3514 case STORE_VSX: {
3515 unsigned long msrbit = MSR_VSX;
3516
3517 /*
3518 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3519 * when the target of the instruction is a vector register.
3520 */
3521 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3522 msrbit = MSR_VEC;
3523 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3524 return 0;
3525 err = do_vsx_store(op, ea, regs, cross_endian);
3526 break;
3527 }
3528#endif
3529 case STORE_MULTI:
3530 if (!address_ok(regs, ea, size))
3531 return -EFAULT;
3532 rd = op->reg;
3533 for (i = 0; i < size; i += 4) {
3534 unsigned int v32 = regs->gpr[rd];
3535
3536 nb = size - i;
3537 if (nb > 4)
3538 nb = 4;
3539 if (unlikely(cross_endian))
3540 v32 = byterev_4(v32);
3541 err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3542 if (err)
3543 break;
3544 ea += 4;
3545 /* reg number wraps from 31 to 0 for stsw[ix] */
3546 rd = (rd + 1) & 0x1f;
3547 }
3548 break;
3549
3550 default:
3551 return -EINVAL;
3552 }
3553
3554 if (err)
3555 return err;
3556
3557 if (op->type & UPDATE)
3558 regs->gpr[op->update_reg] = op->ea;
3559
3560 return 0;
3561}
3562NOKPROBE_SYMBOL(emulate_loadstore);
3563
3564/*
3565 * Emulate instructions that cause a transfer of control,
3566 * loads and stores, and a few other instructions.
3567 * Returns 1 if the step was emulated, 0 if not,
3568 * or -1 if the instruction is one that should not be stepped,
3569 * such as an rfid, or a mtmsrd that would clear MSR_RI.
3570 */
3571int emulate_step(struct pt_regs *regs, ppc_inst_t instr)
3572{
3573 struct instruction_op op;
3574 int r, err, type;
3575 unsigned long val;
3576 unsigned long ea;
3577
3578 r = analyse_instr(&op, regs, instr);
3579 if (r < 0)
3580 return r;
3581 if (r > 0) {
3582 emulate_update_regs(regs, &op);
3583 return 1;
3584 }
3585
3586 err = 0;
3587 type = GETTYPE(op.type);
3588
3589 if (OP_IS_LOAD_STORE(type)) {
3590 err = emulate_loadstore(regs, &op);
3591 if (err)
3592 return 0;
3593 goto instr_done;
3594 }
3595
3596 switch (type) {
3597 case CACHEOP:
3598 ea = truncate_if_32bit(regs->msr, op.ea);
3599 if (!address_ok(regs, ea, 8))
3600 return 0;
3601 switch (op.type & CACHEOP_MASK) {
3602 case DCBST:
3603 __cacheop_user_asmx(ea, err, "dcbst");
3604 break;
3605 case DCBF:
3606 __cacheop_user_asmx(ea, err, "dcbf");
3607 break;
3608 case DCBTST:
3609 if (op.reg == 0)
3610 prefetchw((void *) ea);
3611 break;
3612 case DCBT:
3613 if (op.reg == 0)
3614 prefetch((void *) ea);
3615 break;
3616 case ICBI:
3617 __cacheop_user_asmx(ea, err, "icbi");
3618 break;
3619 case DCBZ:
3620 err = emulate_dcbz(ea, regs);
3621 break;
3622 }
3623 if (err) {
3624 regs->dar = ea;
3625 return 0;
3626 }
3627 goto instr_done;
3628
3629 case MFMSR:
3630 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3631 goto instr_done;
3632
3633 case MTMSR:
3634 val = regs->gpr[op.reg];
3635 if ((val & MSR_RI) == 0)
3636 /* can't step mtmsr[d] that would clear MSR_RI */
3637 return -1;
3638 /* here op.val is the mask of bits to change */
3639 regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3640 goto instr_done;
3641
3642 case SYSCALL: /* sc */
3643 /*
3644 * Per ISA v3.1, section 7.5.15 'Trace Interrupt', we can't
3645 * single step a system call instruction:
3646 *
3647 * Successful completion for an instruction means that the
3648 * instruction caused no other interrupt. Thus a Trace
3649 * interrupt never occurs for a System Call or System Call
3650 * Vectored instruction, or for a Trap instruction that
3651 * traps.
3652 */
3653 return -1;
3654 case SYSCALL_VECTORED_0: /* scv 0 */
3655 return -1;
3656 case RFI:
3657 return -1;
3658 }
3659 return 0;
3660
3661 instr_done:
3662 regs_set_return_ip(regs,
3663 truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3664 return 1;
3665}
3666NOKPROBE_SYMBOL(emulate_step);