Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * rtmutex API
  4 */
  5#include <linux/spinlock.h>
  6#include <linux/export.h>
  7
  8#define RT_MUTEX_BUILD_MUTEX
  9#include "rtmutex.c"
 10
 11/*
 12 * Max number of times we'll walk the boosting chain:
 13 */
 14int max_lock_depth = 1024;
 15
 16/*
 17 * Debug aware fast / slowpath lock,trylock,unlock
 18 *
 19 * The atomic acquire/release ops are compiled away, when either the
 20 * architecture does not support cmpxchg or when debugging is enabled.
 21 */
 22static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock,
 23						  unsigned int state,
 24						  struct lockdep_map *nest_lock,
 25						  unsigned int subclass)
 26{
 27	int ret;
 28
 29	might_sleep();
 30	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, _RET_IP_);
 31	ret = __rt_mutex_lock(&lock->rtmutex, state);
 32	if (ret)
 33		mutex_release(&lock->dep_map, _RET_IP_);
 34	return ret;
 35}
 36
 37void rt_mutex_base_init(struct rt_mutex_base *rtb)
 38{
 39	__rt_mutex_base_init(rtb);
 40}
 41EXPORT_SYMBOL(rt_mutex_base_init);
 42
 43#ifdef CONFIG_DEBUG_LOCK_ALLOC
 44/**
 45 * rt_mutex_lock_nested - lock a rt_mutex
 46 *
 47 * @lock: the rt_mutex to be locked
 48 * @subclass: the lockdep subclass
 49 */
 50void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
 51{
 52	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, subclass);
 53}
 54EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
 55
 56void __sched _rt_mutex_lock_nest_lock(struct rt_mutex *lock, struct lockdep_map *nest_lock)
 57{
 58	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, nest_lock, 0);
 59}
 60EXPORT_SYMBOL_GPL(_rt_mutex_lock_nest_lock);
 61
 62#else /* !CONFIG_DEBUG_LOCK_ALLOC */
 63
 64/**
 65 * rt_mutex_lock - lock a rt_mutex
 66 *
 67 * @lock: the rt_mutex to be locked
 68 */
 69void __sched rt_mutex_lock(struct rt_mutex *lock)
 70{
 71	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, 0);
 72}
 73EXPORT_SYMBOL_GPL(rt_mutex_lock);
 74#endif
 75
 76/**
 77 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
 78 *
 79 * @lock:		the rt_mutex to be locked
 80 *
 81 * Returns:
 82 *  0		on success
 83 * -EINTR	when interrupted by a signal
 84 */
 85int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
 86{
 87	return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, NULL, 0);
 88}
 89EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
 90
 91/**
 92 * rt_mutex_lock_killable - lock a rt_mutex killable
 93 *
 94 * @lock:		the rt_mutex to be locked
 95 *
 96 * Returns:
 97 *  0		on success
 98 * -EINTR	when interrupted by a signal
 99 */
100int __sched rt_mutex_lock_killable(struct rt_mutex *lock)
101{
102	return __rt_mutex_lock_common(lock, TASK_KILLABLE, NULL, 0);
103}
104EXPORT_SYMBOL_GPL(rt_mutex_lock_killable);
105
106/**
107 * rt_mutex_trylock - try to lock a rt_mutex
108 *
109 * @lock:	the rt_mutex to be locked
110 *
111 * This function can only be called in thread context. It's safe to call it
112 * from atomic regions, but not from hard or soft interrupt context.
113 *
114 * Returns:
115 *  1 on success
116 *  0 on contention
117 */
118int __sched rt_mutex_trylock(struct rt_mutex *lock)
119{
120	int ret;
121
122	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
123		return 0;
124
125	ret = __rt_mutex_trylock(&lock->rtmutex);
126	if (ret)
127		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
128
129	return ret;
130}
131EXPORT_SYMBOL_GPL(rt_mutex_trylock);
132
133/**
134 * rt_mutex_unlock - unlock a rt_mutex
135 *
136 * @lock: the rt_mutex to be unlocked
137 */
138void __sched rt_mutex_unlock(struct rt_mutex *lock)
139{
140	mutex_release(&lock->dep_map, _RET_IP_);
141	__rt_mutex_unlock(&lock->rtmutex);
142}
143EXPORT_SYMBOL_GPL(rt_mutex_unlock);
144
145/*
146 * Futex variants, must not use fastpath.
147 */
148int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock)
149{
150	return rt_mutex_slowtrylock(lock);
151}
152
153int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock)
154{
155	return __rt_mutex_slowtrylock(lock);
156}
157
158/**
159 * __rt_mutex_futex_unlock - Futex variant, that since futex variants
160 * do not use the fast-path, can be simple and will not need to retry.
161 *
162 * @lock:	The rt_mutex to be unlocked
163 * @wqh:	The wake queue head from which to get the next lock waiter
164 */
165bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock,
166				     struct rt_wake_q_head *wqh)
167{
168	lockdep_assert_held(&lock->wait_lock);
169
170	debug_rt_mutex_unlock(lock);
171
172	if (!rt_mutex_has_waiters(lock)) {
173		lock->owner = NULL;
174		return false; /* done */
175	}
176
177	/*
178	 * mark_wakeup_next_waiter() deboosts and retains preemption
179	 * disabled when dropping the wait_lock, to avoid inversion prior
180	 * to the wakeup.  preempt_disable() therein pairs with the
181	 * preempt_enable() in rt_mutex_postunlock().
182	 */
183	mark_wakeup_next_waiter(wqh, lock);
184
185	return true; /* call postunlock() */
186}
187
188void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock)
189{
190	DEFINE_RT_WAKE_Q(wqh);
191	unsigned long flags;
192	bool postunlock;
193
194	raw_spin_lock_irqsave(&lock->wait_lock, flags);
195	postunlock = __rt_mutex_futex_unlock(lock, &wqh);
196	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
197
198	if (postunlock)
199		rt_mutex_postunlock(&wqh);
200}
201
202/**
203 * __rt_mutex_init - initialize the rt_mutex
204 *
205 * @lock:	The rt_mutex to be initialized
206 * @name:	The lock name used for debugging
207 * @key:	The lock class key used for debugging
208 *
209 * Initialize the rt_mutex to unlocked state.
210 *
211 * Initializing of a locked rt_mutex is not allowed
212 */
213void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name,
214			     struct lock_class_key *key)
215{
216	debug_check_no_locks_freed((void *)lock, sizeof(*lock));
217	__rt_mutex_base_init(&lock->rtmutex);
218	lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP);
219}
220EXPORT_SYMBOL_GPL(__rt_mutex_init);
221
222/**
223 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
224 *				proxy owner
225 *
226 * @lock:	the rt_mutex to be locked
227 * @proxy_owner:the task to set as owner
228 *
229 * No locking. Caller has to do serializing itself
230 *
231 * Special API call for PI-futex support. This initializes the rtmutex and
232 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
233 * possible at this point because the pi_state which contains the rtmutex
234 * is not yet visible to other tasks.
235 */
236void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock,
237					struct task_struct *proxy_owner)
238{
239	static struct lock_class_key pi_futex_key;
240
241	__rt_mutex_base_init(lock);
242	/*
243	 * On PREEMPT_RT the futex hashbucket spinlock becomes 'sleeping'
244	 * and rtmutex based. That causes a lockdep false positive, because
245	 * some of the futex functions invoke spin_unlock(&hb->lock) with
246	 * the wait_lock of the rtmutex associated to the pi_futex held.
247	 * spin_unlock() in turn takes wait_lock of the rtmutex on which
248	 * the spinlock is based, which makes lockdep notice a lock
249	 * recursion. Give the futex/rtmutex wait_lock a separate key.
250	 */
251	lockdep_set_class(&lock->wait_lock, &pi_futex_key);
252	rt_mutex_set_owner(lock, proxy_owner);
253}
254
255/**
256 * rt_mutex_proxy_unlock - release a lock on behalf of owner
257 *
258 * @lock:	the rt_mutex to be locked
259 *
260 * No locking. Caller has to do serializing itself
261 *
262 * Special API call for PI-futex support. This just cleans up the rtmutex
263 * (debugging) state. Concurrent operations on this rt_mutex are not
264 * possible because it belongs to the pi_state which is about to be freed
265 * and it is not longer visible to other tasks.
266 */
267void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
268{
269	debug_rt_mutex_proxy_unlock(lock);
270	rt_mutex_clear_owner(lock);
271}
272
273/**
274 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
275 * @lock:		the rt_mutex to take
276 * @waiter:		the pre-initialized rt_mutex_waiter
277 * @task:		the task to prepare
278 * @wake_q:		the wake_q to wake tasks after we release the wait_lock
279 *
280 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
281 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
282 *
283 * NOTE: does _NOT_ remove the @waiter on failure; must either call
284 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
285 *
286 * Returns:
287 *  0 - task blocked on lock
288 *  1 - acquired the lock for task, caller should wake it up
289 * <0 - error
290 *
291 * Special API call for PI-futex support.
292 */
293int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
294					struct rt_mutex_waiter *waiter,
295					struct task_struct *task,
296					struct wake_q_head *wake_q)
297{
298	int ret;
299
300	lockdep_assert_held(&lock->wait_lock);
301
302	if (try_to_take_rt_mutex(lock, task, NULL))
303		return 1;
304
305	/* We enforce deadlock detection for futexes */
306	ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL,
307				      RT_MUTEX_FULL_CHAINWALK, wake_q);
308
309	if (ret && !rt_mutex_owner(lock)) {
310		/*
311		 * Reset the return value. We might have
312		 * returned with -EDEADLK and the owner
313		 * released the lock while we were walking the
314		 * pi chain.  Let the waiter sort it out.
315		 */
316		ret = 0;
317	}
318
319	return ret;
320}
321
322/**
323 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
324 * @lock:		the rt_mutex to take
325 * @waiter:		the pre-initialized rt_mutex_waiter
326 * @task:		the task to prepare
327 *
328 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
329 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
330 *
331 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
332 * on failure.
333 *
334 * Returns:
335 *  0 - task blocked on lock
336 *  1 - acquired the lock for task, caller should wake it up
337 * <0 - error
338 *
339 * Special API call for PI-futex support.
340 */
341int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
342				      struct rt_mutex_waiter *waiter,
343				      struct task_struct *task)
344{
345	int ret;
346	DEFINE_WAKE_Q(wake_q);
347
348	raw_spin_lock_irq(&lock->wait_lock);
349	ret = __rt_mutex_start_proxy_lock(lock, waiter, task, &wake_q);
350	if (unlikely(ret))
351		remove_waiter(lock, waiter);
352	preempt_disable();
353	raw_spin_unlock_irq(&lock->wait_lock);
354	wake_up_q(&wake_q);
355	preempt_enable();
356
357	return ret;
358}
359
360/**
361 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
362 * @lock:		the rt_mutex we were woken on
363 * @to:			the timeout, null if none. hrtimer should already have
364 *			been started.
365 * @waiter:		the pre-initialized rt_mutex_waiter
366 *
367 * Wait for the lock acquisition started on our behalf by
368 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
369 * rt_mutex_cleanup_proxy_lock().
370 *
371 * Returns:
372 *  0 - success
373 * <0 - error, one of -EINTR, -ETIMEDOUT
374 *
375 * Special API call for PI-futex support
376 */
377int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock,
378				     struct hrtimer_sleeper *to,
379				     struct rt_mutex_waiter *waiter)
380{
381	int ret;
382
383	raw_spin_lock_irq(&lock->wait_lock);
384	/* sleep on the mutex */
385	set_current_state(TASK_INTERRUPTIBLE);
386	ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter, NULL);
387	/*
388	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
389	 * have to fix that up.
390	 */
391	fixup_rt_mutex_waiters(lock, true);
392	raw_spin_unlock_irq(&lock->wait_lock);
393
394	return ret;
395}
396
397/**
398 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
399 * @lock:		the rt_mutex we were woken on
400 * @waiter:		the pre-initialized rt_mutex_waiter
401 *
402 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
403 * rt_mutex_wait_proxy_lock().
404 *
405 * Unless we acquired the lock; we're still enqueued on the wait-list and can
406 * in fact still be granted ownership until we're removed. Therefore we can
407 * find we are in fact the owner and must disregard the
408 * rt_mutex_wait_proxy_lock() failure.
409 *
410 * Returns:
411 *  true  - did the cleanup, we done.
412 *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
413 *          caller should disregards its return value.
414 *
415 * Special API call for PI-futex support
416 */
417bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock,
418					 struct rt_mutex_waiter *waiter)
419{
420	bool cleanup = false;
421
422	raw_spin_lock_irq(&lock->wait_lock);
423	/*
424	 * Do an unconditional try-lock, this deals with the lock stealing
425	 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
426	 * sets a NULL owner.
427	 *
428	 * We're not interested in the return value, because the subsequent
429	 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
430	 * we will own the lock and it will have removed the waiter. If we
431	 * failed the trylock, we're still not owner and we need to remove
432	 * ourselves.
433	 */
434	try_to_take_rt_mutex(lock, current, waiter);
435	/*
436	 * Unless we're the owner; we're still enqueued on the wait_list.
437	 * So check if we became owner, if not, take us off the wait_list.
438	 */
439	if (rt_mutex_owner(lock) != current) {
440		remove_waiter(lock, waiter);
441		cleanup = true;
442	}
443	/*
444	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
445	 * have to fix that up.
446	 */
447	fixup_rt_mutex_waiters(lock, false);
448
449	raw_spin_unlock_irq(&lock->wait_lock);
450
451	return cleanup;
452}
453
454/*
455 * Recheck the pi chain, in case we got a priority setting
456 *
457 * Called from sched_setscheduler
458 */
459void __sched rt_mutex_adjust_pi(struct task_struct *task)
460{
461	struct rt_mutex_waiter *waiter;
462	struct rt_mutex_base *next_lock;
463	unsigned long flags;
464
465	raw_spin_lock_irqsave(&task->pi_lock, flags);
466
467	waiter = task->pi_blocked_on;
468	if (!waiter || rt_waiter_node_equal(&waiter->tree, task_to_waiter_node(task))) {
469		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
470		return;
471	}
472	next_lock = waiter->lock;
473	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
474
475	/* gets dropped in rt_mutex_adjust_prio_chain()! */
476	get_task_struct(task);
477
478	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
479				   next_lock, NULL, task);
480}
481
482/*
483 * Performs the wakeup of the top-waiter and re-enables preemption.
484 */
485void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh)
486{
487	rt_mutex_wake_up_q(wqh);
488}
489
490#ifdef CONFIG_DEBUG_RT_MUTEXES
491void rt_mutex_debug_task_free(struct task_struct *task)
492{
493	DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
494	DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
495}
496#endif
497
498#ifdef CONFIG_PREEMPT_RT
499/* Mutexes */
500void __mutex_rt_init(struct mutex *mutex, const char *name,
501		     struct lock_class_key *key)
502{
503	debug_check_no_locks_freed((void *)mutex, sizeof(*mutex));
504	lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP);
505}
506EXPORT_SYMBOL(__mutex_rt_init);
507
508static __always_inline int __mutex_lock_common(struct mutex *lock,
509					       unsigned int state,
510					       unsigned int subclass,
511					       struct lockdep_map *nest_lock,
512					       unsigned long ip)
513{
514	int ret;
515
516	might_sleep();
517	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
518	ret = __rt_mutex_lock(&lock->rtmutex, state);
519	if (ret)
520		mutex_release(&lock->dep_map, ip);
521	else
522		lock_acquired(&lock->dep_map, ip);
523	return ret;
524}
525
526#ifdef CONFIG_DEBUG_LOCK_ALLOC
527void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass)
528{
529	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
530}
531EXPORT_SYMBOL_GPL(mutex_lock_nested);
532
533void __sched _mutex_lock_nest_lock(struct mutex *lock,
534				   struct lockdep_map *nest_lock)
535{
536	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_);
537}
538EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
539
540int __sched mutex_lock_interruptible_nested(struct mutex *lock,
541					    unsigned int subclass)
542{
543	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
544}
545EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
546
547int __sched mutex_lock_killable_nested(struct mutex *lock,
548					    unsigned int subclass)
549{
550	return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
551}
552EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
553
554void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
555{
556	int token;
557
558	might_sleep();
559
560	token = io_schedule_prepare();
561	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
562	io_schedule_finish(token);
563}
564EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
565
566#else /* CONFIG_DEBUG_LOCK_ALLOC */
567
568void __sched mutex_lock(struct mutex *lock)
569{
570	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
571}
572EXPORT_SYMBOL(mutex_lock);
573
574int __sched mutex_lock_interruptible(struct mutex *lock)
575{
576	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
577}
578EXPORT_SYMBOL(mutex_lock_interruptible);
579
580int __sched mutex_lock_killable(struct mutex *lock)
581{
582	return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
583}
584EXPORT_SYMBOL(mutex_lock_killable);
585
586void __sched mutex_lock_io(struct mutex *lock)
587{
588	int token = io_schedule_prepare();
589
590	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
591	io_schedule_finish(token);
592}
593EXPORT_SYMBOL(mutex_lock_io);
594#endif /* !CONFIG_DEBUG_LOCK_ALLOC */
595
596int __sched mutex_trylock(struct mutex *lock)
597{
598	int ret;
599
600	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
601		return 0;
602
603	ret = __rt_mutex_trylock(&lock->rtmutex);
604	if (ret)
605		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
606
607	return ret;
608}
609EXPORT_SYMBOL(mutex_trylock);
610
611void __sched mutex_unlock(struct mutex *lock)
612{
613	mutex_release(&lock->dep_map, _RET_IP_);
614	__rt_mutex_unlock(&lock->rtmutex);
615}
616EXPORT_SYMBOL(mutex_unlock);
617
618#endif /* CONFIG_PREEMPT_RT */