Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NTP state machine interfaces and logic.
   4 *
   5 * This code was mainly moved from kernel/timer.c and kernel/time.c
   6 * Please see those files for relevant copyright info and historical
   7 * changelogs.
   8 */
   9#include <linux/capability.h>
  10#include <linux/clocksource.h>
  11#include <linux/workqueue.h>
  12#include <linux/hrtimer.h>
  13#include <linux/jiffies.h>
  14#include <linux/math64.h>
  15#include <linux/timex.h>
  16#include <linux/time.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/rtc.h>
  20#include <linux/math64.h>
  21
  22#include "ntp_internal.h"
  23#include "timekeeping_internal.h"
  24
  25
  26/*
  27 * NTP timekeeping variables:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  28 *
  29 * Note: All of the NTP state is protected by the timekeeping locks.
 
 
 
 
 
 
 
 
 
 
 
 
 
  30 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  31
  32
  33/* USER_HZ period (usecs): */
  34unsigned long			tick_usec = USER_TICK_USEC;
  35
  36/* SHIFTED_HZ period (nsecs): */
  37unsigned long			tick_nsec;
  38
  39static u64			tick_length;
  40static u64			tick_length_base;
  41
  42#define SECS_PER_DAY		86400
  43#define MAX_TICKADJ		500LL		/* usecs */
  44#define MAX_TICKADJ_SCALED \
  45	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
  46
  47/*
  48 * phase-lock loop variables
  49 */
  50
  51/*
  52 * clock synchronization status
  53 *
  54 * (TIME_ERROR prevents overwriting the CMOS clock)
  55 */
  56static int			time_state = TIME_OK;
  57
  58/* clock status bits:							*/
  59static int			time_status = STA_UNSYNC;
  60
  61/* time adjustment (nsecs):						*/
  62static s64			time_offset;
  63
  64/* pll time constant:							*/
  65static long			time_constant = 2;
  66
  67/* maximum error (usecs):						*/
  68static long			time_maxerror = NTP_PHASE_LIMIT;
  69
  70/* estimated error (usecs):						*/
  71static long			time_esterror = NTP_PHASE_LIMIT;
  72
  73/* frequency offset (scaled nsecs/secs):				*/
  74static s64			time_freq;
  75
  76/* time at last adjustment (secs):					*/
  77static time64_t		time_reftime;
  78
  79static long			time_adjust;
  80
  81/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
  82static s64			ntp_tick_adj;
  83
  84/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
  85static time64_t			ntp_next_leap_sec = TIME64_MAX;
  86
  87#ifdef CONFIG_NTP_PPS
  88
  89/*
  90 * The following variables are used when a pulse-per-second (PPS) signal
  91 * is available. They establish the engineering parameters of the clock
  92 * discipline loop when controlled by the PPS signal.
  93 */
  94#define PPS_VALID	10	/* PPS signal watchdog max (s) */
  95#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
  96#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
  97#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
  98#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
  99				   increase pps_shift or consecutive bad
 100				   intervals to decrease it */
 101#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
 102
 103static int pps_valid;		/* signal watchdog counter */
 104static long pps_tf[3];		/* phase median filter */
 105static long pps_jitter;		/* current jitter (ns) */
 106static struct timespec64 pps_fbase; /* beginning of the last freq interval */
 107static int pps_shift;		/* current interval duration (s) (shift) */
 108static int pps_intcnt;		/* interval counter */
 109static s64 pps_freq;		/* frequency offset (scaled ns/s) */
 110static long pps_stabil;		/* current stability (scaled ns/s) */
 111
 112/*
 113 * PPS signal quality monitors
 114 */
 115static long pps_calcnt;		/* calibration intervals */
 116static long pps_jitcnt;		/* jitter limit exceeded */
 117static long pps_stbcnt;		/* stability limit exceeded */
 118static long pps_errcnt;		/* calibration errors */
 119
 120
 121/* PPS kernel consumer compensates the whole phase error immediately.
 122 * Otherwise, reduce the offset by a fixed factor times the time constant.
 123 */
 124static inline s64 ntp_offset_chunk(s64 offset)
 125{
 126	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
 127		return offset;
 128	else
 129		return shift_right(offset, SHIFT_PLL + time_constant);
 130}
 131
 132static inline void pps_reset_freq_interval(void)
 133{
 134	/* the PPS calibration interval may end
 135	   surprisingly early */
 136	pps_shift = PPS_INTMIN;
 137	pps_intcnt = 0;
 138}
 139
 140/**
 141 * pps_clear - Clears the PPS state variables
 
 142 */
 143static inline void pps_clear(void)
 144{
 145	pps_reset_freq_interval();
 146	pps_tf[0] = 0;
 147	pps_tf[1] = 0;
 148	pps_tf[2] = 0;
 149	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
 150	pps_freq = 0;
 151}
 152
 153/* Decrease pps_valid to indicate that another second has passed since
 154 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 155 * missing.
 156 */
 157static inline void pps_dec_valid(void)
 158{
 159	if (pps_valid > 0)
 160		pps_valid--;
 161	else {
 162		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
 163				 STA_PPSWANDER | STA_PPSERROR);
 164		pps_clear();
 165	}
 166}
 167
 168static inline void pps_set_freq(s64 freq)
 169{
 170	pps_freq = freq;
 171}
 172
 173static inline int is_error_status(int status)
 174{
 175	return (status & (STA_UNSYNC|STA_CLOCKERR))
 176		/* PPS signal lost when either PPS time or
 177		 * PPS frequency synchronization requested
 
 178		 */
 179		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
 180			&& !(status & STA_PPSSIGNAL))
 181		/* PPS jitter exceeded when
 182		 * PPS time synchronization requested */
 
 
 183		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
 184			== (STA_PPSTIME|STA_PPSJITTER))
 185		/* PPS wander exceeded or calibration error when
 186		 * PPS frequency synchronization requested
 
 187		 */
 188		|| ((status & STA_PPSFREQ)
 189			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
 190}
 191
 192static inline void pps_fill_timex(struct timex *txc)
 193{
 194	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
 195					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
 196	txc->jitter	   = pps_jitter;
 197	if (!(time_status & STA_NANO))
 198		txc->jitter /= NSEC_PER_USEC;
 199	txc->shift	   = pps_shift;
 200	txc->stabil	   = pps_stabil;
 201	txc->jitcnt	   = pps_jitcnt;
 202	txc->calcnt	   = pps_calcnt;
 203	txc->errcnt	   = pps_errcnt;
 204	txc->stbcnt	   = pps_stbcnt;
 205}
 206
 207#else /* !CONFIG_NTP_PPS */
 208
 209static inline s64 ntp_offset_chunk(s64 offset)
 210{
 211	return shift_right(offset, SHIFT_PLL + time_constant);
 212}
 213
 214static inline void pps_reset_freq_interval(void) {}
 215static inline void pps_clear(void) {}
 216static inline void pps_dec_valid(void) {}
 217static inline void pps_set_freq(s64 freq) {}
 218
 219static inline int is_error_status(int status)
 220{
 221	return status & (STA_UNSYNC|STA_CLOCKERR);
 222}
 223
 224static inline void pps_fill_timex(struct timex *txc)
 225{
 226	/* PPS is not implemented, so these are zero */
 227	txc->ppsfreq	   = 0;
 228	txc->jitter	   = 0;
 229	txc->shift	   = 0;
 230	txc->stabil	   = 0;
 231	txc->jitcnt	   = 0;
 232	txc->calcnt	   = 0;
 233	txc->errcnt	   = 0;
 234	txc->stbcnt	   = 0;
 235}
 236
 237#endif /* CONFIG_NTP_PPS */
 238
 239
 240/**
 241 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
 242 *
 243 */
 244static inline int ntp_synced(void)
 245{
 246	return !(time_status & STA_UNSYNC);
 247}
 248
 249
 250/*
 251 * NTP methods:
 
 252 */
 253
 254/*
 255 * Update (tick_length, tick_length_base, tick_nsec), based
 256 * on (tick_usec, ntp_tick_adj, time_freq):
 257 */
 258static void ntp_update_frequency(void)
 259{
 260	u64 second_length;
 261	u64 new_base;
 262
 263	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
 264						<< NTP_SCALE_SHIFT;
 265
 266	second_length		+= ntp_tick_adj;
 267	second_length		+= time_freq;
 268
 269	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
 270	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
 271
 272	/*
 273	 * Don't wait for the next second_overflow, apply
 274	 * the change to the tick length immediately:
 275	 */
 276	tick_length		+= new_base - tick_length_base;
 277	tick_length_base	 = new_base;
 278}
 279
 280static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
 281{
 282	time_status &= ~STA_MODE;
 283
 284	if (secs < MINSEC)
 285		return 0;
 286
 287	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
 288		return 0;
 289
 290	time_status |= STA_MODE;
 291
 292	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
 293}
 294
 295static void ntp_update_offset(long offset)
 296{
 297	s64 freq_adj;
 298	s64 offset64;
 299	long secs;
 300
 301	if (!(time_status & STA_PLL))
 302		return;
 303
 304	if (!(time_status & STA_NANO)) {
 305		/* Make sure the multiplication below won't overflow */
 306		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
 307		offset *= NSEC_PER_USEC;
 308	}
 309
 310	/*
 311	 * Scale the phase adjustment and
 312	 * clamp to the operating range.
 313	 */
 314	offset = clamp(offset, -MAXPHASE, MAXPHASE);
 315
 316	/*
 317	 * Select how the frequency is to be controlled
 318	 * and in which mode (PLL or FLL).
 319	 */
 320	secs = (long)(__ktime_get_real_seconds() - time_reftime);
 321	if (unlikely(time_status & STA_FREQHOLD))
 
 322		secs = 0;
 323
 324	time_reftime = __ktime_get_real_seconds();
 325
 326	offset64    = offset;
 327	freq_adj    = ntp_update_offset_fll(offset64, secs);
 328
 329	/*
 330	 * Clamp update interval to reduce PLL gain with low
 331	 * sampling rate (e.g. intermittent network connection)
 332	 * to avoid instability.
 333	 */
 334	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
 335		secs = 1 << (SHIFT_PLL + 1 + time_constant);
 336
 337	freq_adj    += (offset64 * secs) <<
 338			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
 339
 340	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
 341
 342	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
 343
 344	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
 345}
 346
 347/**
 348 * ntp_clear - Clears the NTP state variables
 349 */
 350void ntp_clear(void)
 351{
 352	time_adjust	= 0;		/* stop active adjtime() */
 353	time_status	|= STA_UNSYNC;
 354	time_maxerror	= NTP_PHASE_LIMIT;
 355	time_esterror	= NTP_PHASE_LIMIT;
 
 356
 357	ntp_update_frequency();
 358
 359	tick_length	= tick_length_base;
 360	time_offset	= 0;
 361
 362	ntp_next_leap_sec = TIME64_MAX;
 363	/* Clear PPS state variables */
 364	pps_clear();
 
 
 
 
 
 
 
 
 365}
 366
 367
 368u64 ntp_tick_length(void)
 369{
 370	return tick_length;
 371}
 372
 373/**
 374 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
 375 *
 376 * Provides the time of the next leapsecond against CLOCK_REALTIME in
 377 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
 378 */
 379ktime_t ntp_get_next_leap(void)
 380{
 
 381	ktime_t ret;
 382
 383	if ((time_state == TIME_INS) && (time_status & STA_INS))
 384		return ktime_set(ntp_next_leap_sec, 0);
 385	ret = KTIME_MAX;
 386	return ret;
 387}
 388
 389/*
 390 * this routine handles the overflow of the microsecond field
 391 *
 392 * The tricky bits of code to handle the accurate clock support
 393 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 394 * They were originally developed for SUN and DEC kernels.
 395 * All the kudos should go to Dave for this stuff.
 396 *
 397 * Also handles leap second processing, and returns leap offset
 398 */
 399int second_overflow(time64_t secs)
 400{
 
 401	s64 delta;
 402	int leap = 0;
 403	s32 rem;
 404
 405	/*
 406	 * Leap second processing. If in leap-insert state at the end of the
 407	 * day, the system clock is set back one second; if in leap-delete
 408	 * state, the system clock is set ahead one second.
 409	 */
 410	switch (time_state) {
 411	case TIME_OK:
 412		if (time_status & STA_INS) {
 413			time_state = TIME_INS;
 414			div_s64_rem(secs, SECS_PER_DAY, &rem);
 415			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 416		} else if (time_status & STA_DEL) {
 417			time_state = TIME_DEL;
 418			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
 419			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 420		}
 421		break;
 422	case TIME_INS:
 423		if (!(time_status & STA_INS)) {
 424			ntp_next_leap_sec = TIME64_MAX;
 425			time_state = TIME_OK;
 426		} else if (secs == ntp_next_leap_sec) {
 427			leap = -1;
 428			time_state = TIME_OOP;
 429			printk(KERN_NOTICE
 430				"Clock: inserting leap second 23:59:60 UTC\n");
 431		}
 432		break;
 433	case TIME_DEL:
 434		if (!(time_status & STA_DEL)) {
 435			ntp_next_leap_sec = TIME64_MAX;
 436			time_state = TIME_OK;
 437		} else if (secs == ntp_next_leap_sec) {
 438			leap = 1;
 439			ntp_next_leap_sec = TIME64_MAX;
 440			time_state = TIME_WAIT;
 441			printk(KERN_NOTICE
 442				"Clock: deleting leap second 23:59:59 UTC\n");
 443		}
 444		break;
 445	case TIME_OOP:
 446		ntp_next_leap_sec = TIME64_MAX;
 447		time_state = TIME_WAIT;
 448		break;
 449	case TIME_WAIT:
 450		if (!(time_status & (STA_INS | STA_DEL)))
 451			time_state = TIME_OK;
 452		break;
 453	}
 454
 455
 456	/* Bump the maxerror field */
 457	time_maxerror += MAXFREQ / NSEC_PER_USEC;
 458	if (time_maxerror > NTP_PHASE_LIMIT) {
 459		time_maxerror = NTP_PHASE_LIMIT;
 460		time_status |= STA_UNSYNC;
 461	}
 462
 463	/* Compute the phase adjustment for the next second */
 464	tick_length	 = tick_length_base;
 465
 466	delta		 = ntp_offset_chunk(time_offset);
 467	time_offset	-= delta;
 468	tick_length	+= delta;
 469
 470	/* Check PPS signal */
 471	pps_dec_valid();
 472
 473	if (!time_adjust)
 474		goto out;
 475
 476	if (time_adjust > MAX_TICKADJ) {
 477		time_adjust -= MAX_TICKADJ;
 478		tick_length += MAX_TICKADJ_SCALED;
 479		goto out;
 480	}
 481
 482	if (time_adjust < -MAX_TICKADJ) {
 483		time_adjust += MAX_TICKADJ;
 484		tick_length -= MAX_TICKADJ_SCALED;
 485		goto out;
 486	}
 487
 488	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
 489							 << NTP_SCALE_SHIFT;
 490	time_adjust = 0;
 491
 492out:
 493	return leap;
 494}
 495
 
 496static void sync_hw_clock(struct work_struct *work);
 497static DECLARE_DELAYED_WORK(sync_work, sync_hw_clock);
 498
 499static void sched_sync_hw_clock(struct timespec64 now,
 500				unsigned long target_nsec, bool fail)
 501
 
 502{
 503	struct timespec64 next;
 504
 505	getnstimeofday64(&next);
 506	if (!fail)
 507		next.tv_sec = 659;
 508	else {
 509		/*
 510		 * Try again as soon as possible. Delaying long periods
 511		 * decreases the accuracy of the work queue timer. Due to this
 512		 * the algorithm is very likely to require a short-sleep retry
 513		 * after the above long sleep to synchronize ts_nsec.
 514		 */
 515		next.tv_sec = 0;
 516	}
 517
 518	/* Compute the needed delay that will get to tv_nsec == target_nsec */
 519	next.tv_nsec = target_nsec - next.tv_nsec;
 520	if (next.tv_nsec <= 0)
 521		next.tv_nsec += NSEC_PER_SEC;
 522	if (next.tv_nsec >= NSEC_PER_SEC) {
 523		next.tv_sec++;
 524		next.tv_nsec -= NSEC_PER_SEC;
 525	}
 526
 527	queue_delayed_work(system_power_efficient_wq, &sync_work,
 528			   timespec64_to_jiffies(&next));
 529}
 530
 531static void sync_rtc_clock(void)
 532{
 533	unsigned long target_nsec;
 534	struct timespec64 adjust, now;
 535	int rc;
 536
 537	if (!IS_ENABLED(CONFIG_RTC_SYSTOHC))
 538		return;
 
 
 539
 540	getnstimeofday64(&now);
 
 541
 542	adjust = now;
 543	if (persistent_clock_is_local)
 544		adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545
 546	/*
 547	 * The current RTC in use will provide the target_nsec it wants to be
 548	 * called at, and does rtc_tv_nsec_ok internally.
 549	 */
 550	rc = rtc_set_ntp_time(adjust, &target_nsec);
 551	if (rc == -ENODEV)
 552		return;
 553
 554	sched_sync_hw_clock(now, target_nsec, rc);
 
 
 
 
 
 
 
 
 
 
 555}
 556
 557#ifdef CONFIG_GENERIC_CMOS_UPDATE
 558int __weak update_persistent_clock(struct timespec now)
 559{
 560	return -ENODEV;
 561}
 562
 563int __weak update_persistent_clock64(struct timespec64 now64)
 564{
 565	struct timespec now;
 566
 567	now = timespec64_to_timespec(now64);
 568	return update_persistent_clock(now);
 569}
 570#endif
 571
 572static bool sync_cmos_clock(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573{
 574	static bool no_cmos;
 575	struct timespec64 now;
 576	struct timespec64 adjust;
 577	int rc = -EPROTO;
 578	long target_nsec = NSEC_PER_SEC / 2;
 579
 580	if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE))
 581		return false;
 582
 583	if (no_cmos)
 584		return false;
 585
 586	/*
 587	 * Historically update_persistent_clock64() has followed x86
 588	 * semantics, which match the MC146818A/etc RTC. This RTC will store
 589	 * 'adjust' and then in .5s it will advance once second.
 590	 *
 591	 * Architectures are strongly encouraged to use rtclib and not
 592	 * implement this legacy API.
 593	 */
 594	getnstimeofday64(&now);
 595	if (rtc_tv_nsec_ok(-1 * target_nsec, &adjust, &now)) {
 596		if (persistent_clock_is_local)
 597			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
 598		rc = update_persistent_clock64(adjust);
 599		/*
 600		 * The machine does not support update_persistent_clock64 even
 601		 * though it defines CONFIG_GENERIC_CMOS_UPDATE.
 602		 */
 603		if (rc == -ENODEV) {
 604			no_cmos = true;
 605			return false;
 606		}
 607	}
 608
 609	sched_sync_hw_clock(now, target_nsec, rc);
 610	return true;
 
 
 
 
 
 611}
 612
 613/*
 614 * If we have an externally synchronized Linux clock, then update RTC clock
 615 * accordingly every ~11 minutes. Generally RTCs can only store second
 616 * precision, but many RTCs will adjust the phase of their second tick to
 617 * match the moment of update. This infrastructure arranges to call to the RTC
 618 * set at the correct moment to phase synchronize the RTC second tick over
 619 * with the kernel clock.
 620 */
 621static void sync_hw_clock(struct work_struct *work)
 622{
 623	if (!ntp_synced())
 624		return;
 
 
 
 
 
 
 625
 626	if (sync_cmos_clock())
 
 
 
 
 
 627		return;
 628
 629	sync_rtc_clock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630}
 631
 632void ntp_notify_cmos_timer(void)
 633{
 634	if (!ntp_synced())
 635		return;
 
 
 
 
 
 636
 637	if (IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE) ||
 638	    IS_ENABLED(CONFIG_RTC_SYSTOHC))
 639		queue_delayed_work(system_power_efficient_wq, &sync_work, 0);
 
 
 
 
 640}
 641
 
 
 
 
 
 
 
 
 
 642/*
 643 * Propagate a new txc->status value into the NTP state:
 644 */
 645static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
 646{
 647	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
 648		time_state = TIME_OK;
 649		time_status = STA_UNSYNC;
 650		ntp_next_leap_sec = TIME64_MAX;
 651		/* restart PPS frequency calibration */
 652		pps_reset_freq_interval();
 653	}
 654
 655	/*
 656	 * If we turn on PLL adjustments then reset the
 657	 * reference time to current time.
 658	 */
 659	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
 660		time_reftime = __ktime_get_real_seconds();
 661
 662	/* only set allowed bits */
 663	time_status &= STA_RONLY;
 664	time_status |= txc->status & ~STA_RONLY;
 665}
 666
 667
 668static inline void process_adjtimex_modes(struct timex *txc,
 669						struct timespec64 *ts,
 670						s32 *time_tai)
 671{
 672	if (txc->modes & ADJ_STATUS)
 673		process_adj_status(txc, ts);
 674
 675	if (txc->modes & ADJ_NANO)
 676		time_status |= STA_NANO;
 677
 678	if (txc->modes & ADJ_MICRO)
 679		time_status &= ~STA_NANO;
 680
 681	if (txc->modes & ADJ_FREQUENCY) {
 682		time_freq = txc->freq * PPM_SCALE;
 683		time_freq = min(time_freq, MAXFREQ_SCALED);
 684		time_freq = max(time_freq, -MAXFREQ_SCALED);
 685		/* update pps_freq */
 686		pps_set_freq(time_freq);
 687	}
 688
 689	if (txc->modes & ADJ_MAXERROR)
 690		time_maxerror = txc->maxerror;
 691
 692	if (txc->modes & ADJ_ESTERROR)
 693		time_esterror = txc->esterror;
 694
 695	if (txc->modes & ADJ_TIMECONST) {
 696		time_constant = txc->constant;
 697		if (!(time_status & STA_NANO))
 698			time_constant += 4;
 699		time_constant = min(time_constant, (long)MAXTC);
 700		time_constant = max(time_constant, 0l);
 701	}
 702
 703	if (txc->modes & ADJ_TAI && txc->constant > 0)
 704		*time_tai = txc->constant;
 705
 706	if (txc->modes & ADJ_OFFSET)
 707		ntp_update_offset(txc->offset);
 708
 709	if (txc->modes & ADJ_TICK)
 710		tick_usec = txc->tick;
 711
 712	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
 713		ntp_update_frequency();
 714}
 715
 716
 717/*
 718 * adjtimex mainly allows reading (and writing, if superuser) of
 719 * kernel time-keeping variables. used by xntpd.
 720 */
 721int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
 
 722{
 
 723	int result;
 724
 725	if (txc->modes & ADJ_ADJTIME) {
 726		long save_adjust = time_adjust;
 727
 728		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
 729			/* adjtime() is independent from ntp_adjtime() */
 730			time_adjust = txc->offset;
 731			ntp_update_frequency();
 
 
 
 732		}
 733		txc->offset = save_adjust;
 734	} else {
 735
 736		/* If there are input parameters, then process them: */
 737		if (txc->modes)
 738			process_adjtimex_modes(txc, ts, time_tai);
 
 
 
 
 
 
 
 
 
 
 
 
 
 739
 740		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
 741				  NTP_SCALE_SHIFT);
 742		if (!(time_status & STA_NANO))
 743			txc->offset /= NSEC_PER_USEC;
 744	}
 745
 746	result = time_state;	/* mostly `TIME_OK' */
 747	/* check for errors */
 748	if (is_error_status(time_status))
 749		result = TIME_ERROR;
 750
 751	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
 752					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
 753	txc->maxerror	   = time_maxerror;
 754	txc->esterror	   = time_esterror;
 755	txc->status	   = time_status;
 756	txc->constant	   = time_constant;
 757	txc->precision	   = 1;
 758	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
 759	txc->tick	   = tick_usec;
 760	txc->tai	   = *time_tai;
 761
 762	/* fill PPS status fields */
 763	pps_fill_timex(txc);
 764
 765	txc->time.tv_sec = (time_t)ts->tv_sec;
 766	txc->time.tv_usec = ts->tv_nsec;
 767	if (!(time_status & STA_NANO))
 768		txc->time.tv_usec /= NSEC_PER_USEC;
 769
 770	/* Handle leapsec adjustments */
 771	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
 772		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
 773			result = TIME_OOP;
 774			txc->tai++;
 775			txc->time.tv_sec--;
 776		}
 777		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
 778			result = TIME_WAIT;
 779			txc->tai--;
 780			txc->time.tv_sec++;
 781		}
 782		if ((time_state == TIME_OOP) &&
 783					(ts->tv_sec == ntp_next_leap_sec)) {
 784			result = TIME_WAIT;
 785		}
 786	}
 787
 788	return result;
 789}
 790
 791#ifdef	CONFIG_NTP_PPS
 792
 793/* actually struct pps_normtime is good old struct timespec, but it is
 
 794 * semantically different (and it is the reason why it was invented):
 795 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 796 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
 
 797struct pps_normtime {
 798	s64		sec;	/* seconds */
 799	long		nsec;	/* nanoseconds */
 800};
 801
 802/* normalize the timestamp so that nsec is in the
 803   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
 
 
 804static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
 805{
 806	struct pps_normtime norm = {
 807		.sec = ts.tv_sec,
 808		.nsec = ts.tv_nsec
 809	};
 810
 811	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
 812		norm.nsec -= NSEC_PER_SEC;
 813		norm.sec++;
 814	}
 815
 816	return norm;
 817}
 818
 819/* get current phase correction and jitter */
 820static inline long pps_phase_filter_get(long *jitter)
 821{
 822	*jitter = pps_tf[0] - pps_tf[1];
 823	if (*jitter < 0)
 824		*jitter = -*jitter;
 825
 826	/* TODO: test various filters */
 827	return pps_tf[0];
 828}
 829
 830/* add the sample to the phase filter */
 831static inline void pps_phase_filter_add(long err)
 832{
 833	pps_tf[2] = pps_tf[1];
 834	pps_tf[1] = pps_tf[0];
 835	pps_tf[0] = err;
 836}
 837
 838/* decrease frequency calibration interval length.
 839 * It is halved after four consecutive unstable intervals.
 
 840 */
 841static inline void pps_dec_freq_interval(void)
 842{
 843	if (--pps_intcnt <= -PPS_INTCOUNT) {
 844		pps_intcnt = -PPS_INTCOUNT;
 845		if (pps_shift > PPS_INTMIN) {
 846			pps_shift--;
 847			pps_intcnt = 0;
 848		}
 849	}
 850}
 851
 852/* increase frequency calibration interval length.
 853 * It is doubled after four consecutive stable intervals.
 
 854 */
 855static inline void pps_inc_freq_interval(void)
 856{
 857	if (++pps_intcnt >= PPS_INTCOUNT) {
 858		pps_intcnt = PPS_INTCOUNT;
 859		if (pps_shift < PPS_INTMAX) {
 860			pps_shift++;
 861			pps_intcnt = 0;
 862		}
 863	}
 864}
 865
 866/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 
 867 * timestamps
 868 *
 869 * At the end of the calibration interval the difference between the
 870 * first and last MONOTONIC_RAW clock timestamps divided by the length
 871 * of the interval becomes the frequency update. If the interval was
 872 * too long, the data are discarded.
 873 * Returns the difference between old and new frequency values.
 874 */
 875static long hardpps_update_freq(struct pps_normtime freq_norm)
 876{
 877	long delta, delta_mod;
 878	s64 ftemp;
 879
 880	/* check if the frequency interval was too long */
 881	if (freq_norm.sec > (2 << pps_shift)) {
 882		time_status |= STA_PPSERROR;
 883		pps_errcnt++;
 884		pps_dec_freq_interval();
 885		printk_deferred(KERN_ERR
 886			"hardpps: PPSERROR: interval too long - %lld s\n",
 887			freq_norm.sec);
 888		return 0;
 889	}
 890
 891	/* here the raw frequency offset and wander (stability) is
 892	 * calculated. If the wander is less than the wander threshold
 893	 * the interval is increased; otherwise it is decreased.
 
 894	 */
 895	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
 896			freq_norm.sec);
 897	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
 898	pps_freq = ftemp;
 899	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
 900		printk_deferred(KERN_WARNING
 901				"hardpps: PPSWANDER: change=%ld\n", delta);
 902		time_status |= STA_PPSWANDER;
 903		pps_stbcnt++;
 904		pps_dec_freq_interval();
 905	} else {	/* good sample */
 906		pps_inc_freq_interval();
 907	}
 908
 909	/* the stability metric is calculated as the average of recent
 910	 * frequency changes, but is used only for performance
 911	 * monitoring
 912	 */
 913	delta_mod = delta;
 914	if (delta_mod < 0)
 915		delta_mod = -delta_mod;
 916	pps_stabil += (div_s64(((s64)delta_mod) <<
 917				(NTP_SCALE_SHIFT - SHIFT_USEC),
 918				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
 919
 920	/* if enabled, the system clock frequency is updated */
 921	if ((time_status & STA_PPSFREQ) != 0 &&
 922	    (time_status & STA_FREQHOLD) == 0) {
 923		time_freq = pps_freq;
 924		ntp_update_frequency();
 925	}
 926
 927	return delta;
 928}
 929
 930/* correct REALTIME clock phase error against PPS signal */
 931static void hardpps_update_phase(long error)
 932{
 933	long correction = -error;
 934	long jitter;
 935
 936	/* add the sample to the median filter */
 937	pps_phase_filter_add(correction);
 938	correction = pps_phase_filter_get(&jitter);
 939
 940	/* Nominal jitter is due to PPS signal noise. If it exceeds the
 
 941	 * threshold, the sample is discarded; otherwise, if so enabled,
 942	 * the time offset is updated.
 943	 */
 944	if (jitter > (pps_jitter << PPS_POPCORN)) {
 945		printk_deferred(KERN_WARNING
 946				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
 947				jitter, (pps_jitter << PPS_POPCORN));
 948		time_status |= STA_PPSJITTER;
 949		pps_jitcnt++;
 950	} else if (time_status & STA_PPSTIME) {
 951		/* correct the time using the phase offset */
 952		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
 953				NTP_INTERVAL_FREQ);
 954		/* cancel running adjtime() */
 955		time_adjust = 0;
 956	}
 957	/* update jitter */
 958	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
 959}
 960
 961/*
 962 * __hardpps() - discipline CPU clock oscillator to external PPS signal
 963 *
 964 * This routine is called at each PPS signal arrival in order to
 965 * discipline the CPU clock oscillator to the PPS signal. It takes two
 966 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
 967 * is used to correct clock phase error and the latter is used to
 968 * correct the frequency.
 969 *
 970 * This code is based on David Mills's reference nanokernel
 971 * implementation. It was mostly rewritten but keeps the same idea.
 972 */
 973void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
 974{
 975	struct pps_normtime pts_norm, freq_norm;
 
 976
 977	pts_norm = pps_normalize_ts(*phase_ts);
 978
 979	/* clear the error bits, they will be set again if needed */
 980	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
 981
 982	/* indicate signal presence */
 983	time_status |= STA_PPSSIGNAL;
 984	pps_valid = PPS_VALID;
 985
 986	/* when called for the first time,
 987	 * just start the frequency interval */
 988	if (unlikely(pps_fbase.tv_sec == 0)) {
 989		pps_fbase = *raw_ts;
 
 
 990		return;
 991	}
 992
 993	/* ok, now we have a base for frequency calculation */
 994	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
 995
 996	/* check that the signal is in the range
 997	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
 998	if ((freq_norm.sec == 0) ||
 999			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1000			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1001		time_status |= STA_PPSJITTER;
1002		/* restart the frequency calibration interval */
1003		pps_fbase = *raw_ts;
 
1004		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1005		return;
1006	}
1007
1008	/* signal is ok */
1009
1010	/* check if the current frequency interval is finished */
1011	if (freq_norm.sec >= (1 << pps_shift)) {
1012		pps_calcnt++;
1013		/* restart the frequency calibration interval */
1014		pps_fbase = *raw_ts;
1015		hardpps_update_freq(freq_norm);
1016	}
1017
1018	hardpps_update_phase(pts_norm.nsec);
1019
1020}
1021#endif	/* CONFIG_NTP_PPS */
1022
1023static int __init ntp_tick_adj_setup(char *str)
1024{
1025	int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
1026
1027	if (rc)
1028		return rc;
1029	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1030
 
1031	return 1;
1032}
1033
1034__setup("ntp_tick_adj=", ntp_tick_adj_setup);
1035
1036void __init ntp_init(void)
1037{
1038	ntp_clear();
 
1039}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NTP state machine interfaces and logic.
   4 *
   5 * This code was mainly moved from kernel/timer.c and kernel/time.c
   6 * Please see those files for relevant copyright info and historical
   7 * changelogs.
   8 */
   9#include <linux/capability.h>
  10#include <linux/clocksource.h>
  11#include <linux/workqueue.h>
  12#include <linux/hrtimer.h>
  13#include <linux/jiffies.h>
  14#include <linux/math64.h>
  15#include <linux/timex.h>
  16#include <linux/time.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/rtc.h>
  20#include <linux/audit.h>
  21
  22#include "ntp_internal.h"
  23#include "timekeeping_internal.h"
  24
  25/**
  26 * struct ntp_data - Structure holding all NTP related state
  27 * @tick_usec:		USER_HZ period in microseconds
  28 * @tick_length:	Adjusted tick length
  29 * @tick_length_base:	Base value for @tick_length
  30 * @time_state:		State of the clock synchronization
  31 * @time_status:	Clock status bits
  32 * @time_offset:	Time adjustment in nanoseconds
  33 * @time_constant:	PLL time constant
  34 * @time_maxerror:	Maximum error in microseconds holding the NTP sync distance
  35 *			(NTP dispersion + delay / 2)
  36 * @time_esterror:	Estimated error in microseconds holding NTP dispersion
  37 * @time_freq:		Frequency offset scaled nsecs/secs
  38 * @time_reftime:	Time at last adjustment in seconds
  39 * @time_adjust:	Adjustment value
  40 * @ntp_tick_adj:	Constant boot-param configurable NTP tick adjustment (upscaled)
  41 * @ntp_next_leap_sec:	Second value of the next pending leapsecond, or TIME64_MAX if no leap
  42 *
  43 * @pps_valid:		PPS signal watchdog counter
  44 * @pps_tf:		PPS phase median filter
  45 * @pps_jitter:		PPS current jitter in nanoseconds
  46 * @pps_fbase:		PPS beginning of the last freq interval
  47 * @pps_shift:		PPS current interval duration in seconds (shift value)
  48 * @pps_intcnt:		PPS interval counter
  49 * @pps_freq:		PPS frequency offset in scaled ns/s
  50 * @pps_stabil:		PPS current stability in scaled ns/s
  51 * @pps_calcnt:		PPS monitor: calibration intervals
  52 * @pps_jitcnt:		PPS monitor: jitter limit exceeded
  53 * @pps_stbcnt:		PPS monitor: stability limit exceeded
  54 * @pps_errcnt:		PPS monitor: calibration errors
  55 *
  56 * Protected by the timekeeping locks.
  57 */
  58struct ntp_data {
  59	unsigned long		tick_usec;
  60	u64			tick_length;
  61	u64			tick_length_base;
  62	int			time_state;
  63	int			time_status;
  64	s64			time_offset;
  65	long			time_constant;
  66	long			time_maxerror;
  67	long			time_esterror;
  68	s64			time_freq;
  69	time64_t		time_reftime;
  70	long			time_adjust;
  71	s64			ntp_tick_adj;
  72	time64_t		ntp_next_leap_sec;
  73#ifdef CONFIG_NTP_PPS
  74	int			pps_valid;
  75	long			pps_tf[3];
  76	long			pps_jitter;
  77	struct timespec64	pps_fbase;
  78	int			pps_shift;
  79	int			pps_intcnt;
  80	s64			pps_freq;
  81	long			pps_stabil;
  82	long			pps_calcnt;
  83	long			pps_jitcnt;
  84	long			pps_stbcnt;
  85	long			pps_errcnt;
  86#endif
  87};
  88
  89static struct ntp_data tk_ntp_data = {
  90	.tick_usec		= USER_TICK_USEC,
  91	.time_state		= TIME_OK,
  92	.time_status		= STA_UNSYNC,
  93	.time_constant		= 2,
  94	.time_maxerror		= NTP_PHASE_LIMIT,
  95	.time_esterror		= NTP_PHASE_LIMIT,
  96	.ntp_next_leap_sec	= TIME64_MAX,
  97};
  98
  99#define SECS_PER_DAY		86400
 100#define MAX_TICKADJ		500LL		/* usecs */
 101#define MAX_TICKADJ_SCALED \
 102	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
 103#define MAX_TAI_OFFSET		100000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105#ifdef CONFIG_NTP_PPS
 106
 107/*
 108 * The following variables are used when a pulse-per-second (PPS) signal
 109 * is available. They establish the engineering parameters of the clock
 110 * discipline loop when controlled by the PPS signal.
 111 */
 112#define PPS_VALID	10	/* PPS signal watchdog max (s) */
 113#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
 114#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
 115#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
 116#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
 117				   increase pps_shift or consecutive bad
 118				   intervals to decrease it */
 119#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
 120
 
 
 
 
 
 
 
 
 
 121/*
 122 * PPS kernel consumer compensates the whole phase error immediately.
 
 
 
 
 
 
 
 
 123 * Otherwise, reduce the offset by a fixed factor times the time constant.
 124 */
 125static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
 126{
 127	if (ntpdata->time_status & STA_PPSTIME && ntpdata->time_status & STA_PPSSIGNAL)
 128		return offset;
 129	else
 130		return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
 131}
 132
 133static inline void pps_reset_freq_interval(struct ntp_data *ntpdata)
 134{
 135	/* The PPS calibration interval may end surprisingly early */
 136	ntpdata->pps_shift = PPS_INTMIN;
 137	ntpdata->pps_intcnt = 0;
 
 138}
 139
 140/**
 141 * pps_clear - Clears the PPS state variables
 142 * @ntpdata:	Pointer to ntp data
 143 */
 144static inline void pps_clear(struct ntp_data *ntpdata)
 145{
 146	pps_reset_freq_interval(ntpdata);
 147	ntpdata->pps_tf[0] = 0;
 148	ntpdata->pps_tf[1] = 0;
 149	ntpdata->pps_tf[2] = 0;
 150	ntpdata->pps_fbase.tv_sec = ntpdata->pps_fbase.tv_nsec = 0;
 151	ntpdata->pps_freq = 0;
 152}
 153
 154/*
 155 * Decrease pps_valid to indicate that another second has passed since the
 156 * last PPS signal. When it reaches 0, indicate that PPS signal is missing.
 157 */
 158static inline void pps_dec_valid(struct ntp_data *ntpdata)
 159{
 160	if (ntpdata->pps_valid > 0) {
 161		ntpdata->pps_valid--;
 162	} else {
 163		ntpdata->time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
 164					  STA_PPSWANDER | STA_PPSERROR);
 165		pps_clear(ntpdata);
 166	}
 167}
 168
 169static inline void pps_set_freq(struct ntp_data *ntpdata)
 170{
 171	ntpdata->pps_freq = ntpdata->time_freq;
 172}
 173
 174static inline bool is_error_status(int status)
 175{
 176	return (status & (STA_UNSYNC|STA_CLOCKERR))
 177		/*
 178		 * PPS signal lost when either PPS time or PPS frequency
 179		 * synchronization requested
 180		 */
 181		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
 182			&& !(status & STA_PPSSIGNAL))
 183		/*
 184		 * PPS jitter exceeded when PPS time synchronization
 185		 * requested
 186		 */
 187		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
 188			== (STA_PPSTIME|STA_PPSJITTER))
 189		/*
 190		 * PPS wander exceeded or calibration error when PPS
 191		 * frequency synchronization requested
 192		 */
 193		|| ((status & STA_PPSFREQ)
 194			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
 195}
 196
 197static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
 198{
 199	txc->ppsfreq	   = shift_right((ntpdata->pps_freq >> PPM_SCALE_INV_SHIFT) *
 200					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
 201	txc->jitter	   = ntpdata->pps_jitter;
 202	if (!(ntpdata->time_status & STA_NANO))
 203		txc->jitter = ntpdata->pps_jitter / NSEC_PER_USEC;
 204	txc->shift	   = ntpdata->pps_shift;
 205	txc->stabil	   = ntpdata->pps_stabil;
 206	txc->jitcnt	   = ntpdata->pps_jitcnt;
 207	txc->calcnt	   = ntpdata->pps_calcnt;
 208	txc->errcnt	   = ntpdata->pps_errcnt;
 209	txc->stbcnt	   = ntpdata->pps_stbcnt;
 210}
 211
 212#else /* !CONFIG_NTP_PPS */
 213
 214static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
 215{
 216	return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
 217}
 218
 219static inline void pps_reset_freq_interval(struct ntp_data *ntpdata) {}
 220static inline void pps_clear(struct ntp_data *ntpdata) {}
 221static inline void pps_dec_valid(struct ntp_data *ntpdata) {}
 222static inline void pps_set_freq(struct ntp_data *ntpdata) {}
 223
 224static inline bool is_error_status(int status)
 225{
 226	return status & (STA_UNSYNC|STA_CLOCKERR);
 227}
 228
 229static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
 230{
 231	/* PPS is not implemented, so these are zero */
 232	txc->ppsfreq	   = 0;
 233	txc->jitter	   = 0;
 234	txc->shift	   = 0;
 235	txc->stabil	   = 0;
 236	txc->jitcnt	   = 0;
 237	txc->calcnt	   = 0;
 238	txc->errcnt	   = 0;
 239	txc->stbcnt	   = 0;
 240}
 241
 242#endif /* CONFIG_NTP_PPS */
 243
 
 
 
 
 
 
 
 
 
 
 
 244/*
 245 * Update tick_length and tick_length_base, based on tick_usec, ntp_tick_adj and
 246 * time_freq:
 247 */
 248static void ntp_update_frequency(struct ntp_data *ntpdata)
 
 
 
 
 
 249{
 250	u64 second_length, new_base, tick_usec = (u64)ntpdata->tick_usec;
 
 251
 252	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << NTP_SCALE_SHIFT;
 
 253
 254	second_length		+= ntpdata->ntp_tick_adj;
 255	second_length		+= ntpdata->time_freq;
 256
 
 257	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
 258
 259	/*
 260	 * Don't wait for the next second_overflow, apply the change to the
 261	 * tick length immediately:
 262	 */
 263	ntpdata->tick_length		+= new_base - ntpdata->tick_length_base;
 264	ntpdata->tick_length_base	 = new_base;
 265}
 266
 267static inline s64 ntp_update_offset_fll(struct ntp_data *ntpdata, s64 offset64, long secs)
 268{
 269	ntpdata->time_status &= ~STA_MODE;
 270
 271	if (secs < MINSEC)
 272		return 0;
 273
 274	if (!(ntpdata->time_status & STA_FLL) && (secs <= MAXSEC))
 275		return 0;
 276
 277	ntpdata->time_status |= STA_MODE;
 278
 279	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
 280}
 281
 282static void ntp_update_offset(struct ntp_data *ntpdata, long offset)
 283{
 284	s64 freq_adj, offset64;
 285	long secs, real_secs;
 
 286
 287	if (!(ntpdata->time_status & STA_PLL))
 288		return;
 289
 290	if (!(ntpdata->time_status & STA_NANO)) {
 291		/* Make sure the multiplication below won't overflow */
 292		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
 293		offset *= NSEC_PER_USEC;
 294	}
 295
 296	/* Scale the phase adjustment and clamp to the operating range. */
 
 
 
 297	offset = clamp(offset, -MAXPHASE, MAXPHASE);
 298
 299	/*
 300	 * Select how the frequency is to be controlled
 301	 * and in which mode (PLL or FLL).
 302	 */
 303	real_secs = __ktime_get_real_seconds();
 304	secs = (long)(real_secs - ntpdata->time_reftime);
 305	if (unlikely(ntpdata->time_status & STA_FREQHOLD))
 306		secs = 0;
 307
 308	ntpdata->time_reftime = real_secs;
 309
 310	offset64    = offset;
 311	freq_adj    = ntp_update_offset_fll(ntpdata, offset64, secs);
 312
 313	/*
 314	 * Clamp update interval to reduce PLL gain with low
 315	 * sampling rate (e.g. intermittent network connection)
 316	 * to avoid instability.
 317	 */
 318	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + ntpdata->time_constant)))
 319		secs = 1 << (SHIFT_PLL + 1 + ntpdata->time_constant);
 320
 321	freq_adj    += (offset64 * secs) <<
 322			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + ntpdata->time_constant));
 323
 324	freq_adj    = min(freq_adj + ntpdata->time_freq, MAXFREQ_SCALED);
 325
 326	ntpdata->time_freq   = max(freq_adj, -MAXFREQ_SCALED);
 327
 328	ntpdata->time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
 329}
 330
 331static void __ntp_clear(struct ntp_data *ntpdata)
 
 
 
 332{
 333	/* Stop active adjtime() */
 334	ntpdata->time_adjust	= 0;
 335	ntpdata->time_status	|= STA_UNSYNC;
 336	ntpdata->time_maxerror	= NTP_PHASE_LIMIT;
 337	ntpdata->time_esterror	= NTP_PHASE_LIMIT;
 338
 339	ntp_update_frequency(ntpdata);
 340
 341	ntpdata->tick_length	= ntpdata->tick_length_base;
 342	ntpdata->time_offset	= 0;
 343
 344	ntpdata->ntp_next_leap_sec = TIME64_MAX;
 345	/* Clear PPS state variables */
 346	pps_clear(ntpdata);
 347}
 348
 349/**
 350 * ntp_clear - Clears the NTP state variables
 351 */
 352void ntp_clear(void)
 353{
 354	__ntp_clear(&tk_ntp_data);
 355}
 356
 357
 358u64 ntp_tick_length(void)
 359{
 360	return tk_ntp_data.tick_length;
 361}
 362
 363/**
 364 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
 365 *
 366 * Provides the time of the next leapsecond against CLOCK_REALTIME in
 367 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
 368 */
 369ktime_t ntp_get_next_leap(void)
 370{
 371	struct ntp_data *ntpdata = &tk_ntp_data;
 372	ktime_t ret;
 373
 374	if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS))
 375		return ktime_set(ntpdata->ntp_next_leap_sec, 0);
 376	ret = KTIME_MAX;
 377	return ret;
 378}
 379
 380/*
 381 * This routine handles the overflow of the microsecond field
 382 *
 383 * The tricky bits of code to handle the accurate clock support
 384 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 385 * They were originally developed for SUN and DEC kernels.
 386 * All the kudos should go to Dave for this stuff.
 387 *
 388 * Also handles leap second processing, and returns leap offset
 389 */
 390int second_overflow(time64_t secs)
 391{
 392	struct ntp_data *ntpdata = &tk_ntp_data;
 393	s64 delta;
 394	int leap = 0;
 395	s32 rem;
 396
 397	/*
 398	 * Leap second processing. If in leap-insert state at the end of the
 399	 * day, the system clock is set back one second; if in leap-delete
 400	 * state, the system clock is set ahead one second.
 401	 */
 402	switch (ntpdata->time_state) {
 403	case TIME_OK:
 404		if (ntpdata->time_status & STA_INS) {
 405			ntpdata->time_state = TIME_INS;
 406			div_s64_rem(secs, SECS_PER_DAY, &rem);
 407			ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 408		} else if (ntpdata->time_status & STA_DEL) {
 409			ntpdata->time_state = TIME_DEL;
 410			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
 411			ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 412		}
 413		break;
 414	case TIME_INS:
 415		if (!(ntpdata->time_status & STA_INS)) {
 416			ntpdata->ntp_next_leap_sec = TIME64_MAX;
 417			ntpdata->time_state = TIME_OK;
 418		} else if (secs == ntpdata->ntp_next_leap_sec) {
 419			leap = -1;
 420			ntpdata->time_state = TIME_OOP;
 421			pr_notice("Clock: inserting leap second 23:59:60 UTC\n");
 
 422		}
 423		break;
 424	case TIME_DEL:
 425		if (!(ntpdata->time_status & STA_DEL)) {
 426			ntpdata->ntp_next_leap_sec = TIME64_MAX;
 427			ntpdata->time_state = TIME_OK;
 428		} else if (secs == ntpdata->ntp_next_leap_sec) {
 429			leap = 1;
 430			ntpdata->ntp_next_leap_sec = TIME64_MAX;
 431			ntpdata->time_state = TIME_WAIT;
 432			pr_notice("Clock: deleting leap second 23:59:59 UTC\n");
 
 433		}
 434		break;
 435	case TIME_OOP:
 436		ntpdata->ntp_next_leap_sec = TIME64_MAX;
 437		ntpdata->time_state = TIME_WAIT;
 438		break;
 439	case TIME_WAIT:
 440		if (!(ntpdata->time_status & (STA_INS | STA_DEL)))
 441			ntpdata->time_state = TIME_OK;
 442		break;
 443	}
 444
 
 445	/* Bump the maxerror field */
 446	ntpdata->time_maxerror += MAXFREQ / NSEC_PER_USEC;
 447	if (ntpdata->time_maxerror > NTP_PHASE_LIMIT) {
 448		ntpdata->time_maxerror = NTP_PHASE_LIMIT;
 449		ntpdata->time_status |= STA_UNSYNC;
 450	}
 451
 452	/* Compute the phase adjustment for the next second */
 453	ntpdata->tick_length	 = ntpdata->tick_length_base;
 454
 455	delta			 = ntp_offset_chunk(ntpdata, ntpdata->time_offset);
 456	ntpdata->time_offset	-= delta;
 457	ntpdata->tick_length	+= delta;
 458
 459	/* Check PPS signal */
 460	pps_dec_valid(ntpdata);
 461
 462	if (!ntpdata->time_adjust)
 463		goto out;
 464
 465	if (ntpdata->time_adjust > MAX_TICKADJ) {
 466		ntpdata->time_adjust -= MAX_TICKADJ;
 467		ntpdata->tick_length += MAX_TICKADJ_SCALED;
 468		goto out;
 469	}
 470
 471	if (ntpdata->time_adjust < -MAX_TICKADJ) {
 472		ntpdata->time_adjust += MAX_TICKADJ;
 473		ntpdata->tick_length -= MAX_TICKADJ_SCALED;
 474		goto out;
 475	}
 476
 477	ntpdata->tick_length += (s64)(ntpdata->time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
 478				<< NTP_SCALE_SHIFT;
 479	ntpdata->time_adjust = 0;
 480
 481out:
 482	return leap;
 483}
 484
 485#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
 486static void sync_hw_clock(struct work_struct *work);
 487static DECLARE_WORK(sync_work, sync_hw_clock);
 488static struct hrtimer sync_hrtimer;
 489#define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
 
 490
 491static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
 492{
 493	queue_work(system_freezable_power_efficient_wq, &sync_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494
 495	return HRTIMER_NORESTART;
 
 496}
 497
 498static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
 499{
 500	ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
 
 
 501
 502	if (retry)
 503		exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
 504	else
 505		exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
 506
 507	hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
 508}
 509
 510/*
 511 * Check whether @now is correct versus the required time to update the RTC
 512 * and calculate the value which needs to be written to the RTC so that the
 513 * next seconds increment of the RTC after the write is aligned with the next
 514 * seconds increment of clock REALTIME.
 515 *
 516 * tsched     t1 write(t2.tv_sec - 1sec))	t2 RTC increments seconds
 517 *
 518 * t2.tv_nsec == 0
 519 * tsched = t2 - set_offset_nsec
 520 * newval = t2 - NSEC_PER_SEC
 521 *
 522 * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
 523 *
 524 * As the execution of this code is not guaranteed to happen exactly at
 525 * tsched this allows it to happen within a fuzzy region:
 526 *
 527 *	abs(now - tsched) < FUZZ
 528 *
 529 * If @now is not inside the allowed window the function returns false.
 530 */
 531static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
 532				  struct timespec64 *to_set,
 533				  const struct timespec64 *now)
 534{
 535	/* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */
 536	const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
 537	struct timespec64 delay = {.tv_sec = -1,
 538				   .tv_nsec = set_offset_nsec};
 539
 540	*to_set = timespec64_add(*now, delay);
 
 
 
 
 
 
 541
 542	if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
 543		to_set->tv_nsec = 0;
 544		return true;
 545	}
 546
 547	if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
 548		to_set->tv_sec++;
 549		to_set->tv_nsec = 0;
 550		return true;
 551	}
 552	return false;
 553}
 554
 555#ifdef CONFIG_GENERIC_CMOS_UPDATE
 556int __weak update_persistent_clock64(struct timespec64 now64)
 557{
 558	return -ENODEV;
 559}
 560#else
 561static inline int update_persistent_clock64(struct timespec64 now64)
 562{
 563	return -ENODEV;
 
 
 
 564}
 565#endif
 566
 567#ifdef CONFIG_RTC_SYSTOHC
 568/* Save NTP synchronized time to the RTC */
 569static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
 570{
 571	struct rtc_device *rtc;
 572	struct rtc_time tm;
 573	int err = -ENODEV;
 574
 575	rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
 576	if (!rtc)
 577		return -ENODEV;
 578
 579	if (!rtc->ops || !rtc->ops->set_time)
 580		goto out_close;
 581
 582	/* First call might not have the correct offset */
 583	if (*offset_nsec == rtc->set_offset_nsec) {
 584		rtc_time64_to_tm(to_set->tv_sec, &tm);
 585		err = rtc_set_time(rtc, &tm);
 586	} else {
 587		/* Store the update offset and let the caller try again */
 588		*offset_nsec = rtc->set_offset_nsec;
 589		err = -EAGAIN;
 590	}
 591out_close:
 592	rtc_class_close(rtc);
 593	return err;
 594}
 595#else
 596static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
 597{
 598	return -ENODEV;
 599}
 600#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601
 602/**
 603 * ntp_synced - Tells whether the NTP status is not UNSYNC
 604 * Returns:	true if not UNSYNC, false otherwise
 605 */
 606static inline bool ntp_synced(void)
 607{
 608	return !(tk_ntp_data.time_status & STA_UNSYNC);
 609}
 610
 611/*
 612 * If we have an externally synchronized Linux clock, then update RTC clock
 613 * accordingly every ~11 minutes. Generally RTCs can only store second
 614 * precision, but many RTCs will adjust the phase of their second tick to
 615 * match the moment of update. This infrastructure arranges to call to the RTC
 616 * set at the correct moment to phase synchronize the RTC second tick over
 617 * with the kernel clock.
 618 */
 619static void sync_hw_clock(struct work_struct *work)
 620{
 621	/*
 622	 * The default synchronization offset is 500ms for the deprecated
 623	 * update_persistent_clock64() under the assumption that it uses
 624	 * the infamous CMOS clock (MC146818).
 625	 */
 626	static unsigned long offset_nsec = NSEC_PER_SEC / 2;
 627	struct timespec64 now, to_set;
 628	int res = -EAGAIN;
 629
 630	/*
 631	 * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
 632	 * managed to schedule the work between the timer firing and the
 633	 * work being able to rearm the timer. Wait for the timer to expire.
 634	 */
 635	if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
 636		return;
 637
 638	ktime_get_real_ts64(&now);
 639	/* If @now is not in the allowed window, try again */
 640	if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
 641		goto rearm;
 642
 643	/* Take timezone adjusted RTCs into account */
 644	if (persistent_clock_is_local)
 645		to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
 646
 647	/* Try the legacy RTC first. */
 648	res = update_persistent_clock64(to_set);
 649	if (res != -ENODEV)
 650		goto rearm;
 651
 652	/* Try the RTC class */
 653	res = update_rtc(&to_set, &offset_nsec);
 654	if (res == -ENODEV)
 655		return;
 656rearm:
 657	sched_sync_hw_clock(offset_nsec, res != 0);
 658}
 659
 660void ntp_notify_cmos_timer(bool offset_set)
 661{
 662	/*
 663	 * If the time jumped (using ADJ_SETOFFSET) cancels sync timer,
 664	 * which may have been running if the time was synchronized
 665	 * prior to the ADJ_SETOFFSET call.
 666	 */
 667	if (offset_set)
 668		hrtimer_cancel(&sync_hrtimer);
 669
 670	/*
 671	 * When the work is currently executed but has not yet the timer
 672	 * rearmed this queues the work immediately again. No big issue,
 673	 * just a pointless work scheduled.
 674	 */
 675	if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
 676		queue_work(system_freezable_power_efficient_wq, &sync_work);
 677}
 678
 679static void __init ntp_init_cmos_sync(void)
 680{
 681	hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
 682	sync_hrtimer.function = sync_timer_callback;
 683}
 684#else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
 685static inline void __init ntp_init_cmos_sync(void) { }
 686#endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
 687
 688/*
 689 * Propagate a new txc->status value into the NTP state:
 690 */
 691static inline void process_adj_status(struct ntp_data *ntpdata, const struct __kernel_timex *txc)
 692{
 693	if ((ntpdata->time_status & STA_PLL) && !(txc->status & STA_PLL)) {
 694		ntpdata->time_state = TIME_OK;
 695		ntpdata->time_status = STA_UNSYNC;
 696		ntpdata->ntp_next_leap_sec = TIME64_MAX;
 697		/* Restart PPS frequency calibration */
 698		pps_reset_freq_interval(ntpdata);
 699	}
 700
 701	/*
 702	 * If we turn on PLL adjustments then reset the
 703	 * reference time to current time.
 704	 */
 705	if (!(ntpdata->time_status & STA_PLL) && (txc->status & STA_PLL))
 706		ntpdata->time_reftime = __ktime_get_real_seconds();
 707
 708	/* only set allowed bits */
 709	ntpdata->time_status &= STA_RONLY;
 710	ntpdata->time_status |= txc->status & ~STA_RONLY;
 711}
 712
 713static inline void process_adjtimex_modes(struct ntp_data *ntpdata, const struct __kernel_timex *txc,
 714					  s32 *time_tai)
 
 
 715{
 716	if (txc->modes & ADJ_STATUS)
 717		process_adj_status(ntpdata, txc);
 718
 719	if (txc->modes & ADJ_NANO)
 720		ntpdata->time_status |= STA_NANO;
 721
 722	if (txc->modes & ADJ_MICRO)
 723		ntpdata->time_status &= ~STA_NANO;
 724
 725	if (txc->modes & ADJ_FREQUENCY) {
 726		ntpdata->time_freq = txc->freq * PPM_SCALE;
 727		ntpdata->time_freq = min(ntpdata->time_freq, MAXFREQ_SCALED);
 728		ntpdata->time_freq = max(ntpdata->time_freq, -MAXFREQ_SCALED);
 729		/* Update pps_freq */
 730		pps_set_freq(ntpdata);
 731	}
 732
 733	if (txc->modes & ADJ_MAXERROR)
 734		ntpdata->time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT);
 735
 736	if (txc->modes & ADJ_ESTERROR)
 737		ntpdata->time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT);
 738
 739	if (txc->modes & ADJ_TIMECONST) {
 740		ntpdata->time_constant = clamp(txc->constant, 0, MAXTC);
 741		if (!(ntpdata->time_status & STA_NANO))
 742			ntpdata->time_constant += 4;
 743		ntpdata->time_constant = clamp(ntpdata->time_constant, 0, MAXTC);
 
 744	}
 745
 746	if (txc->modes & ADJ_TAI && txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
 747		*time_tai = txc->constant;
 748
 749	if (txc->modes & ADJ_OFFSET)
 750		ntp_update_offset(ntpdata, txc->offset);
 751
 752	if (txc->modes & ADJ_TICK)
 753		ntpdata->tick_usec = txc->tick;
 754
 755	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
 756		ntp_update_frequency(ntpdata);
 757}
 758
 
 759/*
 760 * adjtimex() mainly allows reading (and writing, if superuser) of
 761 * kernel time-keeping variables. used by xntpd.
 762 */
 763int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
 764		  s32 *time_tai, struct audit_ntp_data *ad)
 765{
 766	struct ntp_data *ntpdata = &tk_ntp_data;
 767	int result;
 768
 769	if (txc->modes & ADJ_ADJTIME) {
 770		long save_adjust = ntpdata->time_adjust;
 771
 772		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
 773			/* adjtime() is independent from ntp_adjtime() */
 774			ntpdata->time_adjust = txc->offset;
 775			ntp_update_frequency(ntpdata);
 776
 777			audit_ntp_set_old(ad, AUDIT_NTP_ADJUST,	save_adjust);
 778			audit_ntp_set_new(ad, AUDIT_NTP_ADJUST,	ntpdata->time_adjust);
 779		}
 780		txc->offset = save_adjust;
 781	} else {
 
 782		/* If there are input parameters, then process them: */
 783		if (txc->modes) {
 784			audit_ntp_set_old(ad, AUDIT_NTP_OFFSET,	ntpdata->time_offset);
 785			audit_ntp_set_old(ad, AUDIT_NTP_FREQ,	ntpdata->time_freq);
 786			audit_ntp_set_old(ad, AUDIT_NTP_STATUS,	ntpdata->time_status);
 787			audit_ntp_set_old(ad, AUDIT_NTP_TAI,	*time_tai);
 788			audit_ntp_set_old(ad, AUDIT_NTP_TICK,	ntpdata->tick_usec);
 789
 790			process_adjtimex_modes(ntpdata, txc, time_tai);
 791
 792			audit_ntp_set_new(ad, AUDIT_NTP_OFFSET,	ntpdata->time_offset);
 793			audit_ntp_set_new(ad, AUDIT_NTP_FREQ,	ntpdata->time_freq);
 794			audit_ntp_set_new(ad, AUDIT_NTP_STATUS,	ntpdata->time_status);
 795			audit_ntp_set_new(ad, AUDIT_NTP_TAI,	*time_tai);
 796			audit_ntp_set_new(ad, AUDIT_NTP_TICK,	ntpdata->tick_usec);
 797		}
 798
 799		txc->offset = shift_right(ntpdata->time_offset * NTP_INTERVAL_FREQ, NTP_SCALE_SHIFT);
 800		if (!(ntpdata->time_status & STA_NANO))
 801			txc->offset = div_s64(txc->offset, NSEC_PER_USEC);
 
 802	}
 803
 804	result = ntpdata->time_state;
 805	if (is_error_status(ntpdata->time_status))
 
 806		result = TIME_ERROR;
 807
 808	txc->freq	   = shift_right((ntpdata->time_freq >> PPM_SCALE_INV_SHIFT) *
 809					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
 810	txc->maxerror	   = ntpdata->time_maxerror;
 811	txc->esterror	   = ntpdata->time_esterror;
 812	txc->status	   = ntpdata->time_status;
 813	txc->constant	   = ntpdata->time_constant;
 814	txc->precision	   = 1;
 815	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
 816	txc->tick	   = ntpdata->tick_usec;
 817	txc->tai	   = *time_tai;
 818
 819	/* Fill PPS status fields */
 820	pps_fill_timex(ntpdata, txc);
 821
 822	txc->time.tv_sec = ts->tv_sec;
 823	txc->time.tv_usec = ts->tv_nsec;
 824	if (!(ntpdata->time_status & STA_NANO))
 825		txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
 826
 827	/* Handle leapsec adjustments */
 828	if (unlikely(ts->tv_sec >= ntpdata->ntp_next_leap_sec)) {
 829		if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS)) {
 830			result = TIME_OOP;
 831			txc->tai++;
 832			txc->time.tv_sec--;
 833		}
 834		if ((ntpdata->time_state == TIME_DEL) && (ntpdata->time_status & STA_DEL)) {
 835			result = TIME_WAIT;
 836			txc->tai--;
 837			txc->time.tv_sec++;
 838		}
 839		if ((ntpdata->time_state == TIME_OOP) && (ts->tv_sec == ntpdata->ntp_next_leap_sec))
 
 840			result = TIME_WAIT;
 
 841	}
 842
 843	return result;
 844}
 845
 846#ifdef	CONFIG_NTP_PPS
 847
 848/*
 849 * struct pps_normtime is basically a struct timespec, but it is
 850 * semantically different (and it is the reason why it was invented):
 851 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 852 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC)
 853 */
 854struct pps_normtime {
 855	s64		sec;	/* seconds */
 856	long		nsec;	/* nanoseconds */
 857};
 858
 859/*
 860 * Normalize the timestamp so that nsec is in the
 861 * [ -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval
 862 */
 863static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
 864{
 865	struct pps_normtime norm = {
 866		.sec = ts.tv_sec,
 867		.nsec = ts.tv_nsec
 868	};
 869
 870	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
 871		norm.nsec -= NSEC_PER_SEC;
 872		norm.sec++;
 873	}
 874
 875	return norm;
 876}
 877
 878/* Get current phase correction and jitter */
 879static inline long pps_phase_filter_get(struct ntp_data *ntpdata, long *jitter)
 880{
 881	*jitter = ntpdata->pps_tf[0] - ntpdata->pps_tf[1];
 882	if (*jitter < 0)
 883		*jitter = -*jitter;
 884
 885	/* TODO: test various filters */
 886	return ntpdata->pps_tf[0];
 887}
 888
 889/* Add the sample to the phase filter */
 890static inline void pps_phase_filter_add(struct ntp_data *ntpdata, long err)
 891{
 892	ntpdata->pps_tf[2] = ntpdata->pps_tf[1];
 893	ntpdata->pps_tf[1] = ntpdata->pps_tf[0];
 894	ntpdata->pps_tf[0] = err;
 895}
 896
 897/*
 898 * Decrease frequency calibration interval length. It is halved after four
 899 * consecutive unstable intervals.
 900 */
 901static inline void pps_dec_freq_interval(struct ntp_data *ntpdata)
 902{
 903	if (--ntpdata->pps_intcnt <= -PPS_INTCOUNT) {
 904		ntpdata->pps_intcnt = -PPS_INTCOUNT;
 905		if (ntpdata->pps_shift > PPS_INTMIN) {
 906			ntpdata->pps_shift--;
 907			ntpdata->pps_intcnt = 0;
 908		}
 909	}
 910}
 911
 912/*
 913 * Increase frequency calibration interval length. It is doubled after
 914 * four consecutive stable intervals.
 915 */
 916static inline void pps_inc_freq_interval(struct ntp_data *ntpdata)
 917{
 918	if (++ntpdata->pps_intcnt >= PPS_INTCOUNT) {
 919		ntpdata->pps_intcnt = PPS_INTCOUNT;
 920		if (ntpdata->pps_shift < PPS_INTMAX) {
 921			ntpdata->pps_shift++;
 922			ntpdata->pps_intcnt = 0;
 923		}
 924	}
 925}
 926
 927/*
 928 * Update clock frequency based on MONOTONIC_RAW clock PPS signal
 929 * timestamps
 930 *
 931 * At the end of the calibration interval the difference between the
 932 * first and last MONOTONIC_RAW clock timestamps divided by the length
 933 * of the interval becomes the frequency update. If the interval was
 934 * too long, the data are discarded.
 935 * Returns the difference between old and new frequency values.
 936 */
 937static long hardpps_update_freq(struct ntp_data *ntpdata, struct pps_normtime freq_norm)
 938{
 939	long delta, delta_mod;
 940	s64 ftemp;
 941
 942	/* Check if the frequency interval was too long */
 943	if (freq_norm.sec > (2 << ntpdata->pps_shift)) {
 944		ntpdata->time_status |= STA_PPSERROR;
 945		ntpdata->pps_errcnt++;
 946		pps_dec_freq_interval(ntpdata);
 947		printk_deferred(KERN_ERR "hardpps: PPSERROR: interval too long - %lld s\n",
 948				freq_norm.sec);
 
 949		return 0;
 950	}
 951
 952	/*
 953	 * Here the raw frequency offset and wander (stability) is
 954	 * calculated. If the wander is less than the wander threshold the
 955	 * interval is increased; otherwise it is decreased.
 956	 */
 957	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
 958			freq_norm.sec);
 959	delta = shift_right(ftemp - ntpdata->pps_freq, NTP_SCALE_SHIFT);
 960	ntpdata->pps_freq = ftemp;
 961	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
 962		printk_deferred(KERN_WARNING "hardpps: PPSWANDER: change=%ld\n", delta);
 963		ntpdata->time_status |= STA_PPSWANDER;
 964		ntpdata->pps_stbcnt++;
 965		pps_dec_freq_interval(ntpdata);
 966	} else {
 967		/* Good sample */
 968		pps_inc_freq_interval(ntpdata);
 969	}
 970
 971	/*
 972	 * The stability metric is calculated as the average of recent
 973	 * frequency changes, but is used only for performance monitoring
 974	 */
 975	delta_mod = delta;
 976	if (delta_mod < 0)
 977		delta_mod = -delta_mod;
 978	ntpdata->pps_stabil += (div_s64(((s64)delta_mod) << (NTP_SCALE_SHIFT - SHIFT_USEC),
 979				     NSEC_PER_USEC) - ntpdata->pps_stabil) >> PPS_INTMIN;
 980
 981	/* If enabled, the system clock frequency is updated */
 982	if ((ntpdata->time_status & STA_PPSFREQ) && !(ntpdata->time_status & STA_FREQHOLD)) {
 983		ntpdata->time_freq = ntpdata->pps_freq;
 984		ntp_update_frequency(ntpdata);
 
 
 985	}
 986
 987	return delta;
 988}
 989
 990/* Correct REALTIME clock phase error against PPS signal */
 991static void hardpps_update_phase(struct ntp_data *ntpdata, long error)
 992{
 993	long correction = -error;
 994	long jitter;
 995
 996	/* Add the sample to the median filter */
 997	pps_phase_filter_add(ntpdata, correction);
 998	correction = pps_phase_filter_get(ntpdata, &jitter);
 999
1000	/*
1001	 * Nominal jitter is due to PPS signal noise. If it exceeds the
1002	 * threshold, the sample is discarded; otherwise, if so enabled,
1003	 * the time offset is updated.
1004	 */
1005	if (jitter > (ntpdata->pps_jitter << PPS_POPCORN)) {
1006		printk_deferred(KERN_WARNING "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
1007				jitter, (ntpdata->pps_jitter << PPS_POPCORN));
1008		ntpdata->time_status |= STA_PPSJITTER;
1009		ntpdata->pps_jitcnt++;
1010	} else if (ntpdata->time_status & STA_PPSTIME) {
1011		/* Correct the time using the phase offset */
1012		ntpdata->time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
1013					       NTP_INTERVAL_FREQ);
1014		/* Cancel running adjtime() */
1015		ntpdata->time_adjust = 0;
 
1016	}
1017	/* Update jitter */
1018	ntpdata->pps_jitter += (jitter - ntpdata->pps_jitter) >> PPS_INTMIN;
1019}
1020
1021/*
1022 * __hardpps() - discipline CPU clock oscillator to external PPS signal
1023 *
1024 * This routine is called at each PPS signal arrival in order to
1025 * discipline the CPU clock oscillator to the PPS signal. It takes two
1026 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
1027 * is used to correct clock phase error and the latter is used to
1028 * correct the frequency.
1029 *
1030 * This code is based on David Mills's reference nanokernel
1031 * implementation. It was mostly rewritten but keeps the same idea.
1032 */
1033void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
1034{
1035	struct pps_normtime pts_norm, freq_norm;
1036	struct ntp_data *ntpdata = &tk_ntp_data;
1037
1038	pts_norm = pps_normalize_ts(*phase_ts);
1039
1040	/* Clear the error bits, they will be set again if needed */
1041	ntpdata->time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1042
1043	/* indicate signal presence */
1044	ntpdata->time_status |= STA_PPSSIGNAL;
1045	ntpdata->pps_valid = PPS_VALID;
1046
1047	/*
1048	 * When called for the first time, just start the frequency
1049	 * interval
1050	 */
1051	if (unlikely(ntpdata->pps_fbase.tv_sec == 0)) {
1052		ntpdata->pps_fbase = *raw_ts;
1053		return;
1054	}
1055
1056	/* Ok, now we have a base for frequency calculation */
1057	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, ntpdata->pps_fbase));
1058
1059	/*
1060	 * Check that the signal is in the range
1061	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it
1062	 */
1063	if ((freq_norm.sec == 0) || (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1064	    (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1065		ntpdata->time_status |= STA_PPSJITTER;
1066		/* Restart the frequency calibration interval */
1067		ntpdata->pps_fbase = *raw_ts;
1068		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1069		return;
1070	}
1071
1072	/* Signal is ok. Check if the current frequency interval is finished */
1073	if (freq_norm.sec >= (1 << ntpdata->pps_shift)) {
1074		ntpdata->pps_calcnt++;
1075		/* Restart the frequency calibration interval */
1076		ntpdata->pps_fbase = *raw_ts;
1077		hardpps_update_freq(ntpdata, freq_norm);
 
 
1078	}
1079
1080	hardpps_update_phase(ntpdata, pts_norm.nsec);
1081
1082}
1083#endif	/* CONFIG_NTP_PPS */
1084
1085static int __init ntp_tick_adj_setup(char *str)
1086{
1087	int rc = kstrtos64(str, 0, &tk_ntp_data.ntp_tick_adj);
 
1088	if (rc)
1089		return rc;
 
1090
1091	tk_ntp_data.ntp_tick_adj <<= NTP_SCALE_SHIFT;
1092	return 1;
1093}
1094
1095__setup("ntp_tick_adj=", ntp_tick_adj_setup);
1096
1097void __init ntp_init(void)
1098{
1099	ntp_clear();
1100	ntp_init_cmos_sync();
1101}