Loading...
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/sched/signal.h>
33#include <linux/export.h>
34#include <linux/swap.h>
35#include <linux/uio.h>
36#include <linux/khugepaged.h>
37#include <linux/hugetlb.h>
38
39#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
41static struct vfsmount *shm_mnt;
42
43#ifdef CONFIG_SHMEM
44/*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
50#include <linux/xattr.h>
51#include <linux/exportfs.h>
52#include <linux/posix_acl.h>
53#include <linux/posix_acl_xattr.h>
54#include <linux/mman.h>
55#include <linux/string.h>
56#include <linux/slab.h>
57#include <linux/backing-dev.h>
58#include <linux/shmem_fs.h>
59#include <linux/writeback.h>
60#include <linux/blkdev.h>
61#include <linux/pagevec.h>
62#include <linux/percpu_counter.h>
63#include <linux/falloc.h>
64#include <linux/splice.h>
65#include <linux/security.h>
66#include <linux/swapops.h>
67#include <linux/mempolicy.h>
68#include <linux/namei.h>
69#include <linux/ctype.h>
70#include <linux/migrate.h>
71#include <linux/highmem.h>
72#include <linux/seq_file.h>
73#include <linux/magic.h>
74#include <linux/syscalls.h>
75#include <linux/fcntl.h>
76#include <uapi/linux/memfd.h>
77#include <linux/userfaultfd_k.h>
78#include <linux/rmap.h>
79#include <linux/uuid.h>
80
81#include <linux/uaccess.h>
82#include <asm/pgtable.h>
83
84#include "internal.h"
85
86#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89/* Pretend that each entry is of this size in directory's i_size */
90#define BOGO_DIRENT_SIZE 20
91
92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93#define SHORT_SYMLINK_LEN 128
94
95/*
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
99 */
100struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106};
107
108#ifdef CONFIG_TMPFS
109static unsigned long shmem_default_max_blocks(void)
110{
111 return totalram_pages / 2;
112}
113
114static unsigned long shmem_default_max_inodes(void)
115{
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117}
118#endif
119
120static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp,
125 gfp_t gfp, struct vm_area_struct *vma,
126 struct vm_fault *vmf, int *fault_type);
127
128int shmem_getpage(struct inode *inode, pgoff_t index,
129 struct page **pagep, enum sgp_type sgp)
130{
131 return shmem_getpage_gfp(inode, index, pagep, sgp,
132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
133}
134
135static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136{
137 return sb->s_fs_info;
138}
139
140/*
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
145 */
146static inline int shmem_acct_size(unsigned long flags, loff_t size)
147{
148 return (flags & VM_NORESERVE) ?
149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
150}
151
152static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153{
154 if (!(flags & VM_NORESERVE))
155 vm_unacct_memory(VM_ACCT(size));
156}
157
158static inline int shmem_reacct_size(unsigned long flags,
159 loff_t oldsize, loff_t newsize)
160{
161 if (!(flags & VM_NORESERVE)) {
162 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 return security_vm_enough_memory_mm(current->mm,
164 VM_ACCT(newsize) - VM_ACCT(oldsize));
165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 }
168 return 0;
169}
170
171/*
172 * ... whereas tmpfs objects are accounted incrementally as
173 * pages are allocated, in order to allow large sparse files.
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 */
177static inline int shmem_acct_block(unsigned long flags, long pages)
178{
179 if (!(flags & VM_NORESERVE))
180 return 0;
181
182 return security_vm_enough_memory_mm(current->mm,
183 pages * VM_ACCT(PAGE_SIZE));
184}
185
186static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187{
188 if (flags & VM_NORESERVE)
189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
190}
191
192static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193{
194 struct shmem_inode_info *info = SHMEM_I(inode);
195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196
197 if (shmem_acct_block(info->flags, pages))
198 return false;
199
200 if (sbinfo->max_blocks) {
201 if (percpu_counter_compare(&sbinfo->used_blocks,
202 sbinfo->max_blocks - pages) > 0)
203 goto unacct;
204 percpu_counter_add(&sbinfo->used_blocks, pages);
205 }
206
207 return true;
208
209unacct:
210 shmem_unacct_blocks(info->flags, pages);
211 return false;
212}
213
214static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215{
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219 if (sbinfo->max_blocks)
220 percpu_counter_sub(&sbinfo->used_blocks, pages);
221 shmem_unacct_blocks(info->flags, pages);
222}
223
224static const struct super_operations shmem_ops;
225static const struct address_space_operations shmem_aops;
226static const struct file_operations shmem_file_operations;
227static const struct inode_operations shmem_inode_operations;
228static const struct inode_operations shmem_dir_inode_operations;
229static const struct inode_operations shmem_special_inode_operations;
230static const struct vm_operations_struct shmem_vm_ops;
231static struct file_system_type shmem_fs_type;
232
233bool vma_is_shmem(struct vm_area_struct *vma)
234{
235 return vma->vm_ops == &shmem_vm_ops;
236}
237
238static LIST_HEAD(shmem_swaplist);
239static DEFINE_MUTEX(shmem_swaplist_mutex);
240
241static int shmem_reserve_inode(struct super_block *sb)
242{
243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 if (sbinfo->max_inodes) {
245 spin_lock(&sbinfo->stat_lock);
246 if (!sbinfo->free_inodes) {
247 spin_unlock(&sbinfo->stat_lock);
248 return -ENOSPC;
249 }
250 sbinfo->free_inodes--;
251 spin_unlock(&sbinfo->stat_lock);
252 }
253 return 0;
254}
255
256static void shmem_free_inode(struct super_block *sb)
257{
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 sbinfo->free_inodes++;
262 spin_unlock(&sbinfo->stat_lock);
263 }
264}
265
266/**
267 * shmem_recalc_inode - recalculate the block usage of an inode
268 * @inode: inode to recalc
269 *
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
272 *
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275 *
276 * It has to be called with the spinlock held.
277 */
278static void shmem_recalc_inode(struct inode *inode)
279{
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 long freed;
282
283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 if (freed > 0) {
285 info->alloced -= freed;
286 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
287 shmem_inode_unacct_blocks(inode, freed);
288 }
289}
290
291bool shmem_charge(struct inode *inode, long pages)
292{
293 struct shmem_inode_info *info = SHMEM_I(inode);
294 unsigned long flags;
295
296 if (!shmem_inode_acct_block(inode, pages))
297 return false;
298
299 spin_lock_irqsave(&info->lock, flags);
300 info->alloced += pages;
301 inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 shmem_recalc_inode(inode);
303 spin_unlock_irqrestore(&info->lock, flags);
304 inode->i_mapping->nrpages += pages;
305
306 return true;
307}
308
309void shmem_uncharge(struct inode *inode, long pages)
310{
311 struct shmem_inode_info *info = SHMEM_I(inode);
312 unsigned long flags;
313
314 spin_lock_irqsave(&info->lock, flags);
315 info->alloced -= pages;
316 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 shmem_recalc_inode(inode);
318 spin_unlock_irqrestore(&info->lock, flags);
319
320 shmem_inode_unacct_blocks(inode, pages);
321}
322
323/*
324 * Replace item expected in radix tree by a new item, while holding tree lock.
325 */
326static int shmem_radix_tree_replace(struct address_space *mapping,
327 pgoff_t index, void *expected, void *replacement)
328{
329 struct radix_tree_node *node;
330 void **pslot;
331 void *item;
332
333 VM_BUG_ON(!expected);
334 VM_BUG_ON(!replacement);
335 item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
336 if (!item)
337 return -ENOENT;
338 if (item != expected)
339 return -ENOENT;
340 __radix_tree_replace(&mapping->i_pages, node, pslot,
341 replacement, NULL);
342 return 0;
343}
344
345/*
346 * Sometimes, before we decide whether to proceed or to fail, we must check
347 * that an entry was not already brought back from swap by a racing thread.
348 *
349 * Checking page is not enough: by the time a SwapCache page is locked, it
350 * might be reused, and again be SwapCache, using the same swap as before.
351 */
352static bool shmem_confirm_swap(struct address_space *mapping,
353 pgoff_t index, swp_entry_t swap)
354{
355 void *item;
356
357 rcu_read_lock();
358 item = radix_tree_lookup(&mapping->i_pages, index);
359 rcu_read_unlock();
360 return item == swp_to_radix_entry(swap);
361}
362
363/*
364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
365 *
366 * SHMEM_HUGE_NEVER:
367 * disables huge pages for the mount;
368 * SHMEM_HUGE_ALWAYS:
369 * enables huge pages for the mount;
370 * SHMEM_HUGE_WITHIN_SIZE:
371 * only allocate huge pages if the page will be fully within i_size,
372 * also respect fadvise()/madvise() hints;
373 * SHMEM_HUGE_ADVISE:
374 * only allocate huge pages if requested with fadvise()/madvise();
375 */
376
377#define SHMEM_HUGE_NEVER 0
378#define SHMEM_HUGE_ALWAYS 1
379#define SHMEM_HUGE_WITHIN_SIZE 2
380#define SHMEM_HUGE_ADVISE 3
381
382/*
383 * Special values.
384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
385 *
386 * SHMEM_HUGE_DENY:
387 * disables huge on shm_mnt and all mounts, for emergency use;
388 * SHMEM_HUGE_FORCE:
389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
390 *
391 */
392#define SHMEM_HUGE_DENY (-1)
393#define SHMEM_HUGE_FORCE (-2)
394
395#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
396/* ifdef here to avoid bloating shmem.o when not necessary */
397
398int shmem_huge __read_mostly;
399
400#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
401static int shmem_parse_huge(const char *str)
402{
403 if (!strcmp(str, "never"))
404 return SHMEM_HUGE_NEVER;
405 if (!strcmp(str, "always"))
406 return SHMEM_HUGE_ALWAYS;
407 if (!strcmp(str, "within_size"))
408 return SHMEM_HUGE_WITHIN_SIZE;
409 if (!strcmp(str, "advise"))
410 return SHMEM_HUGE_ADVISE;
411 if (!strcmp(str, "deny"))
412 return SHMEM_HUGE_DENY;
413 if (!strcmp(str, "force"))
414 return SHMEM_HUGE_FORCE;
415 return -EINVAL;
416}
417
418static const char *shmem_format_huge(int huge)
419{
420 switch (huge) {
421 case SHMEM_HUGE_NEVER:
422 return "never";
423 case SHMEM_HUGE_ALWAYS:
424 return "always";
425 case SHMEM_HUGE_WITHIN_SIZE:
426 return "within_size";
427 case SHMEM_HUGE_ADVISE:
428 return "advise";
429 case SHMEM_HUGE_DENY:
430 return "deny";
431 case SHMEM_HUGE_FORCE:
432 return "force";
433 default:
434 VM_BUG_ON(1);
435 return "bad_val";
436 }
437}
438#endif
439
440static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 struct shrink_control *sc, unsigned long nr_to_split)
442{
443 LIST_HEAD(list), *pos, *next;
444 LIST_HEAD(to_remove);
445 struct inode *inode;
446 struct shmem_inode_info *info;
447 struct page *page;
448 unsigned long batch = sc ? sc->nr_to_scan : 128;
449 int removed = 0, split = 0;
450
451 if (list_empty(&sbinfo->shrinklist))
452 return SHRINK_STOP;
453
454 spin_lock(&sbinfo->shrinklist_lock);
455 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 info = list_entry(pos, struct shmem_inode_info, shrinklist);
457
458 /* pin the inode */
459 inode = igrab(&info->vfs_inode);
460
461 /* inode is about to be evicted */
462 if (!inode) {
463 list_del_init(&info->shrinklist);
464 removed++;
465 goto next;
466 }
467
468 /* Check if there's anything to gain */
469 if (round_up(inode->i_size, PAGE_SIZE) ==
470 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
471 list_move(&info->shrinklist, &to_remove);
472 removed++;
473 goto next;
474 }
475
476 list_move(&info->shrinklist, &list);
477next:
478 if (!--batch)
479 break;
480 }
481 spin_unlock(&sbinfo->shrinklist_lock);
482
483 list_for_each_safe(pos, next, &to_remove) {
484 info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 inode = &info->vfs_inode;
486 list_del_init(&info->shrinklist);
487 iput(inode);
488 }
489
490 list_for_each_safe(pos, next, &list) {
491 int ret;
492
493 info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 inode = &info->vfs_inode;
495
496 if (nr_to_split && split >= nr_to_split)
497 goto leave;
498
499 page = find_get_page(inode->i_mapping,
500 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
501 if (!page)
502 goto drop;
503
504 /* No huge page at the end of the file: nothing to split */
505 if (!PageTransHuge(page)) {
506 put_page(page);
507 goto drop;
508 }
509
510 /*
511 * Leave the inode on the list if we failed to lock
512 * the page at this time.
513 *
514 * Waiting for the lock may lead to deadlock in the
515 * reclaim path.
516 */
517 if (!trylock_page(page)) {
518 put_page(page);
519 goto leave;
520 }
521
522 ret = split_huge_page(page);
523 unlock_page(page);
524 put_page(page);
525
526 /* If split failed leave the inode on the list */
527 if (ret)
528 goto leave;
529
530 split++;
531drop:
532 list_del_init(&info->shrinklist);
533 removed++;
534leave:
535 iput(inode);
536 }
537
538 spin_lock(&sbinfo->shrinklist_lock);
539 list_splice_tail(&list, &sbinfo->shrinklist);
540 sbinfo->shrinklist_len -= removed;
541 spin_unlock(&sbinfo->shrinklist_lock);
542
543 return split;
544}
545
546static long shmem_unused_huge_scan(struct super_block *sb,
547 struct shrink_control *sc)
548{
549 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
550
551 if (!READ_ONCE(sbinfo->shrinklist_len))
552 return SHRINK_STOP;
553
554 return shmem_unused_huge_shrink(sbinfo, sc, 0);
555}
556
557static long shmem_unused_huge_count(struct super_block *sb,
558 struct shrink_control *sc)
559{
560 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
561 return READ_ONCE(sbinfo->shrinklist_len);
562}
563#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
564
565#define shmem_huge SHMEM_HUGE_DENY
566
567static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
568 struct shrink_control *sc, unsigned long nr_to_split)
569{
570 return 0;
571}
572#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
573
574/*
575 * Like add_to_page_cache_locked, but error if expected item has gone.
576 */
577static int shmem_add_to_page_cache(struct page *page,
578 struct address_space *mapping,
579 pgoff_t index, void *expected)
580{
581 int error, nr = hpage_nr_pages(page);
582
583 VM_BUG_ON_PAGE(PageTail(page), page);
584 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
585 VM_BUG_ON_PAGE(!PageLocked(page), page);
586 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
587 VM_BUG_ON(expected && PageTransHuge(page));
588
589 page_ref_add(page, nr);
590 page->mapping = mapping;
591 page->index = index;
592
593 xa_lock_irq(&mapping->i_pages);
594 if (PageTransHuge(page)) {
595 void __rcu **results;
596 pgoff_t idx;
597 int i;
598
599 error = 0;
600 if (radix_tree_gang_lookup_slot(&mapping->i_pages,
601 &results, &idx, index, 1) &&
602 idx < index + HPAGE_PMD_NR) {
603 error = -EEXIST;
604 }
605
606 if (!error) {
607 for (i = 0; i < HPAGE_PMD_NR; i++) {
608 error = radix_tree_insert(&mapping->i_pages,
609 index + i, page + i);
610 VM_BUG_ON(error);
611 }
612 count_vm_event(THP_FILE_ALLOC);
613 }
614 } else if (!expected) {
615 error = radix_tree_insert(&mapping->i_pages, index, page);
616 } else {
617 error = shmem_radix_tree_replace(mapping, index, expected,
618 page);
619 }
620
621 if (!error) {
622 mapping->nrpages += nr;
623 if (PageTransHuge(page))
624 __inc_node_page_state(page, NR_SHMEM_THPS);
625 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
626 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
627 xa_unlock_irq(&mapping->i_pages);
628 } else {
629 page->mapping = NULL;
630 xa_unlock_irq(&mapping->i_pages);
631 page_ref_sub(page, nr);
632 }
633 return error;
634}
635
636/*
637 * Like delete_from_page_cache, but substitutes swap for page.
638 */
639static void shmem_delete_from_page_cache(struct page *page, void *radswap)
640{
641 struct address_space *mapping = page->mapping;
642 int error;
643
644 VM_BUG_ON_PAGE(PageCompound(page), page);
645
646 xa_lock_irq(&mapping->i_pages);
647 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
648 page->mapping = NULL;
649 mapping->nrpages--;
650 __dec_node_page_state(page, NR_FILE_PAGES);
651 __dec_node_page_state(page, NR_SHMEM);
652 xa_unlock_irq(&mapping->i_pages);
653 put_page(page);
654 BUG_ON(error);
655}
656
657/*
658 * Remove swap entry from radix tree, free the swap and its page cache.
659 */
660static int shmem_free_swap(struct address_space *mapping,
661 pgoff_t index, void *radswap)
662{
663 void *old;
664
665 xa_lock_irq(&mapping->i_pages);
666 old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
667 xa_unlock_irq(&mapping->i_pages);
668 if (old != radswap)
669 return -ENOENT;
670 free_swap_and_cache(radix_to_swp_entry(radswap));
671 return 0;
672}
673
674/*
675 * Determine (in bytes) how many of the shmem object's pages mapped by the
676 * given offsets are swapped out.
677 *
678 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
679 * as long as the inode doesn't go away and racy results are not a problem.
680 */
681unsigned long shmem_partial_swap_usage(struct address_space *mapping,
682 pgoff_t start, pgoff_t end)
683{
684 struct radix_tree_iter iter;
685 void **slot;
686 struct page *page;
687 unsigned long swapped = 0;
688
689 rcu_read_lock();
690
691 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
692 if (iter.index >= end)
693 break;
694
695 page = radix_tree_deref_slot(slot);
696
697 if (radix_tree_deref_retry(page)) {
698 slot = radix_tree_iter_retry(&iter);
699 continue;
700 }
701
702 if (radix_tree_exceptional_entry(page))
703 swapped++;
704
705 if (need_resched()) {
706 slot = radix_tree_iter_resume(slot, &iter);
707 cond_resched_rcu();
708 }
709 }
710
711 rcu_read_unlock();
712
713 return swapped << PAGE_SHIFT;
714}
715
716/*
717 * Determine (in bytes) how many of the shmem object's pages mapped by the
718 * given vma is swapped out.
719 *
720 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
721 * as long as the inode doesn't go away and racy results are not a problem.
722 */
723unsigned long shmem_swap_usage(struct vm_area_struct *vma)
724{
725 struct inode *inode = file_inode(vma->vm_file);
726 struct shmem_inode_info *info = SHMEM_I(inode);
727 struct address_space *mapping = inode->i_mapping;
728 unsigned long swapped;
729
730 /* Be careful as we don't hold info->lock */
731 swapped = READ_ONCE(info->swapped);
732
733 /*
734 * The easier cases are when the shmem object has nothing in swap, or
735 * the vma maps it whole. Then we can simply use the stats that we
736 * already track.
737 */
738 if (!swapped)
739 return 0;
740
741 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
742 return swapped << PAGE_SHIFT;
743
744 /* Here comes the more involved part */
745 return shmem_partial_swap_usage(mapping,
746 linear_page_index(vma, vma->vm_start),
747 linear_page_index(vma, vma->vm_end));
748}
749
750/*
751 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
752 */
753void shmem_unlock_mapping(struct address_space *mapping)
754{
755 struct pagevec pvec;
756 pgoff_t indices[PAGEVEC_SIZE];
757 pgoff_t index = 0;
758
759 pagevec_init(&pvec);
760 /*
761 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
762 */
763 while (!mapping_unevictable(mapping)) {
764 /*
765 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
766 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
767 */
768 pvec.nr = find_get_entries(mapping, index,
769 PAGEVEC_SIZE, pvec.pages, indices);
770 if (!pvec.nr)
771 break;
772 index = indices[pvec.nr - 1] + 1;
773 pagevec_remove_exceptionals(&pvec);
774 check_move_unevictable_pages(pvec.pages, pvec.nr);
775 pagevec_release(&pvec);
776 cond_resched();
777 }
778}
779
780/*
781 * Remove range of pages and swap entries from radix tree, and free them.
782 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
783 */
784static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
785 bool unfalloc)
786{
787 struct address_space *mapping = inode->i_mapping;
788 struct shmem_inode_info *info = SHMEM_I(inode);
789 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
790 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
791 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
792 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
793 struct pagevec pvec;
794 pgoff_t indices[PAGEVEC_SIZE];
795 long nr_swaps_freed = 0;
796 pgoff_t index;
797 int i;
798
799 if (lend == -1)
800 end = -1; /* unsigned, so actually very big */
801
802 pagevec_init(&pvec);
803 index = start;
804 while (index < end) {
805 pvec.nr = find_get_entries(mapping, index,
806 min(end - index, (pgoff_t)PAGEVEC_SIZE),
807 pvec.pages, indices);
808 if (!pvec.nr)
809 break;
810 for (i = 0; i < pagevec_count(&pvec); i++) {
811 struct page *page = pvec.pages[i];
812
813 index = indices[i];
814 if (index >= end)
815 break;
816
817 if (radix_tree_exceptional_entry(page)) {
818 if (unfalloc)
819 continue;
820 nr_swaps_freed += !shmem_free_swap(mapping,
821 index, page);
822 continue;
823 }
824
825 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
826
827 if (!trylock_page(page))
828 continue;
829
830 if (PageTransTail(page)) {
831 /* Middle of THP: zero out the page */
832 clear_highpage(page);
833 unlock_page(page);
834 continue;
835 } else if (PageTransHuge(page)) {
836 if (index == round_down(end, HPAGE_PMD_NR)) {
837 /*
838 * Range ends in the middle of THP:
839 * zero out the page
840 */
841 clear_highpage(page);
842 unlock_page(page);
843 continue;
844 }
845 index += HPAGE_PMD_NR - 1;
846 i += HPAGE_PMD_NR - 1;
847 }
848
849 if (!unfalloc || !PageUptodate(page)) {
850 VM_BUG_ON_PAGE(PageTail(page), page);
851 if (page_mapping(page) == mapping) {
852 VM_BUG_ON_PAGE(PageWriteback(page), page);
853 truncate_inode_page(mapping, page);
854 }
855 }
856 unlock_page(page);
857 }
858 pagevec_remove_exceptionals(&pvec);
859 pagevec_release(&pvec);
860 cond_resched();
861 index++;
862 }
863
864 if (partial_start) {
865 struct page *page = NULL;
866 shmem_getpage(inode, start - 1, &page, SGP_READ);
867 if (page) {
868 unsigned int top = PAGE_SIZE;
869 if (start > end) {
870 top = partial_end;
871 partial_end = 0;
872 }
873 zero_user_segment(page, partial_start, top);
874 set_page_dirty(page);
875 unlock_page(page);
876 put_page(page);
877 }
878 }
879 if (partial_end) {
880 struct page *page = NULL;
881 shmem_getpage(inode, end, &page, SGP_READ);
882 if (page) {
883 zero_user_segment(page, 0, partial_end);
884 set_page_dirty(page);
885 unlock_page(page);
886 put_page(page);
887 }
888 }
889 if (start >= end)
890 return;
891
892 index = start;
893 while (index < end) {
894 cond_resched();
895
896 pvec.nr = find_get_entries(mapping, index,
897 min(end - index, (pgoff_t)PAGEVEC_SIZE),
898 pvec.pages, indices);
899 if (!pvec.nr) {
900 /* If all gone or hole-punch or unfalloc, we're done */
901 if (index == start || end != -1)
902 break;
903 /* But if truncating, restart to make sure all gone */
904 index = start;
905 continue;
906 }
907 for (i = 0; i < pagevec_count(&pvec); i++) {
908 struct page *page = pvec.pages[i];
909
910 index = indices[i];
911 if (index >= end)
912 break;
913
914 if (radix_tree_exceptional_entry(page)) {
915 if (unfalloc)
916 continue;
917 if (shmem_free_swap(mapping, index, page)) {
918 /* Swap was replaced by page: retry */
919 index--;
920 break;
921 }
922 nr_swaps_freed++;
923 continue;
924 }
925
926 lock_page(page);
927
928 if (PageTransTail(page)) {
929 /* Middle of THP: zero out the page */
930 clear_highpage(page);
931 unlock_page(page);
932 /*
933 * Partial thp truncate due 'start' in middle
934 * of THP: don't need to look on these pages
935 * again on !pvec.nr restart.
936 */
937 if (index != round_down(end, HPAGE_PMD_NR))
938 start++;
939 continue;
940 } else if (PageTransHuge(page)) {
941 if (index == round_down(end, HPAGE_PMD_NR)) {
942 /*
943 * Range ends in the middle of THP:
944 * zero out the page
945 */
946 clear_highpage(page);
947 unlock_page(page);
948 continue;
949 }
950 index += HPAGE_PMD_NR - 1;
951 i += HPAGE_PMD_NR - 1;
952 }
953
954 if (!unfalloc || !PageUptodate(page)) {
955 VM_BUG_ON_PAGE(PageTail(page), page);
956 if (page_mapping(page) == mapping) {
957 VM_BUG_ON_PAGE(PageWriteback(page), page);
958 truncate_inode_page(mapping, page);
959 } else {
960 /* Page was replaced by swap: retry */
961 unlock_page(page);
962 index--;
963 break;
964 }
965 }
966 unlock_page(page);
967 }
968 pagevec_remove_exceptionals(&pvec);
969 pagevec_release(&pvec);
970 index++;
971 }
972
973 spin_lock_irq(&info->lock);
974 info->swapped -= nr_swaps_freed;
975 shmem_recalc_inode(inode);
976 spin_unlock_irq(&info->lock);
977}
978
979void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
980{
981 shmem_undo_range(inode, lstart, lend, false);
982 inode->i_ctime = inode->i_mtime = current_time(inode);
983}
984EXPORT_SYMBOL_GPL(shmem_truncate_range);
985
986static int shmem_getattr(const struct path *path, struct kstat *stat,
987 u32 request_mask, unsigned int query_flags)
988{
989 struct inode *inode = path->dentry->d_inode;
990 struct shmem_inode_info *info = SHMEM_I(inode);
991
992 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
993 spin_lock_irq(&info->lock);
994 shmem_recalc_inode(inode);
995 spin_unlock_irq(&info->lock);
996 }
997 generic_fillattr(inode, stat);
998 return 0;
999}
1000
1001static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1002{
1003 struct inode *inode = d_inode(dentry);
1004 struct shmem_inode_info *info = SHMEM_I(inode);
1005 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1006 int error;
1007
1008 error = setattr_prepare(dentry, attr);
1009 if (error)
1010 return error;
1011
1012 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1013 loff_t oldsize = inode->i_size;
1014 loff_t newsize = attr->ia_size;
1015
1016 /* protected by i_mutex */
1017 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1018 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1019 return -EPERM;
1020
1021 if (newsize != oldsize) {
1022 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1023 oldsize, newsize);
1024 if (error)
1025 return error;
1026 i_size_write(inode, newsize);
1027 inode->i_ctime = inode->i_mtime = current_time(inode);
1028 }
1029 if (newsize <= oldsize) {
1030 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1031 if (oldsize > holebegin)
1032 unmap_mapping_range(inode->i_mapping,
1033 holebegin, 0, 1);
1034 if (info->alloced)
1035 shmem_truncate_range(inode,
1036 newsize, (loff_t)-1);
1037 /* unmap again to remove racily COWed private pages */
1038 if (oldsize > holebegin)
1039 unmap_mapping_range(inode->i_mapping,
1040 holebegin, 0, 1);
1041
1042 /*
1043 * Part of the huge page can be beyond i_size: subject
1044 * to shrink under memory pressure.
1045 */
1046 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1047 spin_lock(&sbinfo->shrinklist_lock);
1048 /*
1049 * _careful to defend against unlocked access to
1050 * ->shrink_list in shmem_unused_huge_shrink()
1051 */
1052 if (list_empty_careful(&info->shrinklist)) {
1053 list_add_tail(&info->shrinklist,
1054 &sbinfo->shrinklist);
1055 sbinfo->shrinklist_len++;
1056 }
1057 spin_unlock(&sbinfo->shrinklist_lock);
1058 }
1059 }
1060 }
1061
1062 setattr_copy(inode, attr);
1063 if (attr->ia_valid & ATTR_MODE)
1064 error = posix_acl_chmod(inode, inode->i_mode);
1065 return error;
1066}
1067
1068static void shmem_evict_inode(struct inode *inode)
1069{
1070 struct shmem_inode_info *info = SHMEM_I(inode);
1071 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1072
1073 if (inode->i_mapping->a_ops == &shmem_aops) {
1074 shmem_unacct_size(info->flags, inode->i_size);
1075 inode->i_size = 0;
1076 shmem_truncate_range(inode, 0, (loff_t)-1);
1077 if (!list_empty(&info->shrinklist)) {
1078 spin_lock(&sbinfo->shrinklist_lock);
1079 if (!list_empty(&info->shrinklist)) {
1080 list_del_init(&info->shrinklist);
1081 sbinfo->shrinklist_len--;
1082 }
1083 spin_unlock(&sbinfo->shrinklist_lock);
1084 }
1085 if (!list_empty(&info->swaplist)) {
1086 mutex_lock(&shmem_swaplist_mutex);
1087 list_del_init(&info->swaplist);
1088 mutex_unlock(&shmem_swaplist_mutex);
1089 }
1090 }
1091
1092 simple_xattrs_free(&info->xattrs);
1093 WARN_ON(inode->i_blocks);
1094 shmem_free_inode(inode->i_sb);
1095 clear_inode(inode);
1096}
1097
1098static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1099{
1100 struct radix_tree_iter iter;
1101 void **slot;
1102 unsigned long found = -1;
1103 unsigned int checked = 0;
1104
1105 rcu_read_lock();
1106 radix_tree_for_each_slot(slot, root, &iter, 0) {
1107 if (*slot == item) {
1108 found = iter.index;
1109 break;
1110 }
1111 checked++;
1112 if ((checked % 4096) != 0)
1113 continue;
1114 slot = radix_tree_iter_resume(slot, &iter);
1115 cond_resched_rcu();
1116 }
1117
1118 rcu_read_unlock();
1119 return found;
1120}
1121
1122/*
1123 * If swap found in inode, free it and move page from swapcache to filecache.
1124 */
1125static int shmem_unuse_inode(struct shmem_inode_info *info,
1126 swp_entry_t swap, struct page **pagep)
1127{
1128 struct address_space *mapping = info->vfs_inode.i_mapping;
1129 void *radswap;
1130 pgoff_t index;
1131 gfp_t gfp;
1132 int error = 0;
1133
1134 radswap = swp_to_radix_entry(swap);
1135 index = find_swap_entry(&mapping->i_pages, radswap);
1136 if (index == -1)
1137 return -EAGAIN; /* tell shmem_unuse we found nothing */
1138
1139 /*
1140 * Move _head_ to start search for next from here.
1141 * But be careful: shmem_evict_inode checks list_empty without taking
1142 * mutex, and there's an instant in list_move_tail when info->swaplist
1143 * would appear empty, if it were the only one on shmem_swaplist.
1144 */
1145 if (shmem_swaplist.next != &info->swaplist)
1146 list_move_tail(&shmem_swaplist, &info->swaplist);
1147
1148 gfp = mapping_gfp_mask(mapping);
1149 if (shmem_should_replace_page(*pagep, gfp)) {
1150 mutex_unlock(&shmem_swaplist_mutex);
1151 error = shmem_replace_page(pagep, gfp, info, index);
1152 mutex_lock(&shmem_swaplist_mutex);
1153 /*
1154 * We needed to drop mutex to make that restrictive page
1155 * allocation, but the inode might have been freed while we
1156 * dropped it: although a racing shmem_evict_inode() cannot
1157 * complete without emptying the radix_tree, our page lock
1158 * on this swapcache page is not enough to prevent that -
1159 * free_swap_and_cache() of our swap entry will only
1160 * trylock_page(), removing swap from radix_tree whatever.
1161 *
1162 * We must not proceed to shmem_add_to_page_cache() if the
1163 * inode has been freed, but of course we cannot rely on
1164 * inode or mapping or info to check that. However, we can
1165 * safely check if our swap entry is still in use (and here
1166 * it can't have got reused for another page): if it's still
1167 * in use, then the inode cannot have been freed yet, and we
1168 * can safely proceed (if it's no longer in use, that tells
1169 * nothing about the inode, but we don't need to unuse swap).
1170 */
1171 if (!page_swapcount(*pagep))
1172 error = -ENOENT;
1173 }
1174
1175 /*
1176 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1177 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1178 * beneath us (pagelock doesn't help until the page is in pagecache).
1179 */
1180 if (!error)
1181 error = shmem_add_to_page_cache(*pagep, mapping, index,
1182 radswap);
1183 if (error != -ENOMEM) {
1184 /*
1185 * Truncation and eviction use free_swap_and_cache(), which
1186 * only does trylock page: if we raced, best clean up here.
1187 */
1188 delete_from_swap_cache(*pagep);
1189 set_page_dirty(*pagep);
1190 if (!error) {
1191 spin_lock_irq(&info->lock);
1192 info->swapped--;
1193 spin_unlock_irq(&info->lock);
1194 swap_free(swap);
1195 }
1196 }
1197 return error;
1198}
1199
1200/*
1201 * Search through swapped inodes to find and replace swap by page.
1202 */
1203int shmem_unuse(swp_entry_t swap, struct page *page)
1204{
1205 struct list_head *this, *next;
1206 struct shmem_inode_info *info;
1207 struct mem_cgroup *memcg;
1208 int error = 0;
1209
1210 /*
1211 * There's a faint possibility that swap page was replaced before
1212 * caller locked it: caller will come back later with the right page.
1213 */
1214 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1215 goto out;
1216
1217 /*
1218 * Charge page using GFP_KERNEL while we can wait, before taking
1219 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1220 * Charged back to the user (not to caller) when swap account is used.
1221 */
1222 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1223 false);
1224 if (error)
1225 goto out;
1226 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1227 error = -EAGAIN;
1228
1229 mutex_lock(&shmem_swaplist_mutex);
1230 list_for_each_safe(this, next, &shmem_swaplist) {
1231 info = list_entry(this, struct shmem_inode_info, swaplist);
1232 if (info->swapped)
1233 error = shmem_unuse_inode(info, swap, &page);
1234 else
1235 list_del_init(&info->swaplist);
1236 cond_resched();
1237 if (error != -EAGAIN)
1238 break;
1239 /* found nothing in this: move on to search the next */
1240 }
1241 mutex_unlock(&shmem_swaplist_mutex);
1242
1243 if (error) {
1244 if (error != -ENOMEM)
1245 error = 0;
1246 mem_cgroup_cancel_charge(page, memcg, false);
1247 } else
1248 mem_cgroup_commit_charge(page, memcg, true, false);
1249out:
1250 unlock_page(page);
1251 put_page(page);
1252 return error;
1253}
1254
1255/*
1256 * Move the page from the page cache to the swap cache.
1257 */
1258static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1259{
1260 struct shmem_inode_info *info;
1261 struct address_space *mapping;
1262 struct inode *inode;
1263 swp_entry_t swap;
1264 pgoff_t index;
1265
1266 VM_BUG_ON_PAGE(PageCompound(page), page);
1267 BUG_ON(!PageLocked(page));
1268 mapping = page->mapping;
1269 index = page->index;
1270 inode = mapping->host;
1271 info = SHMEM_I(inode);
1272 if (info->flags & VM_LOCKED)
1273 goto redirty;
1274 if (!total_swap_pages)
1275 goto redirty;
1276
1277 /*
1278 * Our capabilities prevent regular writeback or sync from ever calling
1279 * shmem_writepage; but a stacking filesystem might use ->writepage of
1280 * its underlying filesystem, in which case tmpfs should write out to
1281 * swap only in response to memory pressure, and not for the writeback
1282 * threads or sync.
1283 */
1284 if (!wbc->for_reclaim) {
1285 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1286 goto redirty;
1287 }
1288
1289 /*
1290 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1291 * value into swapfile.c, the only way we can correctly account for a
1292 * fallocated page arriving here is now to initialize it and write it.
1293 *
1294 * That's okay for a page already fallocated earlier, but if we have
1295 * not yet completed the fallocation, then (a) we want to keep track
1296 * of this page in case we have to undo it, and (b) it may not be a
1297 * good idea to continue anyway, once we're pushing into swap. So
1298 * reactivate the page, and let shmem_fallocate() quit when too many.
1299 */
1300 if (!PageUptodate(page)) {
1301 if (inode->i_private) {
1302 struct shmem_falloc *shmem_falloc;
1303 spin_lock(&inode->i_lock);
1304 shmem_falloc = inode->i_private;
1305 if (shmem_falloc &&
1306 !shmem_falloc->waitq &&
1307 index >= shmem_falloc->start &&
1308 index < shmem_falloc->next)
1309 shmem_falloc->nr_unswapped++;
1310 else
1311 shmem_falloc = NULL;
1312 spin_unlock(&inode->i_lock);
1313 if (shmem_falloc)
1314 goto redirty;
1315 }
1316 clear_highpage(page);
1317 flush_dcache_page(page);
1318 SetPageUptodate(page);
1319 }
1320
1321 swap = get_swap_page(page);
1322 if (!swap.val)
1323 goto redirty;
1324
1325 if (mem_cgroup_try_charge_swap(page, swap))
1326 goto free_swap;
1327
1328 /*
1329 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1330 * if it's not already there. Do it now before the page is
1331 * moved to swap cache, when its pagelock no longer protects
1332 * the inode from eviction. But don't unlock the mutex until
1333 * we've incremented swapped, because shmem_unuse_inode() will
1334 * prune a !swapped inode from the swaplist under this mutex.
1335 */
1336 mutex_lock(&shmem_swaplist_mutex);
1337 if (list_empty(&info->swaplist))
1338 list_add_tail(&info->swaplist, &shmem_swaplist);
1339
1340 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1341 spin_lock_irq(&info->lock);
1342 shmem_recalc_inode(inode);
1343 info->swapped++;
1344 spin_unlock_irq(&info->lock);
1345
1346 swap_shmem_alloc(swap);
1347 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1348
1349 mutex_unlock(&shmem_swaplist_mutex);
1350 BUG_ON(page_mapped(page));
1351 swap_writepage(page, wbc);
1352 return 0;
1353 }
1354
1355 mutex_unlock(&shmem_swaplist_mutex);
1356free_swap:
1357 put_swap_page(page, swap);
1358redirty:
1359 set_page_dirty(page);
1360 if (wbc->for_reclaim)
1361 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1362 unlock_page(page);
1363 return 0;
1364}
1365
1366#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1367static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1368{
1369 char buffer[64];
1370
1371 if (!mpol || mpol->mode == MPOL_DEFAULT)
1372 return; /* show nothing */
1373
1374 mpol_to_str(buffer, sizeof(buffer), mpol);
1375
1376 seq_printf(seq, ",mpol=%s", buffer);
1377}
1378
1379static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1380{
1381 struct mempolicy *mpol = NULL;
1382 if (sbinfo->mpol) {
1383 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1384 mpol = sbinfo->mpol;
1385 mpol_get(mpol);
1386 spin_unlock(&sbinfo->stat_lock);
1387 }
1388 return mpol;
1389}
1390#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1391static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1392{
1393}
1394static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1395{
1396 return NULL;
1397}
1398#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1399#ifndef CONFIG_NUMA
1400#define vm_policy vm_private_data
1401#endif
1402
1403static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1404 struct shmem_inode_info *info, pgoff_t index)
1405{
1406 /* Create a pseudo vma that just contains the policy */
1407 vma->vm_start = 0;
1408 /* Bias interleave by inode number to distribute better across nodes */
1409 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1410 vma->vm_ops = NULL;
1411 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1412}
1413
1414static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1415{
1416 /* Drop reference taken by mpol_shared_policy_lookup() */
1417 mpol_cond_put(vma->vm_policy);
1418}
1419
1420static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1421 struct shmem_inode_info *info, pgoff_t index)
1422{
1423 struct vm_area_struct pvma;
1424 struct page *page;
1425 struct vm_fault vmf;
1426
1427 shmem_pseudo_vma_init(&pvma, info, index);
1428 vmf.vma = &pvma;
1429 vmf.address = 0;
1430 page = swap_cluster_readahead(swap, gfp, &vmf);
1431 shmem_pseudo_vma_destroy(&pvma);
1432
1433 return page;
1434}
1435
1436static struct page *shmem_alloc_hugepage(gfp_t gfp,
1437 struct shmem_inode_info *info, pgoff_t index)
1438{
1439 struct vm_area_struct pvma;
1440 struct inode *inode = &info->vfs_inode;
1441 struct address_space *mapping = inode->i_mapping;
1442 pgoff_t idx, hindex;
1443 void __rcu **results;
1444 struct page *page;
1445
1446 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1447 return NULL;
1448
1449 hindex = round_down(index, HPAGE_PMD_NR);
1450 rcu_read_lock();
1451 if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1452 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1453 rcu_read_unlock();
1454 return NULL;
1455 }
1456 rcu_read_unlock();
1457
1458 shmem_pseudo_vma_init(&pvma, info, hindex);
1459 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1460 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1461 shmem_pseudo_vma_destroy(&pvma);
1462 if (page)
1463 prep_transhuge_page(page);
1464 return page;
1465}
1466
1467static struct page *shmem_alloc_page(gfp_t gfp,
1468 struct shmem_inode_info *info, pgoff_t index)
1469{
1470 struct vm_area_struct pvma;
1471 struct page *page;
1472
1473 shmem_pseudo_vma_init(&pvma, info, index);
1474 page = alloc_page_vma(gfp, &pvma, 0);
1475 shmem_pseudo_vma_destroy(&pvma);
1476
1477 return page;
1478}
1479
1480static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1481 struct inode *inode,
1482 pgoff_t index, bool huge)
1483{
1484 struct shmem_inode_info *info = SHMEM_I(inode);
1485 struct page *page;
1486 int nr;
1487 int err = -ENOSPC;
1488
1489 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1490 huge = false;
1491 nr = huge ? HPAGE_PMD_NR : 1;
1492
1493 if (!shmem_inode_acct_block(inode, nr))
1494 goto failed;
1495
1496 if (huge)
1497 page = shmem_alloc_hugepage(gfp, info, index);
1498 else
1499 page = shmem_alloc_page(gfp, info, index);
1500 if (page) {
1501 __SetPageLocked(page);
1502 __SetPageSwapBacked(page);
1503 return page;
1504 }
1505
1506 err = -ENOMEM;
1507 shmem_inode_unacct_blocks(inode, nr);
1508failed:
1509 return ERR_PTR(err);
1510}
1511
1512/*
1513 * When a page is moved from swapcache to shmem filecache (either by the
1514 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1515 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1516 * ignorance of the mapping it belongs to. If that mapping has special
1517 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1518 * we may need to copy to a suitable page before moving to filecache.
1519 *
1520 * In a future release, this may well be extended to respect cpuset and
1521 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1522 * but for now it is a simple matter of zone.
1523 */
1524static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1525{
1526 return page_zonenum(page) > gfp_zone(gfp);
1527}
1528
1529static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1530 struct shmem_inode_info *info, pgoff_t index)
1531{
1532 struct page *oldpage, *newpage;
1533 struct address_space *swap_mapping;
1534 pgoff_t swap_index;
1535 int error;
1536
1537 oldpage = *pagep;
1538 swap_index = page_private(oldpage);
1539 swap_mapping = page_mapping(oldpage);
1540
1541 /*
1542 * We have arrived here because our zones are constrained, so don't
1543 * limit chance of success by further cpuset and node constraints.
1544 */
1545 gfp &= ~GFP_CONSTRAINT_MASK;
1546 newpage = shmem_alloc_page(gfp, info, index);
1547 if (!newpage)
1548 return -ENOMEM;
1549
1550 get_page(newpage);
1551 copy_highpage(newpage, oldpage);
1552 flush_dcache_page(newpage);
1553
1554 __SetPageLocked(newpage);
1555 __SetPageSwapBacked(newpage);
1556 SetPageUptodate(newpage);
1557 set_page_private(newpage, swap_index);
1558 SetPageSwapCache(newpage);
1559
1560 /*
1561 * Our caller will very soon move newpage out of swapcache, but it's
1562 * a nice clean interface for us to replace oldpage by newpage there.
1563 */
1564 xa_lock_irq(&swap_mapping->i_pages);
1565 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1566 newpage);
1567 if (!error) {
1568 __inc_node_page_state(newpage, NR_FILE_PAGES);
1569 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1570 }
1571 xa_unlock_irq(&swap_mapping->i_pages);
1572
1573 if (unlikely(error)) {
1574 /*
1575 * Is this possible? I think not, now that our callers check
1576 * both PageSwapCache and page_private after getting page lock;
1577 * but be defensive. Reverse old to newpage for clear and free.
1578 */
1579 oldpage = newpage;
1580 } else {
1581 mem_cgroup_migrate(oldpage, newpage);
1582 lru_cache_add_anon(newpage);
1583 *pagep = newpage;
1584 }
1585
1586 ClearPageSwapCache(oldpage);
1587 set_page_private(oldpage, 0);
1588
1589 unlock_page(oldpage);
1590 put_page(oldpage);
1591 put_page(oldpage);
1592 return error;
1593}
1594
1595/*
1596 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1597 *
1598 * If we allocate a new one we do not mark it dirty. That's up to the
1599 * vm. If we swap it in we mark it dirty since we also free the swap
1600 * entry since a page cannot live in both the swap and page cache.
1601 *
1602 * fault_mm and fault_type are only supplied by shmem_fault:
1603 * otherwise they are NULL.
1604 */
1605static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1606 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1607 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1608{
1609 struct address_space *mapping = inode->i_mapping;
1610 struct shmem_inode_info *info = SHMEM_I(inode);
1611 struct shmem_sb_info *sbinfo;
1612 struct mm_struct *charge_mm;
1613 struct mem_cgroup *memcg;
1614 struct page *page;
1615 swp_entry_t swap;
1616 enum sgp_type sgp_huge = sgp;
1617 pgoff_t hindex = index;
1618 int error;
1619 int once = 0;
1620 int alloced = 0;
1621
1622 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1623 return -EFBIG;
1624 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1625 sgp = SGP_CACHE;
1626repeat:
1627 swap.val = 0;
1628 page = find_lock_entry(mapping, index);
1629 if (radix_tree_exceptional_entry(page)) {
1630 swap = radix_to_swp_entry(page);
1631 page = NULL;
1632 }
1633
1634 if (sgp <= SGP_CACHE &&
1635 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1636 error = -EINVAL;
1637 goto unlock;
1638 }
1639
1640 if (page && sgp == SGP_WRITE)
1641 mark_page_accessed(page);
1642
1643 /* fallocated page? */
1644 if (page && !PageUptodate(page)) {
1645 if (sgp != SGP_READ)
1646 goto clear;
1647 unlock_page(page);
1648 put_page(page);
1649 page = NULL;
1650 }
1651 if (page || (sgp == SGP_READ && !swap.val)) {
1652 *pagep = page;
1653 return 0;
1654 }
1655
1656 /*
1657 * Fast cache lookup did not find it:
1658 * bring it back from swap or allocate.
1659 */
1660 sbinfo = SHMEM_SB(inode->i_sb);
1661 charge_mm = vma ? vma->vm_mm : current->mm;
1662
1663 if (swap.val) {
1664 /* Look it up and read it in.. */
1665 page = lookup_swap_cache(swap, NULL, 0);
1666 if (!page) {
1667 /* Or update major stats only when swapin succeeds?? */
1668 if (fault_type) {
1669 *fault_type |= VM_FAULT_MAJOR;
1670 count_vm_event(PGMAJFAULT);
1671 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1672 }
1673 /* Here we actually start the io */
1674 page = shmem_swapin(swap, gfp, info, index);
1675 if (!page) {
1676 error = -ENOMEM;
1677 goto failed;
1678 }
1679 }
1680
1681 /* We have to do this with page locked to prevent races */
1682 lock_page(page);
1683 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1684 !shmem_confirm_swap(mapping, index, swap)) {
1685 error = -EEXIST; /* try again */
1686 goto unlock;
1687 }
1688 if (!PageUptodate(page)) {
1689 error = -EIO;
1690 goto failed;
1691 }
1692 wait_on_page_writeback(page);
1693
1694 if (shmem_should_replace_page(page, gfp)) {
1695 error = shmem_replace_page(&page, gfp, info, index);
1696 if (error)
1697 goto failed;
1698 }
1699
1700 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1701 false);
1702 if (!error) {
1703 error = shmem_add_to_page_cache(page, mapping, index,
1704 swp_to_radix_entry(swap));
1705 /*
1706 * We already confirmed swap under page lock, and make
1707 * no memory allocation here, so usually no possibility
1708 * of error; but free_swap_and_cache() only trylocks a
1709 * page, so it is just possible that the entry has been
1710 * truncated or holepunched since swap was confirmed.
1711 * shmem_undo_range() will have done some of the
1712 * unaccounting, now delete_from_swap_cache() will do
1713 * the rest.
1714 * Reset swap.val? No, leave it so "failed" goes back to
1715 * "repeat": reading a hole and writing should succeed.
1716 */
1717 if (error) {
1718 mem_cgroup_cancel_charge(page, memcg, false);
1719 delete_from_swap_cache(page);
1720 }
1721 }
1722 if (error)
1723 goto failed;
1724
1725 mem_cgroup_commit_charge(page, memcg, true, false);
1726
1727 spin_lock_irq(&info->lock);
1728 info->swapped--;
1729 shmem_recalc_inode(inode);
1730 spin_unlock_irq(&info->lock);
1731
1732 if (sgp == SGP_WRITE)
1733 mark_page_accessed(page);
1734
1735 delete_from_swap_cache(page);
1736 set_page_dirty(page);
1737 swap_free(swap);
1738
1739 } else {
1740 if (vma && userfaultfd_missing(vma)) {
1741 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1742 return 0;
1743 }
1744
1745 /* shmem_symlink() */
1746 if (mapping->a_ops != &shmem_aops)
1747 goto alloc_nohuge;
1748 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1749 goto alloc_nohuge;
1750 if (shmem_huge == SHMEM_HUGE_FORCE)
1751 goto alloc_huge;
1752 switch (sbinfo->huge) {
1753 loff_t i_size;
1754 pgoff_t off;
1755 case SHMEM_HUGE_NEVER:
1756 goto alloc_nohuge;
1757 case SHMEM_HUGE_WITHIN_SIZE:
1758 off = round_up(index, HPAGE_PMD_NR);
1759 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1760 if (i_size >= HPAGE_PMD_SIZE &&
1761 i_size >> PAGE_SHIFT >= off)
1762 goto alloc_huge;
1763 /* fallthrough */
1764 case SHMEM_HUGE_ADVISE:
1765 if (sgp_huge == SGP_HUGE)
1766 goto alloc_huge;
1767 /* TODO: implement fadvise() hints */
1768 goto alloc_nohuge;
1769 }
1770
1771alloc_huge:
1772 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1773 if (IS_ERR(page)) {
1774alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1775 index, false);
1776 }
1777 if (IS_ERR(page)) {
1778 int retry = 5;
1779 error = PTR_ERR(page);
1780 page = NULL;
1781 if (error != -ENOSPC)
1782 goto failed;
1783 /*
1784 * Try to reclaim some spece by splitting a huge page
1785 * beyond i_size on the filesystem.
1786 */
1787 while (retry--) {
1788 int ret;
1789 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1790 if (ret == SHRINK_STOP)
1791 break;
1792 if (ret)
1793 goto alloc_nohuge;
1794 }
1795 goto failed;
1796 }
1797
1798 if (PageTransHuge(page))
1799 hindex = round_down(index, HPAGE_PMD_NR);
1800 else
1801 hindex = index;
1802
1803 if (sgp == SGP_WRITE)
1804 __SetPageReferenced(page);
1805
1806 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1807 PageTransHuge(page));
1808 if (error)
1809 goto unacct;
1810 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1811 compound_order(page));
1812 if (!error) {
1813 error = shmem_add_to_page_cache(page, mapping, hindex,
1814 NULL);
1815 radix_tree_preload_end();
1816 }
1817 if (error) {
1818 mem_cgroup_cancel_charge(page, memcg,
1819 PageTransHuge(page));
1820 goto unacct;
1821 }
1822 mem_cgroup_commit_charge(page, memcg, false,
1823 PageTransHuge(page));
1824 lru_cache_add_anon(page);
1825
1826 spin_lock_irq(&info->lock);
1827 info->alloced += 1 << compound_order(page);
1828 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1829 shmem_recalc_inode(inode);
1830 spin_unlock_irq(&info->lock);
1831 alloced = true;
1832
1833 if (PageTransHuge(page) &&
1834 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1835 hindex + HPAGE_PMD_NR - 1) {
1836 /*
1837 * Part of the huge page is beyond i_size: subject
1838 * to shrink under memory pressure.
1839 */
1840 spin_lock(&sbinfo->shrinklist_lock);
1841 /*
1842 * _careful to defend against unlocked access to
1843 * ->shrink_list in shmem_unused_huge_shrink()
1844 */
1845 if (list_empty_careful(&info->shrinklist)) {
1846 list_add_tail(&info->shrinklist,
1847 &sbinfo->shrinklist);
1848 sbinfo->shrinklist_len++;
1849 }
1850 spin_unlock(&sbinfo->shrinklist_lock);
1851 }
1852
1853 /*
1854 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1855 */
1856 if (sgp == SGP_FALLOC)
1857 sgp = SGP_WRITE;
1858clear:
1859 /*
1860 * Let SGP_WRITE caller clear ends if write does not fill page;
1861 * but SGP_FALLOC on a page fallocated earlier must initialize
1862 * it now, lest undo on failure cancel our earlier guarantee.
1863 */
1864 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1865 struct page *head = compound_head(page);
1866 int i;
1867
1868 for (i = 0; i < (1 << compound_order(head)); i++) {
1869 clear_highpage(head + i);
1870 flush_dcache_page(head + i);
1871 }
1872 SetPageUptodate(head);
1873 }
1874 }
1875
1876 /* Perhaps the file has been truncated since we checked */
1877 if (sgp <= SGP_CACHE &&
1878 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1879 if (alloced) {
1880 ClearPageDirty(page);
1881 delete_from_page_cache(page);
1882 spin_lock_irq(&info->lock);
1883 shmem_recalc_inode(inode);
1884 spin_unlock_irq(&info->lock);
1885 }
1886 error = -EINVAL;
1887 goto unlock;
1888 }
1889 *pagep = page + index - hindex;
1890 return 0;
1891
1892 /*
1893 * Error recovery.
1894 */
1895unacct:
1896 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1897
1898 if (PageTransHuge(page)) {
1899 unlock_page(page);
1900 put_page(page);
1901 goto alloc_nohuge;
1902 }
1903failed:
1904 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1905 error = -EEXIST;
1906unlock:
1907 if (page) {
1908 unlock_page(page);
1909 put_page(page);
1910 }
1911 if (error == -ENOSPC && !once++) {
1912 spin_lock_irq(&info->lock);
1913 shmem_recalc_inode(inode);
1914 spin_unlock_irq(&info->lock);
1915 goto repeat;
1916 }
1917 if (error == -EEXIST) /* from above or from radix_tree_insert */
1918 goto repeat;
1919 return error;
1920}
1921
1922/*
1923 * This is like autoremove_wake_function, but it removes the wait queue
1924 * entry unconditionally - even if something else had already woken the
1925 * target.
1926 */
1927static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1928{
1929 int ret = default_wake_function(wait, mode, sync, key);
1930 list_del_init(&wait->entry);
1931 return ret;
1932}
1933
1934static int shmem_fault(struct vm_fault *vmf)
1935{
1936 struct vm_area_struct *vma = vmf->vma;
1937 struct inode *inode = file_inode(vma->vm_file);
1938 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1939 enum sgp_type sgp;
1940 int error;
1941 int ret = VM_FAULT_LOCKED;
1942
1943 /*
1944 * Trinity finds that probing a hole which tmpfs is punching can
1945 * prevent the hole-punch from ever completing: which in turn
1946 * locks writers out with its hold on i_mutex. So refrain from
1947 * faulting pages into the hole while it's being punched. Although
1948 * shmem_undo_range() does remove the additions, it may be unable to
1949 * keep up, as each new page needs its own unmap_mapping_range() call,
1950 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1951 *
1952 * It does not matter if we sometimes reach this check just before the
1953 * hole-punch begins, so that one fault then races with the punch:
1954 * we just need to make racing faults a rare case.
1955 *
1956 * The implementation below would be much simpler if we just used a
1957 * standard mutex or completion: but we cannot take i_mutex in fault,
1958 * and bloating every shmem inode for this unlikely case would be sad.
1959 */
1960 if (unlikely(inode->i_private)) {
1961 struct shmem_falloc *shmem_falloc;
1962
1963 spin_lock(&inode->i_lock);
1964 shmem_falloc = inode->i_private;
1965 if (shmem_falloc &&
1966 shmem_falloc->waitq &&
1967 vmf->pgoff >= shmem_falloc->start &&
1968 vmf->pgoff < shmem_falloc->next) {
1969 wait_queue_head_t *shmem_falloc_waitq;
1970 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1971
1972 ret = VM_FAULT_NOPAGE;
1973 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1974 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1975 /* It's polite to up mmap_sem if we can */
1976 up_read(&vma->vm_mm->mmap_sem);
1977 ret = VM_FAULT_RETRY;
1978 }
1979
1980 shmem_falloc_waitq = shmem_falloc->waitq;
1981 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1982 TASK_UNINTERRUPTIBLE);
1983 spin_unlock(&inode->i_lock);
1984 schedule();
1985
1986 /*
1987 * shmem_falloc_waitq points into the shmem_fallocate()
1988 * stack of the hole-punching task: shmem_falloc_waitq
1989 * is usually invalid by the time we reach here, but
1990 * finish_wait() does not dereference it in that case;
1991 * though i_lock needed lest racing with wake_up_all().
1992 */
1993 spin_lock(&inode->i_lock);
1994 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1995 spin_unlock(&inode->i_lock);
1996 return ret;
1997 }
1998 spin_unlock(&inode->i_lock);
1999 }
2000
2001 sgp = SGP_CACHE;
2002
2003 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2004 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2005 sgp = SGP_NOHUGE;
2006 else if (vma->vm_flags & VM_HUGEPAGE)
2007 sgp = SGP_HUGE;
2008
2009 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2010 gfp, vma, vmf, &ret);
2011 if (error)
2012 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2013 return ret;
2014}
2015
2016unsigned long shmem_get_unmapped_area(struct file *file,
2017 unsigned long uaddr, unsigned long len,
2018 unsigned long pgoff, unsigned long flags)
2019{
2020 unsigned long (*get_area)(struct file *,
2021 unsigned long, unsigned long, unsigned long, unsigned long);
2022 unsigned long addr;
2023 unsigned long offset;
2024 unsigned long inflated_len;
2025 unsigned long inflated_addr;
2026 unsigned long inflated_offset;
2027
2028 if (len > TASK_SIZE)
2029 return -ENOMEM;
2030
2031 get_area = current->mm->get_unmapped_area;
2032 addr = get_area(file, uaddr, len, pgoff, flags);
2033
2034 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2035 return addr;
2036 if (IS_ERR_VALUE(addr))
2037 return addr;
2038 if (addr & ~PAGE_MASK)
2039 return addr;
2040 if (addr > TASK_SIZE - len)
2041 return addr;
2042
2043 if (shmem_huge == SHMEM_HUGE_DENY)
2044 return addr;
2045 if (len < HPAGE_PMD_SIZE)
2046 return addr;
2047 if (flags & MAP_FIXED)
2048 return addr;
2049 /*
2050 * Our priority is to support MAP_SHARED mapped hugely;
2051 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2052 * But if caller specified an address hint, respect that as before.
2053 */
2054 if (uaddr)
2055 return addr;
2056
2057 if (shmem_huge != SHMEM_HUGE_FORCE) {
2058 struct super_block *sb;
2059
2060 if (file) {
2061 VM_BUG_ON(file->f_op != &shmem_file_operations);
2062 sb = file_inode(file)->i_sb;
2063 } else {
2064 /*
2065 * Called directly from mm/mmap.c, or drivers/char/mem.c
2066 * for "/dev/zero", to create a shared anonymous object.
2067 */
2068 if (IS_ERR(shm_mnt))
2069 return addr;
2070 sb = shm_mnt->mnt_sb;
2071 }
2072 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2073 return addr;
2074 }
2075
2076 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2077 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2078 return addr;
2079 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2080 return addr;
2081
2082 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2083 if (inflated_len > TASK_SIZE)
2084 return addr;
2085 if (inflated_len < len)
2086 return addr;
2087
2088 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2089 if (IS_ERR_VALUE(inflated_addr))
2090 return addr;
2091 if (inflated_addr & ~PAGE_MASK)
2092 return addr;
2093
2094 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2095 inflated_addr += offset - inflated_offset;
2096 if (inflated_offset > offset)
2097 inflated_addr += HPAGE_PMD_SIZE;
2098
2099 if (inflated_addr > TASK_SIZE - len)
2100 return addr;
2101 return inflated_addr;
2102}
2103
2104#ifdef CONFIG_NUMA
2105static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2106{
2107 struct inode *inode = file_inode(vma->vm_file);
2108 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2109}
2110
2111static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2112 unsigned long addr)
2113{
2114 struct inode *inode = file_inode(vma->vm_file);
2115 pgoff_t index;
2116
2117 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2118 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2119}
2120#endif
2121
2122int shmem_lock(struct file *file, int lock, struct user_struct *user)
2123{
2124 struct inode *inode = file_inode(file);
2125 struct shmem_inode_info *info = SHMEM_I(inode);
2126 int retval = -ENOMEM;
2127
2128 spin_lock_irq(&info->lock);
2129 if (lock && !(info->flags & VM_LOCKED)) {
2130 if (!user_shm_lock(inode->i_size, user))
2131 goto out_nomem;
2132 info->flags |= VM_LOCKED;
2133 mapping_set_unevictable(file->f_mapping);
2134 }
2135 if (!lock && (info->flags & VM_LOCKED) && user) {
2136 user_shm_unlock(inode->i_size, user);
2137 info->flags &= ~VM_LOCKED;
2138 mapping_clear_unevictable(file->f_mapping);
2139 }
2140 retval = 0;
2141
2142out_nomem:
2143 spin_unlock_irq(&info->lock);
2144 return retval;
2145}
2146
2147static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2148{
2149 file_accessed(file);
2150 vma->vm_ops = &shmem_vm_ops;
2151 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2152 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2153 (vma->vm_end & HPAGE_PMD_MASK)) {
2154 khugepaged_enter(vma, vma->vm_flags);
2155 }
2156 return 0;
2157}
2158
2159static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2160 umode_t mode, dev_t dev, unsigned long flags)
2161{
2162 struct inode *inode;
2163 struct shmem_inode_info *info;
2164 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2165
2166 if (shmem_reserve_inode(sb))
2167 return NULL;
2168
2169 inode = new_inode(sb);
2170 if (inode) {
2171 inode->i_ino = get_next_ino();
2172 inode_init_owner(inode, dir, mode);
2173 inode->i_blocks = 0;
2174 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2175 inode->i_generation = get_seconds();
2176 info = SHMEM_I(inode);
2177 memset(info, 0, (char *)inode - (char *)info);
2178 spin_lock_init(&info->lock);
2179 info->seals = F_SEAL_SEAL;
2180 info->flags = flags & VM_NORESERVE;
2181 INIT_LIST_HEAD(&info->shrinklist);
2182 INIT_LIST_HEAD(&info->swaplist);
2183 simple_xattrs_init(&info->xattrs);
2184 cache_no_acl(inode);
2185
2186 switch (mode & S_IFMT) {
2187 default:
2188 inode->i_op = &shmem_special_inode_operations;
2189 init_special_inode(inode, mode, dev);
2190 break;
2191 case S_IFREG:
2192 inode->i_mapping->a_ops = &shmem_aops;
2193 inode->i_op = &shmem_inode_operations;
2194 inode->i_fop = &shmem_file_operations;
2195 mpol_shared_policy_init(&info->policy,
2196 shmem_get_sbmpol(sbinfo));
2197 break;
2198 case S_IFDIR:
2199 inc_nlink(inode);
2200 /* Some things misbehave if size == 0 on a directory */
2201 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2202 inode->i_op = &shmem_dir_inode_operations;
2203 inode->i_fop = &simple_dir_operations;
2204 break;
2205 case S_IFLNK:
2206 /*
2207 * Must not load anything in the rbtree,
2208 * mpol_free_shared_policy will not be called.
2209 */
2210 mpol_shared_policy_init(&info->policy, NULL);
2211 break;
2212 }
2213 } else
2214 shmem_free_inode(sb);
2215 return inode;
2216}
2217
2218bool shmem_mapping(struct address_space *mapping)
2219{
2220 return mapping->a_ops == &shmem_aops;
2221}
2222
2223static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2224 pmd_t *dst_pmd,
2225 struct vm_area_struct *dst_vma,
2226 unsigned long dst_addr,
2227 unsigned long src_addr,
2228 bool zeropage,
2229 struct page **pagep)
2230{
2231 struct inode *inode = file_inode(dst_vma->vm_file);
2232 struct shmem_inode_info *info = SHMEM_I(inode);
2233 struct address_space *mapping = inode->i_mapping;
2234 gfp_t gfp = mapping_gfp_mask(mapping);
2235 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2236 struct mem_cgroup *memcg;
2237 spinlock_t *ptl;
2238 void *page_kaddr;
2239 struct page *page;
2240 pte_t _dst_pte, *dst_pte;
2241 int ret;
2242
2243 ret = -ENOMEM;
2244 if (!shmem_inode_acct_block(inode, 1))
2245 goto out;
2246
2247 if (!*pagep) {
2248 page = shmem_alloc_page(gfp, info, pgoff);
2249 if (!page)
2250 goto out_unacct_blocks;
2251
2252 if (!zeropage) { /* mcopy_atomic */
2253 page_kaddr = kmap_atomic(page);
2254 ret = copy_from_user(page_kaddr,
2255 (const void __user *)src_addr,
2256 PAGE_SIZE);
2257 kunmap_atomic(page_kaddr);
2258
2259 /* fallback to copy_from_user outside mmap_sem */
2260 if (unlikely(ret)) {
2261 *pagep = page;
2262 shmem_inode_unacct_blocks(inode, 1);
2263 /* don't free the page */
2264 return -EFAULT;
2265 }
2266 } else { /* mfill_zeropage_atomic */
2267 clear_highpage(page);
2268 }
2269 } else {
2270 page = *pagep;
2271 *pagep = NULL;
2272 }
2273
2274 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2275 __SetPageLocked(page);
2276 __SetPageSwapBacked(page);
2277 __SetPageUptodate(page);
2278
2279 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2280 if (ret)
2281 goto out_release;
2282
2283 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2284 if (!ret) {
2285 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2286 radix_tree_preload_end();
2287 }
2288 if (ret)
2289 goto out_release_uncharge;
2290
2291 mem_cgroup_commit_charge(page, memcg, false, false);
2292
2293 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2294 if (dst_vma->vm_flags & VM_WRITE)
2295 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2296
2297 ret = -EEXIST;
2298 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2299 if (!pte_none(*dst_pte))
2300 goto out_release_uncharge_unlock;
2301
2302 lru_cache_add_anon(page);
2303
2304 spin_lock(&info->lock);
2305 info->alloced++;
2306 inode->i_blocks += BLOCKS_PER_PAGE;
2307 shmem_recalc_inode(inode);
2308 spin_unlock(&info->lock);
2309
2310 inc_mm_counter(dst_mm, mm_counter_file(page));
2311 page_add_file_rmap(page, false);
2312 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2313
2314 /* No need to invalidate - it was non-present before */
2315 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2316 unlock_page(page);
2317 pte_unmap_unlock(dst_pte, ptl);
2318 ret = 0;
2319out:
2320 return ret;
2321out_release_uncharge_unlock:
2322 pte_unmap_unlock(dst_pte, ptl);
2323out_release_uncharge:
2324 mem_cgroup_cancel_charge(page, memcg, false);
2325out_release:
2326 unlock_page(page);
2327 put_page(page);
2328out_unacct_blocks:
2329 shmem_inode_unacct_blocks(inode, 1);
2330 goto out;
2331}
2332
2333int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2334 pmd_t *dst_pmd,
2335 struct vm_area_struct *dst_vma,
2336 unsigned long dst_addr,
2337 unsigned long src_addr,
2338 struct page **pagep)
2339{
2340 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2341 dst_addr, src_addr, false, pagep);
2342}
2343
2344int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2345 pmd_t *dst_pmd,
2346 struct vm_area_struct *dst_vma,
2347 unsigned long dst_addr)
2348{
2349 struct page *page = NULL;
2350
2351 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2352 dst_addr, 0, true, &page);
2353}
2354
2355#ifdef CONFIG_TMPFS
2356static const struct inode_operations shmem_symlink_inode_operations;
2357static const struct inode_operations shmem_short_symlink_operations;
2358
2359#ifdef CONFIG_TMPFS_XATTR
2360static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2361#else
2362#define shmem_initxattrs NULL
2363#endif
2364
2365static int
2366shmem_write_begin(struct file *file, struct address_space *mapping,
2367 loff_t pos, unsigned len, unsigned flags,
2368 struct page **pagep, void **fsdata)
2369{
2370 struct inode *inode = mapping->host;
2371 struct shmem_inode_info *info = SHMEM_I(inode);
2372 pgoff_t index = pos >> PAGE_SHIFT;
2373
2374 /* i_mutex is held by caller */
2375 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2376 if (info->seals & F_SEAL_WRITE)
2377 return -EPERM;
2378 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2379 return -EPERM;
2380 }
2381
2382 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2383}
2384
2385static int
2386shmem_write_end(struct file *file, struct address_space *mapping,
2387 loff_t pos, unsigned len, unsigned copied,
2388 struct page *page, void *fsdata)
2389{
2390 struct inode *inode = mapping->host;
2391
2392 if (pos + copied > inode->i_size)
2393 i_size_write(inode, pos + copied);
2394
2395 if (!PageUptodate(page)) {
2396 struct page *head = compound_head(page);
2397 if (PageTransCompound(page)) {
2398 int i;
2399
2400 for (i = 0; i < HPAGE_PMD_NR; i++) {
2401 if (head + i == page)
2402 continue;
2403 clear_highpage(head + i);
2404 flush_dcache_page(head + i);
2405 }
2406 }
2407 if (copied < PAGE_SIZE) {
2408 unsigned from = pos & (PAGE_SIZE - 1);
2409 zero_user_segments(page, 0, from,
2410 from + copied, PAGE_SIZE);
2411 }
2412 SetPageUptodate(head);
2413 }
2414 set_page_dirty(page);
2415 unlock_page(page);
2416 put_page(page);
2417
2418 return copied;
2419}
2420
2421static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2422{
2423 struct file *file = iocb->ki_filp;
2424 struct inode *inode = file_inode(file);
2425 struct address_space *mapping = inode->i_mapping;
2426 pgoff_t index;
2427 unsigned long offset;
2428 enum sgp_type sgp = SGP_READ;
2429 int error = 0;
2430 ssize_t retval = 0;
2431 loff_t *ppos = &iocb->ki_pos;
2432
2433 /*
2434 * Might this read be for a stacking filesystem? Then when reading
2435 * holes of a sparse file, we actually need to allocate those pages,
2436 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2437 */
2438 if (!iter_is_iovec(to))
2439 sgp = SGP_CACHE;
2440
2441 index = *ppos >> PAGE_SHIFT;
2442 offset = *ppos & ~PAGE_MASK;
2443
2444 for (;;) {
2445 struct page *page = NULL;
2446 pgoff_t end_index;
2447 unsigned long nr, ret;
2448 loff_t i_size = i_size_read(inode);
2449
2450 end_index = i_size >> PAGE_SHIFT;
2451 if (index > end_index)
2452 break;
2453 if (index == end_index) {
2454 nr = i_size & ~PAGE_MASK;
2455 if (nr <= offset)
2456 break;
2457 }
2458
2459 error = shmem_getpage(inode, index, &page, sgp);
2460 if (error) {
2461 if (error == -EINVAL)
2462 error = 0;
2463 break;
2464 }
2465 if (page) {
2466 if (sgp == SGP_CACHE)
2467 set_page_dirty(page);
2468 unlock_page(page);
2469 }
2470
2471 /*
2472 * We must evaluate after, since reads (unlike writes)
2473 * are called without i_mutex protection against truncate
2474 */
2475 nr = PAGE_SIZE;
2476 i_size = i_size_read(inode);
2477 end_index = i_size >> PAGE_SHIFT;
2478 if (index == end_index) {
2479 nr = i_size & ~PAGE_MASK;
2480 if (nr <= offset) {
2481 if (page)
2482 put_page(page);
2483 break;
2484 }
2485 }
2486 nr -= offset;
2487
2488 if (page) {
2489 /*
2490 * If users can be writing to this page using arbitrary
2491 * virtual addresses, take care about potential aliasing
2492 * before reading the page on the kernel side.
2493 */
2494 if (mapping_writably_mapped(mapping))
2495 flush_dcache_page(page);
2496 /*
2497 * Mark the page accessed if we read the beginning.
2498 */
2499 if (!offset)
2500 mark_page_accessed(page);
2501 } else {
2502 page = ZERO_PAGE(0);
2503 get_page(page);
2504 }
2505
2506 /*
2507 * Ok, we have the page, and it's up-to-date, so
2508 * now we can copy it to user space...
2509 */
2510 ret = copy_page_to_iter(page, offset, nr, to);
2511 retval += ret;
2512 offset += ret;
2513 index += offset >> PAGE_SHIFT;
2514 offset &= ~PAGE_MASK;
2515
2516 put_page(page);
2517 if (!iov_iter_count(to))
2518 break;
2519 if (ret < nr) {
2520 error = -EFAULT;
2521 break;
2522 }
2523 cond_resched();
2524 }
2525
2526 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2527 file_accessed(file);
2528 return retval ? retval : error;
2529}
2530
2531/*
2532 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2533 */
2534static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2535 pgoff_t index, pgoff_t end, int whence)
2536{
2537 struct page *page;
2538 struct pagevec pvec;
2539 pgoff_t indices[PAGEVEC_SIZE];
2540 bool done = false;
2541 int i;
2542
2543 pagevec_init(&pvec);
2544 pvec.nr = 1; /* start small: we may be there already */
2545 while (!done) {
2546 pvec.nr = find_get_entries(mapping, index,
2547 pvec.nr, pvec.pages, indices);
2548 if (!pvec.nr) {
2549 if (whence == SEEK_DATA)
2550 index = end;
2551 break;
2552 }
2553 for (i = 0; i < pvec.nr; i++, index++) {
2554 if (index < indices[i]) {
2555 if (whence == SEEK_HOLE) {
2556 done = true;
2557 break;
2558 }
2559 index = indices[i];
2560 }
2561 page = pvec.pages[i];
2562 if (page && !radix_tree_exceptional_entry(page)) {
2563 if (!PageUptodate(page))
2564 page = NULL;
2565 }
2566 if (index >= end ||
2567 (page && whence == SEEK_DATA) ||
2568 (!page && whence == SEEK_HOLE)) {
2569 done = true;
2570 break;
2571 }
2572 }
2573 pagevec_remove_exceptionals(&pvec);
2574 pagevec_release(&pvec);
2575 pvec.nr = PAGEVEC_SIZE;
2576 cond_resched();
2577 }
2578 return index;
2579}
2580
2581static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2582{
2583 struct address_space *mapping = file->f_mapping;
2584 struct inode *inode = mapping->host;
2585 pgoff_t start, end;
2586 loff_t new_offset;
2587
2588 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2589 return generic_file_llseek_size(file, offset, whence,
2590 MAX_LFS_FILESIZE, i_size_read(inode));
2591 inode_lock(inode);
2592 /* We're holding i_mutex so we can access i_size directly */
2593
2594 if (offset < 0)
2595 offset = -EINVAL;
2596 else if (offset >= inode->i_size)
2597 offset = -ENXIO;
2598 else {
2599 start = offset >> PAGE_SHIFT;
2600 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2601 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2602 new_offset <<= PAGE_SHIFT;
2603 if (new_offset > offset) {
2604 if (new_offset < inode->i_size)
2605 offset = new_offset;
2606 else if (whence == SEEK_DATA)
2607 offset = -ENXIO;
2608 else
2609 offset = inode->i_size;
2610 }
2611 }
2612
2613 if (offset >= 0)
2614 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2615 inode_unlock(inode);
2616 return offset;
2617}
2618
2619/*
2620 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2621 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2622 */
2623#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2624#define LAST_SCAN 4 /* about 150ms max */
2625
2626static void shmem_tag_pins(struct address_space *mapping)
2627{
2628 struct radix_tree_iter iter;
2629 void **slot;
2630 pgoff_t start;
2631 struct page *page;
2632
2633 lru_add_drain();
2634 start = 0;
2635 rcu_read_lock();
2636
2637 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
2638 page = radix_tree_deref_slot(slot);
2639 if (!page || radix_tree_exception(page)) {
2640 if (radix_tree_deref_retry(page)) {
2641 slot = radix_tree_iter_retry(&iter);
2642 continue;
2643 }
2644 } else if (page_count(page) - page_mapcount(page) > 1) {
2645 xa_lock_irq(&mapping->i_pages);
2646 radix_tree_tag_set(&mapping->i_pages, iter.index,
2647 SHMEM_TAG_PINNED);
2648 xa_unlock_irq(&mapping->i_pages);
2649 }
2650
2651 if (need_resched()) {
2652 slot = radix_tree_iter_resume(slot, &iter);
2653 cond_resched_rcu();
2654 }
2655 }
2656 rcu_read_unlock();
2657}
2658
2659/*
2660 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2661 * via get_user_pages(), drivers might have some pending I/O without any active
2662 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2663 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2664 * them to be dropped.
2665 * The caller must guarantee that no new user will acquire writable references
2666 * to those pages to avoid races.
2667 */
2668static int shmem_wait_for_pins(struct address_space *mapping)
2669{
2670 struct radix_tree_iter iter;
2671 void **slot;
2672 pgoff_t start;
2673 struct page *page;
2674 int error, scan;
2675
2676 shmem_tag_pins(mapping);
2677
2678 error = 0;
2679 for (scan = 0; scan <= LAST_SCAN; scan++) {
2680 if (!radix_tree_tagged(&mapping->i_pages, SHMEM_TAG_PINNED))
2681 break;
2682
2683 if (!scan)
2684 lru_add_drain_all();
2685 else if (schedule_timeout_killable((HZ << scan) / 200))
2686 scan = LAST_SCAN;
2687
2688 start = 0;
2689 rcu_read_lock();
2690 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter,
2691 start, SHMEM_TAG_PINNED) {
2692
2693 page = radix_tree_deref_slot(slot);
2694 if (radix_tree_exception(page)) {
2695 if (radix_tree_deref_retry(page)) {
2696 slot = radix_tree_iter_retry(&iter);
2697 continue;
2698 }
2699
2700 page = NULL;
2701 }
2702
2703 if (page &&
2704 page_count(page) - page_mapcount(page) != 1) {
2705 if (scan < LAST_SCAN)
2706 goto continue_resched;
2707
2708 /*
2709 * On the last scan, we clean up all those tags
2710 * we inserted; but make a note that we still
2711 * found pages pinned.
2712 */
2713 error = -EBUSY;
2714 }
2715
2716 xa_lock_irq(&mapping->i_pages);
2717 radix_tree_tag_clear(&mapping->i_pages,
2718 iter.index, SHMEM_TAG_PINNED);
2719 xa_unlock_irq(&mapping->i_pages);
2720continue_resched:
2721 if (need_resched()) {
2722 slot = radix_tree_iter_resume(slot, &iter);
2723 cond_resched_rcu();
2724 }
2725 }
2726 rcu_read_unlock();
2727 }
2728
2729 return error;
2730}
2731
2732static unsigned int *memfd_file_seals_ptr(struct file *file)
2733{
2734 if (file->f_op == &shmem_file_operations)
2735 return &SHMEM_I(file_inode(file))->seals;
2736
2737#ifdef CONFIG_HUGETLBFS
2738 if (file->f_op == &hugetlbfs_file_operations)
2739 return &HUGETLBFS_I(file_inode(file))->seals;
2740#endif
2741
2742 return NULL;
2743}
2744
2745#define F_ALL_SEALS (F_SEAL_SEAL | \
2746 F_SEAL_SHRINK | \
2747 F_SEAL_GROW | \
2748 F_SEAL_WRITE)
2749
2750static int memfd_add_seals(struct file *file, unsigned int seals)
2751{
2752 struct inode *inode = file_inode(file);
2753 unsigned int *file_seals;
2754 int error;
2755
2756 /*
2757 * SEALING
2758 * Sealing allows multiple parties to share a shmem-file but restrict
2759 * access to a specific subset of file operations. Seals can only be
2760 * added, but never removed. This way, mutually untrusted parties can
2761 * share common memory regions with a well-defined policy. A malicious
2762 * peer can thus never perform unwanted operations on a shared object.
2763 *
2764 * Seals are only supported on special shmem-files and always affect
2765 * the whole underlying inode. Once a seal is set, it may prevent some
2766 * kinds of access to the file. Currently, the following seals are
2767 * defined:
2768 * SEAL_SEAL: Prevent further seals from being set on this file
2769 * SEAL_SHRINK: Prevent the file from shrinking
2770 * SEAL_GROW: Prevent the file from growing
2771 * SEAL_WRITE: Prevent write access to the file
2772 *
2773 * As we don't require any trust relationship between two parties, we
2774 * must prevent seals from being removed. Therefore, sealing a file
2775 * only adds a given set of seals to the file, it never touches
2776 * existing seals. Furthermore, the "setting seals"-operation can be
2777 * sealed itself, which basically prevents any further seal from being
2778 * added.
2779 *
2780 * Semantics of sealing are only defined on volatile files. Only
2781 * anonymous shmem files support sealing. More importantly, seals are
2782 * never written to disk. Therefore, there's no plan to support it on
2783 * other file types.
2784 */
2785
2786 if (!(file->f_mode & FMODE_WRITE))
2787 return -EPERM;
2788 if (seals & ~(unsigned int)F_ALL_SEALS)
2789 return -EINVAL;
2790
2791 inode_lock(inode);
2792
2793 file_seals = memfd_file_seals_ptr(file);
2794 if (!file_seals) {
2795 error = -EINVAL;
2796 goto unlock;
2797 }
2798
2799 if (*file_seals & F_SEAL_SEAL) {
2800 error = -EPERM;
2801 goto unlock;
2802 }
2803
2804 if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) {
2805 error = mapping_deny_writable(file->f_mapping);
2806 if (error)
2807 goto unlock;
2808
2809 error = shmem_wait_for_pins(file->f_mapping);
2810 if (error) {
2811 mapping_allow_writable(file->f_mapping);
2812 goto unlock;
2813 }
2814 }
2815
2816 *file_seals |= seals;
2817 error = 0;
2818
2819unlock:
2820 inode_unlock(inode);
2821 return error;
2822}
2823
2824static int memfd_get_seals(struct file *file)
2825{
2826 unsigned int *seals = memfd_file_seals_ptr(file);
2827
2828 return seals ? *seals : -EINVAL;
2829}
2830
2831long memfd_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2832{
2833 long error;
2834
2835 switch (cmd) {
2836 case F_ADD_SEALS:
2837 /* disallow upper 32bit */
2838 if (arg > UINT_MAX)
2839 return -EINVAL;
2840
2841 error = memfd_add_seals(file, arg);
2842 break;
2843 case F_GET_SEALS:
2844 error = memfd_get_seals(file);
2845 break;
2846 default:
2847 error = -EINVAL;
2848 break;
2849 }
2850
2851 return error;
2852}
2853
2854static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2855 loff_t len)
2856{
2857 struct inode *inode = file_inode(file);
2858 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2859 struct shmem_inode_info *info = SHMEM_I(inode);
2860 struct shmem_falloc shmem_falloc;
2861 pgoff_t start, index, end;
2862 int error;
2863
2864 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2865 return -EOPNOTSUPP;
2866
2867 inode_lock(inode);
2868
2869 if (mode & FALLOC_FL_PUNCH_HOLE) {
2870 struct address_space *mapping = file->f_mapping;
2871 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2872 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2873 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2874
2875 /* protected by i_mutex */
2876 if (info->seals & F_SEAL_WRITE) {
2877 error = -EPERM;
2878 goto out;
2879 }
2880
2881 shmem_falloc.waitq = &shmem_falloc_waitq;
2882 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2883 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2884 spin_lock(&inode->i_lock);
2885 inode->i_private = &shmem_falloc;
2886 spin_unlock(&inode->i_lock);
2887
2888 if ((u64)unmap_end > (u64)unmap_start)
2889 unmap_mapping_range(mapping, unmap_start,
2890 1 + unmap_end - unmap_start, 0);
2891 shmem_truncate_range(inode, offset, offset + len - 1);
2892 /* No need to unmap again: hole-punching leaves COWed pages */
2893
2894 spin_lock(&inode->i_lock);
2895 inode->i_private = NULL;
2896 wake_up_all(&shmem_falloc_waitq);
2897 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2898 spin_unlock(&inode->i_lock);
2899 error = 0;
2900 goto out;
2901 }
2902
2903 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2904 error = inode_newsize_ok(inode, offset + len);
2905 if (error)
2906 goto out;
2907
2908 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2909 error = -EPERM;
2910 goto out;
2911 }
2912
2913 start = offset >> PAGE_SHIFT;
2914 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2915 /* Try to avoid a swapstorm if len is impossible to satisfy */
2916 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2917 error = -ENOSPC;
2918 goto out;
2919 }
2920
2921 shmem_falloc.waitq = NULL;
2922 shmem_falloc.start = start;
2923 shmem_falloc.next = start;
2924 shmem_falloc.nr_falloced = 0;
2925 shmem_falloc.nr_unswapped = 0;
2926 spin_lock(&inode->i_lock);
2927 inode->i_private = &shmem_falloc;
2928 spin_unlock(&inode->i_lock);
2929
2930 for (index = start; index < end; index++) {
2931 struct page *page;
2932
2933 /*
2934 * Good, the fallocate(2) manpage permits EINTR: we may have
2935 * been interrupted because we are using up too much memory.
2936 */
2937 if (signal_pending(current))
2938 error = -EINTR;
2939 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2940 error = -ENOMEM;
2941 else
2942 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2943 if (error) {
2944 /* Remove the !PageUptodate pages we added */
2945 if (index > start) {
2946 shmem_undo_range(inode,
2947 (loff_t)start << PAGE_SHIFT,
2948 ((loff_t)index << PAGE_SHIFT) - 1, true);
2949 }
2950 goto undone;
2951 }
2952
2953 /*
2954 * Inform shmem_writepage() how far we have reached.
2955 * No need for lock or barrier: we have the page lock.
2956 */
2957 shmem_falloc.next++;
2958 if (!PageUptodate(page))
2959 shmem_falloc.nr_falloced++;
2960
2961 /*
2962 * If !PageUptodate, leave it that way so that freeable pages
2963 * can be recognized if we need to rollback on error later.
2964 * But set_page_dirty so that memory pressure will swap rather
2965 * than free the pages we are allocating (and SGP_CACHE pages
2966 * might still be clean: we now need to mark those dirty too).
2967 */
2968 set_page_dirty(page);
2969 unlock_page(page);
2970 put_page(page);
2971 cond_resched();
2972 }
2973
2974 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2975 i_size_write(inode, offset + len);
2976 inode->i_ctime = current_time(inode);
2977undone:
2978 spin_lock(&inode->i_lock);
2979 inode->i_private = NULL;
2980 spin_unlock(&inode->i_lock);
2981out:
2982 inode_unlock(inode);
2983 return error;
2984}
2985
2986static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2987{
2988 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2989
2990 buf->f_type = TMPFS_MAGIC;
2991 buf->f_bsize = PAGE_SIZE;
2992 buf->f_namelen = NAME_MAX;
2993 if (sbinfo->max_blocks) {
2994 buf->f_blocks = sbinfo->max_blocks;
2995 buf->f_bavail =
2996 buf->f_bfree = sbinfo->max_blocks -
2997 percpu_counter_sum(&sbinfo->used_blocks);
2998 }
2999 if (sbinfo->max_inodes) {
3000 buf->f_files = sbinfo->max_inodes;
3001 buf->f_ffree = sbinfo->free_inodes;
3002 }
3003 /* else leave those fields 0 like simple_statfs */
3004 return 0;
3005}
3006
3007/*
3008 * File creation. Allocate an inode, and we're done..
3009 */
3010static int
3011shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3012{
3013 struct inode *inode;
3014 int error = -ENOSPC;
3015
3016 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3017 if (inode) {
3018 error = simple_acl_create(dir, inode);
3019 if (error)
3020 goto out_iput;
3021 error = security_inode_init_security(inode, dir,
3022 &dentry->d_name,
3023 shmem_initxattrs, NULL);
3024 if (error && error != -EOPNOTSUPP)
3025 goto out_iput;
3026
3027 error = 0;
3028 dir->i_size += BOGO_DIRENT_SIZE;
3029 dir->i_ctime = dir->i_mtime = current_time(dir);
3030 d_instantiate(dentry, inode);
3031 dget(dentry); /* Extra count - pin the dentry in core */
3032 }
3033 return error;
3034out_iput:
3035 iput(inode);
3036 return error;
3037}
3038
3039static int
3040shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3041{
3042 struct inode *inode;
3043 int error = -ENOSPC;
3044
3045 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3046 if (inode) {
3047 error = security_inode_init_security(inode, dir,
3048 NULL,
3049 shmem_initxattrs, NULL);
3050 if (error && error != -EOPNOTSUPP)
3051 goto out_iput;
3052 error = simple_acl_create(dir, inode);
3053 if (error)
3054 goto out_iput;
3055 d_tmpfile(dentry, inode);
3056 }
3057 return error;
3058out_iput:
3059 iput(inode);
3060 return error;
3061}
3062
3063static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3064{
3065 int error;
3066
3067 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3068 return error;
3069 inc_nlink(dir);
3070 return 0;
3071}
3072
3073static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3074 bool excl)
3075{
3076 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3077}
3078
3079/*
3080 * Link a file..
3081 */
3082static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3083{
3084 struct inode *inode = d_inode(old_dentry);
3085 int ret;
3086
3087 /*
3088 * No ordinary (disk based) filesystem counts links as inodes;
3089 * but each new link needs a new dentry, pinning lowmem, and
3090 * tmpfs dentries cannot be pruned until they are unlinked.
3091 */
3092 ret = shmem_reserve_inode(inode->i_sb);
3093 if (ret)
3094 goto out;
3095
3096 dir->i_size += BOGO_DIRENT_SIZE;
3097 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3098 inc_nlink(inode);
3099 ihold(inode); /* New dentry reference */
3100 dget(dentry); /* Extra pinning count for the created dentry */
3101 d_instantiate(dentry, inode);
3102out:
3103 return ret;
3104}
3105
3106static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3107{
3108 struct inode *inode = d_inode(dentry);
3109
3110 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3111 shmem_free_inode(inode->i_sb);
3112
3113 dir->i_size -= BOGO_DIRENT_SIZE;
3114 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3115 drop_nlink(inode);
3116 dput(dentry); /* Undo the count from "create" - this does all the work */
3117 return 0;
3118}
3119
3120static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3121{
3122 if (!simple_empty(dentry))
3123 return -ENOTEMPTY;
3124
3125 drop_nlink(d_inode(dentry));
3126 drop_nlink(dir);
3127 return shmem_unlink(dir, dentry);
3128}
3129
3130static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3131{
3132 bool old_is_dir = d_is_dir(old_dentry);
3133 bool new_is_dir = d_is_dir(new_dentry);
3134
3135 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3136 if (old_is_dir) {
3137 drop_nlink(old_dir);
3138 inc_nlink(new_dir);
3139 } else {
3140 drop_nlink(new_dir);
3141 inc_nlink(old_dir);
3142 }
3143 }
3144 old_dir->i_ctime = old_dir->i_mtime =
3145 new_dir->i_ctime = new_dir->i_mtime =
3146 d_inode(old_dentry)->i_ctime =
3147 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3148
3149 return 0;
3150}
3151
3152static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3153{
3154 struct dentry *whiteout;
3155 int error;
3156
3157 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3158 if (!whiteout)
3159 return -ENOMEM;
3160
3161 error = shmem_mknod(old_dir, whiteout,
3162 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3163 dput(whiteout);
3164 if (error)
3165 return error;
3166
3167 /*
3168 * Cheat and hash the whiteout while the old dentry is still in
3169 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3170 *
3171 * d_lookup() will consistently find one of them at this point,
3172 * not sure which one, but that isn't even important.
3173 */
3174 d_rehash(whiteout);
3175 return 0;
3176}
3177
3178/*
3179 * The VFS layer already does all the dentry stuff for rename,
3180 * we just have to decrement the usage count for the target if
3181 * it exists so that the VFS layer correctly free's it when it
3182 * gets overwritten.
3183 */
3184static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3185{
3186 struct inode *inode = d_inode(old_dentry);
3187 int they_are_dirs = S_ISDIR(inode->i_mode);
3188
3189 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3190 return -EINVAL;
3191
3192 if (flags & RENAME_EXCHANGE)
3193 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3194
3195 if (!simple_empty(new_dentry))
3196 return -ENOTEMPTY;
3197
3198 if (flags & RENAME_WHITEOUT) {
3199 int error;
3200
3201 error = shmem_whiteout(old_dir, old_dentry);
3202 if (error)
3203 return error;
3204 }
3205
3206 if (d_really_is_positive(new_dentry)) {
3207 (void) shmem_unlink(new_dir, new_dentry);
3208 if (they_are_dirs) {
3209 drop_nlink(d_inode(new_dentry));
3210 drop_nlink(old_dir);
3211 }
3212 } else if (they_are_dirs) {
3213 drop_nlink(old_dir);
3214 inc_nlink(new_dir);
3215 }
3216
3217 old_dir->i_size -= BOGO_DIRENT_SIZE;
3218 new_dir->i_size += BOGO_DIRENT_SIZE;
3219 old_dir->i_ctime = old_dir->i_mtime =
3220 new_dir->i_ctime = new_dir->i_mtime =
3221 inode->i_ctime = current_time(old_dir);
3222 return 0;
3223}
3224
3225static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3226{
3227 int error;
3228 int len;
3229 struct inode *inode;
3230 struct page *page;
3231
3232 len = strlen(symname) + 1;
3233 if (len > PAGE_SIZE)
3234 return -ENAMETOOLONG;
3235
3236 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3237 if (!inode)
3238 return -ENOSPC;
3239
3240 error = security_inode_init_security(inode, dir, &dentry->d_name,
3241 shmem_initxattrs, NULL);
3242 if (error) {
3243 if (error != -EOPNOTSUPP) {
3244 iput(inode);
3245 return error;
3246 }
3247 error = 0;
3248 }
3249
3250 inode->i_size = len-1;
3251 if (len <= SHORT_SYMLINK_LEN) {
3252 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3253 if (!inode->i_link) {
3254 iput(inode);
3255 return -ENOMEM;
3256 }
3257 inode->i_op = &shmem_short_symlink_operations;
3258 } else {
3259 inode_nohighmem(inode);
3260 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3261 if (error) {
3262 iput(inode);
3263 return error;
3264 }
3265 inode->i_mapping->a_ops = &shmem_aops;
3266 inode->i_op = &shmem_symlink_inode_operations;
3267 memcpy(page_address(page), symname, len);
3268 SetPageUptodate(page);
3269 set_page_dirty(page);
3270 unlock_page(page);
3271 put_page(page);
3272 }
3273 dir->i_size += BOGO_DIRENT_SIZE;
3274 dir->i_ctime = dir->i_mtime = current_time(dir);
3275 d_instantiate(dentry, inode);
3276 dget(dentry);
3277 return 0;
3278}
3279
3280static void shmem_put_link(void *arg)
3281{
3282 mark_page_accessed(arg);
3283 put_page(arg);
3284}
3285
3286static const char *shmem_get_link(struct dentry *dentry,
3287 struct inode *inode,
3288 struct delayed_call *done)
3289{
3290 struct page *page = NULL;
3291 int error;
3292 if (!dentry) {
3293 page = find_get_page(inode->i_mapping, 0);
3294 if (!page)
3295 return ERR_PTR(-ECHILD);
3296 if (!PageUptodate(page)) {
3297 put_page(page);
3298 return ERR_PTR(-ECHILD);
3299 }
3300 } else {
3301 error = shmem_getpage(inode, 0, &page, SGP_READ);
3302 if (error)
3303 return ERR_PTR(error);
3304 unlock_page(page);
3305 }
3306 set_delayed_call(done, shmem_put_link, page);
3307 return page_address(page);
3308}
3309
3310#ifdef CONFIG_TMPFS_XATTR
3311/*
3312 * Superblocks without xattr inode operations may get some security.* xattr
3313 * support from the LSM "for free". As soon as we have any other xattrs
3314 * like ACLs, we also need to implement the security.* handlers at
3315 * filesystem level, though.
3316 */
3317
3318/*
3319 * Callback for security_inode_init_security() for acquiring xattrs.
3320 */
3321static int shmem_initxattrs(struct inode *inode,
3322 const struct xattr *xattr_array,
3323 void *fs_info)
3324{
3325 struct shmem_inode_info *info = SHMEM_I(inode);
3326 const struct xattr *xattr;
3327 struct simple_xattr *new_xattr;
3328 size_t len;
3329
3330 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3331 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3332 if (!new_xattr)
3333 return -ENOMEM;
3334
3335 len = strlen(xattr->name) + 1;
3336 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3337 GFP_KERNEL);
3338 if (!new_xattr->name) {
3339 kfree(new_xattr);
3340 return -ENOMEM;
3341 }
3342
3343 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3344 XATTR_SECURITY_PREFIX_LEN);
3345 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3346 xattr->name, len);
3347
3348 simple_xattr_list_add(&info->xattrs, new_xattr);
3349 }
3350
3351 return 0;
3352}
3353
3354static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3355 struct dentry *unused, struct inode *inode,
3356 const char *name, void *buffer, size_t size)
3357{
3358 struct shmem_inode_info *info = SHMEM_I(inode);
3359
3360 name = xattr_full_name(handler, name);
3361 return simple_xattr_get(&info->xattrs, name, buffer, size);
3362}
3363
3364static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3365 struct dentry *unused, struct inode *inode,
3366 const char *name, const void *value,
3367 size_t size, int flags)
3368{
3369 struct shmem_inode_info *info = SHMEM_I(inode);
3370
3371 name = xattr_full_name(handler, name);
3372 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3373}
3374
3375static const struct xattr_handler shmem_security_xattr_handler = {
3376 .prefix = XATTR_SECURITY_PREFIX,
3377 .get = shmem_xattr_handler_get,
3378 .set = shmem_xattr_handler_set,
3379};
3380
3381static const struct xattr_handler shmem_trusted_xattr_handler = {
3382 .prefix = XATTR_TRUSTED_PREFIX,
3383 .get = shmem_xattr_handler_get,
3384 .set = shmem_xattr_handler_set,
3385};
3386
3387static const struct xattr_handler *shmem_xattr_handlers[] = {
3388#ifdef CONFIG_TMPFS_POSIX_ACL
3389 &posix_acl_access_xattr_handler,
3390 &posix_acl_default_xattr_handler,
3391#endif
3392 &shmem_security_xattr_handler,
3393 &shmem_trusted_xattr_handler,
3394 NULL
3395};
3396
3397static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3398{
3399 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3400 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3401}
3402#endif /* CONFIG_TMPFS_XATTR */
3403
3404static const struct inode_operations shmem_short_symlink_operations = {
3405 .get_link = simple_get_link,
3406#ifdef CONFIG_TMPFS_XATTR
3407 .listxattr = shmem_listxattr,
3408#endif
3409};
3410
3411static const struct inode_operations shmem_symlink_inode_operations = {
3412 .get_link = shmem_get_link,
3413#ifdef CONFIG_TMPFS_XATTR
3414 .listxattr = shmem_listxattr,
3415#endif
3416};
3417
3418static struct dentry *shmem_get_parent(struct dentry *child)
3419{
3420 return ERR_PTR(-ESTALE);
3421}
3422
3423static int shmem_match(struct inode *ino, void *vfh)
3424{
3425 __u32 *fh = vfh;
3426 __u64 inum = fh[2];
3427 inum = (inum << 32) | fh[1];
3428 return ino->i_ino == inum && fh[0] == ino->i_generation;
3429}
3430
3431static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3432 struct fid *fid, int fh_len, int fh_type)
3433{
3434 struct inode *inode;
3435 struct dentry *dentry = NULL;
3436 u64 inum;
3437
3438 if (fh_len < 3)
3439 return NULL;
3440
3441 inum = fid->raw[2];
3442 inum = (inum << 32) | fid->raw[1];
3443
3444 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3445 shmem_match, fid->raw);
3446 if (inode) {
3447 dentry = d_find_alias(inode);
3448 iput(inode);
3449 }
3450
3451 return dentry;
3452}
3453
3454static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3455 struct inode *parent)
3456{
3457 if (*len < 3) {
3458 *len = 3;
3459 return FILEID_INVALID;
3460 }
3461
3462 if (inode_unhashed(inode)) {
3463 /* Unfortunately insert_inode_hash is not idempotent,
3464 * so as we hash inodes here rather than at creation
3465 * time, we need a lock to ensure we only try
3466 * to do it once
3467 */
3468 static DEFINE_SPINLOCK(lock);
3469 spin_lock(&lock);
3470 if (inode_unhashed(inode))
3471 __insert_inode_hash(inode,
3472 inode->i_ino + inode->i_generation);
3473 spin_unlock(&lock);
3474 }
3475
3476 fh[0] = inode->i_generation;
3477 fh[1] = inode->i_ino;
3478 fh[2] = ((__u64)inode->i_ino) >> 32;
3479
3480 *len = 3;
3481 return 1;
3482}
3483
3484static const struct export_operations shmem_export_ops = {
3485 .get_parent = shmem_get_parent,
3486 .encode_fh = shmem_encode_fh,
3487 .fh_to_dentry = shmem_fh_to_dentry,
3488};
3489
3490static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3491 bool remount)
3492{
3493 char *this_char, *value, *rest;
3494 struct mempolicy *mpol = NULL;
3495 uid_t uid;
3496 gid_t gid;
3497
3498 while (options != NULL) {
3499 this_char = options;
3500 for (;;) {
3501 /*
3502 * NUL-terminate this option: unfortunately,
3503 * mount options form a comma-separated list,
3504 * but mpol's nodelist may also contain commas.
3505 */
3506 options = strchr(options, ',');
3507 if (options == NULL)
3508 break;
3509 options++;
3510 if (!isdigit(*options)) {
3511 options[-1] = '\0';
3512 break;
3513 }
3514 }
3515 if (!*this_char)
3516 continue;
3517 if ((value = strchr(this_char,'=')) != NULL) {
3518 *value++ = 0;
3519 } else {
3520 pr_err("tmpfs: No value for mount option '%s'\n",
3521 this_char);
3522 goto error;
3523 }
3524
3525 if (!strcmp(this_char,"size")) {
3526 unsigned long long size;
3527 size = memparse(value,&rest);
3528 if (*rest == '%') {
3529 size <<= PAGE_SHIFT;
3530 size *= totalram_pages;
3531 do_div(size, 100);
3532 rest++;
3533 }
3534 if (*rest)
3535 goto bad_val;
3536 sbinfo->max_blocks =
3537 DIV_ROUND_UP(size, PAGE_SIZE);
3538 } else if (!strcmp(this_char,"nr_blocks")) {
3539 sbinfo->max_blocks = memparse(value, &rest);
3540 if (*rest)
3541 goto bad_val;
3542 } else if (!strcmp(this_char,"nr_inodes")) {
3543 sbinfo->max_inodes = memparse(value, &rest);
3544 if (*rest)
3545 goto bad_val;
3546 } else if (!strcmp(this_char,"mode")) {
3547 if (remount)
3548 continue;
3549 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3550 if (*rest)
3551 goto bad_val;
3552 } else if (!strcmp(this_char,"uid")) {
3553 if (remount)
3554 continue;
3555 uid = simple_strtoul(value, &rest, 0);
3556 if (*rest)
3557 goto bad_val;
3558 sbinfo->uid = make_kuid(current_user_ns(), uid);
3559 if (!uid_valid(sbinfo->uid))
3560 goto bad_val;
3561 } else if (!strcmp(this_char,"gid")) {
3562 if (remount)
3563 continue;
3564 gid = simple_strtoul(value, &rest, 0);
3565 if (*rest)
3566 goto bad_val;
3567 sbinfo->gid = make_kgid(current_user_ns(), gid);
3568 if (!gid_valid(sbinfo->gid))
3569 goto bad_val;
3570#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3571 } else if (!strcmp(this_char, "huge")) {
3572 int huge;
3573 huge = shmem_parse_huge(value);
3574 if (huge < 0)
3575 goto bad_val;
3576 if (!has_transparent_hugepage() &&
3577 huge != SHMEM_HUGE_NEVER)
3578 goto bad_val;
3579 sbinfo->huge = huge;
3580#endif
3581#ifdef CONFIG_NUMA
3582 } else if (!strcmp(this_char,"mpol")) {
3583 mpol_put(mpol);
3584 mpol = NULL;
3585 if (mpol_parse_str(value, &mpol))
3586 goto bad_val;
3587#endif
3588 } else {
3589 pr_err("tmpfs: Bad mount option %s\n", this_char);
3590 goto error;
3591 }
3592 }
3593 sbinfo->mpol = mpol;
3594 return 0;
3595
3596bad_val:
3597 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3598 value, this_char);
3599error:
3600 mpol_put(mpol);
3601 return 1;
3602
3603}
3604
3605static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3606{
3607 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3608 struct shmem_sb_info config = *sbinfo;
3609 unsigned long inodes;
3610 int error = -EINVAL;
3611
3612 config.mpol = NULL;
3613 if (shmem_parse_options(data, &config, true))
3614 return error;
3615
3616 spin_lock(&sbinfo->stat_lock);
3617 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3618 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3619 goto out;
3620 if (config.max_inodes < inodes)
3621 goto out;
3622 /*
3623 * Those tests disallow limited->unlimited while any are in use;
3624 * but we must separately disallow unlimited->limited, because
3625 * in that case we have no record of how much is already in use.
3626 */
3627 if (config.max_blocks && !sbinfo->max_blocks)
3628 goto out;
3629 if (config.max_inodes && !sbinfo->max_inodes)
3630 goto out;
3631
3632 error = 0;
3633 sbinfo->huge = config.huge;
3634 sbinfo->max_blocks = config.max_blocks;
3635 sbinfo->max_inodes = config.max_inodes;
3636 sbinfo->free_inodes = config.max_inodes - inodes;
3637
3638 /*
3639 * Preserve previous mempolicy unless mpol remount option was specified.
3640 */
3641 if (config.mpol) {
3642 mpol_put(sbinfo->mpol);
3643 sbinfo->mpol = config.mpol; /* transfers initial ref */
3644 }
3645out:
3646 spin_unlock(&sbinfo->stat_lock);
3647 return error;
3648}
3649
3650static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3651{
3652 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3653
3654 if (sbinfo->max_blocks != shmem_default_max_blocks())
3655 seq_printf(seq, ",size=%luk",
3656 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3657 if (sbinfo->max_inodes != shmem_default_max_inodes())
3658 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3659 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3660 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3661 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3662 seq_printf(seq, ",uid=%u",
3663 from_kuid_munged(&init_user_ns, sbinfo->uid));
3664 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3665 seq_printf(seq, ",gid=%u",
3666 from_kgid_munged(&init_user_ns, sbinfo->gid));
3667#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3668 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3669 if (sbinfo->huge)
3670 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3671#endif
3672 shmem_show_mpol(seq, sbinfo->mpol);
3673 return 0;
3674}
3675
3676#define MFD_NAME_PREFIX "memfd:"
3677#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3678#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3679
3680#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3681
3682SYSCALL_DEFINE2(memfd_create,
3683 const char __user *, uname,
3684 unsigned int, flags)
3685{
3686 unsigned int *file_seals;
3687 struct file *file;
3688 int fd, error;
3689 char *name;
3690 long len;
3691
3692 if (!(flags & MFD_HUGETLB)) {
3693 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3694 return -EINVAL;
3695 } else {
3696 /* Allow huge page size encoding in flags. */
3697 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3698 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3699 return -EINVAL;
3700 }
3701
3702 /* length includes terminating zero */
3703 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3704 if (len <= 0)
3705 return -EFAULT;
3706 if (len > MFD_NAME_MAX_LEN + 1)
3707 return -EINVAL;
3708
3709 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3710 if (!name)
3711 return -ENOMEM;
3712
3713 strcpy(name, MFD_NAME_PREFIX);
3714 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3715 error = -EFAULT;
3716 goto err_name;
3717 }
3718
3719 /* terminating-zero may have changed after strnlen_user() returned */
3720 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3721 error = -EFAULT;
3722 goto err_name;
3723 }
3724
3725 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3726 if (fd < 0) {
3727 error = fd;
3728 goto err_name;
3729 }
3730
3731 if (flags & MFD_HUGETLB) {
3732 struct user_struct *user = NULL;
3733
3734 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3735 HUGETLB_ANONHUGE_INODE,
3736 (flags >> MFD_HUGE_SHIFT) &
3737 MFD_HUGE_MASK);
3738 } else
3739 file = shmem_file_setup(name, 0, VM_NORESERVE);
3740 if (IS_ERR(file)) {
3741 error = PTR_ERR(file);
3742 goto err_fd;
3743 }
3744 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3745 file->f_flags |= O_RDWR | O_LARGEFILE;
3746
3747 if (flags & MFD_ALLOW_SEALING) {
3748 file_seals = memfd_file_seals_ptr(file);
3749 *file_seals &= ~F_SEAL_SEAL;
3750 }
3751
3752 fd_install(fd, file);
3753 kfree(name);
3754 return fd;
3755
3756err_fd:
3757 put_unused_fd(fd);
3758err_name:
3759 kfree(name);
3760 return error;
3761}
3762
3763#endif /* CONFIG_TMPFS */
3764
3765static void shmem_put_super(struct super_block *sb)
3766{
3767 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3768
3769 percpu_counter_destroy(&sbinfo->used_blocks);
3770 mpol_put(sbinfo->mpol);
3771 kfree(sbinfo);
3772 sb->s_fs_info = NULL;
3773}
3774
3775int shmem_fill_super(struct super_block *sb, void *data, int silent)
3776{
3777 struct inode *inode;
3778 struct shmem_sb_info *sbinfo;
3779 int err = -ENOMEM;
3780
3781 /* Round up to L1_CACHE_BYTES to resist false sharing */
3782 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3783 L1_CACHE_BYTES), GFP_KERNEL);
3784 if (!sbinfo)
3785 return -ENOMEM;
3786
3787 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3788 sbinfo->uid = current_fsuid();
3789 sbinfo->gid = current_fsgid();
3790 sb->s_fs_info = sbinfo;
3791
3792#ifdef CONFIG_TMPFS
3793 /*
3794 * Per default we only allow half of the physical ram per
3795 * tmpfs instance, limiting inodes to one per page of lowmem;
3796 * but the internal instance is left unlimited.
3797 */
3798 if (!(sb->s_flags & SB_KERNMOUNT)) {
3799 sbinfo->max_blocks = shmem_default_max_blocks();
3800 sbinfo->max_inodes = shmem_default_max_inodes();
3801 if (shmem_parse_options(data, sbinfo, false)) {
3802 err = -EINVAL;
3803 goto failed;
3804 }
3805 } else {
3806 sb->s_flags |= SB_NOUSER;
3807 }
3808 sb->s_export_op = &shmem_export_ops;
3809 sb->s_flags |= SB_NOSEC;
3810#else
3811 sb->s_flags |= SB_NOUSER;
3812#endif
3813
3814 spin_lock_init(&sbinfo->stat_lock);
3815 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3816 goto failed;
3817 sbinfo->free_inodes = sbinfo->max_inodes;
3818 spin_lock_init(&sbinfo->shrinklist_lock);
3819 INIT_LIST_HEAD(&sbinfo->shrinklist);
3820
3821 sb->s_maxbytes = MAX_LFS_FILESIZE;
3822 sb->s_blocksize = PAGE_SIZE;
3823 sb->s_blocksize_bits = PAGE_SHIFT;
3824 sb->s_magic = TMPFS_MAGIC;
3825 sb->s_op = &shmem_ops;
3826 sb->s_time_gran = 1;
3827#ifdef CONFIG_TMPFS_XATTR
3828 sb->s_xattr = shmem_xattr_handlers;
3829#endif
3830#ifdef CONFIG_TMPFS_POSIX_ACL
3831 sb->s_flags |= SB_POSIXACL;
3832#endif
3833 uuid_gen(&sb->s_uuid);
3834
3835 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3836 if (!inode)
3837 goto failed;
3838 inode->i_uid = sbinfo->uid;
3839 inode->i_gid = sbinfo->gid;
3840 sb->s_root = d_make_root(inode);
3841 if (!sb->s_root)
3842 goto failed;
3843 return 0;
3844
3845failed:
3846 shmem_put_super(sb);
3847 return err;
3848}
3849
3850static struct kmem_cache *shmem_inode_cachep;
3851
3852static struct inode *shmem_alloc_inode(struct super_block *sb)
3853{
3854 struct shmem_inode_info *info;
3855 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3856 if (!info)
3857 return NULL;
3858 return &info->vfs_inode;
3859}
3860
3861static void shmem_destroy_callback(struct rcu_head *head)
3862{
3863 struct inode *inode = container_of(head, struct inode, i_rcu);
3864 if (S_ISLNK(inode->i_mode))
3865 kfree(inode->i_link);
3866 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3867}
3868
3869static void shmem_destroy_inode(struct inode *inode)
3870{
3871 if (S_ISREG(inode->i_mode))
3872 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3873 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3874}
3875
3876static void shmem_init_inode(void *foo)
3877{
3878 struct shmem_inode_info *info = foo;
3879 inode_init_once(&info->vfs_inode);
3880}
3881
3882static void shmem_init_inodecache(void)
3883{
3884 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3885 sizeof(struct shmem_inode_info),
3886 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3887}
3888
3889static void shmem_destroy_inodecache(void)
3890{
3891 kmem_cache_destroy(shmem_inode_cachep);
3892}
3893
3894static const struct address_space_operations shmem_aops = {
3895 .writepage = shmem_writepage,
3896 .set_page_dirty = __set_page_dirty_no_writeback,
3897#ifdef CONFIG_TMPFS
3898 .write_begin = shmem_write_begin,
3899 .write_end = shmem_write_end,
3900#endif
3901#ifdef CONFIG_MIGRATION
3902 .migratepage = migrate_page,
3903#endif
3904 .error_remove_page = generic_error_remove_page,
3905};
3906
3907static const struct file_operations shmem_file_operations = {
3908 .mmap = shmem_mmap,
3909 .get_unmapped_area = shmem_get_unmapped_area,
3910#ifdef CONFIG_TMPFS
3911 .llseek = shmem_file_llseek,
3912 .read_iter = shmem_file_read_iter,
3913 .write_iter = generic_file_write_iter,
3914 .fsync = noop_fsync,
3915 .splice_read = generic_file_splice_read,
3916 .splice_write = iter_file_splice_write,
3917 .fallocate = shmem_fallocate,
3918#endif
3919};
3920
3921static const struct inode_operations shmem_inode_operations = {
3922 .getattr = shmem_getattr,
3923 .setattr = shmem_setattr,
3924#ifdef CONFIG_TMPFS_XATTR
3925 .listxattr = shmem_listxattr,
3926 .set_acl = simple_set_acl,
3927#endif
3928};
3929
3930static const struct inode_operations shmem_dir_inode_operations = {
3931#ifdef CONFIG_TMPFS
3932 .create = shmem_create,
3933 .lookup = simple_lookup,
3934 .link = shmem_link,
3935 .unlink = shmem_unlink,
3936 .symlink = shmem_symlink,
3937 .mkdir = shmem_mkdir,
3938 .rmdir = shmem_rmdir,
3939 .mknod = shmem_mknod,
3940 .rename = shmem_rename2,
3941 .tmpfile = shmem_tmpfile,
3942#endif
3943#ifdef CONFIG_TMPFS_XATTR
3944 .listxattr = shmem_listxattr,
3945#endif
3946#ifdef CONFIG_TMPFS_POSIX_ACL
3947 .setattr = shmem_setattr,
3948 .set_acl = simple_set_acl,
3949#endif
3950};
3951
3952static const struct inode_operations shmem_special_inode_operations = {
3953#ifdef CONFIG_TMPFS_XATTR
3954 .listxattr = shmem_listxattr,
3955#endif
3956#ifdef CONFIG_TMPFS_POSIX_ACL
3957 .setattr = shmem_setattr,
3958 .set_acl = simple_set_acl,
3959#endif
3960};
3961
3962static const struct super_operations shmem_ops = {
3963 .alloc_inode = shmem_alloc_inode,
3964 .destroy_inode = shmem_destroy_inode,
3965#ifdef CONFIG_TMPFS
3966 .statfs = shmem_statfs,
3967 .remount_fs = shmem_remount_fs,
3968 .show_options = shmem_show_options,
3969#endif
3970 .evict_inode = shmem_evict_inode,
3971 .drop_inode = generic_delete_inode,
3972 .put_super = shmem_put_super,
3973#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3974 .nr_cached_objects = shmem_unused_huge_count,
3975 .free_cached_objects = shmem_unused_huge_scan,
3976#endif
3977};
3978
3979static const struct vm_operations_struct shmem_vm_ops = {
3980 .fault = shmem_fault,
3981 .map_pages = filemap_map_pages,
3982#ifdef CONFIG_NUMA
3983 .set_policy = shmem_set_policy,
3984 .get_policy = shmem_get_policy,
3985#endif
3986};
3987
3988static struct dentry *shmem_mount(struct file_system_type *fs_type,
3989 int flags, const char *dev_name, void *data)
3990{
3991 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3992}
3993
3994static struct file_system_type shmem_fs_type = {
3995 .owner = THIS_MODULE,
3996 .name = "tmpfs",
3997 .mount = shmem_mount,
3998 .kill_sb = kill_litter_super,
3999 .fs_flags = FS_USERNS_MOUNT,
4000};
4001
4002int __init shmem_init(void)
4003{
4004 int error;
4005
4006 /* If rootfs called this, don't re-init */
4007 if (shmem_inode_cachep)
4008 return 0;
4009
4010 shmem_init_inodecache();
4011
4012 error = register_filesystem(&shmem_fs_type);
4013 if (error) {
4014 pr_err("Could not register tmpfs\n");
4015 goto out2;
4016 }
4017
4018 shm_mnt = kern_mount(&shmem_fs_type);
4019 if (IS_ERR(shm_mnt)) {
4020 error = PTR_ERR(shm_mnt);
4021 pr_err("Could not kern_mount tmpfs\n");
4022 goto out1;
4023 }
4024
4025#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4026 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4027 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4028 else
4029 shmem_huge = 0; /* just in case it was patched */
4030#endif
4031 return 0;
4032
4033out1:
4034 unregister_filesystem(&shmem_fs_type);
4035out2:
4036 shmem_destroy_inodecache();
4037 shm_mnt = ERR_PTR(error);
4038 return error;
4039}
4040
4041#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4042static ssize_t shmem_enabled_show(struct kobject *kobj,
4043 struct kobj_attribute *attr, char *buf)
4044{
4045 int values[] = {
4046 SHMEM_HUGE_ALWAYS,
4047 SHMEM_HUGE_WITHIN_SIZE,
4048 SHMEM_HUGE_ADVISE,
4049 SHMEM_HUGE_NEVER,
4050 SHMEM_HUGE_DENY,
4051 SHMEM_HUGE_FORCE,
4052 };
4053 int i, count;
4054
4055 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4056 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4057
4058 count += sprintf(buf + count, fmt,
4059 shmem_format_huge(values[i]));
4060 }
4061 buf[count - 1] = '\n';
4062 return count;
4063}
4064
4065static ssize_t shmem_enabled_store(struct kobject *kobj,
4066 struct kobj_attribute *attr, const char *buf, size_t count)
4067{
4068 char tmp[16];
4069 int huge;
4070
4071 if (count + 1 > sizeof(tmp))
4072 return -EINVAL;
4073 memcpy(tmp, buf, count);
4074 tmp[count] = '\0';
4075 if (count && tmp[count - 1] == '\n')
4076 tmp[count - 1] = '\0';
4077
4078 huge = shmem_parse_huge(tmp);
4079 if (huge == -EINVAL)
4080 return -EINVAL;
4081 if (!has_transparent_hugepage() &&
4082 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4083 return -EINVAL;
4084
4085 shmem_huge = huge;
4086 if (shmem_huge > SHMEM_HUGE_DENY)
4087 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4088 return count;
4089}
4090
4091struct kobj_attribute shmem_enabled_attr =
4092 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4093#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4094
4095#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4096bool shmem_huge_enabled(struct vm_area_struct *vma)
4097{
4098 struct inode *inode = file_inode(vma->vm_file);
4099 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4100 loff_t i_size;
4101 pgoff_t off;
4102
4103 if (shmem_huge == SHMEM_HUGE_FORCE)
4104 return true;
4105 if (shmem_huge == SHMEM_HUGE_DENY)
4106 return false;
4107 switch (sbinfo->huge) {
4108 case SHMEM_HUGE_NEVER:
4109 return false;
4110 case SHMEM_HUGE_ALWAYS:
4111 return true;
4112 case SHMEM_HUGE_WITHIN_SIZE:
4113 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4114 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4115 if (i_size >= HPAGE_PMD_SIZE &&
4116 i_size >> PAGE_SHIFT >= off)
4117 return true;
4118 /* fall through */
4119 case SHMEM_HUGE_ADVISE:
4120 /* TODO: implement fadvise() hints */
4121 return (vma->vm_flags & VM_HUGEPAGE);
4122 default:
4123 VM_BUG_ON(1);
4124 return false;
4125 }
4126}
4127#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4128
4129#else /* !CONFIG_SHMEM */
4130
4131/*
4132 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4133 *
4134 * This is intended for small system where the benefits of the full
4135 * shmem code (swap-backed and resource-limited) are outweighed by
4136 * their complexity. On systems without swap this code should be
4137 * effectively equivalent, but much lighter weight.
4138 */
4139
4140static struct file_system_type shmem_fs_type = {
4141 .name = "tmpfs",
4142 .mount = ramfs_mount,
4143 .kill_sb = kill_litter_super,
4144 .fs_flags = FS_USERNS_MOUNT,
4145};
4146
4147int __init shmem_init(void)
4148{
4149 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4150
4151 shm_mnt = kern_mount(&shmem_fs_type);
4152 BUG_ON(IS_ERR(shm_mnt));
4153
4154 return 0;
4155}
4156
4157int shmem_unuse(swp_entry_t swap, struct page *page)
4158{
4159 return 0;
4160}
4161
4162int shmem_lock(struct file *file, int lock, struct user_struct *user)
4163{
4164 return 0;
4165}
4166
4167void shmem_unlock_mapping(struct address_space *mapping)
4168{
4169}
4170
4171#ifdef CONFIG_MMU
4172unsigned long shmem_get_unmapped_area(struct file *file,
4173 unsigned long addr, unsigned long len,
4174 unsigned long pgoff, unsigned long flags)
4175{
4176 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4177}
4178#endif
4179
4180void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4181{
4182 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4183}
4184EXPORT_SYMBOL_GPL(shmem_truncate_range);
4185
4186#define shmem_vm_ops generic_file_vm_ops
4187#define shmem_file_operations ramfs_file_operations
4188#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4189#define shmem_acct_size(flags, size) 0
4190#define shmem_unacct_size(flags, size) do {} while (0)
4191
4192#endif /* CONFIG_SHMEM */
4193
4194/* common code */
4195
4196static const struct dentry_operations anon_ops = {
4197 .d_dname = simple_dname
4198};
4199
4200static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4201 unsigned long flags, unsigned int i_flags)
4202{
4203 struct file *res;
4204 struct inode *inode;
4205 struct path path;
4206 struct super_block *sb;
4207 struct qstr this;
4208
4209 if (IS_ERR(mnt))
4210 return ERR_CAST(mnt);
4211
4212 if (size < 0 || size > MAX_LFS_FILESIZE)
4213 return ERR_PTR(-EINVAL);
4214
4215 if (shmem_acct_size(flags, size))
4216 return ERR_PTR(-ENOMEM);
4217
4218 res = ERR_PTR(-ENOMEM);
4219 this.name = name;
4220 this.len = strlen(name);
4221 this.hash = 0; /* will go */
4222 sb = mnt->mnt_sb;
4223 path.mnt = mntget(mnt);
4224 path.dentry = d_alloc_pseudo(sb, &this);
4225 if (!path.dentry)
4226 goto put_memory;
4227 d_set_d_op(path.dentry, &anon_ops);
4228
4229 res = ERR_PTR(-ENOSPC);
4230 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4231 if (!inode)
4232 goto put_memory;
4233
4234 inode->i_flags |= i_flags;
4235 d_instantiate(path.dentry, inode);
4236 inode->i_size = size;
4237 clear_nlink(inode); /* It is unlinked */
4238 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4239 if (IS_ERR(res))
4240 goto put_path;
4241
4242 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4243 &shmem_file_operations);
4244 if (IS_ERR(res))
4245 goto put_path;
4246
4247 return res;
4248
4249put_memory:
4250 shmem_unacct_size(flags, size);
4251put_path:
4252 path_put(&path);
4253 return res;
4254}
4255
4256/**
4257 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4258 * kernel internal. There will be NO LSM permission checks against the
4259 * underlying inode. So users of this interface must do LSM checks at a
4260 * higher layer. The users are the big_key and shm implementations. LSM
4261 * checks are provided at the key or shm level rather than the inode.
4262 * @name: name for dentry (to be seen in /proc/<pid>/maps
4263 * @size: size to be set for the file
4264 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4265 */
4266struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4267{
4268 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4269}
4270
4271/**
4272 * shmem_file_setup - get an unlinked file living in tmpfs
4273 * @name: name for dentry (to be seen in /proc/<pid>/maps
4274 * @size: size to be set for the file
4275 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4276 */
4277struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4278{
4279 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4280}
4281EXPORT_SYMBOL_GPL(shmem_file_setup);
4282
4283/**
4284 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4285 * @mnt: the tmpfs mount where the file will be created
4286 * @name: name for dentry (to be seen in /proc/<pid>/maps
4287 * @size: size to be set for the file
4288 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4289 */
4290struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4291 loff_t size, unsigned long flags)
4292{
4293 return __shmem_file_setup(mnt, name, size, flags, 0);
4294}
4295EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4296
4297/**
4298 * shmem_zero_setup - setup a shared anonymous mapping
4299 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4300 */
4301int shmem_zero_setup(struct vm_area_struct *vma)
4302{
4303 struct file *file;
4304 loff_t size = vma->vm_end - vma->vm_start;
4305
4306 /*
4307 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4308 * between XFS directory reading and selinux: since this file is only
4309 * accessible to the user through its mapping, use S_PRIVATE flag to
4310 * bypass file security, in the same way as shmem_kernel_file_setup().
4311 */
4312 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4313 if (IS_ERR(file))
4314 return PTR_ERR(file);
4315
4316 if (vma->vm_file)
4317 fput(vma->vm_file);
4318 vma->vm_file = file;
4319 vma->vm_ops = &shmem_vm_ops;
4320
4321 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4322 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4323 (vma->vm_end & HPAGE_PMD_MASK)) {
4324 khugepaged_enter(vma, vma->vm_flags);
4325 }
4326
4327 return 0;
4328}
4329
4330/**
4331 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4332 * @mapping: the page's address_space
4333 * @index: the page index
4334 * @gfp: the page allocator flags to use if allocating
4335 *
4336 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4337 * with any new page allocations done using the specified allocation flags.
4338 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4339 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4340 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4341 *
4342 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4343 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4344 */
4345struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4346 pgoff_t index, gfp_t gfp)
4347{
4348#ifdef CONFIG_SHMEM
4349 struct inode *inode = mapping->host;
4350 struct page *page;
4351 int error;
4352
4353 BUG_ON(mapping->a_ops != &shmem_aops);
4354 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4355 gfp, NULL, NULL, NULL);
4356 if (error)
4357 page = ERR_PTR(error);
4358 else
4359 unlock_page(page);
4360 return page;
4361#else
4362 /*
4363 * The tiny !SHMEM case uses ramfs without swap
4364 */
4365 return read_cache_page_gfp(mapping, index, gfp);
4366#endif
4367}
4368EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/fileattr.h>
32#include <linux/mm.h>
33#include <linux/random.h>
34#include <linux/sched/signal.h>
35#include <linux/export.h>
36#include <linux/shmem_fs.h>
37#include <linux/swap.h>
38#include <linux/uio.h>
39#include <linux/hugetlb.h>
40#include <linux/fs_parser.h>
41#include <linux/swapfile.h>
42#include <linux/iversion.h>
43#include <linux/unicode.h>
44#include "swap.h"
45
46static struct vfsmount *shm_mnt __ro_after_init;
47
48#ifdef CONFIG_SHMEM
49/*
50 * This virtual memory filesystem is heavily based on the ramfs. It
51 * extends ramfs by the ability to use swap and honor resource limits
52 * which makes it a completely usable filesystem.
53 */
54
55#include <linux/xattr.h>
56#include <linux/exportfs.h>
57#include <linux/posix_acl.h>
58#include <linux/posix_acl_xattr.h>
59#include <linux/mman.h>
60#include <linux/string.h>
61#include <linux/slab.h>
62#include <linux/backing-dev.h>
63#include <linux/writeback.h>
64#include <linux/pagevec.h>
65#include <linux/percpu_counter.h>
66#include <linux/falloc.h>
67#include <linux/splice.h>
68#include <linux/security.h>
69#include <linux/swapops.h>
70#include <linux/mempolicy.h>
71#include <linux/namei.h>
72#include <linux/ctype.h>
73#include <linux/migrate.h>
74#include <linux/highmem.h>
75#include <linux/seq_file.h>
76#include <linux/magic.h>
77#include <linux/syscalls.h>
78#include <linux/fcntl.h>
79#include <uapi/linux/memfd.h>
80#include <linux/rmap.h>
81#include <linux/uuid.h>
82#include <linux/quotaops.h>
83#include <linux/rcupdate_wait.h>
84
85#include <linux/uaccess.h>
86
87#include "internal.h"
88
89#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92/* Pretend that each entry is of this size in directory's i_size */
93#define BOGO_DIRENT_SIZE 20
94
95/* Pretend that one inode + its dentry occupy this much memory */
96#define BOGO_INODE_SIZE 1024
97
98/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
99#define SHORT_SYMLINK_LEN 128
100
101/*
102 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
103 * inode->i_private (with i_rwsem making sure that it has only one user at
104 * a time): we would prefer not to enlarge the shmem inode just for that.
105 */
106struct shmem_falloc {
107 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
108 pgoff_t start; /* start of range currently being fallocated */
109 pgoff_t next; /* the next page offset to be fallocated */
110 pgoff_t nr_falloced; /* how many new pages have been fallocated */
111 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
112};
113
114struct shmem_options {
115 unsigned long long blocks;
116 unsigned long long inodes;
117 struct mempolicy *mpol;
118 kuid_t uid;
119 kgid_t gid;
120 umode_t mode;
121 bool full_inums;
122 int huge;
123 int seen;
124 bool noswap;
125 unsigned short quota_types;
126 struct shmem_quota_limits qlimits;
127#if IS_ENABLED(CONFIG_UNICODE)
128 struct unicode_map *encoding;
129 bool strict_encoding;
130#endif
131#define SHMEM_SEEN_BLOCKS 1
132#define SHMEM_SEEN_INODES 2
133#define SHMEM_SEEN_HUGE 4
134#define SHMEM_SEEN_INUMS 8
135#define SHMEM_SEEN_NOSWAP 16
136#define SHMEM_SEEN_QUOTA 32
137};
138
139#ifdef CONFIG_TRANSPARENT_HUGEPAGE
140static unsigned long huge_shmem_orders_always __read_mostly;
141static unsigned long huge_shmem_orders_madvise __read_mostly;
142static unsigned long huge_shmem_orders_inherit __read_mostly;
143static unsigned long huge_shmem_orders_within_size __read_mostly;
144static bool shmem_orders_configured __initdata;
145#endif
146
147#ifdef CONFIG_TMPFS
148static unsigned long shmem_default_max_blocks(void)
149{
150 return totalram_pages() / 2;
151}
152
153static unsigned long shmem_default_max_inodes(void)
154{
155 unsigned long nr_pages = totalram_pages();
156
157 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
158 ULONG_MAX / BOGO_INODE_SIZE);
159}
160#endif
161
162static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
163 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
164 struct vm_area_struct *vma, vm_fault_t *fault_type);
165
166static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
167{
168 return sb->s_fs_info;
169}
170
171/*
172 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
173 * for shared memory and for shared anonymous (/dev/zero) mappings
174 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
175 * consistent with the pre-accounting of private mappings ...
176 */
177static inline int shmem_acct_size(unsigned long flags, loff_t size)
178{
179 return (flags & VM_NORESERVE) ?
180 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
181}
182
183static inline void shmem_unacct_size(unsigned long flags, loff_t size)
184{
185 if (!(flags & VM_NORESERVE))
186 vm_unacct_memory(VM_ACCT(size));
187}
188
189static inline int shmem_reacct_size(unsigned long flags,
190 loff_t oldsize, loff_t newsize)
191{
192 if (!(flags & VM_NORESERVE)) {
193 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
194 return security_vm_enough_memory_mm(current->mm,
195 VM_ACCT(newsize) - VM_ACCT(oldsize));
196 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
197 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
198 }
199 return 0;
200}
201
202/*
203 * ... whereas tmpfs objects are accounted incrementally as
204 * pages are allocated, in order to allow large sparse files.
205 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
206 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
207 */
208static inline int shmem_acct_blocks(unsigned long flags, long pages)
209{
210 if (!(flags & VM_NORESERVE))
211 return 0;
212
213 return security_vm_enough_memory_mm(current->mm,
214 pages * VM_ACCT(PAGE_SIZE));
215}
216
217static inline void shmem_unacct_blocks(unsigned long flags, long pages)
218{
219 if (flags & VM_NORESERVE)
220 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
221}
222
223static int shmem_inode_acct_blocks(struct inode *inode, long pages)
224{
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227 int err = -ENOSPC;
228
229 if (shmem_acct_blocks(info->flags, pages))
230 return err;
231
232 might_sleep(); /* when quotas */
233 if (sbinfo->max_blocks) {
234 if (!percpu_counter_limited_add(&sbinfo->used_blocks,
235 sbinfo->max_blocks, pages))
236 goto unacct;
237
238 err = dquot_alloc_block_nodirty(inode, pages);
239 if (err) {
240 percpu_counter_sub(&sbinfo->used_blocks, pages);
241 goto unacct;
242 }
243 } else {
244 err = dquot_alloc_block_nodirty(inode, pages);
245 if (err)
246 goto unacct;
247 }
248
249 return 0;
250
251unacct:
252 shmem_unacct_blocks(info->flags, pages);
253 return err;
254}
255
256static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
257{
258 struct shmem_inode_info *info = SHMEM_I(inode);
259 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
260
261 might_sleep(); /* when quotas */
262 dquot_free_block_nodirty(inode, pages);
263
264 if (sbinfo->max_blocks)
265 percpu_counter_sub(&sbinfo->used_blocks, pages);
266 shmem_unacct_blocks(info->flags, pages);
267}
268
269static const struct super_operations shmem_ops;
270static const struct address_space_operations shmem_aops;
271static const struct file_operations shmem_file_operations;
272static const struct inode_operations shmem_inode_operations;
273static const struct inode_operations shmem_dir_inode_operations;
274static const struct inode_operations shmem_special_inode_operations;
275static const struct vm_operations_struct shmem_vm_ops;
276static const struct vm_operations_struct shmem_anon_vm_ops;
277static struct file_system_type shmem_fs_type;
278
279bool shmem_mapping(struct address_space *mapping)
280{
281 return mapping->a_ops == &shmem_aops;
282}
283EXPORT_SYMBOL_GPL(shmem_mapping);
284
285bool vma_is_anon_shmem(struct vm_area_struct *vma)
286{
287 return vma->vm_ops == &shmem_anon_vm_ops;
288}
289
290bool vma_is_shmem(struct vm_area_struct *vma)
291{
292 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
293}
294
295static LIST_HEAD(shmem_swaplist);
296static DEFINE_MUTEX(shmem_swaplist_mutex);
297
298#ifdef CONFIG_TMPFS_QUOTA
299
300static int shmem_enable_quotas(struct super_block *sb,
301 unsigned short quota_types)
302{
303 int type, err = 0;
304
305 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
306 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
307 if (!(quota_types & (1 << type)))
308 continue;
309 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
310 DQUOT_USAGE_ENABLED |
311 DQUOT_LIMITS_ENABLED);
312 if (err)
313 goto out_err;
314 }
315 return 0;
316
317out_err:
318 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
319 type, err);
320 for (type--; type >= 0; type--)
321 dquot_quota_off(sb, type);
322 return err;
323}
324
325static void shmem_disable_quotas(struct super_block *sb)
326{
327 int type;
328
329 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
330 dquot_quota_off(sb, type);
331}
332
333static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
334{
335 return SHMEM_I(inode)->i_dquot;
336}
337#endif /* CONFIG_TMPFS_QUOTA */
338
339/*
340 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
341 * produces a novel ino for the newly allocated inode.
342 *
343 * It may also be called when making a hard link to permit the space needed by
344 * each dentry. However, in that case, no new inode number is needed since that
345 * internally draws from another pool of inode numbers (currently global
346 * get_next_ino()). This case is indicated by passing NULL as inop.
347 */
348#define SHMEM_INO_BATCH 1024
349static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
350{
351 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
352 ino_t ino;
353
354 if (!(sb->s_flags & SB_KERNMOUNT)) {
355 raw_spin_lock(&sbinfo->stat_lock);
356 if (sbinfo->max_inodes) {
357 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
358 raw_spin_unlock(&sbinfo->stat_lock);
359 return -ENOSPC;
360 }
361 sbinfo->free_ispace -= BOGO_INODE_SIZE;
362 }
363 if (inop) {
364 ino = sbinfo->next_ino++;
365 if (unlikely(is_zero_ino(ino)))
366 ino = sbinfo->next_ino++;
367 if (unlikely(!sbinfo->full_inums &&
368 ino > UINT_MAX)) {
369 /*
370 * Emulate get_next_ino uint wraparound for
371 * compatibility
372 */
373 if (IS_ENABLED(CONFIG_64BIT))
374 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
375 __func__, MINOR(sb->s_dev));
376 sbinfo->next_ino = 1;
377 ino = sbinfo->next_ino++;
378 }
379 *inop = ino;
380 }
381 raw_spin_unlock(&sbinfo->stat_lock);
382 } else if (inop) {
383 /*
384 * __shmem_file_setup, one of our callers, is lock-free: it
385 * doesn't hold stat_lock in shmem_reserve_inode since
386 * max_inodes is always 0, and is called from potentially
387 * unknown contexts. As such, use a per-cpu batched allocator
388 * which doesn't require the per-sb stat_lock unless we are at
389 * the batch boundary.
390 *
391 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
392 * shmem mounts are not exposed to userspace, so we don't need
393 * to worry about things like glibc compatibility.
394 */
395 ino_t *next_ino;
396
397 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
398 ino = *next_ino;
399 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
400 raw_spin_lock(&sbinfo->stat_lock);
401 ino = sbinfo->next_ino;
402 sbinfo->next_ino += SHMEM_INO_BATCH;
403 raw_spin_unlock(&sbinfo->stat_lock);
404 if (unlikely(is_zero_ino(ino)))
405 ino++;
406 }
407 *inop = ino;
408 *next_ino = ++ino;
409 put_cpu();
410 }
411
412 return 0;
413}
414
415static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
416{
417 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
418 if (sbinfo->max_inodes) {
419 raw_spin_lock(&sbinfo->stat_lock);
420 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
421 raw_spin_unlock(&sbinfo->stat_lock);
422 }
423}
424
425/**
426 * shmem_recalc_inode - recalculate the block usage of an inode
427 * @inode: inode to recalc
428 * @alloced: the change in number of pages allocated to inode
429 * @swapped: the change in number of pages swapped from inode
430 *
431 * We have to calculate the free blocks since the mm can drop
432 * undirtied hole pages behind our back.
433 *
434 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
435 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
436 */
437static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
438{
439 struct shmem_inode_info *info = SHMEM_I(inode);
440 long freed;
441
442 spin_lock(&info->lock);
443 info->alloced += alloced;
444 info->swapped += swapped;
445 freed = info->alloced - info->swapped -
446 READ_ONCE(inode->i_mapping->nrpages);
447 /*
448 * Special case: whereas normally shmem_recalc_inode() is called
449 * after i_mapping->nrpages has already been adjusted (up or down),
450 * shmem_writepage() has to raise swapped before nrpages is lowered -
451 * to stop a racing shmem_recalc_inode() from thinking that a page has
452 * been freed. Compensate here, to avoid the need for a followup call.
453 */
454 if (swapped > 0)
455 freed += swapped;
456 if (freed > 0)
457 info->alloced -= freed;
458 spin_unlock(&info->lock);
459
460 /* The quota case may block */
461 if (freed > 0)
462 shmem_inode_unacct_blocks(inode, freed);
463}
464
465bool shmem_charge(struct inode *inode, long pages)
466{
467 struct address_space *mapping = inode->i_mapping;
468
469 if (shmem_inode_acct_blocks(inode, pages))
470 return false;
471
472 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
473 xa_lock_irq(&mapping->i_pages);
474 mapping->nrpages += pages;
475 xa_unlock_irq(&mapping->i_pages);
476
477 shmem_recalc_inode(inode, pages, 0);
478 return true;
479}
480
481void shmem_uncharge(struct inode *inode, long pages)
482{
483 /* pages argument is currently unused: keep it to help debugging */
484 /* nrpages adjustment done by __filemap_remove_folio() or caller */
485
486 shmem_recalc_inode(inode, 0, 0);
487}
488
489/*
490 * Replace item expected in xarray by a new item, while holding xa_lock.
491 */
492static int shmem_replace_entry(struct address_space *mapping,
493 pgoff_t index, void *expected, void *replacement)
494{
495 XA_STATE(xas, &mapping->i_pages, index);
496 void *item;
497
498 VM_BUG_ON(!expected);
499 VM_BUG_ON(!replacement);
500 item = xas_load(&xas);
501 if (item != expected)
502 return -ENOENT;
503 xas_store(&xas, replacement);
504 return 0;
505}
506
507/*
508 * Sometimes, before we decide whether to proceed or to fail, we must check
509 * that an entry was not already brought back from swap by a racing thread.
510 *
511 * Checking folio is not enough: by the time a swapcache folio is locked, it
512 * might be reused, and again be swapcache, using the same swap as before.
513 */
514static bool shmem_confirm_swap(struct address_space *mapping,
515 pgoff_t index, swp_entry_t swap)
516{
517 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
518}
519
520/*
521 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
522 *
523 * SHMEM_HUGE_NEVER:
524 * disables huge pages for the mount;
525 * SHMEM_HUGE_ALWAYS:
526 * enables huge pages for the mount;
527 * SHMEM_HUGE_WITHIN_SIZE:
528 * only allocate huge pages if the page will be fully within i_size,
529 * also respect fadvise()/madvise() hints;
530 * SHMEM_HUGE_ADVISE:
531 * only allocate huge pages if requested with fadvise()/madvise();
532 */
533
534#define SHMEM_HUGE_NEVER 0
535#define SHMEM_HUGE_ALWAYS 1
536#define SHMEM_HUGE_WITHIN_SIZE 2
537#define SHMEM_HUGE_ADVISE 3
538
539/*
540 * Special values.
541 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
542 *
543 * SHMEM_HUGE_DENY:
544 * disables huge on shm_mnt and all mounts, for emergency use;
545 * SHMEM_HUGE_FORCE:
546 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
547 *
548 */
549#define SHMEM_HUGE_DENY (-1)
550#define SHMEM_HUGE_FORCE (-2)
551
552#ifdef CONFIG_TRANSPARENT_HUGEPAGE
553/* ifdef here to avoid bloating shmem.o when not necessary */
554
555static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
556
557static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
558 loff_t write_end, bool shmem_huge_force,
559 unsigned long vm_flags)
560{
561 loff_t i_size;
562
563 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
564 return false;
565 if (!S_ISREG(inode->i_mode))
566 return false;
567 if (shmem_huge == SHMEM_HUGE_DENY)
568 return false;
569 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
570 return true;
571
572 switch (SHMEM_SB(inode->i_sb)->huge) {
573 case SHMEM_HUGE_ALWAYS:
574 return true;
575 case SHMEM_HUGE_WITHIN_SIZE:
576 index = round_up(index + 1, HPAGE_PMD_NR);
577 i_size = max(write_end, i_size_read(inode));
578 i_size = round_up(i_size, PAGE_SIZE);
579 if (i_size >> PAGE_SHIFT >= index)
580 return true;
581 fallthrough;
582 case SHMEM_HUGE_ADVISE:
583 if (vm_flags & VM_HUGEPAGE)
584 return true;
585 fallthrough;
586 default:
587 return false;
588 }
589}
590
591static int shmem_parse_huge(const char *str)
592{
593 int huge;
594
595 if (!str)
596 return -EINVAL;
597
598 if (!strcmp(str, "never"))
599 huge = SHMEM_HUGE_NEVER;
600 else if (!strcmp(str, "always"))
601 huge = SHMEM_HUGE_ALWAYS;
602 else if (!strcmp(str, "within_size"))
603 huge = SHMEM_HUGE_WITHIN_SIZE;
604 else if (!strcmp(str, "advise"))
605 huge = SHMEM_HUGE_ADVISE;
606 else if (!strcmp(str, "deny"))
607 huge = SHMEM_HUGE_DENY;
608 else if (!strcmp(str, "force"))
609 huge = SHMEM_HUGE_FORCE;
610 else
611 return -EINVAL;
612
613 if (!has_transparent_hugepage() &&
614 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
615 return -EINVAL;
616
617 /* Do not override huge allocation policy with non-PMD sized mTHP */
618 if (huge == SHMEM_HUGE_FORCE &&
619 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
620 return -EINVAL;
621
622 return huge;
623}
624
625#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
626static const char *shmem_format_huge(int huge)
627{
628 switch (huge) {
629 case SHMEM_HUGE_NEVER:
630 return "never";
631 case SHMEM_HUGE_ALWAYS:
632 return "always";
633 case SHMEM_HUGE_WITHIN_SIZE:
634 return "within_size";
635 case SHMEM_HUGE_ADVISE:
636 return "advise";
637 case SHMEM_HUGE_DENY:
638 return "deny";
639 case SHMEM_HUGE_FORCE:
640 return "force";
641 default:
642 VM_BUG_ON(1);
643 return "bad_val";
644 }
645}
646#endif
647
648static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 struct shrink_control *sc, unsigned long nr_to_free)
650{
651 LIST_HEAD(list), *pos, *next;
652 struct inode *inode;
653 struct shmem_inode_info *info;
654 struct folio *folio;
655 unsigned long batch = sc ? sc->nr_to_scan : 128;
656 unsigned long split = 0, freed = 0;
657
658 if (list_empty(&sbinfo->shrinklist))
659 return SHRINK_STOP;
660
661 spin_lock(&sbinfo->shrinklist_lock);
662 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
663 info = list_entry(pos, struct shmem_inode_info, shrinklist);
664
665 /* pin the inode */
666 inode = igrab(&info->vfs_inode);
667
668 /* inode is about to be evicted */
669 if (!inode) {
670 list_del_init(&info->shrinklist);
671 goto next;
672 }
673
674 list_move(&info->shrinklist, &list);
675next:
676 sbinfo->shrinklist_len--;
677 if (!--batch)
678 break;
679 }
680 spin_unlock(&sbinfo->shrinklist_lock);
681
682 list_for_each_safe(pos, next, &list) {
683 pgoff_t next, end;
684 loff_t i_size;
685 int ret;
686
687 info = list_entry(pos, struct shmem_inode_info, shrinklist);
688 inode = &info->vfs_inode;
689
690 if (nr_to_free && freed >= nr_to_free)
691 goto move_back;
692
693 i_size = i_size_read(inode);
694 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
695 if (!folio || xa_is_value(folio))
696 goto drop;
697
698 /* No large folio at the end of the file: nothing to split */
699 if (!folio_test_large(folio)) {
700 folio_put(folio);
701 goto drop;
702 }
703
704 /* Check if there is anything to gain from splitting */
705 next = folio_next_index(folio);
706 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
707 if (end <= folio->index || end >= next) {
708 folio_put(folio);
709 goto drop;
710 }
711
712 /*
713 * Move the inode on the list back to shrinklist if we failed
714 * to lock the page at this time.
715 *
716 * Waiting for the lock may lead to deadlock in the
717 * reclaim path.
718 */
719 if (!folio_trylock(folio)) {
720 folio_put(folio);
721 goto move_back;
722 }
723
724 ret = split_folio(folio);
725 folio_unlock(folio);
726 folio_put(folio);
727
728 /* If split failed move the inode on the list back to shrinklist */
729 if (ret)
730 goto move_back;
731
732 freed += next - end;
733 split++;
734drop:
735 list_del_init(&info->shrinklist);
736 goto put;
737move_back:
738 /*
739 * Make sure the inode is either on the global list or deleted
740 * from any local list before iput() since it could be deleted
741 * in another thread once we put the inode (then the local list
742 * is corrupted).
743 */
744 spin_lock(&sbinfo->shrinklist_lock);
745 list_move(&info->shrinklist, &sbinfo->shrinklist);
746 sbinfo->shrinklist_len++;
747 spin_unlock(&sbinfo->shrinklist_lock);
748put:
749 iput(inode);
750 }
751
752 return split;
753}
754
755static long shmem_unused_huge_scan(struct super_block *sb,
756 struct shrink_control *sc)
757{
758 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
759
760 if (!READ_ONCE(sbinfo->shrinklist_len))
761 return SHRINK_STOP;
762
763 return shmem_unused_huge_shrink(sbinfo, sc, 0);
764}
765
766static long shmem_unused_huge_count(struct super_block *sb,
767 struct shrink_control *sc)
768{
769 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
770 return READ_ONCE(sbinfo->shrinklist_len);
771}
772#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
773
774#define shmem_huge SHMEM_HUGE_DENY
775
776static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
777 struct shrink_control *sc, unsigned long nr_to_free)
778{
779 return 0;
780}
781
782static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
783 loff_t write_end, bool shmem_huge_force,
784 unsigned long vm_flags)
785{
786 return false;
787}
788#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
789
790static void shmem_update_stats(struct folio *folio, int nr_pages)
791{
792 if (folio_test_pmd_mappable(folio))
793 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
794 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
795 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
796}
797
798/*
799 * Somewhat like filemap_add_folio, but error if expected item has gone.
800 */
801static int shmem_add_to_page_cache(struct folio *folio,
802 struct address_space *mapping,
803 pgoff_t index, void *expected, gfp_t gfp)
804{
805 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
806 long nr = folio_nr_pages(folio);
807
808 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
809 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
810 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
811
812 folio_ref_add(folio, nr);
813 folio->mapping = mapping;
814 folio->index = index;
815
816 gfp &= GFP_RECLAIM_MASK;
817 folio_throttle_swaprate(folio, gfp);
818
819 do {
820 xas_lock_irq(&xas);
821 if (expected != xas_find_conflict(&xas)) {
822 xas_set_err(&xas, -EEXIST);
823 goto unlock;
824 }
825 if (expected && xas_find_conflict(&xas)) {
826 xas_set_err(&xas, -EEXIST);
827 goto unlock;
828 }
829 xas_store(&xas, folio);
830 if (xas_error(&xas))
831 goto unlock;
832 shmem_update_stats(folio, nr);
833 mapping->nrpages += nr;
834unlock:
835 xas_unlock_irq(&xas);
836 } while (xas_nomem(&xas, gfp));
837
838 if (xas_error(&xas)) {
839 folio->mapping = NULL;
840 folio_ref_sub(folio, nr);
841 return xas_error(&xas);
842 }
843
844 return 0;
845}
846
847/*
848 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
849 */
850static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
851{
852 struct address_space *mapping = folio->mapping;
853 long nr = folio_nr_pages(folio);
854 int error;
855
856 xa_lock_irq(&mapping->i_pages);
857 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
858 folio->mapping = NULL;
859 mapping->nrpages -= nr;
860 shmem_update_stats(folio, -nr);
861 xa_unlock_irq(&mapping->i_pages);
862 folio_put_refs(folio, nr);
863 BUG_ON(error);
864}
865
866/*
867 * Remove swap entry from page cache, free the swap and its page cache. Returns
868 * the number of pages being freed. 0 means entry not found in XArray (0 pages
869 * being freed).
870 */
871static long shmem_free_swap(struct address_space *mapping,
872 pgoff_t index, void *radswap)
873{
874 int order = xa_get_order(&mapping->i_pages, index);
875 void *old;
876
877 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
878 if (old != radswap)
879 return 0;
880 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
881
882 return 1 << order;
883}
884
885/*
886 * Determine (in bytes) how many of the shmem object's pages mapped by the
887 * given offsets are swapped out.
888 *
889 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
890 * as long as the inode doesn't go away and racy results are not a problem.
891 */
892unsigned long shmem_partial_swap_usage(struct address_space *mapping,
893 pgoff_t start, pgoff_t end)
894{
895 XA_STATE(xas, &mapping->i_pages, start);
896 struct page *page;
897 unsigned long swapped = 0;
898 unsigned long max = end - 1;
899
900 rcu_read_lock();
901 xas_for_each(&xas, page, max) {
902 if (xas_retry(&xas, page))
903 continue;
904 if (xa_is_value(page))
905 swapped += 1 << xas_get_order(&xas);
906 if (xas.xa_index == max)
907 break;
908 if (need_resched()) {
909 xas_pause(&xas);
910 cond_resched_rcu();
911 }
912 }
913 rcu_read_unlock();
914
915 return swapped << PAGE_SHIFT;
916}
917
918/*
919 * Determine (in bytes) how many of the shmem object's pages mapped by the
920 * given vma is swapped out.
921 *
922 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
923 * as long as the inode doesn't go away and racy results are not a problem.
924 */
925unsigned long shmem_swap_usage(struct vm_area_struct *vma)
926{
927 struct inode *inode = file_inode(vma->vm_file);
928 struct shmem_inode_info *info = SHMEM_I(inode);
929 struct address_space *mapping = inode->i_mapping;
930 unsigned long swapped;
931
932 /* Be careful as we don't hold info->lock */
933 swapped = READ_ONCE(info->swapped);
934
935 /*
936 * The easier cases are when the shmem object has nothing in swap, or
937 * the vma maps it whole. Then we can simply use the stats that we
938 * already track.
939 */
940 if (!swapped)
941 return 0;
942
943 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
944 return swapped << PAGE_SHIFT;
945
946 /* Here comes the more involved part */
947 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
948 vma->vm_pgoff + vma_pages(vma));
949}
950
951/*
952 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
953 */
954void shmem_unlock_mapping(struct address_space *mapping)
955{
956 struct folio_batch fbatch;
957 pgoff_t index = 0;
958
959 folio_batch_init(&fbatch);
960 /*
961 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
962 */
963 while (!mapping_unevictable(mapping) &&
964 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
965 check_move_unevictable_folios(&fbatch);
966 folio_batch_release(&fbatch);
967 cond_resched();
968 }
969}
970
971static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
972{
973 struct folio *folio;
974
975 /*
976 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
977 * beyond i_size, and reports fallocated folios as holes.
978 */
979 folio = filemap_get_entry(inode->i_mapping, index);
980 if (!folio)
981 return folio;
982 if (!xa_is_value(folio)) {
983 folio_lock(folio);
984 if (folio->mapping == inode->i_mapping)
985 return folio;
986 /* The folio has been swapped out */
987 folio_unlock(folio);
988 folio_put(folio);
989 }
990 /*
991 * But read a folio back from swap if any of it is within i_size
992 * (although in some cases this is just a waste of time).
993 */
994 folio = NULL;
995 shmem_get_folio(inode, index, 0, &folio, SGP_READ);
996 return folio;
997}
998
999/*
1000 * Remove range of pages and swap entries from page cache, and free them.
1001 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1002 */
1003static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
1004 bool unfalloc)
1005{
1006 struct address_space *mapping = inode->i_mapping;
1007 struct shmem_inode_info *info = SHMEM_I(inode);
1008 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1009 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1010 struct folio_batch fbatch;
1011 pgoff_t indices[PAGEVEC_SIZE];
1012 struct folio *folio;
1013 bool same_folio;
1014 long nr_swaps_freed = 0;
1015 pgoff_t index;
1016 int i;
1017
1018 if (lend == -1)
1019 end = -1; /* unsigned, so actually very big */
1020
1021 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1022 info->fallocend = start;
1023
1024 folio_batch_init(&fbatch);
1025 index = start;
1026 while (index < end && find_lock_entries(mapping, &index, end - 1,
1027 &fbatch, indices)) {
1028 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1029 folio = fbatch.folios[i];
1030
1031 if (xa_is_value(folio)) {
1032 if (unfalloc)
1033 continue;
1034 nr_swaps_freed += shmem_free_swap(mapping,
1035 indices[i], folio);
1036 continue;
1037 }
1038
1039 if (!unfalloc || !folio_test_uptodate(folio))
1040 truncate_inode_folio(mapping, folio);
1041 folio_unlock(folio);
1042 }
1043 folio_batch_remove_exceptionals(&fbatch);
1044 folio_batch_release(&fbatch);
1045 cond_resched();
1046 }
1047
1048 /*
1049 * When undoing a failed fallocate, we want none of the partial folio
1050 * zeroing and splitting below, but shall want to truncate the whole
1051 * folio when !uptodate indicates that it was added by this fallocate,
1052 * even when [lstart, lend] covers only a part of the folio.
1053 */
1054 if (unfalloc)
1055 goto whole_folios;
1056
1057 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1058 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1059 if (folio) {
1060 same_folio = lend < folio_pos(folio) + folio_size(folio);
1061 folio_mark_dirty(folio);
1062 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1063 start = folio_next_index(folio);
1064 if (same_folio)
1065 end = folio->index;
1066 }
1067 folio_unlock(folio);
1068 folio_put(folio);
1069 folio = NULL;
1070 }
1071
1072 if (!same_folio)
1073 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1074 if (folio) {
1075 folio_mark_dirty(folio);
1076 if (!truncate_inode_partial_folio(folio, lstart, lend))
1077 end = folio->index;
1078 folio_unlock(folio);
1079 folio_put(folio);
1080 }
1081
1082whole_folios:
1083
1084 index = start;
1085 while (index < end) {
1086 cond_resched();
1087
1088 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1089 indices)) {
1090 /* If all gone or hole-punch or unfalloc, we're done */
1091 if (index == start || end != -1)
1092 break;
1093 /* But if truncating, restart to make sure all gone */
1094 index = start;
1095 continue;
1096 }
1097 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1098 folio = fbatch.folios[i];
1099
1100 if (xa_is_value(folio)) {
1101 long swaps_freed;
1102
1103 if (unfalloc)
1104 continue;
1105 swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1106 if (!swaps_freed) {
1107 /* Swap was replaced by page: retry */
1108 index = indices[i];
1109 break;
1110 }
1111 nr_swaps_freed += swaps_freed;
1112 continue;
1113 }
1114
1115 folio_lock(folio);
1116
1117 if (!unfalloc || !folio_test_uptodate(folio)) {
1118 if (folio_mapping(folio) != mapping) {
1119 /* Page was replaced by swap: retry */
1120 folio_unlock(folio);
1121 index = indices[i];
1122 break;
1123 }
1124 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1125 folio);
1126
1127 if (!folio_test_large(folio)) {
1128 truncate_inode_folio(mapping, folio);
1129 } else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1130 /*
1131 * If we split a page, reset the loop so
1132 * that we pick up the new sub pages.
1133 * Otherwise the THP was entirely
1134 * dropped or the target range was
1135 * zeroed, so just continue the loop as
1136 * is.
1137 */
1138 if (!folio_test_large(folio)) {
1139 folio_unlock(folio);
1140 index = start;
1141 break;
1142 }
1143 }
1144 }
1145 folio_unlock(folio);
1146 }
1147 folio_batch_remove_exceptionals(&fbatch);
1148 folio_batch_release(&fbatch);
1149 }
1150
1151 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1152}
1153
1154void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1155{
1156 shmem_undo_range(inode, lstart, lend, false);
1157 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1158 inode_inc_iversion(inode);
1159}
1160EXPORT_SYMBOL_GPL(shmem_truncate_range);
1161
1162static int shmem_getattr(struct mnt_idmap *idmap,
1163 const struct path *path, struct kstat *stat,
1164 u32 request_mask, unsigned int query_flags)
1165{
1166 struct inode *inode = path->dentry->d_inode;
1167 struct shmem_inode_info *info = SHMEM_I(inode);
1168
1169 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1170 shmem_recalc_inode(inode, 0, 0);
1171
1172 if (info->fsflags & FS_APPEND_FL)
1173 stat->attributes |= STATX_ATTR_APPEND;
1174 if (info->fsflags & FS_IMMUTABLE_FL)
1175 stat->attributes |= STATX_ATTR_IMMUTABLE;
1176 if (info->fsflags & FS_NODUMP_FL)
1177 stat->attributes |= STATX_ATTR_NODUMP;
1178 stat->attributes_mask |= (STATX_ATTR_APPEND |
1179 STATX_ATTR_IMMUTABLE |
1180 STATX_ATTR_NODUMP);
1181 generic_fillattr(idmap, request_mask, inode, stat);
1182
1183 if (shmem_huge_global_enabled(inode, 0, 0, false, 0))
1184 stat->blksize = HPAGE_PMD_SIZE;
1185
1186 if (request_mask & STATX_BTIME) {
1187 stat->result_mask |= STATX_BTIME;
1188 stat->btime.tv_sec = info->i_crtime.tv_sec;
1189 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1190 }
1191
1192 return 0;
1193}
1194
1195static int shmem_setattr(struct mnt_idmap *idmap,
1196 struct dentry *dentry, struct iattr *attr)
1197{
1198 struct inode *inode = d_inode(dentry);
1199 struct shmem_inode_info *info = SHMEM_I(inode);
1200 int error;
1201 bool update_mtime = false;
1202 bool update_ctime = true;
1203
1204 error = setattr_prepare(idmap, dentry, attr);
1205 if (error)
1206 return error;
1207
1208 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1209 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1210 return -EPERM;
1211 }
1212 }
1213
1214 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1215 loff_t oldsize = inode->i_size;
1216 loff_t newsize = attr->ia_size;
1217
1218 /* protected by i_rwsem */
1219 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1220 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1221 return -EPERM;
1222
1223 if (newsize != oldsize) {
1224 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1225 oldsize, newsize);
1226 if (error)
1227 return error;
1228 i_size_write(inode, newsize);
1229 update_mtime = true;
1230 } else {
1231 update_ctime = false;
1232 }
1233 if (newsize <= oldsize) {
1234 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1235 if (oldsize > holebegin)
1236 unmap_mapping_range(inode->i_mapping,
1237 holebegin, 0, 1);
1238 if (info->alloced)
1239 shmem_truncate_range(inode,
1240 newsize, (loff_t)-1);
1241 /* unmap again to remove racily COWed private pages */
1242 if (oldsize > holebegin)
1243 unmap_mapping_range(inode->i_mapping,
1244 holebegin, 0, 1);
1245 }
1246 }
1247
1248 if (is_quota_modification(idmap, inode, attr)) {
1249 error = dquot_initialize(inode);
1250 if (error)
1251 return error;
1252 }
1253
1254 /* Transfer quota accounting */
1255 if (i_uid_needs_update(idmap, attr, inode) ||
1256 i_gid_needs_update(idmap, attr, inode)) {
1257 error = dquot_transfer(idmap, inode, attr);
1258 if (error)
1259 return error;
1260 }
1261
1262 setattr_copy(idmap, inode, attr);
1263 if (attr->ia_valid & ATTR_MODE)
1264 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1265 if (!error && update_ctime) {
1266 inode_set_ctime_current(inode);
1267 if (update_mtime)
1268 inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1269 inode_inc_iversion(inode);
1270 }
1271 return error;
1272}
1273
1274static void shmem_evict_inode(struct inode *inode)
1275{
1276 struct shmem_inode_info *info = SHMEM_I(inode);
1277 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1278 size_t freed = 0;
1279
1280 if (shmem_mapping(inode->i_mapping)) {
1281 shmem_unacct_size(info->flags, inode->i_size);
1282 inode->i_size = 0;
1283 mapping_set_exiting(inode->i_mapping);
1284 shmem_truncate_range(inode, 0, (loff_t)-1);
1285 if (!list_empty(&info->shrinklist)) {
1286 spin_lock(&sbinfo->shrinklist_lock);
1287 if (!list_empty(&info->shrinklist)) {
1288 list_del_init(&info->shrinklist);
1289 sbinfo->shrinklist_len--;
1290 }
1291 spin_unlock(&sbinfo->shrinklist_lock);
1292 }
1293 while (!list_empty(&info->swaplist)) {
1294 /* Wait while shmem_unuse() is scanning this inode... */
1295 wait_var_event(&info->stop_eviction,
1296 !atomic_read(&info->stop_eviction));
1297 mutex_lock(&shmem_swaplist_mutex);
1298 /* ...but beware of the race if we peeked too early */
1299 if (!atomic_read(&info->stop_eviction))
1300 list_del_init(&info->swaplist);
1301 mutex_unlock(&shmem_swaplist_mutex);
1302 }
1303 }
1304
1305 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1306 shmem_free_inode(inode->i_sb, freed);
1307 WARN_ON(inode->i_blocks);
1308 clear_inode(inode);
1309#ifdef CONFIG_TMPFS_QUOTA
1310 dquot_free_inode(inode);
1311 dquot_drop(inode);
1312#endif
1313}
1314
1315static int shmem_find_swap_entries(struct address_space *mapping,
1316 pgoff_t start, struct folio_batch *fbatch,
1317 pgoff_t *indices, unsigned int type)
1318{
1319 XA_STATE(xas, &mapping->i_pages, start);
1320 struct folio *folio;
1321 swp_entry_t entry;
1322
1323 rcu_read_lock();
1324 xas_for_each(&xas, folio, ULONG_MAX) {
1325 if (xas_retry(&xas, folio))
1326 continue;
1327
1328 if (!xa_is_value(folio))
1329 continue;
1330
1331 entry = radix_to_swp_entry(folio);
1332 /*
1333 * swapin error entries can be found in the mapping. But they're
1334 * deliberately ignored here as we've done everything we can do.
1335 */
1336 if (swp_type(entry) != type)
1337 continue;
1338
1339 indices[folio_batch_count(fbatch)] = xas.xa_index;
1340 if (!folio_batch_add(fbatch, folio))
1341 break;
1342
1343 if (need_resched()) {
1344 xas_pause(&xas);
1345 cond_resched_rcu();
1346 }
1347 }
1348 rcu_read_unlock();
1349
1350 return xas.xa_index;
1351}
1352
1353/*
1354 * Move the swapped pages for an inode to page cache. Returns the count
1355 * of pages swapped in, or the error in case of failure.
1356 */
1357static int shmem_unuse_swap_entries(struct inode *inode,
1358 struct folio_batch *fbatch, pgoff_t *indices)
1359{
1360 int i = 0;
1361 int ret = 0;
1362 int error = 0;
1363 struct address_space *mapping = inode->i_mapping;
1364
1365 for (i = 0; i < folio_batch_count(fbatch); i++) {
1366 struct folio *folio = fbatch->folios[i];
1367
1368 if (!xa_is_value(folio))
1369 continue;
1370 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1371 mapping_gfp_mask(mapping), NULL, NULL);
1372 if (error == 0) {
1373 folio_unlock(folio);
1374 folio_put(folio);
1375 ret++;
1376 }
1377 if (error == -ENOMEM)
1378 break;
1379 error = 0;
1380 }
1381 return error ? error : ret;
1382}
1383
1384/*
1385 * If swap found in inode, free it and move page from swapcache to filecache.
1386 */
1387static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1388{
1389 struct address_space *mapping = inode->i_mapping;
1390 pgoff_t start = 0;
1391 struct folio_batch fbatch;
1392 pgoff_t indices[PAGEVEC_SIZE];
1393 int ret = 0;
1394
1395 do {
1396 folio_batch_init(&fbatch);
1397 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1398 if (folio_batch_count(&fbatch) == 0) {
1399 ret = 0;
1400 break;
1401 }
1402
1403 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1404 if (ret < 0)
1405 break;
1406
1407 start = indices[folio_batch_count(&fbatch) - 1];
1408 } while (true);
1409
1410 return ret;
1411}
1412
1413/*
1414 * Read all the shared memory data that resides in the swap
1415 * device 'type' back into memory, so the swap device can be
1416 * unused.
1417 */
1418int shmem_unuse(unsigned int type)
1419{
1420 struct shmem_inode_info *info, *next;
1421 int error = 0;
1422
1423 if (list_empty(&shmem_swaplist))
1424 return 0;
1425
1426 mutex_lock(&shmem_swaplist_mutex);
1427 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1428 if (!info->swapped) {
1429 list_del_init(&info->swaplist);
1430 continue;
1431 }
1432 /*
1433 * Drop the swaplist mutex while searching the inode for swap;
1434 * but before doing so, make sure shmem_evict_inode() will not
1435 * remove placeholder inode from swaplist, nor let it be freed
1436 * (igrab() would protect from unlink, but not from unmount).
1437 */
1438 atomic_inc(&info->stop_eviction);
1439 mutex_unlock(&shmem_swaplist_mutex);
1440
1441 error = shmem_unuse_inode(&info->vfs_inode, type);
1442 cond_resched();
1443
1444 mutex_lock(&shmem_swaplist_mutex);
1445 next = list_next_entry(info, swaplist);
1446 if (!info->swapped)
1447 list_del_init(&info->swaplist);
1448 if (atomic_dec_and_test(&info->stop_eviction))
1449 wake_up_var(&info->stop_eviction);
1450 if (error)
1451 break;
1452 }
1453 mutex_unlock(&shmem_swaplist_mutex);
1454
1455 return error;
1456}
1457
1458/*
1459 * Move the page from the page cache to the swap cache.
1460 */
1461static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1462{
1463 struct folio *folio = page_folio(page);
1464 struct address_space *mapping = folio->mapping;
1465 struct inode *inode = mapping->host;
1466 struct shmem_inode_info *info = SHMEM_I(inode);
1467 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1468 swp_entry_t swap;
1469 pgoff_t index;
1470 int nr_pages;
1471 bool split = false;
1472
1473 /*
1474 * Our capabilities prevent regular writeback or sync from ever calling
1475 * shmem_writepage; but a stacking filesystem might use ->writepage of
1476 * its underlying filesystem, in which case tmpfs should write out to
1477 * swap only in response to memory pressure, and not for the writeback
1478 * threads or sync.
1479 */
1480 if (WARN_ON_ONCE(!wbc->for_reclaim))
1481 goto redirty;
1482
1483 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1484 goto redirty;
1485
1486 if (!total_swap_pages)
1487 goto redirty;
1488
1489 /*
1490 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1491 * split when swapping.
1492 *
1493 * And shrinkage of pages beyond i_size does not split swap, so
1494 * swapout of a large folio crossing i_size needs to split too
1495 * (unless fallocate has been used to preallocate beyond EOF).
1496 */
1497 if (folio_test_large(folio)) {
1498 index = shmem_fallocend(inode,
1499 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1500 if ((index > folio->index && index < folio_next_index(folio)) ||
1501 !IS_ENABLED(CONFIG_THP_SWAP))
1502 split = true;
1503 }
1504
1505 if (split) {
1506try_split:
1507 /* Ensure the subpages are still dirty */
1508 folio_test_set_dirty(folio);
1509 if (split_huge_page_to_list_to_order(page, wbc->list, 0))
1510 goto redirty;
1511 folio = page_folio(page);
1512 folio_clear_dirty(folio);
1513 }
1514
1515 index = folio->index;
1516 nr_pages = folio_nr_pages(folio);
1517
1518 /*
1519 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1520 * value into swapfile.c, the only way we can correctly account for a
1521 * fallocated folio arriving here is now to initialize it and write it.
1522 *
1523 * That's okay for a folio already fallocated earlier, but if we have
1524 * not yet completed the fallocation, then (a) we want to keep track
1525 * of this folio in case we have to undo it, and (b) it may not be a
1526 * good idea to continue anyway, once we're pushing into swap. So
1527 * reactivate the folio, and let shmem_fallocate() quit when too many.
1528 */
1529 if (!folio_test_uptodate(folio)) {
1530 if (inode->i_private) {
1531 struct shmem_falloc *shmem_falloc;
1532 spin_lock(&inode->i_lock);
1533 shmem_falloc = inode->i_private;
1534 if (shmem_falloc &&
1535 !shmem_falloc->waitq &&
1536 index >= shmem_falloc->start &&
1537 index < shmem_falloc->next)
1538 shmem_falloc->nr_unswapped += nr_pages;
1539 else
1540 shmem_falloc = NULL;
1541 spin_unlock(&inode->i_lock);
1542 if (shmem_falloc)
1543 goto redirty;
1544 }
1545 folio_zero_range(folio, 0, folio_size(folio));
1546 flush_dcache_folio(folio);
1547 folio_mark_uptodate(folio);
1548 }
1549
1550 swap = folio_alloc_swap(folio);
1551 if (!swap.val) {
1552 if (nr_pages > 1)
1553 goto try_split;
1554
1555 goto redirty;
1556 }
1557
1558 /*
1559 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1560 * if it's not already there. Do it now before the folio is
1561 * moved to swap cache, when its pagelock no longer protects
1562 * the inode from eviction. But don't unlock the mutex until
1563 * we've incremented swapped, because shmem_unuse_inode() will
1564 * prune a !swapped inode from the swaplist under this mutex.
1565 */
1566 mutex_lock(&shmem_swaplist_mutex);
1567 if (list_empty(&info->swaplist))
1568 list_add(&info->swaplist, &shmem_swaplist);
1569
1570 if (add_to_swap_cache(folio, swap,
1571 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1572 NULL) == 0) {
1573 shmem_recalc_inode(inode, 0, nr_pages);
1574 swap_shmem_alloc(swap, nr_pages);
1575 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1576
1577 mutex_unlock(&shmem_swaplist_mutex);
1578 BUG_ON(folio_mapped(folio));
1579 return swap_writepage(&folio->page, wbc);
1580 }
1581
1582 mutex_unlock(&shmem_swaplist_mutex);
1583 put_swap_folio(folio, swap);
1584redirty:
1585 folio_mark_dirty(folio);
1586 if (wbc->for_reclaim)
1587 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1588 folio_unlock(folio);
1589 return 0;
1590}
1591
1592#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1593static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1594{
1595 char buffer[64];
1596
1597 if (!mpol || mpol->mode == MPOL_DEFAULT)
1598 return; /* show nothing */
1599
1600 mpol_to_str(buffer, sizeof(buffer), mpol);
1601
1602 seq_printf(seq, ",mpol=%s", buffer);
1603}
1604
1605static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1606{
1607 struct mempolicy *mpol = NULL;
1608 if (sbinfo->mpol) {
1609 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1610 mpol = sbinfo->mpol;
1611 mpol_get(mpol);
1612 raw_spin_unlock(&sbinfo->stat_lock);
1613 }
1614 return mpol;
1615}
1616#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1617static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1618{
1619}
1620static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1621{
1622 return NULL;
1623}
1624#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1625
1626static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1627 pgoff_t index, unsigned int order, pgoff_t *ilx);
1628
1629static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1630 struct shmem_inode_info *info, pgoff_t index)
1631{
1632 struct mempolicy *mpol;
1633 pgoff_t ilx;
1634 struct folio *folio;
1635
1636 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1637 folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1638 mpol_cond_put(mpol);
1639
1640 return folio;
1641}
1642
1643/*
1644 * Make sure huge_gfp is always more limited than limit_gfp.
1645 * Some of the flags set permissions, while others set limitations.
1646 */
1647static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1648{
1649 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1650 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1651 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1652 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1653
1654 /* Allow allocations only from the originally specified zones. */
1655 result |= zoneflags;
1656
1657 /*
1658 * Minimize the result gfp by taking the union with the deny flags,
1659 * and the intersection of the allow flags.
1660 */
1661 result |= (limit_gfp & denyflags);
1662 result |= (huge_gfp & limit_gfp) & allowflags;
1663
1664 return result;
1665}
1666
1667#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1668bool shmem_hpage_pmd_enabled(void)
1669{
1670 if (shmem_huge == SHMEM_HUGE_DENY)
1671 return false;
1672 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1673 return true;
1674 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1675 return true;
1676 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1677 return true;
1678 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1679 shmem_huge != SHMEM_HUGE_NEVER)
1680 return true;
1681
1682 return false;
1683}
1684
1685unsigned long shmem_allowable_huge_orders(struct inode *inode,
1686 struct vm_area_struct *vma, pgoff_t index,
1687 loff_t write_end, bool shmem_huge_force)
1688{
1689 unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1690 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1691 unsigned long vm_flags = vma ? vma->vm_flags : 0;
1692 pgoff_t aligned_index;
1693 bool global_huge;
1694 loff_t i_size;
1695 int order;
1696
1697 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1698 return 0;
1699
1700 global_huge = shmem_huge_global_enabled(inode, index, write_end,
1701 shmem_huge_force, vm_flags);
1702 if (!vma || !vma_is_anon_shmem(vma)) {
1703 /*
1704 * For tmpfs, we now only support PMD sized THP if huge page
1705 * is enabled, otherwise fallback to order 0.
1706 */
1707 return global_huge ? BIT(HPAGE_PMD_ORDER) : 0;
1708 }
1709
1710 /*
1711 * Following the 'deny' semantics of the top level, force the huge
1712 * option off from all mounts.
1713 */
1714 if (shmem_huge == SHMEM_HUGE_DENY)
1715 return 0;
1716
1717 /*
1718 * Only allow inherit orders if the top-level value is 'force', which
1719 * means non-PMD sized THP can not override 'huge' mount option now.
1720 */
1721 if (shmem_huge == SHMEM_HUGE_FORCE)
1722 return READ_ONCE(huge_shmem_orders_inherit);
1723
1724 /* Allow mTHP that will be fully within i_size. */
1725 order = highest_order(within_size_orders);
1726 while (within_size_orders) {
1727 aligned_index = round_up(index + 1, 1 << order);
1728 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1729 if (i_size >> PAGE_SHIFT >= aligned_index) {
1730 mask |= within_size_orders;
1731 break;
1732 }
1733
1734 order = next_order(&within_size_orders, order);
1735 }
1736
1737 if (vm_flags & VM_HUGEPAGE)
1738 mask |= READ_ONCE(huge_shmem_orders_madvise);
1739
1740 if (global_huge)
1741 mask |= READ_ONCE(huge_shmem_orders_inherit);
1742
1743 return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1744}
1745
1746static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1747 struct address_space *mapping, pgoff_t index,
1748 unsigned long orders)
1749{
1750 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1751 pgoff_t aligned_index;
1752 unsigned long pages;
1753 int order;
1754
1755 if (vma) {
1756 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1757 if (!orders)
1758 return 0;
1759 }
1760
1761 /* Find the highest order that can add into the page cache */
1762 order = highest_order(orders);
1763 while (orders) {
1764 pages = 1UL << order;
1765 aligned_index = round_down(index, pages);
1766 /*
1767 * Check for conflict before waiting on a huge allocation.
1768 * Conflict might be that a huge page has just been allocated
1769 * and added to page cache by a racing thread, or that there
1770 * is already at least one small page in the huge extent.
1771 * Be careful to retry when appropriate, but not forever!
1772 * Elsewhere -EEXIST would be the right code, but not here.
1773 */
1774 if (!xa_find(&mapping->i_pages, &aligned_index,
1775 aligned_index + pages - 1, XA_PRESENT))
1776 break;
1777 order = next_order(&orders, order);
1778 }
1779
1780 return orders;
1781}
1782#else
1783static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1784 struct address_space *mapping, pgoff_t index,
1785 unsigned long orders)
1786{
1787 return 0;
1788}
1789#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1790
1791static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1792 struct shmem_inode_info *info, pgoff_t index)
1793{
1794 struct mempolicy *mpol;
1795 pgoff_t ilx;
1796 struct folio *folio;
1797
1798 mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1799 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1800 mpol_cond_put(mpol);
1801
1802 return folio;
1803}
1804
1805static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1806 gfp_t gfp, struct inode *inode, pgoff_t index,
1807 struct mm_struct *fault_mm, unsigned long orders)
1808{
1809 struct address_space *mapping = inode->i_mapping;
1810 struct shmem_inode_info *info = SHMEM_I(inode);
1811 unsigned long suitable_orders = 0;
1812 struct folio *folio = NULL;
1813 long pages;
1814 int error, order;
1815
1816 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1817 orders = 0;
1818
1819 if (orders > 0) {
1820 suitable_orders = shmem_suitable_orders(inode, vmf,
1821 mapping, index, orders);
1822
1823 order = highest_order(suitable_orders);
1824 while (suitable_orders) {
1825 pages = 1UL << order;
1826 index = round_down(index, pages);
1827 folio = shmem_alloc_folio(gfp, order, info, index);
1828 if (folio)
1829 goto allocated;
1830
1831 if (pages == HPAGE_PMD_NR)
1832 count_vm_event(THP_FILE_FALLBACK);
1833 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1834 order = next_order(&suitable_orders, order);
1835 }
1836 } else {
1837 pages = 1;
1838 folio = shmem_alloc_folio(gfp, 0, info, index);
1839 }
1840 if (!folio)
1841 return ERR_PTR(-ENOMEM);
1842
1843allocated:
1844 __folio_set_locked(folio);
1845 __folio_set_swapbacked(folio);
1846
1847 gfp &= GFP_RECLAIM_MASK;
1848 error = mem_cgroup_charge(folio, fault_mm, gfp);
1849 if (error) {
1850 if (xa_find(&mapping->i_pages, &index,
1851 index + pages - 1, XA_PRESENT)) {
1852 error = -EEXIST;
1853 } else if (pages > 1) {
1854 if (pages == HPAGE_PMD_NR) {
1855 count_vm_event(THP_FILE_FALLBACK);
1856 count_vm_event(THP_FILE_FALLBACK_CHARGE);
1857 }
1858 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1859 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1860 }
1861 goto unlock;
1862 }
1863
1864 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1865 if (error)
1866 goto unlock;
1867
1868 error = shmem_inode_acct_blocks(inode, pages);
1869 if (error) {
1870 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1871 long freed;
1872 /*
1873 * Try to reclaim some space by splitting a few
1874 * large folios beyond i_size on the filesystem.
1875 */
1876 shmem_unused_huge_shrink(sbinfo, NULL, pages);
1877 /*
1878 * And do a shmem_recalc_inode() to account for freed pages:
1879 * except our folio is there in cache, so not quite balanced.
1880 */
1881 spin_lock(&info->lock);
1882 freed = pages + info->alloced - info->swapped -
1883 READ_ONCE(mapping->nrpages);
1884 if (freed > 0)
1885 info->alloced -= freed;
1886 spin_unlock(&info->lock);
1887 if (freed > 0)
1888 shmem_inode_unacct_blocks(inode, freed);
1889 error = shmem_inode_acct_blocks(inode, pages);
1890 if (error) {
1891 filemap_remove_folio(folio);
1892 goto unlock;
1893 }
1894 }
1895
1896 shmem_recalc_inode(inode, pages, 0);
1897 folio_add_lru(folio);
1898 return folio;
1899
1900unlock:
1901 folio_unlock(folio);
1902 folio_put(folio);
1903 return ERR_PTR(error);
1904}
1905
1906/*
1907 * When a page is moved from swapcache to shmem filecache (either by the
1908 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1909 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1910 * ignorance of the mapping it belongs to. If that mapping has special
1911 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1912 * we may need to copy to a suitable page before moving to filecache.
1913 *
1914 * In a future release, this may well be extended to respect cpuset and
1915 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1916 * but for now it is a simple matter of zone.
1917 */
1918static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1919{
1920 return folio_zonenum(folio) > gfp_zone(gfp);
1921}
1922
1923static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1924 struct shmem_inode_info *info, pgoff_t index,
1925 struct vm_area_struct *vma)
1926{
1927 struct folio *new, *old = *foliop;
1928 swp_entry_t entry = old->swap;
1929 struct address_space *swap_mapping = swap_address_space(entry);
1930 pgoff_t swap_index = swap_cache_index(entry);
1931 XA_STATE(xas, &swap_mapping->i_pages, swap_index);
1932 int nr_pages = folio_nr_pages(old);
1933 int error = 0, i;
1934
1935 /*
1936 * We have arrived here because our zones are constrained, so don't
1937 * limit chance of success by further cpuset and node constraints.
1938 */
1939 gfp &= ~GFP_CONSTRAINT_MASK;
1940#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1941 if (nr_pages > 1) {
1942 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1943
1944 gfp = limit_gfp_mask(huge_gfp, gfp);
1945 }
1946#endif
1947
1948 new = shmem_alloc_folio(gfp, folio_order(old), info, index);
1949 if (!new)
1950 return -ENOMEM;
1951
1952 folio_ref_add(new, nr_pages);
1953 folio_copy(new, old);
1954 flush_dcache_folio(new);
1955
1956 __folio_set_locked(new);
1957 __folio_set_swapbacked(new);
1958 folio_mark_uptodate(new);
1959 new->swap = entry;
1960 folio_set_swapcache(new);
1961
1962 /* Swap cache still stores N entries instead of a high-order entry */
1963 xa_lock_irq(&swap_mapping->i_pages);
1964 for (i = 0; i < nr_pages; i++) {
1965 void *item = xas_load(&xas);
1966
1967 if (item != old) {
1968 error = -ENOENT;
1969 break;
1970 }
1971
1972 xas_store(&xas, new);
1973 xas_next(&xas);
1974 }
1975 if (!error) {
1976 mem_cgroup_replace_folio(old, new);
1977 shmem_update_stats(new, nr_pages);
1978 shmem_update_stats(old, -nr_pages);
1979 }
1980 xa_unlock_irq(&swap_mapping->i_pages);
1981
1982 if (unlikely(error)) {
1983 /*
1984 * Is this possible? I think not, now that our callers
1985 * check both the swapcache flag and folio->private
1986 * after getting the folio lock; but be defensive.
1987 * Reverse old to newpage for clear and free.
1988 */
1989 old = new;
1990 } else {
1991 folio_add_lru(new);
1992 *foliop = new;
1993 }
1994
1995 folio_clear_swapcache(old);
1996 old->private = NULL;
1997
1998 folio_unlock(old);
1999 /*
2000 * The old folio are removed from swap cache, drop the 'nr_pages'
2001 * reference, as well as one temporary reference getting from swap
2002 * cache.
2003 */
2004 folio_put_refs(old, nr_pages + 1);
2005 return error;
2006}
2007
2008static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2009 struct folio *folio, swp_entry_t swap)
2010{
2011 struct address_space *mapping = inode->i_mapping;
2012 swp_entry_t swapin_error;
2013 void *old;
2014 int nr_pages;
2015
2016 swapin_error = make_poisoned_swp_entry();
2017 old = xa_cmpxchg_irq(&mapping->i_pages, index,
2018 swp_to_radix_entry(swap),
2019 swp_to_radix_entry(swapin_error), 0);
2020 if (old != swp_to_radix_entry(swap))
2021 return;
2022
2023 nr_pages = folio_nr_pages(folio);
2024 folio_wait_writeback(folio);
2025 delete_from_swap_cache(folio);
2026 /*
2027 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2028 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2029 * in shmem_evict_inode().
2030 */
2031 shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2032 swap_free_nr(swap, nr_pages);
2033}
2034
2035static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2036 swp_entry_t swap, gfp_t gfp)
2037{
2038 struct address_space *mapping = inode->i_mapping;
2039 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2040 void *alloced_shadow = NULL;
2041 int alloced_order = 0, i;
2042
2043 /* Convert user data gfp flags to xarray node gfp flags */
2044 gfp &= GFP_RECLAIM_MASK;
2045
2046 for (;;) {
2047 int order = -1, split_order = 0;
2048 void *old = NULL;
2049
2050 xas_lock_irq(&xas);
2051 old = xas_load(&xas);
2052 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2053 xas_set_err(&xas, -EEXIST);
2054 goto unlock;
2055 }
2056
2057 order = xas_get_order(&xas);
2058
2059 /* Swap entry may have changed before we re-acquire the lock */
2060 if (alloced_order &&
2061 (old != alloced_shadow || order != alloced_order)) {
2062 xas_destroy(&xas);
2063 alloced_order = 0;
2064 }
2065
2066 /* Try to split large swap entry in pagecache */
2067 if (order > 0) {
2068 if (!alloced_order) {
2069 split_order = order;
2070 goto unlock;
2071 }
2072 xas_split(&xas, old, order);
2073
2074 /*
2075 * Re-set the swap entry after splitting, and the swap
2076 * offset of the original large entry must be continuous.
2077 */
2078 for (i = 0; i < 1 << order; i++) {
2079 pgoff_t aligned_index = round_down(index, 1 << order);
2080 swp_entry_t tmp;
2081
2082 tmp = swp_entry(swp_type(swap), swp_offset(swap) + i);
2083 __xa_store(&mapping->i_pages, aligned_index + i,
2084 swp_to_radix_entry(tmp), 0);
2085 }
2086 }
2087
2088unlock:
2089 xas_unlock_irq(&xas);
2090
2091 /* split needed, alloc here and retry. */
2092 if (split_order) {
2093 xas_split_alloc(&xas, old, split_order, gfp);
2094 if (xas_error(&xas))
2095 goto error;
2096 alloced_shadow = old;
2097 alloced_order = split_order;
2098 xas_reset(&xas);
2099 continue;
2100 }
2101
2102 if (!xas_nomem(&xas, gfp))
2103 break;
2104 }
2105
2106error:
2107 if (xas_error(&xas))
2108 return xas_error(&xas);
2109
2110 return alloced_order;
2111}
2112
2113/*
2114 * Swap in the folio pointed to by *foliop.
2115 * Caller has to make sure that *foliop contains a valid swapped folio.
2116 * Returns 0 and the folio in foliop if success. On failure, returns the
2117 * error code and NULL in *foliop.
2118 */
2119static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2120 struct folio **foliop, enum sgp_type sgp,
2121 gfp_t gfp, struct vm_area_struct *vma,
2122 vm_fault_t *fault_type)
2123{
2124 struct address_space *mapping = inode->i_mapping;
2125 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2126 struct shmem_inode_info *info = SHMEM_I(inode);
2127 struct swap_info_struct *si;
2128 struct folio *folio = NULL;
2129 swp_entry_t swap;
2130 int error, nr_pages;
2131
2132 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2133 swap = radix_to_swp_entry(*foliop);
2134 *foliop = NULL;
2135
2136 if (is_poisoned_swp_entry(swap))
2137 return -EIO;
2138
2139 si = get_swap_device(swap);
2140 if (!si) {
2141 if (!shmem_confirm_swap(mapping, index, swap))
2142 return -EEXIST;
2143 else
2144 return -EINVAL;
2145 }
2146
2147 /* Look it up and read it in.. */
2148 folio = swap_cache_get_folio(swap, NULL, 0);
2149 if (!folio) {
2150 int split_order;
2151
2152 /* Or update major stats only when swapin succeeds?? */
2153 if (fault_type) {
2154 *fault_type |= VM_FAULT_MAJOR;
2155 count_vm_event(PGMAJFAULT);
2156 count_memcg_event_mm(fault_mm, PGMAJFAULT);
2157 }
2158
2159 /*
2160 * Now swap device can only swap in order 0 folio, then we
2161 * should split the large swap entry stored in the pagecache
2162 * if necessary.
2163 */
2164 split_order = shmem_split_large_entry(inode, index, swap, gfp);
2165 if (split_order < 0) {
2166 error = split_order;
2167 goto failed;
2168 }
2169
2170 /*
2171 * If the large swap entry has already been split, it is
2172 * necessary to recalculate the new swap entry based on
2173 * the old order alignment.
2174 */
2175 if (split_order > 0) {
2176 pgoff_t offset = index - round_down(index, 1 << split_order);
2177
2178 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2179 }
2180
2181 /* Here we actually start the io */
2182 folio = shmem_swapin_cluster(swap, gfp, info, index);
2183 if (!folio) {
2184 error = -ENOMEM;
2185 goto failed;
2186 }
2187 }
2188
2189 /* We have to do this with folio locked to prevent races */
2190 folio_lock(folio);
2191 if (!folio_test_swapcache(folio) ||
2192 folio->swap.val != swap.val ||
2193 !shmem_confirm_swap(mapping, index, swap)) {
2194 error = -EEXIST;
2195 goto unlock;
2196 }
2197 if (!folio_test_uptodate(folio)) {
2198 error = -EIO;
2199 goto failed;
2200 }
2201 folio_wait_writeback(folio);
2202 nr_pages = folio_nr_pages(folio);
2203
2204 /*
2205 * Some architectures may have to restore extra metadata to the
2206 * folio after reading from swap.
2207 */
2208 arch_swap_restore(folio_swap(swap, folio), folio);
2209
2210 if (shmem_should_replace_folio(folio, gfp)) {
2211 error = shmem_replace_folio(&folio, gfp, info, index, vma);
2212 if (error)
2213 goto failed;
2214 }
2215
2216 error = shmem_add_to_page_cache(folio, mapping,
2217 round_down(index, nr_pages),
2218 swp_to_radix_entry(swap), gfp);
2219 if (error)
2220 goto failed;
2221
2222 shmem_recalc_inode(inode, 0, -nr_pages);
2223
2224 if (sgp == SGP_WRITE)
2225 folio_mark_accessed(folio);
2226
2227 delete_from_swap_cache(folio);
2228 folio_mark_dirty(folio);
2229 swap_free_nr(swap, nr_pages);
2230 put_swap_device(si);
2231
2232 *foliop = folio;
2233 return 0;
2234failed:
2235 if (!shmem_confirm_swap(mapping, index, swap))
2236 error = -EEXIST;
2237 if (error == -EIO)
2238 shmem_set_folio_swapin_error(inode, index, folio, swap);
2239unlock:
2240 if (folio) {
2241 folio_unlock(folio);
2242 folio_put(folio);
2243 }
2244 put_swap_device(si);
2245
2246 return error;
2247}
2248
2249/*
2250 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2251 *
2252 * If we allocate a new one we do not mark it dirty. That's up to the
2253 * vm. If we swap it in we mark it dirty since we also free the swap
2254 * entry since a page cannot live in both the swap and page cache.
2255 *
2256 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2257 */
2258static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2259 loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2260 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2261{
2262 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2263 struct mm_struct *fault_mm;
2264 struct folio *folio;
2265 int error;
2266 bool alloced;
2267 unsigned long orders = 0;
2268
2269 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2270 return -EINVAL;
2271
2272 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2273 return -EFBIG;
2274repeat:
2275 if (sgp <= SGP_CACHE &&
2276 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2277 return -EINVAL;
2278
2279 alloced = false;
2280 fault_mm = vma ? vma->vm_mm : NULL;
2281
2282 folio = filemap_get_entry(inode->i_mapping, index);
2283 if (folio && vma && userfaultfd_minor(vma)) {
2284 if (!xa_is_value(folio))
2285 folio_put(folio);
2286 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2287 return 0;
2288 }
2289
2290 if (xa_is_value(folio)) {
2291 error = shmem_swapin_folio(inode, index, &folio,
2292 sgp, gfp, vma, fault_type);
2293 if (error == -EEXIST)
2294 goto repeat;
2295
2296 *foliop = folio;
2297 return error;
2298 }
2299
2300 if (folio) {
2301 folio_lock(folio);
2302
2303 /* Has the folio been truncated or swapped out? */
2304 if (unlikely(folio->mapping != inode->i_mapping)) {
2305 folio_unlock(folio);
2306 folio_put(folio);
2307 goto repeat;
2308 }
2309 if (sgp == SGP_WRITE)
2310 folio_mark_accessed(folio);
2311 if (folio_test_uptodate(folio))
2312 goto out;
2313 /* fallocated folio */
2314 if (sgp != SGP_READ)
2315 goto clear;
2316 folio_unlock(folio);
2317 folio_put(folio);
2318 }
2319
2320 /*
2321 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2322 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2323 */
2324 *foliop = NULL;
2325 if (sgp == SGP_READ)
2326 return 0;
2327 if (sgp == SGP_NOALLOC)
2328 return -ENOENT;
2329
2330 /*
2331 * Fast cache lookup and swap lookup did not find it: allocate.
2332 */
2333
2334 if (vma && userfaultfd_missing(vma)) {
2335 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2336 return 0;
2337 }
2338
2339 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2340 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2341 if (orders > 0) {
2342 gfp_t huge_gfp;
2343
2344 huge_gfp = vma_thp_gfp_mask(vma);
2345 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2346 folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2347 inode, index, fault_mm, orders);
2348 if (!IS_ERR(folio)) {
2349 if (folio_test_pmd_mappable(folio))
2350 count_vm_event(THP_FILE_ALLOC);
2351 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2352 goto alloced;
2353 }
2354 if (PTR_ERR(folio) == -EEXIST)
2355 goto repeat;
2356 }
2357
2358 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2359 if (IS_ERR(folio)) {
2360 error = PTR_ERR(folio);
2361 if (error == -EEXIST)
2362 goto repeat;
2363 folio = NULL;
2364 goto unlock;
2365 }
2366
2367alloced:
2368 alloced = true;
2369 if (folio_test_large(folio) &&
2370 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2371 folio_next_index(folio)) {
2372 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2373 struct shmem_inode_info *info = SHMEM_I(inode);
2374 /*
2375 * Part of the large folio is beyond i_size: subject
2376 * to shrink under memory pressure.
2377 */
2378 spin_lock(&sbinfo->shrinklist_lock);
2379 /*
2380 * _careful to defend against unlocked access to
2381 * ->shrink_list in shmem_unused_huge_shrink()
2382 */
2383 if (list_empty_careful(&info->shrinklist)) {
2384 list_add_tail(&info->shrinklist,
2385 &sbinfo->shrinklist);
2386 sbinfo->shrinklist_len++;
2387 }
2388 spin_unlock(&sbinfo->shrinklist_lock);
2389 }
2390
2391 if (sgp == SGP_WRITE)
2392 folio_set_referenced(folio);
2393 /*
2394 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2395 */
2396 if (sgp == SGP_FALLOC)
2397 sgp = SGP_WRITE;
2398clear:
2399 /*
2400 * Let SGP_WRITE caller clear ends if write does not fill folio;
2401 * but SGP_FALLOC on a folio fallocated earlier must initialize
2402 * it now, lest undo on failure cancel our earlier guarantee.
2403 */
2404 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2405 long i, n = folio_nr_pages(folio);
2406
2407 for (i = 0; i < n; i++)
2408 clear_highpage(folio_page(folio, i));
2409 flush_dcache_folio(folio);
2410 folio_mark_uptodate(folio);
2411 }
2412
2413 /* Perhaps the file has been truncated since we checked */
2414 if (sgp <= SGP_CACHE &&
2415 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2416 error = -EINVAL;
2417 goto unlock;
2418 }
2419out:
2420 *foliop = folio;
2421 return 0;
2422
2423 /*
2424 * Error recovery.
2425 */
2426unlock:
2427 if (alloced)
2428 filemap_remove_folio(folio);
2429 shmem_recalc_inode(inode, 0, 0);
2430 if (folio) {
2431 folio_unlock(folio);
2432 folio_put(folio);
2433 }
2434 return error;
2435}
2436
2437/**
2438 * shmem_get_folio - find, and lock a shmem folio.
2439 * @inode: inode to search
2440 * @index: the page index.
2441 * @write_end: end of a write, could extend inode size
2442 * @foliop: pointer to the folio if found
2443 * @sgp: SGP_* flags to control behavior
2444 *
2445 * Looks up the page cache entry at @inode & @index. If a folio is
2446 * present, it is returned locked with an increased refcount.
2447 *
2448 * If the caller modifies data in the folio, it must call folio_mark_dirty()
2449 * before unlocking the folio to ensure that the folio is not reclaimed.
2450 * There is no need to reserve space before calling folio_mark_dirty().
2451 *
2452 * When no folio is found, the behavior depends on @sgp:
2453 * - for SGP_READ, *@foliop is %NULL and 0 is returned
2454 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2455 * - for all other flags a new folio is allocated, inserted into the
2456 * page cache and returned locked in @foliop.
2457 *
2458 * Context: May sleep.
2459 * Return: 0 if successful, else a negative error code.
2460 */
2461int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2462 struct folio **foliop, enum sgp_type sgp)
2463{
2464 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2465 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2466}
2467EXPORT_SYMBOL_GPL(shmem_get_folio);
2468
2469/*
2470 * This is like autoremove_wake_function, but it removes the wait queue
2471 * entry unconditionally - even if something else had already woken the
2472 * target.
2473 */
2474static int synchronous_wake_function(wait_queue_entry_t *wait,
2475 unsigned int mode, int sync, void *key)
2476{
2477 int ret = default_wake_function(wait, mode, sync, key);
2478 list_del_init(&wait->entry);
2479 return ret;
2480}
2481
2482/*
2483 * Trinity finds that probing a hole which tmpfs is punching can
2484 * prevent the hole-punch from ever completing: which in turn
2485 * locks writers out with its hold on i_rwsem. So refrain from
2486 * faulting pages into the hole while it's being punched. Although
2487 * shmem_undo_range() does remove the additions, it may be unable to
2488 * keep up, as each new page needs its own unmap_mapping_range() call,
2489 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2490 *
2491 * It does not matter if we sometimes reach this check just before the
2492 * hole-punch begins, so that one fault then races with the punch:
2493 * we just need to make racing faults a rare case.
2494 *
2495 * The implementation below would be much simpler if we just used a
2496 * standard mutex or completion: but we cannot take i_rwsem in fault,
2497 * and bloating every shmem inode for this unlikely case would be sad.
2498 */
2499static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2500{
2501 struct shmem_falloc *shmem_falloc;
2502 struct file *fpin = NULL;
2503 vm_fault_t ret = 0;
2504
2505 spin_lock(&inode->i_lock);
2506 shmem_falloc = inode->i_private;
2507 if (shmem_falloc &&
2508 shmem_falloc->waitq &&
2509 vmf->pgoff >= shmem_falloc->start &&
2510 vmf->pgoff < shmem_falloc->next) {
2511 wait_queue_head_t *shmem_falloc_waitq;
2512 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2513
2514 ret = VM_FAULT_NOPAGE;
2515 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2516 shmem_falloc_waitq = shmem_falloc->waitq;
2517 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2518 TASK_UNINTERRUPTIBLE);
2519 spin_unlock(&inode->i_lock);
2520 schedule();
2521
2522 /*
2523 * shmem_falloc_waitq points into the shmem_fallocate()
2524 * stack of the hole-punching task: shmem_falloc_waitq
2525 * is usually invalid by the time we reach here, but
2526 * finish_wait() does not dereference it in that case;
2527 * though i_lock needed lest racing with wake_up_all().
2528 */
2529 spin_lock(&inode->i_lock);
2530 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2531 }
2532 spin_unlock(&inode->i_lock);
2533 if (fpin) {
2534 fput(fpin);
2535 ret = VM_FAULT_RETRY;
2536 }
2537 return ret;
2538}
2539
2540static vm_fault_t shmem_fault(struct vm_fault *vmf)
2541{
2542 struct inode *inode = file_inode(vmf->vma->vm_file);
2543 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2544 struct folio *folio = NULL;
2545 vm_fault_t ret = 0;
2546 int err;
2547
2548 /*
2549 * Trinity finds that probing a hole which tmpfs is punching can
2550 * prevent the hole-punch from ever completing: noted in i_private.
2551 */
2552 if (unlikely(inode->i_private)) {
2553 ret = shmem_falloc_wait(vmf, inode);
2554 if (ret)
2555 return ret;
2556 }
2557
2558 WARN_ON_ONCE(vmf->page != NULL);
2559 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2560 gfp, vmf, &ret);
2561 if (err)
2562 return vmf_error(err);
2563 if (folio) {
2564 vmf->page = folio_file_page(folio, vmf->pgoff);
2565 ret |= VM_FAULT_LOCKED;
2566 }
2567 return ret;
2568}
2569
2570unsigned long shmem_get_unmapped_area(struct file *file,
2571 unsigned long uaddr, unsigned long len,
2572 unsigned long pgoff, unsigned long flags)
2573{
2574 unsigned long addr;
2575 unsigned long offset;
2576 unsigned long inflated_len;
2577 unsigned long inflated_addr;
2578 unsigned long inflated_offset;
2579 unsigned long hpage_size;
2580
2581 if (len > TASK_SIZE)
2582 return -ENOMEM;
2583
2584 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2585 flags);
2586
2587 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2588 return addr;
2589 if (IS_ERR_VALUE(addr))
2590 return addr;
2591 if (addr & ~PAGE_MASK)
2592 return addr;
2593 if (addr > TASK_SIZE - len)
2594 return addr;
2595
2596 if (shmem_huge == SHMEM_HUGE_DENY)
2597 return addr;
2598 if (flags & MAP_FIXED)
2599 return addr;
2600 /*
2601 * Our priority is to support MAP_SHARED mapped hugely;
2602 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2603 * But if caller specified an address hint and we allocated area there
2604 * successfully, respect that as before.
2605 */
2606 if (uaddr == addr)
2607 return addr;
2608
2609 hpage_size = HPAGE_PMD_SIZE;
2610 if (shmem_huge != SHMEM_HUGE_FORCE) {
2611 struct super_block *sb;
2612 unsigned long __maybe_unused hpage_orders;
2613 int order = 0;
2614
2615 if (file) {
2616 VM_BUG_ON(file->f_op != &shmem_file_operations);
2617 sb = file_inode(file)->i_sb;
2618 } else {
2619 /*
2620 * Called directly from mm/mmap.c, or drivers/char/mem.c
2621 * for "/dev/zero", to create a shared anonymous object.
2622 */
2623 if (IS_ERR(shm_mnt))
2624 return addr;
2625 sb = shm_mnt->mnt_sb;
2626
2627 /*
2628 * Find the highest mTHP order used for anonymous shmem to
2629 * provide a suitable alignment address.
2630 */
2631#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2632 hpage_orders = READ_ONCE(huge_shmem_orders_always);
2633 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2634 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2635 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2636 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2637
2638 if (hpage_orders > 0) {
2639 order = highest_order(hpage_orders);
2640 hpage_size = PAGE_SIZE << order;
2641 }
2642#endif
2643 }
2644 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2645 return addr;
2646 }
2647
2648 if (len < hpage_size)
2649 return addr;
2650
2651 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2652 if (offset && offset + len < 2 * hpage_size)
2653 return addr;
2654 if ((addr & (hpage_size - 1)) == offset)
2655 return addr;
2656
2657 inflated_len = len + hpage_size - PAGE_SIZE;
2658 if (inflated_len > TASK_SIZE)
2659 return addr;
2660 if (inflated_len < len)
2661 return addr;
2662
2663 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2664 inflated_len, 0, flags);
2665 if (IS_ERR_VALUE(inflated_addr))
2666 return addr;
2667 if (inflated_addr & ~PAGE_MASK)
2668 return addr;
2669
2670 inflated_offset = inflated_addr & (hpage_size - 1);
2671 inflated_addr += offset - inflated_offset;
2672 if (inflated_offset > offset)
2673 inflated_addr += hpage_size;
2674
2675 if (inflated_addr > TASK_SIZE - len)
2676 return addr;
2677 return inflated_addr;
2678}
2679
2680#ifdef CONFIG_NUMA
2681static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2682{
2683 struct inode *inode = file_inode(vma->vm_file);
2684 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2685}
2686
2687static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2688 unsigned long addr, pgoff_t *ilx)
2689{
2690 struct inode *inode = file_inode(vma->vm_file);
2691 pgoff_t index;
2692
2693 /*
2694 * Bias interleave by inode number to distribute better across nodes;
2695 * but this interface is independent of which page order is used, so
2696 * supplies only that bias, letting caller apply the offset (adjusted
2697 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2698 */
2699 *ilx = inode->i_ino;
2700 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2701 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2702}
2703
2704static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2705 pgoff_t index, unsigned int order, pgoff_t *ilx)
2706{
2707 struct mempolicy *mpol;
2708
2709 /* Bias interleave by inode number to distribute better across nodes */
2710 *ilx = info->vfs_inode.i_ino + (index >> order);
2711
2712 mpol = mpol_shared_policy_lookup(&info->policy, index);
2713 return mpol ? mpol : get_task_policy(current);
2714}
2715#else
2716static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2717 pgoff_t index, unsigned int order, pgoff_t *ilx)
2718{
2719 *ilx = 0;
2720 return NULL;
2721}
2722#endif /* CONFIG_NUMA */
2723
2724int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2725{
2726 struct inode *inode = file_inode(file);
2727 struct shmem_inode_info *info = SHMEM_I(inode);
2728 int retval = -ENOMEM;
2729
2730 /*
2731 * What serializes the accesses to info->flags?
2732 * ipc_lock_object() when called from shmctl_do_lock(),
2733 * no serialization needed when called from shm_destroy().
2734 */
2735 if (lock && !(info->flags & VM_LOCKED)) {
2736 if (!user_shm_lock(inode->i_size, ucounts))
2737 goto out_nomem;
2738 info->flags |= VM_LOCKED;
2739 mapping_set_unevictable(file->f_mapping);
2740 }
2741 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2742 user_shm_unlock(inode->i_size, ucounts);
2743 info->flags &= ~VM_LOCKED;
2744 mapping_clear_unevictable(file->f_mapping);
2745 }
2746 retval = 0;
2747
2748out_nomem:
2749 return retval;
2750}
2751
2752static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2753{
2754 struct inode *inode = file_inode(file);
2755 struct shmem_inode_info *info = SHMEM_I(inode);
2756 int ret;
2757
2758 ret = seal_check_write(info->seals, vma);
2759 if (ret)
2760 return ret;
2761
2762 file_accessed(file);
2763 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2764 if (inode->i_nlink)
2765 vma->vm_ops = &shmem_vm_ops;
2766 else
2767 vma->vm_ops = &shmem_anon_vm_ops;
2768 return 0;
2769}
2770
2771static int shmem_file_open(struct inode *inode, struct file *file)
2772{
2773 file->f_mode |= FMODE_CAN_ODIRECT;
2774 return generic_file_open(inode, file);
2775}
2776
2777#ifdef CONFIG_TMPFS_XATTR
2778static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2779
2780#if IS_ENABLED(CONFIG_UNICODE)
2781/*
2782 * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2783 *
2784 * The casefold file attribute needs some special checks. I can just be added to
2785 * an empty dir, and can't be removed from a non-empty dir.
2786 */
2787static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2788 struct dentry *dentry, unsigned int *i_flags)
2789{
2790 unsigned int old = inode->i_flags;
2791 struct super_block *sb = inode->i_sb;
2792
2793 if (fsflags & FS_CASEFOLD_FL) {
2794 if (!(old & S_CASEFOLD)) {
2795 if (!sb->s_encoding)
2796 return -EOPNOTSUPP;
2797
2798 if (!S_ISDIR(inode->i_mode))
2799 return -ENOTDIR;
2800
2801 if (dentry && !simple_empty(dentry))
2802 return -ENOTEMPTY;
2803 }
2804
2805 *i_flags = *i_flags | S_CASEFOLD;
2806 } else if (old & S_CASEFOLD) {
2807 if (dentry && !simple_empty(dentry))
2808 return -ENOTEMPTY;
2809 }
2810
2811 return 0;
2812}
2813#else
2814static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2815 struct dentry *dentry, unsigned int *i_flags)
2816{
2817 if (fsflags & FS_CASEFOLD_FL)
2818 return -EOPNOTSUPP;
2819
2820 return 0;
2821}
2822#endif
2823
2824/*
2825 * chattr's fsflags are unrelated to extended attributes,
2826 * but tmpfs has chosen to enable them under the same config option.
2827 */
2828static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
2829{
2830 unsigned int i_flags = 0;
2831 int ret;
2832
2833 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
2834 if (ret)
2835 return ret;
2836
2837 if (fsflags & FS_NOATIME_FL)
2838 i_flags |= S_NOATIME;
2839 if (fsflags & FS_APPEND_FL)
2840 i_flags |= S_APPEND;
2841 if (fsflags & FS_IMMUTABLE_FL)
2842 i_flags |= S_IMMUTABLE;
2843 /*
2844 * But FS_NODUMP_FL does not require any action in i_flags.
2845 */
2846 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
2847
2848 return 0;
2849}
2850#else
2851static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
2852{
2853}
2854#define shmem_initxattrs NULL
2855#endif
2856
2857static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2858{
2859 return &SHMEM_I(inode)->dir_offsets;
2860}
2861
2862static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2863 struct super_block *sb,
2864 struct inode *dir, umode_t mode,
2865 dev_t dev, unsigned long flags)
2866{
2867 struct inode *inode;
2868 struct shmem_inode_info *info;
2869 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2870 ino_t ino;
2871 int err;
2872
2873 err = shmem_reserve_inode(sb, &ino);
2874 if (err)
2875 return ERR_PTR(err);
2876
2877 inode = new_inode(sb);
2878 if (!inode) {
2879 shmem_free_inode(sb, 0);
2880 return ERR_PTR(-ENOSPC);
2881 }
2882
2883 inode->i_ino = ino;
2884 inode_init_owner(idmap, inode, dir, mode);
2885 inode->i_blocks = 0;
2886 simple_inode_init_ts(inode);
2887 inode->i_generation = get_random_u32();
2888 info = SHMEM_I(inode);
2889 memset(info, 0, (char *)inode - (char *)info);
2890 spin_lock_init(&info->lock);
2891 atomic_set(&info->stop_eviction, 0);
2892 info->seals = F_SEAL_SEAL;
2893 info->flags = flags & VM_NORESERVE;
2894 info->i_crtime = inode_get_mtime(inode);
2895 info->fsflags = (dir == NULL) ? 0 :
2896 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2897 if (info->fsflags)
2898 shmem_set_inode_flags(inode, info->fsflags, NULL);
2899 INIT_LIST_HEAD(&info->shrinklist);
2900 INIT_LIST_HEAD(&info->swaplist);
2901 simple_xattrs_init(&info->xattrs);
2902 cache_no_acl(inode);
2903 if (sbinfo->noswap)
2904 mapping_set_unevictable(inode->i_mapping);
2905
2906 /* Don't consider 'deny' for emergencies and 'force' for testing */
2907 if (sbinfo->huge)
2908 mapping_set_large_folios(inode->i_mapping);
2909
2910 switch (mode & S_IFMT) {
2911 default:
2912 inode->i_op = &shmem_special_inode_operations;
2913 init_special_inode(inode, mode, dev);
2914 break;
2915 case S_IFREG:
2916 inode->i_mapping->a_ops = &shmem_aops;
2917 inode->i_op = &shmem_inode_operations;
2918 inode->i_fop = &shmem_file_operations;
2919 mpol_shared_policy_init(&info->policy,
2920 shmem_get_sbmpol(sbinfo));
2921 break;
2922 case S_IFDIR:
2923 inc_nlink(inode);
2924 /* Some things misbehave if size == 0 on a directory */
2925 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2926 inode->i_op = &shmem_dir_inode_operations;
2927 inode->i_fop = &simple_offset_dir_operations;
2928 simple_offset_init(shmem_get_offset_ctx(inode));
2929 break;
2930 case S_IFLNK:
2931 /*
2932 * Must not load anything in the rbtree,
2933 * mpol_free_shared_policy will not be called.
2934 */
2935 mpol_shared_policy_init(&info->policy, NULL);
2936 break;
2937 }
2938
2939 lockdep_annotate_inode_mutex_key(inode);
2940 return inode;
2941}
2942
2943#ifdef CONFIG_TMPFS_QUOTA
2944static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2945 struct super_block *sb, struct inode *dir,
2946 umode_t mode, dev_t dev, unsigned long flags)
2947{
2948 int err;
2949 struct inode *inode;
2950
2951 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2952 if (IS_ERR(inode))
2953 return inode;
2954
2955 err = dquot_initialize(inode);
2956 if (err)
2957 goto errout;
2958
2959 err = dquot_alloc_inode(inode);
2960 if (err) {
2961 dquot_drop(inode);
2962 goto errout;
2963 }
2964 return inode;
2965
2966errout:
2967 inode->i_flags |= S_NOQUOTA;
2968 iput(inode);
2969 return ERR_PTR(err);
2970}
2971#else
2972static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2973 struct super_block *sb, struct inode *dir,
2974 umode_t mode, dev_t dev, unsigned long flags)
2975{
2976 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2977}
2978#endif /* CONFIG_TMPFS_QUOTA */
2979
2980#ifdef CONFIG_USERFAULTFD
2981int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2982 struct vm_area_struct *dst_vma,
2983 unsigned long dst_addr,
2984 unsigned long src_addr,
2985 uffd_flags_t flags,
2986 struct folio **foliop)
2987{
2988 struct inode *inode = file_inode(dst_vma->vm_file);
2989 struct shmem_inode_info *info = SHMEM_I(inode);
2990 struct address_space *mapping = inode->i_mapping;
2991 gfp_t gfp = mapping_gfp_mask(mapping);
2992 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2993 void *page_kaddr;
2994 struct folio *folio;
2995 int ret;
2996 pgoff_t max_off;
2997
2998 if (shmem_inode_acct_blocks(inode, 1)) {
2999 /*
3000 * We may have got a page, returned -ENOENT triggering a retry,
3001 * and now we find ourselves with -ENOMEM. Release the page, to
3002 * avoid a BUG_ON in our caller.
3003 */
3004 if (unlikely(*foliop)) {
3005 folio_put(*foliop);
3006 *foliop = NULL;
3007 }
3008 return -ENOMEM;
3009 }
3010
3011 if (!*foliop) {
3012 ret = -ENOMEM;
3013 folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3014 if (!folio)
3015 goto out_unacct_blocks;
3016
3017 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3018 page_kaddr = kmap_local_folio(folio, 0);
3019 /*
3020 * The read mmap_lock is held here. Despite the
3021 * mmap_lock being read recursive a deadlock is still
3022 * possible if a writer has taken a lock. For example:
3023 *
3024 * process A thread 1 takes read lock on own mmap_lock
3025 * process A thread 2 calls mmap, blocks taking write lock
3026 * process B thread 1 takes page fault, read lock on own mmap lock
3027 * process B thread 2 calls mmap, blocks taking write lock
3028 * process A thread 1 blocks taking read lock on process B
3029 * process B thread 1 blocks taking read lock on process A
3030 *
3031 * Disable page faults to prevent potential deadlock
3032 * and retry the copy outside the mmap_lock.
3033 */
3034 pagefault_disable();
3035 ret = copy_from_user(page_kaddr,
3036 (const void __user *)src_addr,
3037 PAGE_SIZE);
3038 pagefault_enable();
3039 kunmap_local(page_kaddr);
3040
3041 /* fallback to copy_from_user outside mmap_lock */
3042 if (unlikely(ret)) {
3043 *foliop = folio;
3044 ret = -ENOENT;
3045 /* don't free the page */
3046 goto out_unacct_blocks;
3047 }
3048
3049 flush_dcache_folio(folio);
3050 } else { /* ZEROPAGE */
3051 clear_user_highpage(&folio->page, dst_addr);
3052 }
3053 } else {
3054 folio = *foliop;
3055 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3056 *foliop = NULL;
3057 }
3058
3059 VM_BUG_ON(folio_test_locked(folio));
3060 VM_BUG_ON(folio_test_swapbacked(folio));
3061 __folio_set_locked(folio);
3062 __folio_set_swapbacked(folio);
3063 __folio_mark_uptodate(folio);
3064
3065 ret = -EFAULT;
3066 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3067 if (unlikely(pgoff >= max_off))
3068 goto out_release;
3069
3070 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3071 if (ret)
3072 goto out_release;
3073 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3074 if (ret)
3075 goto out_release;
3076
3077 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3078 &folio->page, true, flags);
3079 if (ret)
3080 goto out_delete_from_cache;
3081
3082 shmem_recalc_inode(inode, 1, 0);
3083 folio_unlock(folio);
3084 return 0;
3085out_delete_from_cache:
3086 filemap_remove_folio(folio);
3087out_release:
3088 folio_unlock(folio);
3089 folio_put(folio);
3090out_unacct_blocks:
3091 shmem_inode_unacct_blocks(inode, 1);
3092 return ret;
3093}
3094#endif /* CONFIG_USERFAULTFD */
3095
3096#ifdef CONFIG_TMPFS
3097static const struct inode_operations shmem_symlink_inode_operations;
3098static const struct inode_operations shmem_short_symlink_operations;
3099
3100static int
3101shmem_write_begin(struct file *file, struct address_space *mapping,
3102 loff_t pos, unsigned len,
3103 struct folio **foliop, void **fsdata)
3104{
3105 struct inode *inode = mapping->host;
3106 struct shmem_inode_info *info = SHMEM_I(inode);
3107 pgoff_t index = pos >> PAGE_SHIFT;
3108 struct folio *folio;
3109 int ret = 0;
3110
3111 /* i_rwsem is held by caller */
3112 if (unlikely(info->seals & (F_SEAL_GROW |
3113 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3114 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3115 return -EPERM;
3116 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3117 return -EPERM;
3118 }
3119
3120 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3121 if (ret)
3122 return ret;
3123
3124 if (folio_test_hwpoison(folio) ||
3125 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
3126 folio_unlock(folio);
3127 folio_put(folio);
3128 return -EIO;
3129 }
3130
3131 *foliop = folio;
3132 return 0;
3133}
3134
3135static int
3136shmem_write_end(struct file *file, struct address_space *mapping,
3137 loff_t pos, unsigned len, unsigned copied,
3138 struct folio *folio, void *fsdata)
3139{
3140 struct inode *inode = mapping->host;
3141
3142 if (pos + copied > inode->i_size)
3143 i_size_write(inode, pos + copied);
3144
3145 if (!folio_test_uptodate(folio)) {
3146 if (copied < folio_size(folio)) {
3147 size_t from = offset_in_folio(folio, pos);
3148 folio_zero_segments(folio, 0, from,
3149 from + copied, folio_size(folio));
3150 }
3151 folio_mark_uptodate(folio);
3152 }
3153 folio_mark_dirty(folio);
3154 folio_unlock(folio);
3155 folio_put(folio);
3156
3157 return copied;
3158}
3159
3160static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3161{
3162 struct file *file = iocb->ki_filp;
3163 struct inode *inode = file_inode(file);
3164 struct address_space *mapping = inode->i_mapping;
3165 pgoff_t index;
3166 unsigned long offset;
3167 int error = 0;
3168 ssize_t retval = 0;
3169
3170 for (;;) {
3171 struct folio *folio = NULL;
3172 struct page *page = NULL;
3173 unsigned long nr, ret;
3174 loff_t end_offset, i_size = i_size_read(inode);
3175 bool fallback_page_copy = false;
3176 size_t fsize;
3177
3178 if (unlikely(iocb->ki_pos >= i_size))
3179 break;
3180
3181 index = iocb->ki_pos >> PAGE_SHIFT;
3182 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3183 if (error) {
3184 if (error == -EINVAL)
3185 error = 0;
3186 break;
3187 }
3188 if (folio) {
3189 folio_unlock(folio);
3190
3191 page = folio_file_page(folio, index);
3192 if (PageHWPoison(page)) {
3193 folio_put(folio);
3194 error = -EIO;
3195 break;
3196 }
3197
3198 if (folio_test_large(folio) &&
3199 folio_test_has_hwpoisoned(folio))
3200 fallback_page_copy = true;
3201 }
3202
3203 /*
3204 * We must evaluate after, since reads (unlike writes)
3205 * are called without i_rwsem protection against truncate
3206 */
3207 i_size = i_size_read(inode);
3208 if (unlikely(iocb->ki_pos >= i_size)) {
3209 if (folio)
3210 folio_put(folio);
3211 break;
3212 }
3213 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3214 if (folio && likely(!fallback_page_copy))
3215 fsize = folio_size(folio);
3216 else
3217 fsize = PAGE_SIZE;
3218 offset = iocb->ki_pos & (fsize - 1);
3219 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3220
3221 if (folio) {
3222 /*
3223 * If users can be writing to this page using arbitrary
3224 * virtual addresses, take care about potential aliasing
3225 * before reading the page on the kernel side.
3226 */
3227 if (mapping_writably_mapped(mapping)) {
3228 if (likely(!fallback_page_copy))
3229 flush_dcache_folio(folio);
3230 else
3231 flush_dcache_page(page);
3232 }
3233
3234 /*
3235 * Mark the folio accessed if we read the beginning.
3236 */
3237 if (!offset)
3238 folio_mark_accessed(folio);
3239 /*
3240 * Ok, we have the page, and it's up-to-date, so
3241 * now we can copy it to user space...
3242 */
3243 if (likely(!fallback_page_copy))
3244 ret = copy_folio_to_iter(folio, offset, nr, to);
3245 else
3246 ret = copy_page_to_iter(page, offset, nr, to);
3247 folio_put(folio);
3248 } else if (user_backed_iter(to)) {
3249 /*
3250 * Copy to user tends to be so well optimized, but
3251 * clear_user() not so much, that it is noticeably
3252 * faster to copy the zero page instead of clearing.
3253 */
3254 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3255 } else {
3256 /*
3257 * But submitting the same page twice in a row to
3258 * splice() - or others? - can result in confusion:
3259 * so don't attempt that optimization on pipes etc.
3260 */
3261 ret = iov_iter_zero(nr, to);
3262 }
3263
3264 retval += ret;
3265 iocb->ki_pos += ret;
3266
3267 if (!iov_iter_count(to))
3268 break;
3269 if (ret < nr) {
3270 error = -EFAULT;
3271 break;
3272 }
3273 cond_resched();
3274 }
3275
3276 file_accessed(file);
3277 return retval ? retval : error;
3278}
3279
3280static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3281{
3282 struct file *file = iocb->ki_filp;
3283 struct inode *inode = file->f_mapping->host;
3284 ssize_t ret;
3285
3286 inode_lock(inode);
3287 ret = generic_write_checks(iocb, from);
3288 if (ret <= 0)
3289 goto unlock;
3290 ret = file_remove_privs(file);
3291 if (ret)
3292 goto unlock;
3293 ret = file_update_time(file);
3294 if (ret)
3295 goto unlock;
3296 ret = generic_perform_write(iocb, from);
3297unlock:
3298 inode_unlock(inode);
3299 return ret;
3300}
3301
3302static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3303 struct pipe_buffer *buf)
3304{
3305 return true;
3306}
3307
3308static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3309 struct pipe_buffer *buf)
3310{
3311}
3312
3313static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3314 struct pipe_buffer *buf)
3315{
3316 return false;
3317}
3318
3319static const struct pipe_buf_operations zero_pipe_buf_ops = {
3320 .release = zero_pipe_buf_release,
3321 .try_steal = zero_pipe_buf_try_steal,
3322 .get = zero_pipe_buf_get,
3323};
3324
3325static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3326 loff_t fpos, size_t size)
3327{
3328 size_t offset = fpos & ~PAGE_MASK;
3329
3330 size = min_t(size_t, size, PAGE_SIZE - offset);
3331
3332 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
3333 struct pipe_buffer *buf = pipe_head_buf(pipe);
3334
3335 *buf = (struct pipe_buffer) {
3336 .ops = &zero_pipe_buf_ops,
3337 .page = ZERO_PAGE(0),
3338 .offset = offset,
3339 .len = size,
3340 };
3341 pipe->head++;
3342 }
3343
3344 return size;
3345}
3346
3347static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3348 struct pipe_inode_info *pipe,
3349 size_t len, unsigned int flags)
3350{
3351 struct inode *inode = file_inode(in);
3352 struct address_space *mapping = inode->i_mapping;
3353 struct folio *folio = NULL;
3354 size_t total_spliced = 0, used, npages, n, part;
3355 loff_t isize;
3356 int error = 0;
3357
3358 /* Work out how much data we can actually add into the pipe */
3359 used = pipe_occupancy(pipe->head, pipe->tail);
3360 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3361 len = min_t(size_t, len, npages * PAGE_SIZE);
3362
3363 do {
3364 bool fallback_page_splice = false;
3365 struct page *page = NULL;
3366 pgoff_t index;
3367 size_t size;
3368
3369 if (*ppos >= i_size_read(inode))
3370 break;
3371
3372 index = *ppos >> PAGE_SHIFT;
3373 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3374 if (error) {
3375 if (error == -EINVAL)
3376 error = 0;
3377 break;
3378 }
3379 if (folio) {
3380 folio_unlock(folio);
3381
3382 page = folio_file_page(folio, index);
3383 if (PageHWPoison(page)) {
3384 error = -EIO;
3385 break;
3386 }
3387
3388 if (folio_test_large(folio) &&
3389 folio_test_has_hwpoisoned(folio))
3390 fallback_page_splice = true;
3391 }
3392
3393 /*
3394 * i_size must be checked after we know the pages are Uptodate.
3395 *
3396 * Checking i_size after the check allows us to calculate
3397 * the correct value for "nr", which means the zero-filled
3398 * part of the page is not copied back to userspace (unless
3399 * another truncate extends the file - this is desired though).
3400 */
3401 isize = i_size_read(inode);
3402 if (unlikely(*ppos >= isize))
3403 break;
3404 /*
3405 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3406 * pages.
3407 */
3408 size = len;
3409 if (unlikely(fallback_page_splice)) {
3410 size_t offset = *ppos & ~PAGE_MASK;
3411
3412 size = umin(size, PAGE_SIZE - offset);
3413 }
3414 part = min_t(loff_t, isize - *ppos, size);
3415
3416 if (folio) {
3417 /*
3418 * If users can be writing to this page using arbitrary
3419 * virtual addresses, take care about potential aliasing
3420 * before reading the page on the kernel side.
3421 */
3422 if (mapping_writably_mapped(mapping)) {
3423 if (likely(!fallback_page_splice))
3424 flush_dcache_folio(folio);
3425 else
3426 flush_dcache_page(page);
3427 }
3428 folio_mark_accessed(folio);
3429 /*
3430 * Ok, we have the page, and it's up-to-date, so we can
3431 * now splice it into the pipe.
3432 */
3433 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3434 folio_put(folio);
3435 folio = NULL;
3436 } else {
3437 n = splice_zeropage_into_pipe(pipe, *ppos, part);
3438 }
3439
3440 if (!n)
3441 break;
3442 len -= n;
3443 total_spliced += n;
3444 *ppos += n;
3445 in->f_ra.prev_pos = *ppos;
3446 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3447 break;
3448
3449 cond_resched();
3450 } while (len);
3451
3452 if (folio)
3453 folio_put(folio);
3454
3455 file_accessed(in);
3456 return total_spliced ? total_spliced : error;
3457}
3458
3459static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3460{
3461 struct address_space *mapping = file->f_mapping;
3462 struct inode *inode = mapping->host;
3463
3464 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3465 return generic_file_llseek_size(file, offset, whence,
3466 MAX_LFS_FILESIZE, i_size_read(inode));
3467 if (offset < 0)
3468 return -ENXIO;
3469
3470 inode_lock(inode);
3471 /* We're holding i_rwsem so we can access i_size directly */
3472 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3473 if (offset >= 0)
3474 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3475 inode_unlock(inode);
3476 return offset;
3477}
3478
3479static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3480 loff_t len)
3481{
3482 struct inode *inode = file_inode(file);
3483 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3484 struct shmem_inode_info *info = SHMEM_I(inode);
3485 struct shmem_falloc shmem_falloc;
3486 pgoff_t start, index, end, undo_fallocend;
3487 int error;
3488
3489 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3490 return -EOPNOTSUPP;
3491
3492 inode_lock(inode);
3493
3494 if (mode & FALLOC_FL_PUNCH_HOLE) {
3495 struct address_space *mapping = file->f_mapping;
3496 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3497 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3498 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3499
3500 /* protected by i_rwsem */
3501 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3502 error = -EPERM;
3503 goto out;
3504 }
3505
3506 shmem_falloc.waitq = &shmem_falloc_waitq;
3507 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3508 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3509 spin_lock(&inode->i_lock);
3510 inode->i_private = &shmem_falloc;
3511 spin_unlock(&inode->i_lock);
3512
3513 if ((u64)unmap_end > (u64)unmap_start)
3514 unmap_mapping_range(mapping, unmap_start,
3515 1 + unmap_end - unmap_start, 0);
3516 shmem_truncate_range(inode, offset, offset + len - 1);
3517 /* No need to unmap again: hole-punching leaves COWed pages */
3518
3519 spin_lock(&inode->i_lock);
3520 inode->i_private = NULL;
3521 wake_up_all(&shmem_falloc_waitq);
3522 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3523 spin_unlock(&inode->i_lock);
3524 error = 0;
3525 goto out;
3526 }
3527
3528 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3529 error = inode_newsize_ok(inode, offset + len);
3530 if (error)
3531 goto out;
3532
3533 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3534 error = -EPERM;
3535 goto out;
3536 }
3537
3538 start = offset >> PAGE_SHIFT;
3539 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3540 /* Try to avoid a swapstorm if len is impossible to satisfy */
3541 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3542 error = -ENOSPC;
3543 goto out;
3544 }
3545
3546 shmem_falloc.waitq = NULL;
3547 shmem_falloc.start = start;
3548 shmem_falloc.next = start;
3549 shmem_falloc.nr_falloced = 0;
3550 shmem_falloc.nr_unswapped = 0;
3551 spin_lock(&inode->i_lock);
3552 inode->i_private = &shmem_falloc;
3553 spin_unlock(&inode->i_lock);
3554
3555 /*
3556 * info->fallocend is only relevant when huge pages might be
3557 * involved: to prevent split_huge_page() freeing fallocated
3558 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3559 */
3560 undo_fallocend = info->fallocend;
3561 if (info->fallocend < end)
3562 info->fallocend = end;
3563
3564 for (index = start; index < end; ) {
3565 struct folio *folio;
3566
3567 /*
3568 * Check for fatal signal so that we abort early in OOM
3569 * situations. We don't want to abort in case of non-fatal
3570 * signals as large fallocate can take noticeable time and
3571 * e.g. periodic timers may result in fallocate constantly
3572 * restarting.
3573 */
3574 if (fatal_signal_pending(current))
3575 error = -EINTR;
3576 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3577 error = -ENOMEM;
3578 else
3579 error = shmem_get_folio(inode, index, offset + len,
3580 &folio, SGP_FALLOC);
3581 if (error) {
3582 info->fallocend = undo_fallocend;
3583 /* Remove the !uptodate folios we added */
3584 if (index > start) {
3585 shmem_undo_range(inode,
3586 (loff_t)start << PAGE_SHIFT,
3587 ((loff_t)index << PAGE_SHIFT) - 1, true);
3588 }
3589 goto undone;
3590 }
3591
3592 /*
3593 * Here is a more important optimization than it appears:
3594 * a second SGP_FALLOC on the same large folio will clear it,
3595 * making it uptodate and un-undoable if we fail later.
3596 */
3597 index = folio_next_index(folio);
3598 /* Beware 32-bit wraparound */
3599 if (!index)
3600 index--;
3601
3602 /*
3603 * Inform shmem_writepage() how far we have reached.
3604 * No need for lock or barrier: we have the page lock.
3605 */
3606 if (!folio_test_uptodate(folio))
3607 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3608 shmem_falloc.next = index;
3609
3610 /*
3611 * If !uptodate, leave it that way so that freeable folios
3612 * can be recognized if we need to rollback on error later.
3613 * But mark it dirty so that memory pressure will swap rather
3614 * than free the folios we are allocating (and SGP_CACHE folios
3615 * might still be clean: we now need to mark those dirty too).
3616 */
3617 folio_mark_dirty(folio);
3618 folio_unlock(folio);
3619 folio_put(folio);
3620 cond_resched();
3621 }
3622
3623 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3624 i_size_write(inode, offset + len);
3625undone:
3626 spin_lock(&inode->i_lock);
3627 inode->i_private = NULL;
3628 spin_unlock(&inode->i_lock);
3629out:
3630 if (!error)
3631 file_modified(file);
3632 inode_unlock(inode);
3633 return error;
3634}
3635
3636static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3637{
3638 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3639
3640 buf->f_type = TMPFS_MAGIC;
3641 buf->f_bsize = PAGE_SIZE;
3642 buf->f_namelen = NAME_MAX;
3643 if (sbinfo->max_blocks) {
3644 buf->f_blocks = sbinfo->max_blocks;
3645 buf->f_bavail =
3646 buf->f_bfree = sbinfo->max_blocks -
3647 percpu_counter_sum(&sbinfo->used_blocks);
3648 }
3649 if (sbinfo->max_inodes) {
3650 buf->f_files = sbinfo->max_inodes;
3651 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3652 }
3653 /* else leave those fields 0 like simple_statfs */
3654
3655 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3656
3657 return 0;
3658}
3659
3660/*
3661 * File creation. Allocate an inode, and we're done..
3662 */
3663static int
3664shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3665 struct dentry *dentry, umode_t mode, dev_t dev)
3666{
3667 struct inode *inode;
3668 int error;
3669
3670 if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3671 return -EINVAL;
3672
3673 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3674 if (IS_ERR(inode))
3675 return PTR_ERR(inode);
3676
3677 error = simple_acl_create(dir, inode);
3678 if (error)
3679 goto out_iput;
3680 error = security_inode_init_security(inode, dir, &dentry->d_name,
3681 shmem_initxattrs, NULL);
3682 if (error && error != -EOPNOTSUPP)
3683 goto out_iput;
3684
3685 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3686 if (error)
3687 goto out_iput;
3688
3689 dir->i_size += BOGO_DIRENT_SIZE;
3690 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3691 inode_inc_iversion(dir);
3692
3693 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3694 d_add(dentry, inode);
3695 else
3696 d_instantiate(dentry, inode);
3697
3698 dget(dentry); /* Extra count - pin the dentry in core */
3699 return error;
3700
3701out_iput:
3702 iput(inode);
3703 return error;
3704}
3705
3706static int
3707shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3708 struct file *file, umode_t mode)
3709{
3710 struct inode *inode;
3711 int error;
3712
3713 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3714 if (IS_ERR(inode)) {
3715 error = PTR_ERR(inode);
3716 goto err_out;
3717 }
3718 error = security_inode_init_security(inode, dir, NULL,
3719 shmem_initxattrs, NULL);
3720 if (error && error != -EOPNOTSUPP)
3721 goto out_iput;
3722 error = simple_acl_create(dir, inode);
3723 if (error)
3724 goto out_iput;
3725 d_tmpfile(file, inode);
3726
3727err_out:
3728 return finish_open_simple(file, error);
3729out_iput:
3730 iput(inode);
3731 return error;
3732}
3733
3734static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3735 struct dentry *dentry, umode_t mode)
3736{
3737 int error;
3738
3739 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3740 if (error)
3741 return error;
3742 inc_nlink(dir);
3743 return 0;
3744}
3745
3746static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3747 struct dentry *dentry, umode_t mode, bool excl)
3748{
3749 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3750}
3751
3752/*
3753 * Link a file..
3754 */
3755static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3756 struct dentry *dentry)
3757{
3758 struct inode *inode = d_inode(old_dentry);
3759 int ret = 0;
3760
3761 /*
3762 * No ordinary (disk based) filesystem counts links as inodes;
3763 * but each new link needs a new dentry, pinning lowmem, and
3764 * tmpfs dentries cannot be pruned until they are unlinked.
3765 * But if an O_TMPFILE file is linked into the tmpfs, the
3766 * first link must skip that, to get the accounting right.
3767 */
3768 if (inode->i_nlink) {
3769 ret = shmem_reserve_inode(inode->i_sb, NULL);
3770 if (ret)
3771 goto out;
3772 }
3773
3774 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3775 if (ret) {
3776 if (inode->i_nlink)
3777 shmem_free_inode(inode->i_sb, 0);
3778 goto out;
3779 }
3780
3781 dir->i_size += BOGO_DIRENT_SIZE;
3782 inode_set_mtime_to_ts(dir,
3783 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3784 inode_inc_iversion(dir);
3785 inc_nlink(inode);
3786 ihold(inode); /* New dentry reference */
3787 dget(dentry); /* Extra pinning count for the created dentry */
3788 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3789 d_add(dentry, inode);
3790 else
3791 d_instantiate(dentry, inode);
3792out:
3793 return ret;
3794}
3795
3796static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3797{
3798 struct inode *inode = d_inode(dentry);
3799
3800 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3801 shmem_free_inode(inode->i_sb, 0);
3802
3803 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3804
3805 dir->i_size -= BOGO_DIRENT_SIZE;
3806 inode_set_mtime_to_ts(dir,
3807 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3808 inode_inc_iversion(dir);
3809 drop_nlink(inode);
3810 dput(dentry); /* Undo the count from "create" - does all the work */
3811
3812 /*
3813 * For now, VFS can't deal with case-insensitive negative dentries, so
3814 * we invalidate them
3815 */
3816 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3817 d_invalidate(dentry);
3818
3819 return 0;
3820}
3821
3822static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3823{
3824 if (!simple_empty(dentry))
3825 return -ENOTEMPTY;
3826
3827 drop_nlink(d_inode(dentry));
3828 drop_nlink(dir);
3829 return shmem_unlink(dir, dentry);
3830}
3831
3832static int shmem_whiteout(struct mnt_idmap *idmap,
3833 struct inode *old_dir, struct dentry *old_dentry)
3834{
3835 struct dentry *whiteout;
3836 int error;
3837
3838 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3839 if (!whiteout)
3840 return -ENOMEM;
3841
3842 error = shmem_mknod(idmap, old_dir, whiteout,
3843 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3844 dput(whiteout);
3845 if (error)
3846 return error;
3847
3848 /*
3849 * Cheat and hash the whiteout while the old dentry is still in
3850 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3851 *
3852 * d_lookup() will consistently find one of them at this point,
3853 * not sure which one, but that isn't even important.
3854 */
3855 d_rehash(whiteout);
3856 return 0;
3857}
3858
3859/*
3860 * The VFS layer already does all the dentry stuff for rename,
3861 * we just have to decrement the usage count for the target if
3862 * it exists so that the VFS layer correctly free's it when it
3863 * gets overwritten.
3864 */
3865static int shmem_rename2(struct mnt_idmap *idmap,
3866 struct inode *old_dir, struct dentry *old_dentry,
3867 struct inode *new_dir, struct dentry *new_dentry,
3868 unsigned int flags)
3869{
3870 struct inode *inode = d_inode(old_dentry);
3871 int they_are_dirs = S_ISDIR(inode->i_mode);
3872 int error;
3873
3874 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3875 return -EINVAL;
3876
3877 if (flags & RENAME_EXCHANGE)
3878 return simple_offset_rename_exchange(old_dir, old_dentry,
3879 new_dir, new_dentry);
3880
3881 if (!simple_empty(new_dentry))
3882 return -ENOTEMPTY;
3883
3884 if (flags & RENAME_WHITEOUT) {
3885 error = shmem_whiteout(idmap, old_dir, old_dentry);
3886 if (error)
3887 return error;
3888 }
3889
3890 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3891 if (error)
3892 return error;
3893
3894 if (d_really_is_positive(new_dentry)) {
3895 (void) shmem_unlink(new_dir, new_dentry);
3896 if (they_are_dirs) {
3897 drop_nlink(d_inode(new_dentry));
3898 drop_nlink(old_dir);
3899 }
3900 } else if (they_are_dirs) {
3901 drop_nlink(old_dir);
3902 inc_nlink(new_dir);
3903 }
3904
3905 old_dir->i_size -= BOGO_DIRENT_SIZE;
3906 new_dir->i_size += BOGO_DIRENT_SIZE;
3907 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3908 inode_inc_iversion(old_dir);
3909 inode_inc_iversion(new_dir);
3910 return 0;
3911}
3912
3913static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3914 struct dentry *dentry, const char *symname)
3915{
3916 int error;
3917 int len;
3918 struct inode *inode;
3919 struct folio *folio;
3920
3921 len = strlen(symname) + 1;
3922 if (len > PAGE_SIZE)
3923 return -ENAMETOOLONG;
3924
3925 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3926 VM_NORESERVE);
3927 if (IS_ERR(inode))
3928 return PTR_ERR(inode);
3929
3930 error = security_inode_init_security(inode, dir, &dentry->d_name,
3931 shmem_initxattrs, NULL);
3932 if (error && error != -EOPNOTSUPP)
3933 goto out_iput;
3934
3935 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3936 if (error)
3937 goto out_iput;
3938
3939 inode->i_size = len-1;
3940 if (len <= SHORT_SYMLINK_LEN) {
3941 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3942 if (!inode->i_link) {
3943 error = -ENOMEM;
3944 goto out_remove_offset;
3945 }
3946 inode->i_op = &shmem_short_symlink_operations;
3947 } else {
3948 inode_nohighmem(inode);
3949 inode->i_mapping->a_ops = &shmem_aops;
3950 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
3951 if (error)
3952 goto out_remove_offset;
3953 inode->i_op = &shmem_symlink_inode_operations;
3954 memcpy(folio_address(folio), symname, len);
3955 folio_mark_uptodate(folio);
3956 folio_mark_dirty(folio);
3957 folio_unlock(folio);
3958 folio_put(folio);
3959 }
3960 dir->i_size += BOGO_DIRENT_SIZE;
3961 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3962 inode_inc_iversion(dir);
3963 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3964 d_add(dentry, inode);
3965 else
3966 d_instantiate(dentry, inode);
3967 dget(dentry);
3968 return 0;
3969
3970out_remove_offset:
3971 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3972out_iput:
3973 iput(inode);
3974 return error;
3975}
3976
3977static void shmem_put_link(void *arg)
3978{
3979 folio_mark_accessed(arg);
3980 folio_put(arg);
3981}
3982
3983static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3984 struct delayed_call *done)
3985{
3986 struct folio *folio = NULL;
3987 int error;
3988
3989 if (!dentry) {
3990 folio = filemap_get_folio(inode->i_mapping, 0);
3991 if (IS_ERR(folio))
3992 return ERR_PTR(-ECHILD);
3993 if (PageHWPoison(folio_page(folio, 0)) ||
3994 !folio_test_uptodate(folio)) {
3995 folio_put(folio);
3996 return ERR_PTR(-ECHILD);
3997 }
3998 } else {
3999 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4000 if (error)
4001 return ERR_PTR(error);
4002 if (!folio)
4003 return ERR_PTR(-ECHILD);
4004 if (PageHWPoison(folio_page(folio, 0))) {
4005 folio_unlock(folio);
4006 folio_put(folio);
4007 return ERR_PTR(-ECHILD);
4008 }
4009 folio_unlock(folio);
4010 }
4011 set_delayed_call(done, shmem_put_link, folio);
4012 return folio_address(folio);
4013}
4014
4015#ifdef CONFIG_TMPFS_XATTR
4016
4017static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
4018{
4019 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4020
4021 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4022
4023 return 0;
4024}
4025
4026static int shmem_fileattr_set(struct mnt_idmap *idmap,
4027 struct dentry *dentry, struct fileattr *fa)
4028{
4029 struct inode *inode = d_inode(dentry);
4030 struct shmem_inode_info *info = SHMEM_I(inode);
4031 int ret, flags;
4032
4033 if (fileattr_has_fsx(fa))
4034 return -EOPNOTSUPP;
4035 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4036 return -EOPNOTSUPP;
4037
4038 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4039 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
4040
4041 ret = shmem_set_inode_flags(inode, flags, dentry);
4042
4043 if (ret)
4044 return ret;
4045
4046 info->fsflags = flags;
4047
4048 inode_set_ctime_current(inode);
4049 inode_inc_iversion(inode);
4050 return 0;
4051}
4052
4053/*
4054 * Superblocks without xattr inode operations may get some security.* xattr
4055 * support from the LSM "for free". As soon as we have any other xattrs
4056 * like ACLs, we also need to implement the security.* handlers at
4057 * filesystem level, though.
4058 */
4059
4060/*
4061 * Callback for security_inode_init_security() for acquiring xattrs.
4062 */
4063static int shmem_initxattrs(struct inode *inode,
4064 const struct xattr *xattr_array, void *fs_info)
4065{
4066 struct shmem_inode_info *info = SHMEM_I(inode);
4067 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4068 const struct xattr *xattr;
4069 struct simple_xattr *new_xattr;
4070 size_t ispace = 0;
4071 size_t len;
4072
4073 if (sbinfo->max_inodes) {
4074 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4075 ispace += simple_xattr_space(xattr->name,
4076 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4077 }
4078 if (ispace) {
4079 raw_spin_lock(&sbinfo->stat_lock);
4080 if (sbinfo->free_ispace < ispace)
4081 ispace = 0;
4082 else
4083 sbinfo->free_ispace -= ispace;
4084 raw_spin_unlock(&sbinfo->stat_lock);
4085 if (!ispace)
4086 return -ENOSPC;
4087 }
4088 }
4089
4090 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4091 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4092 if (!new_xattr)
4093 break;
4094
4095 len = strlen(xattr->name) + 1;
4096 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4097 GFP_KERNEL_ACCOUNT);
4098 if (!new_xattr->name) {
4099 kvfree(new_xattr);
4100 break;
4101 }
4102
4103 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4104 XATTR_SECURITY_PREFIX_LEN);
4105 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4106 xattr->name, len);
4107
4108 simple_xattr_add(&info->xattrs, new_xattr);
4109 }
4110
4111 if (xattr->name != NULL) {
4112 if (ispace) {
4113 raw_spin_lock(&sbinfo->stat_lock);
4114 sbinfo->free_ispace += ispace;
4115 raw_spin_unlock(&sbinfo->stat_lock);
4116 }
4117 simple_xattrs_free(&info->xattrs, NULL);
4118 return -ENOMEM;
4119 }
4120
4121 return 0;
4122}
4123
4124static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4125 struct dentry *unused, struct inode *inode,
4126 const char *name, void *buffer, size_t size)
4127{
4128 struct shmem_inode_info *info = SHMEM_I(inode);
4129
4130 name = xattr_full_name(handler, name);
4131 return simple_xattr_get(&info->xattrs, name, buffer, size);
4132}
4133
4134static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4135 struct mnt_idmap *idmap,
4136 struct dentry *unused, struct inode *inode,
4137 const char *name, const void *value,
4138 size_t size, int flags)
4139{
4140 struct shmem_inode_info *info = SHMEM_I(inode);
4141 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4142 struct simple_xattr *old_xattr;
4143 size_t ispace = 0;
4144
4145 name = xattr_full_name(handler, name);
4146 if (value && sbinfo->max_inodes) {
4147 ispace = simple_xattr_space(name, size);
4148 raw_spin_lock(&sbinfo->stat_lock);
4149 if (sbinfo->free_ispace < ispace)
4150 ispace = 0;
4151 else
4152 sbinfo->free_ispace -= ispace;
4153 raw_spin_unlock(&sbinfo->stat_lock);
4154 if (!ispace)
4155 return -ENOSPC;
4156 }
4157
4158 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4159 if (!IS_ERR(old_xattr)) {
4160 ispace = 0;
4161 if (old_xattr && sbinfo->max_inodes)
4162 ispace = simple_xattr_space(old_xattr->name,
4163 old_xattr->size);
4164 simple_xattr_free(old_xattr);
4165 old_xattr = NULL;
4166 inode_set_ctime_current(inode);
4167 inode_inc_iversion(inode);
4168 }
4169 if (ispace) {
4170 raw_spin_lock(&sbinfo->stat_lock);
4171 sbinfo->free_ispace += ispace;
4172 raw_spin_unlock(&sbinfo->stat_lock);
4173 }
4174 return PTR_ERR(old_xattr);
4175}
4176
4177static const struct xattr_handler shmem_security_xattr_handler = {
4178 .prefix = XATTR_SECURITY_PREFIX,
4179 .get = shmem_xattr_handler_get,
4180 .set = shmem_xattr_handler_set,
4181};
4182
4183static const struct xattr_handler shmem_trusted_xattr_handler = {
4184 .prefix = XATTR_TRUSTED_PREFIX,
4185 .get = shmem_xattr_handler_get,
4186 .set = shmem_xattr_handler_set,
4187};
4188
4189static const struct xattr_handler shmem_user_xattr_handler = {
4190 .prefix = XATTR_USER_PREFIX,
4191 .get = shmem_xattr_handler_get,
4192 .set = shmem_xattr_handler_set,
4193};
4194
4195static const struct xattr_handler * const shmem_xattr_handlers[] = {
4196 &shmem_security_xattr_handler,
4197 &shmem_trusted_xattr_handler,
4198 &shmem_user_xattr_handler,
4199 NULL
4200};
4201
4202static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4203{
4204 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4205 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4206}
4207#endif /* CONFIG_TMPFS_XATTR */
4208
4209static const struct inode_operations shmem_short_symlink_operations = {
4210 .getattr = shmem_getattr,
4211 .setattr = shmem_setattr,
4212 .get_link = simple_get_link,
4213#ifdef CONFIG_TMPFS_XATTR
4214 .listxattr = shmem_listxattr,
4215#endif
4216};
4217
4218static const struct inode_operations shmem_symlink_inode_operations = {
4219 .getattr = shmem_getattr,
4220 .setattr = shmem_setattr,
4221 .get_link = shmem_get_link,
4222#ifdef CONFIG_TMPFS_XATTR
4223 .listxattr = shmem_listxattr,
4224#endif
4225};
4226
4227static struct dentry *shmem_get_parent(struct dentry *child)
4228{
4229 return ERR_PTR(-ESTALE);
4230}
4231
4232static int shmem_match(struct inode *ino, void *vfh)
4233{
4234 __u32 *fh = vfh;
4235 __u64 inum = fh[2];
4236 inum = (inum << 32) | fh[1];
4237 return ino->i_ino == inum && fh[0] == ino->i_generation;
4238}
4239
4240/* Find any alias of inode, but prefer a hashed alias */
4241static struct dentry *shmem_find_alias(struct inode *inode)
4242{
4243 struct dentry *alias = d_find_alias(inode);
4244
4245 return alias ?: d_find_any_alias(inode);
4246}
4247
4248static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4249 struct fid *fid, int fh_len, int fh_type)
4250{
4251 struct inode *inode;
4252 struct dentry *dentry = NULL;
4253 u64 inum;
4254
4255 if (fh_len < 3)
4256 return NULL;
4257
4258 inum = fid->raw[2];
4259 inum = (inum << 32) | fid->raw[1];
4260
4261 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4262 shmem_match, fid->raw);
4263 if (inode) {
4264 dentry = shmem_find_alias(inode);
4265 iput(inode);
4266 }
4267
4268 return dentry;
4269}
4270
4271static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4272 struct inode *parent)
4273{
4274 if (*len < 3) {
4275 *len = 3;
4276 return FILEID_INVALID;
4277 }
4278
4279 if (inode_unhashed(inode)) {
4280 /* Unfortunately insert_inode_hash is not idempotent,
4281 * so as we hash inodes here rather than at creation
4282 * time, we need a lock to ensure we only try
4283 * to do it once
4284 */
4285 static DEFINE_SPINLOCK(lock);
4286 spin_lock(&lock);
4287 if (inode_unhashed(inode))
4288 __insert_inode_hash(inode,
4289 inode->i_ino + inode->i_generation);
4290 spin_unlock(&lock);
4291 }
4292
4293 fh[0] = inode->i_generation;
4294 fh[1] = inode->i_ino;
4295 fh[2] = ((__u64)inode->i_ino) >> 32;
4296
4297 *len = 3;
4298 return 1;
4299}
4300
4301static const struct export_operations shmem_export_ops = {
4302 .get_parent = shmem_get_parent,
4303 .encode_fh = shmem_encode_fh,
4304 .fh_to_dentry = shmem_fh_to_dentry,
4305};
4306
4307enum shmem_param {
4308 Opt_gid,
4309 Opt_huge,
4310 Opt_mode,
4311 Opt_mpol,
4312 Opt_nr_blocks,
4313 Opt_nr_inodes,
4314 Opt_size,
4315 Opt_uid,
4316 Opt_inode32,
4317 Opt_inode64,
4318 Opt_noswap,
4319 Opt_quota,
4320 Opt_usrquota,
4321 Opt_grpquota,
4322 Opt_usrquota_block_hardlimit,
4323 Opt_usrquota_inode_hardlimit,
4324 Opt_grpquota_block_hardlimit,
4325 Opt_grpquota_inode_hardlimit,
4326 Opt_casefold_version,
4327 Opt_casefold,
4328 Opt_strict_encoding,
4329};
4330
4331static const struct constant_table shmem_param_enums_huge[] = {
4332 {"never", SHMEM_HUGE_NEVER },
4333 {"always", SHMEM_HUGE_ALWAYS },
4334 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
4335 {"advise", SHMEM_HUGE_ADVISE },
4336 {}
4337};
4338
4339const struct fs_parameter_spec shmem_fs_parameters[] = {
4340 fsparam_gid ("gid", Opt_gid),
4341 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
4342 fsparam_u32oct("mode", Opt_mode),
4343 fsparam_string("mpol", Opt_mpol),
4344 fsparam_string("nr_blocks", Opt_nr_blocks),
4345 fsparam_string("nr_inodes", Opt_nr_inodes),
4346 fsparam_string("size", Opt_size),
4347 fsparam_uid ("uid", Opt_uid),
4348 fsparam_flag ("inode32", Opt_inode32),
4349 fsparam_flag ("inode64", Opt_inode64),
4350 fsparam_flag ("noswap", Opt_noswap),
4351#ifdef CONFIG_TMPFS_QUOTA
4352 fsparam_flag ("quota", Opt_quota),
4353 fsparam_flag ("usrquota", Opt_usrquota),
4354 fsparam_flag ("grpquota", Opt_grpquota),
4355 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4356 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4357 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4358 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4359#endif
4360 fsparam_string("casefold", Opt_casefold_version),
4361 fsparam_flag ("casefold", Opt_casefold),
4362 fsparam_flag ("strict_encoding", Opt_strict_encoding),
4363 {}
4364};
4365
4366#if IS_ENABLED(CONFIG_UNICODE)
4367static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4368 bool latest_version)
4369{
4370 struct shmem_options *ctx = fc->fs_private;
4371 int version = UTF8_LATEST;
4372 struct unicode_map *encoding;
4373 char *version_str = param->string + 5;
4374
4375 if (!latest_version) {
4376 if (strncmp(param->string, "utf8-", 5))
4377 return invalfc(fc, "Only UTF-8 encodings are supported "
4378 "in the format: utf8-<version number>");
4379
4380 version = utf8_parse_version(version_str);
4381 if (version < 0)
4382 return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4383 }
4384
4385 encoding = utf8_load(version);
4386
4387 if (IS_ERR(encoding)) {
4388 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4389 unicode_major(version), unicode_minor(version),
4390 unicode_rev(version));
4391 }
4392
4393 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4394 unicode_major(version), unicode_minor(version), unicode_rev(version));
4395
4396 ctx->encoding = encoding;
4397
4398 return 0;
4399}
4400#else
4401static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4402 bool latest_version)
4403{
4404 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4405}
4406#endif
4407
4408static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4409{
4410 struct shmem_options *ctx = fc->fs_private;
4411 struct fs_parse_result result;
4412 unsigned long long size;
4413 char *rest;
4414 int opt;
4415 kuid_t kuid;
4416 kgid_t kgid;
4417
4418 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4419 if (opt < 0)
4420 return opt;
4421
4422 switch (opt) {
4423 case Opt_size:
4424 size = memparse(param->string, &rest);
4425 if (*rest == '%') {
4426 size <<= PAGE_SHIFT;
4427 size *= totalram_pages();
4428 do_div(size, 100);
4429 rest++;
4430 }
4431 if (*rest)
4432 goto bad_value;
4433 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4434 ctx->seen |= SHMEM_SEEN_BLOCKS;
4435 break;
4436 case Opt_nr_blocks:
4437 ctx->blocks = memparse(param->string, &rest);
4438 if (*rest || ctx->blocks > LONG_MAX)
4439 goto bad_value;
4440 ctx->seen |= SHMEM_SEEN_BLOCKS;
4441 break;
4442 case Opt_nr_inodes:
4443 ctx->inodes = memparse(param->string, &rest);
4444 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4445 goto bad_value;
4446 ctx->seen |= SHMEM_SEEN_INODES;
4447 break;
4448 case Opt_mode:
4449 ctx->mode = result.uint_32 & 07777;
4450 break;
4451 case Opt_uid:
4452 kuid = result.uid;
4453
4454 /*
4455 * The requested uid must be representable in the
4456 * filesystem's idmapping.
4457 */
4458 if (!kuid_has_mapping(fc->user_ns, kuid))
4459 goto bad_value;
4460
4461 ctx->uid = kuid;
4462 break;
4463 case Opt_gid:
4464 kgid = result.gid;
4465
4466 /*
4467 * The requested gid must be representable in the
4468 * filesystem's idmapping.
4469 */
4470 if (!kgid_has_mapping(fc->user_ns, kgid))
4471 goto bad_value;
4472
4473 ctx->gid = kgid;
4474 break;
4475 case Opt_huge:
4476 ctx->huge = result.uint_32;
4477 if (ctx->huge != SHMEM_HUGE_NEVER &&
4478 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4479 has_transparent_hugepage()))
4480 goto unsupported_parameter;
4481 ctx->seen |= SHMEM_SEEN_HUGE;
4482 break;
4483 case Opt_mpol:
4484 if (IS_ENABLED(CONFIG_NUMA)) {
4485 mpol_put(ctx->mpol);
4486 ctx->mpol = NULL;
4487 if (mpol_parse_str(param->string, &ctx->mpol))
4488 goto bad_value;
4489 break;
4490 }
4491 goto unsupported_parameter;
4492 case Opt_inode32:
4493 ctx->full_inums = false;
4494 ctx->seen |= SHMEM_SEEN_INUMS;
4495 break;
4496 case Opt_inode64:
4497 if (sizeof(ino_t) < 8) {
4498 return invalfc(fc,
4499 "Cannot use inode64 with <64bit inums in kernel\n");
4500 }
4501 ctx->full_inums = true;
4502 ctx->seen |= SHMEM_SEEN_INUMS;
4503 break;
4504 case Opt_noswap:
4505 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4506 return invalfc(fc,
4507 "Turning off swap in unprivileged tmpfs mounts unsupported");
4508 }
4509 ctx->noswap = true;
4510 ctx->seen |= SHMEM_SEEN_NOSWAP;
4511 break;
4512 case Opt_quota:
4513 if (fc->user_ns != &init_user_ns)
4514 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4515 ctx->seen |= SHMEM_SEEN_QUOTA;
4516 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4517 break;
4518 case Opt_usrquota:
4519 if (fc->user_ns != &init_user_ns)
4520 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4521 ctx->seen |= SHMEM_SEEN_QUOTA;
4522 ctx->quota_types |= QTYPE_MASK_USR;
4523 break;
4524 case Opt_grpquota:
4525 if (fc->user_ns != &init_user_ns)
4526 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4527 ctx->seen |= SHMEM_SEEN_QUOTA;
4528 ctx->quota_types |= QTYPE_MASK_GRP;
4529 break;
4530 case Opt_usrquota_block_hardlimit:
4531 size = memparse(param->string, &rest);
4532 if (*rest || !size)
4533 goto bad_value;
4534 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4535 return invalfc(fc,
4536 "User quota block hardlimit too large.");
4537 ctx->qlimits.usrquota_bhardlimit = size;
4538 break;
4539 case Opt_grpquota_block_hardlimit:
4540 size = memparse(param->string, &rest);
4541 if (*rest || !size)
4542 goto bad_value;
4543 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4544 return invalfc(fc,
4545 "Group quota block hardlimit too large.");
4546 ctx->qlimits.grpquota_bhardlimit = size;
4547 break;
4548 case Opt_usrquota_inode_hardlimit:
4549 size = memparse(param->string, &rest);
4550 if (*rest || !size)
4551 goto bad_value;
4552 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4553 return invalfc(fc,
4554 "User quota inode hardlimit too large.");
4555 ctx->qlimits.usrquota_ihardlimit = size;
4556 break;
4557 case Opt_grpquota_inode_hardlimit:
4558 size = memparse(param->string, &rest);
4559 if (*rest || !size)
4560 goto bad_value;
4561 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4562 return invalfc(fc,
4563 "Group quota inode hardlimit too large.");
4564 ctx->qlimits.grpquota_ihardlimit = size;
4565 break;
4566 case Opt_casefold_version:
4567 return shmem_parse_opt_casefold(fc, param, false);
4568 case Opt_casefold:
4569 return shmem_parse_opt_casefold(fc, param, true);
4570 case Opt_strict_encoding:
4571#if IS_ENABLED(CONFIG_UNICODE)
4572 ctx->strict_encoding = true;
4573 break;
4574#else
4575 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4576#endif
4577 }
4578 return 0;
4579
4580unsupported_parameter:
4581 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4582bad_value:
4583 return invalfc(fc, "Bad value for '%s'", param->key);
4584}
4585
4586static int shmem_parse_options(struct fs_context *fc, void *data)
4587{
4588 char *options = data;
4589
4590 if (options) {
4591 int err = security_sb_eat_lsm_opts(options, &fc->security);
4592 if (err)
4593 return err;
4594 }
4595
4596 while (options != NULL) {
4597 char *this_char = options;
4598 for (;;) {
4599 /*
4600 * NUL-terminate this option: unfortunately,
4601 * mount options form a comma-separated list,
4602 * but mpol's nodelist may also contain commas.
4603 */
4604 options = strchr(options, ',');
4605 if (options == NULL)
4606 break;
4607 options++;
4608 if (!isdigit(*options)) {
4609 options[-1] = '\0';
4610 break;
4611 }
4612 }
4613 if (*this_char) {
4614 char *value = strchr(this_char, '=');
4615 size_t len = 0;
4616 int err;
4617
4618 if (value) {
4619 *value++ = '\0';
4620 len = strlen(value);
4621 }
4622 err = vfs_parse_fs_string(fc, this_char, value, len);
4623 if (err < 0)
4624 return err;
4625 }
4626 }
4627 return 0;
4628}
4629
4630/*
4631 * Reconfigure a shmem filesystem.
4632 */
4633static int shmem_reconfigure(struct fs_context *fc)
4634{
4635 struct shmem_options *ctx = fc->fs_private;
4636 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4637 unsigned long used_isp;
4638 struct mempolicy *mpol = NULL;
4639 const char *err;
4640
4641 raw_spin_lock(&sbinfo->stat_lock);
4642 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4643
4644 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4645 if (!sbinfo->max_blocks) {
4646 err = "Cannot retroactively limit size";
4647 goto out;
4648 }
4649 if (percpu_counter_compare(&sbinfo->used_blocks,
4650 ctx->blocks) > 0) {
4651 err = "Too small a size for current use";
4652 goto out;
4653 }
4654 }
4655 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4656 if (!sbinfo->max_inodes) {
4657 err = "Cannot retroactively limit inodes";
4658 goto out;
4659 }
4660 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4661 err = "Too few inodes for current use";
4662 goto out;
4663 }
4664 }
4665
4666 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4667 sbinfo->next_ino > UINT_MAX) {
4668 err = "Current inum too high to switch to 32-bit inums";
4669 goto out;
4670 }
4671 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4672 err = "Cannot disable swap on remount";
4673 goto out;
4674 }
4675 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4676 err = "Cannot enable swap on remount if it was disabled on first mount";
4677 goto out;
4678 }
4679
4680 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4681 !sb_any_quota_loaded(fc->root->d_sb)) {
4682 err = "Cannot enable quota on remount";
4683 goto out;
4684 }
4685
4686#ifdef CONFIG_TMPFS_QUOTA
4687#define CHANGED_LIMIT(name) \
4688 (ctx->qlimits.name## hardlimit && \
4689 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4690
4691 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4692 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4693 err = "Cannot change global quota limit on remount";
4694 goto out;
4695 }
4696#endif /* CONFIG_TMPFS_QUOTA */
4697
4698 if (ctx->seen & SHMEM_SEEN_HUGE)
4699 sbinfo->huge = ctx->huge;
4700 if (ctx->seen & SHMEM_SEEN_INUMS)
4701 sbinfo->full_inums = ctx->full_inums;
4702 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4703 sbinfo->max_blocks = ctx->blocks;
4704 if (ctx->seen & SHMEM_SEEN_INODES) {
4705 sbinfo->max_inodes = ctx->inodes;
4706 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4707 }
4708
4709 /*
4710 * Preserve previous mempolicy unless mpol remount option was specified.
4711 */
4712 if (ctx->mpol) {
4713 mpol = sbinfo->mpol;
4714 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4715 ctx->mpol = NULL;
4716 }
4717
4718 if (ctx->noswap)
4719 sbinfo->noswap = true;
4720
4721 raw_spin_unlock(&sbinfo->stat_lock);
4722 mpol_put(mpol);
4723 return 0;
4724out:
4725 raw_spin_unlock(&sbinfo->stat_lock);
4726 return invalfc(fc, "%s", err);
4727}
4728
4729static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4730{
4731 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4732 struct mempolicy *mpol;
4733
4734 if (sbinfo->max_blocks != shmem_default_max_blocks())
4735 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4736 if (sbinfo->max_inodes != shmem_default_max_inodes())
4737 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4738 if (sbinfo->mode != (0777 | S_ISVTX))
4739 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4740 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4741 seq_printf(seq, ",uid=%u",
4742 from_kuid_munged(&init_user_ns, sbinfo->uid));
4743 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4744 seq_printf(seq, ",gid=%u",
4745 from_kgid_munged(&init_user_ns, sbinfo->gid));
4746
4747 /*
4748 * Showing inode{64,32} might be useful even if it's the system default,
4749 * since then people don't have to resort to checking both here and
4750 * /proc/config.gz to confirm 64-bit inums were successfully applied
4751 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4752 *
4753 * We hide it when inode64 isn't the default and we are using 32-bit
4754 * inodes, since that probably just means the feature isn't even under
4755 * consideration.
4756 *
4757 * As such:
4758 *
4759 * +-----------------+-----------------+
4760 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4761 * +------------------+-----------------+-----------------+
4762 * | full_inums=true | show | show |
4763 * | full_inums=false | show | hide |
4764 * +------------------+-----------------+-----------------+
4765 *
4766 */
4767 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4768 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4769#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4770 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4771 if (sbinfo->huge)
4772 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4773#endif
4774 mpol = shmem_get_sbmpol(sbinfo);
4775 shmem_show_mpol(seq, mpol);
4776 mpol_put(mpol);
4777 if (sbinfo->noswap)
4778 seq_printf(seq, ",noswap");
4779#ifdef CONFIG_TMPFS_QUOTA
4780 if (sb_has_quota_active(root->d_sb, USRQUOTA))
4781 seq_printf(seq, ",usrquota");
4782 if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4783 seq_printf(seq, ",grpquota");
4784 if (sbinfo->qlimits.usrquota_bhardlimit)
4785 seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4786 sbinfo->qlimits.usrquota_bhardlimit);
4787 if (sbinfo->qlimits.grpquota_bhardlimit)
4788 seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4789 sbinfo->qlimits.grpquota_bhardlimit);
4790 if (sbinfo->qlimits.usrquota_ihardlimit)
4791 seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4792 sbinfo->qlimits.usrquota_ihardlimit);
4793 if (sbinfo->qlimits.grpquota_ihardlimit)
4794 seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4795 sbinfo->qlimits.grpquota_ihardlimit);
4796#endif
4797 return 0;
4798}
4799
4800#endif /* CONFIG_TMPFS */
4801
4802static void shmem_put_super(struct super_block *sb)
4803{
4804 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4805
4806#if IS_ENABLED(CONFIG_UNICODE)
4807 if (sb->s_encoding)
4808 utf8_unload(sb->s_encoding);
4809#endif
4810
4811#ifdef CONFIG_TMPFS_QUOTA
4812 shmem_disable_quotas(sb);
4813#endif
4814 free_percpu(sbinfo->ino_batch);
4815 percpu_counter_destroy(&sbinfo->used_blocks);
4816 mpol_put(sbinfo->mpol);
4817 kfree(sbinfo);
4818 sb->s_fs_info = NULL;
4819}
4820
4821#if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4822static const struct dentry_operations shmem_ci_dentry_ops = {
4823 .d_hash = generic_ci_d_hash,
4824 .d_compare = generic_ci_d_compare,
4825 .d_delete = always_delete_dentry,
4826};
4827#endif
4828
4829static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4830{
4831 struct shmem_options *ctx = fc->fs_private;
4832 struct inode *inode;
4833 struct shmem_sb_info *sbinfo;
4834 int error = -ENOMEM;
4835
4836 /* Round up to L1_CACHE_BYTES to resist false sharing */
4837 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4838 L1_CACHE_BYTES), GFP_KERNEL);
4839 if (!sbinfo)
4840 return error;
4841
4842 sb->s_fs_info = sbinfo;
4843
4844#ifdef CONFIG_TMPFS
4845 /*
4846 * Per default we only allow half of the physical ram per
4847 * tmpfs instance, limiting inodes to one per page of lowmem;
4848 * but the internal instance is left unlimited.
4849 */
4850 if (!(sb->s_flags & SB_KERNMOUNT)) {
4851 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4852 ctx->blocks = shmem_default_max_blocks();
4853 if (!(ctx->seen & SHMEM_SEEN_INODES))
4854 ctx->inodes = shmem_default_max_inodes();
4855 if (!(ctx->seen & SHMEM_SEEN_INUMS))
4856 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4857 sbinfo->noswap = ctx->noswap;
4858 } else {
4859 sb->s_flags |= SB_NOUSER;
4860 }
4861 sb->s_export_op = &shmem_export_ops;
4862 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4863
4864#if IS_ENABLED(CONFIG_UNICODE)
4865 if (!ctx->encoding && ctx->strict_encoding) {
4866 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
4867 error = -EINVAL;
4868 goto failed;
4869 }
4870
4871 if (ctx->encoding) {
4872 sb->s_encoding = ctx->encoding;
4873 sb->s_d_op = &shmem_ci_dentry_ops;
4874 if (ctx->strict_encoding)
4875 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
4876 }
4877#endif
4878
4879#else
4880 sb->s_flags |= SB_NOUSER;
4881#endif /* CONFIG_TMPFS */
4882 sbinfo->max_blocks = ctx->blocks;
4883 sbinfo->max_inodes = ctx->inodes;
4884 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4885 if (sb->s_flags & SB_KERNMOUNT) {
4886 sbinfo->ino_batch = alloc_percpu(ino_t);
4887 if (!sbinfo->ino_batch)
4888 goto failed;
4889 }
4890 sbinfo->uid = ctx->uid;
4891 sbinfo->gid = ctx->gid;
4892 sbinfo->full_inums = ctx->full_inums;
4893 sbinfo->mode = ctx->mode;
4894 sbinfo->huge = ctx->huge;
4895 sbinfo->mpol = ctx->mpol;
4896 ctx->mpol = NULL;
4897
4898 raw_spin_lock_init(&sbinfo->stat_lock);
4899 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4900 goto failed;
4901 spin_lock_init(&sbinfo->shrinklist_lock);
4902 INIT_LIST_HEAD(&sbinfo->shrinklist);
4903
4904 sb->s_maxbytes = MAX_LFS_FILESIZE;
4905 sb->s_blocksize = PAGE_SIZE;
4906 sb->s_blocksize_bits = PAGE_SHIFT;
4907 sb->s_magic = TMPFS_MAGIC;
4908 sb->s_op = &shmem_ops;
4909 sb->s_time_gran = 1;
4910#ifdef CONFIG_TMPFS_XATTR
4911 sb->s_xattr = shmem_xattr_handlers;
4912#endif
4913#ifdef CONFIG_TMPFS_POSIX_ACL
4914 sb->s_flags |= SB_POSIXACL;
4915#endif
4916 uuid_t uuid;
4917 uuid_gen(&uuid);
4918 super_set_uuid(sb, uuid.b, sizeof(uuid));
4919
4920#ifdef CONFIG_TMPFS_QUOTA
4921 if (ctx->seen & SHMEM_SEEN_QUOTA) {
4922 sb->dq_op = &shmem_quota_operations;
4923 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4924 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4925
4926 /* Copy the default limits from ctx into sbinfo */
4927 memcpy(&sbinfo->qlimits, &ctx->qlimits,
4928 sizeof(struct shmem_quota_limits));
4929
4930 if (shmem_enable_quotas(sb, ctx->quota_types))
4931 goto failed;
4932 }
4933#endif /* CONFIG_TMPFS_QUOTA */
4934
4935 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4936 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4937 if (IS_ERR(inode)) {
4938 error = PTR_ERR(inode);
4939 goto failed;
4940 }
4941 inode->i_uid = sbinfo->uid;
4942 inode->i_gid = sbinfo->gid;
4943 sb->s_root = d_make_root(inode);
4944 if (!sb->s_root)
4945 goto failed;
4946 return 0;
4947
4948failed:
4949 shmem_put_super(sb);
4950 return error;
4951}
4952
4953static int shmem_get_tree(struct fs_context *fc)
4954{
4955 return get_tree_nodev(fc, shmem_fill_super);
4956}
4957
4958static void shmem_free_fc(struct fs_context *fc)
4959{
4960 struct shmem_options *ctx = fc->fs_private;
4961
4962 if (ctx) {
4963 mpol_put(ctx->mpol);
4964 kfree(ctx);
4965 }
4966}
4967
4968static const struct fs_context_operations shmem_fs_context_ops = {
4969 .free = shmem_free_fc,
4970 .get_tree = shmem_get_tree,
4971#ifdef CONFIG_TMPFS
4972 .parse_monolithic = shmem_parse_options,
4973 .parse_param = shmem_parse_one,
4974 .reconfigure = shmem_reconfigure,
4975#endif
4976};
4977
4978static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4979
4980static struct inode *shmem_alloc_inode(struct super_block *sb)
4981{
4982 struct shmem_inode_info *info;
4983 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4984 if (!info)
4985 return NULL;
4986 return &info->vfs_inode;
4987}
4988
4989static void shmem_free_in_core_inode(struct inode *inode)
4990{
4991 if (S_ISLNK(inode->i_mode))
4992 kfree(inode->i_link);
4993 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4994}
4995
4996static void shmem_destroy_inode(struct inode *inode)
4997{
4998 if (S_ISREG(inode->i_mode))
4999 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5000 if (S_ISDIR(inode->i_mode))
5001 simple_offset_destroy(shmem_get_offset_ctx(inode));
5002}
5003
5004static void shmem_init_inode(void *foo)
5005{
5006 struct shmem_inode_info *info = foo;
5007 inode_init_once(&info->vfs_inode);
5008}
5009
5010static void __init shmem_init_inodecache(void)
5011{
5012 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5013 sizeof(struct shmem_inode_info),
5014 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5015}
5016
5017static void __init shmem_destroy_inodecache(void)
5018{
5019 kmem_cache_destroy(shmem_inode_cachep);
5020}
5021
5022/* Keep the page in page cache instead of truncating it */
5023static int shmem_error_remove_folio(struct address_space *mapping,
5024 struct folio *folio)
5025{
5026 return 0;
5027}
5028
5029static const struct address_space_operations shmem_aops = {
5030 .writepage = shmem_writepage,
5031 .dirty_folio = noop_dirty_folio,
5032#ifdef CONFIG_TMPFS
5033 .write_begin = shmem_write_begin,
5034 .write_end = shmem_write_end,
5035#endif
5036#ifdef CONFIG_MIGRATION
5037 .migrate_folio = migrate_folio,
5038#endif
5039 .error_remove_folio = shmem_error_remove_folio,
5040};
5041
5042static const struct file_operations shmem_file_operations = {
5043 .mmap = shmem_mmap,
5044 .open = shmem_file_open,
5045 .get_unmapped_area = shmem_get_unmapped_area,
5046#ifdef CONFIG_TMPFS
5047 .llseek = shmem_file_llseek,
5048 .read_iter = shmem_file_read_iter,
5049 .write_iter = shmem_file_write_iter,
5050 .fsync = noop_fsync,
5051 .splice_read = shmem_file_splice_read,
5052 .splice_write = iter_file_splice_write,
5053 .fallocate = shmem_fallocate,
5054#endif
5055};
5056
5057static const struct inode_operations shmem_inode_operations = {
5058 .getattr = shmem_getattr,
5059 .setattr = shmem_setattr,
5060#ifdef CONFIG_TMPFS_XATTR
5061 .listxattr = shmem_listxattr,
5062 .set_acl = simple_set_acl,
5063 .fileattr_get = shmem_fileattr_get,
5064 .fileattr_set = shmem_fileattr_set,
5065#endif
5066};
5067
5068static const struct inode_operations shmem_dir_inode_operations = {
5069#ifdef CONFIG_TMPFS
5070 .getattr = shmem_getattr,
5071 .create = shmem_create,
5072 .lookup = simple_lookup,
5073 .link = shmem_link,
5074 .unlink = shmem_unlink,
5075 .symlink = shmem_symlink,
5076 .mkdir = shmem_mkdir,
5077 .rmdir = shmem_rmdir,
5078 .mknod = shmem_mknod,
5079 .rename = shmem_rename2,
5080 .tmpfile = shmem_tmpfile,
5081 .get_offset_ctx = shmem_get_offset_ctx,
5082#endif
5083#ifdef CONFIG_TMPFS_XATTR
5084 .listxattr = shmem_listxattr,
5085 .fileattr_get = shmem_fileattr_get,
5086 .fileattr_set = shmem_fileattr_set,
5087#endif
5088#ifdef CONFIG_TMPFS_POSIX_ACL
5089 .setattr = shmem_setattr,
5090 .set_acl = simple_set_acl,
5091#endif
5092};
5093
5094static const struct inode_operations shmem_special_inode_operations = {
5095 .getattr = shmem_getattr,
5096#ifdef CONFIG_TMPFS_XATTR
5097 .listxattr = shmem_listxattr,
5098#endif
5099#ifdef CONFIG_TMPFS_POSIX_ACL
5100 .setattr = shmem_setattr,
5101 .set_acl = simple_set_acl,
5102#endif
5103};
5104
5105static const struct super_operations shmem_ops = {
5106 .alloc_inode = shmem_alloc_inode,
5107 .free_inode = shmem_free_in_core_inode,
5108 .destroy_inode = shmem_destroy_inode,
5109#ifdef CONFIG_TMPFS
5110 .statfs = shmem_statfs,
5111 .show_options = shmem_show_options,
5112#endif
5113#ifdef CONFIG_TMPFS_QUOTA
5114 .get_dquots = shmem_get_dquots,
5115#endif
5116 .evict_inode = shmem_evict_inode,
5117 .drop_inode = generic_delete_inode,
5118 .put_super = shmem_put_super,
5119#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5120 .nr_cached_objects = shmem_unused_huge_count,
5121 .free_cached_objects = shmem_unused_huge_scan,
5122#endif
5123};
5124
5125static const struct vm_operations_struct shmem_vm_ops = {
5126 .fault = shmem_fault,
5127 .map_pages = filemap_map_pages,
5128#ifdef CONFIG_NUMA
5129 .set_policy = shmem_set_policy,
5130 .get_policy = shmem_get_policy,
5131#endif
5132};
5133
5134static const struct vm_operations_struct shmem_anon_vm_ops = {
5135 .fault = shmem_fault,
5136 .map_pages = filemap_map_pages,
5137#ifdef CONFIG_NUMA
5138 .set_policy = shmem_set_policy,
5139 .get_policy = shmem_get_policy,
5140#endif
5141};
5142
5143int shmem_init_fs_context(struct fs_context *fc)
5144{
5145 struct shmem_options *ctx;
5146
5147 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5148 if (!ctx)
5149 return -ENOMEM;
5150
5151 ctx->mode = 0777 | S_ISVTX;
5152 ctx->uid = current_fsuid();
5153 ctx->gid = current_fsgid();
5154
5155#if IS_ENABLED(CONFIG_UNICODE)
5156 ctx->encoding = NULL;
5157#endif
5158
5159 fc->fs_private = ctx;
5160 fc->ops = &shmem_fs_context_ops;
5161 return 0;
5162}
5163
5164static struct file_system_type shmem_fs_type = {
5165 .owner = THIS_MODULE,
5166 .name = "tmpfs",
5167 .init_fs_context = shmem_init_fs_context,
5168#ifdef CONFIG_TMPFS
5169 .parameters = shmem_fs_parameters,
5170#endif
5171 .kill_sb = kill_litter_super,
5172 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5173};
5174
5175#if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5176
5177#define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \
5178{ \
5179 .attr = { .name = __stringify(_name), .mode = _mode }, \
5180 .show = _show, \
5181 .store = _store, \
5182}
5183
5184#define TMPFS_ATTR_W(_name, _store) \
5185 static struct kobj_attribute tmpfs_attr_##_name = \
5186 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5187
5188#define TMPFS_ATTR_RW(_name, _show, _store) \
5189 static struct kobj_attribute tmpfs_attr_##_name = \
5190 __INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5191
5192#define TMPFS_ATTR_RO(_name, _show) \
5193 static struct kobj_attribute tmpfs_attr_##_name = \
5194 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5195
5196#if IS_ENABLED(CONFIG_UNICODE)
5197static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5198 char *buf)
5199{
5200 return sysfs_emit(buf, "supported\n");
5201}
5202TMPFS_ATTR_RO(casefold, casefold_show);
5203#endif
5204
5205static struct attribute *tmpfs_attributes[] = {
5206#if IS_ENABLED(CONFIG_UNICODE)
5207 &tmpfs_attr_casefold.attr,
5208#endif
5209 NULL
5210};
5211
5212static const struct attribute_group tmpfs_attribute_group = {
5213 .attrs = tmpfs_attributes,
5214 .name = "features"
5215};
5216
5217static struct kobject *tmpfs_kobj;
5218
5219static int __init tmpfs_sysfs_init(void)
5220{
5221 int ret;
5222
5223 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5224 if (!tmpfs_kobj)
5225 return -ENOMEM;
5226
5227 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5228 if (ret)
5229 kobject_put(tmpfs_kobj);
5230
5231 return ret;
5232}
5233#endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5234
5235void __init shmem_init(void)
5236{
5237 int error;
5238
5239 shmem_init_inodecache();
5240
5241#ifdef CONFIG_TMPFS_QUOTA
5242 register_quota_format(&shmem_quota_format);
5243#endif
5244
5245 error = register_filesystem(&shmem_fs_type);
5246 if (error) {
5247 pr_err("Could not register tmpfs\n");
5248 goto out2;
5249 }
5250
5251 shm_mnt = kern_mount(&shmem_fs_type);
5252 if (IS_ERR(shm_mnt)) {
5253 error = PTR_ERR(shm_mnt);
5254 pr_err("Could not kern_mount tmpfs\n");
5255 goto out1;
5256 }
5257
5258#if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5259 error = tmpfs_sysfs_init();
5260 if (error) {
5261 pr_err("Could not init tmpfs sysfs\n");
5262 goto out1;
5263 }
5264#endif
5265
5266#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5267 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5268 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5269 else
5270 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5271
5272 /*
5273 * Default to setting PMD-sized THP to inherit the global setting and
5274 * disable all other multi-size THPs.
5275 */
5276 if (!shmem_orders_configured)
5277 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5278#endif
5279 return;
5280
5281out1:
5282 unregister_filesystem(&shmem_fs_type);
5283out2:
5284#ifdef CONFIG_TMPFS_QUOTA
5285 unregister_quota_format(&shmem_quota_format);
5286#endif
5287 shmem_destroy_inodecache();
5288 shm_mnt = ERR_PTR(error);
5289}
5290
5291#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5292static ssize_t shmem_enabled_show(struct kobject *kobj,
5293 struct kobj_attribute *attr, char *buf)
5294{
5295 static const int values[] = {
5296 SHMEM_HUGE_ALWAYS,
5297 SHMEM_HUGE_WITHIN_SIZE,
5298 SHMEM_HUGE_ADVISE,
5299 SHMEM_HUGE_NEVER,
5300 SHMEM_HUGE_DENY,
5301 SHMEM_HUGE_FORCE,
5302 };
5303 int len = 0;
5304 int i;
5305
5306 for (i = 0; i < ARRAY_SIZE(values); i++) {
5307 len += sysfs_emit_at(buf, len,
5308 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5309 i ? " " : "", shmem_format_huge(values[i]));
5310 }
5311 len += sysfs_emit_at(buf, len, "\n");
5312
5313 return len;
5314}
5315
5316static ssize_t shmem_enabled_store(struct kobject *kobj,
5317 struct kobj_attribute *attr, const char *buf, size_t count)
5318{
5319 char tmp[16];
5320 int huge, err;
5321
5322 if (count + 1 > sizeof(tmp))
5323 return -EINVAL;
5324 memcpy(tmp, buf, count);
5325 tmp[count] = '\0';
5326 if (count && tmp[count - 1] == '\n')
5327 tmp[count - 1] = '\0';
5328
5329 huge = shmem_parse_huge(tmp);
5330 if (huge == -EINVAL)
5331 return huge;
5332
5333 shmem_huge = huge;
5334 if (shmem_huge > SHMEM_HUGE_DENY)
5335 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5336
5337 err = start_stop_khugepaged();
5338 return err ? err : count;
5339}
5340
5341struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5342static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5343
5344static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5345 struct kobj_attribute *attr, char *buf)
5346{
5347 int order = to_thpsize(kobj)->order;
5348 const char *output;
5349
5350 if (test_bit(order, &huge_shmem_orders_always))
5351 output = "[always] inherit within_size advise never";
5352 else if (test_bit(order, &huge_shmem_orders_inherit))
5353 output = "always [inherit] within_size advise never";
5354 else if (test_bit(order, &huge_shmem_orders_within_size))
5355 output = "always inherit [within_size] advise never";
5356 else if (test_bit(order, &huge_shmem_orders_madvise))
5357 output = "always inherit within_size [advise] never";
5358 else
5359 output = "always inherit within_size advise [never]";
5360
5361 return sysfs_emit(buf, "%s\n", output);
5362}
5363
5364static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5365 struct kobj_attribute *attr,
5366 const char *buf, size_t count)
5367{
5368 int order = to_thpsize(kobj)->order;
5369 ssize_t ret = count;
5370
5371 if (sysfs_streq(buf, "always")) {
5372 spin_lock(&huge_shmem_orders_lock);
5373 clear_bit(order, &huge_shmem_orders_inherit);
5374 clear_bit(order, &huge_shmem_orders_madvise);
5375 clear_bit(order, &huge_shmem_orders_within_size);
5376 set_bit(order, &huge_shmem_orders_always);
5377 spin_unlock(&huge_shmem_orders_lock);
5378 } else if (sysfs_streq(buf, "inherit")) {
5379 /* Do not override huge allocation policy with non-PMD sized mTHP */
5380 if (shmem_huge == SHMEM_HUGE_FORCE &&
5381 order != HPAGE_PMD_ORDER)
5382 return -EINVAL;
5383
5384 spin_lock(&huge_shmem_orders_lock);
5385 clear_bit(order, &huge_shmem_orders_always);
5386 clear_bit(order, &huge_shmem_orders_madvise);
5387 clear_bit(order, &huge_shmem_orders_within_size);
5388 set_bit(order, &huge_shmem_orders_inherit);
5389 spin_unlock(&huge_shmem_orders_lock);
5390 } else if (sysfs_streq(buf, "within_size")) {
5391 spin_lock(&huge_shmem_orders_lock);
5392 clear_bit(order, &huge_shmem_orders_always);
5393 clear_bit(order, &huge_shmem_orders_inherit);
5394 clear_bit(order, &huge_shmem_orders_madvise);
5395 set_bit(order, &huge_shmem_orders_within_size);
5396 spin_unlock(&huge_shmem_orders_lock);
5397 } else if (sysfs_streq(buf, "advise")) {
5398 spin_lock(&huge_shmem_orders_lock);
5399 clear_bit(order, &huge_shmem_orders_always);
5400 clear_bit(order, &huge_shmem_orders_inherit);
5401 clear_bit(order, &huge_shmem_orders_within_size);
5402 set_bit(order, &huge_shmem_orders_madvise);
5403 spin_unlock(&huge_shmem_orders_lock);
5404 } else if (sysfs_streq(buf, "never")) {
5405 spin_lock(&huge_shmem_orders_lock);
5406 clear_bit(order, &huge_shmem_orders_always);
5407 clear_bit(order, &huge_shmem_orders_inherit);
5408 clear_bit(order, &huge_shmem_orders_within_size);
5409 clear_bit(order, &huge_shmem_orders_madvise);
5410 spin_unlock(&huge_shmem_orders_lock);
5411 } else {
5412 ret = -EINVAL;
5413 }
5414
5415 if (ret > 0) {
5416 int err = start_stop_khugepaged();
5417
5418 if (err)
5419 ret = err;
5420 }
5421 return ret;
5422}
5423
5424struct kobj_attribute thpsize_shmem_enabled_attr =
5425 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5426#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5427
5428#if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5429
5430static int __init setup_transparent_hugepage_shmem(char *str)
5431{
5432 int huge;
5433
5434 huge = shmem_parse_huge(str);
5435 if (huge == -EINVAL) {
5436 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5437 return huge;
5438 }
5439
5440 shmem_huge = huge;
5441 return 1;
5442}
5443__setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5444
5445static char str_dup[PAGE_SIZE] __initdata;
5446static int __init setup_thp_shmem(char *str)
5447{
5448 char *token, *range, *policy, *subtoken;
5449 unsigned long always, inherit, madvise, within_size;
5450 char *start_size, *end_size;
5451 int start, end, nr;
5452 char *p;
5453
5454 if (!str || strlen(str) + 1 > PAGE_SIZE)
5455 goto err;
5456 strscpy(str_dup, str);
5457
5458 always = huge_shmem_orders_always;
5459 inherit = huge_shmem_orders_inherit;
5460 madvise = huge_shmem_orders_madvise;
5461 within_size = huge_shmem_orders_within_size;
5462 p = str_dup;
5463 while ((token = strsep(&p, ";")) != NULL) {
5464 range = strsep(&token, ":");
5465 policy = token;
5466
5467 if (!policy)
5468 goto err;
5469
5470 while ((subtoken = strsep(&range, ",")) != NULL) {
5471 if (strchr(subtoken, '-')) {
5472 start_size = strsep(&subtoken, "-");
5473 end_size = subtoken;
5474
5475 start = get_order_from_str(start_size,
5476 THP_ORDERS_ALL_FILE_DEFAULT);
5477 end = get_order_from_str(end_size,
5478 THP_ORDERS_ALL_FILE_DEFAULT);
5479 } else {
5480 start_size = end_size = subtoken;
5481 start = end = get_order_from_str(subtoken,
5482 THP_ORDERS_ALL_FILE_DEFAULT);
5483 }
5484
5485 if (start == -EINVAL) {
5486 pr_err("invalid size %s in thp_shmem boot parameter\n",
5487 start_size);
5488 goto err;
5489 }
5490
5491 if (end == -EINVAL) {
5492 pr_err("invalid size %s in thp_shmem boot parameter\n",
5493 end_size);
5494 goto err;
5495 }
5496
5497 if (start < 0 || end < 0 || start > end)
5498 goto err;
5499
5500 nr = end - start + 1;
5501 if (!strcmp(policy, "always")) {
5502 bitmap_set(&always, start, nr);
5503 bitmap_clear(&inherit, start, nr);
5504 bitmap_clear(&madvise, start, nr);
5505 bitmap_clear(&within_size, start, nr);
5506 } else if (!strcmp(policy, "advise")) {
5507 bitmap_set(&madvise, start, nr);
5508 bitmap_clear(&inherit, start, nr);
5509 bitmap_clear(&always, start, nr);
5510 bitmap_clear(&within_size, start, nr);
5511 } else if (!strcmp(policy, "inherit")) {
5512 bitmap_set(&inherit, start, nr);
5513 bitmap_clear(&madvise, start, nr);
5514 bitmap_clear(&always, start, nr);
5515 bitmap_clear(&within_size, start, nr);
5516 } else if (!strcmp(policy, "within_size")) {
5517 bitmap_set(&within_size, start, nr);
5518 bitmap_clear(&inherit, start, nr);
5519 bitmap_clear(&madvise, start, nr);
5520 bitmap_clear(&always, start, nr);
5521 } else if (!strcmp(policy, "never")) {
5522 bitmap_clear(&inherit, start, nr);
5523 bitmap_clear(&madvise, start, nr);
5524 bitmap_clear(&always, start, nr);
5525 bitmap_clear(&within_size, start, nr);
5526 } else {
5527 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5528 goto err;
5529 }
5530 }
5531 }
5532
5533 huge_shmem_orders_always = always;
5534 huge_shmem_orders_madvise = madvise;
5535 huge_shmem_orders_inherit = inherit;
5536 huge_shmem_orders_within_size = within_size;
5537 shmem_orders_configured = true;
5538 return 1;
5539
5540err:
5541 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5542 return 0;
5543}
5544__setup("thp_shmem=", setup_thp_shmem);
5545
5546#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5547
5548#else /* !CONFIG_SHMEM */
5549
5550/*
5551 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5552 *
5553 * This is intended for small system where the benefits of the full
5554 * shmem code (swap-backed and resource-limited) are outweighed by
5555 * their complexity. On systems without swap this code should be
5556 * effectively equivalent, but much lighter weight.
5557 */
5558
5559static struct file_system_type shmem_fs_type = {
5560 .name = "tmpfs",
5561 .init_fs_context = ramfs_init_fs_context,
5562 .parameters = ramfs_fs_parameters,
5563 .kill_sb = ramfs_kill_sb,
5564 .fs_flags = FS_USERNS_MOUNT,
5565};
5566
5567void __init shmem_init(void)
5568{
5569 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5570
5571 shm_mnt = kern_mount(&shmem_fs_type);
5572 BUG_ON(IS_ERR(shm_mnt));
5573}
5574
5575int shmem_unuse(unsigned int type)
5576{
5577 return 0;
5578}
5579
5580int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5581{
5582 return 0;
5583}
5584
5585void shmem_unlock_mapping(struct address_space *mapping)
5586{
5587}
5588
5589#ifdef CONFIG_MMU
5590unsigned long shmem_get_unmapped_area(struct file *file,
5591 unsigned long addr, unsigned long len,
5592 unsigned long pgoff, unsigned long flags)
5593{
5594 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5595}
5596#endif
5597
5598void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5599{
5600 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5601}
5602EXPORT_SYMBOL_GPL(shmem_truncate_range);
5603
5604#define shmem_vm_ops generic_file_vm_ops
5605#define shmem_anon_vm_ops generic_file_vm_ops
5606#define shmem_file_operations ramfs_file_operations
5607#define shmem_acct_size(flags, size) 0
5608#define shmem_unacct_size(flags, size) do {} while (0)
5609
5610static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5611 struct super_block *sb, struct inode *dir,
5612 umode_t mode, dev_t dev, unsigned long flags)
5613{
5614 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5615 return inode ? inode : ERR_PTR(-ENOSPC);
5616}
5617
5618#endif /* CONFIG_SHMEM */
5619
5620/* common code */
5621
5622static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5623 loff_t size, unsigned long flags, unsigned int i_flags)
5624{
5625 struct inode *inode;
5626 struct file *res;
5627
5628 if (IS_ERR(mnt))
5629 return ERR_CAST(mnt);
5630
5631 if (size < 0 || size > MAX_LFS_FILESIZE)
5632 return ERR_PTR(-EINVAL);
5633
5634 if (shmem_acct_size(flags, size))
5635 return ERR_PTR(-ENOMEM);
5636
5637 if (is_idmapped_mnt(mnt))
5638 return ERR_PTR(-EINVAL);
5639
5640 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5641 S_IFREG | S_IRWXUGO, 0, flags);
5642 if (IS_ERR(inode)) {
5643 shmem_unacct_size(flags, size);
5644 return ERR_CAST(inode);
5645 }
5646 inode->i_flags |= i_flags;
5647 inode->i_size = size;
5648 clear_nlink(inode); /* It is unlinked */
5649 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5650 if (!IS_ERR(res))
5651 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5652 &shmem_file_operations);
5653 if (IS_ERR(res))
5654 iput(inode);
5655 return res;
5656}
5657
5658/**
5659 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5660 * kernel internal. There will be NO LSM permission checks against the
5661 * underlying inode. So users of this interface must do LSM checks at a
5662 * higher layer. The users are the big_key and shm implementations. LSM
5663 * checks are provided at the key or shm level rather than the inode.
5664 * @name: name for dentry (to be seen in /proc/<pid>/maps
5665 * @size: size to be set for the file
5666 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5667 */
5668struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5669{
5670 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5671}
5672EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5673
5674/**
5675 * shmem_file_setup - get an unlinked file living in tmpfs
5676 * @name: name for dentry (to be seen in /proc/<pid>/maps
5677 * @size: size to be set for the file
5678 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5679 */
5680struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5681{
5682 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5683}
5684EXPORT_SYMBOL_GPL(shmem_file_setup);
5685
5686/**
5687 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5688 * @mnt: the tmpfs mount where the file will be created
5689 * @name: name for dentry (to be seen in /proc/<pid>/maps
5690 * @size: size to be set for the file
5691 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5692 */
5693struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5694 loff_t size, unsigned long flags)
5695{
5696 return __shmem_file_setup(mnt, name, size, flags, 0);
5697}
5698EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5699
5700/**
5701 * shmem_zero_setup - setup a shared anonymous mapping
5702 * @vma: the vma to be mmapped is prepared by do_mmap
5703 */
5704int shmem_zero_setup(struct vm_area_struct *vma)
5705{
5706 struct file *file;
5707 loff_t size = vma->vm_end - vma->vm_start;
5708
5709 /*
5710 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5711 * between XFS directory reading and selinux: since this file is only
5712 * accessible to the user through its mapping, use S_PRIVATE flag to
5713 * bypass file security, in the same way as shmem_kernel_file_setup().
5714 */
5715 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5716 if (IS_ERR(file))
5717 return PTR_ERR(file);
5718
5719 if (vma->vm_file)
5720 fput(vma->vm_file);
5721 vma->vm_file = file;
5722 vma->vm_ops = &shmem_anon_vm_ops;
5723
5724 return 0;
5725}
5726
5727/**
5728 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5729 * @mapping: the folio's address_space
5730 * @index: the folio index
5731 * @gfp: the page allocator flags to use if allocating
5732 *
5733 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5734 * with any new page allocations done using the specified allocation flags.
5735 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5736 * suit tmpfs, since it may have pages in swapcache, and needs to find those
5737 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5738 *
5739 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5740 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5741 */
5742struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5743 pgoff_t index, gfp_t gfp)
5744{
5745#ifdef CONFIG_SHMEM
5746 struct inode *inode = mapping->host;
5747 struct folio *folio;
5748 int error;
5749
5750 error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5751 gfp, NULL, NULL);
5752 if (error)
5753 return ERR_PTR(error);
5754
5755 folio_unlock(folio);
5756 return folio;
5757#else
5758 /*
5759 * The tiny !SHMEM case uses ramfs without swap
5760 */
5761 return mapping_read_folio_gfp(mapping, index, gfp);
5762#endif
5763}
5764EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5765
5766struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5767 pgoff_t index, gfp_t gfp)
5768{
5769 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5770 struct page *page;
5771
5772 if (IS_ERR(folio))
5773 return &folio->page;
5774
5775 page = folio_file_page(folio, index);
5776 if (PageHWPoison(page)) {
5777 folio_put(folio);
5778 return ERR_PTR(-EIO);
5779 }
5780
5781 return page;
5782}
5783EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);