Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the hash table type.
  4 *
  5 * Author : Stephen Smalley, <sds@tycho.nsa.gov>
  6 */
 
  7#include <linux/kernel.h>
  8#include <linux/slab.h>
  9#include <linux/errno.h>
 10#include <linux/sched.h>
 11#include "hashtab.h"
 
 12
 13static struct kmem_cache *hashtab_node_cachep;
 14
 15struct hashtab *hashtab_create(u32 (*hash_value)(struct hashtab *h, const void *key),
 16			       int (*keycmp)(struct hashtab *h, const void *key1, const void *key2),
 17			       u32 size)
 
 
 
 
 
 
 
 
 
 
 18{
 19	struct hashtab *p;
 20	u32 i;
 21
 22	p = kzalloc(sizeof(*p), GFP_KERNEL);
 23	if (!p)
 24		return p;
 25
 26	p->size = size;
 27	p->nel = 0;
 28	p->hash_value = hash_value;
 29	p->keycmp = keycmp;
 30	p->htable = kmalloc_array(size, sizeof(*p->htable), GFP_KERNEL);
 31	if (!p->htable) {
 32		kfree(p);
 33		return NULL;
 34	}
 35
 36	for (i = 0; i < size; i++)
 37		p->htable[i] = NULL;
 38
 39	return p;
 40}
 41
 42int hashtab_insert(struct hashtab *h, void *key, void *datum)
 43{
 44	u32 hvalue;
 45	struct hashtab_node *prev, *cur, *newnode;
 46
 47	cond_resched();
 48
 49	if (!h || h->nel == HASHTAB_MAX_NODES)
 50		return -EINVAL;
 
 
 51
 52	hvalue = h->hash_value(h, key);
 53	prev = NULL;
 54	cur = h->htable[hvalue];
 55	while (cur && h->keycmp(h, key, cur->key) > 0) {
 56		prev = cur;
 57		cur = cur->next;
 58	}
 
 
 59
 60	if (cur && (h->keycmp(h, key, cur->key) == 0))
 61		return -EEXIST;
 
 
 62
 63	newnode = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL);
 64	if (!newnode)
 65		return -ENOMEM;
 66	newnode->key = key;
 67	newnode->datum = datum;
 68	if (prev) {
 69		newnode->next = prev->next;
 70		prev->next = newnode;
 71	} else {
 72		newnode->next = h->htable[hvalue];
 73		h->htable[hvalue] = newnode;
 74	}
 75
 76	h->nel++;
 77	return 0;
 78}
 79
 80void *hashtab_search(struct hashtab *h, const void *key)
 81{
 82	u32 hvalue;
 83	struct hashtab_node *cur;
 84
 85	if (!h)
 86		return NULL;
 87
 88	hvalue = h->hash_value(h, key);
 89	cur = h->htable[hvalue];
 90	while (cur && h->keycmp(h, key, cur->key) > 0)
 91		cur = cur->next;
 92
 93	if (!cur || (h->keycmp(h, key, cur->key) != 0))
 94		return NULL;
 95
 96	return cur->datum;
 97}
 98
 99void hashtab_destroy(struct hashtab *h)
100{
101	u32 i;
102	struct hashtab_node *cur, *temp;
103
104	if (!h)
105		return;
106
107	for (i = 0; i < h->size; i++) {
108		cur = h->htable[i];
109		while (cur) {
110			temp = cur;
111			cur = cur->next;
112			kmem_cache_free(hashtab_node_cachep, temp);
113		}
114		h->htable[i] = NULL;
115	}
116
117	kfree(h->htable);
118	h->htable = NULL;
119
120	kfree(h);
121}
122
123int hashtab_map(struct hashtab *h,
124		int (*apply)(void *k, void *d, void *args),
125		void *args)
126{
127	u32 i;
128	int ret;
129	struct hashtab_node *cur;
130
131	if (!h)
132		return 0;
133
134	for (i = 0; i < h->size; i++) {
135		cur = h->htable[i];
136		while (cur) {
137			ret = apply(cur->key, cur->datum, args);
138			if (ret)
139				return ret;
140			cur = cur->next;
141		}
142	}
143	return 0;
144}
145
146
147void hashtab_stat(struct hashtab *h, struct hashtab_info *info)
148{
149	u32 i, chain_len, slots_used, max_chain_len;
 
150	struct hashtab_node *cur;
151
152	slots_used = 0;
153	max_chain_len = 0;
 
154	for (i = 0; i < h->size; i++) {
155		cur = h->htable[i];
156		if (cur) {
157			slots_used++;
158			chain_len = 0;
159			while (cur) {
160				chain_len++;
161				cur = cur->next;
162			}
163
164			if (chain_len > max_chain_len)
165				max_chain_len = chain_len;
 
 
166		}
167	}
168
169	info->slots_used = slots_used;
170	info->max_chain_len = max_chain_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171}
172
173void __init hashtab_cache_init(void)
174{
175		hashtab_node_cachep = kmem_cache_create("hashtab_node",
176			sizeof(struct hashtab_node),
177			0, SLAB_PANIC, NULL);
178}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the hash table type.
  4 *
  5 * Author : Stephen Smalley, <stephen.smalley.work@gmail.com>
  6 */
  7
  8#include <linux/kernel.h>
  9#include <linux/slab.h>
 10#include <linux/errno.h>
 
 11#include "hashtab.h"
 12#include "security.h"
 13
 14static struct kmem_cache *hashtab_node_cachep __ro_after_init;
 15
 16/*
 17 * Here we simply round the number of elements up to the nearest power of two.
 18 * I tried also other options like rounding down or rounding to the closest
 19 * power of two (up or down based on which is closer), but I was unable to
 20 * find any significant difference in lookup/insert performance that would
 21 * justify switching to a different (less intuitive) formula. It could be that
 22 * a different formula is actually more optimal, but any future changes here
 23 * should be supported with performance/memory usage data.
 24 *
 25 * The total memory used by the htable arrays (only) with Fedora policy loaded
 26 * is approximately 163 KB at the time of writing.
 27 */
 28static u32 hashtab_compute_size(u32 nel)
 29{
 30	return nel == 0 ? 0 : roundup_pow_of_two(nel);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31}
 32
 33int hashtab_init(struct hashtab *h, u32 nel_hint)
 34{
 35	u32 size = hashtab_compute_size(nel_hint);
 
 
 
 36
 37	/* should already be zeroed, but better be safe */
 38	h->nel = 0;
 39	h->size = 0;
 40	h->htable = NULL;
 41
 42	if (size) {
 43		h->htable = kcalloc(size, sizeof(*h->htable), GFP_KERNEL);
 44		if (!h->htable)
 45			return -ENOMEM;
 46		h->size = size;
 
 47	}
 48	return 0;
 49}
 50
 51int __hashtab_insert(struct hashtab *h, struct hashtab_node **dst, void *key,
 52		     void *datum)
 53{
 54	struct hashtab_node *newnode;
 55
 56	newnode = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL);
 57	if (!newnode)
 58		return -ENOMEM;
 59	newnode->key = key;
 60	newnode->datum = datum;
 61	newnode->next = *dst;
 62	*dst = newnode;
 
 
 
 
 
 63
 64	h->nel++;
 65	return 0;
 66}
 67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68void hashtab_destroy(struct hashtab *h)
 69{
 70	u32 i;
 71	struct hashtab_node *cur, *temp;
 72
 
 
 
 73	for (i = 0; i < h->size; i++) {
 74		cur = h->htable[i];
 75		while (cur) {
 76			temp = cur;
 77			cur = cur->next;
 78			kmem_cache_free(hashtab_node_cachep, temp);
 79		}
 80		h->htable[i] = NULL;
 81	}
 82
 83	kfree(h->htable);
 84	h->htable = NULL;
 
 
 85}
 86
 87int hashtab_map(struct hashtab *h, int (*apply)(void *k, void *d, void *args),
 
 88		void *args)
 89{
 90	u32 i;
 91	int ret;
 92	struct hashtab_node *cur;
 93
 
 
 
 94	for (i = 0; i < h->size; i++) {
 95		cur = h->htable[i];
 96		while (cur) {
 97			ret = apply(cur->key, cur->datum, args);
 98			if (ret)
 99				return ret;
100			cur = cur->next;
101		}
102	}
103	return 0;
104}
105
106#ifdef CONFIG_SECURITY_SELINUX_DEBUG
107void hashtab_stat(struct hashtab *h, struct hashtab_info *info)
108{
109	u32 i, chain_len, slots_used, max_chain_len;
110	u64 chain2_len_sum;
111	struct hashtab_node *cur;
112
113	slots_used = 0;
114	max_chain_len = 0;
115	chain2_len_sum = 0;
116	for (i = 0; i < h->size; i++) {
117		cur = h->htable[i];
118		if (cur) {
119			slots_used++;
120			chain_len = 0;
121			while (cur) {
122				chain_len++;
123				cur = cur->next;
124			}
125
126			if (chain_len > max_chain_len)
127				max_chain_len = chain_len;
128
129			chain2_len_sum += (u64)chain_len * chain_len;
130		}
131	}
132
133	info->slots_used = slots_used;
134	info->max_chain_len = max_chain_len;
135	info->chain2_len_sum = chain2_len_sum;
136}
137#endif /* CONFIG_SECURITY_SELINUX_DEBUG */
138
139int hashtab_duplicate(struct hashtab *new, const struct hashtab *orig,
140		      int (*copy)(struct hashtab_node *new,
141				  const struct hashtab_node *orig, void *args),
142		      int (*destroy)(void *k, void *d, void *args), void *args)
143{
144	const struct hashtab_node *orig_cur;
145	struct hashtab_node *cur, *tmp, *tail;
146	u32 i;
147	int rc;
148
149	memset(new, 0, sizeof(*new));
150
151	new->htable = kcalloc(orig->size, sizeof(*new->htable), GFP_KERNEL);
152	if (!new->htable)
153		return -ENOMEM;
154
155	new->size = orig->size;
156
157	for (i = 0; i < orig->size; i++) {
158		tail = NULL;
159		for (orig_cur = orig->htable[i]; orig_cur;
160		     orig_cur = orig_cur->next) {
161			tmp = kmem_cache_zalloc(hashtab_node_cachep,
162						GFP_KERNEL);
163			if (!tmp)
164				goto error;
165			rc = copy(tmp, orig_cur, args);
166			if (rc) {
167				kmem_cache_free(hashtab_node_cachep, tmp);
168				goto error;
169			}
170			tmp->next = NULL;
171			if (!tail)
172				new->htable[i] = tmp;
173			else
174				tail->next = tmp;
175			tail = tmp;
176			new->nel++;
177		}
178	}
179
180	return 0;
181
182error:
183	for (i = 0; i < new->size; i++) {
184		for (cur = new->htable[i]; cur; cur = tmp) {
185			tmp = cur->next;
186			destroy(cur->key, cur->datum, args);
187			kmem_cache_free(hashtab_node_cachep, cur);
188		}
189	}
190	kfree(new->htable);
191	memset(new, 0, sizeof(*new));
192	return -ENOMEM;
193}
194
195void __init hashtab_cache_init(void)
196{
197	hashtab_node_cachep = KMEM_CACHE(hashtab_node, SLAB_PANIC);
 
 
198}