Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * STMicroelectronics STM32 SPI Controller driver (master mode only)
   3 *
   4 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   5 * Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
   6 *
   7 * License terms: GPL V2.0.
   8 *
   9 * spi_stm32 driver is free software; you can redistribute it and/or modify it
  10 * under the terms of the GNU General Public License version 2 as published by
  11 * the Free Software Foundation.
  12 *
  13 * spi_stm32 driver is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
  16 * details.
  17 *
  18 * You should have received a copy of the GNU General Public License along with
  19 * spi_stm32 driver. If not, see <http://www.gnu.org/licenses/>.
  20 */
  21#include <linux/debugfs.h>
  22#include <linux/clk.h>
  23#include <linux/delay.h>
  24#include <linux/dmaengine.h>
  25#include <linux/gpio.h>
  26#include <linux/interrupt.h>
  27#include <linux/iopoll.h>
  28#include <linux/module.h>
  29#include <linux/of_platform.h>
 
 
  30#include <linux/pm_runtime.h>
  31#include <linux/reset.h>
  32#include <linux/spi/spi.h>
  33
  34#define DRIVER_NAME "spi_stm32"
  35
  36/* STM32 SPI registers */
  37#define STM32_SPI_CR1		0x00
  38#define STM32_SPI_CR2		0x04
  39#define STM32_SPI_CFG1		0x08
  40#define STM32_SPI_CFG2		0x0C
  41#define STM32_SPI_IER		0x10
  42#define STM32_SPI_SR		0x14
  43#define STM32_SPI_IFCR		0x18
  44#define STM32_SPI_TXDR		0x20
  45#define STM32_SPI_RXDR		0x30
  46#define STM32_SPI_I2SCFGR	0x50
  47
  48/* STM32_SPI_CR1 bit fields */
  49#define SPI_CR1_SPE		BIT(0)
  50#define SPI_CR1_MASRX		BIT(8)
  51#define SPI_CR1_CSTART		BIT(9)
  52#define SPI_CR1_CSUSP		BIT(10)
  53#define SPI_CR1_HDDIR		BIT(11)
  54#define SPI_CR1_SSI		BIT(12)
  55
  56/* STM32_SPI_CR2 bit fields */
  57#define SPI_CR2_TSIZE_SHIFT	0
  58#define SPI_CR2_TSIZE		GENMASK(15, 0)
  59
  60/* STM32_SPI_CFG1 bit fields */
  61#define SPI_CFG1_DSIZE_SHIFT	0
  62#define SPI_CFG1_DSIZE		GENMASK(4, 0)
  63#define SPI_CFG1_FTHLV_SHIFT	5
  64#define SPI_CFG1_FTHLV		GENMASK(8, 5)
  65#define SPI_CFG1_RXDMAEN	BIT(14)
  66#define SPI_CFG1_TXDMAEN	BIT(15)
  67#define SPI_CFG1_MBR_SHIFT	28
  68#define SPI_CFG1_MBR		GENMASK(30, 28)
  69#define SPI_CFG1_MBR_MIN	0
  70#define SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
  71
  72/* STM32_SPI_CFG2 bit fields */
  73#define SPI_CFG2_MIDI_SHIFT	4
  74#define SPI_CFG2_MIDI		GENMASK(7, 4)
  75#define SPI_CFG2_COMM_SHIFT	17
  76#define SPI_CFG2_COMM		GENMASK(18, 17)
  77#define SPI_CFG2_SP_SHIFT	19
  78#define SPI_CFG2_SP		GENMASK(21, 19)
  79#define SPI_CFG2_MASTER		BIT(22)
  80#define SPI_CFG2_LSBFRST	BIT(23)
  81#define SPI_CFG2_CPHA		BIT(24)
  82#define SPI_CFG2_CPOL		BIT(25)
  83#define SPI_CFG2_SSM		BIT(26)
  84#define SPI_CFG2_AFCNTR		BIT(31)
  85
  86/* STM32_SPI_IER bit fields */
  87#define SPI_IER_RXPIE		BIT(0)
  88#define SPI_IER_TXPIE		BIT(1)
  89#define SPI_IER_DXPIE		BIT(2)
  90#define SPI_IER_EOTIE		BIT(3)
  91#define SPI_IER_TXTFIE		BIT(4)
  92#define SPI_IER_OVRIE		BIT(6)
  93#define SPI_IER_MODFIE		BIT(9)
  94#define SPI_IER_ALL		GENMASK(10, 0)
  95
  96/* STM32_SPI_SR bit fields */
  97#define SPI_SR_RXP		BIT(0)
  98#define SPI_SR_TXP		BIT(1)
  99#define SPI_SR_EOT		BIT(3)
 100#define SPI_SR_OVR		BIT(6)
 101#define SPI_SR_MODF		BIT(9)
 102#define SPI_SR_SUSP		BIT(11)
 103#define SPI_SR_RXPLVL_SHIFT	13
 104#define SPI_SR_RXPLVL		GENMASK(14, 13)
 105#define SPI_SR_RXWNE		BIT(15)
 106
 107/* STM32_SPI_IFCR bit fields */
 108#define SPI_IFCR_ALL		GENMASK(11, 3)
 109
 110/* STM32_SPI_I2SCFGR bit fields */
 111#define SPI_I2SCFGR_I2SMOD	BIT(0)
 112
 113/* SPI Master Baud Rate min/max divisor */
 114#define SPI_MBR_DIV_MIN		(2 << SPI_CFG1_MBR_MIN)
 115#define SPI_MBR_DIV_MAX		(2 << SPI_CFG1_MBR_MAX)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116
 117/* SPI Communication mode */
 118#define SPI_FULL_DUPLEX		0
 119#define SPI_SIMPLEX_TX		1
 120#define SPI_SIMPLEX_RX		2
 121#define SPI_HALF_DUPLEX		3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122
 123#define SPI_1HZ_NS		1000000000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124
 125/**
 126 * struct stm32_spi - private data of the SPI controller
 127 * @dev: driver model representation of the controller
 128 * @master: controller master interface
 
 129 * @base: virtual memory area
 130 * @clk: hw kernel clock feeding the SPI clock generator
 131 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
 132 * @rst: SPI controller reset line
 133 * @lock: prevent I/O concurrent access
 134 * @irq: SPI controller interrupt line
 135 * @fifo_size: size of the embedded fifo in bytes
 136 * @cur_midi: master inter-data idleness in ns
 
 
 137 * @cur_speed: speed configured in Hz
 
 138 * @cur_bpw: number of bits in a single SPI data frame
 139 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
 140 * @cur_comm: SPI communication mode
 141 * @cur_xferlen: current transfer length in bytes
 142 * @cur_usedma: boolean to know if dma is used in current transfer
 143 * @tx_buf: data to be written, or NULL
 144 * @rx_buf: data to be read, or NULL
 145 * @tx_len: number of data to be written in bytes
 146 * @rx_len: number of data to be read in bytes
 147 * @dma_tx: dma channel for TX transfer
 148 * @dma_rx: dma channel for RX transfer
 149 * @phys_addr: SPI registers physical base address
 
 150 */
 151struct stm32_spi {
 152	struct device *dev;
 153	struct spi_master *master;
 
 154	void __iomem *base;
 155	struct clk *clk;
 156	u32 clk_rate;
 157	struct reset_control *rst;
 158	spinlock_t lock; /* prevent I/O concurrent access */
 159	int irq;
 160	unsigned int fifo_size;
 
 
 
 
 161
 162	unsigned int cur_midi;
 163	unsigned int cur_speed;
 
 164	unsigned int cur_bpw;
 165	unsigned int cur_fthlv;
 166	unsigned int cur_comm;
 167	unsigned int cur_xferlen;
 168	bool cur_usedma;
 169
 170	const void *tx_buf;
 171	void *rx_buf;
 172	int tx_len;
 173	int rx_len;
 174	struct dma_chan *dma_tx;
 175	struct dma_chan *dma_rx;
 176	dma_addr_t phys_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177};
 178
 179static inline void stm32_spi_set_bits(struct stm32_spi *spi,
 180				      u32 offset, u32 bits)
 181{
 182	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
 183		       spi->base + offset);
 184}
 185
 186static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
 187				      u32 offset, u32 bits)
 188{
 189	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
 190		       spi->base + offset);
 191}
 192
 193/**
 194 * stm32_spi_get_fifo_size - Return fifo size
 195 * @spi: pointer to the spi controller data structure
 196 */
 197static int stm32_spi_get_fifo_size(struct stm32_spi *spi)
 198{
 199	unsigned long flags;
 200	u32 count = 0;
 201
 202	spin_lock_irqsave(&spi->lock, flags);
 203
 204	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);
 205
 206	while (readl_relaxed(spi->base + STM32_SPI_SR) & SPI_SR_TXP)
 207		writeb_relaxed(++count, spi->base + STM32_SPI_TXDR);
 208
 209	stm32_spi_clr_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);
 210
 211	spin_unlock_irqrestore(&spi->lock, flags);
 212
 213	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
 214
 215	return count;
 216}
 217
 218/**
 219 * stm32_spi_get_bpw_mask - Return bits per word mask
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220 * @spi: pointer to the spi controller data structure
 221 */
 222static int stm32_spi_get_bpw_mask(struct stm32_spi *spi)
 223{
 224	unsigned long flags;
 225	u32 cfg1, max_bpw;
 226
 227	spin_lock_irqsave(&spi->lock, flags);
 228
 229	/*
 230	 * The most significant bit at DSIZE bit field is reserved when the
 231	 * maximum data size of periperal instances is limited to 16-bit
 232	 */
 233	stm32_spi_set_bits(spi, STM32_SPI_CFG1, SPI_CFG1_DSIZE);
 234
 235	cfg1 = readl_relaxed(spi->base + STM32_SPI_CFG1);
 236	max_bpw = (cfg1 & SPI_CFG1_DSIZE) >> SPI_CFG1_DSIZE_SHIFT;
 237	max_bpw += 1;
 238
 239	spin_unlock_irqrestore(&spi->lock, flags);
 240
 241	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
 242
 243	return SPI_BPW_RANGE_MASK(4, max_bpw);
 244}
 245
 246/**
 247 * stm32_spi_prepare_mbr - Determine SPI_CFG1.MBR value
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248 * @spi: pointer to the spi controller data structure
 249 * @speed_hz: requested speed
 
 
 250 *
 251 * Return SPI_CFG1.MBR value in case of success or -EINVAL
 252 */
 253static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz)
 
 254{
 255	u32 div, mbrdiv;
 256
 257	div = DIV_ROUND_UP(spi->clk_rate, speed_hz);
 
 258
 259	/*
 260	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
 261	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
 262	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
 263	 * no need to check it there.
 264	 * However, we need to ensure the following calculations.
 265	 */
 266	if (div < SPI_MBR_DIV_MIN ||
 267	    div > SPI_MBR_DIV_MAX)
 268		return -EINVAL;
 269
 270	/* Determine the first power of 2 greater than or equal to div */
 271	if (div & (div - 1))
 272		mbrdiv = fls(div);
 273	else
 274		mbrdiv = fls(div) - 1;
 275
 276	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
 277
 
 
 278	return mbrdiv - 1;
 279}
 280
 281/**
 282 * stm32_spi_prepare_fthlv - Determine FIFO threshold level
 283 * @spi: pointer to the spi controller data structure
 
 284 */
 285static u32 stm32_spi_prepare_fthlv(struct stm32_spi *spi)
 286{
 287	u32 fthlv, half_fifo;
 288
 289	/* data packet should not exceed 1/2 of fifo space */
 290	half_fifo = (spi->fifo_size / 2);
 291
 292	if (spi->cur_bpw <= 8)
 293		fthlv = half_fifo;
 294	else if (spi->cur_bpw <= 16)
 295		fthlv = half_fifo / 2;
 296	else
 297		fthlv = half_fifo / 4;
 298
 299	/* align packet size with data registers access */
 300	if (spi->cur_bpw > 8)
 301		fthlv -= (fthlv % 2); /* multiple of 2 */
 302	else
 303		fthlv -= (fthlv % 4); /* multiple of 4 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 304
 305	return fthlv;
 306}
 307
 308/**
 309 * stm32_spi_write_txfifo - Write bytes in Transmit Data Register
 310 * @spi: pointer to the spi controller data structure
 311 *
 312 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 313 * tx_buf end.
 314 */
 315static void stm32_spi_write_txfifo(struct stm32_spi *spi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 316{
 317	while ((spi->tx_len > 0) &&
 318	       (readl_relaxed(spi->base + STM32_SPI_SR) & SPI_SR_TXP)) {
 
 319		u32 offs = spi->cur_xferlen - spi->tx_len;
 320
 321		if (spi->tx_len >= sizeof(u32)) {
 322			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
 323
 324			writel_relaxed(*tx_buf32, spi->base + STM32_SPI_TXDR);
 325			spi->tx_len -= sizeof(u32);
 326		} else if (spi->tx_len >= sizeof(u16)) {
 327			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 328
 329			writew_relaxed(*tx_buf16, spi->base + STM32_SPI_TXDR);
 330			spi->tx_len -= sizeof(u16);
 331		} else {
 332			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 333
 334			writeb_relaxed(*tx_buf8, spi->base + STM32_SPI_TXDR);
 335			spi->tx_len -= sizeof(u8);
 336		}
 337	}
 338
 339	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 340}
 341
 342/**
 343 * stm32_spi_read_rxfifo - Read bytes in Receive Data Register
 344 * @spi: pointer to the spi controller data structure
 345 *
 346 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 347 * rx_buf end.
 348 */
 349static void stm32_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
 350{
 351	u32 sr = readl_relaxed(spi->base + STM32_SPI_SR);
 352	u32 rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 353
 354	while ((spi->rx_len > 0) &&
 355	       ((sr & SPI_SR_RXP) ||
 356		(flush && ((sr & SPI_SR_RXWNE) || (rxplvl > 0))))) {
 
 357		u32 offs = spi->cur_xferlen - spi->rx_len;
 358
 359		if ((spi->rx_len >= sizeof(u32)) ||
 360		    (flush && (sr & SPI_SR_RXWNE))) {
 361			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
 362
 363			*rx_buf32 = readl_relaxed(spi->base + STM32_SPI_RXDR);
 364			spi->rx_len -= sizeof(u32);
 365		} else if ((spi->rx_len >= sizeof(u16)) ||
 366			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
 
 367			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 368
 369			*rx_buf16 = readw_relaxed(spi->base + STM32_SPI_RXDR);
 370			spi->rx_len -= sizeof(u16);
 371		} else {
 372			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 373
 374			*rx_buf8 = readb_relaxed(spi->base + STM32_SPI_RXDR);
 375			spi->rx_len -= sizeof(u8);
 376		}
 377
 378		sr = readl_relaxed(spi->base + STM32_SPI_SR);
 379		rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
 380	}
 381
 382	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
 383		flush ? "(flush)" : "", spi->rx_len);
 384}
 385
 386/**
 387 * stm32_spi_enable - Enable SPI controller
 388 * @spi: pointer to the spi controller data structure
 389 *
 390 * SPI data transfer is enabled but spi_ker_ck is idle.
 391 * SPI_CFG1 and SPI_CFG2 are now write protected.
 392 */
 393static void stm32_spi_enable(struct stm32_spi *spi)
 394{
 395	dev_dbg(spi->dev, "enable controller\n");
 396
 397	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);
 
 398}
 399
 400/**
 401 * stm32_spi_disable - Disable SPI controller
 402 * @spi: pointer to the spi controller data structure
 403 *
 404 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
 405 * loss, use stm32_spi_read_rxfifo(flush) to read the remaining bytes in
 406 * RX-Fifo.
 407 */
 408static void stm32_spi_disable(struct stm32_spi *spi)
 409{
 410	unsigned long flags;
 411	u32 cr1, sr;
 412
 413	dev_dbg(spi->dev, "disable controller\n");
 414
 415	spin_lock_irqsave(&spi->lock, flags);
 416
 417	cr1 = readl_relaxed(spi->base + STM32_SPI_CR1);
 418
 419	if (!(cr1 & SPI_CR1_SPE)) {
 420		spin_unlock_irqrestore(&spi->lock, flags);
 421		return;
 422	}
 423
 424	/* Wait on EOT or suspend the flow */
 425	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32_SPI_SR,
 426					      sr, !(sr & SPI_SR_EOT),
 
 
 
 
 
 427					      10, 100000) < 0) {
 428		if (cr1 & SPI_CR1_CSTART) {
 429			writel_relaxed(cr1 | SPI_CR1_CSUSP,
 430				       spi->base + STM32_SPI_CR1);
 431			if (readl_relaxed_poll_timeout_atomic(
 432						spi->base + STM32_SPI_SR,
 433						sr, !(sr & SPI_SR_SUSP),
 434						10, 100000) < 0)
 435				dev_warn(spi->dev,
 436					 "Suspend request timeout\n");
 437		}
 438	}
 439
 440	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
 441		stm32_spi_read_rxfifo(spi, true);
 
 
 442
 443	if (spi->cur_usedma && spi->tx_buf)
 444		dmaengine_terminate_all(spi->dma_tx);
 445	if (spi->cur_usedma && spi->rx_buf)
 446		dmaengine_terminate_all(spi->dma_rx);
 
 
 
 
 
 
 
 447
 448	stm32_spi_clr_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);
 
 
 
 
 
 
 
 
 
 449
 450	stm32_spi_clr_bits(spi, STM32_SPI_CFG1, SPI_CFG1_TXDMAEN |
 451						SPI_CFG1_RXDMAEN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452
 453	/* Disable interrupts and clear status flags */
 454	writel_relaxed(0, spi->base + STM32_SPI_IER);
 455	writel_relaxed(SPI_IFCR_ALL, spi->base + STM32_SPI_IFCR);
 456
 457	spin_unlock_irqrestore(&spi->lock, flags);
 458}
 459
 460/**
 461 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
 
 
 
 462 *
 463 * If the current transfer size is greater than fifo size, use DMA.
 
 464 */
 465static bool stm32_spi_can_dma(struct spi_master *master,
 466			      struct spi_device *spi_dev,
 467			      struct spi_transfer *transfer)
 468{
 469	struct stm32_spi *spi = spi_master_get_devdata(master);
 
 
 
 
 
 
 470
 471	dev_dbg(spi->dev, "%s: %s\n", __func__,
 472		(transfer->len > spi->fifo_size) ? "true" : "false");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473
 474	return (transfer->len > spi->fifo_size);
 
 
 
 475}
 476
 477/**
 478 * stm32_spi_irq - Interrupt handler for SPI controller events
 479 * @irq: interrupt line
 480 * @dev_id: SPI controller master interface
 481 */
 482static irqreturn_t stm32_spi_irq(int irq, void *dev_id)
 483{
 484	struct spi_master *master = dev_id;
 485	struct stm32_spi *spi = spi_master_get_devdata(master);
 486	u32 sr, ier, mask;
 487	unsigned long flags;
 488	bool end = false;
 489
 490	spin_lock_irqsave(&spi->lock, flags);
 491
 492	sr = readl_relaxed(spi->base + STM32_SPI_SR);
 493	ier = readl_relaxed(spi->base + STM32_SPI_IER);
 494
 495	mask = ier;
 496	/* EOTIE is triggered on EOT, SUSP and TXC events. */
 497	mask |= SPI_SR_SUSP;
 498	/*
 499	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
 500	 * Full-Duplex, need to poll RXP event to know if there are remaining
 501	 * data, before disabling SPI.
 502	 */
 503	if (spi->rx_buf && !spi->cur_usedma)
 504		mask |= SPI_SR_RXP;
 
 
 
 
 
 
 505
 506	if (!(sr & mask)) {
 507		dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
 508			sr, ier);
 509		spin_unlock_irqrestore(&spi->lock, flags);
 510		return IRQ_NONE;
 511	}
 512
 513	if (sr & SPI_SR_SUSP) {
 514		dev_warn(spi->dev, "Communication suspended\n");
 
 
 
 
 
 515		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 516			stm32_spi_read_rxfifo(spi, false);
 517		/*
 518		 * If communication is suspended while using DMA, it means
 519		 * that something went wrong, so stop the current transfer
 520		 */
 521		if (spi->cur_usedma)
 522			end = true;
 523	}
 524
 525	if (sr & SPI_SR_MODF) {
 526		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
 527		end = true;
 528	}
 529
 530	if (sr & SPI_SR_OVR) {
 531		dev_warn(spi->dev, "Overrun: received value discarded\n");
 532		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 533			stm32_spi_read_rxfifo(spi, false);
 534		/*
 535		 * If overrun is detected while using DMA, it means that
 536		 * something went wrong, so stop the current transfer
 537		 */
 538		if (spi->cur_usedma)
 539			end = true;
 540	}
 541
 542	if (sr & SPI_SR_EOT) {
 543		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 544			stm32_spi_read_rxfifo(spi, true);
 545		end = true;
 
 
 546	}
 547
 548	if (sr & SPI_SR_TXP)
 549		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
 550			stm32_spi_write_txfifo(spi);
 551
 552	if (sr & SPI_SR_RXP)
 553		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 554			stm32_spi_read_rxfifo(spi, false);
 555
 556	writel_relaxed(mask, spi->base + STM32_SPI_IFCR);
 557
 558	spin_unlock_irqrestore(&spi->lock, flags);
 559
 560	if (end) {
 561		spi_finalize_current_transfer(master);
 562		stm32_spi_disable(spi);
 563	}
 564
 565	return IRQ_HANDLED;
 566}
 567
 568/**
 569 * stm32_spi_setup - setup device chip select
 570 */
 571static int stm32_spi_setup(struct spi_device *spi_dev)
 572{
 573	int ret = 0;
 574
 575	if (!gpio_is_valid(spi_dev->cs_gpio)) {
 576		dev_err(&spi_dev->dev, "%d is not a valid gpio\n",
 577			spi_dev->cs_gpio);
 578		return -EINVAL;
 579	}
 580
 581	dev_dbg(&spi_dev->dev, "%s: set gpio%d output %s\n", __func__,
 582		spi_dev->cs_gpio,
 583		(spi_dev->mode & SPI_CS_HIGH) ? "low" : "high");
 584
 585	ret = gpio_direction_output(spi_dev->cs_gpio,
 586				    !(spi_dev->mode & SPI_CS_HIGH));
 
 
 
 
 587
 588	return ret;
 589}
 590
 591/**
 592 * stm32_spi_prepare_msg - set up the controller to transfer a single message
 
 
 593 */
 594static int stm32_spi_prepare_msg(struct spi_master *master,
 595				 struct spi_message *msg)
 596{
 597	struct stm32_spi *spi = spi_master_get_devdata(master);
 598	struct spi_device *spi_dev = msg->spi;
 599	struct device_node *np = spi_dev->dev.of_node;
 600	unsigned long flags;
 601	u32 cfg2_clrb = 0, cfg2_setb = 0;
 602
 603	/* SPI slave device may need time between data frames */
 604	spi->cur_midi = 0;
 605	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
 606		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
 607
 608	if (spi_dev->mode & SPI_CPOL)
 609		cfg2_setb |= SPI_CFG2_CPOL;
 610	else
 611		cfg2_clrb |= SPI_CFG2_CPOL;
 612
 613	if (spi_dev->mode & SPI_CPHA)
 614		cfg2_setb |= SPI_CFG2_CPHA;
 615	else
 616		cfg2_clrb |= SPI_CFG2_CPHA;
 617
 618	if (spi_dev->mode & SPI_LSB_FIRST)
 619		cfg2_setb |= SPI_CFG2_LSBFRST;
 620	else
 621		cfg2_clrb |= SPI_CFG2_LSBFRST;
 
 
 
 
 
 622
 623	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
 624		spi_dev->mode & SPI_CPOL,
 625		spi_dev->mode & SPI_CPHA,
 626		spi_dev->mode & SPI_LSB_FIRST,
 627		spi_dev->mode & SPI_CS_HIGH);
 628
 629	spin_lock_irqsave(&spi->lock, flags);
 630
 631	if (cfg2_clrb || cfg2_setb)
 
 632		writel_relaxed(
 633			(readl_relaxed(spi->base + STM32_SPI_CFG2) &
 634				~cfg2_clrb) | cfg2_setb,
 635			       spi->base + STM32_SPI_CFG2);
 636
 637	spin_unlock_irqrestore(&spi->lock, flags);
 638
 639	return 0;
 640}
 641
 642/**
 643 * stm32_spi_dma_cb - dma callback
 
 644 *
 645 * DMA callback is called when the transfer is complete or when an error
 646 * occurs. If the transfer is complete, EOT flag is raised.
 647 */
 648static void stm32_spi_dma_cb(void *data)
 649{
 650	struct stm32_spi *spi = data;
 651	unsigned long flags;
 652	u32 sr;
 653
 654	spin_lock_irqsave(&spi->lock, flags);
 655
 656	sr = readl_relaxed(spi->base + STM32_SPI_SR);
 657
 658	spin_unlock_irqrestore(&spi->lock, flags);
 659
 660	if (!(sr & SPI_SR_EOT))
 661		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
 
 
 
 
 
 
 
 662
 663	/* Now wait for EOT, or SUSP or OVR in case of error */
 
 664}
 665
 666/**
 667 * stm32_spi_dma_config - configure dma slave channel depending on current
 668 *			  transfer bits_per_word.
 
 
 
 
 669 */
 670static void stm32_spi_dma_config(struct stm32_spi *spi,
 
 671				 struct dma_slave_config *dma_conf,
 672				 enum dma_transfer_direction dir)
 673{
 674	enum dma_slave_buswidth buswidth;
 675	u32 maxburst;
 
 
 676
 677	if (spi->cur_bpw <= 8)
 678		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
 679	else if (spi->cur_bpw <= 16)
 680		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
 681	else
 682		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
 683
 684	/* Valid for DMA Half or Full Fifo threshold */
 685	if (spi->cur_fthlv == 2)
 686		maxburst = 1;
 687	else
 688		maxburst = spi->cur_fthlv;
 689
 
 
 
 
 
 690	memset(dma_conf, 0, sizeof(struct dma_slave_config));
 691	dma_conf->direction = dir;
 692	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
 693		dma_conf->src_addr = spi->phys_addr + STM32_SPI_RXDR;
 694		dma_conf->src_addr_width = buswidth;
 695		dma_conf->src_maxburst = maxburst;
 696
 697		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
 698			buswidth, maxburst);
 699	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
 700		dma_conf->dst_addr = spi->phys_addr + STM32_SPI_TXDR;
 701		dma_conf->dst_addr_width = buswidth;
 702		dma_conf->dst_maxburst = maxburst;
 703
 704		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
 705			buswidth, maxburst);
 706	}
 707}
 708
 709/**
 710 * stm32_spi_transfer_one_irq - transfer a single spi_transfer using
 711 *				interrupts
 
 712 *
 713 * It must returns 0 if the transfer is finished or 1 if the transfer is still
 714 * in progress.
 715 */
 716static int stm32_spi_transfer_one_irq(struct stm32_spi *spi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717{
 718	unsigned long flags;
 719	u32 ier = 0;
 720
 721	/* Enable the interrupts relative to the current communication mode */
 722	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
 723		ier |= SPI_IER_DXPIE;
 724	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
 725		ier |= SPI_IER_TXPIE;
 726	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
 727		ier |= SPI_IER_RXPIE;
 728
 729	/* Enable the interrupts relative to the end of transfer */
 730	ier |= SPI_IER_EOTIE | SPI_IER_TXTFIE |	SPI_IER_OVRIE |	SPI_IER_MODFIE;
 
 731
 732	spin_lock_irqsave(&spi->lock, flags);
 733
 734	stm32_spi_enable(spi);
 735
 736	/* Be sure to have data in fifo before starting data transfer */
 737	if (spi->tx_buf)
 738		stm32_spi_write_txfifo(spi);
 739
 740	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_CSTART);
 
 741
 742	writel_relaxed(ier, spi->base + STM32_SPI_IER);
 743
 744	spin_unlock_irqrestore(&spi->lock, flags);
 745
 746	return 1;
 747}
 748
 749/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
 
 
 751 *
 752 * It must returns 0 if the transfer is finished or 1 if the transfer is still
 753 * in progress.
 754 */
 755static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
 756				      struct spi_transfer *xfer)
 757{
 758	struct dma_slave_config tx_dma_conf, rx_dma_conf;
 759	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
 760	unsigned long flags;
 761	u32 ier = 0;
 762
 763	spin_lock_irqsave(&spi->lock, flags);
 764
 765	rx_dma_desc = NULL;
 766	if (spi->rx_buf) {
 767		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
 768		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
 769
 770		/* Enable Rx DMA request */
 771		stm32_spi_set_bits(spi, STM32_SPI_CFG1, SPI_CFG1_RXDMAEN);
 
 772
 773		rx_dma_desc = dmaengine_prep_slave_sg(
 774					spi->dma_rx, xfer->rx_sg.sgl,
 775					xfer->rx_sg.nents,
 776					rx_dma_conf.direction,
 777					DMA_PREP_INTERRUPT);
 778	}
 779
 780	tx_dma_desc = NULL;
 781	if (spi->tx_buf) {
 782		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
 783		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
 784
 785		tx_dma_desc = dmaengine_prep_slave_sg(
 786					spi->dma_tx, xfer->tx_sg.sgl,
 787					xfer->tx_sg.nents,
 788					tx_dma_conf.direction,
 789					DMA_PREP_INTERRUPT);
 790	}
 791
 792	if ((spi->tx_buf && !tx_dma_desc) ||
 793	    (spi->rx_buf && !rx_dma_desc))
 
 
 
 794		goto dma_desc_error;
 795
 796	if (rx_dma_desc) {
 797		rx_dma_desc->callback = stm32_spi_dma_cb;
 798		rx_dma_desc->callback_param = spi;
 799
 800		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
 801			dev_err(spi->dev, "Rx DMA submit failed\n");
 802			goto dma_desc_error;
 803		}
 804		/* Enable Rx DMA channel */
 805		dma_async_issue_pending(spi->dma_rx);
 806	}
 807
 808	if (tx_dma_desc) {
 809		if (spi->cur_comm == SPI_SIMPLEX_TX) {
 810			tx_dma_desc->callback = stm32_spi_dma_cb;
 
 811			tx_dma_desc->callback_param = spi;
 812		}
 813
 814		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
 815			dev_err(spi->dev, "Tx DMA submit failed\n");
 816			goto dma_submit_error;
 817		}
 818		/* Enable Tx DMA channel */
 819		dma_async_issue_pending(spi->dma_tx);
 820
 821		/* Enable Tx DMA request */
 822		stm32_spi_set_bits(spi, STM32_SPI_CFG1, SPI_CFG1_TXDMAEN);
 
 823	}
 824
 825	/* Enable the interrupts relative to the end of transfer */
 826	ier |= SPI_IER_EOTIE | SPI_IER_TXTFIE |	SPI_IER_OVRIE |	SPI_IER_MODFIE;
 827	writel_relaxed(ier, spi->base + STM32_SPI_IER);
 828
 829	stm32_spi_enable(spi);
 830
 831	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_CSTART);
 832
 833	spin_unlock_irqrestore(&spi->lock, flags);
 834
 835	return 1;
 836
 837dma_submit_error:
 838	if (spi->rx_buf)
 839		dmaengine_terminate_all(spi->dma_rx);
 840
 841dma_desc_error:
 842	stm32_spi_clr_bits(spi, STM32_SPI_CFG1, SPI_CFG1_RXDMAEN);
 
 843
 844	spin_unlock_irqrestore(&spi->lock, flags);
 845
 846	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
 847
 848	return stm32_spi_transfer_one_irq(spi);
 
 849}
 850
 851/**
 852 * stm32_spi_transfer_one_setup - common setup to transfer a single
 853 *				  spi_transfer either using DMA or
 854 *				  interrupts.
 855 */
 856static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
 857					struct spi_device *spi_dev,
 858					struct spi_transfer *transfer)
 859{
 860	unsigned long flags;
 861	u32 cfg1_clrb = 0, cfg1_setb = 0, cfg2_clrb = 0, cfg2_setb = 0;
 862	u32 mode, nb_words;
 863	int ret = 0;
 
 864
 865	spin_lock_irqsave(&spi->lock, flags);
 
 
 
 
 
 
 
 866
 867	if (spi->cur_bpw != transfer->bits_per_word) {
 868		u32 bpw, fthlv;
 869
 870		spi->cur_bpw = transfer->bits_per_word;
 871		bpw = spi->cur_bpw - 1;
 872
 873		cfg1_clrb |= SPI_CFG1_DSIZE;
 874		cfg1_setb |= (bpw << SPI_CFG1_DSIZE_SHIFT) & SPI_CFG1_DSIZE;
 
 
 875
 876		spi->cur_fthlv = stm32_spi_prepare_fthlv(spi);
 877		fthlv = spi->cur_fthlv - 1;
 
 
 
 878
 879		cfg1_clrb |= SPI_CFG1_FTHLV;
 880		cfg1_setb |= (fthlv << SPI_CFG1_FTHLV_SHIFT) & SPI_CFG1_FTHLV;
 881	}
 
 
 
 
 
 882
 883	if (spi->cur_speed != transfer->speed_hz) {
 884		int mbr;
 885
 886		/* Update spi->cur_speed with real clock speed */
 887		mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz);
 888		if (mbr < 0) {
 889			ret = mbr;
 890			goto out;
 891		}
 892
 893		transfer->speed_hz = spi->cur_speed;
 
 894
 895		cfg1_clrb |= SPI_CFG1_MBR;
 896		cfg1_setb |= ((u32)mbr << SPI_CFG1_MBR_SHIFT) & SPI_CFG1_MBR;
 897	}
 898
 899	if (cfg1_clrb || cfg1_setb)
 900		writel_relaxed((readl_relaxed(spi->base + STM32_SPI_CFG1) &
 901				~cfg1_clrb) | cfg1_setb,
 902			       spi->base + STM32_SPI_CFG1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903
 904	mode = SPI_FULL_DUPLEX;
 905	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
 906		/*
 907		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
 908		 * is forbidden und unvalidated by SPI subsystem so depending
 909		 * on the valid buffer, we can determine the direction of the
 910		 * transfer.
 911		 */
 912		mode = SPI_HALF_DUPLEX;
 913		if (!transfer->tx_buf)
 914			stm32_spi_clr_bits(spi, STM32_SPI_CR1, SPI_CR1_HDDIR);
 915		else if (!transfer->rx_buf)
 916			stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_HDDIR);
 917	} else {
 918		if (!transfer->tx_buf)
 919			mode = SPI_SIMPLEX_RX;
 920		else if (!transfer->rx_buf)
 921			mode = SPI_SIMPLEX_TX;
 922	}
 923	if (spi->cur_comm != mode) {
 924		spi->cur_comm = mode;
 925
 926		cfg2_clrb |= SPI_CFG2_COMM;
 927		cfg2_setb |= (mode << SPI_CFG2_COMM_SHIFT) & SPI_CFG2_COMM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928	}
 929
 930	cfg2_clrb |= SPI_CFG2_MIDI;
 931	if ((transfer->len > 1) && (spi->cur_midi > 0)) {
 932		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
 933		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
 934			       (u32)SPI_CFG2_MIDI >> SPI_CFG2_MIDI_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935
 936		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
 937			sck_period_ns, midi, midi * sck_period_ns);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 938
 939		cfg2_setb |= (midi << SPI_CFG2_MIDI_SHIFT) & SPI_CFG2_MIDI;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940	}
 941
 942	if (cfg2_clrb || cfg2_setb)
 943		writel_relaxed((readl_relaxed(spi->base + STM32_SPI_CFG2) &
 944				~cfg2_clrb) | cfg2_setb,
 945			       spi->base + STM32_SPI_CFG2);
 
 
 
 
 
 946
 947	if (spi->cur_bpw <= 8)
 948		nb_words = transfer->len;
 949	else if (spi->cur_bpw <= 16)
 950		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
 951	else
 952		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
 953	nb_words <<= SPI_CR2_TSIZE_SHIFT;
 954
 955	if (nb_words <= SPI_CR2_TSIZE) {
 956		writel_relaxed(nb_words, spi->base + STM32_SPI_CR2);
 957	} else {
 958		ret = -EMSGSIZE;
 959		goto out;
 960	}
 961
 962	spi->cur_xferlen = transfer->len;
 963
 964	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
 965		spi->cur_comm);
 966	dev_dbg(spi->dev,
 967		"data frame of %d-bit, data packet of %d data frames\n",
 968		spi->cur_bpw, spi->cur_fthlv);
 969	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
 
 970	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
 971		spi->cur_xferlen, nb_words);
 972	dev_dbg(spi->dev, "dma %s\n",
 973		(spi->cur_usedma) ? "enabled" : "disabled");
 974
 975out:
 976	spin_unlock_irqrestore(&spi->lock, flags);
 977
 978	return ret;
 979}
 980
 981/**
 982 * stm32_spi_transfer_one - transfer a single spi_transfer
 
 
 
 983 *
 984 * It must return 0 if the transfer is finished or 1 if the transfer is still
 985 * in progress.
 986 */
 987static int stm32_spi_transfer_one(struct spi_master *master,
 988				  struct spi_device *spi_dev,
 989				  struct spi_transfer *transfer)
 990{
 991	struct stm32_spi *spi = spi_master_get_devdata(master);
 992	int ret;
 993
 994	spi->tx_buf = transfer->tx_buf;
 995	spi->rx_buf = transfer->rx_buf;
 996	spi->tx_len = spi->tx_buf ? transfer->len : 0;
 997	spi->rx_len = spi->rx_buf ? transfer->len : 0;
 998
 999	spi->cur_usedma = (master->can_dma &&
1000			   stm32_spi_can_dma(master, spi_dev, transfer));
1001
1002	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1003	if (ret) {
1004		dev_err(spi->dev, "SPI transfer setup failed\n");
1005		return ret;
1006	}
1007
1008	if (spi->cur_usedma)
1009		return stm32_spi_transfer_one_dma(spi, transfer);
1010	else
1011		return stm32_spi_transfer_one_irq(spi);
1012}
1013
1014/**
1015 * stm32_spi_unprepare_msg - relax the hardware
1016 *
1017 * Normally, if TSIZE has been configured, we should relax the hardware at the
1018 * reception of the EOT interrupt. But in case of error, EOT will not be
1019 * raised. So the subsystem unprepare_message call allows us to properly
1020 * complete the transfer from an hardware point of view.
1021 */
1022static int stm32_spi_unprepare_msg(struct spi_master *master,
1023				   struct spi_message *msg)
1024{
1025	struct stm32_spi *spi = spi_master_get_devdata(master);
1026
1027	stm32_spi_disable(spi);
1028
1029	return 0;
1030}
1031
1032/**
1033 * stm32_spi_config - Configure SPI controller as SPI master
 
1034 */
1035static int stm32_spi_config(struct stm32_spi *spi)
1036{
1037	unsigned long flags;
1038
1039	spin_lock_irqsave(&spi->lock, flags);
1040
1041	/* Ensure I2SMOD bit is kept cleared */
1042	stm32_spi_clr_bits(spi, STM32_SPI_I2SCFGR, SPI_I2SCFGR_I2SMOD);
 
1043
1044	/*
1045	 * - SS input value high
1046	 * - transmitter half duplex direction
1047	 * - automatic communication suspend when RX-Fifo is full
1048	 */
1049	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_SSI |
1050					       SPI_CR1_HDDIR |
1051					       SPI_CR1_MASRX);
1052
1053	/*
1054	 * - Set the master mode (default Motorola mode)
1055	 * - Consider 1 master/n slaves configuration and
1056	 *   SS input value is determined by the SSI bit
1057	 * - keep control of all associated GPIOs
1058	 */
1059	stm32_spi_set_bits(spi, STM32_SPI_CFG2, SPI_CFG2_MASTER |
1060						SPI_CFG2_SSM |
1061						SPI_CFG2_AFCNTR);
 
1062
1063	spin_unlock_irqrestore(&spi->lock, flags);
1064
1065	return 0;
1066}
1067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068static const struct of_device_id stm32_spi_of_match[] = {
1069	{ .compatible = "st,stm32h7-spi", },
 
 
 
1070	{},
1071};
1072MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1073
 
 
 
 
 
 
1074static int stm32_spi_probe(struct platform_device *pdev)
1075{
1076	struct spi_master *master;
1077	struct stm32_spi *spi;
1078	struct resource *res;
1079	int i, ret;
 
 
 
 
1080
1081	master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1082	if (!master) {
1083		dev_err(&pdev->dev, "spi master allocation failed\n");
 
 
 
 
 
 
 
 
 
1084		return -ENOMEM;
1085	}
1086	platform_set_drvdata(pdev, master);
1087
1088	spi = spi_master_get_devdata(master);
1089	spi->dev = &pdev->dev;
1090	spi->master = master;
 
1091	spin_lock_init(&spi->lock);
1092
1093	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1094	spi->base = devm_ioremap_resource(&pdev->dev, res);
1095	if (IS_ERR(spi->base)) {
1096		ret = PTR_ERR(spi->base);
1097		goto err_master_put;
1098	}
1099	spi->phys_addr = (dma_addr_t)res->start;
1100
1101	spi->irq = platform_get_irq(pdev, 0);
1102	if (spi->irq <= 0) {
1103		dev_err(&pdev->dev, "no irq: %d\n", spi->irq);
1104		ret = -ENOENT;
1105		goto err_master_put;
1106	}
1107	ret = devm_request_threaded_irq(&pdev->dev, spi->irq, NULL,
1108					stm32_spi_irq, IRQF_ONESHOT,
1109					pdev->name, master);
1110	if (ret) {
1111		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1112			ret);
1113		goto err_master_put;
1114	}
1115
1116	spi->clk = devm_clk_get(&pdev->dev, 0);
1117	if (IS_ERR(spi->clk)) {
1118		ret = PTR_ERR(spi->clk);
1119		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1120		goto err_master_put;
1121	}
1122
1123	ret = clk_prepare_enable(spi->clk);
1124	if (ret) {
1125		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1126		goto err_master_put;
1127	}
1128	spi->clk_rate = clk_get_rate(spi->clk);
1129	if (!spi->clk_rate) {
1130		dev_err(&pdev->dev, "clk rate = 0\n");
1131		ret = -EINVAL;
1132		goto err_master_put;
1133	}
1134
1135	spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1136	if (!IS_ERR(spi->rst)) {
1137		reset_control_assert(spi->rst);
 
 
 
 
 
 
1138		udelay(2);
1139		reset_control_deassert(spi->rst);
1140	}
1141
1142	spi->fifo_size = stm32_spi_get_fifo_size(spi);
 
1143
1144	ret = stm32_spi_config(spi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145	if (ret) {
1146		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1147			ret);
1148		goto err_clk_disable;
1149	}
1150
1151	master->dev.of_node = pdev->dev.of_node;
1152	master->auto_runtime_pm = true;
1153	master->bus_num = pdev->id;
1154	master->mode_bits = SPI_MODE_3 | SPI_CS_HIGH | SPI_LSB_FIRST |
1155			    SPI_3WIRE | SPI_LOOP;
1156	master->bits_per_word_mask = stm32_spi_get_bpw_mask(spi);
1157	master->max_speed_hz = spi->clk_rate / SPI_MBR_DIV_MIN;
1158	master->min_speed_hz = spi->clk_rate / SPI_MBR_DIV_MAX;
1159	master->setup = stm32_spi_setup;
1160	master->prepare_message = stm32_spi_prepare_msg;
1161	master->transfer_one = stm32_spi_transfer_one;
1162	master->unprepare_message = stm32_spi_unprepare_msg;
 
 
 
 
 
 
 
 
 
 
 
1163
1164	spi->dma_tx = dma_request_slave_channel(spi->dev, "tx");
1165	if (!spi->dma_tx)
1166		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1167	else
1168		master->dma_tx = spi->dma_tx;
 
 
 
 
 
 
 
 
1169
1170	spi->dma_rx = dma_request_slave_channel(spi->dev, "rx");
1171	if (!spi->dma_rx)
1172		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1173	else
1174		master->dma_rx = spi->dma_rx;
 
1175
1176	if (spi->dma_tx || spi->dma_rx)
1177		master->can_dma = stm32_spi_can_dma;
1178
 
 
 
1179	pm_runtime_set_active(&pdev->dev);
 
1180	pm_runtime_enable(&pdev->dev);
1181
1182	ret = devm_spi_register_master(&pdev->dev, master);
1183	if (ret) {
1184		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1185			ret);
1186		goto err_dma_release;
1187	}
1188
1189	if (!master->cs_gpios) {
1190		dev_err(&pdev->dev, "no CS gpios available\n");
1191		ret = -EINVAL;
1192		goto err_dma_release;
1193	}
1194
1195	for (i = 0; i < master->num_chipselect; i++) {
1196		if (!gpio_is_valid(master->cs_gpios[i])) {
1197			dev_err(&pdev->dev, "%i is not a valid gpio\n",
1198				master->cs_gpios[i]);
1199			ret = -EINVAL;
1200			goto err_dma_release;
1201		}
1202
1203		ret = devm_gpio_request(&pdev->dev, master->cs_gpios[i],
1204					DRIVER_NAME);
1205		if (ret) {
1206			dev_err(&pdev->dev, "can't get CS gpio %i\n",
1207				master->cs_gpios[i]);
1208			goto err_dma_release;
1209		}
1210	}
1211
1212	dev_info(&pdev->dev, "driver initialized\n");
 
1213
1214	return 0;
1215
 
 
 
 
 
1216err_dma_release:
1217	if (spi->dma_tx)
1218		dma_release_channel(spi->dma_tx);
1219	if (spi->dma_rx)
1220		dma_release_channel(spi->dma_rx);
1221
1222	pm_runtime_disable(&pdev->dev);
1223err_clk_disable:
1224	clk_disable_unprepare(spi->clk);
1225err_master_put:
1226	spi_master_put(master);
1227
1228	return ret;
1229}
1230
1231static int stm32_spi_remove(struct platform_device *pdev)
1232{
1233	struct spi_master *master = platform_get_drvdata(pdev);
1234	struct stm32_spi *spi = spi_master_get_devdata(master);
 
 
1235
1236	stm32_spi_disable(spi);
 
1237
1238	if (master->dma_tx)
1239		dma_release_channel(master->dma_tx);
1240	if (master->dma_rx)
1241		dma_release_channel(master->dma_rx);
 
 
 
 
 
1242
1243	clk_disable_unprepare(spi->clk);
1244
1245	pm_runtime_disable(&pdev->dev);
1246
1247	return 0;
1248}
1249
1250#ifdef CONFIG_PM
1251static int stm32_spi_runtime_suspend(struct device *dev)
1252{
1253	struct spi_master *master = dev_get_drvdata(dev);
1254	struct stm32_spi *spi = spi_master_get_devdata(master);
1255
1256	clk_disable_unprepare(spi->clk);
1257
1258	return 0;
1259}
1260
1261static int stm32_spi_runtime_resume(struct device *dev)
1262{
1263	struct spi_master *master = dev_get_drvdata(dev);
1264	struct stm32_spi *spi = spi_master_get_devdata(master);
 
 
 
 
 
1265
1266	return clk_prepare_enable(spi->clk);
1267}
1268#endif
1269
1270#ifdef CONFIG_PM_SLEEP
1271static int stm32_spi_suspend(struct device *dev)
1272{
1273	struct spi_master *master = dev_get_drvdata(dev);
1274	int ret;
1275
1276	ret = spi_master_suspend(master);
1277	if (ret)
1278		return ret;
1279
1280	return pm_runtime_force_suspend(dev);
1281}
1282
1283static int stm32_spi_resume(struct device *dev)
1284{
1285	struct spi_master *master = dev_get_drvdata(dev);
1286	struct stm32_spi *spi = spi_master_get_devdata(master);
1287	int ret;
1288
1289	ret = pm_runtime_force_resume(dev);
1290	if (ret)
1291		return ret;
1292
1293	ret = spi_master_resume(master);
1294	if (ret)
1295		clk_disable_unprepare(spi->clk);
 
 
1296
1297	return ret;
 
 
 
 
 
 
 
 
 
 
 
1298}
1299#endif
1300
1301static const struct dev_pm_ops stm32_spi_pm_ops = {
1302	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
1303	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
1304			   stm32_spi_runtime_resume, NULL)
1305};
1306
1307static struct platform_driver stm32_spi_driver = {
1308	.probe = stm32_spi_probe,
1309	.remove = stm32_spi_remove,
1310	.driver = {
1311		.name = DRIVER_NAME,
1312		.pm = &stm32_spi_pm_ops,
1313		.of_match_table = stm32_spi_of_match,
1314	},
1315};
1316
1317module_platform_driver(stm32_spi_driver);
1318
1319MODULE_ALIAS("platform:" DRIVER_NAME);
1320MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
1321MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
1322MODULE_LICENSE("GPL v2");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// STMicroelectronics STM32 SPI Controller driver
   4//
   5// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
   7
   8#include <linux/bitfield.h>
 
 
 
 
 
 
 
 
 
 
 
 
   9#include <linux/debugfs.h>
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/dmaengine.h>
 
  13#include <linux/interrupt.h>
  14#include <linux/iopoll.h>
  15#include <linux/module.h>
  16#include <linux/of.h>
  17#include <linux/platform_device.h>
  18#include <linux/pinctrl/consumer.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/reset.h>
  21#include <linux/spi/spi.h>
  22
  23#define DRIVER_NAME "spi_stm32"
  24
  25/* STM32F4/7 SPI registers */
  26#define STM32FX_SPI_CR1			0x00
  27#define STM32FX_SPI_CR2			0x04
  28#define STM32FX_SPI_SR			0x08
  29#define STM32FX_SPI_DR			0x0C
  30#define STM32FX_SPI_I2SCFGR		0x1C
  31
  32/* STM32FX_SPI_CR1 bit fields */
  33#define STM32FX_SPI_CR1_CPHA		BIT(0)
  34#define STM32FX_SPI_CR1_CPOL		BIT(1)
  35#define STM32FX_SPI_CR1_MSTR		BIT(2)
  36#define STM32FX_SPI_CR1_BR_SHIFT	3
  37#define STM32FX_SPI_CR1_BR		GENMASK(5, 3)
  38#define STM32FX_SPI_CR1_SPE		BIT(6)
  39#define STM32FX_SPI_CR1_LSBFRST		BIT(7)
  40#define STM32FX_SPI_CR1_SSI		BIT(8)
  41#define STM32FX_SPI_CR1_SSM		BIT(9)
  42#define STM32FX_SPI_CR1_RXONLY		BIT(10)
  43#define STM32F4_SPI_CR1_DFF		BIT(11)
  44#define STM32F7_SPI_CR1_CRCL		BIT(11)
  45#define STM32FX_SPI_CR1_CRCNEXT		BIT(12)
  46#define STM32FX_SPI_CR1_CRCEN		BIT(13)
  47#define STM32FX_SPI_CR1_BIDIOE		BIT(14)
  48#define STM32FX_SPI_CR1_BIDIMODE	BIT(15)
  49#define STM32FX_SPI_CR1_BR_MIN		0
  50#define STM32FX_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
  51
  52/* STM32FX_SPI_CR2 bit fields */
  53#define STM32FX_SPI_CR2_RXDMAEN		BIT(0)
  54#define STM32FX_SPI_CR2_TXDMAEN		BIT(1)
  55#define STM32FX_SPI_CR2_SSOE		BIT(2)
  56#define STM32FX_SPI_CR2_FRF		BIT(4)
  57#define STM32FX_SPI_CR2_ERRIE		BIT(5)
  58#define STM32FX_SPI_CR2_RXNEIE		BIT(6)
  59#define STM32FX_SPI_CR2_TXEIE		BIT(7)
  60#define STM32F7_SPI_CR2_DS		GENMASK(11, 8)
  61#define STM32F7_SPI_CR2_FRXTH		BIT(12)
  62#define STM32F7_SPI_CR2_LDMA_RX		BIT(13)
  63#define STM32F7_SPI_CR2_LDMA_TX		BIT(14)
  64
  65/* STM32FX_SPI_SR bit fields */
  66#define STM32FX_SPI_SR_RXNE		BIT(0)
  67#define STM32FX_SPI_SR_TXE		BIT(1)
  68#define STM32FX_SPI_SR_CHSIDE		BIT(2)
  69#define STM32FX_SPI_SR_UDR		BIT(3)
  70#define STM32FX_SPI_SR_CRCERR		BIT(4)
  71#define STM32FX_SPI_SR_MODF		BIT(5)
  72#define STM32FX_SPI_SR_OVR		BIT(6)
  73#define STM32FX_SPI_SR_BSY		BIT(7)
  74#define STM32FX_SPI_SR_FRE		BIT(8)
  75#define STM32F7_SPI_SR_FRLVL		GENMASK(10, 9)
  76#define STM32F7_SPI_SR_FTLVL		GENMASK(12, 11)
  77
  78/* STM32FX_SPI_I2SCFGR bit fields */
  79#define STM32FX_SPI_I2SCFGR_I2SMOD	BIT(11)
  80
  81/* STM32F4 SPI Baud Rate min/max divisor */
  82#define STM32FX_SPI_BR_DIV_MIN		(2 << STM32FX_SPI_CR1_BR_MIN)
  83#define STM32FX_SPI_BR_DIV_MAX		(2 << STM32FX_SPI_CR1_BR_MAX)
  84
  85/* STM32H7 SPI registers */
  86#define STM32H7_SPI_CR1			0x00
  87#define STM32H7_SPI_CR2			0x04
  88#define STM32H7_SPI_CFG1		0x08
  89#define STM32H7_SPI_CFG2		0x0C
  90#define STM32H7_SPI_IER			0x10
  91#define STM32H7_SPI_SR			0x14
  92#define STM32H7_SPI_IFCR		0x18
  93#define STM32H7_SPI_TXDR		0x20
  94#define STM32H7_SPI_RXDR		0x30
  95#define STM32H7_SPI_I2SCFGR		0x50
  96
  97/* STM32H7_SPI_CR1 bit fields */
  98#define STM32H7_SPI_CR1_SPE		BIT(0)
  99#define STM32H7_SPI_CR1_MASRX		BIT(8)
 100#define STM32H7_SPI_CR1_CSTART		BIT(9)
 101#define STM32H7_SPI_CR1_CSUSP		BIT(10)
 102#define STM32H7_SPI_CR1_HDDIR		BIT(11)
 103#define STM32H7_SPI_CR1_SSI		BIT(12)
 104
 105/* STM32H7_SPI_CR2 bit fields */
 106#define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
 107#define STM32H7_SPI_TSIZE_MAX		GENMASK(15, 0)
 108
 109/* STM32H7_SPI_CFG1 bit fields */
 110#define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
 111#define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
 112#define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
 113#define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
 114#define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
 115#define STM32H7_SPI_CFG1_MBR_SHIFT	28
 116#define STM32H7_SPI_CFG1_MBR_MIN	0
 117#define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
 118
 119/* STM32H7_SPI_CFG2 bit fields */
 120#define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
 121#define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
 122#define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
 123#define STM32H7_SPI_CFG2_MASTER		BIT(22)
 124#define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
 125#define STM32H7_SPI_CFG2_CPHA		BIT(24)
 126#define STM32H7_SPI_CFG2_CPOL		BIT(25)
 127#define STM32H7_SPI_CFG2_SSM		BIT(26)
 128#define STM32H7_SPI_CFG2_SSIOP		BIT(28)
 129#define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
 130
 131/* STM32H7_SPI_IER bit fields */
 132#define STM32H7_SPI_IER_RXPIE		BIT(0)
 133#define STM32H7_SPI_IER_TXPIE		BIT(1)
 134#define STM32H7_SPI_IER_DXPIE		BIT(2)
 135#define STM32H7_SPI_IER_EOTIE		BIT(3)
 136#define STM32H7_SPI_IER_TXTFIE		BIT(4)
 137#define STM32H7_SPI_IER_OVRIE		BIT(6)
 138#define STM32H7_SPI_IER_MODFIE		BIT(9)
 139#define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
 140
 141/* STM32H7_SPI_SR bit fields */
 142#define STM32H7_SPI_SR_RXP		BIT(0)
 143#define STM32H7_SPI_SR_TXP		BIT(1)
 144#define STM32H7_SPI_SR_EOT		BIT(3)
 145#define STM32H7_SPI_SR_OVR		BIT(6)
 146#define STM32H7_SPI_SR_MODF		BIT(9)
 147#define STM32H7_SPI_SR_SUSP		BIT(11)
 148#define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
 149#define STM32H7_SPI_SR_RXWNE		BIT(15)
 150
 151/* STM32H7_SPI_IFCR bit fields */
 152#define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
 153
 154/* STM32H7_SPI_I2SCFGR bit fields */
 155#define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
 156
 157/* STM32MP25 SPI registers bit fields */
 158#define STM32MP25_SPI_HWCFGR1			0x3F0
 159
 160/* STM32MP25_SPI_CR2 bit fields */
 161#define STM32MP25_SPI_TSIZE_MAX_LIMITED		GENMASK(9, 0)
 162
 163/* STM32MP25_SPI_HWCFGR1 */
 164#define STM32MP25_SPI_HWCFGR1_FULLCFG		GENMASK(27, 24)
 165#define STM32MP25_SPI_HWCFGR1_FULLCFG_LIMITED	0x0
 166#define STM32MP25_SPI_HWCFGR1_FULLCFG_FULL	0x1
 167#define STM32MP25_SPI_HWCFGR1_DSCFG		GENMASK(19, 16)
 168#define STM32MP25_SPI_HWCFGR1_DSCFG_16_B	0x0
 169#define STM32MP25_SPI_HWCFGR1_DSCFG_32_B	0x1
 170
 171/* STM32H7 SPI Master Baud Rate min/max divisor */
 172#define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
 173#define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
 174
 175/* STM32H7 SPI Communication mode */
 176#define STM32H7_SPI_FULL_DUPLEX		0
 177#define STM32H7_SPI_SIMPLEX_TX		1
 178#define STM32H7_SPI_SIMPLEX_RX		2
 179#define STM32H7_SPI_HALF_DUPLEX		3
 180
 181/* SPI Communication type */
 182#define SPI_FULL_DUPLEX		0
 183#define SPI_SIMPLEX_TX		1
 184#define SPI_SIMPLEX_RX		2
 185#define SPI_3WIRE_TX		3
 186#define SPI_3WIRE_RX		4
 187
 188#define STM32_SPI_AUTOSUSPEND_DELAY		1	/* 1 ms */
 189
 190/*
 191 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
 192 * without fifo buffers.
 193 */
 194#define SPI_DMA_MIN_BYTES	16
 195
 196/* STM32 SPI driver helpers */
 197#define STM32_SPI_HOST_MODE(stm32_spi) (!(stm32_spi)->device_mode)
 198#define STM32_SPI_DEVICE_MODE(stm32_spi) ((stm32_spi)->device_mode)
 199
 200/**
 201 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
 202 * @reg:		register offset
 203 * @mask:		bitfield mask
 204 * @shift:		left shift
 205 */
 206struct stm32_spi_reg {
 207	int reg;
 208	int mask;
 209	int shift;
 210};
 211
 212/**
 213 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
 214 * @en: enable register and SPI enable bit
 215 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
 216 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
 217 * @cpol: clock polarity register and polarity bit
 218 * @cpha: clock phase register and phase bit
 219 * @lsb_first: LSB transmitted first register and bit
 220 * @cs_high: chips select active value
 221 * @br: baud rate register and bitfields
 222 * @rx: SPI RX data register
 223 * @tx: SPI TX data register
 224 * @fullcfg: SPI full or limited feature set register
 225 */
 226struct stm32_spi_regspec {
 227	const struct stm32_spi_reg en;
 228	const struct stm32_spi_reg dma_rx_en;
 229	const struct stm32_spi_reg dma_tx_en;
 230	const struct stm32_spi_reg cpol;
 231	const struct stm32_spi_reg cpha;
 232	const struct stm32_spi_reg lsb_first;
 233	const struct stm32_spi_reg cs_high;
 234	const struct stm32_spi_reg br;
 235	const struct stm32_spi_reg rx;
 236	const struct stm32_spi_reg tx;
 237	const struct stm32_spi_reg fullcfg;
 238};
 239
 240struct stm32_spi;
 241
 242/**
 243 * struct stm32_spi_cfg - stm32 compatible configuration data
 244 * @regs: registers descriptions
 245 * @get_fifo_size: routine to get fifo size
 246 * @get_bpw_mask: routine to get bits per word mask
 247 * @disable: routine to disable controller
 248 * @config: routine to configure controller as SPI Host
 249 * @set_bpw: routine to configure registers to for bits per word
 250 * @set_mode: routine to configure registers to desired mode
 251 * @set_data_idleness: optional routine to configure registers to desired idle
 252 * time between frames (if driver has this functionality)
 253 * @set_number_of_data: optional routine to configure registers to desired
 254 * number of data (if driver has this functionality)
 255 * @write_tx: routine to write to transmit register/FIFO
 256 * @read_rx: routine to read from receive register/FIFO
 257 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
 258 * using DMA
 259 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
 260 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
 261 * @transfer_one_irq: routine to configure interrupts for driver
 262 * @irq_handler_event: Interrupt handler for SPI controller events
 263 * @irq_handler_thread: thread of interrupt handler for SPI controller
 264 * @baud_rate_div_min: minimum baud rate divisor
 265 * @baud_rate_div_max: maximum baud rate divisor
 266 * @has_fifo: boolean to know if fifo is used for driver
 267 * @has_device_mode: is this compatible capable to switch on device mode
 268 * @flags: compatible specific SPI controller flags used at registration time
 269 * @prevent_dma_burst: boolean to indicate to prevent DMA burst
 270 */
 271struct stm32_spi_cfg {
 272	const struct stm32_spi_regspec *regs;
 273	int (*get_fifo_size)(struct stm32_spi *spi);
 274	int (*get_bpw_mask)(struct stm32_spi *spi);
 275	void (*disable)(struct stm32_spi *spi);
 276	int (*config)(struct stm32_spi *spi);
 277	void (*set_bpw)(struct stm32_spi *spi);
 278	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
 279	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
 280	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
 281	void (*write_tx)(struct stm32_spi *spi);
 282	void (*read_rx)(struct stm32_spi *spi);
 283	void (*transfer_one_dma_start)(struct stm32_spi *spi);
 284	void (*dma_rx_cb)(void *data);
 285	void (*dma_tx_cb)(void *data);
 286	int (*transfer_one_irq)(struct stm32_spi *spi);
 287	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
 288	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
 289	unsigned int baud_rate_div_min;
 290	unsigned int baud_rate_div_max;
 291	bool has_fifo;
 292	bool has_device_mode;
 293	u16 flags;
 294	bool prevent_dma_burst;
 295};
 296
 297/**
 298 * struct stm32_spi - private data of the SPI controller
 299 * @dev: driver model representation of the controller
 300 * @ctrl: controller interface
 301 * @cfg: compatible configuration data
 302 * @base: virtual memory area
 303 * @clk: hw kernel clock feeding the SPI clock generator
 304 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
 
 305 * @lock: prevent I/O concurrent access
 306 * @irq: SPI controller interrupt line
 307 * @fifo_size: size of the embedded fifo in bytes
 308 * @t_size_max: maximum number of data of one transfer
 309 * @feature_set: SPI full or limited feature set
 310 * @cur_midi: host inter-data idleness in ns
 311 * @cur_speed: speed configured in Hz
 312 * @cur_half_period: time of a half bit in us
 313 * @cur_bpw: number of bits in a single SPI data frame
 314 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
 315 * @cur_comm: SPI communication mode
 316 * @cur_xferlen: current transfer length in bytes
 317 * @cur_usedma: boolean to know if dma is used in current transfer
 318 * @tx_buf: data to be written, or NULL
 319 * @rx_buf: data to be read, or NULL
 320 * @tx_len: number of data to be written in bytes
 321 * @rx_len: number of data to be read in bytes
 322 * @dma_tx: dma channel for TX transfer
 323 * @dma_rx: dma channel for RX transfer
 324 * @phys_addr: SPI registers physical base address
 325 * @device_mode: the controller is configured as SPI device
 326 */
 327struct stm32_spi {
 328	struct device *dev;
 329	struct spi_controller *ctrl;
 330	const struct stm32_spi_cfg *cfg;
 331	void __iomem *base;
 332	struct clk *clk;
 333	u32 clk_rate;
 
 334	spinlock_t lock; /* prevent I/O concurrent access */
 335	int irq;
 336	unsigned int fifo_size;
 337	unsigned int t_size_max;
 338	unsigned int feature_set;
 339#define STM32_SPI_FEATURE_LIMITED	STM32MP25_SPI_HWCFGR1_FULLCFG_LIMITED	/* 0x0 */
 340#define STM32_SPI_FEATURE_FULL		STM32MP25_SPI_HWCFGR1_FULLCFG_FULL	/* 0x1 */
 341
 342	unsigned int cur_midi;
 343	unsigned int cur_speed;
 344	unsigned int cur_half_period;
 345	unsigned int cur_bpw;
 346	unsigned int cur_fthlv;
 347	unsigned int cur_comm;
 348	unsigned int cur_xferlen;
 349	bool cur_usedma;
 350
 351	const void *tx_buf;
 352	void *rx_buf;
 353	int tx_len;
 354	int rx_len;
 355	struct dma_chan *dma_tx;
 356	struct dma_chan *dma_rx;
 357	dma_addr_t phys_addr;
 358
 359	bool device_mode;
 360};
 361
 362static const struct stm32_spi_regspec stm32fx_spi_regspec = {
 363	.en = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_SPE },
 364
 365	.dma_rx_en = { STM32FX_SPI_CR2, STM32FX_SPI_CR2_RXDMAEN },
 366	.dma_tx_en = { STM32FX_SPI_CR2, STM32FX_SPI_CR2_TXDMAEN },
 367
 368	.cpol = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_CPOL },
 369	.cpha = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_CPHA },
 370	.lsb_first = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_LSBFRST },
 371	.cs_high = {},
 372	.br = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_BR, STM32FX_SPI_CR1_BR_SHIFT },
 373
 374	.rx = { STM32FX_SPI_DR },
 375	.tx = { STM32FX_SPI_DR },
 376};
 377
 378static const struct stm32_spi_regspec stm32h7_spi_regspec = {
 379	/* SPI data transfer is enabled but spi_ker_ck is idle.
 380	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
 381	 */
 382	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
 383
 384	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
 385	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
 386
 387	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
 388	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
 389	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
 390	.cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP },
 391	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
 392		STM32H7_SPI_CFG1_MBR_SHIFT },
 393
 394	.rx = { STM32H7_SPI_RXDR },
 395	.tx = { STM32H7_SPI_TXDR },
 396};
 397
 398static const struct stm32_spi_regspec stm32mp25_spi_regspec = {
 399	/* SPI data transfer is enabled but spi_ker_ck is idle.
 400	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
 401	 */
 402	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
 403
 404	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
 405	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
 406
 407	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
 408	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
 409	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
 410	.cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP },
 411	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
 412		STM32H7_SPI_CFG1_MBR_SHIFT },
 413
 414	.rx = { STM32H7_SPI_RXDR },
 415	.tx = { STM32H7_SPI_TXDR },
 416
 417	.fullcfg = { STM32MP25_SPI_HWCFGR1, STM32MP25_SPI_HWCFGR1_FULLCFG },
 418};
 419
 420static inline void stm32_spi_set_bits(struct stm32_spi *spi,
 421				      u32 offset, u32 bits)
 422{
 423	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
 424		       spi->base + offset);
 425}
 426
 427static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
 428				      u32 offset, u32 bits)
 429{
 430	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
 431		       spi->base + offset);
 432}
 433
 434/**
 435 * stm32h7_spi_get_fifo_size - Return fifo size
 436 * @spi: pointer to the spi controller data structure
 437 */
 438static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
 439{
 440	unsigned long flags;
 441	u32 count = 0;
 442
 443	spin_lock_irqsave(&spi->lock, flags);
 444
 445	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 446
 447	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
 448		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
 449
 450	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 451
 452	spin_unlock_irqrestore(&spi->lock, flags);
 453
 454	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
 455
 456	return count;
 457}
 458
 459/**
 460 * stm32f4_spi_get_bpw_mask - Return bits per word mask
 461 * @spi: pointer to the spi controller data structure
 462 */
 463static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
 464{
 465	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
 466	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
 467}
 468
 469/**
 470 * stm32f7_spi_get_bpw_mask - Return bits per word mask
 471 * @spi: pointer to the spi controller data structure
 472 */
 473static int stm32f7_spi_get_bpw_mask(struct stm32_spi *spi)
 474{
 475	dev_dbg(spi->dev, "16-bit maximum data frame\n");
 476	return SPI_BPW_RANGE_MASK(4, 16);
 477}
 478
 479/**
 480 * stm32h7_spi_get_bpw_mask - Return bits per word mask
 481 * @spi: pointer to the spi controller data structure
 482 */
 483static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
 484{
 485	unsigned long flags;
 486	u32 cfg1, max_bpw;
 487
 488	spin_lock_irqsave(&spi->lock, flags);
 489
 490	/*
 491	 * The most significant bit at DSIZE bit field is reserved when the
 492	 * maximum data size of periperal instances is limited to 16-bit
 493	 */
 494	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
 495
 496	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
 497	max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
 
 498
 499	spin_unlock_irqrestore(&spi->lock, flags);
 500
 501	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
 502
 503	return SPI_BPW_RANGE_MASK(4, max_bpw);
 504}
 505
 506/**
 507 * stm32mp25_spi_get_bpw_mask - Return bits per word mask
 508 * @spi: pointer to the spi controller data structure
 509 */
 510static int stm32mp25_spi_get_bpw_mask(struct stm32_spi *spi)
 511{
 512	u32 dscfg, max_bpw;
 513
 514	if (spi->feature_set == STM32_SPI_FEATURE_LIMITED) {
 515		dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
 516		return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
 517	}
 518
 519	dscfg = FIELD_GET(STM32MP25_SPI_HWCFGR1_DSCFG,
 520			  readl_relaxed(spi->base + STM32MP25_SPI_HWCFGR1));
 521	max_bpw = 16;
 522	if (dscfg == STM32MP25_SPI_HWCFGR1_DSCFG_32_B)
 523		max_bpw = 32;
 524	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
 525	return SPI_BPW_RANGE_MASK(4, max_bpw);
 526}
 527
 528/**
 529 * stm32_spi_prepare_mbr - Determine baud rate divisor value
 530 * @spi: pointer to the spi controller data structure
 531 * @speed_hz: requested speed
 532 * @min_div: minimum baud rate divisor
 533 * @max_div: maximum baud rate divisor
 534 *
 535 * Return baud rate divisor value in case of success or -EINVAL
 536 */
 537static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
 538				 u32 min_div, u32 max_div)
 539{
 540	u32 div, mbrdiv;
 541
 542	/* Ensure spi->clk_rate is even */
 543	div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
 544
 545	/*
 546	 * SPI framework set xfer->speed_hz to ctrl->max_speed_hz if
 547	 * xfer->speed_hz is greater than ctrl->max_speed_hz, and it returns
 548	 * an error when xfer->speed_hz is lower than ctrl->min_speed_hz, so
 549	 * no need to check it there.
 550	 * However, we need to ensure the following calculations.
 551	 */
 552	if ((div < min_div) || (div > max_div))
 
 553		return -EINVAL;
 554
 555	/* Determine the first power of 2 greater than or equal to div */
 556	if (div & (div - 1))
 557		mbrdiv = fls(div);
 558	else
 559		mbrdiv = fls(div) - 1;
 560
 561	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
 562
 563	spi->cur_half_period = DIV_ROUND_CLOSEST(USEC_PER_SEC, 2 * spi->cur_speed);
 564
 565	return mbrdiv - 1;
 566}
 567
 568/**
 569 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
 570 * @spi: pointer to the spi controller data structure
 571 * @xfer_len: length of the message to be transferred
 572 */
 573static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
 574{
 575	u32 packet, bpw;
 576
 577	/* data packet should not exceed 1/2 of fifo space */
 578	packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
 
 
 
 
 
 
 
 579
 580	/* align packet size with data registers access */
 581	bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
 582	return DIV_ROUND_UP(packet, bpw);
 583}
 584
 585/**
 586 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
 587 * @spi: pointer to the spi controller data structure
 588 *
 589 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 590 * tx_buf end.
 591 */
 592static void stm32f4_spi_write_tx(struct stm32_spi *spi)
 593{
 594	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32FX_SPI_SR) &
 595				  STM32FX_SPI_SR_TXE)) {
 596		u32 offs = spi->cur_xferlen - spi->tx_len;
 597
 598		if (spi->cur_bpw == 16) {
 599			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 600
 601			writew_relaxed(*tx_buf16, spi->base + STM32FX_SPI_DR);
 602			spi->tx_len -= sizeof(u16);
 603		} else {
 604			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 605
 606			writeb_relaxed(*tx_buf8, spi->base + STM32FX_SPI_DR);
 607			spi->tx_len -= sizeof(u8);
 608		}
 609	}
 610
 611	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 612}
 613
 614/**
 615 * stm32f7_spi_write_tx - Write bytes to Transmit Data Register
 616 * @spi: pointer to the spi controller data structure
 617 *
 618 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 619 * tx_buf end.
 620 */
 621static void stm32f7_spi_write_tx(struct stm32_spi *spi)
 622{
 623	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32FX_SPI_SR) &
 624				  STM32FX_SPI_SR_TXE)) {
 625		u32 offs = spi->cur_xferlen - spi->tx_len;
 626
 627		if (spi->tx_len >= sizeof(u16)) {
 628			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 629
 630			writew_relaxed(*tx_buf16, spi->base + STM32FX_SPI_DR);
 631			spi->tx_len -= sizeof(u16);
 632		} else {
 633			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 634
 635			writeb_relaxed(*tx_buf8, spi->base + STM32FX_SPI_DR);
 636			spi->tx_len -= sizeof(u8);
 637		}
 638	}
 639
 640	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 641}
 642
 643/**
 644 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
 645 * @spi: pointer to the spi controller data structure
 646 *
 647 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 648 * tx_buf end.
 649 */
 650static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
 651{
 652	while ((spi->tx_len > 0) &&
 653		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
 654			STM32H7_SPI_SR_TXP)) {
 655		u32 offs = spi->cur_xferlen - spi->tx_len;
 656
 657		if (spi->tx_len >= sizeof(u32)) {
 658			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
 659
 660			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
 661			spi->tx_len -= sizeof(u32);
 662		} else if (spi->tx_len >= sizeof(u16)) {
 663			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 664
 665			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
 666			spi->tx_len -= sizeof(u16);
 667		} else {
 668			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 669
 670			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
 671			spi->tx_len -= sizeof(u8);
 672		}
 673	}
 674
 675	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 676}
 677
 678/**
 679 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
 680 * @spi: pointer to the spi controller data structure
 681 *
 682 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 683 * rx_buf end.
 684 */
 685static void stm32f4_spi_read_rx(struct stm32_spi *spi)
 686{
 687	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32FX_SPI_SR) &
 688				  STM32FX_SPI_SR_RXNE)) {
 689		u32 offs = spi->cur_xferlen - spi->rx_len;
 690
 691		if (spi->cur_bpw == 16) {
 692			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 693
 694			*rx_buf16 = readw_relaxed(spi->base + STM32FX_SPI_DR);
 695			spi->rx_len -= sizeof(u16);
 696		} else {
 697			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 698
 699			*rx_buf8 = readb_relaxed(spi->base + STM32FX_SPI_DR);
 700			spi->rx_len -= sizeof(u8);
 701		}
 702	}
 703
 704	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
 705}
 706
 707/**
 708 * stm32f7_spi_read_rx - Read bytes from Receive Data Register
 709 * @spi: pointer to the spi controller data structure
 710 *
 711 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 712 * rx_buf end.
 713 */
 714static void stm32f7_spi_read_rx(struct stm32_spi *spi)
 715{
 716	u32 sr = readl_relaxed(spi->base + STM32FX_SPI_SR);
 717	u32 frlvl = FIELD_GET(STM32F7_SPI_SR_FRLVL, sr);
 718
 719	while ((spi->rx_len > 0) && (frlvl > 0)) {
 720		u32 offs = spi->cur_xferlen - spi->rx_len;
 721
 722		if ((spi->rx_len >= sizeof(u16)) && (frlvl >= 2)) {
 723			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 724
 725			*rx_buf16 = readw_relaxed(spi->base + STM32FX_SPI_DR);
 726			spi->rx_len -= sizeof(u16);
 727		} else {
 728			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 729
 730			*rx_buf8 = readb_relaxed(spi->base + STM32FX_SPI_DR);
 731			spi->rx_len -= sizeof(u8);
 732		}
 733
 734		sr = readl_relaxed(spi->base + STM32FX_SPI_SR);
 735		frlvl = FIELD_GET(STM32F7_SPI_SR_FRLVL, sr);
 736	}
 737
 738	if (spi->rx_len >= sizeof(u16))
 739		stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
 740	else
 741		stm32_spi_set_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
 742
 743	dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
 744		__func__, spi->rx_len, sr);
 745}
 746
 747/**
 748 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
 749 * @spi: pointer to the spi controller data structure
 750 *
 751 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 752 * rx_buf end.
 753 */
 754static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
 755{
 756	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 757	u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
 758
 759	while ((spi->rx_len > 0) &&
 760	       ((sr & STM32H7_SPI_SR_RXP) ||
 761		((sr & STM32H7_SPI_SR_EOT) &&
 762		 ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
 763		u32 offs = spi->cur_xferlen - spi->rx_len;
 764
 765		if ((spi->rx_len >= sizeof(u32)) ||
 766		    (sr & STM32H7_SPI_SR_RXWNE)) {
 767			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
 768
 769			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
 770			spi->rx_len -= sizeof(u32);
 771		} else if ((spi->rx_len >= sizeof(u16)) ||
 772			   (!(sr & STM32H7_SPI_SR_RXWNE) &&
 773			    (rxplvl >= 2 || spi->cur_bpw > 8))) {
 774			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 775
 776			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
 777			spi->rx_len -= sizeof(u16);
 778		} else {
 779			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 780
 781			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
 782			spi->rx_len -= sizeof(u8);
 783		}
 784
 785		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 786		rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
 787	}
 788
 789	dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
 790		__func__, spi->rx_len, sr);
 791}
 792
 793/**
 794 * stm32_spi_enable - Enable SPI controller
 795 * @spi: pointer to the spi controller data structure
 
 
 
 796 */
 797static void stm32_spi_enable(struct stm32_spi *spi)
 798{
 799	dev_dbg(spi->dev, "enable controller\n");
 800
 801	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
 802			   spi->cfg->regs->en.mask);
 803}
 804
 805/**
 806 * stm32fx_spi_disable - Disable SPI controller
 807 * @spi: pointer to the spi controller data structure
 
 
 
 
 808 */
 809static void stm32fx_spi_disable(struct stm32_spi *spi)
 810{
 811	unsigned long flags;
 812	u32 sr;
 813
 814	dev_dbg(spi->dev, "disable controller\n");
 815
 816	spin_lock_irqsave(&spi->lock, flags);
 817
 818	if (!(readl_relaxed(spi->base + STM32FX_SPI_CR1) &
 819	      STM32FX_SPI_CR1_SPE)) {
 
 820		spin_unlock_irqrestore(&spi->lock, flags);
 821		return;
 822	}
 823
 824	/* Disable interrupts */
 825	stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32FX_SPI_CR2_TXEIE |
 826						 STM32FX_SPI_CR2_RXNEIE |
 827						 STM32FX_SPI_CR2_ERRIE);
 828
 829	/* Wait until BSY = 0 */
 830	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32FX_SPI_SR,
 831					      sr, !(sr & STM32FX_SPI_SR_BSY),
 832					      10, 100000) < 0) {
 833		dev_warn(spi->dev, "disabling condition timeout\n");
 
 
 
 
 
 
 
 
 
 834	}
 835
 836	if (spi->cur_usedma && spi->dma_tx)
 837		dmaengine_terminate_async(spi->dma_tx);
 838	if (spi->cur_usedma && spi->dma_rx)
 839		dmaengine_terminate_async(spi->dma_rx);
 840
 841	stm32_spi_clr_bits(spi, STM32FX_SPI_CR1, STM32FX_SPI_CR1_SPE);
 842
 843	stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32FX_SPI_CR2_TXDMAEN |
 844						 STM32FX_SPI_CR2_RXDMAEN);
 845
 846	/* Sequence to clear OVR flag */
 847	readl_relaxed(spi->base + STM32FX_SPI_DR);
 848	readl_relaxed(spi->base + STM32FX_SPI_SR);
 849
 850	spin_unlock_irqrestore(&spi->lock, flags);
 851}
 852
 853/**
 854 * stm32h7_spi_disable - Disable SPI controller
 855 * @spi: pointer to the spi controller data structure
 856 *
 857 * RX-Fifo is flushed when SPI controller is disabled.
 858 */
 859static void stm32h7_spi_disable(struct stm32_spi *spi)
 860{
 861	unsigned long flags;
 862	u32 cr1;
 863
 864	dev_dbg(spi->dev, "disable controller\n");
 865
 866	spin_lock_irqsave(&spi->lock, flags);
 867
 868	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
 869
 870	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
 871		spin_unlock_irqrestore(&spi->lock, flags);
 872		return;
 873	}
 874
 875	/* Add a delay to make sure that transmission is ended. */
 876	if (spi->cur_half_period)
 877		udelay(spi->cur_half_period);
 878
 879	if (spi->cur_usedma && spi->dma_tx)
 880		dmaengine_terminate_async(spi->dma_tx);
 881	if (spi->cur_usedma && spi->dma_rx)
 882		dmaengine_terminate_async(spi->dma_rx);
 883
 884	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 885
 886	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
 887						STM32H7_SPI_CFG1_RXDMAEN);
 888
 889	/* Disable interrupts and clear status flags */
 890	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
 891	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
 892
 893	spin_unlock_irqrestore(&spi->lock, flags);
 894}
 895
 896/**
 897 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
 898 * @ctrl: controller interface
 899 * @spi_dev: pointer to the spi device
 900 * @transfer: pointer to spi transfer
 901 *
 902 * If driver has fifo and the current transfer size is greater than fifo size,
 903 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
 904 */
 905static bool stm32_spi_can_dma(struct spi_controller *ctrl,
 906			      struct spi_device *spi_dev,
 907			      struct spi_transfer *transfer)
 908{
 909	unsigned int dma_size;
 910	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
 911
 912	if (spi->cfg->has_fifo)
 913		dma_size = spi->fifo_size;
 914	else
 915		dma_size = SPI_DMA_MIN_BYTES;
 916
 917	dev_dbg(spi->dev, "%s: %s\n", __func__,
 918		(transfer->len > dma_size) ? "true" : "false");
 919
 920	return (transfer->len > dma_size);
 921}
 922
 923/**
 924 * stm32fx_spi_irq_event - Interrupt handler for SPI controller events
 925 * @irq: interrupt line
 926 * @dev_id: SPI controller ctrl interface
 927 */
 928static irqreturn_t stm32fx_spi_irq_event(int irq, void *dev_id)
 929{
 930	struct spi_controller *ctrl = dev_id;
 931	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
 932	u32 sr, mask = 0;
 933	bool end = false;
 934
 935	spin_lock(&spi->lock);
 936
 937	sr = readl_relaxed(spi->base + STM32FX_SPI_SR);
 938	/*
 939	 * BSY flag is not handled in interrupt but it is normal behavior when
 940	 * this flag is set.
 941	 */
 942	sr &= ~STM32FX_SPI_SR_BSY;
 943
 944	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
 945				 spi->cur_comm == SPI_3WIRE_TX)) {
 946		/* OVR flag shouldn't be handled for TX only mode */
 947		sr &= ~(STM32FX_SPI_SR_OVR | STM32FX_SPI_SR_RXNE);
 948		mask |= STM32FX_SPI_SR_TXE;
 949	}
 950
 951	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
 952				spi->cur_comm == SPI_SIMPLEX_RX ||
 953				spi->cur_comm == SPI_3WIRE_RX)) {
 954		/* TXE flag is set and is handled when RXNE flag occurs */
 955		sr &= ~STM32FX_SPI_SR_TXE;
 956		mask |= STM32FX_SPI_SR_RXNE | STM32FX_SPI_SR_OVR;
 957	}
 958
 959	if (!(sr & mask)) {
 960		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
 961		spin_unlock(&spi->lock);
 962		return IRQ_NONE;
 963	}
 964
 965	if (sr & STM32FX_SPI_SR_OVR) {
 966		dev_warn(spi->dev, "Overrun: received value discarded\n");
 967
 968		/* Sequence to clear OVR flag */
 969		readl_relaxed(spi->base + STM32FX_SPI_DR);
 970		readl_relaxed(spi->base + STM32FX_SPI_SR);
 971
 972		/*
 973		 * If overrun is detected, it means that something went wrong,
 974		 * so stop the current transfer. Transfer can wait for next
 975		 * RXNE but DR is already read and end never happens.
 976		 */
 977		end = true;
 978		goto end_irq;
 979	}
 980
 981	if (sr & STM32FX_SPI_SR_TXE) {
 982		if (spi->tx_buf)
 983			spi->cfg->write_tx(spi);
 984		if (spi->tx_len == 0)
 985			end = true;
 986	}
 987
 988	if (sr & STM32FX_SPI_SR_RXNE) {
 989		spi->cfg->read_rx(spi);
 990		if (spi->rx_len == 0)
 991			end = true;
 992		else if (spi->tx_buf)/* Load data for discontinuous mode */
 993			spi->cfg->write_tx(spi);
 994	}
 995
 996end_irq:
 997	if (end) {
 998		/* Immediately disable interrupts to do not generate new one */
 999		stm32_spi_clr_bits(spi, STM32FX_SPI_CR2,
1000					STM32FX_SPI_CR2_TXEIE |
1001					STM32FX_SPI_CR2_RXNEIE |
1002					STM32FX_SPI_CR2_ERRIE);
1003		spin_unlock(&spi->lock);
1004		return IRQ_WAKE_THREAD;
1005	}
1006
1007	spin_unlock(&spi->lock);
1008	return IRQ_HANDLED;
1009}
1010
1011/**
1012 * stm32fx_spi_irq_thread - Thread of interrupt handler for SPI controller
1013 * @irq: interrupt line
1014 * @dev_id: SPI controller interface
1015 */
1016static irqreturn_t stm32fx_spi_irq_thread(int irq, void *dev_id)
1017{
1018	struct spi_controller *ctrl = dev_id;
1019	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1020
1021	spi_finalize_current_transfer(ctrl);
1022	stm32fx_spi_disable(spi);
1023
1024	return IRQ_HANDLED;
1025}
1026
1027/**
1028 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
1029 * @irq: interrupt line
1030 * @dev_id: SPI controller interface
1031 */
1032static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
1033{
1034	struct spi_controller *ctrl = dev_id;
1035	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1036	u32 sr, ier, mask;
1037	unsigned long flags;
1038	bool end = false;
1039
1040	spin_lock_irqsave(&spi->lock, flags);
1041
1042	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1043	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
1044
1045	mask = ier;
 
 
1046	/*
1047	 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
1048	 * SUSP to acknowledge it later. TXC is automatically cleared
 
1049	 */
1050
1051	mask |= STM32H7_SPI_SR_SUSP;
1052	/*
1053	 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
1054	 * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
1055	 */
1056	if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
1057		mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
1058
1059	if (!(sr & mask)) {
1060		dev_vdbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
1061			 sr, ier);
1062		spin_unlock_irqrestore(&spi->lock, flags);
1063		return IRQ_NONE;
1064	}
1065
1066	if (sr & STM32H7_SPI_SR_SUSP) {
1067		static DEFINE_RATELIMIT_STATE(rs,
1068					      DEFAULT_RATELIMIT_INTERVAL * 10,
1069					      1);
1070		ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
1071		if (__ratelimit(&rs))
1072			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
1073		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
1074			stm32h7_spi_read_rxfifo(spi);
1075		/*
1076		 * If communication is suspended while using DMA, it means
1077		 * that something went wrong, so stop the current transfer
1078		 */
1079		if (spi->cur_usedma)
1080			end = true;
1081	}
1082
1083	if (sr & STM32H7_SPI_SR_MODF) {
1084		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
1085		end = true;
1086	}
1087
1088	if (sr & STM32H7_SPI_SR_OVR) {
1089		dev_err(spi->dev, "Overrun: RX data lost\n");
1090		end = true;
 
 
 
 
 
 
 
1091	}
1092
1093	if (sr & STM32H7_SPI_SR_EOT) {
1094		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
1095			stm32h7_spi_read_rxfifo(spi);
1096		if (!spi->cur_usedma ||
1097		    (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
1098			end = true;
1099	}
1100
1101	if (sr & STM32H7_SPI_SR_TXP)
1102		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
1103			stm32h7_spi_write_txfifo(spi);
1104
1105	if (sr & STM32H7_SPI_SR_RXP)
1106		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
1107			stm32h7_spi_read_rxfifo(spi);
1108
1109	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
1110
1111	spin_unlock_irqrestore(&spi->lock, flags);
1112
1113	if (end) {
1114		stm32h7_spi_disable(spi);
1115		spi_finalize_current_transfer(ctrl);
1116	}
1117
1118	return IRQ_HANDLED;
1119}
1120
1121static int stm32_spi_optimize_message(struct spi_message *msg)
 
 
 
1122{
1123	struct spi_controller *ctrl = msg->spi->controller;
1124	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
 
 
 
 
 
 
 
 
 
1125
1126	/* On STM32H7, messages should not exceed a maximum size set
1127	 * later via the set_number_of_data function. In order to
1128	 * ensure that, split large messages into several messages
1129	 */
1130	if (spi->cfg->set_number_of_data)
1131		return spi_split_transfers_maxwords(ctrl, msg, spi->t_size_max);
1132
1133	return 0;
1134}
1135
1136/**
1137 * stm32_spi_prepare_msg - set up the controller to transfer a single message
1138 * @ctrl: controller interface
1139 * @msg: pointer to spi message
1140 */
1141static int stm32_spi_prepare_msg(struct spi_controller *ctrl,
1142				 struct spi_message *msg)
1143{
1144	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1145	struct spi_device *spi_dev = msg->spi;
1146	struct device_node *np = spi_dev->dev.of_node;
1147	unsigned long flags;
1148	u32 clrb = 0, setb = 0;
1149
1150	/* SPI target device may need time between data frames */
1151	spi->cur_midi = 0;
1152	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1153		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1154
1155	if (spi_dev->mode & SPI_CPOL)
1156		setb |= spi->cfg->regs->cpol.mask;
1157	else
1158		clrb |= spi->cfg->regs->cpol.mask;
1159
1160	if (spi_dev->mode & SPI_CPHA)
1161		setb |= spi->cfg->regs->cpha.mask;
1162	else
1163		clrb |= spi->cfg->regs->cpha.mask;
1164
1165	if (spi_dev->mode & SPI_LSB_FIRST)
1166		setb |= spi->cfg->regs->lsb_first.mask;
1167	else
1168		clrb |= spi->cfg->regs->lsb_first.mask;
1169
1170	if (STM32_SPI_DEVICE_MODE(spi) && spi_dev->mode & SPI_CS_HIGH)
1171		setb |= spi->cfg->regs->cs_high.mask;
1172	else
1173		clrb |= spi->cfg->regs->cs_high.mask;
1174
1175	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1176		!!(spi_dev->mode & SPI_CPOL),
1177		!!(spi_dev->mode & SPI_CPHA),
1178		!!(spi_dev->mode & SPI_LSB_FIRST),
1179		!!(spi_dev->mode & SPI_CS_HIGH));
1180
1181	spin_lock_irqsave(&spi->lock, flags);
1182
1183	/* CPOL, CPHA and LSB FIRST bits have common register */
1184	if (clrb || setb)
1185		writel_relaxed(
1186			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1187			 ~clrb) | setb,
1188			spi->base + spi->cfg->regs->cpol.reg);
1189
1190	spin_unlock_irqrestore(&spi->lock, flags);
1191
1192	return 0;
1193}
1194
1195/**
1196 * stm32fx_spi_dma_tx_cb - dma callback
1197 * @data: pointer to the spi controller data structure
1198 *
1199 * DMA callback is called when the transfer is complete for DMA TX channel.
 
1200 */
1201static void stm32fx_spi_dma_tx_cb(void *data)
1202{
1203	struct stm32_spi *spi = data;
 
 
1204
1205	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1206		spi_finalize_current_transfer(spi->ctrl);
1207		stm32fx_spi_disable(spi);
1208	}
1209}
1210
1211/**
1212 * stm32_spi_dma_rx_cb - dma callback
1213 * @data: pointer to the spi controller data structure
1214 *
1215 * DMA callback is called when the transfer is complete for DMA RX channel.
1216 */
1217static void stm32_spi_dma_rx_cb(void *data)
1218{
1219	struct stm32_spi *spi = data;
1220
1221	spi_finalize_current_transfer(spi->ctrl);
1222	spi->cfg->disable(spi);
1223}
1224
1225/**
1226 * stm32_spi_dma_config - configure dma slave channel depending on current
1227 *			  transfer bits_per_word.
1228 * @spi: pointer to the spi controller data structure
1229 * @dma_chan: pointer to the DMA channel
1230 * @dma_conf: pointer to the dma_slave_config structure
1231 * @dir: direction of the dma transfer
1232 */
1233static void stm32_spi_dma_config(struct stm32_spi *spi,
1234				 struct dma_chan *dma_chan,
1235				 struct dma_slave_config *dma_conf,
1236				 enum dma_transfer_direction dir)
1237{
1238	enum dma_slave_buswidth buswidth;
1239	struct dma_slave_caps caps;
1240	u32 maxburst = 1;
1241	int ret;
1242
1243	if (spi->cur_bpw <= 8)
1244		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1245	else if (spi->cur_bpw <= 16)
1246		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1247	else
1248		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1249
1250	/* Valid for DMA Half or Full Fifo threshold */
1251	if (!spi->cfg->prevent_dma_burst && spi->cfg->has_fifo && spi->cur_fthlv != 2)
 
 
1252		maxburst = spi->cur_fthlv;
1253
1254	/* Get the DMA channel caps, and adjust maxburst if possible */
1255	ret = dma_get_slave_caps(dma_chan, &caps);
1256	if (!ret)
1257		maxburst = min(maxburst, caps.max_burst);
1258
1259	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1260	dma_conf->direction = dir;
1261	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1262		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1263		dma_conf->src_addr_width = buswidth;
1264		dma_conf->src_maxburst = maxburst;
1265
1266		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1267			buswidth, maxburst);
1268	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1269		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1270		dma_conf->dst_addr_width = buswidth;
1271		dma_conf->dst_maxburst = maxburst;
1272
1273		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1274			buswidth, maxburst);
1275	}
1276}
1277
1278/**
1279 * stm32fx_spi_transfer_one_irq - transfer a single spi_transfer using
1280 *				  interrupts
1281 * @spi: pointer to the spi controller data structure
1282 *
1283 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1284 * in progress.
1285 */
1286static int stm32fx_spi_transfer_one_irq(struct stm32_spi *spi)
1287{
1288	unsigned long flags;
1289	u32 cr2 = 0;
1290
1291	/* Enable the interrupts relative to the current communication mode */
1292	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1293		cr2 |= STM32FX_SPI_CR2_TXEIE;
1294	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1295				spi->cur_comm == SPI_SIMPLEX_RX ||
1296				spi->cur_comm == SPI_3WIRE_RX) {
1297		/* In transmit-only mode, the OVR flag is set in the SR register
1298		 * since the received data are never read. Therefore set OVR
1299		 * interrupt only when rx buffer is available.
1300		 */
1301		cr2 |= STM32FX_SPI_CR2_RXNEIE | STM32FX_SPI_CR2_ERRIE;
1302	} else {
1303		return -EINVAL;
1304	}
1305
1306	spin_lock_irqsave(&spi->lock, flags);
1307
1308	stm32_spi_set_bits(spi, STM32FX_SPI_CR2, cr2);
1309
1310	stm32_spi_enable(spi);
1311
1312	/* starting data transfer when buffer is loaded */
1313	if (spi->tx_buf)
1314		spi->cfg->write_tx(spi);
1315
1316	spin_unlock_irqrestore(&spi->lock, flags);
1317
1318	return 1;
1319}
1320
1321/**
1322 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1323 *				  interrupts
1324 * @spi: pointer to the spi controller data structure
1325 *
1326 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1327 * in progress.
1328 */
1329static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1330{
1331	unsigned long flags;
1332	u32 ier = 0;
1333
1334	/* Enable the interrupts relative to the current communication mode */
1335	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1336		ier |= STM32H7_SPI_IER_DXPIE;
1337	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1338		ier |= STM32H7_SPI_IER_TXPIE;
1339	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1340		ier |= STM32H7_SPI_IER_RXPIE;
1341
1342	/* Enable the interrupts relative to the end of transfer */
1343	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1344	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1345
1346	spin_lock_irqsave(&spi->lock, flags);
1347
1348	stm32_spi_enable(spi);
1349
1350	/* Be sure to have data in fifo before starting data transfer */
1351	if (spi->tx_buf)
1352		stm32h7_spi_write_txfifo(spi);
1353
1354	if (STM32_SPI_HOST_MODE(spi))
1355		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1356
1357	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1358
1359	spin_unlock_irqrestore(&spi->lock, flags);
1360
1361	return 1;
1362}
1363
1364/**
1365 * stm32fx_spi_transfer_one_dma_start - Set SPI driver registers to start
1366 *					transfer using DMA
1367 * @spi: pointer to the spi controller data structure
1368 */
1369static void stm32fx_spi_transfer_one_dma_start(struct stm32_spi *spi)
1370{
1371	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1372	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1373	    spi->cur_comm == SPI_FULL_DUPLEX) {
1374		/*
1375		 * In transmit-only mode, the OVR flag is set in the SR register
1376		 * since the received data are never read. Therefore set OVR
1377		 * interrupt only when rx buffer is available.
1378		 */
1379		stm32_spi_set_bits(spi, STM32FX_SPI_CR2, STM32FX_SPI_CR2_ERRIE);
1380	}
1381
1382	stm32_spi_enable(spi);
1383}
1384
1385/**
1386 * stm32f7_spi_transfer_one_dma_start - Set SPI driver registers to start
1387 *					transfer using DMA
1388 * @spi: pointer to the spi controller data structure
1389 */
1390static void stm32f7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1391{
1392	/* Configure DMA request trigger threshold according to DMA width */
1393	if (spi->cur_bpw <= 8)
1394		stm32_spi_set_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
1395	else
1396		stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
1397
1398	stm32fx_spi_transfer_one_dma_start(spi);
1399}
1400
1401/**
1402 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1403 *					transfer using DMA
1404 * @spi: pointer to the spi controller data structure
1405 */
1406static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1407{
1408	uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1409
1410	/* Enable the interrupts */
1411	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
1412		ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
1413
1414	stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
1415
1416	stm32_spi_enable(spi);
1417
1418	if (STM32_SPI_HOST_MODE(spi))
1419		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1420}
1421
1422/**
1423 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1424 * @spi: pointer to the spi controller data structure
1425 * @xfer: pointer to the spi_transfer structure
1426 *
1427 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1428 * in progress.
1429 */
1430static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1431				      struct spi_transfer *xfer)
1432{
1433	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1434	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1435	unsigned long flags;
 
1436
1437	spin_lock_irqsave(&spi->lock, flags);
1438
1439	rx_dma_desc = NULL;
1440	if (spi->rx_buf && spi->dma_rx) {
1441		stm32_spi_dma_config(spi, spi->dma_rx, &rx_dma_conf, DMA_DEV_TO_MEM);
1442		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1443
1444		/* Enable Rx DMA request */
1445		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1446				   spi->cfg->regs->dma_rx_en.mask);
1447
1448		rx_dma_desc = dmaengine_prep_slave_sg(
1449					spi->dma_rx, xfer->rx_sg.sgl,
1450					xfer->rx_sg.nents,
1451					rx_dma_conf.direction,
1452					DMA_PREP_INTERRUPT);
1453	}
1454
1455	tx_dma_desc = NULL;
1456	if (spi->tx_buf && spi->dma_tx) {
1457		stm32_spi_dma_config(spi, spi->dma_tx, &tx_dma_conf, DMA_MEM_TO_DEV);
1458		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1459
1460		tx_dma_desc = dmaengine_prep_slave_sg(
1461					spi->dma_tx, xfer->tx_sg.sgl,
1462					xfer->tx_sg.nents,
1463					tx_dma_conf.direction,
1464					DMA_PREP_INTERRUPT);
1465	}
1466
1467	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1468	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1469		goto dma_desc_error;
1470
1471	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1472		goto dma_desc_error;
1473
1474	if (rx_dma_desc) {
1475		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1476		rx_dma_desc->callback_param = spi;
1477
1478		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1479			dev_err(spi->dev, "Rx DMA submit failed\n");
1480			goto dma_desc_error;
1481		}
1482		/* Enable Rx DMA channel */
1483		dma_async_issue_pending(spi->dma_rx);
1484	}
1485
1486	if (tx_dma_desc) {
1487		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1488		    spi->cur_comm == SPI_3WIRE_TX) {
1489			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1490			tx_dma_desc->callback_param = spi;
1491		}
1492
1493		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1494			dev_err(spi->dev, "Tx DMA submit failed\n");
1495			goto dma_submit_error;
1496		}
1497		/* Enable Tx DMA channel */
1498		dma_async_issue_pending(spi->dma_tx);
1499
1500		/* Enable Tx DMA request */
1501		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1502				   spi->cfg->regs->dma_tx_en.mask);
1503	}
1504
1505	spi->cfg->transfer_one_dma_start(spi);
 
 
 
 
 
 
1506
1507	spin_unlock_irqrestore(&spi->lock, flags);
1508
1509	return 1;
1510
1511dma_submit_error:
1512	if (spi->dma_rx)
1513		dmaengine_terminate_sync(spi->dma_rx);
1514
1515dma_desc_error:
1516	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1517			   spi->cfg->regs->dma_rx_en.mask);
1518
1519	spin_unlock_irqrestore(&spi->lock, flags);
1520
1521	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1522
1523	spi->cur_usedma = false;
1524	return spi->cfg->transfer_one_irq(spi);
1525}
1526
1527/**
1528 * stm32f4_spi_set_bpw - Configure bits per word
1529 * @spi: pointer to the spi controller data structure
 
1530 */
1531static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
 
 
1532{
1533	if (spi->cur_bpw == 16)
1534		stm32_spi_set_bits(spi, STM32FX_SPI_CR1, STM32F4_SPI_CR1_DFF);
1535	else
1536		stm32_spi_clr_bits(spi, STM32FX_SPI_CR1, STM32F4_SPI_CR1_DFF);
1537}
1538
1539/**
1540 * stm32f7_spi_set_bpw - Configure bits per word
1541 * @spi: pointer to the spi controller data structure
1542 */
1543static void stm32f7_spi_set_bpw(struct stm32_spi *spi)
1544{
1545	u32 bpw;
1546	u32 cr2_clrb = 0, cr2_setb = 0;
1547
1548	bpw = spi->cur_bpw - 1;
 
1549
1550	cr2_clrb |= STM32F7_SPI_CR2_DS;
1551	cr2_setb |= FIELD_PREP(STM32F7_SPI_CR2_DS, bpw);
1552
1553	if (spi->rx_len >= sizeof(u16))
1554		cr2_clrb |= STM32F7_SPI_CR2_FRXTH;
1555	else
1556		cr2_setb |= STM32F7_SPI_CR2_FRXTH;
1557
1558	writel_relaxed(
1559		(readl_relaxed(spi->base + STM32FX_SPI_CR2) &
1560		 ~cr2_clrb) | cr2_setb,
1561		spi->base + STM32FX_SPI_CR2);
1562}
1563
1564/**
1565 * stm32h7_spi_set_bpw - configure bits per word
1566 * @spi: pointer to the spi controller data structure
1567 */
1568static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1569{
1570	u32 bpw, fthlv;
1571	u32 cfg1_clrb = 0, cfg1_setb = 0;
1572
1573	bpw = spi->cur_bpw - 1;
 
1574
1575	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1576	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
 
 
 
 
1577
1578	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1579	fthlv = spi->cur_fthlv - 1;
1580
1581	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1582	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
 
1583
1584	writel_relaxed(
1585		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1586		 ~cfg1_clrb) | cfg1_setb,
1587		spi->base + STM32H7_SPI_CFG1);
1588}
1589
1590/**
1591 * stm32_spi_set_mbr - Configure baud rate divisor in host mode
1592 * @spi: pointer to the spi controller data structure
1593 * @mbrdiv: baud rate divisor value
1594 */
1595static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1596{
1597	u32 clrb = 0, setb = 0;
1598
1599	clrb |= spi->cfg->regs->br.mask;
1600	setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1601
1602	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1603			~clrb) | setb,
1604		       spi->base + spi->cfg->regs->br.reg);
1605}
1606
1607/**
1608 * stm32_spi_communication_type - return transfer communication type
1609 * @spi_dev: pointer to the spi device
1610 * @transfer: pointer to spi transfer
1611 */
1612static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1613						 struct spi_transfer *transfer)
1614{
1615	unsigned int type = SPI_FULL_DUPLEX;
1616
 
1617	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1618		/*
1619		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1620		 * is forbidden and unvalidated by SPI subsystem so depending
1621		 * on the valid buffer, we can determine the direction of the
1622		 * transfer.
1623		 */
 
1624		if (!transfer->tx_buf)
1625			type = SPI_3WIRE_RX;
1626		else
1627			type = SPI_3WIRE_TX;
1628	} else {
1629		if (!transfer->tx_buf)
1630			type = SPI_SIMPLEX_RX;
1631		else if (!transfer->rx_buf)
1632			type = SPI_SIMPLEX_TX;
1633	}
 
 
1634
1635	return type;
1636}
1637
1638/**
1639 * stm32fx_spi_set_mode - configure communication mode
1640 * @spi: pointer to the spi controller data structure
1641 * @comm_type: type of communication to configure
1642 */
1643static int stm32fx_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1644{
1645	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1646		stm32_spi_set_bits(spi, STM32FX_SPI_CR1,
1647					STM32FX_SPI_CR1_BIDIMODE |
1648					STM32FX_SPI_CR1_BIDIOE);
1649	} else if (comm_type == SPI_FULL_DUPLEX ||
1650				comm_type == SPI_SIMPLEX_RX) {
1651		stm32_spi_clr_bits(spi, STM32FX_SPI_CR1,
1652					STM32FX_SPI_CR1_BIDIMODE |
1653					STM32FX_SPI_CR1_BIDIOE);
1654	} else if (comm_type == SPI_3WIRE_RX) {
1655		stm32_spi_set_bits(spi, STM32FX_SPI_CR1,
1656					STM32FX_SPI_CR1_BIDIMODE);
1657		stm32_spi_clr_bits(spi, STM32FX_SPI_CR1,
1658					STM32FX_SPI_CR1_BIDIOE);
1659	} else {
1660		return -EINVAL;
1661	}
1662
1663	return 0;
1664}
1665
1666/**
1667 * stm32h7_spi_set_mode - configure communication mode
1668 * @spi: pointer to the spi controller data structure
1669 * @comm_type: type of communication to configure
1670 */
1671static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1672{
1673	u32 mode;
1674	u32 cfg2_clrb = 0, cfg2_setb = 0;
1675
1676	if (comm_type == SPI_3WIRE_RX) {
1677		mode = STM32H7_SPI_HALF_DUPLEX;
1678		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1679	} else if (comm_type == SPI_3WIRE_TX) {
1680		mode = STM32H7_SPI_HALF_DUPLEX;
1681		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1682	} else if (comm_type == SPI_SIMPLEX_RX) {
1683		mode = STM32H7_SPI_SIMPLEX_RX;
1684	} else if (comm_type == SPI_SIMPLEX_TX) {
1685		mode = STM32H7_SPI_SIMPLEX_TX;
1686	} else {
1687		mode = STM32H7_SPI_FULL_DUPLEX;
1688	}
1689
1690	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1691	cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1692
1693	writel_relaxed(
1694		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1695		 ~cfg2_clrb) | cfg2_setb,
1696		spi->base + STM32H7_SPI_CFG2);
1697
1698	return 0;
1699}
1700
1701/**
1702 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1703 *			       consecutive data frames in host mode
1704 * @spi: pointer to the spi controller data structure
1705 * @len: transfer len
1706 */
1707static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1708{
1709	u32 cfg2_clrb = 0, cfg2_setb = 0;
1710
1711	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1712	if ((len > 1) && (spi->cur_midi > 0)) {
1713		u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1714		u32 midi = min_t(u32,
1715				 DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1716				 FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1717				 STM32H7_SPI_CFG2_MIDI));
1718
1719
1720		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1721			sck_period_ns, midi, midi * sck_period_ns);
1722		cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1723	}
1724
1725	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1726			~cfg2_clrb) | cfg2_setb,
1727		       spi->base + STM32H7_SPI_CFG2);
1728}
1729
1730/**
1731 * stm32h7_spi_number_of_data - configure number of data at current transfer
1732 * @spi: pointer to the spi controller data structure
1733 * @nb_words: transfer length (in words)
1734 */
1735static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1736{
1737	if (nb_words <= spi->t_size_max) {
1738		writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1739			       spi->base + STM32H7_SPI_CR2);
1740	} else {
1741		return -EMSGSIZE;
1742	}
1743
1744	return 0;
1745}
1746
1747/**
1748 * stm32_spi_transfer_one_setup - common setup to transfer a single
1749 *				  spi_transfer either using DMA or
1750 *				  interrupts.
1751 * @spi: pointer to the spi controller data structure
1752 * @spi_dev: pointer to the spi device
1753 * @transfer: pointer to spi transfer
1754 */
1755static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1756					struct spi_device *spi_dev,
1757					struct spi_transfer *transfer)
1758{
1759	unsigned long flags;
1760	unsigned int comm_type;
1761	int nb_words, ret = 0;
1762	int mbr;
1763
1764	spin_lock_irqsave(&spi->lock, flags);
1765
1766	spi->cur_xferlen = transfer->len;
1767
1768	spi->cur_bpw = transfer->bits_per_word;
1769	spi->cfg->set_bpw(spi);
1770
1771	/* Update spi->cur_speed with real clock speed */
1772	if (STM32_SPI_HOST_MODE(spi)) {
1773		mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1774					    spi->cfg->baud_rate_div_min,
1775					    spi->cfg->baud_rate_div_max);
1776		if (mbr < 0) {
1777			ret = mbr;
1778			goto out;
1779		}
1780
1781		transfer->speed_hz = spi->cur_speed;
1782		stm32_spi_set_mbr(spi, mbr);
1783	}
1784
1785	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1786	ret = spi->cfg->set_mode(spi, comm_type);
1787	if (ret < 0)
1788		goto out;
1789
1790	spi->cur_comm = comm_type;
1791
1792	if (STM32_SPI_HOST_MODE(spi) && spi->cfg->set_data_idleness)
1793		spi->cfg->set_data_idleness(spi, transfer->len);
1794
1795	if (spi->cur_bpw <= 8)
1796		nb_words = transfer->len;
1797	else if (spi->cur_bpw <= 16)
1798		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1799	else
1800		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
 
1801
1802	if (spi->cfg->set_number_of_data) {
1803		ret = spi->cfg->set_number_of_data(spi, nb_words);
1804		if (ret < 0)
1805			goto out;
 
1806	}
1807
 
 
1808	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1809		spi->cur_comm);
1810	dev_dbg(spi->dev,
1811		"data frame of %d-bit, data packet of %d data frames\n",
1812		spi->cur_bpw, spi->cur_fthlv);
1813	if (STM32_SPI_HOST_MODE(spi))
1814		dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1815	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1816		spi->cur_xferlen, nb_words);
1817	dev_dbg(spi->dev, "dma %s\n",
1818		(spi->cur_usedma) ? "enabled" : "disabled");
1819
1820out:
1821	spin_unlock_irqrestore(&spi->lock, flags);
1822
1823	return ret;
1824}
1825
1826/**
1827 * stm32_spi_transfer_one - transfer a single spi_transfer
1828 * @ctrl: controller interface
1829 * @spi_dev: pointer to the spi device
1830 * @transfer: pointer to spi transfer
1831 *
1832 * It must return 0 if the transfer is finished or 1 if the transfer is still
1833 * in progress.
1834 */
1835static int stm32_spi_transfer_one(struct spi_controller *ctrl,
1836				  struct spi_device *spi_dev,
1837				  struct spi_transfer *transfer)
1838{
1839	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1840	int ret;
1841
1842	spi->tx_buf = transfer->tx_buf;
1843	spi->rx_buf = transfer->rx_buf;
1844	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1845	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1846
1847	spi->cur_usedma = (ctrl->can_dma &&
1848			   ctrl->can_dma(ctrl, spi_dev, transfer));
1849
1850	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1851	if (ret) {
1852		dev_err(spi->dev, "SPI transfer setup failed\n");
1853		return ret;
1854	}
1855
1856	if (spi->cur_usedma)
1857		return stm32_spi_transfer_one_dma(spi, transfer);
1858	else
1859		return spi->cfg->transfer_one_irq(spi);
1860}
1861
1862/**
1863 * stm32_spi_unprepare_msg - relax the hardware
1864 * @ctrl: controller interface
1865 * @msg: pointer to the spi message
 
 
 
1866 */
1867static int stm32_spi_unprepare_msg(struct spi_controller *ctrl,
1868				   struct spi_message *msg)
1869{
1870	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1871
1872	spi->cfg->disable(spi);
1873
1874	return 0;
1875}
1876
1877/**
1878 * stm32fx_spi_config - Configure SPI controller as SPI host
1879 * @spi: pointer to the spi controller data structure
1880 */
1881static int stm32fx_spi_config(struct stm32_spi *spi)
1882{
1883	unsigned long flags;
1884
1885	spin_lock_irqsave(&spi->lock, flags);
1886
1887	/* Ensure I2SMOD bit is kept cleared */
1888	stm32_spi_clr_bits(spi, STM32FX_SPI_I2SCFGR,
1889			   STM32FX_SPI_I2SCFGR_I2SMOD);
1890
1891	/*
1892	 * - SS input value high
1893	 * - transmitter half duplex direction
1894	 * - Set the host mode (default Motorola mode)
1895	 * - Consider 1 host/n targets configuration and
 
 
 
 
 
 
 
1896	 *   SS input value is determined by the SSI bit
 
1897	 */
1898	stm32_spi_set_bits(spi, STM32FX_SPI_CR1, STM32FX_SPI_CR1_SSI |
1899						 STM32FX_SPI_CR1_BIDIOE |
1900						 STM32FX_SPI_CR1_MSTR |
1901						 STM32FX_SPI_CR1_SSM);
1902
1903	spin_unlock_irqrestore(&spi->lock, flags);
1904
1905	return 0;
1906}
1907
1908/**
1909 * stm32h7_spi_config - Configure SPI controller
1910 * @spi: pointer to the spi controller data structure
1911 */
1912static int stm32h7_spi_config(struct stm32_spi *spi)
1913{
1914	unsigned long flags;
1915	u32 cr1 = 0, cfg2 = 0;
1916
1917	spin_lock_irqsave(&spi->lock, flags);
1918
1919	/* Ensure I2SMOD bit is kept cleared */
1920	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1921			   STM32H7_SPI_I2SCFGR_I2SMOD);
1922
1923	if (STM32_SPI_DEVICE_MODE(spi)) {
1924		/* Use native device select */
1925		cfg2 &= ~STM32H7_SPI_CFG2_SSM;
1926	} else {
1927		/*
1928		 * - Transmitter half duplex direction
1929		 * - Automatic communication suspend when RX-Fifo is full
1930		 * - SS input value high
1931		 */
1932		cr1 |= STM32H7_SPI_CR1_HDDIR | STM32H7_SPI_CR1_MASRX | STM32H7_SPI_CR1_SSI;
1933
1934		/*
1935		 * - Set the host mode (default Motorola mode)
1936		 * - Consider 1 host/n devices configuration and
1937		 *   SS input value is determined by the SSI bit
1938		 * - keep control of all associated GPIOs
1939		 */
1940		cfg2 |= STM32H7_SPI_CFG2_MASTER | STM32H7_SPI_CFG2_SSM | STM32H7_SPI_CFG2_AFCNTR;
1941	}
1942
1943	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, cr1);
1944	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, cfg2);
1945
1946	spin_unlock_irqrestore(&spi->lock, flags);
1947
1948	return 0;
1949}
1950
1951static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1952	.regs = &stm32fx_spi_regspec,
1953	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1954	.disable = stm32fx_spi_disable,
1955	.config = stm32fx_spi_config,
1956	.set_bpw = stm32f4_spi_set_bpw,
1957	.set_mode = stm32fx_spi_set_mode,
1958	.write_tx = stm32f4_spi_write_tx,
1959	.read_rx = stm32f4_spi_read_rx,
1960	.transfer_one_dma_start = stm32fx_spi_transfer_one_dma_start,
1961	.dma_tx_cb = stm32fx_spi_dma_tx_cb,
1962	.dma_rx_cb = stm32_spi_dma_rx_cb,
1963	.transfer_one_irq = stm32fx_spi_transfer_one_irq,
1964	.irq_handler_event = stm32fx_spi_irq_event,
1965	.irq_handler_thread = stm32fx_spi_irq_thread,
1966	.baud_rate_div_min = STM32FX_SPI_BR_DIV_MIN,
1967	.baud_rate_div_max = STM32FX_SPI_BR_DIV_MAX,
1968	.has_fifo = false,
1969	.has_device_mode = false,
1970	.flags = SPI_CONTROLLER_MUST_TX,
1971};
1972
1973static const struct stm32_spi_cfg stm32f7_spi_cfg = {
1974	.regs = &stm32fx_spi_regspec,
1975	.get_bpw_mask = stm32f7_spi_get_bpw_mask,
1976	.disable = stm32fx_spi_disable,
1977	.config = stm32fx_spi_config,
1978	.set_bpw = stm32f7_spi_set_bpw,
1979	.set_mode = stm32fx_spi_set_mode,
1980	.write_tx = stm32f7_spi_write_tx,
1981	.read_rx = stm32f7_spi_read_rx,
1982	.transfer_one_dma_start = stm32f7_spi_transfer_one_dma_start,
1983	.dma_tx_cb = stm32fx_spi_dma_tx_cb,
1984	.dma_rx_cb = stm32_spi_dma_rx_cb,
1985	.transfer_one_irq = stm32fx_spi_transfer_one_irq,
1986	.irq_handler_event = stm32fx_spi_irq_event,
1987	.irq_handler_thread = stm32fx_spi_irq_thread,
1988	.baud_rate_div_min = STM32FX_SPI_BR_DIV_MIN,
1989	.baud_rate_div_max = STM32FX_SPI_BR_DIV_MAX,
1990	.has_fifo = false,
1991	.flags = SPI_CONTROLLER_MUST_TX,
1992};
1993
1994static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1995	.regs = &stm32h7_spi_regspec,
1996	.get_fifo_size = stm32h7_spi_get_fifo_size,
1997	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1998	.disable = stm32h7_spi_disable,
1999	.config = stm32h7_spi_config,
2000	.set_bpw = stm32h7_spi_set_bpw,
2001	.set_mode = stm32h7_spi_set_mode,
2002	.set_data_idleness = stm32h7_spi_data_idleness,
2003	.set_number_of_data = stm32h7_spi_number_of_data,
2004	.write_tx = stm32h7_spi_write_txfifo,
2005	.read_rx = stm32h7_spi_read_rxfifo,
2006	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
2007	.dma_rx_cb = stm32_spi_dma_rx_cb,
2008	/*
2009	 * dma_tx_cb is not necessary since in case of TX, dma is followed by
2010	 * SPI access hence handling is performed within the SPI interrupt
2011	 */
2012	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
2013	.irq_handler_thread = stm32h7_spi_irq_thread,
2014	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
2015	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
2016	.has_fifo = true,
2017	.has_device_mode = true,
2018};
2019
2020/*
2021 * STM32MP2 is compatible with the STM32H7 except:
2022 * - enforce the DMA maxburst value to 1
2023 * - spi8 have limited feature set (TSIZE_MAX = 1024, BPW of 8 OR 16)
2024 */
2025static const struct stm32_spi_cfg stm32mp25_spi_cfg = {
2026	.regs = &stm32mp25_spi_regspec,
2027	.get_fifo_size = stm32h7_spi_get_fifo_size,
2028	.get_bpw_mask = stm32mp25_spi_get_bpw_mask,
2029	.disable = stm32h7_spi_disable,
2030	.config = stm32h7_spi_config,
2031	.set_bpw = stm32h7_spi_set_bpw,
2032	.set_mode = stm32h7_spi_set_mode,
2033	.set_data_idleness = stm32h7_spi_data_idleness,
2034	.set_number_of_data = stm32h7_spi_number_of_data,
2035	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
2036	.dma_rx_cb = stm32_spi_dma_rx_cb,
2037	/*
2038	 * dma_tx_cb is not necessary since in case of TX, dma is followed by
2039	 * SPI access hence handling is performed within the SPI interrupt
2040	 */
2041	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
2042	.irq_handler_thread = stm32h7_spi_irq_thread,
2043	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
2044	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
2045	.has_fifo = true,
2046	.prevent_dma_burst = true,
2047	.has_device_mode = true,
2048};
2049
2050static const struct of_device_id stm32_spi_of_match[] = {
2051	{ .compatible = "st,stm32mp25-spi", .data = (void *)&stm32mp25_spi_cfg },
2052	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
2053	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
2054	{ .compatible = "st,stm32f7-spi", .data = (void *)&stm32f7_spi_cfg },
2055	{},
2056};
2057MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
2058
2059static int stm32h7_spi_device_abort(struct spi_controller *ctrl)
2060{
2061	spi_finalize_current_transfer(ctrl);
2062	return 0;
2063}
2064
2065static int stm32_spi_probe(struct platform_device *pdev)
2066{
2067	struct spi_controller *ctrl;
2068	struct stm32_spi *spi;
2069	struct resource *res;
2070	struct reset_control *rst;
2071	struct device_node *np = pdev->dev.of_node;
2072	bool device_mode;
2073	int ret;
2074	const struct stm32_spi_cfg *cfg = of_device_get_match_data(&pdev->dev);
2075
2076	device_mode = of_property_read_bool(np, "spi-slave");
2077	if (!cfg->has_device_mode && device_mode) {
2078		dev_err(&pdev->dev, "spi-slave not supported\n");
2079		return -EPERM;
2080	}
2081
2082	if (device_mode)
2083		ctrl = devm_spi_alloc_target(&pdev->dev, sizeof(struct stm32_spi));
2084	else
2085		ctrl = devm_spi_alloc_host(&pdev->dev, sizeof(struct stm32_spi));
2086	if (!ctrl) {
2087		dev_err(&pdev->dev, "spi controller allocation failed\n");
2088		return -ENOMEM;
2089	}
2090	platform_set_drvdata(pdev, ctrl);
2091
2092	spi = spi_controller_get_devdata(ctrl);
2093	spi->dev = &pdev->dev;
2094	spi->ctrl = ctrl;
2095	spi->device_mode = device_mode;
2096	spin_lock_init(&spi->lock);
2097
2098	spi->cfg = cfg;
2099
2100	spi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2101	if (IS_ERR(spi->base))
2102		return PTR_ERR(spi->base);
2103
2104	spi->phys_addr = (dma_addr_t)res->start;
2105
2106	spi->irq = platform_get_irq(pdev, 0);
2107	if (spi->irq <= 0)
2108		return spi->irq;
2109
2110	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
2111					spi->cfg->irq_handler_event,
2112					spi->cfg->irq_handler_thread,
2113					IRQF_ONESHOT, pdev->name, ctrl);
 
2114	if (ret) {
2115		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
2116			ret);
2117		return ret;
2118	}
2119
2120	spi->clk = devm_clk_get(&pdev->dev, NULL);
2121	if (IS_ERR(spi->clk)) {
2122		ret = PTR_ERR(spi->clk);
2123		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
2124		return ret;
2125	}
2126
2127	ret = clk_prepare_enable(spi->clk);
2128	if (ret) {
2129		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
2130		return ret;
2131	}
2132	spi->clk_rate = clk_get_rate(spi->clk);
2133	if (!spi->clk_rate) {
2134		dev_err(&pdev->dev, "clk rate = 0\n");
2135		ret = -EINVAL;
2136		goto err_clk_disable;
2137	}
2138
2139	rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
2140	if (rst) {
2141		if (IS_ERR(rst)) {
2142			ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
2143					    "failed to get reset\n");
2144			goto err_clk_disable;
2145		}
2146
2147		reset_control_assert(rst);
2148		udelay(2);
2149		reset_control_deassert(rst);
2150	}
2151
2152	if (spi->cfg->has_fifo)
2153		spi->fifo_size = spi->cfg->get_fifo_size(spi);
2154
2155	spi->feature_set = STM32_SPI_FEATURE_FULL;
2156	if (spi->cfg->regs->fullcfg.reg) {
2157		spi->feature_set =
2158			FIELD_GET(STM32MP25_SPI_HWCFGR1_FULLCFG,
2159				  readl_relaxed(spi->base + spi->cfg->regs->fullcfg.reg));
2160
2161		dev_dbg(spi->dev, "%s feature set\n",
2162			spi->feature_set == STM32_SPI_FEATURE_FULL ? "full" : "limited");
2163	}
2164
2165	/* Only for STM32H7 and after */
2166	spi->t_size_max = spi->feature_set == STM32_SPI_FEATURE_FULL ?
2167				STM32H7_SPI_TSIZE_MAX :
2168				STM32MP25_SPI_TSIZE_MAX_LIMITED;
2169	dev_dbg(spi->dev, "one message max size %d\n", spi->t_size_max);
2170
2171	ret = spi->cfg->config(spi);
2172	if (ret) {
2173		dev_err(&pdev->dev, "controller configuration failed: %d\n",
2174			ret);
2175		goto err_clk_disable;
2176	}
2177
2178	ctrl->dev.of_node = pdev->dev.of_node;
2179	ctrl->auto_runtime_pm = true;
2180	ctrl->bus_num = pdev->id;
2181	ctrl->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
2182			  SPI_3WIRE;
2183	ctrl->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
2184	ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
2185	ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
2186	ctrl->use_gpio_descriptors = true;
2187	ctrl->optimize_message = stm32_spi_optimize_message;
2188	ctrl->prepare_message = stm32_spi_prepare_msg;
2189	ctrl->transfer_one = stm32_spi_transfer_one;
2190	ctrl->unprepare_message = stm32_spi_unprepare_msg;
2191	ctrl->flags = spi->cfg->flags;
2192	if (STM32_SPI_DEVICE_MODE(spi))
2193		ctrl->target_abort = stm32h7_spi_device_abort;
2194
2195	spi->dma_tx = dma_request_chan(spi->dev, "tx");
2196	if (IS_ERR(spi->dma_tx)) {
2197		ret = PTR_ERR(spi->dma_tx);
2198		spi->dma_tx = NULL;
2199		if (ret == -EPROBE_DEFER)
2200			goto err_clk_disable;
2201
 
 
2202		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
2203	} else {
2204		ctrl->dma_tx = spi->dma_tx;
2205	}
2206
2207	spi->dma_rx = dma_request_chan(spi->dev, "rx");
2208	if (IS_ERR(spi->dma_rx)) {
2209		ret = PTR_ERR(spi->dma_rx);
2210		spi->dma_rx = NULL;
2211		if (ret == -EPROBE_DEFER)
2212			goto err_dma_release;
2213
 
 
2214		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
2215	} else {
2216		ctrl->dma_rx = spi->dma_rx;
2217	}
2218
2219	if (spi->dma_tx || spi->dma_rx)
2220		ctrl->can_dma = stm32_spi_can_dma;
2221
2222	pm_runtime_set_autosuspend_delay(&pdev->dev,
2223					 STM32_SPI_AUTOSUSPEND_DELAY);
2224	pm_runtime_use_autosuspend(&pdev->dev);
2225	pm_runtime_set_active(&pdev->dev);
2226	pm_runtime_get_noresume(&pdev->dev);
2227	pm_runtime_enable(&pdev->dev);
2228
2229	ret = spi_register_controller(ctrl);
2230	if (ret) {
2231		dev_err(&pdev->dev, "spi controller registration failed: %d\n",
2232			ret);
2233		goto err_pm_disable;
2234	}
2235
2236	pm_runtime_mark_last_busy(&pdev->dev);
2237	pm_runtime_put_autosuspend(&pdev->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2238
2239	dev_info(&pdev->dev, "driver initialized (%s mode)\n",
2240		 STM32_SPI_HOST_MODE(spi) ? "host" : "device");
2241
2242	return 0;
2243
2244err_pm_disable:
2245	pm_runtime_disable(&pdev->dev);
2246	pm_runtime_put_noidle(&pdev->dev);
2247	pm_runtime_set_suspended(&pdev->dev);
2248	pm_runtime_dont_use_autosuspend(&pdev->dev);
2249err_dma_release:
2250	if (spi->dma_tx)
2251		dma_release_channel(spi->dma_tx);
2252	if (spi->dma_rx)
2253		dma_release_channel(spi->dma_rx);
 
 
2254err_clk_disable:
2255	clk_disable_unprepare(spi->clk);
 
 
2256
2257	return ret;
2258}
2259
2260static void stm32_spi_remove(struct platform_device *pdev)
2261{
2262	struct spi_controller *ctrl = platform_get_drvdata(pdev);
2263	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2264
2265	pm_runtime_get_sync(&pdev->dev);
2266
2267	spi_unregister_controller(ctrl);
2268	spi->cfg->disable(spi);
2269
2270	pm_runtime_disable(&pdev->dev);
2271	pm_runtime_put_noidle(&pdev->dev);
2272	pm_runtime_set_suspended(&pdev->dev);
2273	pm_runtime_dont_use_autosuspend(&pdev->dev);
2274
2275	if (ctrl->dma_tx)
2276		dma_release_channel(ctrl->dma_tx);
2277	if (ctrl->dma_rx)
2278		dma_release_channel(ctrl->dma_rx);
2279
2280	clk_disable_unprepare(spi->clk);
2281
 
2282
2283	pinctrl_pm_select_sleep_state(&pdev->dev);
2284}
2285
2286static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
 
2287{
2288	struct spi_controller *ctrl = dev_get_drvdata(dev);
2289	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2290
2291	clk_disable_unprepare(spi->clk);
2292
2293	return pinctrl_pm_select_sleep_state(dev);
2294}
2295
2296static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
2297{
2298	struct spi_controller *ctrl = dev_get_drvdata(dev);
2299	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2300	int ret;
2301
2302	ret = pinctrl_pm_select_default_state(dev);
2303	if (ret)
2304		return ret;
2305
2306	return clk_prepare_enable(spi->clk);
2307}
 
2308
2309static int __maybe_unused stm32_spi_suspend(struct device *dev)
 
2310{
2311	struct spi_controller *ctrl = dev_get_drvdata(dev);
2312	int ret;
2313
2314	ret = spi_controller_suspend(ctrl);
2315	if (ret)
2316		return ret;
2317
2318	return pm_runtime_force_suspend(dev);
2319}
2320
2321static int __maybe_unused stm32_spi_resume(struct device *dev)
2322{
2323	struct spi_controller *ctrl = dev_get_drvdata(dev);
2324	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2325	int ret;
2326
2327	ret = pm_runtime_force_resume(dev);
2328	if (ret)
2329		return ret;
2330
2331	ret = spi_controller_resume(ctrl);
2332	if (ret) {
2333		clk_disable_unprepare(spi->clk);
2334		return ret;
2335	}
2336
2337	ret = pm_runtime_resume_and_get(dev);
2338	if (ret < 0) {
2339		dev_err(dev, "Unable to power device:%d\n", ret);
2340		return ret;
2341	}
2342
2343	spi->cfg->config(spi);
2344
2345	pm_runtime_mark_last_busy(dev);
2346	pm_runtime_put_autosuspend(dev);
2347
2348	return 0;
2349}
 
2350
2351static const struct dev_pm_ops stm32_spi_pm_ops = {
2352	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2353	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2354			   stm32_spi_runtime_resume, NULL)
2355};
2356
2357static struct platform_driver stm32_spi_driver = {
2358	.probe = stm32_spi_probe,
2359	.remove = stm32_spi_remove,
2360	.driver = {
2361		.name = DRIVER_NAME,
2362		.pm = &stm32_spi_pm_ops,
2363		.of_match_table = stm32_spi_of_match,
2364	},
2365};
2366
2367module_platform_driver(stm32_spi_driver);
2368
2369MODULE_ALIAS("platform:" DRIVER_NAME);
2370MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2371MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2372MODULE_LICENSE("GPL v2");