Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  linux/fs/nfs/dir.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  nfs directory handling functions
   7 *
   8 * 10 Apr 1996	Added silly rename for unlink	--okir
   9 * 28 Sep 1996	Improved directory cache --okir
  10 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  11 *              Re-implemented silly rename for unlink, newly implemented
  12 *              silly rename for nfs_rename() following the suggestions
  13 *              of Olaf Kirch (okir) found in this file.
  14 *              Following Linus comments on my original hack, this version
  15 *              depends only on the dcache stuff and doesn't touch the inode
  16 *              layer (iput() and friends).
  17 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
  18 */
  19
 
  20#include <linux/module.h>
  21#include <linux/time.h>
  22#include <linux/errno.h>
  23#include <linux/stat.h>
  24#include <linux/fcntl.h>
  25#include <linux/string.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/mm.h>
  29#include <linux/sunrpc/clnt.h>
  30#include <linux/nfs_fs.h>
  31#include <linux/nfs_mount.h>
  32#include <linux/pagemap.h>
  33#include <linux/pagevec.h>
  34#include <linux/namei.h>
  35#include <linux/mount.h>
  36#include <linux/swap.h>
  37#include <linux/sched.h>
  38#include <linux/kmemleak.h>
  39#include <linux/xattr.h>
 
  40
  41#include "delegation.h"
  42#include "iostat.h"
  43#include "internal.h"
  44#include "fscache.h"
  45
  46#include "nfstrace.h"
  47
  48/* #define NFS_DEBUG_VERBOSE 1 */
  49
  50static int nfs_opendir(struct inode *, struct file *);
  51static int nfs_closedir(struct inode *, struct file *);
  52static int nfs_readdir(struct file *, struct dir_context *);
  53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  55static void nfs_readdir_clear_array(struct page*);
 
 
  56
  57const struct file_operations nfs_dir_operations = {
  58	.llseek		= nfs_llseek_dir,
  59	.read		= generic_read_dir,
  60	.iterate	= nfs_readdir,
  61	.open		= nfs_opendir,
  62	.release	= nfs_closedir,
  63	.fsync		= nfs_fsync_dir,
  64};
  65
  66const struct address_space_operations nfs_dir_aops = {
  67	.freepage = nfs_readdir_clear_array,
  68};
  69
  70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
 
 
 
  71{
  72	struct nfs_inode *nfsi = NFS_I(dir);
  73	struct nfs_open_dir_context *ctx;
  74	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
 
  75	if (ctx != NULL) {
  76		ctx->duped = 0;
  77		ctx->attr_gencount = nfsi->attr_gencount;
  78		ctx->dir_cookie = 0;
  79		ctx->dup_cookie = 0;
  80		ctx->cred = get_rpccred(cred);
  81		spin_lock(&dir->i_lock);
  82		list_add(&ctx->list, &nfsi->open_files);
 
 
 
 
 
 
  83		spin_unlock(&dir->i_lock);
  84		return ctx;
  85	}
  86	return  ERR_PTR(-ENOMEM);
  87}
  88
  89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
  90{
  91	spin_lock(&dir->i_lock);
  92	list_del(&ctx->list);
  93	spin_unlock(&dir->i_lock);
  94	put_rpccred(ctx->cred);
  95	kfree(ctx);
  96}
  97
  98/*
  99 * Open file
 100 */
 101static int
 102nfs_opendir(struct inode *inode, struct file *filp)
 103{
 104	int res = 0;
 105	struct nfs_open_dir_context *ctx;
 106	struct rpc_cred *cred;
 107
 108	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 109
 110	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 111
 112	cred = rpc_lookup_cred();
 113	if (IS_ERR(cred))
 114		return PTR_ERR(cred);
 115	ctx = alloc_nfs_open_dir_context(inode, cred);
 116	if (IS_ERR(ctx)) {
 117		res = PTR_ERR(ctx);
 118		goto out;
 119	}
 120	filp->private_data = ctx;
 121out:
 122	put_rpccred(cred);
 123	return res;
 124}
 125
 126static int
 127nfs_closedir(struct inode *inode, struct file *filp)
 128{
 129	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 130	return 0;
 131}
 132
 133struct nfs_cache_array_entry {
 134	u64 cookie;
 135	u64 ino;
 136	struct qstr string;
 
 137	unsigned char d_type;
 138};
 139
 140struct nfs_cache_array {
 141	int size;
 142	int eof_index;
 143	u64 last_cookie;
 144	struct nfs_cache_array_entry array[0];
 
 
 
 
 145};
 146
 147typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
 148typedef struct {
 149	struct file	*file;
 150	struct page	*page;
 151	struct dir_context *ctx;
 152	unsigned long	page_index;
 153	u64		*dir_cookie;
 
 154	u64		last_cookie;
 155	loff_t		current_index;
 156	decode_dirent_t	decode;
 157
 
 
 158	unsigned long	timestamp;
 159	unsigned long	gencount;
 
 160	unsigned int	cache_entry_index;
 
 
 
 161	bool plus;
 
 162	bool eof;
 163} nfs_readdir_descriptor_t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164
 165/*
 166 * we are freeing strings created by nfs_add_to_readdir_array()
 167 */
 168static
 169void nfs_readdir_clear_array(struct page *page)
 170{
 171	struct nfs_cache_array *array;
 172	int i;
 173
 174	array = kmap_atomic(page);
 175	for (i = 0; i < array->size; i++)
 176		kfree(array->array[i].string.name);
 177	kunmap_atomic(array);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 178}
 179
 180/*
 181 * the caller is responsible for freeing qstr.name
 182 * when called by nfs_readdir_add_to_array, the strings will be freed in
 183 * nfs_clear_readdir_array()
 184 */
 185static
 186int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
 187{
 188	string->len = len;
 189	string->name = kmemdup(name, len, GFP_KERNEL);
 190	if (string->name == NULL)
 191		return -ENOMEM;
 192	/*
 193	 * Avoid a kmemleak false positive. The pointer to the name is stored
 194	 * in a page cache page which kmemleak does not scan.
 195	 */
 196	kmemleak_not_leak(string->name);
 197	string->hash = full_name_hash(NULL, name, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 198	return 0;
 199}
 200
 201static
 202int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 
 203{
 204	struct nfs_cache_array *array = kmap(page);
 205	struct nfs_cache_array_entry *cache_entry;
 206	int ret;
 
 207
 208	cache_entry = &array->array[array->size];
 209
 210	/* Check that this entry lies within the page bounds */
 211	ret = -ENOSPC;
 212	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
 
 
 
 213		goto out;
 
 214
 215	cache_entry->cookie = entry->prev_cookie;
 
 
 216	cache_entry->ino = entry->ino;
 217	cache_entry->d_type = entry->d_type;
 218	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
 219	if (ret)
 220		goto out;
 221	array->last_cookie = entry->cookie;
 222	array->size++;
 
 223	if (entry->eof != 0)
 224		array->eof_index = array->size;
 225out:
 226	kunmap(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227	return ret;
 228}
 229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230static
 231int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232{
 233	loff_t diff = desc->ctx->pos - desc->current_index;
 234	unsigned int index;
 235
 236	if (diff < 0)
 237		goto out_eof;
 238	if (diff >= array->size) {
 239		if (array->eof_index >= 0)
 240			goto out_eof;
 
 241		return -EAGAIN;
 242	}
 243
 244	index = (unsigned int)diff;
 245	*desc->dir_cookie = array->array[index].cookie;
 246	desc->cache_entry_index = index;
 247	return 0;
 248out_eof:
 249	desc->eof = true;
 250	return -EBADCOOKIE;
 251}
 252
 253static bool
 254nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
 255{
 256	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
 
 
 
 
 
 257		return false;
 258	smp_rmb();
 259	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
 260}
 261
 262static
 263int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 264{
 265	int i;
 266	loff_t new_pos;
 267	int status = -EAGAIN;
 268
 
 
 
 269	for (i = 0; i < array->size; i++) {
 270		if (array->array[i].cookie == *desc->dir_cookie) {
 271			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 272			struct nfs_open_dir_context *ctx = desc->file->private_data;
 273
 274			new_pos = desc->current_index + i;
 275			if (ctx->attr_gencount != nfsi->attr_gencount ||
 276			    !nfs_readdir_inode_mapping_valid(nfsi)) {
 277				ctx->duped = 0;
 278				ctx->attr_gencount = nfsi->attr_gencount;
 279			} else if (new_pos < desc->ctx->pos) {
 280				if (ctx->duped > 0
 281				    && ctx->dup_cookie == *desc->dir_cookie) {
 282					if (printk_ratelimit()) {
 283						pr_notice("NFS: directory %pD2 contains a readdir loop."
 284								"Please contact your server vendor.  "
 285								"The file: %.*s has duplicate cookie %llu\n",
 286								desc->file, array->array[i].string.len,
 287								array->array[i].string.name, *desc->dir_cookie);
 288					}
 289					status = -ELOOP;
 290					goto out;
 291				}
 292				ctx->dup_cookie = *desc->dir_cookie;
 293				ctx->duped = -1;
 294			}
 295			desc->ctx->pos = new_pos;
 296			desc->cache_entry_index = i;
 297			return 0;
 298		}
 299	}
 300	if (array->eof_index >= 0) {
 
 301		status = -EBADCOOKIE;
 302		if (*desc->dir_cookie == array->last_cookie)
 303			desc->eof = true;
 304	}
 305out:
 306	return status;
 307}
 308
 309static
 310int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
 311{
 312	struct nfs_cache_array *array;
 313	int status;
 314
 315	array = kmap(desc->page);
 316
 317	if (*desc->dir_cookie == 0)
 318		status = nfs_readdir_search_for_pos(array, desc);
 319	else
 320		status = nfs_readdir_search_for_cookie(array, desc);
 321
 322	if (status == -EAGAIN) {
 323		desc->last_cookie = array->last_cookie;
 324		desc->current_index += array->size;
 325		desc->page_index++;
 326	}
 327	kunmap(desc->page);
 328	return status;
 329}
 330
 331/* Fill a page with xdr information before transferring to the cache page */
 332static
 333int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
 334			struct nfs_entry *entry, struct file *file, struct inode *inode)
 
 335{
 336	struct nfs_open_dir_context *ctx = file->private_data;
 337	struct rpc_cred	*cred = ctx->cred;
 
 
 
 
 
 
 
 
 
 
 
 338	unsigned long	timestamp, gencount;
 339	int		error;
 340
 341 again:
 342	timestamp = jiffies;
 343	gencount = nfs_inc_attr_generation_counter();
 344	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
 345					  NFS_SERVER(inode)->dtsize, desc->plus);
 346	if (error < 0) {
 347		/* We requested READDIRPLUS, but the server doesn't grok it */
 348		if (error == -ENOTSUPP && desc->plus) {
 349			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 350			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 351			desc->plus = false;
 352			goto again;
 353		}
 354		goto error;
 355	}
 356	desc->timestamp = timestamp;
 357	desc->gencount = gencount;
 358error:
 359	return error;
 360}
 361
 362static int xdr_decode(nfs_readdir_descriptor_t *desc,
 363		      struct nfs_entry *entry, struct xdr_stream *xdr)
 364{
 
 365	int error;
 366
 367	error = desc->decode(xdr, entry, desc->plus);
 368	if (error)
 369		return error;
 370	entry->fattr->time_start = desc->timestamp;
 371	entry->fattr->gencount = desc->gencount;
 372	return 0;
 373}
 374
 375/* Match file and dirent using either filehandle or fileid
 376 * Note: caller is responsible for checking the fsid
 377 */
 378static
 379int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 380{
 381	struct inode *inode;
 382	struct nfs_inode *nfsi;
 383
 384	if (d_really_is_negative(dentry))
 385		return 0;
 386
 387	inode = d_inode(dentry);
 388	if (is_bad_inode(inode) || NFS_STALE(inode))
 389		return 0;
 390
 391	nfsi = NFS_I(inode);
 392	if (entry->fattr->fileid != nfsi->fileid)
 393		return 0;
 394	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 395		return 0;
 396	return 1;
 397}
 398
 399static
 400bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 
 
 
 401{
 402	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 403		return false;
 404	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 405		return true;
 406	if (ctx->pos == 0)
 407		return true;
 408	return false;
 409}
 410
 411/*
 412 * This function is called by the lookup and getattr code to request the
 413 * use of readdirplus to accelerate any future lookups in the same
 414 * directory.
 415 */
 416void nfs_advise_use_readdirplus(struct inode *dir)
 417{
 418	struct nfs_inode *nfsi = NFS_I(dir);
 
 419
 420	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 421	    !list_empty(&nfsi->open_files))
 422		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 
 
 
 
 423}
 424
 425/*
 426 * This function is mainly for use by nfs_getattr().
 427 *
 428 * If this is an 'ls -l', we want to force use of readdirplus.
 429 * Do this by checking if there is an active file descriptor
 430 * and calling nfs_advise_use_readdirplus, then forcing a
 431 * cache flush.
 432 */
 433void nfs_force_use_readdirplus(struct inode *dir)
 434{
 435	struct nfs_inode *nfsi = NFS_I(dir);
 
 436
 437	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 438	    !list_empty(&nfsi->open_files)) {
 439		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 440		invalidate_mapping_pages(dir->i_mapping, 0, -1);
 
 
 441	}
 442}
 443
 
 
 
 
 
 
 
 
 
 
 444static
 445void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
 
 446{
 447	struct qstr filename = QSTR_INIT(entry->name, entry->len);
 448	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 449	struct dentry *dentry;
 450	struct dentry *alias;
 451	struct inode *dir = d_inode(parent);
 452	struct inode *inode;
 453	int status;
 454
 455	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 456		return;
 457	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 458		return;
 459	if (filename.len == 0)
 460		return;
 461	/* Validate that the name doesn't contain any illegal '\0' */
 462	if (strnlen(filename.name, filename.len) != filename.len)
 463		return;
 464	/* ...or '/' */
 465	if (strnchr(filename.name, filename.len, '/'))
 466		return;
 467	if (filename.name[0] == '.') {
 468		if (filename.len == 1)
 469			return;
 470		if (filename.len == 2 && filename.name[1] == '.')
 471			return;
 472	}
 473	filename.hash = full_name_hash(parent, filename.name, filename.len);
 474
 475	dentry = d_lookup(parent, &filename);
 476again:
 477	if (!dentry) {
 478		dentry = d_alloc_parallel(parent, &filename, &wq);
 479		if (IS_ERR(dentry))
 480			return;
 481	}
 482	if (!d_in_lookup(dentry)) {
 483		/* Is there a mountpoint here? If so, just exit */
 484		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 485					&entry->fattr->fsid))
 486			goto out;
 487		if (nfs_same_file(dentry, entry)) {
 488			if (!entry->fh->size)
 489				goto out;
 490			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 491			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 492			if (!status)
 493				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
 
 
 494			goto out;
 495		} else {
 
 
 496			d_invalidate(dentry);
 497			dput(dentry);
 498			dentry = NULL;
 499			goto again;
 500		}
 501	}
 502	if (!entry->fh->size) {
 503		d_lookup_done(dentry);
 504		goto out;
 505	}
 506
 507	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 508	alias = d_splice_alias(inode, dentry);
 509	d_lookup_done(dentry);
 510	if (alias) {
 511		if (IS_ERR(alias))
 512			goto out;
 513		dput(dentry);
 514		dentry = alias;
 515	}
 516	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 
 517out:
 518	dput(dentry);
 519}
 520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 521/* Perform conversion from xdr to cache array */
 522static
 523int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
 524				struct page **xdr_pages, struct page *page, unsigned int buflen)
 
 
 525{
 
 
 526	struct xdr_stream stream;
 527	struct xdr_buf buf;
 528	struct page *scratch;
 529	struct nfs_cache_array *array;
 530	unsigned int count = 0;
 531	int status;
 532
 533	scratch = alloc_page(GFP_KERNEL);
 534	if (scratch == NULL)
 535		return -ENOMEM;
 536
 537	if (buflen == 0)
 538		goto out_nopages;
 539
 540	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 541	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
 542
 543	do {
 544		status = xdr_decode(desc, entry, &stream);
 545		if (status != 0) {
 546			if (status == -EAGAIN)
 547				status = 0;
 548			break;
 549		}
 550
 551		count++;
 552
 553		if (desc->plus)
 554			nfs_prime_dcache(file_dentry(desc->file), entry);
 
 555
 556		status = nfs_readdir_add_to_array(entry, page);
 557		if (status != 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558			break;
 559	} while (!entry->eof);
 560
 561out_nopages:
 562	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
 563		array = kmap(page);
 564		array->eof_index = array->size;
 565		status = 0;
 566		kunmap(page);
 
 
 
 567	}
 568
 
 
 
 569	put_page(scratch);
 570	return status;
 571}
 572
 573static
 574void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
 575{
 576	unsigned int i;
 577	for (i = 0; i < npages; i++)
 578		put_page(pages[i]);
 579}
 580
 581/*
 582 * nfs_readdir_large_page will allocate pages that must be freed with a call
 583 * to nfs_readdir_free_pagearray
 584 */
 585static
 586int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
 587{
 588	unsigned int i;
 
 589
 
 
 
 590	for (i = 0; i < npages; i++) {
 591		struct page *page = alloc_page(GFP_KERNEL);
 592		if (page == NULL)
 593			goto out_freepages;
 594		pages[i] = page;
 595	}
 596	return 0;
 597
 598out_freepages:
 599	nfs_readdir_free_pages(pages, i);
 600	return -ENOMEM;
 601}
 602
 603static
 604int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
 605{
 606	struct page *pages[NFS_MAX_READDIR_PAGES];
 607	struct nfs_entry entry;
 608	struct file	*file = desc->file;
 609	struct nfs_cache_array *array;
 
 
 
 
 
 610	int status = -ENOMEM;
 611	unsigned int array_size = ARRAY_SIZE(pages);
 612
 613	entry.prev_cookie = 0;
 614	entry.cookie = desc->last_cookie;
 615	entry.eof = 0;
 616	entry.fh = nfs_alloc_fhandle();
 617	entry.fattr = nfs_alloc_fattr();
 618	entry.server = NFS_SERVER(inode);
 619	if (entry.fh == NULL || entry.fattr == NULL)
 
 620		goto out;
 621
 622	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 623	if (IS_ERR(entry.label)) {
 624		status = PTR_ERR(entry.label);
 625		goto out;
 626	}
 627
 628	array = kmap(page);
 629	memset(array, 0, sizeof(struct nfs_cache_array));
 630	array->eof_index = -1;
 631
 632	status = nfs_readdir_alloc_pages(pages, array_size);
 633	if (status < 0)
 634		goto out_release_array;
 635	do {
 636		unsigned int pglen;
 637		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
 638
 639		if (status < 0)
 640			break;
 641		pglen = status;
 642		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
 643		if (status < 0) {
 644			if (status == -ENOSPC)
 645				status = 0;
 646			break;
 647		}
 648	} while (array->eof_index < 0);
 649
 
 650	nfs_readdir_free_pages(pages, array_size);
 651out_release_array:
 652	kunmap(page);
 653	nfs4_label_free(entry.label);
 654out:
 655	nfs_free_fattr(entry.fattr);
 656	nfs_free_fhandle(entry.fh);
 
 657	return status;
 658}
 659
 660/*
 661 * Now we cache directories properly, by converting xdr information
 662 * to an array that can be used for lookups later.  This results in
 663 * fewer cache pages, since we can store more information on each page.
 664 * We only need to convert from xdr once so future lookups are much simpler
 665 */
 666static
 667int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
 668{
 669	struct inode	*inode = file_inode(desc->file);
 670	int ret;
 671
 672	ret = nfs_readdir_xdr_to_array(desc, page, inode);
 673	if (ret < 0)
 674		goto error;
 675	SetPageUptodate(page);
 676
 677	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
 678		/* Should never happen */
 679		nfs_zap_mapping(inode, inode->i_mapping);
 680	}
 681	unlock_page(page);
 682	return 0;
 683 error:
 684	unlock_page(page);
 685	return ret;
 686}
 687
 688static
 689void cache_page_release(nfs_readdir_descriptor_t *desc)
 690{
 691	if (!desc->page->mapping)
 692		nfs_readdir_clear_array(desc->page);
 693	put_page(desc->page);
 694	desc->page = NULL;
 695}
 696
 697static
 698struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
 699{
 700	return read_cache_page(desc->file->f_mapping,
 701			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
 
 
 
 
 
 
 
 
 
 702}
 703
 704/*
 705 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 
 706 */
 707static
 708int find_cache_page(nfs_readdir_descriptor_t *desc)
 709{
 
 
 
 710	int res;
 711
 712	desc->page = get_cache_page(desc);
 713	if (IS_ERR(desc->page))
 714		return PTR_ERR(desc->page);
 715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 716	res = nfs_readdir_search_array(desc);
 717	if (res != 0)
 718		cache_page_release(desc);
 
 719	return res;
 720}
 721
 722/* Search for desc->dir_cookie from the beginning of the page cache */
 723static inline
 724int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 725{
 726	int res;
 727
 728	if (desc->page_index == 0) {
 729		desc->current_index = 0;
 730		desc->last_cookie = 0;
 731	}
 732	do {
 733		res = find_cache_page(desc);
 734	} while (res == -EAGAIN);
 735	return res;
 736}
 737
 
 
 738/*
 739 * Once we've found the start of the dirent within a page: fill 'er up...
 740 */
 741static 
 742int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
 743{
 744	struct file	*file = desc->file;
 745	int i = 0;
 746	int res = 0;
 747	struct nfs_cache_array *array = NULL;
 748	struct nfs_open_dir_context *ctx = file->private_data;
 749
 750	array = kmap(desc->page);
 751	for (i = desc->cache_entry_index; i < array->size; i++) {
 752		struct nfs_cache_array_entry *ent;
 753
 
 
 
 
 
 
 
 
 
 
 
 754		ent = &array->array[i];
 755		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
 756		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 757			desc->eof = true;
 758			break;
 759		}
 760		desc->ctx->pos++;
 761		if (i < (array->size-1))
 762			*desc->dir_cookie = array->array[i+1].cookie;
 
 
 
 
 
 
 
 763		else
 764			*desc->dir_cookie = array->last_cookie;
 765		if (ctx->duped != 0)
 766			ctx->duped = 1;
 767	}
 768	if (array->eof_index >= 0)
 769		desc->eof = true;
 770
 771	kunmap(desc->page);
 772	cache_page_release(desc);
 773	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 774			(unsigned long long)*desc->dir_cookie, res);
 775	return res;
 776}
 777
 778/*
 779 * If we cannot find a cookie in our cache, we suspect that this is
 780 * because it points to a deleted file, so we ask the server to return
 781 * whatever it thinks is the next entry. We then feed this to filldir.
 782 * If all goes well, we should then be able to find our way round the
 783 * cache on the next call to readdir_search_pagecache();
 784 *
 785 * NOTE: we cannot add the anonymous page to the pagecache because
 786 *	 the data it contains might not be page aligned. Besides,
 787 *	 we should already have a complete representation of the
 788 *	 directory in the page cache by the time we get here.
 789 */
 790static inline
 791int uncached_readdir(nfs_readdir_descriptor_t *desc)
 792{
 793	struct page	*page = NULL;
 794	int		status;
 795	struct inode *inode = file_inode(desc->file);
 796	struct nfs_open_dir_context *ctx = desc->file->private_data;
 797
 798	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 799			(unsigned long long)*desc->dir_cookie);
 800
 801	page = alloc_page(GFP_HIGHUSER);
 802	if (!page) {
 803		status = -ENOMEM;
 
 
 804		goto out;
 805	}
 806
 807	desc->page_index = 0;
 808	desc->last_cookie = *desc->dir_cookie;
 809	desc->page = page;
 810	ctx->duped = 0;
 811
 812	status = nfs_readdir_xdr_to_array(desc, page, inode);
 813	if (status < 0)
 814		goto out_release;
 815
 816	status = nfs_do_filldir(desc);
 
 
 
 
 
 
 
 
 
 
 817
 818 out:
 819	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 820			__func__, status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821	return status;
 822 out_release:
 823	cache_page_release(desc);
 824	goto out;
 
 
 
 
 
 
 
 
 
 
 825}
 826
 827/* The file offset position represents the dirent entry number.  A
 828   last cookie cache takes care of the common case of reading the
 829   whole directory.
 830 */
 831static int nfs_readdir(struct file *file, struct dir_context *ctx)
 832{
 833	struct dentry	*dentry = file_dentry(file);
 834	struct inode	*inode = d_inode(dentry);
 835	nfs_readdir_descriptor_t my_desc,
 836			*desc = &my_desc;
 837	struct nfs_open_dir_context *dir_ctx = file->private_data;
 838	int res = 0;
 
 
 
 839
 840	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
 841			file, (long long)ctx->pos);
 842	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 843
 844	/*
 845	 * ctx->pos points to the dirent entry number.
 846	 * *desc->dir_cookie has the cookie for the next entry. We have
 847	 * to either find the entry with the appropriate number or
 848	 * revalidate the cookie.
 849	 */
 850	memset(desc, 0, sizeof(*desc));
 851
 
 
 
 
 852	desc->file = file;
 853	desc->ctx = ctx;
 854	desc->dir_cookie = &dir_ctx->dir_cookie;
 855	desc->decode = NFS_PROTO(inode)->decode_dirent;
 856	desc->plus = nfs_use_readdirplus(inode, ctx);
 857
 858	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
 859		res = nfs_revalidate_mapping(inode, file->f_mapping);
 860	if (res < 0)
 861		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862
 863	do {
 864		res = readdir_search_pagecache(desc);
 865
 866		if (res == -EBADCOOKIE) {
 867			res = 0;
 868			/* This means either end of directory */
 869			if (*desc->dir_cookie && !desc->eof) {
 870				/* Or that the server has 'lost' a cookie */
 871				res = uncached_readdir(desc);
 872				if (res == 0)
 873					continue;
 
 
 874			}
 875			break;
 876		}
 877		if (res == -ETOOSMALL && desc->plus) {
 878			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 879			nfs_zap_caches(inode);
 880			desc->page_index = 0;
 881			desc->plus = false;
 882			desc->eof = false;
 883			continue;
 884		}
 885		if (res < 0)
 886			break;
 887
 888		res = nfs_do_filldir(desc);
 889		if (res < 0)
 890			break;
 891	} while (!desc->eof);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 892out:
 893	if (res > 0)
 894		res = 0;
 895	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
 896	return res;
 897}
 898
 899static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
 900{
 901	struct inode *inode = file_inode(filp);
 902	struct nfs_open_dir_context *dir_ctx = filp->private_data;
 903
 904	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
 905			filp, offset, whence);
 906
 907	inode_lock(inode);
 908	switch (whence) {
 909		case 1:
 910			offset += filp->f_pos;
 911		case 0:
 912			if (offset >= 0)
 913				break;
 914		default:
 915			offset = -EINVAL;
 916			goto out;
 
 
 
 
 
 
 
 
 917	}
 918	if (offset != filp->f_pos) {
 919		filp->f_pos = offset;
 920		dir_ctx->dir_cookie = 0;
 921		dir_ctx->duped = 0;
 
 
 
 
 
 
 
 922	}
 923out:
 924	inode_unlock(inode);
 925	return offset;
 926}
 927
 928/*
 929 * All directory operations under NFS are synchronous, so fsync()
 930 * is a dummy operation.
 931 */
 932static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
 933			 int datasync)
 934{
 935	struct inode *inode = file_inode(filp);
 936
 937	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
 938
 939	inode_lock(inode);
 940	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
 941	inode_unlock(inode);
 942	return 0;
 943}
 944
 945/**
 946 * nfs_force_lookup_revalidate - Mark the directory as having changed
 947 * @dir - pointer to directory inode
 948 *
 949 * This forces the revalidation code in nfs_lookup_revalidate() to do a
 950 * full lookup on all child dentries of 'dir' whenever a change occurs
 951 * on the server that might have invalidated our dcache.
 952 *
 
 
 
 953 * The caller should be holding dir->i_lock
 954 */
 955void nfs_force_lookup_revalidate(struct inode *dir)
 956{
 957	NFS_I(dir)->cache_change_attribute++;
 958}
 959EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
 960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 961/*
 962 * A check for whether or not the parent directory has changed.
 963 * In the case it has, we assume that the dentries are untrustworthy
 964 * and may need to be looked up again.
 965 * If rcu_walk prevents us from performing a full check, return 0.
 966 */
 967static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
 968			      int rcu_walk)
 969{
 970	if (IS_ROOT(dentry))
 971		return 1;
 972	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
 973		return 0;
 974	if (!nfs_verify_change_attribute(dir, dentry->d_time))
 975		return 0;
 976	/* Revalidate nfsi->cache_change_attribute before we declare a match */
 977	if (nfs_mapping_need_revalidate_inode(dir)) {
 978		if (rcu_walk)
 979			return 0;
 980		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
 981			return 0;
 982	}
 983	if (!nfs_verify_change_attribute(dir, dentry->d_time))
 984		return 0;
 985	return 1;
 986}
 987
 988/*
 989 * Use intent information to check whether or not we're going to do
 990 * an O_EXCL create using this path component.
 991 */
 992static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
 993{
 994	if (NFS_PROTO(dir)->version == 2)
 995		return 0;
 996	return flags & LOOKUP_EXCL;
 997}
 998
 999/*
1000 * Inode and filehandle revalidation for lookups.
1001 *
1002 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1003 * or if the intent information indicates that we're about to open this
1004 * particular file and the "nocto" mount flag is not set.
1005 *
1006 */
1007static
1008int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1009{
1010	struct nfs_server *server = NFS_SERVER(inode);
1011	int ret;
1012
1013	if (IS_AUTOMOUNT(inode))
1014		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015	/* VFS wants an on-the-wire revalidation */
1016	if (flags & LOOKUP_REVAL)
1017		goto out_force;
1018	/* This is an open(2) */
1019	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1020	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1021		goto out_force;
1022out:
1023	return (inode->i_nlink == 0) ? -ENOENT : 0;
 
 
 
 
 
1024out_force:
1025	if (flags & LOOKUP_RCU)
1026		return -ECHILD;
1027	ret = __nfs_revalidate_inode(server, inode);
1028	if (ret != 0)
1029		return ret;
1030	goto out;
1031}
1032
 
 
 
 
 
 
 
1033/*
1034 * We judge how long we want to trust negative
1035 * dentries by looking at the parent inode mtime.
1036 *
1037 * If parent mtime has changed, we revalidate, else we wait for a
1038 * period corresponding to the parent's attribute cache timeout value.
1039 *
1040 * If LOOKUP_RCU prevents us from performing a full check, return 1
1041 * suggesting a reval is needed.
 
 
 
1042 */
1043static inline
1044int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1045		       unsigned int flags)
1046{
1047	/* Don't revalidate a negative dentry if we're creating a new file */
1048	if (flags & LOOKUP_CREATE)
1049		return 0;
1050	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1051		return 1;
 
 
 
1052	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1053}
1054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055/*
1056 * This is called every time the dcache has a lookup hit,
1057 * and we should check whether we can really trust that
1058 * lookup.
1059 *
1060 * NOTE! The hit can be a negative hit too, don't assume
1061 * we have an inode!
1062 *
1063 * If the parent directory is seen to have changed, we throw out the
1064 * cached dentry and do a new lookup.
1065 */
1066static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
 
 
1067{
1068	struct inode *dir;
1069	struct inode *inode;
1070	struct dentry *parent;
1071	struct nfs_fh *fhandle = NULL;
1072	struct nfs_fattr *fattr = NULL;
1073	struct nfs4_label *label = NULL;
1074	int error;
1075
1076	if (flags & LOOKUP_RCU) {
1077		parent = READ_ONCE(dentry->d_parent);
1078		dir = d_inode_rcu(parent);
1079		if (!dir)
1080			return -ECHILD;
1081	} else {
1082		parent = dget_parent(dentry);
1083		dir = d_inode(parent);
1084	}
1085	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1086	inode = d_inode(dentry);
1087
1088	if (!inode) {
1089		if (nfs_neg_need_reval(dir, dentry, flags)) {
1090			if (flags & LOOKUP_RCU)
1091				return -ECHILD;
1092			goto out_bad;
1093		}
1094		goto out_valid;
1095	}
1096
1097	if (is_bad_inode(inode)) {
1098		if (flags & LOOKUP_RCU)
1099			return -ECHILD;
1100		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1101				__func__, dentry);
1102		goto out_bad;
1103	}
1104
1105	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1106		goto out_set_verifier;
 
 
 
 
1107
1108	/* Force a full look up iff the parent directory has changed */
1109	if (!nfs_is_exclusive_create(dir, flags) &&
1110	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1111		error = nfs_lookup_verify_inode(inode, flags);
1112		if (error) {
1113			if (flags & LOOKUP_RCU)
1114				return -ECHILD;
1115			if (error == -ESTALE)
1116				goto out_zap_parent;
1117			goto out_error;
1118		}
1119		nfs_advise_use_readdirplus(dir);
1120		goto out_valid;
1121	}
1122
1123	if (flags & LOOKUP_RCU)
1124		return -ECHILD;
1125
1126	if (NFS_STALE(inode))
1127		goto out_bad;
1128
1129	error = -ENOMEM;
1130	fhandle = nfs_alloc_fhandle();
1131	fattr = nfs_alloc_fattr();
1132	if (fhandle == NULL || fattr == NULL)
1133		goto out_error;
1134
1135	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1136	if (IS_ERR(label))
1137		goto out_error;
1138
1139	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1140	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1141	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1142	if (error == -ESTALE || error == -ENOENT)
1143		goto out_bad;
1144	if (error)
1145		goto out_error;
1146	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1147		goto out_bad;
1148	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1149		goto out_bad;
1150
1151	nfs_setsecurity(inode, fattr, label);
1152
1153	nfs_free_fattr(fattr);
1154	nfs_free_fhandle(fhandle);
1155	nfs4_label_free(label);
1156
1157	/* set a readdirplus hint that we had a cache miss */
1158	nfs_force_use_readdirplus(dir);
 
 
 
 
 
1159
1160out_set_verifier:
1161	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1162 out_valid:
1163	if (flags & LOOKUP_RCU) {
 
 
 
 
 
 
 
1164		if (parent != READ_ONCE(dentry->d_parent))
1165			return -ECHILD;
1166	} else
 
 
 
 
 
 
1167		dput(parent);
1168	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1169			__func__, dentry);
1170	return 1;
1171out_zap_parent:
1172	nfs_zap_caches(dir);
1173 out_bad:
1174	WARN_ON(flags & LOOKUP_RCU);
1175	nfs_free_fattr(fattr);
1176	nfs_free_fhandle(fhandle);
1177	nfs4_label_free(label);
1178	nfs_mark_for_revalidate(dir);
1179	if (inode && S_ISDIR(inode->i_mode)) {
1180		/* Purge readdir caches. */
1181		nfs_zap_caches(inode);
1182		/*
1183		 * We can't d_drop the root of a disconnected tree:
1184		 * its d_hash is on the s_anon list and d_drop() would hide
1185		 * it from shrink_dcache_for_unmount(), leading to busy
1186		 * inodes on unmount and further oopses.
1187		 */
1188		if (IS_ROOT(dentry))
1189			goto out_valid;
1190	}
1191	dput(parent);
1192	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1193			__func__, dentry);
1194	return 0;
1195out_error:
1196	WARN_ON(flags & LOOKUP_RCU);
1197	nfs_free_fattr(fattr);
1198	nfs_free_fhandle(fhandle);
1199	nfs4_label_free(label);
1200	dput(parent);
1201	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1202			__func__, dentry, error);
1203	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204}
1205
1206/*
1207 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1208 * when we don't really care about the dentry name. This is called when a
1209 * pathwalk ends on a dentry that was not found via a normal lookup in the
1210 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1211 *
1212 * In this situation, we just want to verify that the inode itself is OK
1213 * since the dentry might have changed on the server.
1214 */
1215static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1216{
1217	struct inode *inode = d_inode(dentry);
1218	int error = 0;
1219
1220	/*
1221	 * I believe we can only get a negative dentry here in the case of a
1222	 * procfs-style symlink. Just assume it's correct for now, but we may
1223	 * eventually need to do something more here.
1224	 */
1225	if (!inode) {
1226		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1227				__func__, dentry);
1228		return 1;
1229	}
1230
1231	if (is_bad_inode(inode)) {
1232		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1233				__func__, dentry);
1234		return 0;
1235	}
1236
1237	error = nfs_lookup_verify_inode(inode, flags);
1238	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1239			__func__, inode->i_ino, error ? "invalid" : "valid");
1240	return !error;
1241}
1242
1243/*
1244 * This is called from dput() when d_count is going to 0.
1245 */
1246static int nfs_dentry_delete(const struct dentry *dentry)
1247{
1248	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1249		dentry, dentry->d_flags);
1250
1251	/* Unhash any dentry with a stale inode */
1252	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1253		return 1;
1254
1255	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1256		/* Unhash it, so that ->d_iput() would be called */
1257		return 1;
1258	}
1259	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1260		/* Unhash it, so that ancestors of killed async unlink
1261		 * files will be cleaned up during umount */
1262		return 1;
1263	}
1264	return 0;
1265
1266}
1267
1268/* Ensure that we revalidate inode->i_nlink */
1269static void nfs_drop_nlink(struct inode *inode)
1270{
1271	spin_lock(&inode->i_lock);
1272	/* drop the inode if we're reasonably sure this is the last link */
1273	if (inode->i_nlink == 1)
1274		clear_nlink(inode);
1275	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1276		| NFS_INO_INVALID_CTIME
1277		| NFS_INO_INVALID_OTHER;
 
1278	spin_unlock(&inode->i_lock);
1279}
1280
1281/*
1282 * Called when the dentry loses inode.
1283 * We use it to clean up silly-renamed files.
1284 */
1285static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1286{
1287	if (S_ISDIR(inode->i_mode))
1288		/* drop any readdir cache as it could easily be old */
1289		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1290
1291	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1292		nfs_complete_unlink(dentry, inode);
1293		nfs_drop_nlink(inode);
1294	}
1295	iput(inode);
1296}
1297
1298static void nfs_d_release(struct dentry *dentry)
1299{
1300	/* free cached devname value, if it survived that far */
1301	if (unlikely(dentry->d_fsdata)) {
1302		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1303			WARN_ON(1);
1304		else
1305			kfree(dentry->d_fsdata);
1306	}
1307}
1308
1309const struct dentry_operations nfs_dentry_operations = {
1310	.d_revalidate	= nfs_lookup_revalidate,
1311	.d_weak_revalidate	= nfs_weak_revalidate,
1312	.d_delete	= nfs_dentry_delete,
1313	.d_iput		= nfs_dentry_iput,
1314	.d_automount	= nfs_d_automount,
1315	.d_release	= nfs_d_release,
1316};
1317EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1318
1319struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1320{
1321	struct dentry *res;
1322	struct inode *inode = NULL;
1323	struct nfs_fh *fhandle = NULL;
1324	struct nfs_fattr *fattr = NULL;
1325	struct nfs4_label *label = NULL;
1326	int error;
1327
1328	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1329	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1330
1331	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1332		return ERR_PTR(-ENAMETOOLONG);
1333
1334	/*
1335	 * If we're doing an exclusive create, optimize away the lookup
1336	 * but don't hash the dentry.
1337	 */
1338	if (nfs_is_exclusive_create(dir, flags))
1339		return NULL;
1340
1341	res = ERR_PTR(-ENOMEM);
1342	fhandle = nfs_alloc_fhandle();
1343	fattr = nfs_alloc_fattr();
1344	if (fhandle == NULL || fattr == NULL)
1345		goto out;
1346
1347	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1348	if (IS_ERR(label))
1349		goto out;
1350
1351	trace_nfs_lookup_enter(dir, dentry, flags);
1352	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1353	if (error == -ENOENT)
 
 
1354		goto no_entry;
 
1355	if (error < 0) {
1356		res = ERR_PTR(error);
1357		goto out_label;
1358	}
1359	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1360	res = ERR_CAST(inode);
1361	if (IS_ERR(res))
1362		goto out_label;
1363
1364	/* Notify readdir to use READDIRPLUS */
1365	nfs_force_use_readdirplus(dir);
1366
1367no_entry:
1368	res = d_splice_alias(inode, dentry);
1369	if (res != NULL) {
1370		if (IS_ERR(res))
1371			goto out_label;
1372		dentry = res;
1373	}
1374	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1375out_label:
1376	trace_nfs_lookup_exit(dir, dentry, flags, error);
1377	nfs4_label_free(label);
1378out:
 
1379	nfs_free_fattr(fattr);
1380	nfs_free_fhandle(fhandle);
1381	return res;
1382}
1383EXPORT_SYMBOL_GPL(nfs_lookup);
1384
 
 
 
 
 
 
 
 
1385#if IS_ENABLED(CONFIG_NFS_V4)
1386static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1387
1388const struct dentry_operations nfs4_dentry_operations = {
1389	.d_revalidate	= nfs4_lookup_revalidate,
1390	.d_weak_revalidate	= nfs_weak_revalidate,
1391	.d_delete	= nfs_dentry_delete,
1392	.d_iput		= nfs_dentry_iput,
1393	.d_automount	= nfs_d_automount,
1394	.d_release	= nfs_d_release,
1395};
1396EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1397
1398static fmode_t flags_to_mode(int flags)
1399{
1400	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1401	if ((flags & O_ACCMODE) != O_WRONLY)
1402		res |= FMODE_READ;
1403	if ((flags & O_ACCMODE) != O_RDONLY)
1404		res |= FMODE_WRITE;
1405	return res;
1406}
1407
1408static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1409{
1410	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1411}
1412
1413static int do_open(struct inode *inode, struct file *filp)
1414{
1415	nfs_fscache_open_file(inode, filp);
1416	return 0;
1417}
1418
1419static int nfs_finish_open(struct nfs_open_context *ctx,
1420			   struct dentry *dentry,
1421			   struct file *file, unsigned open_flags,
1422			   int *opened)
1423{
1424	int err;
1425
1426	err = finish_open(file, dentry, do_open, opened);
1427	if (err)
1428		goto out;
1429	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1430		nfs_file_set_open_context(file, ctx);
1431	else
1432		err = -ESTALE;
1433out:
1434	return err;
1435}
1436
1437int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1438		    struct file *file, unsigned open_flags,
1439		    umode_t mode, int *opened)
1440{
1441	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1442	struct nfs_open_context *ctx;
1443	struct dentry *res;
1444	struct iattr attr = { .ia_valid = ATTR_OPEN };
1445	struct inode *inode;
1446	unsigned int lookup_flags = 0;
 
1447	bool switched = false;
 
1448	int err;
1449
1450	/* Expect a negative dentry */
1451	BUG_ON(d_inode(dentry));
1452
1453	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1454			dir->i_sb->s_id, dir->i_ino, dentry);
1455
1456	err = nfs_check_flags(open_flags);
1457	if (err)
1458		return err;
1459
1460	/* NFS only supports OPEN on regular files */
1461	if ((open_flags & O_DIRECTORY)) {
1462		if (!d_in_lookup(dentry)) {
1463			/*
1464			 * Hashed negative dentry with O_DIRECTORY: dentry was
1465			 * revalidated and is fine, no need to perform lookup
1466			 * again
1467			 */
1468			return -ENOENT;
1469		}
1470		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1471		goto no_open;
1472	}
1473
1474	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1475		return -ENAMETOOLONG;
1476
1477	if (open_flags & O_CREAT) {
1478		struct nfs_server *server = NFS_SERVER(dir);
1479
1480		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1481			mode &= ~current_umask();
1482
1483		attr.ia_valid |= ATTR_MODE;
1484		attr.ia_mode = mode;
1485	}
1486	if (open_flags & O_TRUNC) {
1487		attr.ia_valid |= ATTR_SIZE;
1488		attr.ia_size = 0;
1489	}
1490
1491	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1492		d_drop(dentry);
1493		switched = true;
1494		dentry = d_alloc_parallel(dentry->d_parent,
1495					  &dentry->d_name, &wq);
1496		if (IS_ERR(dentry))
1497			return PTR_ERR(dentry);
1498		if (unlikely(!d_in_lookup(dentry)))
1499			return finish_no_open(file, dentry);
1500	}
1501
1502	ctx = create_nfs_open_context(dentry, open_flags, file);
1503	err = PTR_ERR(ctx);
1504	if (IS_ERR(ctx))
1505		goto out;
1506
1507	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1508	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
 
 
1509	if (IS_ERR(inode)) {
1510		err = PTR_ERR(inode);
1511		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1512		put_nfs_open_context(ctx);
1513		d_drop(dentry);
1514		switch (err) {
1515		case -ENOENT:
1516			d_splice_alias(NULL, dentry);
1517			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 
 
 
 
1518			break;
1519		case -EISDIR:
1520		case -ENOTDIR:
1521			goto no_open;
1522		case -ELOOP:
1523			if (!(open_flags & O_NOFOLLOW))
1524				goto no_open;
1525			break;
1526			/* case -EINVAL: */
1527		default:
1528			break;
1529		}
1530		goto out;
1531	}
 
1532
1533	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1534	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1535	put_nfs_open_context(ctx);
1536out:
1537	if (unlikely(switched)) {
1538		d_lookup_done(dentry);
1539		dput(dentry);
1540	}
1541	return err;
1542
1543no_open:
1544	res = nfs_lookup(dir, dentry, lookup_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1545	if (switched) {
1546		d_lookup_done(dentry);
1547		if (!res)
1548			res = dentry;
1549		else
1550			dput(dentry);
1551	}
1552	if (IS_ERR(res))
1553		return PTR_ERR(res);
1554	return finish_no_open(file, res);
1555}
1556EXPORT_SYMBOL_GPL(nfs_atomic_open);
1557
1558static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
 
 
1559{
1560	struct inode *inode;
1561	int ret = 0;
 
1562
1563	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1564		goto no_open;
1565	if (d_mountpoint(dentry))
1566		goto no_open;
1567	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1568		goto no_open;
1569
1570	inode = d_inode(dentry);
1571
1572	/* We can't create new files in nfs_open_revalidate(), so we
1573	 * optimize away revalidation of negative dentries.
1574	 */
1575	if (inode == NULL) {
1576		struct dentry *parent;
1577		struct inode *dir;
1578
1579		if (flags & LOOKUP_RCU) {
1580			parent = READ_ONCE(dentry->d_parent);
1581			dir = d_inode_rcu(parent);
1582			if (!dir)
1583				return -ECHILD;
1584		} else {
1585			parent = dget_parent(dentry);
1586			dir = d_inode(parent);
1587		}
1588		if (!nfs_neg_need_reval(dir, dentry, flags))
1589			ret = 1;
1590		else if (flags & LOOKUP_RCU)
1591			ret = -ECHILD;
1592		if (!(flags & LOOKUP_RCU))
1593			dput(parent);
1594		else if (parent != READ_ONCE(dentry->d_parent))
1595			return -ECHILD;
1596		goto out;
1597	}
1598
1599	/* NFS only supports OPEN on regular files */
1600	if (!S_ISREG(inode->i_mode))
1601		goto no_open;
 
1602	/* We cannot do exclusive creation on a positive dentry */
1603	if (flags & LOOKUP_EXCL)
1604		goto no_open;
 
 
 
 
1605
1606	/* Let f_op->open() actually open (and revalidate) the file */
1607	ret = 1;
 
 
 
 
1608
1609out:
1610	return ret;
 
1611
1612no_open:
1613	return nfs_lookup_revalidate(dentry, flags);
 
 
1614}
1615
1616#endif /* CONFIG_NFSV4 */
1617
1618/*
1619 * Code common to create, mkdir, and mknod.
1620 */
1621int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1622				struct nfs_fattr *fattr,
1623				struct nfs4_label *label)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1624{
1625	struct dentry *parent = dget_parent(dentry);
1626	struct inode *dir = d_inode(parent);
1627	struct inode *inode;
1628	int error = -EACCES;
 
1629
1630	d_drop(dentry);
1631
1632	/* We may have been initialized further down */
1633	if (d_really_is_positive(dentry))
1634		goto out;
1635	if (fhandle->size == 0) {
1636		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1637		if (error)
1638			goto out_error;
1639	}
1640	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1641	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1642		struct nfs_server *server = NFS_SB(dentry->d_sb);
1643		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
 
1644		if (error < 0)
1645			goto out_error;
1646	}
1647	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1648	error = PTR_ERR(inode);
1649	if (IS_ERR(inode))
1650		goto out_error;
1651	d_add(dentry, inode);
1652out:
1653	dput(parent);
1654	return 0;
1655out_error:
1656	nfs_mark_for_revalidate(dir);
1657	dput(parent);
1658	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659}
1660EXPORT_SYMBOL_GPL(nfs_instantiate);
1661
1662/*
1663 * Following a failed create operation, we drop the dentry rather
1664 * than retain a negative dentry. This avoids a problem in the event
1665 * that the operation succeeded on the server, but an error in the
1666 * reply path made it appear to have failed.
1667 */
1668int nfs_create(struct inode *dir, struct dentry *dentry,
1669		umode_t mode, bool excl)
1670{
1671	struct iattr attr;
1672	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1673	int error;
1674
 
 
1675	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1676			dir->i_sb->s_id, dir->i_ino, dentry);
1677
1678	attr.ia_mode = mode;
1679	attr.ia_valid = ATTR_MODE;
 
 
 
 
1680
1681	trace_nfs_create_enter(dir, dentry, open_flags);
1682	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1683	trace_nfs_create_exit(dir, dentry, open_flags, error);
1684	if (error != 0)
1685		goto out_err;
1686	return 0;
1687out_err:
1688	d_drop(dentry);
1689	return error;
1690}
 
 
 
 
 
 
1691EXPORT_SYMBOL_GPL(nfs_create);
1692
1693/*
1694 * See comments for nfs_proc_create regarding failed operations.
1695 */
1696int
1697nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
 
1698{
1699	struct iattr attr;
1700	int status;
1701
1702	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1703			dir->i_sb->s_id, dir->i_ino, dentry);
1704
1705	attr.ia_mode = mode;
1706	attr.ia_valid = ATTR_MODE;
1707
1708	trace_nfs_mknod_enter(dir, dentry);
1709	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1710	trace_nfs_mknod_exit(dir, dentry, status);
1711	if (status != 0)
1712		goto out_err;
1713	return 0;
1714out_err:
1715	d_drop(dentry);
1716	return status;
1717}
1718EXPORT_SYMBOL_GPL(nfs_mknod);
1719
1720/*
1721 * See comments for nfs_proc_create regarding failed operations.
1722 */
1723int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 
1724{
1725	struct iattr attr;
1726	int error;
1727
1728	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1729			dir->i_sb->s_id, dir->i_ino, dentry);
1730
1731	attr.ia_valid = ATTR_MODE;
1732	attr.ia_mode = mode | S_IFDIR;
1733
1734	trace_nfs_mkdir_enter(dir, dentry);
1735	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1736	trace_nfs_mkdir_exit(dir, dentry, error);
1737	if (error != 0)
1738		goto out_err;
1739	return 0;
1740out_err:
1741	d_drop(dentry);
1742	return error;
1743}
1744EXPORT_SYMBOL_GPL(nfs_mkdir);
1745
1746static void nfs_dentry_handle_enoent(struct dentry *dentry)
1747{
1748	if (simple_positive(dentry))
1749		d_delete(dentry);
1750}
1751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1753{
1754	int error;
1755
1756	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1757			dir->i_sb->s_id, dir->i_ino, dentry);
1758
1759	trace_nfs_rmdir_enter(dir, dentry);
1760	if (d_really_is_positive(dentry)) {
1761		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1762		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1763		/* Ensure the VFS deletes this inode */
1764		switch (error) {
1765		case 0:
1766			clear_nlink(d_inode(dentry));
1767			break;
1768		case -ENOENT:
1769			nfs_dentry_handle_enoent(dentry);
1770		}
1771		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1772	} else
1773		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
 
1774	trace_nfs_rmdir_exit(dir, dentry, error);
1775
1776	return error;
1777}
1778EXPORT_SYMBOL_GPL(nfs_rmdir);
1779
1780/*
1781 * Remove a file after making sure there are no pending writes,
1782 * and after checking that the file has only one user. 
1783 *
1784 * We invalidate the attribute cache and free the inode prior to the operation
1785 * to avoid possible races if the server reuses the inode.
1786 */
1787static int nfs_safe_remove(struct dentry *dentry)
1788{
1789	struct inode *dir = d_inode(dentry->d_parent);
1790	struct inode *inode = d_inode(dentry);
1791	int error = -EBUSY;
1792		
1793	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1794
1795	/* If the dentry was sillyrenamed, we simply call d_delete() */
1796	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1797		error = 0;
1798		goto out;
1799	}
1800
1801	trace_nfs_remove_enter(dir, dentry);
1802	if (inode != NULL) {
1803		error = NFS_PROTO(dir)->remove(dir, dentry);
1804		if (error == 0)
1805			nfs_drop_nlink(inode);
1806	} else
1807		error = NFS_PROTO(dir)->remove(dir, dentry);
1808	if (error == -ENOENT)
1809		nfs_dentry_handle_enoent(dentry);
1810	trace_nfs_remove_exit(dir, dentry, error);
1811out:
1812	return error;
1813}
1814
1815/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1816 *  belongs to an active ".nfs..." file and we return -EBUSY.
1817 *
1818 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1819 */
1820int nfs_unlink(struct inode *dir, struct dentry *dentry)
1821{
1822	int error;
1823	int need_rehash = 0;
1824
1825	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1826		dir->i_ino, dentry);
1827
1828	trace_nfs_unlink_enter(dir, dentry);
1829	spin_lock(&dentry->d_lock);
1830	if (d_count(dentry) > 1) {
 
1831		spin_unlock(&dentry->d_lock);
1832		/* Start asynchronous writeout of the inode */
1833		write_inode_now(d_inode(dentry), 0);
1834		error = nfs_sillyrename(dir, dentry);
1835		goto out;
1836	}
1837	if (!d_unhashed(dentry)) {
1838		__d_drop(dentry);
1839		need_rehash = 1;
 
 
 
 
 
 
 
1840	}
 
 
1841	spin_unlock(&dentry->d_lock);
1842	error = nfs_safe_remove(dentry);
1843	if (!error || error == -ENOENT) {
1844		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1845	} else if (need_rehash)
1846		d_rehash(dentry);
1847out:
1848	trace_nfs_unlink_exit(dir, dentry, error);
1849	return error;
1850}
1851EXPORT_SYMBOL_GPL(nfs_unlink);
1852
1853/*
1854 * To create a symbolic link, most file systems instantiate a new inode,
1855 * add a page to it containing the path, then write it out to the disk
1856 * using prepare_write/commit_write.
1857 *
1858 * Unfortunately the NFS client can't create the in-core inode first
1859 * because it needs a file handle to create an in-core inode (see
1860 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1861 * symlink request has completed on the server.
1862 *
1863 * So instead we allocate a raw page, copy the symname into it, then do
1864 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1865 * now have a new file handle and can instantiate an in-core NFS inode
1866 * and move the raw page into its mapping.
1867 */
1868int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
 
1869{
1870	struct page *page;
1871	char *kaddr;
1872	struct iattr attr;
1873	unsigned int pathlen = strlen(symname);
1874	int error;
1875
1876	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1877		dir->i_ino, dentry, symname);
1878
1879	if (pathlen > PAGE_SIZE)
1880		return -ENAMETOOLONG;
1881
1882	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1883	attr.ia_valid = ATTR_MODE;
1884
1885	page = alloc_page(GFP_USER);
1886	if (!page)
1887		return -ENOMEM;
1888
1889	kaddr = page_address(page);
1890	memcpy(kaddr, symname, pathlen);
1891	if (pathlen < PAGE_SIZE)
1892		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1893
1894	trace_nfs_symlink_enter(dir, dentry);
1895	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1896	trace_nfs_symlink_exit(dir, dentry, error);
1897	if (error != 0) {
1898		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1899			dir->i_sb->s_id, dir->i_ino,
1900			dentry, symname, error);
1901		d_drop(dentry);
1902		__free_page(page);
1903		return error;
1904	}
1905
 
 
1906	/*
1907	 * No big deal if we can't add this page to the page cache here.
1908	 * READLINK will get the missing page from the server if needed.
1909	 */
1910	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1911							GFP_KERNEL)) {
1912		SetPageUptodate(page);
1913		unlock_page(page);
1914		/*
1915		 * add_to_page_cache_lru() grabs an extra page refcount.
1916		 * Drop it here to avoid leaking this page later.
1917		 */
1918		put_page(page);
1919	} else
1920		__free_page(page);
1921
 
1922	return 0;
1923}
1924EXPORT_SYMBOL_GPL(nfs_symlink);
1925
1926int
1927nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1928{
1929	struct inode *inode = d_inode(old_dentry);
1930	int error;
1931
1932	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1933		old_dentry, dentry);
1934
1935	trace_nfs_link_enter(inode, dir, dentry);
1936	d_drop(dentry);
 
 
1937	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1938	if (error == 0) {
 
1939		ihold(inode);
1940		d_add(dentry, inode);
1941	}
1942	trace_nfs_link_exit(inode, dir, dentry, error);
1943	return error;
1944}
1945EXPORT_SYMBOL_GPL(nfs_link);
1946
 
 
 
 
 
 
 
 
1947/*
1948 * RENAME
1949 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1950 * different file handle for the same inode after a rename (e.g. when
1951 * moving to a different directory). A fail-safe method to do so would
1952 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1953 * rename the old file using the sillyrename stuff. This way, the original
1954 * file in old_dir will go away when the last process iput()s the inode.
1955 *
1956 * FIXED.
1957 * 
1958 * It actually works quite well. One needs to have the possibility for
1959 * at least one ".nfs..." file in each directory the file ever gets
1960 * moved or linked to which happens automagically with the new
1961 * implementation that only depends on the dcache stuff instead of
1962 * using the inode layer
1963 *
1964 * Unfortunately, things are a little more complicated than indicated
1965 * above. For a cross-directory move, we want to make sure we can get
1966 * rid of the old inode after the operation.  This means there must be
1967 * no pending writes (if it's a file), and the use count must be 1.
1968 * If these conditions are met, we can drop the dentries before doing
1969 * the rename.
1970 */
1971int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1972	       struct inode *new_dir, struct dentry *new_dentry,
1973	       unsigned int flags)
1974{
1975	struct inode *old_inode = d_inode(old_dentry);
1976	struct inode *new_inode = d_inode(new_dentry);
1977	struct dentry *dentry = NULL, *rehash = NULL;
1978	struct rpc_task *task;
 
1979	int error = -EBUSY;
1980
1981	if (flags)
1982		return -EINVAL;
1983
1984	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1985		 old_dentry, new_dentry,
1986		 d_count(new_dentry));
1987
1988	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1989	/*
1990	 * For non-directories, check whether the target is busy and if so,
1991	 * make a copy of the dentry and then do a silly-rename. If the
1992	 * silly-rename succeeds, the copied dentry is hashed and becomes
1993	 * the new target.
1994	 */
1995	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1996		/*
1997		 * To prevent any new references to the target during the
1998		 * rename, we unhash the dentry in advance.
 
1999		 */
2000		if (!d_unhashed(new_dentry)) {
2001			d_drop(new_dentry);
2002			rehash = new_dentry;
2003		}
2004
 
2005		if (d_count(new_dentry) > 2) {
2006			int err;
2007
 
 
2008			/* copy the target dentry's name */
2009			dentry = d_alloc(new_dentry->d_parent,
2010					 &new_dentry->d_name);
2011			if (!dentry)
2012				goto out;
2013
2014			/* silly-rename the existing target ... */
2015			err = nfs_sillyrename(new_dir, new_dentry);
2016			if (err)
2017				goto out;
2018
2019			new_dentry = dentry;
2020			rehash = NULL;
2021			new_inode = NULL;
 
 
 
 
2022		}
 
2023	}
2024
2025	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
 
 
 
2026	if (IS_ERR(task)) {
 
 
2027		error = PTR_ERR(task);
2028		goto out;
2029	}
2030
2031	error = rpc_wait_for_completion_task(task);
2032	if (error != 0) {
2033		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2034		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2035		smp_wmb();
2036	} else
2037		error = task->tk_status;
2038	rpc_put_task(task);
2039	nfs_mark_for_revalidate(old_inode);
 
 
 
 
 
 
 
 
2040out:
2041	if (rehash)
2042		d_rehash(rehash);
2043	trace_nfs_rename_exit(old_dir, old_dentry,
2044			new_dir, new_dentry, error);
2045	if (!error) {
2046		if (new_inode != NULL)
2047			nfs_drop_nlink(new_inode);
2048		/*
2049		 * The d_move() should be here instead of in an async RPC completion
2050		 * handler because we need the proper locks to move the dentry.  If
2051		 * we're interrupted by a signal, the async RPC completion handler
2052		 * should mark the directories for revalidation.
2053		 */
2054		d_move(old_dentry, new_dentry);
2055		nfs_set_verifier(old_dentry,
2056					nfs_save_change_attribute(new_dir));
2057	} else if (error == -ENOENT)
2058		nfs_dentry_handle_enoent(old_dentry);
2059
2060	/* new dentry created? */
2061	if (dentry)
2062		dput(dentry);
2063	return error;
2064}
2065EXPORT_SYMBOL_GPL(nfs_rename);
2066
2067static DEFINE_SPINLOCK(nfs_access_lru_lock);
2068static LIST_HEAD(nfs_access_lru_list);
2069static atomic_long_t nfs_access_nr_entries;
2070
2071static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2072module_param(nfs_access_max_cachesize, ulong, 0644);
2073MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2074
2075static void nfs_access_free_entry(struct nfs_access_entry *entry)
2076{
2077	put_rpccred(entry->cred);
2078	kfree_rcu(entry, rcu_head);
2079	smp_mb__before_atomic();
2080	atomic_long_dec(&nfs_access_nr_entries);
2081	smp_mb__after_atomic();
2082}
2083
2084static void nfs_access_free_list(struct list_head *head)
2085{
2086	struct nfs_access_entry *cache;
2087
2088	while (!list_empty(head)) {
2089		cache = list_entry(head->next, struct nfs_access_entry, lru);
2090		list_del(&cache->lru);
2091		nfs_access_free_entry(cache);
2092	}
2093}
2094
2095static unsigned long
2096nfs_do_access_cache_scan(unsigned int nr_to_scan)
2097{
2098	LIST_HEAD(head);
2099	struct nfs_inode *nfsi, *next;
2100	struct nfs_access_entry *cache;
2101	long freed = 0;
2102
2103	spin_lock(&nfs_access_lru_lock);
2104	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2105		struct inode *inode;
2106
2107		if (nr_to_scan-- == 0)
2108			break;
2109		inode = &nfsi->vfs_inode;
2110		spin_lock(&inode->i_lock);
2111		if (list_empty(&nfsi->access_cache_entry_lru))
2112			goto remove_lru_entry;
2113		cache = list_entry(nfsi->access_cache_entry_lru.next,
2114				struct nfs_access_entry, lru);
2115		list_move(&cache->lru, &head);
2116		rb_erase(&cache->rb_node, &nfsi->access_cache);
2117		freed++;
2118		if (!list_empty(&nfsi->access_cache_entry_lru))
2119			list_move_tail(&nfsi->access_cache_inode_lru,
2120					&nfs_access_lru_list);
2121		else {
2122remove_lru_entry:
2123			list_del_init(&nfsi->access_cache_inode_lru);
2124			smp_mb__before_atomic();
2125			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2126			smp_mb__after_atomic();
2127		}
2128		spin_unlock(&inode->i_lock);
2129	}
2130	spin_unlock(&nfs_access_lru_lock);
2131	nfs_access_free_list(&head);
2132	return freed;
2133}
2134
2135unsigned long
2136nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2137{
2138	int nr_to_scan = sc->nr_to_scan;
2139	gfp_t gfp_mask = sc->gfp_mask;
2140
2141	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2142		return SHRINK_STOP;
2143	return nfs_do_access_cache_scan(nr_to_scan);
2144}
2145
2146
2147unsigned long
2148nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2149{
2150	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2151}
2152
2153static void
2154nfs_access_cache_enforce_limit(void)
2155{
2156	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2157	unsigned long diff;
2158	unsigned int nr_to_scan;
2159
2160	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2161		return;
2162	nr_to_scan = 100;
2163	diff = nr_entries - nfs_access_max_cachesize;
2164	if (diff < nr_to_scan)
2165		nr_to_scan = diff;
2166	nfs_do_access_cache_scan(nr_to_scan);
2167}
2168
2169static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2170{
2171	struct rb_root *root_node = &nfsi->access_cache;
2172	struct rb_node *n;
2173	struct nfs_access_entry *entry;
2174
2175	/* Unhook entries from the cache */
2176	while ((n = rb_first(root_node)) != NULL) {
2177		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2178		rb_erase(n, root_node);
2179		list_move(&entry->lru, head);
2180	}
2181	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2182}
2183
2184void nfs_access_zap_cache(struct inode *inode)
2185{
2186	LIST_HEAD(head);
2187
2188	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2189		return;
2190	/* Remove from global LRU init */
2191	spin_lock(&nfs_access_lru_lock);
2192	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2193		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2194
2195	spin_lock(&inode->i_lock);
2196	__nfs_access_zap_cache(NFS_I(inode), &head);
2197	spin_unlock(&inode->i_lock);
2198	spin_unlock(&nfs_access_lru_lock);
2199	nfs_access_free_list(&head);
2200}
2201EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2202
2203static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2204{
2205	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2206	struct nfs_access_entry *entry;
2207
2208	while (n != NULL) {
2209		entry = rb_entry(n, struct nfs_access_entry, rb_node);
 
 
2210
2211		if (cred < entry->cred)
2212			n = n->rb_left;
2213		else if (cred > entry->cred)
2214			n = n->rb_right;
2215		else
2216			return entry;
2217	}
2218	return NULL;
2219}
2220
2221static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2222{
2223	struct nfs_inode *nfsi = NFS_I(inode);
 
2224	struct nfs_access_entry *cache;
2225	bool retry = true;
2226	int err;
2227
2228	spin_lock(&inode->i_lock);
2229	for(;;) {
2230		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2231			goto out_zap;
2232		cache = nfs_access_search_rbtree(inode, cred);
2233		err = -ENOENT;
2234		if (cache == NULL)
2235			goto out;
2236		/* Found an entry, is our attribute cache valid? */
2237		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2238			break;
 
 
2239		err = -ECHILD;
2240		if (!may_block)
2241			goto out;
2242		if (!retry)
2243			goto out_zap;
2244		spin_unlock(&inode->i_lock);
2245		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2246		if (err)
2247			return err;
2248		spin_lock(&inode->i_lock);
2249		retry = false;
2250	}
2251	res->cred = cache->cred;
2252	res->mask = cache->mask;
 
 
2253	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2254	err = 0;
2255out:
2256	spin_unlock(&inode->i_lock);
2257	return err;
2258out_zap:
2259	spin_unlock(&inode->i_lock);
2260	nfs_access_zap_cache(inode);
2261	return -ENOENT;
2262}
2263
2264static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2265{
2266	/* Only check the most recently returned cache entry,
2267	 * but do it without locking.
2268	 */
2269	struct nfs_inode *nfsi = NFS_I(inode);
 
2270	struct nfs_access_entry *cache;
2271	int err = -ECHILD;
2272	struct list_head *lh;
2273
2274	rcu_read_lock();
2275	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2276		goto out;
2277	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2278	cache = list_entry(lh, struct nfs_access_entry, lru);
2279	if (lh == &nfsi->access_cache_entry_lru ||
2280	    cred != cache->cred)
2281		cache = NULL;
2282	if (cache == NULL)
2283		goto out;
 
 
2284	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2285		goto out;
2286	res->cred = cache->cred;
2287	res->mask = cache->mask;
2288	err = 0;
2289out:
2290	rcu_read_unlock();
2291	return err;
2292}
2293
2294static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2295{
2296	struct nfs_inode *nfsi = NFS_I(inode);
2297	struct rb_root *root_node = &nfsi->access_cache;
2298	struct rb_node **p = &root_node->rb_node;
2299	struct rb_node *parent = NULL;
2300	struct nfs_access_entry *entry;
 
2301
2302	spin_lock(&inode->i_lock);
2303	while (*p != NULL) {
2304		parent = *p;
2305		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
 
2306
2307		if (set->cred < entry->cred)
2308			p = &parent->rb_left;
2309		else if (set->cred > entry->cred)
2310			p = &parent->rb_right;
2311		else
2312			goto found;
2313	}
2314	rb_link_node(&set->rb_node, parent, p);
2315	rb_insert_color(&set->rb_node, root_node);
2316	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2317	spin_unlock(&inode->i_lock);
2318	return;
2319found:
2320	rb_replace_node(parent, &set->rb_node, root_node);
2321	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2322	list_del(&entry->lru);
2323	spin_unlock(&inode->i_lock);
2324	nfs_access_free_entry(entry);
2325}
2326
2327void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
 
2328{
2329	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2330	if (cache == NULL)
2331		return;
2332	RB_CLEAR_NODE(&cache->rb_node);
2333	cache->cred = get_rpccred(set->cred);
 
 
2334	cache->mask = set->mask;
 
2335
2336	/* The above field assignments must be visible
2337	 * before this item appears on the lru.  We cannot easily
2338	 * use rcu_assign_pointer, so just force the memory barrier.
2339	 */
2340	smp_wmb();
2341	nfs_access_add_rbtree(inode, cache);
2342
2343	/* Update accounting */
2344	smp_mb__before_atomic();
2345	atomic_long_inc(&nfs_access_nr_entries);
2346	smp_mb__after_atomic();
2347
2348	/* Add inode to global LRU list */
2349	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2350		spin_lock(&nfs_access_lru_lock);
2351		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2352			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2353					&nfs_access_lru_list);
2354		spin_unlock(&nfs_access_lru_lock);
2355	}
2356	nfs_access_cache_enforce_limit();
2357}
2358EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2359
2360#define NFS_MAY_READ (NFS_ACCESS_READ)
2361#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2362		NFS_ACCESS_EXTEND | \
2363		NFS_ACCESS_DELETE)
2364#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2365		NFS_ACCESS_EXTEND)
2366#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2367#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2368#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2369static int
2370nfs_access_calc_mask(u32 access_result, umode_t umode)
2371{
2372	int mask = 0;
2373
2374	if (access_result & NFS_MAY_READ)
2375		mask |= MAY_READ;
2376	if (S_ISDIR(umode)) {
2377		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2378			mask |= MAY_WRITE;
2379		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2380			mask |= MAY_EXEC;
2381	} else if (S_ISREG(umode)) {
2382		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2383			mask |= MAY_WRITE;
2384		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2385			mask |= MAY_EXEC;
2386	} else if (access_result & NFS_MAY_WRITE)
2387			mask |= MAY_WRITE;
2388	return mask;
2389}
2390
2391void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2392{
2393	entry->mask = access_result;
2394}
2395EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2396
2397static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2398{
2399	struct nfs_access_entry cache;
2400	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2401	int cache_mask;
2402	int status;
2403
2404	trace_nfs_access_enter(inode);
2405
2406	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2407	if (status != 0)
2408		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2409	if (status == 0)
2410		goto out_cached;
2411
2412	status = -ECHILD;
2413	if (!may_block)
2414		goto out;
2415
2416	/*
2417	 * Determine which access bits we want to ask for...
2418	 */
2419	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
 
2420	if (S_ISDIR(inode->i_mode))
2421		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2422	else
2423		cache.mask |= NFS_ACCESS_EXECUTE;
2424	cache.cred = cred;
2425	status = NFS_PROTO(inode)->access(inode, &cache);
2426	if (status != 0) {
2427		if (status == -ESTALE) {
2428			nfs_zap_caches(inode);
2429			if (!S_ISDIR(inode->i_mode))
2430				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
 
 
2431		}
2432		goto out;
2433	}
2434	nfs_access_add_cache(inode, &cache);
2435out_cached:
2436	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2437	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2438		status = -EACCES;
2439out:
2440	trace_nfs_access_exit(inode, status);
2441	return status;
2442}
2443
2444static int nfs_open_permission_mask(int openflags)
2445{
2446	int mask = 0;
2447
2448	if (openflags & __FMODE_EXEC) {
2449		/* ONLY check exec rights */
2450		mask = MAY_EXEC;
2451	} else {
2452		if ((openflags & O_ACCMODE) != O_WRONLY)
2453			mask |= MAY_READ;
2454		if ((openflags & O_ACCMODE) != O_RDONLY)
2455			mask |= MAY_WRITE;
2456	}
2457
2458	return mask;
2459}
2460
2461int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2462{
2463	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2464}
2465EXPORT_SYMBOL_GPL(nfs_may_open);
2466
2467static int nfs_execute_ok(struct inode *inode, int mask)
2468{
2469	struct nfs_server *server = NFS_SERVER(inode);
2470	int ret = 0;
2471
2472	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) {
 
 
2473		if (mask & MAY_NOT_BLOCK)
2474			return -ECHILD;
2475		ret = __nfs_revalidate_inode(server, inode);
2476	}
2477	if (ret == 0 && !execute_ok(inode))
2478		ret = -EACCES;
2479	return ret;
2480}
2481
2482int nfs_permission(struct inode *inode, int mask)
 
 
2483{
2484	struct rpc_cred *cred;
2485	int res = 0;
2486
2487	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2488
2489	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2490		goto out;
2491	/* Is this sys_access() ? */
2492	if (mask & (MAY_ACCESS | MAY_CHDIR))
2493		goto force_lookup;
2494
2495	switch (inode->i_mode & S_IFMT) {
2496		case S_IFLNK:
2497			goto out;
2498		case S_IFREG:
2499			if ((mask & MAY_OPEN) &&
2500			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2501				return 0;
2502			break;
2503		case S_IFDIR:
2504			/*
2505			 * Optimize away all write operations, since the server
2506			 * will check permissions when we perform the op.
2507			 */
2508			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2509				goto out;
2510	}
2511
2512force_lookup:
2513	if (!NFS_PROTO(inode)->access)
2514		goto out_notsup;
2515
2516	/* Always try fast lookups first */
2517	rcu_read_lock();
2518	cred = rpc_lookup_cred_nonblock();
2519	if (!IS_ERR(cred))
2520		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2521	else
2522		res = PTR_ERR(cred);
2523	rcu_read_unlock();
2524	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2525		/* Fast lookup failed, try the slow way */
2526		cred = rpc_lookup_cred();
2527		if (!IS_ERR(cred)) {
2528			res = nfs_do_access(inode, cred, mask);
2529			put_rpccred(cred);
2530		} else
2531			res = PTR_ERR(cred);
2532	}
2533out:
2534	if (!res && (mask & MAY_EXEC))
2535		res = nfs_execute_ok(inode, mask);
2536
2537	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2538		inode->i_sb->s_id, inode->i_ino, mask, res);
2539	return res;
2540out_notsup:
2541	if (mask & MAY_NOT_BLOCK)
2542		return -ECHILD;
2543
2544	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
 
2545	if (res == 0)
2546		res = generic_permission(inode, mask);
2547	goto out;
2548}
2549EXPORT_SYMBOL_GPL(nfs_permission);
2550
2551/*
2552 * Local variables:
2553 *  version-control: t
2554 *  kept-new-versions: 5
2555 * End:
2556 */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/nfs/dir.c
   4 *
   5 *  Copyright (C) 1992  Rick Sladkey
   6 *
   7 *  nfs directory handling functions
   8 *
   9 * 10 Apr 1996	Added silly rename for unlink	--okir
  10 * 28 Sep 1996	Improved directory cache --okir
  11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  12 *              Re-implemented silly rename for unlink, newly implemented
  13 *              silly rename for nfs_rename() following the suggestions
  14 *              of Olaf Kirch (okir) found in this file.
  15 *              Following Linus comments on my original hack, this version
  16 *              depends only on the dcache stuff and doesn't touch the inode
  17 *              layer (iput() and friends).
  18 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
  19 */
  20
  21#include <linux/compat.h>
  22#include <linux/module.h>
  23#include <linux/time.h>
  24#include <linux/errno.h>
  25#include <linux/stat.h>
  26#include <linux/fcntl.h>
  27#include <linux/string.h>
  28#include <linux/kernel.h>
  29#include <linux/slab.h>
  30#include <linux/mm.h>
  31#include <linux/sunrpc/clnt.h>
  32#include <linux/nfs_fs.h>
  33#include <linux/nfs_mount.h>
  34#include <linux/pagemap.h>
  35#include <linux/pagevec.h>
  36#include <linux/namei.h>
  37#include <linux/mount.h>
  38#include <linux/swap.h>
  39#include <linux/sched.h>
  40#include <linux/kmemleak.h>
  41#include <linux/xattr.h>
  42#include <linux/hash.h>
  43
  44#include "delegation.h"
  45#include "iostat.h"
  46#include "internal.h"
  47#include "fscache.h"
  48
  49#include "nfstrace.h"
  50
  51/* #define NFS_DEBUG_VERBOSE 1 */
  52
  53static int nfs_opendir(struct inode *, struct file *);
  54static int nfs_closedir(struct inode *, struct file *);
  55static int nfs_readdir(struct file *, struct dir_context *);
  56static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  57static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  58static void nfs_readdir_clear_array(struct folio *);
  59static int nfs_do_create(struct inode *dir, struct dentry *dentry,
  60			 umode_t mode, int open_flags);
  61
  62const struct file_operations nfs_dir_operations = {
  63	.llseek		= nfs_llseek_dir,
  64	.read		= generic_read_dir,
  65	.iterate_shared	= nfs_readdir,
  66	.open		= nfs_opendir,
  67	.release	= nfs_closedir,
  68	.fsync		= nfs_fsync_dir,
  69};
  70
  71const struct address_space_operations nfs_dir_aops = {
  72	.free_folio = nfs_readdir_clear_array,
  73};
  74
  75#define NFS_INIT_DTSIZE PAGE_SIZE
  76
  77static struct nfs_open_dir_context *
  78alloc_nfs_open_dir_context(struct inode *dir)
  79{
  80	struct nfs_inode *nfsi = NFS_I(dir);
  81	struct nfs_open_dir_context *ctx;
  82
  83	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
  84	if (ctx != NULL) {
 
  85		ctx->attr_gencount = nfsi->attr_gencount;
  86		ctx->dtsize = NFS_INIT_DTSIZE;
 
 
  87		spin_lock(&dir->i_lock);
  88		if (list_empty(&nfsi->open_files) &&
  89		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
  90			nfs_set_cache_invalid(dir,
  91					      NFS_INO_INVALID_DATA |
  92						      NFS_INO_REVAL_FORCED);
  93		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
  94		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
  95		spin_unlock(&dir->i_lock);
  96		return ctx;
  97	}
  98	return  ERR_PTR(-ENOMEM);
  99}
 100
 101static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
 102{
 103	spin_lock(&dir->i_lock);
 104	list_del_rcu(&ctx->list);
 105	spin_unlock(&dir->i_lock);
 106	kfree_rcu(ctx, rcu_head);
 
 107}
 108
 109/*
 110 * Open file
 111 */
 112static int
 113nfs_opendir(struct inode *inode, struct file *filp)
 114{
 115	int res = 0;
 116	struct nfs_open_dir_context *ctx;
 
 117
 118	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 119
 120	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 121
 122	ctx = alloc_nfs_open_dir_context(inode);
 
 
 
 123	if (IS_ERR(ctx)) {
 124		res = PTR_ERR(ctx);
 125		goto out;
 126	}
 127	filp->private_data = ctx;
 128out:
 
 129	return res;
 130}
 131
 132static int
 133nfs_closedir(struct inode *inode, struct file *filp)
 134{
 135	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 136	return 0;
 137}
 138
 139struct nfs_cache_array_entry {
 140	u64 cookie;
 141	u64 ino;
 142	const char *name;
 143	unsigned int name_len;
 144	unsigned char d_type;
 145};
 146
 147struct nfs_cache_array {
 148	u64 change_attr;
 
 149	u64 last_cookie;
 150	unsigned int size;
 151	unsigned char folio_full : 1,
 152		      folio_is_eof : 1,
 153		      cookies_are_ordered : 1;
 154	struct nfs_cache_array_entry array[] __counted_by(size);
 155};
 156
 157struct nfs_readdir_descriptor {
 
 158	struct file	*file;
 159	struct folio	*folio;
 160	struct dir_context *ctx;
 161	pgoff_t		folio_index;
 162	pgoff_t		folio_index_max;
 163	u64		dir_cookie;
 164	u64		last_cookie;
 165	loff_t		current_index;
 
 166
 167	__be32		verf[NFS_DIR_VERIFIER_SIZE];
 168	unsigned long	dir_verifier;
 169	unsigned long	timestamp;
 170	unsigned long	gencount;
 171	unsigned long	attr_gencount;
 172	unsigned int	cache_entry_index;
 173	unsigned int	buffer_fills;
 174	unsigned int	dtsize;
 175	bool clear_cache;
 176	bool plus;
 177	bool eob;
 178	bool eof;
 179};
 180
 181static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
 182{
 183	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
 184	unsigned int maxsize = server->dtsize;
 185
 186	if (sz > maxsize)
 187		sz = maxsize;
 188	if (sz < NFS_MIN_FILE_IO_SIZE)
 189		sz = NFS_MIN_FILE_IO_SIZE;
 190	desc->dtsize = sz;
 191}
 192
 193static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
 194{
 195	nfs_set_dtsize(desc, desc->dtsize >> 1);
 196}
 197
 198static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
 199{
 200	nfs_set_dtsize(desc, desc->dtsize << 1);
 201}
 202
 203static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
 204					 u64 change_attr)
 205{
 206	struct nfs_cache_array *array;
 207
 208	array = kmap_local_folio(folio, 0);
 209	array->change_attr = change_attr;
 210	array->last_cookie = last_cookie;
 211	array->size = 0;
 212	array->folio_full = 0;
 213	array->folio_is_eof = 0;
 214	array->cookies_are_ordered = 1;
 215	kunmap_local(array);
 216}
 217
 218/*
 219 * we are freeing strings created by nfs_add_to_readdir_array()
 220 */
 221static void nfs_readdir_clear_array(struct folio *folio)
 
 222{
 223	struct nfs_cache_array *array;
 224	unsigned int i;
 225
 226	array = kmap_local_folio(folio, 0);
 227	for (i = 0; i < array->size; i++)
 228		kfree(array->array[i].name);
 229	array->size = 0;
 230	kunmap_local(array);
 231}
 232
 233static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
 234					   u64 change_attr)
 235{
 236	nfs_readdir_clear_array(folio);
 237	nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
 238}
 239
 240static struct folio *
 241nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
 242{
 243	struct folio *folio = folio_alloc(gfp_flags, 0);
 244	if (folio)
 245		nfs_readdir_folio_init_array(folio, last_cookie, 0);
 246	return folio;
 247}
 248
 249static void nfs_readdir_folio_array_free(struct folio *folio)
 250{
 251	if (folio) {
 252		nfs_readdir_clear_array(folio);
 253		folio_put(folio);
 254	}
 255}
 256
 257static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
 258{
 259	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
 260}
 261
 262static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
 263{
 264	array->folio_is_eof = 1;
 265	array->folio_full = 1;
 266}
 267
 268static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
 269{
 270	return array->folio_full;
 271}
 272
 273/*
 274 * the caller is responsible for freeing qstr.name
 275 * when called by nfs_readdir_add_to_array, the strings will be freed in
 276 * nfs_clear_readdir_array()
 277 */
 278static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
 
 279{
 280	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
 281
 
 
 282	/*
 283	 * Avoid a kmemleak false positive. The pointer to the name is stored
 284	 * in a page cache page which kmemleak does not scan.
 285	 */
 286	if (ret != NULL)
 287		kmemleak_not_leak(ret);
 288	return ret;
 289}
 290
 291static size_t nfs_readdir_array_maxentries(void)
 292{
 293	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
 294	       sizeof(struct nfs_cache_array_entry);
 295}
 296
 297/*
 298 * Check that the next array entry lies entirely within the page bounds
 299 */
 300static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
 301{
 302	if (array->folio_full)
 303		return -ENOSPC;
 304	if (array->size == nfs_readdir_array_maxentries()) {
 305		array->folio_full = 1;
 306		return -ENOSPC;
 307	}
 308	return 0;
 309}
 310
 311static int nfs_readdir_folio_array_append(struct folio *folio,
 312					  const struct nfs_entry *entry,
 313					  u64 *cookie)
 314{
 315	struct nfs_cache_array *array;
 316	struct nfs_cache_array_entry *cache_entry;
 317	const char *name;
 318	int ret = -ENOMEM;
 319
 320	name = nfs_readdir_copy_name(entry->name, entry->len);
 321
 322	array = kmap_local_folio(folio, 0);
 323	if (!name)
 324		goto out;
 325	ret = nfs_readdir_array_can_expand(array);
 326	if (ret) {
 327		kfree(name);
 328		goto out;
 329	}
 330
 331	array->size++;
 332	cache_entry = &array->array[array->size - 1];
 333	cache_entry->cookie = array->last_cookie;
 334	cache_entry->ino = entry->ino;
 335	cache_entry->d_type = entry->d_type;
 336	cache_entry->name_len = entry->len;
 337	cache_entry->name = name;
 
 338	array->last_cookie = entry->cookie;
 339	if (array->last_cookie <= cache_entry->cookie)
 340		array->cookies_are_ordered = 0;
 341	if (entry->eof != 0)
 342		nfs_readdir_array_set_eof(array);
 343out:
 344	*cookie = array->last_cookie;
 345	kunmap_local(array);
 346	return ret;
 347}
 348
 349#define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
 350/*
 351 * Hash algorithm allowing content addressible access to sequences
 352 * of directory cookies. Content is addressed by the value of the
 353 * cookie index of the first readdir entry in a page.
 354 *
 355 * We select only the first 18 bits to avoid issues with excessive
 356 * memory use for the page cache XArray. 18 bits should allow the caching
 357 * of 262144 pages of sequences of readdir entries. Since each page holds
 358 * 127 readdir entries for a typical 64-bit system, that works out to a
 359 * cache of ~ 33 million entries per directory.
 360 */
 361static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
 362{
 363	if (cookie == 0)
 364		return 0;
 365	return hash_64(cookie, 18);
 366}
 367
 368static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
 369				       u64 change_attr)
 370{
 371	struct nfs_cache_array *array = kmap_local_folio(folio, 0);
 372	int ret = true;
 373
 374	if (array->change_attr != change_attr)
 375		ret = false;
 376	if (nfs_readdir_array_index_cookie(array) != last_cookie)
 377		ret = false;
 378	kunmap_local(array);
 379	return ret;
 380}
 381
 382static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
 383{
 384	folio_unlock(folio);
 385	folio_put(folio);
 386}
 387
 388static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
 389						u64 change_attr)
 390{
 391	if (folio_test_uptodate(folio)) {
 392		if (nfs_readdir_folio_validate(folio, cookie, change_attr))
 393			return;
 394		nfs_readdir_clear_array(folio);
 395	}
 396	nfs_readdir_folio_init_array(folio, cookie, change_attr);
 397	folio_mark_uptodate(folio);
 398}
 399
 400static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
 401						  u64 cookie, u64 change_attr)
 402{
 403	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
 404	struct folio *folio;
 405
 406	folio = filemap_grab_folio(mapping, index);
 407	if (IS_ERR(folio))
 408		return NULL;
 409	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
 410	return folio;
 411}
 412
 413static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
 414{
 415	struct nfs_cache_array *array;
 416	u64 ret;
 417
 418	array = kmap_local_folio(folio, 0);
 419	ret = array->last_cookie;
 420	kunmap_local(array);
 421	return ret;
 422}
 423
 424static bool nfs_readdir_folio_needs_filling(struct folio *folio)
 425{
 426	struct nfs_cache_array *array;
 427	bool ret;
 428
 429	array = kmap_local_folio(folio, 0);
 430	ret = !nfs_readdir_array_is_full(array);
 431	kunmap_local(array);
 432	return ret;
 433}
 434
 435static void nfs_readdir_folio_set_eof(struct folio *folio)
 436{
 437	struct nfs_cache_array *array;
 438
 439	array = kmap_local_folio(folio, 0);
 440	nfs_readdir_array_set_eof(array);
 441	kunmap_local(array);
 442}
 443
 444static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
 445						u64 cookie, u64 change_attr)
 446{
 447	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
 448	struct folio *folio;
 449
 450	folio = __filemap_get_folio(mapping, index,
 451			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
 452			mapping_gfp_mask(mapping));
 453	if (IS_ERR(folio))
 454		return NULL;
 455	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
 456	if (nfs_readdir_folio_last_cookie(folio) != cookie)
 457		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
 458	return folio;
 459}
 460
 461static inline
 462int is_32bit_api(void)
 463{
 464#ifdef CONFIG_COMPAT
 465	return in_compat_syscall();
 466#else
 467	return (BITS_PER_LONG == 32);
 468#endif
 469}
 470
 471static
 472bool nfs_readdir_use_cookie(const struct file *filp)
 473{
 474	if ((filp->f_mode & FMODE_32BITHASH) ||
 475	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
 476		return false;
 477	return true;
 478}
 479
 480static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
 481					struct nfs_readdir_descriptor *desc)
 482{
 483	if (array->folio_full) {
 484		desc->last_cookie = array->last_cookie;
 485		desc->current_index += array->size;
 486		desc->cache_entry_index = 0;
 487		desc->folio_index++;
 488	} else
 489		desc->last_cookie = nfs_readdir_array_index_cookie(array);
 490}
 491
 492static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
 493{
 494	desc->current_index = 0;
 495	desc->last_cookie = 0;
 496	desc->folio_index = 0;
 497}
 498
 499static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
 500				      struct nfs_readdir_descriptor *desc)
 501{
 502	loff_t diff = desc->ctx->pos - desc->current_index;
 503	unsigned int index;
 504
 505	if (diff < 0)
 506		goto out_eof;
 507	if (diff >= array->size) {
 508		if (array->folio_is_eof)
 509			goto out_eof;
 510		nfs_readdir_seek_next_array(array, desc);
 511		return -EAGAIN;
 512	}
 513
 514	index = (unsigned int)diff;
 515	desc->dir_cookie = array->array[index].cookie;
 516	desc->cache_entry_index = index;
 517	return 0;
 518out_eof:
 519	desc->eof = true;
 520	return -EBADCOOKIE;
 521}
 522
 523static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
 524					      u64 cookie)
 525{
 526	if (!array->cookies_are_ordered)
 527		return true;
 528	/* Optimisation for monotonically increasing cookies */
 529	if (cookie >= array->last_cookie)
 530		return false;
 531	if (array->size && cookie < array->array[0].cookie)
 532		return false;
 533	return true;
 
 534}
 535
 536static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
 537					 struct nfs_readdir_descriptor *desc)
 538{
 539	unsigned int i;
 
 540	int status = -EAGAIN;
 541
 542	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
 543		goto check_eof;
 544
 545	for (i = 0; i < array->size; i++) {
 546		if (array->array[i].cookie == desc->dir_cookie) {
 547			if (nfs_readdir_use_cookie(desc->file))
 548				desc->ctx->pos = desc->dir_cookie;
 549			else
 550				desc->ctx->pos = desc->current_index + i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 551			desc->cache_entry_index = i;
 552			return 0;
 553		}
 554	}
 555check_eof:
 556	if (array->folio_is_eof) {
 557		status = -EBADCOOKIE;
 558		if (desc->dir_cookie == array->last_cookie)
 559			desc->eof = true;
 560	} else
 561		nfs_readdir_seek_next_array(array, desc);
 562	return status;
 563}
 564
 565static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
 
 566{
 567	struct nfs_cache_array *array;
 568	int status;
 569
 570	array = kmap_local_folio(desc->folio, 0);
 571
 572	if (desc->dir_cookie == 0)
 573		status = nfs_readdir_search_for_pos(array, desc);
 574	else
 575		status = nfs_readdir_search_for_cookie(array, desc);
 576
 577	kunmap_local(array);
 
 
 
 
 
 578	return status;
 579}
 580
 581/* Fill a page with xdr information before transferring to the cache page */
 582static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
 583				  __be32 *verf, u64 cookie,
 584				  struct page **pages, size_t bufsize,
 585				  __be32 *verf_res)
 586{
 587	struct inode *inode = file_inode(desc->file);
 588	struct nfs_readdir_arg arg = {
 589		.dentry = file_dentry(desc->file),
 590		.cred = desc->file->f_cred,
 591		.verf = verf,
 592		.cookie = cookie,
 593		.pages = pages,
 594		.page_len = bufsize,
 595		.plus = desc->plus,
 596	};
 597	struct nfs_readdir_res res = {
 598		.verf = verf_res,
 599	};
 600	unsigned long	timestamp, gencount;
 601	int		error;
 602
 603 again:
 604	timestamp = jiffies;
 605	gencount = nfs_inc_attr_generation_counter();
 606	desc->dir_verifier = nfs_save_change_attribute(inode);
 607	error = NFS_PROTO(inode)->readdir(&arg, &res);
 608	if (error < 0) {
 609		/* We requested READDIRPLUS, but the server doesn't grok it */
 610		if (error == -ENOTSUPP && desc->plus) {
 611			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 612			desc->plus = arg.plus = false;
 
 613			goto again;
 614		}
 615		goto error;
 616	}
 617	desc->timestamp = timestamp;
 618	desc->gencount = gencount;
 619error:
 620	return error;
 621}
 622
 623static int xdr_decode(struct nfs_readdir_descriptor *desc,
 624		      struct nfs_entry *entry, struct xdr_stream *xdr)
 625{
 626	struct inode *inode = file_inode(desc->file);
 627	int error;
 628
 629	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
 630	if (error)
 631		return error;
 632	entry->fattr->time_start = desc->timestamp;
 633	entry->fattr->gencount = desc->gencount;
 634	return 0;
 635}
 636
 637/* Match file and dirent using either filehandle or fileid
 638 * Note: caller is responsible for checking the fsid
 639 */
 640static
 641int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 642{
 643	struct inode *inode;
 644	struct nfs_inode *nfsi;
 645
 646	if (d_really_is_negative(dentry))
 647		return 0;
 648
 649	inode = d_inode(dentry);
 650	if (is_bad_inode(inode) || NFS_STALE(inode))
 651		return 0;
 652
 653	nfsi = NFS_I(inode);
 654	if (entry->fattr->fileid != nfsi->fileid)
 655		return 0;
 656	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 657		return 0;
 658	return 1;
 659}
 660
 661#define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
 662
 663static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
 664				unsigned int cache_hits,
 665				unsigned int cache_misses)
 666{
 667	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 668		return false;
 669	if (ctx->pos == 0 ||
 670	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
 
 671		return true;
 672	return false;
 673}
 674
 675/*
 676 * This function is called by the getattr code to request the
 677 * use of readdirplus to accelerate any future lookups in the same
 678 * directory.
 679 */
 680void nfs_readdir_record_entry_cache_hit(struct inode *dir)
 681{
 682	struct nfs_inode *nfsi = NFS_I(dir);
 683	struct nfs_open_dir_context *ctx;
 684
 685	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 686	    S_ISDIR(dir->i_mode)) {
 687		rcu_read_lock();
 688		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
 689			atomic_inc(&ctx->cache_hits);
 690		rcu_read_unlock();
 691	}
 692}
 693
 694/*
 695 * This function is mainly for use by nfs_getattr().
 696 *
 697 * If this is an 'ls -l', we want to force use of readdirplus.
 
 
 
 698 */
 699void nfs_readdir_record_entry_cache_miss(struct inode *dir)
 700{
 701	struct nfs_inode *nfsi = NFS_I(dir);
 702	struct nfs_open_dir_context *ctx;
 703
 704	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 705	    S_ISDIR(dir->i_mode)) {
 706		rcu_read_lock();
 707		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
 708			atomic_inc(&ctx->cache_misses);
 709		rcu_read_unlock();
 710	}
 711}
 712
 713static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
 714						unsigned int flags)
 715{
 716	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
 717		return;
 718	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
 719		return;
 720	nfs_readdir_record_entry_cache_miss(dir);
 721}
 722
 723static
 724void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
 725		unsigned long dir_verifier)
 726{
 727	struct qstr filename = QSTR_INIT(entry->name, entry->len);
 728	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 729	struct dentry *dentry;
 730	struct dentry *alias;
 
 731	struct inode *inode;
 732	int status;
 733
 734	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 735		return;
 736	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 737		return;
 738	if (filename.len == 0)
 739		return;
 740	/* Validate that the name doesn't contain any illegal '\0' */
 741	if (strnlen(filename.name, filename.len) != filename.len)
 742		return;
 743	/* ...or '/' */
 744	if (strnchr(filename.name, filename.len, '/'))
 745		return;
 746	if (filename.name[0] == '.') {
 747		if (filename.len == 1)
 748			return;
 749		if (filename.len == 2 && filename.name[1] == '.')
 750			return;
 751	}
 752	filename.hash = full_name_hash(parent, filename.name, filename.len);
 753
 754	dentry = d_lookup(parent, &filename);
 755again:
 756	if (!dentry) {
 757		dentry = d_alloc_parallel(parent, &filename, &wq);
 758		if (IS_ERR(dentry))
 759			return;
 760	}
 761	if (!d_in_lookup(dentry)) {
 762		/* Is there a mountpoint here? If so, just exit */
 763		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 764					&entry->fattr->fsid))
 765			goto out;
 766		if (nfs_same_file(dentry, entry)) {
 767			if (!entry->fh->size)
 768				goto out;
 769			nfs_set_verifier(dentry, dir_verifier);
 770			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 771			if (!status)
 772				nfs_setsecurity(d_inode(dentry), entry->fattr);
 773			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
 774							    dentry, 0, status);
 775			goto out;
 776		} else {
 777			trace_nfs_readdir_lookup_revalidate_failed(
 778				d_inode(parent), dentry, 0);
 779			d_invalidate(dentry);
 780			dput(dentry);
 781			dentry = NULL;
 782			goto again;
 783		}
 784	}
 785	if (!entry->fh->size) {
 786		d_lookup_done(dentry);
 787		goto out;
 788	}
 789
 790	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
 791	alias = d_splice_alias(inode, dentry);
 792	d_lookup_done(dentry);
 793	if (alias) {
 794		if (IS_ERR(alias))
 795			goto out;
 796		dput(dentry);
 797		dentry = alias;
 798	}
 799	nfs_set_verifier(dentry, dir_verifier);
 800	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
 801out:
 802	dput(dentry);
 803}
 804
 805static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
 806				    struct nfs_entry *entry,
 807				    struct xdr_stream *stream)
 808{
 809	int ret;
 810
 811	if (entry->fattr->label)
 812		entry->fattr->label->len = NFS4_MAXLABELLEN;
 813	ret = xdr_decode(desc, entry, stream);
 814	if (ret || !desc->plus)
 815		return ret;
 816	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
 817	return 0;
 818}
 819
 820/* Perform conversion from xdr to cache array */
 821static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
 822				    struct nfs_entry *entry,
 823				    struct page **xdr_pages, unsigned int buflen,
 824				    struct folio **arrays, size_t narrays,
 825				    u64 change_attr)
 826{
 827	struct address_space *mapping = desc->file->f_mapping;
 828	struct folio *new, *folio = *arrays;
 829	struct xdr_stream stream;
 
 830	struct page *scratch;
 831	struct xdr_buf buf;
 832	u64 cookie;
 833	int status;
 834
 835	scratch = alloc_page(GFP_KERNEL);
 836	if (scratch == NULL)
 837		return -ENOMEM;
 838
 
 
 
 839	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 840	xdr_set_scratch_page(&stream, scratch);
 841
 842	do {
 843		status = nfs_readdir_entry_decode(desc, entry, &stream);
 844		if (status != 0)
 
 
 845			break;
 
 
 
 846
 847		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
 848		if (status != -ENOSPC)
 849			continue;
 850
 851		if (folio->mapping != mapping) {
 852			if (!--narrays)
 853				break;
 854			new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
 855			if (!new)
 856				break;
 857			arrays++;
 858			*arrays = folio = new;
 859		} else {
 860			new = nfs_readdir_folio_get_next(mapping, cookie,
 861							 change_attr);
 862			if (!new)
 863				break;
 864			if (folio != *arrays)
 865				nfs_readdir_folio_unlock_and_put(folio);
 866			folio = new;
 867		}
 868		desc->folio_index_max++;
 869		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
 870	} while (!status && !entry->eof);
 871
 872	switch (status) {
 873	case -EBADCOOKIE:
 874		if (!entry->eof)
 875			break;
 876		nfs_readdir_folio_set_eof(folio);
 877		fallthrough;
 878	case -EAGAIN:
 879		status = 0;
 880		break;
 881	case -ENOSPC:
 882		status = 0;
 883		if (!desc->plus)
 884			break;
 885		while (!nfs_readdir_entry_decode(desc, entry, &stream))
 886			;
 887	}
 888
 889	if (folio != *arrays)
 890		nfs_readdir_folio_unlock_and_put(folio);
 891
 892	put_page(scratch);
 893	return status;
 894}
 895
 896static void nfs_readdir_free_pages(struct page **pages, size_t npages)
 
 897{
 898	while (npages--)
 899		put_page(pages[npages]);
 900	kfree(pages);
 901}
 902
 903/*
 904 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
 905 * to nfs_readdir_free_pages()
 906 */
 907static struct page **nfs_readdir_alloc_pages(size_t npages)
 
 908{
 909	struct page **pages;
 910	size_t i;
 911
 912	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
 913	if (!pages)
 914		return NULL;
 915	for (i = 0; i < npages; i++) {
 916		struct page *page = alloc_page(GFP_KERNEL);
 917		if (page == NULL)
 918			goto out_freepages;
 919		pages[i] = page;
 920	}
 921	return pages;
 922
 923out_freepages:
 924	nfs_readdir_free_pages(pages, i);
 925	return NULL;
 926}
 927
 928static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
 929				    __be32 *verf_arg, __be32 *verf_res,
 930				    struct folio **arrays, size_t narrays)
 931{
 932	u64 change_attr;
 933	struct page **pages;
 934	struct folio *folio = *arrays;
 935	struct nfs_entry *entry;
 936	size_t array_size;
 937	struct inode *inode = file_inode(desc->file);
 938	unsigned int dtsize = desc->dtsize;
 939	unsigned int pglen;
 940	int status = -ENOMEM;
 
 941
 942	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 943	if (!entry)
 944		return -ENOMEM;
 945	entry->cookie = nfs_readdir_folio_last_cookie(folio);
 946	entry->fh = nfs_alloc_fhandle();
 947	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
 948	entry->server = NFS_SERVER(inode);
 949	if (entry->fh == NULL || entry->fattr == NULL)
 950		goto out;
 951
 952	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
 953	pages = nfs_readdir_alloc_pages(array_size);
 954	if (!pages)
 955		goto out;
 
 956
 957	change_attr = inode_peek_iversion_raw(inode);
 958	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
 959					dtsize, verf_res);
 
 
 960	if (status < 0)
 961		goto free_pages;
 
 
 
 962
 963	pglen = status;
 964	if (pglen != 0)
 965		status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
 966						  arrays, narrays, change_attr);
 967	else
 968		nfs_readdir_folio_set_eof(folio);
 969	desc->buffer_fills++;
 
 
 
 970
 971free_pages:
 972	nfs_readdir_free_pages(pages, array_size);
 
 
 
 973out:
 974	nfs_free_fattr(entry->fattr);
 975	nfs_free_fhandle(entry->fh);
 976	kfree(entry);
 977	return status;
 978}
 979
 980static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
 
 
 
 
 
 
 
 981{
 982	folio_put(desc->folio);
 983	desc->folio = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984}
 985
 986static void
 987nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
 988{
 989	folio_unlock(desc->folio);
 990	nfs_readdir_folio_put(desc);
 
 
 991}
 992
 993static struct folio *
 994nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
 995{
 996	struct address_space *mapping = desc->file->f_mapping;
 997	u64 change_attr = inode_peek_iversion_raw(mapping->host);
 998	u64 cookie = desc->last_cookie;
 999	struct folio *folio;
1000
1001	folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1002	if (!folio)
1003		return NULL;
1004	if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1005		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1006	return folio;
1007}
1008
1009/*
1010 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1011 * and locks the page to prevent removal from the page cache.
1012 */
1013static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
 
1014{
1015	struct inode *inode = file_inode(desc->file);
1016	struct nfs_inode *nfsi = NFS_I(inode);
1017	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1018	int res;
1019
1020	desc->folio = nfs_readdir_folio_get_cached(desc);
1021	if (!desc->folio)
1022		return -ENOMEM;
1023	if (nfs_readdir_folio_needs_filling(desc->folio)) {
1024		/* Grow the dtsize if we had to go back for more pages */
1025		if (desc->folio_index == desc->folio_index_max)
1026			nfs_grow_dtsize(desc);
1027		desc->folio_index_max = desc->folio_index;
1028		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1029					     desc->last_cookie,
1030					     desc->folio->index, desc->dtsize);
1031		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1032					       &desc->folio, 1);
1033		if (res < 0) {
1034			nfs_readdir_folio_unlock_and_put_cached(desc);
1035			trace_nfs_readdir_cache_fill_done(inode, res);
1036			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1037				invalidate_inode_pages2(desc->file->f_mapping);
1038				nfs_readdir_rewind_search(desc);
1039				trace_nfs_readdir_invalidate_cache_range(
1040					inode, 0, MAX_LFS_FILESIZE);
1041				return -EAGAIN;
1042			}
1043			return res;
1044		}
1045		/*
1046		 * Set the cookie verifier if the page cache was empty
1047		 */
1048		if (desc->last_cookie == 0 &&
1049		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1050			memcpy(nfsi->cookieverf, verf,
1051			       sizeof(nfsi->cookieverf));
1052			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1053						      -1);
1054			trace_nfs_readdir_invalidate_cache_range(
1055				inode, 1, MAX_LFS_FILESIZE);
1056		}
1057		desc->clear_cache = false;
1058	}
1059	res = nfs_readdir_search_array(desc);
1060	if (res == 0)
1061		return 0;
1062	nfs_readdir_folio_unlock_and_put_cached(desc);
1063	return res;
1064}
1065
1066/* Search for desc->dir_cookie from the beginning of the page cache */
1067static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
 
1068{
1069	int res;
1070
 
 
 
 
1071	do {
1072		res = find_and_lock_cache_page(desc);
1073	} while (res == -EAGAIN);
1074	return res;
1075}
1076
1077#define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1078
1079/*
1080 * Once we've found the start of the dirent within a page: fill 'er up...
1081 */
1082static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1083			   const __be32 *verf)
1084{
1085	struct file	*file = desc->file;
1086	struct nfs_cache_array *array;
1087	unsigned int i;
1088	bool first_emit = !desc->dir_cookie;
 
1089
1090	array = kmap_local_folio(desc->folio, 0);
1091	for (i = desc->cache_entry_index; i < array->size; i++) {
1092		struct nfs_cache_array_entry *ent;
1093
1094		/*
1095		 * nfs_readdir_handle_cache_misses return force clear at
1096		 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1097		 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1098		 * entries need be emitted here.
1099		 */
1100		if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1101			desc->eob = true;
1102			break;
1103		}
1104
1105		ent = &array->array[i];
1106		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1107		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1108			desc->eob = true;
1109			break;
1110		}
1111		memcpy(desc->verf, verf, sizeof(desc->verf));
1112		if (i == array->size - 1) {
1113			desc->dir_cookie = array->last_cookie;
1114			nfs_readdir_seek_next_array(array, desc);
1115		} else {
1116			desc->dir_cookie = array->array[i + 1].cookie;
1117			desc->last_cookie = array->array[0].cookie;
1118		}
1119		if (nfs_readdir_use_cookie(file))
1120			desc->ctx->pos = desc->dir_cookie;
1121		else
1122			desc->ctx->pos++;
1123	}
1124	if (array->folio_is_eof)
1125		desc->eof = !desc->eob;
1126
1127	kunmap_local(array);
1128	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1129			(unsigned long long)desc->dir_cookie);
 
 
 
 
1130}
1131
1132/*
1133 * If we cannot find a cookie in our cache, we suspect that this is
1134 * because it points to a deleted file, so we ask the server to return
1135 * whatever it thinks is the next entry. We then feed this to filldir.
1136 * If all goes well, we should then be able to find our way round the
1137 * cache on the next call to readdir_search_pagecache();
1138 *
1139 * NOTE: we cannot add the anonymous page to the pagecache because
1140 *	 the data it contains might not be page aligned. Besides,
1141 *	 we should already have a complete representation of the
1142 *	 directory in the page cache by the time we get here.
1143 */
1144static int uncached_readdir(struct nfs_readdir_descriptor *desc)
 
1145{
1146	struct folio	**arrays;
1147	size_t		i, sz = 512;
1148	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1149	int		status = -ENOMEM;
1150
1151	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1152			(unsigned long long)desc->dir_cookie);
1153
1154	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1155	if (!arrays)
1156		goto out;
1157	arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1158	if (!arrays[0])
1159		goto out;
 
1160
1161	desc->folio_index = 0;
1162	desc->cache_entry_index = 0;
1163	desc->last_cookie = desc->dir_cookie;
1164	desc->folio_index_max = 0;
1165
1166	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1167				   -1, desc->dtsize);
 
1168
1169	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1170	if (status < 0) {
1171		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1172		goto out_free;
1173	}
1174
1175	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1176		desc->folio = arrays[i];
1177		nfs_do_filldir(desc, verf);
1178	}
1179	desc->folio = NULL;
1180
1181	/*
1182	 * Grow the dtsize if we have to go back for more pages,
1183	 * or shrink it if we're reading too many.
1184	 */
1185	if (!desc->eof) {
1186		if (!desc->eob)
1187			nfs_grow_dtsize(desc);
1188		else if (desc->buffer_fills == 1 &&
1189			 i < (desc->folio_index_max >> 1))
1190			nfs_shrink_dtsize(desc);
1191	}
1192out_free:
1193	for (i = 0; i < sz && arrays[i]; i++)
1194		nfs_readdir_folio_array_free(arrays[i]);
1195out:
1196	if (!nfs_readdir_use_cookie(desc->file))
1197		nfs_readdir_rewind_search(desc);
1198	desc->folio_index_max = -1;
1199	kfree(arrays);
1200	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1201	return status;
1202}
1203
1204static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1205					    struct nfs_readdir_descriptor *desc,
1206					    unsigned int cache_misses,
1207					    bool force_clear)
1208{
1209	if (desc->ctx->pos == 0 || !desc->plus)
1210		return false;
1211	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1212		return false;
1213	trace_nfs_readdir_force_readdirplus(inode);
1214	return true;
1215}
1216
1217/* The file offset position represents the dirent entry number.  A
1218   last cookie cache takes care of the common case of reading the
1219   whole directory.
1220 */
1221static int nfs_readdir(struct file *file, struct dir_context *ctx)
1222{
1223	struct dentry	*dentry = file_dentry(file);
1224	struct inode	*inode = d_inode(dentry);
1225	struct nfs_inode *nfsi = NFS_I(inode);
 
1226	struct nfs_open_dir_context *dir_ctx = file->private_data;
1227	struct nfs_readdir_descriptor *desc;
1228	unsigned int cache_hits, cache_misses;
1229	bool force_clear;
1230	int res;
1231
1232	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1233			file, (long long)ctx->pos);
1234	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1235
1236	/*
1237	 * ctx->pos points to the dirent entry number.
1238	 * *desc->dir_cookie has the cookie for the next entry. We have
1239	 * to either find the entry with the appropriate number or
1240	 * revalidate the cookie.
1241	 */
1242	nfs_revalidate_mapping(inode, file->f_mapping);
1243
1244	res = -ENOMEM;
1245	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1246	if (!desc)
1247		goto out;
1248	desc->file = file;
1249	desc->ctx = ctx;
1250	desc->folio_index_max = -1;
1251
1252	spin_lock(&file->f_lock);
1253	desc->dir_cookie = dir_ctx->dir_cookie;
1254	desc->folio_index = dir_ctx->page_index;
1255	desc->last_cookie = dir_ctx->last_cookie;
1256	desc->attr_gencount = dir_ctx->attr_gencount;
1257	desc->eof = dir_ctx->eof;
1258	nfs_set_dtsize(desc, dir_ctx->dtsize);
1259	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1260	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1261	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1262	force_clear = dir_ctx->force_clear;
1263	spin_unlock(&file->f_lock);
1264
1265	if (desc->eof) {
1266		res = 0;
1267		goto out_free;
1268	}
1269
1270	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1271	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1272						      force_clear);
1273	desc->clear_cache = force_clear;
1274
1275	do {
1276		res = readdir_search_pagecache(desc);
1277
1278		if (res == -EBADCOOKIE) {
1279			res = 0;
1280			/* This means either end of directory */
1281			if (desc->dir_cookie && !desc->eof) {
1282				/* Or that the server has 'lost' a cookie */
1283				res = uncached_readdir(desc);
1284				if (res == 0)
1285					continue;
1286				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1287					res = 0;
1288			}
1289			break;
1290		}
1291		if (res == -ETOOSMALL && desc->plus) {
 
1292			nfs_zap_caches(inode);
 
1293			desc->plus = false;
1294			desc->eof = false;
1295			continue;
1296		}
1297		if (res < 0)
1298			break;
1299
1300		nfs_do_filldir(desc, nfsi->cookieverf);
1301		nfs_readdir_folio_unlock_and_put_cached(desc);
1302		if (desc->folio_index == desc->folio_index_max)
1303			desc->clear_cache = force_clear;
1304	} while (!desc->eob && !desc->eof);
1305
1306	spin_lock(&file->f_lock);
1307	dir_ctx->dir_cookie = desc->dir_cookie;
1308	dir_ctx->last_cookie = desc->last_cookie;
1309	dir_ctx->attr_gencount = desc->attr_gencount;
1310	dir_ctx->page_index = desc->folio_index;
1311	dir_ctx->force_clear = force_clear;
1312	dir_ctx->eof = desc->eof;
1313	dir_ctx->dtsize = desc->dtsize;
1314	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1315	spin_unlock(&file->f_lock);
1316out_free:
1317	kfree(desc);
1318
1319out:
 
 
1320	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1321	return res;
1322}
1323
1324static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1325{
 
1326	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1327
1328	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1329			filp, offset, whence);
1330
 
1331	switch (whence) {
1332	default:
1333		return -EINVAL;
1334	case SEEK_SET:
1335		if (offset < 0)
1336			return -EINVAL;
1337		spin_lock(&filp->f_lock);
1338		break;
1339	case SEEK_CUR:
1340		if (offset == 0)
1341			return filp->f_pos;
1342		spin_lock(&filp->f_lock);
1343		offset += filp->f_pos;
1344		if (offset < 0) {
1345			spin_unlock(&filp->f_lock);
1346			return -EINVAL;
1347		}
1348	}
1349	if (offset != filp->f_pos) {
1350		filp->f_pos = offset;
1351		dir_ctx->page_index = 0;
1352		if (!nfs_readdir_use_cookie(filp)) {
1353			dir_ctx->dir_cookie = 0;
1354			dir_ctx->last_cookie = 0;
1355		} else {
1356			dir_ctx->dir_cookie = offset;
1357			dir_ctx->last_cookie = offset;
1358		}
1359		dir_ctx->eof = false;
1360	}
1361	spin_unlock(&filp->f_lock);
 
1362	return offset;
1363}
1364
1365/*
1366 * All directory operations under NFS are synchronous, so fsync()
1367 * is a dummy operation.
1368 */
1369static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1370			 int datasync)
1371{
 
 
1372	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1373
1374	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
 
 
1375	return 0;
1376}
1377
1378/**
1379 * nfs_force_lookup_revalidate - Mark the directory as having changed
1380 * @dir: pointer to directory inode
1381 *
1382 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1383 * full lookup on all child dentries of 'dir' whenever a change occurs
1384 * on the server that might have invalidated our dcache.
1385 *
1386 * Note that we reserve bit '0' as a tag to let us know when a dentry
1387 * was revalidated while holding a delegation on its inode.
1388 *
1389 * The caller should be holding dir->i_lock
1390 */
1391void nfs_force_lookup_revalidate(struct inode *dir)
1392{
1393	NFS_I(dir)->cache_change_attribute += 2;
1394}
1395EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1396
1397/**
1398 * nfs_verify_change_attribute - Detects NFS remote directory changes
1399 * @dir: pointer to parent directory inode
1400 * @verf: previously saved change attribute
1401 *
1402 * Return "false" if the verifiers doesn't match the change attribute.
1403 * This would usually indicate that the directory contents have changed on
1404 * the server, and that any dentries need revalidating.
1405 */
1406static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1407{
1408	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1409}
1410
1411static void nfs_set_verifier_delegated(unsigned long *verf)
1412{
1413	*verf |= 1UL;
1414}
1415
1416#if IS_ENABLED(CONFIG_NFS_V4)
1417static void nfs_unset_verifier_delegated(unsigned long *verf)
1418{
1419	*verf &= ~1UL;
1420}
1421#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1422
1423static bool nfs_test_verifier_delegated(unsigned long verf)
1424{
1425	return verf & 1;
1426}
1427
1428static bool nfs_verifier_is_delegated(struct dentry *dentry)
1429{
1430	return nfs_test_verifier_delegated(dentry->d_time);
1431}
1432
1433static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1434{
1435	struct inode *inode = d_inode(dentry);
1436	struct inode *dir = d_inode_rcu(dentry->d_parent);
1437
1438	if (!dir || !nfs_verify_change_attribute(dir, verf))
1439		return;
1440	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0))
1441		nfs_set_verifier_delegated(&verf);
1442	dentry->d_time = verf;
1443}
1444
1445/**
1446 * nfs_set_verifier - save a parent directory verifier in the dentry
1447 * @dentry: pointer to dentry
1448 * @verf: verifier to save
1449 *
1450 * Saves the parent directory verifier in @dentry. If the inode has
1451 * a delegation, we also tag the dentry as having been revalidated
1452 * while holding a delegation so that we know we don't have to
1453 * look it up again after a directory change.
1454 */
1455void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1456{
1457
1458	spin_lock(&dentry->d_lock);
1459	nfs_set_verifier_locked(dentry, verf);
1460	spin_unlock(&dentry->d_lock);
1461}
1462EXPORT_SYMBOL_GPL(nfs_set_verifier);
1463
1464#if IS_ENABLED(CONFIG_NFS_V4)
1465/**
1466 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1467 * @inode: pointer to inode
1468 *
1469 * Iterates through the dentries in the inode alias list and clears
1470 * the tag used to indicate that the dentry has been revalidated
1471 * while holding a delegation.
1472 * This function is intended for use when the delegation is being
1473 * returned or revoked.
1474 */
1475void nfs_clear_verifier_delegated(struct inode *inode)
1476{
1477	struct dentry *alias;
1478
1479	if (!inode)
1480		return;
1481	spin_lock(&inode->i_lock);
1482	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1483		spin_lock(&alias->d_lock);
1484		nfs_unset_verifier_delegated(&alias->d_time);
1485		spin_unlock(&alias->d_lock);
1486	}
1487	spin_unlock(&inode->i_lock);
1488}
1489EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1490#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1491
1492static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1493{
1494	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1495	    d_really_is_negative(dentry))
1496		return dentry->d_time == inode_peek_iversion_raw(dir);
1497	return nfs_verify_change_attribute(dir, dentry->d_time);
1498}
1499
1500/*
1501 * A check for whether or not the parent directory has changed.
1502 * In the case it has, we assume that the dentries are untrustworthy
1503 * and may need to be looked up again.
1504 * If rcu_walk prevents us from performing a full check, return 0.
1505 */
1506static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1507			      int rcu_walk)
1508{
1509	if (IS_ROOT(dentry))
1510		return 1;
1511	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1512		return 0;
1513	if (!nfs_dentry_verify_change(dir, dentry))
1514		return 0;
1515	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1516	if (nfs_mapping_need_revalidate_inode(dir)) {
1517		if (rcu_walk)
1518			return 0;
1519		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1520			return 0;
1521	}
1522	if (!nfs_dentry_verify_change(dir, dentry))
1523		return 0;
1524	return 1;
1525}
1526
1527/*
1528 * Use intent information to check whether or not we're going to do
1529 * an O_EXCL create using this path component.
1530 */
1531static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1532{
1533	if (NFS_PROTO(dir)->version == 2)
1534		return 0;
1535	return flags & LOOKUP_EXCL;
1536}
1537
1538/*
1539 * Inode and filehandle revalidation for lookups.
1540 *
1541 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1542 * or if the intent information indicates that we're about to open this
1543 * particular file and the "nocto" mount flag is not set.
1544 *
1545 */
1546static
1547int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1548{
1549	struct nfs_server *server = NFS_SERVER(inode);
1550	int ret;
1551
1552	if (IS_AUTOMOUNT(inode))
1553		return 0;
1554
1555	if (flags & LOOKUP_OPEN) {
1556		switch (inode->i_mode & S_IFMT) {
1557		case S_IFREG:
1558			/* A NFSv4 OPEN will revalidate later */
1559			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1560				goto out;
1561			fallthrough;
1562		case S_IFDIR:
1563			if (server->flags & NFS_MOUNT_NOCTO)
1564				break;
1565			/* NFS close-to-open cache consistency validation */
1566			goto out_force;
1567		}
1568	}
1569
1570	/* VFS wants an on-the-wire revalidation */
1571	if (flags & LOOKUP_REVAL)
1572		goto out_force;
 
 
 
 
1573out:
1574	if (inode->i_nlink > 0 ||
1575	    (inode->i_nlink == 0 &&
1576	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1577		return 0;
1578	else
1579		return -ESTALE;
1580out_force:
1581	if (flags & LOOKUP_RCU)
1582		return -ECHILD;
1583	ret = __nfs_revalidate_inode(server, inode);
1584	if (ret != 0)
1585		return ret;
1586	goto out;
1587}
1588
1589static void nfs_mark_dir_for_revalidate(struct inode *inode)
1590{
1591	spin_lock(&inode->i_lock);
1592	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1593	spin_unlock(&inode->i_lock);
1594}
1595
1596/*
1597 * We judge how long we want to trust negative
1598 * dentries by looking at the parent inode mtime.
1599 *
1600 * If parent mtime has changed, we revalidate, else we wait for a
1601 * period corresponding to the parent's attribute cache timeout value.
1602 *
1603 * If LOOKUP_RCU prevents us from performing a full check, return 1
1604 * suggesting a reval is needed.
1605 *
1606 * Note that when creating a new file, or looking up a rename target,
1607 * then it shouldn't be necessary to revalidate a negative dentry.
1608 */
1609static inline
1610int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1611		       unsigned int flags)
1612{
1613	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
 
1614		return 0;
1615	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1616		return 1;
1617	/* Case insensitive server? Revalidate negative dentries */
1618	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1619		return 1;
1620	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1621}
1622
1623static int
1624nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1625			   struct inode *inode, int error)
1626{
1627	switch (error) {
1628	case 1:
1629		break;
1630	case -ETIMEDOUT:
1631		if (inode && (IS_ROOT(dentry) ||
1632			      NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL))
1633			error = 1;
1634		break;
1635	case -ESTALE:
1636	case -ENOENT:
1637		error = 0;
1638		fallthrough;
1639	default:
1640		/*
1641		 * We can't d_drop the root of a disconnected tree:
1642		 * its d_hash is on the s_anon list and d_drop() would hide
1643		 * it from shrink_dcache_for_unmount(), leading to busy
1644		 * inodes on unmount and further oopses.
1645		 */
1646		if (inode && IS_ROOT(dentry))
1647			error = 1;
1648		break;
1649	}
1650	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1651	return error;
1652}
1653
1654static int
1655nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1656			       unsigned int flags)
1657{
1658	int ret = 1;
1659	if (nfs_neg_need_reval(dir, dentry, flags)) {
1660		if (flags & LOOKUP_RCU)
1661			return -ECHILD;
1662		ret = 0;
1663	}
1664	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1665}
1666
1667static int
1668nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1669				struct inode *inode)
1670{
1671	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1672	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1673}
1674
1675static int nfs_lookup_revalidate_dentry(struct inode *dir,
1676					struct dentry *dentry,
1677					struct inode *inode, unsigned int flags)
1678{
1679	struct nfs_fh *fhandle;
1680	struct nfs_fattr *fattr;
1681	unsigned long dir_verifier;
1682	int ret;
1683
1684	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1685
1686	ret = -ENOMEM;
1687	fhandle = nfs_alloc_fhandle();
1688	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1689	if (fhandle == NULL || fattr == NULL)
1690		goto out;
1691
1692	dir_verifier = nfs_save_change_attribute(dir);
1693	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1694	if (ret < 0)
1695		goto out;
1696
1697	/* Request help from readdirplus */
1698	nfs_lookup_advise_force_readdirplus(dir, flags);
1699
1700	ret = 0;
1701	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1702		goto out;
1703	if (nfs_refresh_inode(inode, fattr) < 0)
1704		goto out;
1705
1706	nfs_setsecurity(inode, fattr);
1707	nfs_set_verifier(dentry, dir_verifier);
1708
1709	ret = 1;
1710out:
1711	nfs_free_fattr(fattr);
1712	nfs_free_fhandle(fhandle);
1713
1714	/*
1715	 * If the lookup failed despite the dentry change attribute being
1716	 * a match, then we should revalidate the directory cache.
1717	 */
1718	if (!ret && nfs_dentry_verify_change(dir, dentry))
1719		nfs_mark_dir_for_revalidate(dir);
1720	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1721}
1722
1723/*
1724 * This is called every time the dcache has a lookup hit,
1725 * and we should check whether we can really trust that
1726 * lookup.
1727 *
1728 * NOTE! The hit can be a negative hit too, don't assume
1729 * we have an inode!
1730 *
1731 * If the parent directory is seen to have changed, we throw out the
1732 * cached dentry and do a new lookup.
1733 */
1734static int
1735nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1736			 unsigned int flags)
1737{
 
1738	struct inode *inode;
1739	int error = 0;
 
 
 
 
1740
 
 
 
 
 
 
 
 
 
1741	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1742	inode = d_inode(dentry);
1743
1744	if (!inode)
1745		return nfs_lookup_revalidate_negative(dir, dentry, flags);
 
 
 
 
 
 
1746
1747	if (is_bad_inode(inode)) {
 
 
1748		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1749				__func__, dentry);
1750		goto out_bad;
1751	}
1752
1753	if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1754	    nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1755		goto out_bad;
1756
1757	if (nfs_verifier_is_delegated(dentry))
1758		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1759
1760	/* Force a full look up iff the parent directory has changed */
1761	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1762	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1763		error = nfs_lookup_verify_inode(inode, flags);
1764		if (error) {
 
 
1765			if (error == -ESTALE)
1766				nfs_mark_dir_for_revalidate(dir);
1767			goto out_bad;
1768		}
 
1769		goto out_valid;
1770	}
1771
1772	if (flags & LOOKUP_RCU)
1773		return -ECHILD;
1774
1775	if (NFS_STALE(inode))
1776		goto out_bad;
1777
1778	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1779out_valid:
1780	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1781out_bad:
1782	if (flags & LOOKUP_RCU)
1783		return -ECHILD;
1784	return nfs_lookup_revalidate_done(dir, dentry, inode, error);
1785}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1786
1787static int
1788__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1789			int (*reval)(struct inode *, struct dentry *, unsigned int))
1790{
1791	struct dentry *parent;
1792	struct inode *dir;
1793	int ret;
1794
 
 
 
1795	if (flags & LOOKUP_RCU) {
1796		if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1797			return -ECHILD;
1798		parent = READ_ONCE(dentry->d_parent);
1799		dir = d_inode_rcu(parent);
1800		if (!dir)
1801			return -ECHILD;
1802		ret = reval(dir, dentry, flags);
1803		if (parent != READ_ONCE(dentry->d_parent))
1804			return -ECHILD;
1805	} else {
1806		/* Wait for unlink to complete - see unblock_revalidate() */
1807		wait_var_event(&dentry->d_fsdata,
1808			       smp_load_acquire(&dentry->d_fsdata)
1809			       != NFS_FSDATA_BLOCKED);
1810		parent = dget_parent(dentry);
1811		ret = reval(d_inode(parent), dentry, flags);
1812		dput(parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813	}
1814	return ret;
1815}
1816
1817static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1818{
1819	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1820}
1821
1822static void block_revalidate(struct dentry *dentry)
1823{
1824	/* old devname - just in case */
1825	kfree(dentry->d_fsdata);
1826
1827	/* Any new reference that could lead to an open
1828	 * will take ->d_lock in lookup_open() -> d_lookup().
1829	 * Holding this lock ensures we cannot race with
1830	 * __nfs_lookup_revalidate() and removes and need
1831	 * for further barriers.
1832	 */
1833	lockdep_assert_held(&dentry->d_lock);
1834
1835	dentry->d_fsdata = NFS_FSDATA_BLOCKED;
1836}
1837
1838static void unblock_revalidate(struct dentry *dentry)
1839{
1840	/* store_release ensures wait_var_event() sees the update */
1841	smp_store_release(&dentry->d_fsdata, NULL);
1842	wake_up_var(&dentry->d_fsdata);
1843}
1844
1845/*
1846 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1847 * when we don't really care about the dentry name. This is called when a
1848 * pathwalk ends on a dentry that was not found via a normal lookup in the
1849 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1850 *
1851 * In this situation, we just want to verify that the inode itself is OK
1852 * since the dentry might have changed on the server.
1853 */
1854static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1855{
1856	struct inode *inode = d_inode(dentry);
1857	int error = 0;
1858
1859	/*
1860	 * I believe we can only get a negative dentry here in the case of a
1861	 * procfs-style symlink. Just assume it's correct for now, but we may
1862	 * eventually need to do something more here.
1863	 */
1864	if (!inode) {
1865		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1866				__func__, dentry);
1867		return 1;
1868	}
1869
1870	if (is_bad_inode(inode)) {
1871		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1872				__func__, dentry);
1873		return 0;
1874	}
1875
1876	error = nfs_lookup_verify_inode(inode, flags);
1877	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1878			__func__, inode->i_ino, error ? "invalid" : "valid");
1879	return !error;
1880}
1881
1882/*
1883 * This is called from dput() when d_count is going to 0.
1884 */
1885static int nfs_dentry_delete(const struct dentry *dentry)
1886{
1887	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1888		dentry, dentry->d_flags);
1889
1890	/* Unhash any dentry with a stale inode */
1891	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1892		return 1;
1893
1894	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1895		/* Unhash it, so that ->d_iput() would be called */
1896		return 1;
1897	}
1898	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1899		/* Unhash it, so that ancestors of killed async unlink
1900		 * files will be cleaned up during umount */
1901		return 1;
1902	}
1903	return 0;
1904
1905}
1906
1907/* Ensure that we revalidate inode->i_nlink */
1908static void nfs_drop_nlink(struct inode *inode)
1909{
1910	spin_lock(&inode->i_lock);
1911	/* drop the inode if we're reasonably sure this is the last link */
1912	if (inode->i_nlink > 0)
1913		drop_nlink(inode);
1914	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1915	nfs_set_cache_invalid(
1916		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1917			       NFS_INO_INVALID_NLINK);
1918	spin_unlock(&inode->i_lock);
1919}
1920
1921/*
1922 * Called when the dentry loses inode.
1923 * We use it to clean up silly-renamed files.
1924 */
1925static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1926{
 
 
 
 
1927	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1928		nfs_complete_unlink(dentry, inode);
1929		nfs_drop_nlink(inode);
1930	}
1931	iput(inode);
1932}
1933
1934static void nfs_d_release(struct dentry *dentry)
1935{
1936	/* free cached devname value, if it survived that far */
1937	if (unlikely(dentry->d_fsdata)) {
1938		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1939			WARN_ON(1);
1940		else
1941			kfree(dentry->d_fsdata);
1942	}
1943}
1944
1945const struct dentry_operations nfs_dentry_operations = {
1946	.d_revalidate	= nfs_lookup_revalidate,
1947	.d_weak_revalidate	= nfs_weak_revalidate,
1948	.d_delete	= nfs_dentry_delete,
1949	.d_iput		= nfs_dentry_iput,
1950	.d_automount	= nfs_d_automount,
1951	.d_release	= nfs_d_release,
1952};
1953EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1954
1955struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1956{
1957	struct dentry *res;
1958	struct inode *inode = NULL;
1959	struct nfs_fh *fhandle = NULL;
1960	struct nfs_fattr *fattr = NULL;
1961	unsigned long dir_verifier;
1962	int error;
1963
1964	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1965	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1966
1967	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1968		return ERR_PTR(-ENAMETOOLONG);
1969
1970	/*
1971	 * If we're doing an exclusive create, optimize away the lookup
1972	 * but don't hash the dentry.
1973	 */
1974	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1975		return NULL;
1976
1977	res = ERR_PTR(-ENOMEM);
1978	fhandle = nfs_alloc_fhandle();
1979	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1980	if (fhandle == NULL || fattr == NULL)
1981		goto out;
1982
1983	dir_verifier = nfs_save_change_attribute(dir);
 
 
 
1984	trace_nfs_lookup_enter(dir, dentry, flags);
1985	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1986	if (error == -ENOENT) {
1987		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1988			dir_verifier = inode_peek_iversion_raw(dir);
1989		goto no_entry;
1990	}
1991	if (error < 0) {
1992		res = ERR_PTR(error);
1993		goto out;
1994	}
1995	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1996	res = ERR_CAST(inode);
1997	if (IS_ERR(res))
1998		goto out;
1999
2000	/* Notify readdir to use READDIRPLUS */
2001	nfs_lookup_advise_force_readdirplus(dir, flags);
2002
2003no_entry:
2004	res = d_splice_alias(inode, dentry);
2005	if (res != NULL) {
2006		if (IS_ERR(res))
2007			goto out;
2008		dentry = res;
2009	}
2010	nfs_set_verifier(dentry, dir_verifier);
 
 
 
2011out:
2012	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
2013	nfs_free_fattr(fattr);
2014	nfs_free_fhandle(fhandle);
2015	return res;
2016}
2017EXPORT_SYMBOL_GPL(nfs_lookup);
2018
2019void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
2020{
2021	/* Case insensitive server? Revalidate dentries */
2022	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
2023		d_prune_aliases(inode);
2024}
2025EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2026
2027#if IS_ENABLED(CONFIG_NFS_V4)
2028static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
2029
2030const struct dentry_operations nfs4_dentry_operations = {
2031	.d_revalidate	= nfs4_lookup_revalidate,
2032	.d_weak_revalidate	= nfs_weak_revalidate,
2033	.d_delete	= nfs_dentry_delete,
2034	.d_iput		= nfs_dentry_iput,
2035	.d_automount	= nfs_d_automount,
2036	.d_release	= nfs_d_release,
2037};
2038EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2039
 
 
 
 
 
 
 
 
 
 
2040static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2041{
2042	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2043}
2044
2045static int do_open(struct inode *inode, struct file *filp)
2046{
2047	nfs_fscache_open_file(inode, filp);
2048	return 0;
2049}
2050
2051static int nfs_finish_open(struct nfs_open_context *ctx,
2052			   struct dentry *dentry,
2053			   struct file *file, unsigned open_flags)
 
2054{
2055	int err;
2056
2057	err = finish_open(file, dentry, do_open);
2058	if (err)
2059		goto out;
2060	if (S_ISREG(file_inode(file)->i_mode))
2061		nfs_file_set_open_context(file, ctx);
2062	else
2063		err = -EOPENSTALE;
2064out:
2065	return err;
2066}
2067
2068int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2069		    struct file *file, unsigned open_flags,
2070		    umode_t mode)
2071{
2072	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2073	struct nfs_open_context *ctx;
2074	struct dentry *res;
2075	struct iattr attr = { .ia_valid = ATTR_OPEN };
2076	struct inode *inode;
2077	unsigned int lookup_flags = 0;
2078	unsigned long dir_verifier;
2079	bool switched = false;
2080	int created = 0;
2081	int err;
2082
2083	/* Expect a negative dentry */
2084	BUG_ON(d_inode(dentry));
2085
2086	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2087			dir->i_sb->s_id, dir->i_ino, dentry);
2088
2089	err = nfs_check_flags(open_flags);
2090	if (err)
2091		return err;
2092
2093	/* NFS only supports OPEN on regular files */
2094	if ((open_flags & O_DIRECTORY)) {
2095		if (!d_in_lookup(dentry)) {
2096			/*
2097			 * Hashed negative dentry with O_DIRECTORY: dentry was
2098			 * revalidated and is fine, no need to perform lookup
2099			 * again
2100			 */
2101			return -ENOENT;
2102		}
2103		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2104		goto no_open;
2105	}
2106
2107	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2108		return -ENAMETOOLONG;
2109
2110	if (open_flags & O_CREAT) {
2111		struct nfs_server *server = NFS_SERVER(dir);
2112
2113		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2114			mode &= ~current_umask();
2115
2116		attr.ia_valid |= ATTR_MODE;
2117		attr.ia_mode = mode;
2118	}
2119	if (open_flags & O_TRUNC) {
2120		attr.ia_valid |= ATTR_SIZE;
2121		attr.ia_size = 0;
2122	}
2123
2124	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2125		d_drop(dentry);
2126		switched = true;
2127		dentry = d_alloc_parallel(dentry->d_parent,
2128					  &dentry->d_name, &wq);
2129		if (IS_ERR(dentry))
2130			return PTR_ERR(dentry);
2131		if (unlikely(!d_in_lookup(dentry)))
2132			return finish_no_open(file, dentry);
2133	}
2134
2135	ctx = create_nfs_open_context(dentry, open_flags, file);
2136	err = PTR_ERR(ctx);
2137	if (IS_ERR(ctx))
2138		goto out;
2139
2140	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2141	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2142	if (created)
2143		file->f_mode |= FMODE_CREATED;
2144	if (IS_ERR(inode)) {
2145		err = PTR_ERR(inode);
2146		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2147		put_nfs_open_context(ctx);
2148		d_drop(dentry);
2149		switch (err) {
2150		case -ENOENT:
2151			d_splice_alias(NULL, dentry);
2152			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2153				dir_verifier = inode_peek_iversion_raw(dir);
2154			else
2155				dir_verifier = nfs_save_change_attribute(dir);
2156			nfs_set_verifier(dentry, dir_verifier);
2157			break;
2158		case -EISDIR:
2159		case -ENOTDIR:
2160			goto no_open;
2161		case -ELOOP:
2162			if (!(open_flags & O_NOFOLLOW))
2163				goto no_open;
2164			break;
2165			/* case -EINVAL: */
2166		default:
2167			break;
2168		}
2169		goto out;
2170	}
2171	file->f_mode |= FMODE_CAN_ODIRECT;
2172
2173	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2174	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2175	put_nfs_open_context(ctx);
2176out:
2177	if (unlikely(switched)) {
2178		d_lookup_done(dentry);
2179		dput(dentry);
2180	}
2181	return err;
2182
2183no_open:
2184	res = nfs_lookup(dir, dentry, lookup_flags);
2185	if (!res) {
2186		inode = d_inode(dentry);
2187		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2188		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2189			res = ERR_PTR(-ENOTDIR);
2190		else if (inode && S_ISREG(inode->i_mode))
2191			res = ERR_PTR(-EOPENSTALE);
2192	} else if (!IS_ERR(res)) {
2193		inode = d_inode(res);
2194		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2195		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2196			dput(res);
2197			res = ERR_PTR(-ENOTDIR);
2198		} else if (inode && S_ISREG(inode->i_mode)) {
2199			dput(res);
2200			res = ERR_PTR(-EOPENSTALE);
2201		}
2202	}
2203	if (switched) {
2204		d_lookup_done(dentry);
2205		if (!res)
2206			res = dentry;
2207		else
2208			dput(dentry);
2209	}
2210	if (IS_ERR(res))
2211		return PTR_ERR(res);
2212	return finish_no_open(file, res);
2213}
2214EXPORT_SYMBOL_GPL(nfs_atomic_open);
2215
2216static int
2217nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2218			  unsigned int flags)
2219{
2220	struct inode *inode;
2221
2222	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
2223
2224	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2225		goto full_reval;
2226	if (d_mountpoint(dentry))
2227		goto full_reval;
 
 
2228
2229	inode = d_inode(dentry);
2230
2231	/* We can't create new files in nfs_open_revalidate(), so we
2232	 * optimize away revalidation of negative dentries.
2233	 */
2234	if (inode == NULL)
2235		goto full_reval;
2236
2237	if (nfs_verifier_is_delegated(dentry))
2238		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2239
2240	/* NFS only supports OPEN on regular files */
2241	if (!S_ISREG(inode->i_mode))
2242		goto full_reval;
2243
2244	/* We cannot do exclusive creation on a positive dentry */
2245	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2246		goto reval_dentry;
2247
2248	/* Check if the directory changed */
2249	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2250		goto reval_dentry;
2251
2252	/* Let f_op->open() actually open (and revalidate) the file */
2253	return 1;
2254reval_dentry:
2255	if (flags & LOOKUP_RCU)
2256		return -ECHILD;
2257	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2258
2259full_reval:
2260	return nfs_do_lookup_revalidate(dir, dentry, flags);
2261}
2262
2263static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2264{
2265	return __nfs_lookup_revalidate(dentry, flags,
2266			nfs4_do_lookup_revalidate);
2267}
2268
2269#endif /* CONFIG_NFSV4 */
2270
2271int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry,
2272			struct file *file, unsigned int open_flags,
2273			umode_t mode)
2274{
2275
2276	/* Same as look+open from lookup_open(), but with different O_TRUNC
2277	 * handling.
2278	 */
2279	int error = 0;
2280
2281	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2282		return -ENAMETOOLONG;
2283
2284	if (open_flags & O_CREAT) {
2285		file->f_mode |= FMODE_CREATED;
2286		error = nfs_do_create(dir, dentry, mode, open_flags);
2287		if (error)
2288			return error;
2289		return finish_open(file, dentry, NULL);
2290	} else if (d_in_lookup(dentry)) {
2291		/* The only flags nfs_lookup considers are
2292		 * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and
2293		 * we want those to be zero so the lookup isn't skipped.
2294		 */
2295		struct dentry *res = nfs_lookup(dir, dentry, 0);
2296
2297		d_lookup_done(dentry);
2298		if (unlikely(res)) {
2299			if (IS_ERR(res))
2300				return PTR_ERR(res);
2301			return finish_no_open(file, res);
2302		}
2303	}
2304	return finish_no_open(file, NULL);
2305
2306}
2307EXPORT_SYMBOL_GPL(nfs_atomic_open_v23);
2308
2309struct dentry *
2310nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2311				struct nfs_fattr *fattr)
2312{
2313	struct dentry *parent = dget_parent(dentry);
2314	struct inode *dir = d_inode(parent);
2315	struct inode *inode;
2316	struct dentry *d;
2317	int error;
2318
2319	d_drop(dentry);
2320
 
 
 
2321	if (fhandle->size == 0) {
2322		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2323		if (error)
2324			goto out_error;
2325	}
2326	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2327	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2328		struct nfs_server *server = NFS_SB(dentry->d_sb);
2329		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2330				fattr, NULL);
2331		if (error < 0)
2332			goto out_error;
2333	}
2334	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2335	d = d_splice_alias(inode, dentry);
 
 
 
2336out:
2337	dput(parent);
2338	return d;
2339out_error:
2340	d = ERR_PTR(error);
2341	goto out;
2342}
2343EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2344
2345/*
2346 * Code common to create, mkdir, and mknod.
2347 */
2348int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2349				struct nfs_fattr *fattr)
2350{
2351	struct dentry *d;
2352
2353	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2354	if (IS_ERR(d))
2355		return PTR_ERR(d);
2356
2357	/* Callers don't care */
2358	dput(d);
2359	return 0;
2360}
2361EXPORT_SYMBOL_GPL(nfs_instantiate);
2362
2363/*
2364 * Following a failed create operation, we drop the dentry rather
2365 * than retain a negative dentry. This avoids a problem in the event
2366 * that the operation succeeded on the server, but an error in the
2367 * reply path made it appear to have failed.
2368 */
2369static int nfs_do_create(struct inode *dir, struct dentry *dentry,
2370			 umode_t mode, int open_flags)
2371{
2372	struct iattr attr;
 
2373	int error;
2374
2375	open_flags |= O_CREAT;
2376
2377	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2378			dir->i_sb->s_id, dir->i_ino, dentry);
2379
2380	attr.ia_mode = mode;
2381	attr.ia_valid = ATTR_MODE;
2382	if (open_flags & O_TRUNC) {
2383		attr.ia_size = 0;
2384		attr.ia_valid |= ATTR_SIZE;
2385	}
2386
2387	trace_nfs_create_enter(dir, dentry, open_flags);
2388	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2389	trace_nfs_create_exit(dir, dentry, open_flags, error);
2390	if (error != 0)
2391		goto out_err;
2392	return 0;
2393out_err:
2394	d_drop(dentry);
2395	return error;
2396}
2397
2398int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2399	       struct dentry *dentry, umode_t mode, bool excl)
2400{
2401	return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0);
2402}
2403EXPORT_SYMBOL_GPL(nfs_create);
2404
2405/*
2406 * See comments for nfs_proc_create regarding failed operations.
2407 */
2408int
2409nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2410	  struct dentry *dentry, umode_t mode, dev_t rdev)
2411{
2412	struct iattr attr;
2413	int status;
2414
2415	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2416			dir->i_sb->s_id, dir->i_ino, dentry);
2417
2418	attr.ia_mode = mode;
2419	attr.ia_valid = ATTR_MODE;
2420
2421	trace_nfs_mknod_enter(dir, dentry);
2422	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2423	trace_nfs_mknod_exit(dir, dentry, status);
2424	if (status != 0)
2425		goto out_err;
2426	return 0;
2427out_err:
2428	d_drop(dentry);
2429	return status;
2430}
2431EXPORT_SYMBOL_GPL(nfs_mknod);
2432
2433/*
2434 * See comments for nfs_proc_create regarding failed operations.
2435 */
2436int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2437	      struct dentry *dentry, umode_t mode)
2438{
2439	struct iattr attr;
2440	int error;
2441
2442	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2443			dir->i_sb->s_id, dir->i_ino, dentry);
2444
2445	attr.ia_valid = ATTR_MODE;
2446	attr.ia_mode = mode | S_IFDIR;
2447
2448	trace_nfs_mkdir_enter(dir, dentry);
2449	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2450	trace_nfs_mkdir_exit(dir, dentry, error);
2451	if (error != 0)
2452		goto out_err;
2453	return 0;
2454out_err:
2455	d_drop(dentry);
2456	return error;
2457}
2458EXPORT_SYMBOL_GPL(nfs_mkdir);
2459
2460static void nfs_dentry_handle_enoent(struct dentry *dentry)
2461{
2462	if (simple_positive(dentry))
2463		d_delete(dentry);
2464}
2465
2466static void nfs_dentry_remove_handle_error(struct inode *dir,
2467					   struct dentry *dentry, int error)
2468{
2469	switch (error) {
2470	case -ENOENT:
2471		if (d_really_is_positive(dentry))
2472			d_delete(dentry);
2473		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2474		break;
2475	case 0:
2476		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2477		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2478	}
2479}
2480
2481int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2482{
2483	int error;
2484
2485	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2486			dir->i_sb->s_id, dir->i_ino, dentry);
2487
2488	trace_nfs_rmdir_enter(dir, dentry);
2489	if (d_really_is_positive(dentry)) {
2490		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2491		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2492		/* Ensure the VFS deletes this inode */
2493		switch (error) {
2494		case 0:
2495			clear_nlink(d_inode(dentry));
2496			break;
2497		case -ENOENT:
2498			nfs_dentry_handle_enoent(dentry);
2499		}
2500		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2501	} else
2502		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2503	nfs_dentry_remove_handle_error(dir, dentry, error);
2504	trace_nfs_rmdir_exit(dir, dentry, error);
2505
2506	return error;
2507}
2508EXPORT_SYMBOL_GPL(nfs_rmdir);
2509
2510/*
2511 * Remove a file after making sure there are no pending writes,
2512 * and after checking that the file has only one user. 
2513 *
2514 * We invalidate the attribute cache and free the inode prior to the operation
2515 * to avoid possible races if the server reuses the inode.
2516 */
2517static int nfs_safe_remove(struct dentry *dentry)
2518{
2519	struct inode *dir = d_inode(dentry->d_parent);
2520	struct inode *inode = d_inode(dentry);
2521	int error = -EBUSY;
2522		
2523	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2524
2525	/* If the dentry was sillyrenamed, we simply call d_delete() */
2526	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2527		error = 0;
2528		goto out;
2529	}
2530
2531	trace_nfs_remove_enter(dir, dentry);
2532	if (inode != NULL) {
2533		error = NFS_PROTO(dir)->remove(dir, dentry);
2534		if (error == 0)
2535			nfs_drop_nlink(inode);
2536	} else
2537		error = NFS_PROTO(dir)->remove(dir, dentry);
2538	if (error == -ENOENT)
2539		nfs_dentry_handle_enoent(dentry);
2540	trace_nfs_remove_exit(dir, dentry, error);
2541out:
2542	return error;
2543}
2544
2545/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2546 *  belongs to an active ".nfs..." file and we return -EBUSY.
2547 *
2548 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2549 */
2550int nfs_unlink(struct inode *dir, struct dentry *dentry)
2551{
2552	int error;
 
2553
2554	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2555		dir->i_ino, dentry);
2556
2557	trace_nfs_unlink_enter(dir, dentry);
2558	spin_lock(&dentry->d_lock);
2559	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2560					     &NFS_I(d_inode(dentry))->flags)) {
2561		spin_unlock(&dentry->d_lock);
2562		/* Start asynchronous writeout of the inode */
2563		write_inode_now(d_inode(dentry), 0);
2564		error = nfs_sillyrename(dir, dentry);
2565		goto out;
2566	}
2567	/* We must prevent any concurrent open until the unlink
2568	 * completes.  ->d_revalidate will wait for ->d_fsdata
2569	 * to clear.  We set it here to ensure no lookup succeeds until
2570	 * the unlink is complete on the server.
2571	 */
2572	error = -ETXTBSY;
2573	if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2574	    WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2575		spin_unlock(&dentry->d_lock);
2576		goto out;
2577	}
2578	block_revalidate(dentry);
2579
2580	spin_unlock(&dentry->d_lock);
2581	error = nfs_safe_remove(dentry);
2582	nfs_dentry_remove_handle_error(dir, dentry, error);
2583	unblock_revalidate(dentry);
 
 
2584out:
2585	trace_nfs_unlink_exit(dir, dentry, error);
2586	return error;
2587}
2588EXPORT_SYMBOL_GPL(nfs_unlink);
2589
2590/*
2591 * To create a symbolic link, most file systems instantiate a new inode,
2592 * add a page to it containing the path, then write it out to the disk
2593 * using prepare_write/commit_write.
2594 *
2595 * Unfortunately the NFS client can't create the in-core inode first
2596 * because it needs a file handle to create an in-core inode (see
2597 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2598 * symlink request has completed on the server.
2599 *
2600 * So instead we allocate a raw page, copy the symname into it, then do
2601 * the SYMLINK request with the page as the buffer.  If it succeeds, we
2602 * now have a new file handle and can instantiate an in-core NFS inode
2603 * and move the raw page into its mapping.
2604 */
2605int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2606		struct dentry *dentry, const char *symname)
2607{
2608	struct folio *folio;
2609	char *kaddr;
2610	struct iattr attr;
2611	unsigned int pathlen = strlen(symname);
2612	int error;
2613
2614	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2615		dir->i_ino, dentry, symname);
2616
2617	if (pathlen > PAGE_SIZE)
2618		return -ENAMETOOLONG;
2619
2620	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2621	attr.ia_valid = ATTR_MODE;
2622
2623	folio = folio_alloc(GFP_USER, 0);
2624	if (!folio)
2625		return -ENOMEM;
2626
2627	kaddr = folio_address(folio);
2628	memcpy(kaddr, symname, pathlen);
2629	if (pathlen < PAGE_SIZE)
2630		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2631
2632	trace_nfs_symlink_enter(dir, dentry);
2633	error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr);
2634	trace_nfs_symlink_exit(dir, dentry, error);
2635	if (error != 0) {
2636		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2637			dir->i_sb->s_id, dir->i_ino,
2638			dentry, symname, error);
2639		d_drop(dentry);
2640		folio_put(folio);
2641		return error;
2642	}
2643
2644	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2645
2646	/*
2647	 * No big deal if we can't add this page to the page cache here.
2648	 * READLINK will get the missing page from the server if needed.
2649	 */
2650	if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0,
2651							GFP_KERNEL) == 0) {
2652		folio_mark_uptodate(folio);
2653		folio_unlock(folio);
2654	}
 
 
 
 
 
 
2655
2656	folio_put(folio);
2657	return 0;
2658}
2659EXPORT_SYMBOL_GPL(nfs_symlink);
2660
2661int
2662nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2663{
2664	struct inode *inode = d_inode(old_dentry);
2665	int error;
2666
2667	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2668		old_dentry, dentry);
2669
2670	trace_nfs_link_enter(inode, dir, dentry);
2671	d_drop(dentry);
2672	if (S_ISREG(inode->i_mode))
2673		nfs_sync_inode(inode);
2674	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2675	if (error == 0) {
2676		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2677		ihold(inode);
2678		d_add(dentry, inode);
2679	}
2680	trace_nfs_link_exit(inode, dir, dentry, error);
2681	return error;
2682}
2683EXPORT_SYMBOL_GPL(nfs_link);
2684
2685static void
2686nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2687{
2688	struct dentry *new_dentry = data->new_dentry;
2689
2690	unblock_revalidate(new_dentry);
2691}
2692
2693/*
2694 * RENAME
2695 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2696 * different file handle for the same inode after a rename (e.g. when
2697 * moving to a different directory). A fail-safe method to do so would
2698 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2699 * rename the old file using the sillyrename stuff. This way, the original
2700 * file in old_dir will go away when the last process iput()s the inode.
2701 *
2702 * FIXED.
2703 * 
2704 * It actually works quite well. One needs to have the possibility for
2705 * at least one ".nfs..." file in each directory the file ever gets
2706 * moved or linked to which happens automagically with the new
2707 * implementation that only depends on the dcache stuff instead of
2708 * using the inode layer
2709 *
2710 * Unfortunately, things are a little more complicated than indicated
2711 * above. For a cross-directory move, we want to make sure we can get
2712 * rid of the old inode after the operation.  This means there must be
2713 * no pending writes (if it's a file), and the use count must be 1.
2714 * If these conditions are met, we can drop the dentries before doing
2715 * the rename.
2716 */
2717int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2718	       struct dentry *old_dentry, struct inode *new_dir,
2719	       struct dentry *new_dentry, unsigned int flags)
2720{
2721	struct inode *old_inode = d_inode(old_dentry);
2722	struct inode *new_inode = d_inode(new_dentry);
2723	struct dentry *dentry = NULL;
2724	struct rpc_task *task;
2725	bool must_unblock = false;
2726	int error = -EBUSY;
2727
2728	if (flags)
2729		return -EINVAL;
2730
2731	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2732		 old_dentry, new_dentry,
2733		 d_count(new_dentry));
2734
2735	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2736	/*
2737	 * For non-directories, check whether the target is busy and if so,
2738	 * make a copy of the dentry and then do a silly-rename. If the
2739	 * silly-rename succeeds, the copied dentry is hashed and becomes
2740	 * the new target.
2741	 */
2742	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2743		/* We must prevent any concurrent open until the unlink
2744		 * completes.  ->d_revalidate will wait for ->d_fsdata
2745		 * to clear.  We set it here to ensure no lookup succeeds until
2746		 * the unlink is complete on the server.
2747		 */
2748		error = -ETXTBSY;
2749		if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2750		    WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2751			goto out;
2752
2753		spin_lock(&new_dentry->d_lock);
2754		if (d_count(new_dentry) > 2) {
2755			int err;
2756
2757			spin_unlock(&new_dentry->d_lock);
2758
2759			/* copy the target dentry's name */
2760			dentry = d_alloc(new_dentry->d_parent,
2761					 &new_dentry->d_name);
2762			if (!dentry)
2763				goto out;
2764
2765			/* silly-rename the existing target ... */
2766			err = nfs_sillyrename(new_dir, new_dentry);
2767			if (err)
2768				goto out;
2769
2770			new_dentry = dentry;
 
2771			new_inode = NULL;
2772		} else {
2773			block_revalidate(new_dentry);
2774			must_unblock = true;
2775			spin_unlock(&new_dentry->d_lock);
2776		}
2777
2778	}
2779
2780	if (S_ISREG(old_inode->i_mode))
2781		nfs_sync_inode(old_inode);
2782	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2783				must_unblock ? nfs_unblock_rename : NULL);
2784	if (IS_ERR(task)) {
2785		if (must_unblock)
2786			unblock_revalidate(new_dentry);
2787		error = PTR_ERR(task);
2788		goto out;
2789	}
2790
2791	error = rpc_wait_for_completion_task(task);
2792	if (error != 0) {
2793		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2794		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2795		smp_wmb();
2796	} else
2797		error = task->tk_status;
2798	rpc_put_task(task);
2799	/* Ensure the inode attributes are revalidated */
2800	if (error == 0) {
2801		spin_lock(&old_inode->i_lock);
2802		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2803		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2804							 NFS_INO_INVALID_CTIME |
2805							 NFS_INO_REVAL_FORCED);
2806		spin_unlock(&old_inode->i_lock);
2807	}
2808out:
 
 
2809	trace_nfs_rename_exit(old_dir, old_dentry,
2810			new_dir, new_dentry, error);
2811	if (!error) {
2812		if (new_inode != NULL)
2813			nfs_drop_nlink(new_inode);
2814		/*
2815		 * The d_move() should be here instead of in an async RPC completion
2816		 * handler because we need the proper locks to move the dentry.  If
2817		 * we're interrupted by a signal, the async RPC completion handler
2818		 * should mark the directories for revalidation.
2819		 */
2820		d_move(old_dentry, new_dentry);
2821		nfs_set_verifier(old_dentry,
2822					nfs_save_change_attribute(new_dir));
2823	} else if (error == -ENOENT)
2824		nfs_dentry_handle_enoent(old_dentry);
2825
2826	/* new dentry created? */
2827	if (dentry)
2828		dput(dentry);
2829	return error;
2830}
2831EXPORT_SYMBOL_GPL(nfs_rename);
2832
2833static DEFINE_SPINLOCK(nfs_access_lru_lock);
2834static LIST_HEAD(nfs_access_lru_list);
2835static atomic_long_t nfs_access_nr_entries;
2836
2837static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2838module_param(nfs_access_max_cachesize, ulong, 0644);
2839MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2840
2841static void nfs_access_free_entry(struct nfs_access_entry *entry)
2842{
2843	put_group_info(entry->group_info);
2844	kfree_rcu(entry, rcu_head);
2845	smp_mb__before_atomic();
2846	atomic_long_dec(&nfs_access_nr_entries);
2847	smp_mb__after_atomic();
2848}
2849
2850static void nfs_access_free_list(struct list_head *head)
2851{
2852	struct nfs_access_entry *cache;
2853
2854	while (!list_empty(head)) {
2855		cache = list_entry(head->next, struct nfs_access_entry, lru);
2856		list_del(&cache->lru);
2857		nfs_access_free_entry(cache);
2858	}
2859}
2860
2861static unsigned long
2862nfs_do_access_cache_scan(unsigned int nr_to_scan)
2863{
2864	LIST_HEAD(head);
2865	struct nfs_inode *nfsi, *next;
2866	struct nfs_access_entry *cache;
2867	long freed = 0;
2868
2869	spin_lock(&nfs_access_lru_lock);
2870	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2871		struct inode *inode;
2872
2873		if (nr_to_scan-- == 0)
2874			break;
2875		inode = &nfsi->vfs_inode;
2876		spin_lock(&inode->i_lock);
2877		if (list_empty(&nfsi->access_cache_entry_lru))
2878			goto remove_lru_entry;
2879		cache = list_entry(nfsi->access_cache_entry_lru.next,
2880				struct nfs_access_entry, lru);
2881		list_move(&cache->lru, &head);
2882		rb_erase(&cache->rb_node, &nfsi->access_cache);
2883		freed++;
2884		if (!list_empty(&nfsi->access_cache_entry_lru))
2885			list_move_tail(&nfsi->access_cache_inode_lru,
2886					&nfs_access_lru_list);
2887		else {
2888remove_lru_entry:
2889			list_del_init(&nfsi->access_cache_inode_lru);
2890			smp_mb__before_atomic();
2891			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2892			smp_mb__after_atomic();
2893		}
2894		spin_unlock(&inode->i_lock);
2895	}
2896	spin_unlock(&nfs_access_lru_lock);
2897	nfs_access_free_list(&head);
2898	return freed;
2899}
2900
2901unsigned long
2902nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2903{
2904	int nr_to_scan = sc->nr_to_scan;
2905	gfp_t gfp_mask = sc->gfp_mask;
2906
2907	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2908		return SHRINK_STOP;
2909	return nfs_do_access_cache_scan(nr_to_scan);
2910}
2911
2912
2913unsigned long
2914nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2915{
2916	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2917}
2918
2919static void
2920nfs_access_cache_enforce_limit(void)
2921{
2922	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2923	unsigned long diff;
2924	unsigned int nr_to_scan;
2925
2926	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2927		return;
2928	nr_to_scan = 100;
2929	diff = nr_entries - nfs_access_max_cachesize;
2930	if (diff < nr_to_scan)
2931		nr_to_scan = diff;
2932	nfs_do_access_cache_scan(nr_to_scan);
2933}
2934
2935static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2936{
2937	struct rb_root *root_node = &nfsi->access_cache;
2938	struct rb_node *n;
2939	struct nfs_access_entry *entry;
2940
2941	/* Unhook entries from the cache */
2942	while ((n = rb_first(root_node)) != NULL) {
2943		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2944		rb_erase(n, root_node);
2945		list_move(&entry->lru, head);
2946	}
2947	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2948}
2949
2950void nfs_access_zap_cache(struct inode *inode)
2951{
2952	LIST_HEAD(head);
2953
2954	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2955		return;
2956	/* Remove from global LRU init */
2957	spin_lock(&nfs_access_lru_lock);
2958	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2959		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2960
2961	spin_lock(&inode->i_lock);
2962	__nfs_access_zap_cache(NFS_I(inode), &head);
2963	spin_unlock(&inode->i_lock);
2964	spin_unlock(&nfs_access_lru_lock);
2965	nfs_access_free_list(&head);
2966}
2967EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2968
2969static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2970{
2971	struct group_info *ga, *gb;
2972	int g;
2973
2974	if (uid_lt(a->fsuid, b->fsuid))
2975		return -1;
2976	if (uid_gt(a->fsuid, b->fsuid))
2977		return 1;
2978
2979	if (gid_lt(a->fsgid, b->fsgid))
2980		return -1;
2981	if (gid_gt(a->fsgid, b->fsgid))
2982		return 1;
2983
2984	ga = a->group_info;
2985	gb = b->group_info;
2986	if (ga == gb)
2987		return 0;
2988	if (ga == NULL)
2989		return -1;
2990	if (gb == NULL)
2991		return 1;
2992	if (ga->ngroups < gb->ngroups)
2993		return -1;
2994	if (ga->ngroups > gb->ngroups)
2995		return 1;
2996
2997	for (g = 0; g < ga->ngroups; g++) {
2998		if (gid_lt(ga->gid[g], gb->gid[g]))
2999			return -1;
3000		if (gid_gt(ga->gid[g], gb->gid[g]))
3001			return 1;
3002	}
3003	return 0;
3004}
3005
3006static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
3007{
3008	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
 
3009
3010	while (n != NULL) {
3011		struct nfs_access_entry *entry =
3012			rb_entry(n, struct nfs_access_entry, rb_node);
3013		int cmp = access_cmp(cred, entry);
3014
3015		if (cmp < 0)
3016			n = n->rb_left;
3017		else if (cmp > 0)
3018			n = n->rb_right;
3019		else
3020			return entry;
3021	}
3022	return NULL;
3023}
3024
3025static u64 nfs_access_login_time(const struct task_struct *task,
3026				 const struct cred *cred)
3027{
3028	const struct task_struct *parent;
3029	const struct cred *pcred;
3030	u64 ret;
3031
3032	rcu_read_lock();
3033	for (;;) {
3034		parent = rcu_dereference(task->real_parent);
3035		pcred = __task_cred(parent);
3036		if (parent == task || cred_fscmp(pcred, cred) != 0)
3037			break;
3038		task = parent;
3039	}
3040	ret = task->start_time;
3041	rcu_read_unlock();
3042	return ret;
3043}
3044
3045static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
3046{
3047	struct nfs_inode *nfsi = NFS_I(inode);
3048	u64 login_time = nfs_access_login_time(current, cred);
3049	struct nfs_access_entry *cache;
3050	bool retry = true;
3051	int err;
3052
3053	spin_lock(&inode->i_lock);
3054	for(;;) {
3055		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3056			goto out_zap;
3057		cache = nfs_access_search_rbtree(inode, cred);
3058		err = -ENOENT;
3059		if (cache == NULL)
3060			goto out;
3061		/* Found an entry, is our attribute cache valid? */
3062		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3063			break;
3064		if (!retry)
3065			break;
3066		err = -ECHILD;
3067		if (!may_block)
3068			goto out;
 
 
3069		spin_unlock(&inode->i_lock);
3070		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3071		if (err)
3072			return err;
3073		spin_lock(&inode->i_lock);
3074		retry = false;
3075	}
3076	err = -ENOENT;
3077	if ((s64)(login_time - cache->timestamp) > 0)
3078		goto out;
3079	*mask = cache->mask;
3080	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3081	err = 0;
3082out:
3083	spin_unlock(&inode->i_lock);
3084	return err;
3085out_zap:
3086	spin_unlock(&inode->i_lock);
3087	nfs_access_zap_cache(inode);
3088	return -ENOENT;
3089}
3090
3091static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3092{
3093	/* Only check the most recently returned cache entry,
3094	 * but do it without locking.
3095	 */
3096	struct nfs_inode *nfsi = NFS_I(inode);
3097	u64 login_time = nfs_access_login_time(current, cred);
3098	struct nfs_access_entry *cache;
3099	int err = -ECHILD;
3100	struct list_head *lh;
3101
3102	rcu_read_lock();
3103	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3104		goto out;
3105	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3106	cache = list_entry(lh, struct nfs_access_entry, lru);
3107	if (lh == &nfsi->access_cache_entry_lru ||
3108	    access_cmp(cred, cache) != 0)
3109		cache = NULL;
3110	if (cache == NULL)
3111		goto out;
3112	if ((s64)(login_time - cache->timestamp) > 0)
3113		goto out;
3114	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3115		goto out;
3116	*mask = cache->mask;
 
3117	err = 0;
3118out:
3119	rcu_read_unlock();
3120	return err;
3121}
3122
3123int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3124			  u32 *mask, bool may_block)
3125{
3126	int status;
3127
3128	status = nfs_access_get_cached_rcu(inode, cred, mask);
3129	if (status != 0)
3130		status = nfs_access_get_cached_locked(inode, cred, mask,
3131		    may_block);
3132
3133	return status;
3134}
3135EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3136
3137static void nfs_access_add_rbtree(struct inode *inode,
3138				  struct nfs_access_entry *set,
3139				  const struct cred *cred)
3140{
3141	struct nfs_inode *nfsi = NFS_I(inode);
3142	struct rb_root *root_node = &nfsi->access_cache;
3143	struct rb_node **p = &root_node->rb_node;
3144	struct rb_node *parent = NULL;
3145	struct nfs_access_entry *entry;
3146	int cmp;
3147
3148	spin_lock(&inode->i_lock);
3149	while (*p != NULL) {
3150		parent = *p;
3151		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3152		cmp = access_cmp(cred, entry);
3153
3154		if (cmp < 0)
3155			p = &parent->rb_left;
3156		else if (cmp > 0)
3157			p = &parent->rb_right;
3158		else
3159			goto found;
3160	}
3161	rb_link_node(&set->rb_node, parent, p);
3162	rb_insert_color(&set->rb_node, root_node);
3163	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3164	spin_unlock(&inode->i_lock);
3165	return;
3166found:
3167	rb_replace_node(parent, &set->rb_node, root_node);
3168	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3169	list_del(&entry->lru);
3170	spin_unlock(&inode->i_lock);
3171	nfs_access_free_entry(entry);
3172}
3173
3174void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3175			  const struct cred *cred)
3176{
3177	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3178	if (cache == NULL)
3179		return;
3180	RB_CLEAR_NODE(&cache->rb_node);
3181	cache->fsuid = cred->fsuid;
3182	cache->fsgid = cred->fsgid;
3183	cache->group_info = get_group_info(cred->group_info);
3184	cache->mask = set->mask;
3185	cache->timestamp = ktime_get_ns();
3186
3187	/* The above field assignments must be visible
3188	 * before this item appears on the lru.  We cannot easily
3189	 * use rcu_assign_pointer, so just force the memory barrier.
3190	 */
3191	smp_wmb();
3192	nfs_access_add_rbtree(inode, cache, cred);
3193
3194	/* Update accounting */
3195	smp_mb__before_atomic();
3196	atomic_long_inc(&nfs_access_nr_entries);
3197	smp_mb__after_atomic();
3198
3199	/* Add inode to global LRU list */
3200	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3201		spin_lock(&nfs_access_lru_lock);
3202		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3203			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3204					&nfs_access_lru_list);
3205		spin_unlock(&nfs_access_lru_lock);
3206	}
3207	nfs_access_cache_enforce_limit();
3208}
3209EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3210
3211#define NFS_MAY_READ (NFS_ACCESS_READ)
3212#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3213		NFS_ACCESS_EXTEND | \
3214		NFS_ACCESS_DELETE)
3215#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3216		NFS_ACCESS_EXTEND)
3217#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3218#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3219#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3220static int
3221nfs_access_calc_mask(u32 access_result, umode_t umode)
3222{
3223	int mask = 0;
3224
3225	if (access_result & NFS_MAY_READ)
3226		mask |= MAY_READ;
3227	if (S_ISDIR(umode)) {
3228		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3229			mask |= MAY_WRITE;
3230		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3231			mask |= MAY_EXEC;
3232	} else if (S_ISREG(umode)) {
3233		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3234			mask |= MAY_WRITE;
3235		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3236			mask |= MAY_EXEC;
3237	} else if (access_result & NFS_MAY_WRITE)
3238			mask |= MAY_WRITE;
3239	return mask;
3240}
3241
3242void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3243{
3244	entry->mask = access_result;
3245}
3246EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3247
3248static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3249{
3250	struct nfs_access_entry cache;
3251	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3252	int cache_mask = -1;
3253	int status;
3254
3255	trace_nfs_access_enter(inode);
3256
3257	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
 
 
3258	if (status == 0)
3259		goto out_cached;
3260
3261	status = -ECHILD;
3262	if (!may_block)
3263		goto out;
3264
3265	/*
3266	 * Determine which access bits we want to ask for...
3267	 */
3268	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3269		     nfs_access_xattr_mask(NFS_SERVER(inode));
3270	if (S_ISDIR(inode->i_mode))
3271		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3272	else
3273		cache.mask |= NFS_ACCESS_EXECUTE;
3274	status = NFS_PROTO(inode)->access(inode, &cache, cred);
 
3275	if (status != 0) {
3276		if (status == -ESTALE) {
 
3277			if (!S_ISDIR(inode->i_mode))
3278				nfs_set_inode_stale(inode);
3279			else
3280				nfs_zap_caches(inode);
3281		}
3282		goto out;
3283	}
3284	nfs_access_add_cache(inode, &cache, cred);
3285out_cached:
3286	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3287	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3288		status = -EACCES;
3289out:
3290	trace_nfs_access_exit(inode, mask, cache_mask, status);
3291	return status;
3292}
3293
3294static int nfs_open_permission_mask(int openflags)
3295{
3296	int mask = 0;
3297
3298	if (openflags & __FMODE_EXEC) {
3299		/* ONLY check exec rights */
3300		mask = MAY_EXEC;
3301	} else {
3302		if ((openflags & O_ACCMODE) != O_WRONLY)
3303			mask |= MAY_READ;
3304		if ((openflags & O_ACCMODE) != O_RDONLY)
3305			mask |= MAY_WRITE;
3306	}
3307
3308	return mask;
3309}
3310
3311int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3312{
3313	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3314}
3315EXPORT_SYMBOL_GPL(nfs_may_open);
3316
3317static int nfs_execute_ok(struct inode *inode, int mask)
3318{
3319	struct nfs_server *server = NFS_SERVER(inode);
3320	int ret = 0;
3321
3322	if (S_ISDIR(inode->i_mode))
3323		return 0;
3324	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3325		if (mask & MAY_NOT_BLOCK)
3326			return -ECHILD;
3327		ret = __nfs_revalidate_inode(server, inode);
3328	}
3329	if (ret == 0 && !execute_ok(inode))
3330		ret = -EACCES;
3331	return ret;
3332}
3333
3334int nfs_permission(struct mnt_idmap *idmap,
3335		   struct inode *inode,
3336		   int mask)
3337{
3338	const struct cred *cred = current_cred();
3339	int res = 0;
3340
3341	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3342
3343	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3344		goto out;
3345	/* Is this sys_access() ? */
3346	if (mask & (MAY_ACCESS | MAY_CHDIR))
3347		goto force_lookup;
3348
3349	switch (inode->i_mode & S_IFMT) {
3350		case S_IFLNK:
3351			goto out;
3352		case S_IFREG:
3353			if ((mask & MAY_OPEN) &&
3354			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3355				return 0;
3356			break;
3357		case S_IFDIR:
3358			/*
3359			 * Optimize away all write operations, since the server
3360			 * will check permissions when we perform the op.
3361			 */
3362			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3363				goto out;
3364	}
3365
3366force_lookup:
3367	if (!NFS_PROTO(inode)->access)
3368		goto out_notsup;
3369
3370	res = nfs_do_access(inode, cred, mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3371out:
3372	if (!res && (mask & MAY_EXEC))
3373		res = nfs_execute_ok(inode, mask);
3374
3375	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3376		inode->i_sb->s_id, inode->i_ino, mask, res);
3377	return res;
3378out_notsup:
3379	if (mask & MAY_NOT_BLOCK)
3380		return -ECHILD;
3381
3382	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3383						  NFS_INO_INVALID_OTHER);
3384	if (res == 0)
3385		res = generic_permission(&nop_mnt_idmap, inode, mask);
3386	goto out;
3387}
3388EXPORT_SYMBOL_GPL(nfs_permission);