Linux Audio

Check our new training course

Loading...
v4.17
   1/******************************************************************************
   2 *
   3 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
   4 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
   5 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
   6 *
   7 * Portions of this file are derived from the ipw3945 project, as well
   8 * as portions of the ieee80211 subsystem header files.
   9 *
  10 * This program is free software; you can redistribute it and/or modify it
  11 * under the terms of version 2 of the GNU General Public License as
  12 * published by the Free Software Foundation.
  13 *
  14 * This program is distributed in the hope that it will be useful, but WITHOUT
  15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  17 * more details.
  18 *
  19 * You should have received a copy of the GNU General Public License along with
  20 * this program; if not, write to the Free Software Foundation, Inc.,
  21 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  22 *
  23 * The full GNU General Public License is included in this distribution in the
  24 * file called LICENSE.
  25 *
  26 * Contact Information:
  27 *  Intel Linux Wireless <linuxwifi@intel.com>
  28 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  29 *
  30 *****************************************************************************/
  31#include <linux/sched.h>
  32#include <linux/wait.h>
  33#include <linux/gfp.h>
  34
  35#include "iwl-prph.h"
  36#include "iwl-io.h"
  37#include "internal.h"
  38#include "iwl-op-mode.h"
 
  39
  40/******************************************************************************
  41 *
  42 * RX path functions
  43 *
  44 ******************************************************************************/
  45
  46/*
  47 * Rx theory of operation
  48 *
  49 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
  50 * each of which point to Receive Buffers to be filled by the NIC.  These get
  51 * used not only for Rx frames, but for any command response or notification
  52 * from the NIC.  The driver and NIC manage the Rx buffers by means
  53 * of indexes into the circular buffer.
  54 *
  55 * Rx Queue Indexes
  56 * The host/firmware share two index registers for managing the Rx buffers.
  57 *
  58 * The READ index maps to the first position that the firmware may be writing
  59 * to -- the driver can read up to (but not including) this position and get
  60 * good data.
  61 * The READ index is managed by the firmware once the card is enabled.
  62 *
  63 * The WRITE index maps to the last position the driver has read from -- the
  64 * position preceding WRITE is the last slot the firmware can place a packet.
  65 *
  66 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
  67 * WRITE = READ.
  68 *
  69 * During initialization, the host sets up the READ queue position to the first
  70 * INDEX position, and WRITE to the last (READ - 1 wrapped)
  71 *
  72 * When the firmware places a packet in a buffer, it will advance the READ index
  73 * and fire the RX interrupt.  The driver can then query the READ index and
  74 * process as many packets as possible, moving the WRITE index forward as it
  75 * resets the Rx queue buffers with new memory.
  76 *
  77 * The management in the driver is as follows:
  78 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
  79 *   When the interrupt handler is called, the request is processed.
  80 *   The page is either stolen - transferred to the upper layer
  81 *   or reused - added immediately to the iwl->rxq->rx_free list.
  82 * + When the page is stolen - the driver updates the matching queue's used
  83 *   count, detaches the RBD and transfers it to the queue used list.
  84 *   When there are two used RBDs - they are transferred to the allocator empty
  85 *   list. Work is then scheduled for the allocator to start allocating
  86 *   eight buffers.
  87 *   When there are another 6 used RBDs - they are transferred to the allocator
  88 *   empty list and the driver tries to claim the pre-allocated buffers and
  89 *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
  90 *   until ready.
  91 *   When there are 8+ buffers in the free list - either from allocation or from
  92 *   8 reused unstolen pages - restock is called to update the FW and indexes.
  93 * + In order to make sure the allocator always has RBDs to use for allocation
  94 *   the allocator has initial pool in the size of num_queues*(8-2) - the
  95 *   maximum missing RBDs per allocation request (request posted with 2
  96 *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
  97 *   The queues supplies the recycle of the rest of the RBDs.
  98 * + A received packet is processed and handed to the kernel network stack,
  99 *   detached from the iwl->rxq.  The driver 'processed' index is updated.
 100 * + If there are no allocated buffers in iwl->rxq->rx_free,
 101 *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
 102 *   If there were enough free buffers and RX_STALLED is set it is cleared.
 103 *
 104 *
 105 * Driver sequence:
 106 *
 107 * iwl_rxq_alloc()            Allocates rx_free
 108 * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
 109 *                            iwl_pcie_rxq_restock.
 110 *                            Used only during initialization.
 111 * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
 112 *                            queue, updates firmware pointers, and updates
 113 *                            the WRITE index.
 114 * iwl_pcie_rx_allocator()     Background work for allocating pages.
 115 *
 116 * -- enable interrupts --
 117 * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
 118 *                            READ INDEX, detaching the SKB from the pool.
 119 *                            Moves the packet buffer from queue to rx_used.
 120 *                            Posts and claims requests to the allocator.
 121 *                            Calls iwl_pcie_rxq_restock to refill any empty
 122 *                            slots.
 123 *
 124 * RBD life-cycle:
 125 *
 126 * Init:
 127 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
 128 *
 129 * Regular Receive interrupt:
 130 * Page Stolen:
 131 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
 132 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
 133 * Page not Stolen:
 134 * rxq.queue -> rxq.rx_free -> rxq.queue
 135 * ...
 136 *
 137 */
 138
 139/*
 140 * iwl_rxq_space - Return number of free slots available in queue.
 141 */
 142static int iwl_rxq_space(const struct iwl_rxq *rxq)
 143{
 144	/* Make sure rx queue size is a power of 2 */
 145	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
 146
 147	/*
 148	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
 149	 * between empty and completely full queues.
 150	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
 151	 * defined for negative dividends.
 152	 */
 153	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
 154}
 155
 156/*
 157 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
 158 */
 159static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
 160{
 161	return cpu_to_le32((u32)(dma_addr >> 8));
 162}
 163
 164/*
 165 * iwl_pcie_rx_stop - stops the Rx DMA
 166 */
 167int iwl_pcie_rx_stop(struct iwl_trans *trans)
 168{
 169	if (trans->cfg->mq_rx_supported) {
 
 
 
 
 
 170		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
 171		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
 172					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
 173	} else {
 174		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
 175		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
 176					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
 177					   1000);
 178	}
 179}
 180
 181/*
 182 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
 183 */
 184static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
 185				    struct iwl_rxq *rxq)
 186{
 187	u32 reg;
 188
 189	lockdep_assert_held(&rxq->lock);
 190
 191	/*
 192	 * explicitly wake up the NIC if:
 193	 * 1. shadow registers aren't enabled
 194	 * 2. there is a chance that the NIC is asleep
 195	 */
 196	if (!trans->cfg->base_params->shadow_reg_enable &&
 197	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
 198		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
 199
 200		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
 201			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
 202				       reg);
 203			iwl_set_bit(trans, CSR_GP_CNTRL,
 204				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
 205			rxq->need_update = true;
 206			return;
 207		}
 208	}
 209
 210	rxq->write_actual = round_down(rxq->write, 8);
 211	if (trans->cfg->mq_rx_supported)
 
 
 
 
 
 212		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
 213			    rxq->write_actual);
 214	else
 215		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
 216}
 217
 218static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
 219{
 220	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 221	int i;
 222
 223	for (i = 0; i < trans->num_rx_queues; i++) {
 224		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 225
 226		if (!rxq->need_update)
 227			continue;
 228		spin_lock(&rxq->lock);
 229		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 230		rxq->need_update = false;
 231		spin_unlock(&rxq->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232	}
 
 
 
 233}
 234
 235/*
 236 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
 237 */
 238static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
 239				  struct iwl_rxq *rxq)
 240{
 
 241	struct iwl_rx_mem_buffer *rxb;
 242
 243	/*
 244	 * If the device isn't enabled - no need to try to add buffers...
 245	 * This can happen when we stop the device and still have an interrupt
 246	 * pending. We stop the APM before we sync the interrupts because we
 247	 * have to (see comment there). On the other hand, since the APM is
 248	 * stopped, we cannot access the HW (in particular not prph).
 249	 * So don't try to restock if the APM has been already stopped.
 250	 */
 251	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
 252		return;
 253
 254	spin_lock(&rxq->lock);
 255	while (rxq->free_count) {
 256		__le64 *bd = (__le64 *)rxq->bd;
 257
 258		/* Get next free Rx buffer, remove from free list */
 259		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
 260				       list);
 261		list_del(&rxb->list);
 262		rxb->invalid = false;
 263		/* 12 first bits are expected to be empty */
 264		WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
 265		/* Point to Rx buffer via next RBD in circular buffer */
 266		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
 267		rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
 268		rxq->free_count--;
 269	}
 270	spin_unlock(&rxq->lock);
 271
 272	/*
 273	 * If we've added more space for the firmware to place data, tell it.
 274	 * Increment device's write pointer in multiples of 8.
 275	 */
 276	if (rxq->write_actual != (rxq->write & ~0x7)) {
 277		spin_lock(&rxq->lock);
 278		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 279		spin_unlock(&rxq->lock);
 280	}
 281}
 282
 283/*
 284 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
 285 */
 286static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
 287				  struct iwl_rxq *rxq)
 288{
 289	struct iwl_rx_mem_buffer *rxb;
 290
 291	/*
 292	 * If the device isn't enabled - not need to try to add buffers...
 293	 * This can happen when we stop the device and still have an interrupt
 294	 * pending. We stop the APM before we sync the interrupts because we
 295	 * have to (see comment there). On the other hand, since the APM is
 296	 * stopped, we cannot access the HW (in particular not prph).
 297	 * So don't try to restock if the APM has been already stopped.
 298	 */
 299	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
 300		return;
 301
 302	spin_lock(&rxq->lock);
 303	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
 304		__le32 *bd = (__le32 *)rxq->bd;
 305		/* The overwritten rxb must be a used one */
 306		rxb = rxq->queue[rxq->write];
 307		BUG_ON(rxb && rxb->page);
 308
 309		/* Get next free Rx buffer, remove from free list */
 310		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
 311				       list);
 312		list_del(&rxb->list);
 313		rxb->invalid = false;
 314
 315		/* Point to Rx buffer via next RBD in circular buffer */
 316		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
 317		rxq->queue[rxq->write] = rxb;
 318		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
 319		rxq->free_count--;
 320	}
 321	spin_unlock(&rxq->lock);
 322
 323	/* If we've added more space for the firmware to place data, tell it.
 324	 * Increment device's write pointer in multiples of 8. */
 325	if (rxq->write_actual != (rxq->write & ~0x7)) {
 326		spin_lock(&rxq->lock);
 327		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 328		spin_unlock(&rxq->lock);
 329	}
 330}
 331
 332/*
 333 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
 334 *
 335 * If there are slots in the RX queue that need to be restocked,
 336 * and we have free pre-allocated buffers, fill the ranks as much
 337 * as we can, pulling from rx_free.
 338 *
 339 * This moves the 'write' index forward to catch up with 'processed', and
 340 * also updates the memory address in the firmware to reference the new
 341 * target buffer.
 342 */
 343static
 344void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
 345{
 346	if (trans->cfg->mq_rx_supported)
 347		iwl_pcie_rxmq_restock(trans, rxq);
 348	else
 349		iwl_pcie_rxsq_restock(trans, rxq);
 350}
 351
 352/*
 353 * iwl_pcie_rx_alloc_page - allocates and returns a page.
 354 *
 355 */
 356static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
 357					   gfp_t priority)
 358{
 359	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 
 
 360	struct page *page;
 361	gfp_t gfp_mask = priority;
 362
 363	if (trans_pcie->rx_page_order > 0)
 364		gfp_mask |= __GFP_COMP;
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366	/* Alloc a new receive buffer */
 367	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
 368	if (!page) {
 369		if (net_ratelimit())
 370			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
 371				       trans_pcie->rx_page_order);
 372		/*
 373		 * Issue an error if we don't have enough pre-allocated
 374		  * buffers.
 375`		 */
 376		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
 377			IWL_CRIT(trans,
 378				 "Failed to alloc_pages\n");
 379		return NULL;
 380	}
 
 
 
 
 
 
 
 
 
 
 
 
 381	return page;
 382}
 383
 384/*
 385 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
 386 *
 387 * A used RBD is an Rx buffer that has been given to the stack. To use it again
 388 * a page must be allocated and the RBD must point to the page. This function
 389 * doesn't change the HW pointer but handles the list of pages that is used by
 390 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
 391 * allocated buffers.
 392 */
 393static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
 394				   struct iwl_rxq *rxq)
 395{
 396	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 397	struct iwl_rx_mem_buffer *rxb;
 398	struct page *page;
 399
 400	while (1) {
 401		spin_lock(&rxq->lock);
 
 
 402		if (list_empty(&rxq->rx_used)) {
 403			spin_unlock(&rxq->lock);
 404			return;
 405		}
 406		spin_unlock(&rxq->lock);
 407
 408		/* Alloc a new receive buffer */
 409		page = iwl_pcie_rx_alloc_page(trans, priority);
 410		if (!page)
 411			return;
 412
 413		spin_lock(&rxq->lock);
 414
 415		if (list_empty(&rxq->rx_used)) {
 416			spin_unlock(&rxq->lock);
 417			__free_pages(page, trans_pcie->rx_page_order);
 418			return;
 419		}
 420		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
 421				       list);
 422		list_del(&rxb->list);
 423		spin_unlock(&rxq->lock);
 424
 425		BUG_ON(rxb->page);
 426		rxb->page = page;
 
 427		/* Get physical address of the RB */
 428		rxb->page_dma =
 429			dma_map_page(trans->dev, page, 0,
 430				     PAGE_SIZE << trans_pcie->rx_page_order,
 431				     DMA_FROM_DEVICE);
 432		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
 433			rxb->page = NULL;
 434			spin_lock(&rxq->lock);
 435			list_add(&rxb->list, &rxq->rx_used);
 436			spin_unlock(&rxq->lock);
 437			__free_pages(page, trans_pcie->rx_page_order);
 438			return;
 439		}
 440
 441		spin_lock(&rxq->lock);
 442
 443		list_add_tail(&rxb->list, &rxq->rx_free);
 444		rxq->free_count++;
 445
 446		spin_unlock(&rxq->lock);
 447	}
 448}
 449
 450static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
 451{
 452	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 453	int i;
 454
 455	for (i = 0; i < RX_POOL_SIZE; i++) {
 
 
 
 456		if (!trans_pcie->rx_pool[i].page)
 457			continue;
 458		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
 459			       PAGE_SIZE << trans_pcie->rx_page_order,
 460			       DMA_FROM_DEVICE);
 461		__free_pages(trans_pcie->rx_pool[i].page,
 462			     trans_pcie->rx_page_order);
 463		trans_pcie->rx_pool[i].page = NULL;
 464	}
 465}
 466
 467/*
 468 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
 469 *
 470 * Allocates for each received request 8 pages
 471 * Called as a scheduled work item.
 472 */
 473static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
 474{
 475	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 476	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 477	struct list_head local_empty;
 478	int pending = atomic_xchg(&rba->req_pending, 0);
 479
 480	IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
 481
 482	/* If we were scheduled - there is at least one request */
 483	spin_lock(&rba->lock);
 484	/* swap out the rba->rbd_empty to a local list */
 485	list_replace_init(&rba->rbd_empty, &local_empty);
 486	spin_unlock(&rba->lock);
 487
 488	while (pending) {
 489		int i;
 490		LIST_HEAD(local_allocated);
 491		gfp_t gfp_mask = GFP_KERNEL;
 492
 493		/* Do not post a warning if there are only a few requests */
 494		if (pending < RX_PENDING_WATERMARK)
 495			gfp_mask |= __GFP_NOWARN;
 496
 497		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
 498			struct iwl_rx_mem_buffer *rxb;
 499			struct page *page;
 500
 501			/* List should never be empty - each reused RBD is
 502			 * returned to the list, and initial pool covers any
 503			 * possible gap between the time the page is allocated
 504			 * to the time the RBD is added.
 505			 */
 506			BUG_ON(list_empty(&local_empty));
 507			/* Get the first rxb from the rbd list */
 508			rxb = list_first_entry(&local_empty,
 509					       struct iwl_rx_mem_buffer, list);
 510			BUG_ON(rxb->page);
 511
 512			/* Alloc a new receive buffer */
 513			page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
 
 514			if (!page)
 515				continue;
 516			rxb->page = page;
 517
 518			/* Get physical address of the RB */
 519			rxb->page_dma = dma_map_page(trans->dev, page, 0,
 520					PAGE_SIZE << trans_pcie->rx_page_order,
 521					DMA_FROM_DEVICE);
 
 522			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
 523				rxb->page = NULL;
 524				__free_pages(page, trans_pcie->rx_page_order);
 525				continue;
 526			}
 527
 528			/* move the allocated entry to the out list */
 529			list_move(&rxb->list, &local_allocated);
 530			i++;
 531		}
 532
 
 533		pending--;
 
 534		if (!pending) {
 535			pending = atomic_xchg(&rba->req_pending, 0);
 536			IWL_DEBUG_RX(trans,
 537				     "Pending allocation requests = %d\n",
 538				     pending);
 
 539		}
 540
 541		spin_lock(&rba->lock);
 542		/* add the allocated rbds to the allocator allocated list */
 543		list_splice_tail(&local_allocated, &rba->rbd_allocated);
 544		/* get more empty RBDs for current pending requests */
 545		list_splice_tail_init(&rba->rbd_empty, &local_empty);
 546		spin_unlock(&rba->lock);
 547
 548		atomic_inc(&rba->req_ready);
 
 549	}
 550
 551	spin_lock(&rba->lock);
 552	/* return unused rbds to the allocator empty list */
 553	list_splice_tail(&local_empty, &rba->rbd_empty);
 554	spin_unlock(&rba->lock);
 
 
 555}
 556
 557/*
 558 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
 559.*
 560.* Called by queue when the queue posted allocation request and
 561 * has freed 8 RBDs in order to restock itself.
 562 * This function directly moves the allocated RBs to the queue's ownership
 563 * and updates the relevant counters.
 564 */
 565static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
 566				      struct iwl_rxq *rxq)
 567{
 568	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 569	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 570	int i;
 571
 572	lockdep_assert_held(&rxq->lock);
 573
 574	/*
 575	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
 576	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
 577	 * function will return early, as there are no ready requests.
 578	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
 579	 * req_ready > 0, i.e. - there are ready requests and the function
 580	 * hands one request to the caller.
 581	 */
 582	if (atomic_dec_if_positive(&rba->req_ready) < 0)
 583		return;
 584
 585	spin_lock(&rba->lock);
 586	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
 587		/* Get next free Rx buffer, remove it from free list */
 588		struct iwl_rx_mem_buffer *rxb =
 589			list_first_entry(&rba->rbd_allocated,
 590					 struct iwl_rx_mem_buffer, list);
 591
 592		list_move(&rxb->list, &rxq->rx_free);
 593	}
 594	spin_unlock(&rba->lock);
 595
 596	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
 597	rxq->free_count += RX_CLAIM_REQ_ALLOC;
 598}
 599
 600void iwl_pcie_rx_allocator_work(struct work_struct *data)
 601{
 602	struct iwl_rb_allocator *rba_p =
 603		container_of(data, struct iwl_rb_allocator, rx_alloc);
 604	struct iwl_trans_pcie *trans_pcie =
 605		container_of(rba_p, struct iwl_trans_pcie, rba);
 606
 607	iwl_pcie_rx_allocator(trans_pcie->trans);
 608}
 609
 610static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611{
 612	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 613	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 614	struct device *dev = trans->dev;
 615	int i;
 616	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
 617						      sizeof(__le32);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618
 619	if (WARN_ON(trans_pcie->rxq))
 620		return -EINVAL;
 621
 622	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
 623				  GFP_KERNEL);
 624	if (!trans_pcie->rxq)
 625		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 626
 627	spin_lock_init(&rba->lock);
 628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629	for (i = 0; i < trans->num_rx_queues; i++) {
 630		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 631
 632		spin_lock_init(&rxq->lock);
 633		if (trans->cfg->mq_rx_supported)
 634			rxq->queue_size = MQ_RX_TABLE_SIZE;
 635		else
 636			rxq->queue_size = RX_QUEUE_SIZE;
 637
 638		/*
 639		 * Allocate the circular buffer of Read Buffer Descriptors
 640		 * (RBDs)
 641		 */
 642		rxq->bd = dma_zalloc_coherent(dev,
 643					     free_size * rxq->queue_size,
 644					     &rxq->bd_dma, GFP_KERNEL);
 645		if (!rxq->bd)
 646			goto err;
 647
 648		if (trans->cfg->mq_rx_supported) {
 649			rxq->used_bd = dma_zalloc_coherent(dev,
 650							   sizeof(__le32) *
 651							   rxq->queue_size,
 652							   &rxq->used_bd_dma,
 653							   GFP_KERNEL);
 654			if (!rxq->used_bd)
 655				goto err;
 656		}
 657
 658		/*Allocate the driver's pointer to receive buffer status */
 659		rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
 660						   &rxq->rb_stts_dma,
 661						   GFP_KERNEL);
 662		if (!rxq->rb_stts)
 663			goto err;
 664	}
 665	return 0;
 666
 667err:
 668	for (i = 0; i < trans->num_rx_queues; i++) {
 669		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 670
 671		if (rxq->bd)
 672			dma_free_coherent(dev, free_size * rxq->queue_size,
 673					  rxq->bd, rxq->bd_dma);
 674		rxq->bd_dma = 0;
 675		rxq->bd = NULL;
 676
 677		if (rxq->rb_stts)
 678			dma_free_coherent(trans->dev,
 679					  sizeof(struct iwl_rb_status),
 680					  rxq->rb_stts, rxq->rb_stts_dma);
 681
 682		if (rxq->used_bd)
 683			dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
 684					  rxq->used_bd, rxq->used_bd_dma);
 685		rxq->used_bd_dma = 0;
 686		rxq->used_bd = NULL;
 687	}
 688	kfree(trans_pcie->rxq);
 
 689
 690	return -ENOMEM;
 691}
 692
 693static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
 694{
 695	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 696	u32 rb_size;
 697	unsigned long flags;
 698	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
 699
 700	switch (trans_pcie->rx_buf_size) {
 701	case IWL_AMSDU_4K:
 702		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
 703		break;
 704	case IWL_AMSDU_8K:
 705		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
 706		break;
 707	case IWL_AMSDU_12K:
 708		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
 709		break;
 710	default:
 711		WARN_ON(1);
 712		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
 713	}
 714
 715	if (!iwl_trans_grab_nic_access(trans, &flags))
 716		return;
 717
 718	/* Stop Rx DMA */
 719	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
 720	/* reset and flush pointers */
 721	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
 722	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
 723	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
 724
 725	/* Reset driver's Rx queue write index */
 726	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
 727
 728	/* Tell device where to find RBD circular buffer in DRAM */
 729	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
 730		    (u32)(rxq->bd_dma >> 8));
 731
 732	/* Tell device where in DRAM to update its Rx status */
 733	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
 734		    rxq->rb_stts_dma >> 4);
 735
 736	/* Enable Rx DMA
 737	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
 738	 *      the credit mechanism in 5000 HW RX FIFO
 739	 * Direct rx interrupts to hosts
 740	 * Rx buffer size 4 or 8k or 12k
 741	 * RB timeout 0x10
 742	 * 256 RBDs
 743	 */
 744	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
 745		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
 746		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
 747		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
 748		    rb_size |
 749		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
 750		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
 751
 752	iwl_trans_release_nic_access(trans, &flags);
 753
 754	/* Set interrupt coalescing timer to default (2048 usecs) */
 755	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
 756
 757	/* W/A for interrupt coalescing bug in 7260 and 3160 */
 758	if (trans->cfg->host_interrupt_operation_mode)
 759		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
 760}
 761
 762void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
 763{
 764	if (trans->cfg->device_family != IWL_DEVICE_FAMILY_9000)
 765		return;
 766
 767	if (CSR_HW_REV_STEP(trans->hw_rev) != SILICON_A_STEP)
 768		return;
 769
 770	if (!trans->cfg->integrated)
 771		return;
 772
 773	/*
 774	 * Turn on the chicken-bits that cause MAC wakeup for RX-related
 775	 * values.
 776	 * This costs some power, but needed for W/A 9000 integrated A-step
 777	 * bug where shadow registers are not in the retention list and their
 778	 * value is lost when NIC powers down
 779	 */
 780	iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
 781		    CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
 782	iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
 783		    CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
 784}
 785
 786static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
 787{
 788	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 789	u32 rb_size, enabled = 0;
 790	unsigned long flags;
 791	int i;
 792
 793	switch (trans_pcie->rx_buf_size) {
 
 
 
 794	case IWL_AMSDU_4K:
 795		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
 796		break;
 797	case IWL_AMSDU_8K:
 798		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
 799		break;
 800	case IWL_AMSDU_12K:
 801		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
 802		break;
 803	default:
 804		WARN_ON(1);
 805		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
 806	}
 807
 808	if (!iwl_trans_grab_nic_access(trans, &flags))
 809		return;
 810
 811	/* Stop Rx DMA */
 812	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
 813	/* disable free amd used rx queue operation */
 814	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
 815
 816	for (i = 0; i < trans->num_rx_queues; i++) {
 817		/* Tell device where to find RBD free table in DRAM */
 818		iwl_write_prph64_no_grab(trans,
 819					 RFH_Q_FRBDCB_BA_LSB(i),
 820					 trans_pcie->rxq[i].bd_dma);
 821		/* Tell device where to find RBD used table in DRAM */
 822		iwl_write_prph64_no_grab(trans,
 823					 RFH_Q_URBDCB_BA_LSB(i),
 824					 trans_pcie->rxq[i].used_bd_dma);
 825		/* Tell device where in DRAM to update its Rx status */
 826		iwl_write_prph64_no_grab(trans,
 827					 RFH_Q_URBD_STTS_WPTR_LSB(i),
 828					 trans_pcie->rxq[i].rb_stts_dma);
 829		/* Reset device indice tables */
 830		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
 831		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
 832		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
 833
 834		enabled |= BIT(i) | BIT(i + 16);
 835	}
 836
 837	/*
 838	 * Enable Rx DMA
 839	 * Rx buffer size 4 or 8k or 12k
 840	 * Min RB size 4 or 8
 841	 * Drop frames that exceed RB size
 842	 * 512 RBDs
 843	 */
 844	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
 845			       RFH_DMA_EN_ENABLE_VAL | rb_size |
 846			       RFH_RXF_DMA_MIN_RB_4_8 |
 847			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
 848			       RFH_RXF_DMA_RBDCB_SIZE_512);
 849
 850	/*
 851	 * Activate DMA snooping.
 852	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
 853	 * Default queue is 0
 854	 */
 855	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
 856			       RFH_GEN_CFG_RFH_DMA_SNOOP |
 857			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
 858			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
 859			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
 860					       trans->cfg->integrated ?
 861					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
 862					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
 863	/* Enable the relevant rx queues */
 864	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
 865
 866	iwl_trans_release_nic_access(trans, &flags);
 867
 868	/* Set interrupt coalescing timer to default (2048 usecs) */
 869	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
 870
 871	iwl_pcie_enable_rx_wake(trans, true);
 872}
 873
 874static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
 875{
 876	lockdep_assert_held(&rxq->lock);
 877
 878	INIT_LIST_HEAD(&rxq->rx_free);
 879	INIT_LIST_HEAD(&rxq->rx_used);
 880	rxq->free_count = 0;
 881	rxq->used_count = 0;
 882}
 883
 884static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
 
 
 885{
 886	WARN_ON(1);
 887	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888}
 889
 890static int _iwl_pcie_rx_init(struct iwl_trans *trans)
 891{
 892	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 893	struct iwl_rxq *def_rxq;
 894	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 895	int i, err, queue_size, allocator_pool_size, num_alloc;
 896
 897	if (!trans_pcie->rxq) {
 898		err = iwl_pcie_rx_alloc(trans);
 899		if (err)
 900			return err;
 901	}
 902	def_rxq = trans_pcie->rxq;
 903
 904	spin_lock(&rba->lock);
 
 
 905	atomic_set(&rba->req_pending, 0);
 906	atomic_set(&rba->req_ready, 0);
 907	INIT_LIST_HEAD(&rba->rbd_allocated);
 908	INIT_LIST_HEAD(&rba->rbd_empty);
 909	spin_unlock(&rba->lock);
 910
 911	/* free all first - we might be reconfigured for a different size */
 912	iwl_pcie_free_rbs_pool(trans);
 913
 914	for (i = 0; i < RX_QUEUE_SIZE; i++)
 915		def_rxq->queue[i] = NULL;
 916
 917	for (i = 0; i < trans->num_rx_queues; i++) {
 918		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 919
 920		rxq->id = i;
 921
 922		spin_lock(&rxq->lock);
 923		/*
 924		 * Set read write pointer to reflect that we have processed
 925		 * and used all buffers, but have not restocked the Rx queue
 926		 * with fresh buffers
 927		 */
 928		rxq->read = 0;
 929		rxq->write = 0;
 930		rxq->write_actual = 0;
 931		memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
 
 
 
 932
 933		iwl_pcie_rx_init_rxb_lists(rxq);
 934
 935		if (!rxq->napi.poll)
 936			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
 937				       iwl_pcie_dummy_napi_poll, 64);
 
 
 
 
 
 
 
 
 
 938
 939		spin_unlock(&rxq->lock);
 940	}
 941
 942	/* move the pool to the default queue and allocator ownerships */
 943	queue_size = trans->cfg->mq_rx_supported ?
 944		     MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
 945	allocator_pool_size = trans->num_rx_queues *
 946		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
 947	num_alloc = queue_size + allocator_pool_size;
 948	BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
 949		     ARRAY_SIZE(trans_pcie->rx_pool));
 950	for (i = 0; i < num_alloc; i++) {
 951		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
 952
 953		if (i < allocator_pool_size)
 954			list_add(&rxb->list, &rba->rbd_empty);
 955		else
 956			list_add(&rxb->list, &def_rxq->rx_used);
 957		trans_pcie->global_table[i] = rxb;
 958		rxb->vid = (u16)(i + 1);
 959		rxb->invalid = true;
 960	}
 961
 962	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
 963
 964	return 0;
 965}
 966
 967int iwl_pcie_rx_init(struct iwl_trans *trans)
 968{
 969	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 970	int ret = _iwl_pcie_rx_init(trans);
 971
 972	if (ret)
 973		return ret;
 974
 975	if (trans->cfg->mq_rx_supported)
 976		iwl_pcie_rx_mq_hw_init(trans);
 977	else
 978		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
 979
 980	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
 981
 982	spin_lock(&trans_pcie->rxq->lock);
 983	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
 984	spin_unlock(&trans_pcie->rxq->lock);
 985
 986	return 0;
 987}
 988
 989int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
 990{
 
 
 
 991	/*
 992	 * We don't configure the RFH.
 993	 * Restock will be done at alive, after firmware configured the RFH.
 994	 */
 995	return _iwl_pcie_rx_init(trans);
 996}
 997
 998void iwl_pcie_rx_free(struct iwl_trans *trans)
 999{
1000	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 
1001	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1002	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
1003					      sizeof(__le32);
1004	int i;
1005
1006	/*
1007	 * if rxq is NULL, it means that nothing has been allocated,
1008	 * exit now
1009	 */
1010	if (!trans_pcie->rxq) {
1011		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1012		return;
1013	}
1014
1015	cancel_work_sync(&rba->rx_alloc);
1016
1017	iwl_pcie_free_rbs_pool(trans);
1018
 
 
 
 
 
 
 
 
 
1019	for (i = 0; i < trans->num_rx_queues; i++) {
1020		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1021
1022		if (rxq->bd)
1023			dma_free_coherent(trans->dev,
1024					  free_size * rxq->queue_size,
1025					  rxq->bd, rxq->bd_dma);
1026		rxq->bd_dma = 0;
1027		rxq->bd = NULL;
1028
1029		if (rxq->rb_stts)
1030			dma_free_coherent(trans->dev,
1031					  sizeof(struct iwl_rb_status),
1032					  rxq->rb_stts, rxq->rb_stts_dma);
1033		else
1034			IWL_DEBUG_INFO(trans,
1035				       "Free rxq->rb_stts which is NULL\n");
1036
1037		if (rxq->used_bd)
1038			dma_free_coherent(trans->dev,
1039					  sizeof(__le32) * rxq->queue_size,
1040					  rxq->used_bd, rxq->used_bd_dma);
1041		rxq->used_bd_dma = 0;
1042		rxq->used_bd = NULL;
1043
1044		if (rxq->napi.poll)
 
1045			netif_napi_del(&rxq->napi);
 
1046	}
 
 
1047	kfree(trans_pcie->rxq);
 
 
 
 
 
 
 
 
 
 
 
1048}
1049
1050/*
1051 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1052 *
1053 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1054 * When there are 2 empty RBDs - a request for allocation is posted
1055 */
1056static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1057				  struct iwl_rx_mem_buffer *rxb,
1058				  struct iwl_rxq *rxq, bool emergency)
1059{
1060	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1061	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1062
1063	/* Move the RBD to the used list, will be moved to allocator in batches
1064	 * before claiming or posting a request*/
1065	list_add_tail(&rxb->list, &rxq->rx_used);
1066
1067	if (unlikely(emergency))
1068		return;
1069
1070	/* Count the allocator owned RBDs */
1071	rxq->used_count++;
1072
1073	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1074	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1075	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1076	 * after but we still need to post another request.
1077	 */
1078	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1079		/* Move the 2 RBDs to the allocator ownership.
1080		 Allocator has another 6 from pool for the request completion*/
1081		spin_lock(&rba->lock);
1082		list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1083		spin_unlock(&rba->lock);
1084
1085		atomic_inc(&rba->req_pending);
1086		queue_work(rba->alloc_wq, &rba->rx_alloc);
1087	}
1088}
1089
1090static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1091				struct iwl_rxq *rxq,
1092				struct iwl_rx_mem_buffer *rxb,
1093				bool emergency)
 
1094{
1095	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1096	struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1097	bool page_stolen = false;
1098	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1099	u32 offset = 0;
1100
1101	if (WARN_ON(!rxb))
1102		return;
1103
1104	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1105
1106	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1107		struct iwl_rx_packet *pkt;
1108		u16 sequence;
1109		bool reclaim;
1110		int index, cmd_index, len;
1111		struct iwl_rx_cmd_buffer rxcb = {
1112			._offset = offset,
1113			._rx_page_order = trans_pcie->rx_page_order,
1114			._page = rxb->page,
1115			._page_stolen = false,
1116			.truesize = max_len,
1117		};
1118
1119		pkt = rxb_addr(&rxcb);
1120
1121		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1122			IWL_DEBUG_RX(trans,
1123				     "Q %d: RB end marker at offset %d\n",
1124				     rxq->id, offset);
1125			break;
1126		}
1127
1128		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1129			FH_RSCSR_RXQ_POS != rxq->id,
1130		     "frame on invalid queue - is on %d and indicates %d\n",
1131		     rxq->id,
1132		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1133			FH_RSCSR_RXQ_POS);
1134
1135		IWL_DEBUG_RX(trans,
1136			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1137			     rxq->id, offset,
1138			     iwl_get_cmd_string(trans,
1139						iwl_cmd_id(pkt->hdr.cmd,
1140							   pkt->hdr.group_id,
1141							   0)),
1142			     pkt->hdr.group_id, pkt->hdr.cmd,
1143			     le16_to_cpu(pkt->hdr.sequence));
1144
1145		len = iwl_rx_packet_len(pkt);
1146		len += sizeof(u32); /* account for status word */
1147		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1148		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
 
 
 
 
 
 
1149
1150		/* Reclaim a command buffer only if this packet is a response
1151		 *   to a (driver-originated) command.
1152		 * If the packet (e.g. Rx frame) originated from uCode,
1153		 *   there is no command buffer to reclaim.
1154		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1155		 *   but apparently a few don't get set; catch them here. */
1156		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1157		if (reclaim && !pkt->hdr.group_id) {
1158			int i;
1159
1160			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1161				if (trans_pcie->no_reclaim_cmds[i] ==
1162							pkt->hdr.cmd) {
1163					reclaim = false;
1164					break;
1165				}
1166			}
1167		}
1168
1169		sequence = le16_to_cpu(pkt->hdr.sequence);
1170		index = SEQ_TO_INDEX(sequence);
1171		cmd_index = iwl_pcie_get_cmd_index(txq, index);
1172
1173		if (rxq->id == 0)
1174			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1175				       &rxcb);
1176		else
1177			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1178					   &rxcb, rxq->id);
1179
1180		if (reclaim) {
1181			kzfree(txq->entries[cmd_index].free_buf);
1182			txq->entries[cmd_index].free_buf = NULL;
1183		}
1184
1185		/*
1186		 * After here, we should always check rxcb._page_stolen,
1187		 * if it is true then one of the handlers took the page.
1188		 */
1189
1190		if (reclaim) {
 
 
 
 
 
 
 
1191			/* Invoke any callbacks, transfer the buffer to caller,
1192			 * and fire off the (possibly) blocking
1193			 * iwl_trans_send_cmd()
1194			 * as we reclaim the driver command queue */
1195			if (!rxcb._page_stolen)
1196				iwl_pcie_hcmd_complete(trans, &rxcb);
1197			else
1198				IWL_WARN(trans, "Claim null rxb?\n");
1199		}
1200
1201		page_stolen |= rxcb._page_stolen;
1202		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
 
1203	}
1204
1205	/* page was stolen from us -- free our reference */
1206	if (page_stolen) {
1207		__free_pages(rxb->page, trans_pcie->rx_page_order);
1208		rxb->page = NULL;
1209	}
1210
1211	/* Reuse the page if possible. For notification packets and
1212	 * SKBs that fail to Rx correctly, add them back into the
1213	 * rx_free list for reuse later. */
1214	if (rxb->page != NULL) {
1215		rxb->page_dma =
1216			dma_map_page(trans->dev, rxb->page, 0,
1217				     PAGE_SIZE << trans_pcie->rx_page_order,
1218				     DMA_FROM_DEVICE);
1219		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1220			/*
1221			 * free the page(s) as well to not break
1222			 * the invariant that the items on the used
1223			 * list have no page(s)
1224			 */
1225			__free_pages(rxb->page, trans_pcie->rx_page_order);
1226			rxb->page = NULL;
1227			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1228		} else {
1229			list_add_tail(&rxb->list, &rxq->rx_free);
1230			rxq->free_count++;
1231		}
1232	} else
1233		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1234}
1235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236/*
1237 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1238 */
1239static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1240{
1241	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1242	struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1243	u32 r, i, count = 0;
1244	bool emergency = false;
1245
 
 
 
 
 
1246restart:
1247	spin_lock(&rxq->lock);
1248	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1249	 * buffer that the driver may process (last buffer filled by ucode). */
1250	r = le16_to_cpu(READ_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1251	i = rxq->read;
1252
1253	/* W/A 9000 device step A0 wrap-around bug */
1254	r &= (rxq->queue_size - 1);
1255
1256	/* Rx interrupt, but nothing sent from uCode */
1257	if (i == r)
1258		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1259
1260	while (i != r) {
 
1261		struct iwl_rx_mem_buffer *rxb;
1262
1263		if (unlikely(rxq->used_count == rxq->queue_size / 2))
 
 
 
 
 
 
 
1264			emergency = true;
 
 
 
 
 
 
1265
1266		if (trans->cfg->mq_rx_supported) {
 
 
 
 
 
1267			/*
1268			 * used_bd is a 32 bit but only 12 are used to retrieve
1269			 * the vid
 
 
 
 
 
 
 
 
1270			 */
1271			u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1272
1273			if (WARN(!vid ||
1274				 vid > ARRAY_SIZE(trans_pcie->global_table),
1275				 "Invalid rxb index from HW %u\n", (u32)vid)) {
1276				iwl_force_nmi(trans);
1277				goto out;
1278			}
1279			rxb = trans_pcie->global_table[vid - 1];
1280			if (WARN(rxb->invalid,
1281				 "Invalid rxb from HW %u\n", (u32)vid)) {
1282				iwl_force_nmi(trans);
1283				goto out;
1284			}
1285			rxb->invalid = true;
1286		} else {
1287			rxb = rxq->queue[i];
1288			rxq->queue[i] = NULL;
1289		}
1290
1291		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1292		iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1293
1294		i = (i + 1) & (rxq->queue_size - 1);
1295
1296		/*
1297		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1298		 * try to claim the pre-allocated buffers from the allocator.
1299		 * If not ready - will try to reclaim next time.
1300		 * There is no need to reschedule work - allocator exits only
1301		 * on success
1302		 */
1303		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1304			iwl_pcie_rx_allocator_get(trans, rxq);
1305
1306		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1307			struct iwl_rb_allocator *rba = &trans_pcie->rba;
1308
1309			/* Add the remaining empty RBDs for allocator use */
1310			spin_lock(&rba->lock);
1311			list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1312			spin_unlock(&rba->lock);
1313		} else if (emergency) {
1314			count++;
1315			if (count == 8) {
1316				count = 0;
1317				if (rxq->used_count < rxq->queue_size / 3)
 
 
 
1318					emergency = false;
 
1319
1320				rxq->read = i;
1321				spin_unlock(&rxq->lock);
1322				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1323				iwl_pcie_rxq_restock(trans, rxq);
1324				goto restart;
1325			}
1326		}
1327	}
1328out:
1329	/* Backtrack one entry */
1330	rxq->read = i;
1331	spin_unlock(&rxq->lock);
1332
1333	/*
1334	 * handle a case where in emergency there are some unallocated RBDs.
1335	 * those RBDs are in the used list, but are not tracked by the queue's
1336	 * used_count which counts allocator owned RBDs.
1337	 * unallocated emergency RBDs must be allocated on exit, otherwise
1338	 * when called again the function may not be in emergency mode and
1339	 * they will be handed to the allocator with no tracking in the RBD
1340	 * allocator counters, which will lead to them never being claimed back
1341	 * by the queue.
1342	 * by allocating them here, they are now in the queue free list, and
1343	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1344	 */
1345	if (unlikely(emergency && count))
1346		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1347
1348	if (rxq->napi.poll)
1349		napi_gro_flush(&rxq->napi, false);
1350
1351	iwl_pcie_rxq_restock(trans, rxq);
 
 
1352}
1353
1354static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1355{
1356	u8 queue = entry->entry;
1357	struct msix_entry *entries = entry - queue;
1358
1359	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1360}
1361
1362static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
1363				      struct msix_entry *entry)
1364{
1365	/*
1366	 * Before sending the interrupt the HW disables it to prevent
1367	 * a nested interrupt. This is done by writing 1 to the corresponding
1368	 * bit in the mask register. After handling the interrupt, it should be
1369	 * re-enabled by clearing this bit. This register is defined as
1370	 * write 1 clear (W1C) register, meaning that it's being clear
1371	 * by writing 1 to the bit.
1372	 */
1373	iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1374}
1375
1376/*
1377 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1378 * This interrupt handler should be used with RSS queue only.
1379 */
1380irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1381{
1382	struct msix_entry *entry = dev_id;
1383	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1384	struct iwl_trans *trans = trans_pcie->trans;
 
1385
1386	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1387
1388	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1389		return IRQ_NONE;
1390
 
 
 
 
 
 
 
 
 
1391	lock_map_acquire(&trans->sync_cmd_lockdep_map);
 
1392
1393	local_bh_disable();
1394	iwl_pcie_rx_handle(trans, entry->entry);
 
1395	local_bh_enable();
1396
1397	iwl_pcie_clear_irq(trans, entry);
1398
1399	lock_map_release(&trans->sync_cmd_lockdep_map);
1400
1401	return IRQ_HANDLED;
1402}
1403
1404/*
1405 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1406 */
1407static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1408{
1409	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1410	int i;
1411
1412	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1413	if (trans->cfg->internal_wimax_coex &&
1414	    !trans->cfg->apmg_not_supported &&
1415	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1416			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1417	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1418			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1419		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1420		iwl_op_mode_wimax_active(trans->op_mode);
1421		wake_up(&trans_pcie->wait_command_queue);
1422		return;
1423	}
1424
1425	for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) {
1426		if (!trans_pcie->txq[i])
1427			continue;
1428		del_timer(&trans_pcie->txq[i]->stuck_timer);
1429	}
1430
1431	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1432	 * before we wake up the command caller, to ensure a proper cleanup. */
1433	iwl_trans_fw_error(trans);
1434
1435	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1436	wake_up(&trans_pcie->wait_command_queue);
1437}
1438
1439static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1440{
1441	u32 inta;
1442
1443	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1444
1445	trace_iwlwifi_dev_irq(trans->dev);
1446
1447	/* Discover which interrupts are active/pending */
1448	inta = iwl_read32(trans, CSR_INT);
1449
1450	/* the thread will service interrupts and re-enable them */
1451	return inta;
1452}
1453
1454/* a device (PCI-E) page is 4096 bytes long */
1455#define ICT_SHIFT	12
1456#define ICT_SIZE	(1 << ICT_SHIFT)
1457#define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1458
1459/* interrupt handler using ict table, with this interrupt driver will
1460 * stop using INTA register to get device's interrupt, reading this register
1461 * is expensive, device will write interrupts in ICT dram table, increment
1462 * index then will fire interrupt to driver, driver will OR all ICT table
1463 * entries from current index up to table entry with 0 value. the result is
1464 * the interrupt we need to service, driver will set the entries back to 0 and
1465 * set index.
1466 */
1467static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1468{
1469	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1470	u32 inta;
1471	u32 val = 0;
1472	u32 read;
1473
1474	trace_iwlwifi_dev_irq(trans->dev);
1475
1476	/* Ignore interrupt if there's nothing in NIC to service.
1477	 * This may be due to IRQ shared with another device,
1478	 * or due to sporadic interrupts thrown from our NIC. */
1479	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1480	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1481	if (!read)
1482		return 0;
1483
1484	/*
1485	 * Collect all entries up to the first 0, starting from ict_index;
1486	 * note we already read at ict_index.
1487	 */
1488	do {
1489		val |= read;
1490		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1491				trans_pcie->ict_index, read);
1492		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1493		trans_pcie->ict_index =
1494			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1495
1496		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1497		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1498					   read);
1499	} while (read);
1500
1501	/* We should not get this value, just ignore it. */
1502	if (val == 0xffffffff)
1503		val = 0;
1504
1505	/*
1506	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1507	 * (bit 15 before shifting it to 31) to clear when using interrupt
1508	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1509	 * so we use them to decide on the real state of the Rx bit.
1510	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1511	 */
1512	if (val & 0xC0000)
1513		val |= 0x8000;
1514
1515	inta = (0xff & val) | ((0xff00 & val) << 16);
1516	return inta;
1517}
1518
1519void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1520{
1521	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1522	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1523	bool hw_rfkill, prev, report;
1524
1525	mutex_lock(&trans_pcie->mutex);
1526	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1527	hw_rfkill = iwl_is_rfkill_set(trans);
1528	if (hw_rfkill) {
1529		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1530		set_bit(STATUS_RFKILL_HW, &trans->status);
1531	}
1532	if (trans_pcie->opmode_down)
1533		report = hw_rfkill;
1534	else
1535		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1536
1537	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1538		 hw_rfkill ? "disable radio" : "enable radio");
1539
1540	isr_stats->rfkill++;
1541
1542	if (prev != report)
1543		iwl_trans_pcie_rf_kill(trans, report);
1544	mutex_unlock(&trans_pcie->mutex);
1545
1546	if (hw_rfkill) {
1547		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1548				       &trans->status))
1549			IWL_DEBUG_RF_KILL(trans,
1550					  "Rfkill while SYNC HCMD in flight\n");
1551		wake_up(&trans_pcie->wait_command_queue);
1552	} else {
1553		clear_bit(STATUS_RFKILL_HW, &trans->status);
1554		if (trans_pcie->opmode_down)
1555			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1556	}
1557}
1558
1559irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1560{
1561	struct iwl_trans *trans = dev_id;
1562	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1563	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1564	u32 inta = 0;
1565	u32 handled = 0;
 
1566
1567	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1568
1569	spin_lock(&trans_pcie->irq_lock);
1570
1571	/* dram interrupt table not set yet,
1572	 * use legacy interrupt.
1573	 */
1574	if (likely(trans_pcie->use_ict))
1575		inta = iwl_pcie_int_cause_ict(trans);
1576	else
1577		inta = iwl_pcie_int_cause_non_ict(trans);
1578
1579	if (iwl_have_debug_level(IWL_DL_ISR)) {
1580		IWL_DEBUG_ISR(trans,
1581			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1582			      inta, trans_pcie->inta_mask,
1583			      iwl_read32(trans, CSR_INT_MASK),
1584			      iwl_read32(trans, CSR_FH_INT_STATUS));
1585		if (inta & (~trans_pcie->inta_mask))
1586			IWL_DEBUG_ISR(trans,
1587				      "We got a masked interrupt (0x%08x)\n",
1588				      inta & (~trans_pcie->inta_mask));
1589	}
1590
1591	inta &= trans_pcie->inta_mask;
1592
1593	/*
1594	 * Ignore interrupt if there's nothing in NIC to service.
1595	 * This may be due to IRQ shared with another device,
1596	 * or due to sporadic interrupts thrown from our NIC.
1597	 */
1598	if (unlikely(!inta)) {
1599		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1600		/*
1601		 * Re-enable interrupts here since we don't
1602		 * have anything to service
1603		 */
1604		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1605			_iwl_enable_interrupts(trans);
1606		spin_unlock(&trans_pcie->irq_lock);
1607		lock_map_release(&trans->sync_cmd_lockdep_map);
1608		return IRQ_NONE;
1609	}
1610
1611	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1612		/*
1613		 * Hardware disappeared. It might have
1614		 * already raised an interrupt.
1615		 */
1616		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1617		spin_unlock(&trans_pcie->irq_lock);
1618		goto out;
1619	}
1620
1621	/* Ack/clear/reset pending uCode interrupts.
1622	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1623	 */
1624	/* There is a hardware bug in the interrupt mask function that some
1625	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1626	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1627	 * ICT interrupt handling mechanism has another bug that might cause
1628	 * these unmasked interrupts fail to be detected. We workaround the
1629	 * hardware bugs here by ACKing all the possible interrupts so that
1630	 * interrupt coalescing can still be achieved.
1631	 */
1632	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1633
1634	if (iwl_have_debug_level(IWL_DL_ISR))
1635		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1636			      inta, iwl_read32(trans, CSR_INT_MASK));
1637
1638	spin_unlock(&trans_pcie->irq_lock);
1639
1640	/* Now service all interrupt bits discovered above. */
1641	if (inta & CSR_INT_BIT_HW_ERR) {
1642		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1643
1644		/* Tell the device to stop sending interrupts */
1645		iwl_disable_interrupts(trans);
1646
1647		isr_stats->hw++;
1648		iwl_pcie_irq_handle_error(trans);
1649
1650		handled |= CSR_INT_BIT_HW_ERR;
1651
1652		goto out;
1653	}
1654
1655	if (iwl_have_debug_level(IWL_DL_ISR)) {
1656		/* NIC fires this, but we don't use it, redundant with WAKEUP */
1657		if (inta & CSR_INT_BIT_SCD) {
1658			IWL_DEBUG_ISR(trans,
1659				      "Scheduler finished to transmit the frame/frames.\n");
1660			isr_stats->sch++;
1661		}
1662
1663		/* Alive notification via Rx interrupt will do the real work */
1664		if (inta & CSR_INT_BIT_ALIVE) {
1665			IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1666			isr_stats->alive++;
1667			if (trans->cfg->gen2) {
1668				/*
1669				 * We can restock, since firmware configured
1670				 * the RFH
1671				 */
1672				iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1673			}
1674		}
 
 
1675	}
1676
1677	/* Safely ignore these bits for debug checks below */
1678	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1679
1680	/* HW RF KILL switch toggled */
1681	if (inta & CSR_INT_BIT_RF_KILL) {
1682		iwl_pcie_handle_rfkill_irq(trans);
1683		handled |= CSR_INT_BIT_RF_KILL;
1684	}
1685
1686	/* Chip got too hot and stopped itself */
1687	if (inta & CSR_INT_BIT_CT_KILL) {
1688		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1689		isr_stats->ctkill++;
1690		handled |= CSR_INT_BIT_CT_KILL;
1691	}
1692
1693	/* Error detected by uCode */
1694	if (inta & CSR_INT_BIT_SW_ERR) {
1695		IWL_ERR(trans, "Microcode SW error detected. "
1696			" Restarting 0x%X.\n", inta);
1697		isr_stats->sw++;
1698		iwl_pcie_irq_handle_error(trans);
1699		handled |= CSR_INT_BIT_SW_ERR;
1700	}
1701
1702	/* uCode wakes up after power-down sleep */
1703	if (inta & CSR_INT_BIT_WAKEUP) {
1704		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1705		iwl_pcie_rxq_check_wrptr(trans);
1706		iwl_pcie_txq_check_wrptrs(trans);
1707
1708		isr_stats->wakeup++;
1709
1710		handled |= CSR_INT_BIT_WAKEUP;
1711	}
1712
1713	/* All uCode command responses, including Tx command responses,
1714	 * Rx "responses" (frame-received notification), and other
1715	 * notifications from uCode come through here*/
1716	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1717		    CSR_INT_BIT_RX_PERIODIC)) {
1718		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1719		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1720			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1721			iwl_write32(trans, CSR_FH_INT_STATUS,
1722					CSR_FH_INT_RX_MASK);
1723		}
1724		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1725			handled |= CSR_INT_BIT_RX_PERIODIC;
1726			iwl_write32(trans,
1727				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1728		}
1729		/* Sending RX interrupt require many steps to be done in the
1730		 * the device:
1731		 * 1- write interrupt to current index in ICT table.
1732		 * 2- dma RX frame.
1733		 * 3- update RX shared data to indicate last write index.
1734		 * 4- send interrupt.
1735		 * This could lead to RX race, driver could receive RX interrupt
1736		 * but the shared data changes does not reflect this;
1737		 * periodic interrupt will detect any dangling Rx activity.
1738		 */
1739
1740		/* Disable periodic interrupt; we use it as just a one-shot. */
1741		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1742			    CSR_INT_PERIODIC_DIS);
1743
1744		/*
1745		 * Enable periodic interrupt in 8 msec only if we received
1746		 * real RX interrupt (instead of just periodic int), to catch
1747		 * any dangling Rx interrupt.  If it was just the periodic
1748		 * interrupt, there was no dangling Rx activity, and no need
1749		 * to extend the periodic interrupt; one-shot is enough.
1750		 */
1751		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1752			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1753				   CSR_INT_PERIODIC_ENA);
1754
1755		isr_stats->rx++;
1756
1757		local_bh_disable();
1758		iwl_pcie_rx_handle(trans, 0);
 
 
 
1759		local_bh_enable();
1760	}
1761
1762	/* This "Tx" DMA channel is used only for loading uCode */
1763	if (inta & CSR_INT_BIT_FH_TX) {
1764		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1765		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1766		isr_stats->tx++;
1767		handled |= CSR_INT_BIT_FH_TX;
1768		/* Wake up uCode load routine, now that load is complete */
1769		trans_pcie->ucode_write_complete = true;
1770		wake_up(&trans_pcie->ucode_write_waitq);
 
 
 
 
 
1771	}
1772
1773	if (inta & ~handled) {
1774		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1775		isr_stats->unhandled++;
1776	}
1777
1778	if (inta & ~(trans_pcie->inta_mask)) {
1779		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1780			 inta & ~trans_pcie->inta_mask);
1781	}
1782
1783	spin_lock(&trans_pcie->irq_lock);
1784	/* only Re-enable all interrupt if disabled by irq */
1785	if (test_bit(STATUS_INT_ENABLED, &trans->status))
1786		_iwl_enable_interrupts(trans);
1787	/* we are loading the firmware, enable FH_TX interrupt only */
1788	else if (handled & CSR_INT_BIT_FH_TX)
1789		iwl_enable_fw_load_int(trans);
1790	/* Re-enable RF_KILL if it occurred */
1791	else if (handled & CSR_INT_BIT_RF_KILL)
1792		iwl_enable_rfkill_int(trans);
1793	spin_unlock(&trans_pcie->irq_lock);
 
 
 
 
 
1794
1795out:
1796	lock_map_release(&trans->sync_cmd_lockdep_map);
1797	return IRQ_HANDLED;
1798}
1799
1800/******************************************************************************
1801 *
1802 * ICT functions
1803 *
1804 ******************************************************************************/
1805
1806/* Free dram table */
1807void iwl_pcie_free_ict(struct iwl_trans *trans)
1808{
1809	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1810
1811	if (trans_pcie->ict_tbl) {
1812		dma_free_coherent(trans->dev, ICT_SIZE,
1813				  trans_pcie->ict_tbl,
1814				  trans_pcie->ict_tbl_dma);
1815		trans_pcie->ict_tbl = NULL;
1816		trans_pcie->ict_tbl_dma = 0;
1817	}
1818}
1819
1820/*
1821 * allocate dram shared table, it is an aligned memory
1822 * block of ICT_SIZE.
1823 * also reset all data related to ICT table interrupt.
1824 */
1825int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1826{
1827	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1828
1829	trans_pcie->ict_tbl =
1830		dma_zalloc_coherent(trans->dev, ICT_SIZE,
1831				   &trans_pcie->ict_tbl_dma,
1832				   GFP_KERNEL);
1833	if (!trans_pcie->ict_tbl)
1834		return -ENOMEM;
1835
1836	/* just an API sanity check ... it is guaranteed to be aligned */
1837	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1838		iwl_pcie_free_ict(trans);
1839		return -EINVAL;
1840	}
1841
1842	return 0;
1843}
1844
1845/* Device is going up inform it about using ICT interrupt table,
1846 * also we need to tell the driver to start using ICT interrupt.
1847 */
1848void iwl_pcie_reset_ict(struct iwl_trans *trans)
1849{
1850	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1851	u32 val;
1852
1853	if (!trans_pcie->ict_tbl)
1854		return;
1855
1856	spin_lock(&trans_pcie->irq_lock);
1857	_iwl_disable_interrupts(trans);
1858
1859	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1860
1861	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1862
1863	val |= CSR_DRAM_INT_TBL_ENABLE |
1864	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
1865	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
1866
1867	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1868
1869	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1870	trans_pcie->use_ict = true;
1871	trans_pcie->ict_index = 0;
1872	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1873	_iwl_enable_interrupts(trans);
1874	spin_unlock(&trans_pcie->irq_lock);
1875}
1876
1877/* Device is going down disable ict interrupt usage */
1878void iwl_pcie_disable_ict(struct iwl_trans *trans)
1879{
1880	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1881
1882	spin_lock(&trans_pcie->irq_lock);
1883	trans_pcie->use_ict = false;
1884	spin_unlock(&trans_pcie->irq_lock);
1885}
1886
1887irqreturn_t iwl_pcie_isr(int irq, void *data)
1888{
1889	struct iwl_trans *trans = data;
1890
1891	if (!trans)
1892		return IRQ_NONE;
1893
1894	/* Disable (but don't clear!) interrupts here to avoid
1895	 * back-to-back ISRs and sporadic interrupts from our NIC.
1896	 * If we have something to service, the tasklet will re-enable ints.
1897	 * If we *don't* have something, we'll re-enable before leaving here.
1898	 */
1899	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1900
1901	return IRQ_WAKE_THREAD;
1902}
1903
1904irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
1905{
1906	return IRQ_WAKE_THREAD;
1907}
1908
1909irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
1910{
1911	struct msix_entry *entry = dev_id;
1912	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1913	struct iwl_trans *trans = trans_pcie->trans;
1914	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
 
1915	u32 inta_fh, inta_hw;
 
 
 
 
 
 
 
 
1916
1917	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1918
1919	spin_lock(&trans_pcie->irq_lock);
1920	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
1921	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1922	/*
1923	 * Clear causes registers to avoid being handling the same cause.
1924	 */
1925	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
1926	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1927	spin_unlock(&trans_pcie->irq_lock);
1928
1929	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
1930
1931	if (unlikely(!(inta_fh | inta_hw))) {
1932		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1933		lock_map_release(&trans->sync_cmd_lockdep_map);
1934		return IRQ_NONE;
1935	}
1936
1937	if (iwl_have_debug_level(IWL_DL_ISR))
1938		IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
1939			      inta_fh,
 
1940			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
 
 
 
 
 
 
 
1941
1942	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
1943	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
1944		local_bh_disable();
1945		iwl_pcie_rx_handle(trans, 0);
 
 
 
1946		local_bh_enable();
1947	}
1948
1949	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
1950	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
1951		local_bh_disable();
1952		iwl_pcie_rx_handle(trans, 1);
 
 
 
1953		local_bh_enable();
1954	}
1955
1956	/* This "Tx" DMA channel is used only for loading uCode */
1957	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
 
 
 
 
 
 
 
 
 
 
1958		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1959		isr_stats->tx++;
1960		/*
1961		 * Wake up uCode load routine,
1962		 * now that load is complete
1963		 */
1964		trans_pcie->ucode_write_complete = true;
1965		wake_up(&trans_pcie->ucode_write_waitq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1966	}
1967
1968	/* Error detected by uCode */
1969	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
1970	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
1971		IWL_ERR(trans,
1972			"Microcode SW error detected. Restarting 0x%X.\n",
1973			inta_fh);
1974		isr_stats->sw++;
1975		iwl_pcie_irq_handle_error(trans);
 
 
 
 
 
 
 
 
 
1976	}
1977
1978	/* After checking FH register check HW register */
1979	if (iwl_have_debug_level(IWL_DL_ISR))
1980		IWL_DEBUG_ISR(trans,
1981			      "ISR inta_hw 0x%08x, enabled 0x%08x\n",
1982			      inta_hw,
1983			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
 
 
 
 
 
 
 
1984
1985	/* Alive notification via Rx interrupt will do the real work */
1986	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
1987		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1988		isr_stats->alive++;
1989		if (trans->cfg->gen2) {
1990			/* We can restock, since firmware configured the RFH */
1991			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1992		}
1993	}
1994
1995	/* uCode wakes up after power-down sleep */
1996	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
1997		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1998		iwl_pcie_rxq_check_wrptr(trans);
1999		iwl_pcie_txq_check_wrptrs(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2000
2001		isr_stats->wakeup++;
 
2002	}
2003
2004	/* Chip got too hot and stopped itself */
2005	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2006		IWL_ERR(trans, "Microcode CT kill error detected.\n");
2007		isr_stats->ctkill++;
2008	}
2009
2010	/* HW RF KILL switch toggled */
2011	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2012		iwl_pcie_handle_rfkill_irq(trans);
2013
2014	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2015		IWL_ERR(trans,
2016			"Hardware error detected. Restarting.\n");
2017
2018		isr_stats->hw++;
 
2019		iwl_pcie_irq_handle_error(trans);
2020	}
2021
2022	iwl_pcie_clear_irq(trans, entry);
 
 
 
 
 
 
 
2023
2024	lock_map_release(&trans->sync_cmd_lockdep_map);
2025
2026	return IRQ_HANDLED;
2027}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright (C) 2003-2014, 2018-2024 Intel Corporation
   4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
   5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
   6 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7#include <linux/sched.h>
   8#include <linux/wait.h>
   9#include <linux/gfp.h>
  10
  11#include "iwl-prph.h"
  12#include "iwl-io.h"
  13#include "internal.h"
  14#include "iwl-op-mode.h"
  15#include "iwl-context-info-gen3.h"
  16
  17/******************************************************************************
  18 *
  19 * RX path functions
  20 *
  21 ******************************************************************************/
  22
  23/*
  24 * Rx theory of operation
  25 *
  26 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
  27 * each of which point to Receive Buffers to be filled by the NIC.  These get
  28 * used not only for Rx frames, but for any command response or notification
  29 * from the NIC.  The driver and NIC manage the Rx buffers by means
  30 * of indexes into the circular buffer.
  31 *
  32 * Rx Queue Indexes
  33 * The host/firmware share two index registers for managing the Rx buffers.
  34 *
  35 * The READ index maps to the first position that the firmware may be writing
  36 * to -- the driver can read up to (but not including) this position and get
  37 * good data.
  38 * The READ index is managed by the firmware once the card is enabled.
  39 *
  40 * The WRITE index maps to the last position the driver has read from -- the
  41 * position preceding WRITE is the last slot the firmware can place a packet.
  42 *
  43 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
  44 * WRITE = READ.
  45 *
  46 * During initialization, the host sets up the READ queue position to the first
  47 * INDEX position, and WRITE to the last (READ - 1 wrapped)
  48 *
  49 * When the firmware places a packet in a buffer, it will advance the READ index
  50 * and fire the RX interrupt.  The driver can then query the READ index and
  51 * process as many packets as possible, moving the WRITE index forward as it
  52 * resets the Rx queue buffers with new memory.
  53 *
  54 * The management in the driver is as follows:
  55 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
  56 *   When the interrupt handler is called, the request is processed.
  57 *   The page is either stolen - transferred to the upper layer
  58 *   or reused - added immediately to the iwl->rxq->rx_free list.
  59 * + When the page is stolen - the driver updates the matching queue's used
  60 *   count, detaches the RBD and transfers it to the queue used list.
  61 *   When there are two used RBDs - they are transferred to the allocator empty
  62 *   list. Work is then scheduled for the allocator to start allocating
  63 *   eight buffers.
  64 *   When there are another 6 used RBDs - they are transferred to the allocator
  65 *   empty list and the driver tries to claim the pre-allocated buffers and
  66 *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
  67 *   until ready.
  68 *   When there are 8+ buffers in the free list - either from allocation or from
  69 *   8 reused unstolen pages - restock is called to update the FW and indexes.
  70 * + In order to make sure the allocator always has RBDs to use for allocation
  71 *   the allocator has initial pool in the size of num_queues*(8-2) - the
  72 *   maximum missing RBDs per allocation request (request posted with 2
  73 *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
  74 *   The queues supplies the recycle of the rest of the RBDs.
  75 * + A received packet is processed and handed to the kernel network stack,
  76 *   detached from the iwl->rxq.  The driver 'processed' index is updated.
  77 * + If there are no allocated buffers in iwl->rxq->rx_free,
  78 *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
  79 *   If there were enough free buffers and RX_STALLED is set it is cleared.
  80 *
  81 *
  82 * Driver sequence:
  83 *
  84 * iwl_rxq_alloc()            Allocates rx_free
  85 * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
  86 *                            iwl_pcie_rxq_restock.
  87 *                            Used only during initialization.
  88 * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
  89 *                            queue, updates firmware pointers, and updates
  90 *                            the WRITE index.
  91 * iwl_pcie_rx_allocator()     Background work for allocating pages.
  92 *
  93 * -- enable interrupts --
  94 * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
  95 *                            READ INDEX, detaching the SKB from the pool.
  96 *                            Moves the packet buffer from queue to rx_used.
  97 *                            Posts and claims requests to the allocator.
  98 *                            Calls iwl_pcie_rxq_restock to refill any empty
  99 *                            slots.
 100 *
 101 * RBD life-cycle:
 102 *
 103 * Init:
 104 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
 105 *
 106 * Regular Receive interrupt:
 107 * Page Stolen:
 108 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
 109 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
 110 * Page not Stolen:
 111 * rxq.queue -> rxq.rx_free -> rxq.queue
 112 * ...
 113 *
 114 */
 115
 116/*
 117 * iwl_rxq_space - Return number of free slots available in queue.
 118 */
 119static int iwl_rxq_space(const struct iwl_rxq *rxq)
 120{
 121	/* Make sure rx queue size is a power of 2 */
 122	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
 123
 124	/*
 125	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
 126	 * between empty and completely full queues.
 127	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
 128	 * defined for negative dividends.
 129	 */
 130	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
 131}
 132
 133/*
 134 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
 135 */
 136static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
 137{
 138	return cpu_to_le32((u32)(dma_addr >> 8));
 139}
 140
 141/*
 142 * iwl_pcie_rx_stop - stops the Rx DMA
 143 */
 144int iwl_pcie_rx_stop(struct iwl_trans *trans)
 145{
 146	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
 147		/* TODO: remove this once fw does it */
 148		iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
 149		return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
 150					      RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
 151	} else if (trans->trans_cfg->mq_rx_supported) {
 152		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
 153		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
 154					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
 155	} else {
 156		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
 157		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
 158					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
 159					   1000);
 160	}
 161}
 162
 163/*
 164 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
 165 */
 166static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
 167				    struct iwl_rxq *rxq)
 168{
 169	u32 reg;
 170
 171	lockdep_assert_held(&rxq->lock);
 172
 173	/*
 174	 * explicitly wake up the NIC if:
 175	 * 1. shadow registers aren't enabled
 176	 * 2. there is a chance that the NIC is asleep
 177	 */
 178	if (!trans->trans_cfg->base_params->shadow_reg_enable &&
 179	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
 180		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
 181
 182		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
 183			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
 184				       reg);
 185			iwl_set_bit(trans, CSR_GP_CNTRL,
 186				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
 187			rxq->need_update = true;
 188			return;
 189		}
 190	}
 191
 192	rxq->write_actual = round_down(rxq->write, 8);
 193	if (!trans->trans_cfg->mq_rx_supported)
 194		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
 195	else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
 196		iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual |
 197			    HBUS_TARG_WRPTR_RX_Q(rxq->id));
 198	else
 199		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
 200			    rxq->write_actual);
 
 
 201}
 202
 203static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
 204{
 205	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 206	int i;
 207
 208	for (i = 0; i < trans->num_rx_queues; i++) {
 209		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 210
 211		if (!rxq->need_update)
 212			continue;
 213		spin_lock_bh(&rxq->lock);
 214		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 215		rxq->need_update = false;
 216		spin_unlock_bh(&rxq->lock);
 217	}
 218}
 219
 220static void iwl_pcie_restock_bd(struct iwl_trans *trans,
 221				struct iwl_rxq *rxq,
 222				struct iwl_rx_mem_buffer *rxb)
 223{
 224	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
 225		struct iwl_rx_transfer_desc *bd = rxq->bd;
 226
 227		BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
 228
 229		bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
 230		bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
 231	} else {
 232		__le64 *bd = rxq->bd;
 233
 234		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
 235	}
 236
 237	IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
 238		     (u32)rxb->vid, rxq->id, rxq->write);
 239}
 240
 241/*
 242 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
 243 */
 244static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
 245				  struct iwl_rxq *rxq)
 246{
 247	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 248	struct iwl_rx_mem_buffer *rxb;
 249
 250	/*
 251	 * If the device isn't enabled - no need to try to add buffers...
 252	 * This can happen when we stop the device and still have an interrupt
 253	 * pending. We stop the APM before we sync the interrupts because we
 254	 * have to (see comment there). On the other hand, since the APM is
 255	 * stopped, we cannot access the HW (in particular not prph).
 256	 * So don't try to restock if the APM has been already stopped.
 257	 */
 258	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
 259		return;
 260
 261	spin_lock_bh(&rxq->lock);
 262	while (rxq->free_count) {
 
 
 263		/* Get next free Rx buffer, remove from free list */
 264		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
 265				       list);
 266		list_del(&rxb->list);
 267		rxb->invalid = false;
 268		/* some low bits are expected to be unset (depending on hw) */
 269		WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
 270		/* Point to Rx buffer via next RBD in circular buffer */
 271		iwl_pcie_restock_bd(trans, rxq, rxb);
 272		rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
 273		rxq->free_count--;
 274	}
 275	spin_unlock_bh(&rxq->lock);
 276
 277	/*
 278	 * If we've added more space for the firmware to place data, tell it.
 279	 * Increment device's write pointer in multiples of 8.
 280	 */
 281	if (rxq->write_actual != (rxq->write & ~0x7)) {
 282		spin_lock_bh(&rxq->lock);
 283		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 284		spin_unlock_bh(&rxq->lock);
 285	}
 286}
 287
 288/*
 289 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
 290 */
 291static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
 292				  struct iwl_rxq *rxq)
 293{
 294	struct iwl_rx_mem_buffer *rxb;
 295
 296	/*
 297	 * If the device isn't enabled - not need to try to add buffers...
 298	 * This can happen when we stop the device and still have an interrupt
 299	 * pending. We stop the APM before we sync the interrupts because we
 300	 * have to (see comment there). On the other hand, since the APM is
 301	 * stopped, we cannot access the HW (in particular not prph).
 302	 * So don't try to restock if the APM has been already stopped.
 303	 */
 304	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
 305		return;
 306
 307	spin_lock_bh(&rxq->lock);
 308	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
 309		__le32 *bd = (__le32 *)rxq->bd;
 310		/* The overwritten rxb must be a used one */
 311		rxb = rxq->queue[rxq->write];
 312		BUG_ON(rxb && rxb->page);
 313
 314		/* Get next free Rx buffer, remove from free list */
 315		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
 316				       list);
 317		list_del(&rxb->list);
 318		rxb->invalid = false;
 319
 320		/* Point to Rx buffer via next RBD in circular buffer */
 321		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
 322		rxq->queue[rxq->write] = rxb;
 323		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
 324		rxq->free_count--;
 325	}
 326	spin_unlock_bh(&rxq->lock);
 327
 328	/* If we've added more space for the firmware to place data, tell it.
 329	 * Increment device's write pointer in multiples of 8. */
 330	if (rxq->write_actual != (rxq->write & ~0x7)) {
 331		spin_lock_bh(&rxq->lock);
 332		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 333		spin_unlock_bh(&rxq->lock);
 334	}
 335}
 336
 337/*
 338 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
 339 *
 340 * If there are slots in the RX queue that need to be restocked,
 341 * and we have free pre-allocated buffers, fill the ranks as much
 342 * as we can, pulling from rx_free.
 343 *
 344 * This moves the 'write' index forward to catch up with 'processed', and
 345 * also updates the memory address in the firmware to reference the new
 346 * target buffer.
 347 */
 348static
 349void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
 350{
 351	if (trans->trans_cfg->mq_rx_supported)
 352		iwl_pcie_rxmq_restock(trans, rxq);
 353	else
 354		iwl_pcie_rxsq_restock(trans, rxq);
 355}
 356
 357/*
 358 * iwl_pcie_rx_alloc_page - allocates and returns a page.
 359 *
 360 */
 361static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
 362					   u32 *offset, gfp_t priority)
 363{
 364	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 365	unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
 366	unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
 367	struct page *page;
 368	gfp_t gfp_mask = priority;
 369
 370	if (trans_pcie->rx_page_order > 0)
 371		gfp_mask |= __GFP_COMP;
 372
 373	if (trans_pcie->alloc_page) {
 374		spin_lock_bh(&trans_pcie->alloc_page_lock);
 375		/* recheck */
 376		if (trans_pcie->alloc_page) {
 377			*offset = trans_pcie->alloc_page_used;
 378			page = trans_pcie->alloc_page;
 379			trans_pcie->alloc_page_used += rbsize;
 380			if (trans_pcie->alloc_page_used >= allocsize)
 381				trans_pcie->alloc_page = NULL;
 382			else
 383				get_page(page);
 384			spin_unlock_bh(&trans_pcie->alloc_page_lock);
 385			return page;
 386		}
 387		spin_unlock_bh(&trans_pcie->alloc_page_lock);
 388	}
 389
 390	/* Alloc a new receive buffer */
 391	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
 392	if (!page) {
 393		if (net_ratelimit())
 394			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
 395				       trans_pcie->rx_page_order);
 396		/*
 397		 * Issue an error if we don't have enough pre-allocated
 398		  * buffers.
 399		 */
 400		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
 401			IWL_CRIT(trans,
 402				 "Failed to alloc_pages\n");
 403		return NULL;
 404	}
 405
 406	if (2 * rbsize <= allocsize) {
 407		spin_lock_bh(&trans_pcie->alloc_page_lock);
 408		if (!trans_pcie->alloc_page) {
 409			get_page(page);
 410			trans_pcie->alloc_page = page;
 411			trans_pcie->alloc_page_used = rbsize;
 412		}
 413		spin_unlock_bh(&trans_pcie->alloc_page_lock);
 414	}
 415
 416	*offset = 0;
 417	return page;
 418}
 419
 420/*
 421 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
 422 *
 423 * A used RBD is an Rx buffer that has been given to the stack. To use it again
 424 * a page must be allocated and the RBD must point to the page. This function
 425 * doesn't change the HW pointer but handles the list of pages that is used by
 426 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
 427 * allocated buffers.
 428 */
 429void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
 430			    struct iwl_rxq *rxq)
 431{
 432	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 433	struct iwl_rx_mem_buffer *rxb;
 434	struct page *page;
 435
 436	while (1) {
 437		unsigned int offset;
 438
 439		spin_lock_bh(&rxq->lock);
 440		if (list_empty(&rxq->rx_used)) {
 441			spin_unlock_bh(&rxq->lock);
 442			return;
 443		}
 444		spin_unlock_bh(&rxq->lock);
 445
 446		page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
 
 447		if (!page)
 448			return;
 449
 450		spin_lock_bh(&rxq->lock);
 451
 452		if (list_empty(&rxq->rx_used)) {
 453			spin_unlock_bh(&rxq->lock);
 454			__free_pages(page, trans_pcie->rx_page_order);
 455			return;
 456		}
 457		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
 458				       list);
 459		list_del(&rxb->list);
 460		spin_unlock_bh(&rxq->lock);
 461
 462		BUG_ON(rxb->page);
 463		rxb->page = page;
 464		rxb->offset = offset;
 465		/* Get physical address of the RB */
 466		rxb->page_dma =
 467			dma_map_page(trans->dev, page, rxb->offset,
 468				     trans_pcie->rx_buf_bytes,
 469				     DMA_FROM_DEVICE);
 470		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
 471			rxb->page = NULL;
 472			spin_lock_bh(&rxq->lock);
 473			list_add(&rxb->list, &rxq->rx_used);
 474			spin_unlock_bh(&rxq->lock);
 475			__free_pages(page, trans_pcie->rx_page_order);
 476			return;
 477		}
 478
 479		spin_lock_bh(&rxq->lock);
 480
 481		list_add_tail(&rxb->list, &rxq->rx_free);
 482		rxq->free_count++;
 483
 484		spin_unlock_bh(&rxq->lock);
 485	}
 486}
 487
 488void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
 489{
 490	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 491	int i;
 492
 493	if (!trans_pcie->rx_pool)
 494		return;
 495
 496	for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
 497		if (!trans_pcie->rx_pool[i].page)
 498			continue;
 499		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
 500			       trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
 
 501		__free_pages(trans_pcie->rx_pool[i].page,
 502			     trans_pcie->rx_page_order);
 503		trans_pcie->rx_pool[i].page = NULL;
 504	}
 505}
 506
 507/*
 508 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
 509 *
 510 * Allocates for each received request 8 pages
 511 * Called as a scheduled work item.
 512 */
 513static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
 514{
 515	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 516	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 517	struct list_head local_empty;
 518	int pending = atomic_read(&rba->req_pending);
 519
 520	IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
 521
 522	/* If we were scheduled - there is at least one request */
 523	spin_lock_bh(&rba->lock);
 524	/* swap out the rba->rbd_empty to a local list */
 525	list_replace_init(&rba->rbd_empty, &local_empty);
 526	spin_unlock_bh(&rba->lock);
 527
 528	while (pending) {
 529		int i;
 530		LIST_HEAD(local_allocated);
 531		gfp_t gfp_mask = GFP_KERNEL;
 532
 533		/* Do not post a warning if there are only a few requests */
 534		if (pending < RX_PENDING_WATERMARK)
 535			gfp_mask |= __GFP_NOWARN;
 536
 537		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
 538			struct iwl_rx_mem_buffer *rxb;
 539			struct page *page;
 540
 541			/* List should never be empty - each reused RBD is
 542			 * returned to the list, and initial pool covers any
 543			 * possible gap between the time the page is allocated
 544			 * to the time the RBD is added.
 545			 */
 546			BUG_ON(list_empty(&local_empty));
 547			/* Get the first rxb from the rbd list */
 548			rxb = list_first_entry(&local_empty,
 549					       struct iwl_rx_mem_buffer, list);
 550			BUG_ON(rxb->page);
 551
 552			/* Alloc a new receive buffer */
 553			page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
 554						      gfp_mask);
 555			if (!page)
 556				continue;
 557			rxb->page = page;
 558
 559			/* Get physical address of the RB */
 560			rxb->page_dma = dma_map_page(trans->dev, page,
 561						     rxb->offset,
 562						     trans_pcie->rx_buf_bytes,
 563						     DMA_FROM_DEVICE);
 564			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
 565				rxb->page = NULL;
 566				__free_pages(page, trans_pcie->rx_page_order);
 567				continue;
 568			}
 569
 570			/* move the allocated entry to the out list */
 571			list_move(&rxb->list, &local_allocated);
 572			i++;
 573		}
 574
 575		atomic_dec(&rba->req_pending);
 576		pending--;
 577
 578		if (!pending) {
 579			pending = atomic_read(&rba->req_pending);
 580			if (pending)
 581				IWL_DEBUG_TPT(trans,
 582					      "Got more pending allocation requests = %d\n",
 583					      pending);
 584		}
 585
 586		spin_lock_bh(&rba->lock);
 587		/* add the allocated rbds to the allocator allocated list */
 588		list_splice_tail(&local_allocated, &rba->rbd_allocated);
 589		/* get more empty RBDs for current pending requests */
 590		list_splice_tail_init(&rba->rbd_empty, &local_empty);
 591		spin_unlock_bh(&rba->lock);
 592
 593		atomic_inc(&rba->req_ready);
 594
 595	}
 596
 597	spin_lock_bh(&rba->lock);
 598	/* return unused rbds to the allocator empty list */
 599	list_splice_tail(&local_empty, &rba->rbd_empty);
 600	spin_unlock_bh(&rba->lock);
 601
 602	IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
 603}
 604
 605/*
 606 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
 607.*
 608.* Called by queue when the queue posted allocation request and
 609 * has freed 8 RBDs in order to restock itself.
 610 * This function directly moves the allocated RBs to the queue's ownership
 611 * and updates the relevant counters.
 612 */
 613static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
 614				      struct iwl_rxq *rxq)
 615{
 616	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 617	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 618	int i;
 619
 620	lockdep_assert_held(&rxq->lock);
 621
 622	/*
 623	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
 624	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
 625	 * function will return early, as there are no ready requests.
 626	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
 627	 * req_ready > 0, i.e. - there are ready requests and the function
 628	 * hands one request to the caller.
 629	 */
 630	if (atomic_dec_if_positive(&rba->req_ready) < 0)
 631		return;
 632
 633	spin_lock(&rba->lock);
 634	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
 635		/* Get next free Rx buffer, remove it from free list */
 636		struct iwl_rx_mem_buffer *rxb =
 637			list_first_entry(&rba->rbd_allocated,
 638					 struct iwl_rx_mem_buffer, list);
 639
 640		list_move(&rxb->list, &rxq->rx_free);
 641	}
 642	spin_unlock(&rba->lock);
 643
 644	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
 645	rxq->free_count += RX_CLAIM_REQ_ALLOC;
 646}
 647
 648void iwl_pcie_rx_allocator_work(struct work_struct *data)
 649{
 650	struct iwl_rb_allocator *rba_p =
 651		container_of(data, struct iwl_rb_allocator, rx_alloc);
 652	struct iwl_trans_pcie *trans_pcie =
 653		container_of(rba_p, struct iwl_trans_pcie, rba);
 654
 655	iwl_pcie_rx_allocator(trans_pcie->trans);
 656}
 657
 658static int iwl_pcie_free_bd_size(struct iwl_trans *trans)
 659{
 660	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
 661		return sizeof(struct iwl_rx_transfer_desc);
 662
 663	return trans->trans_cfg->mq_rx_supported ?
 664			sizeof(__le64) : sizeof(__le32);
 665}
 666
 667static int iwl_pcie_used_bd_size(struct iwl_trans *trans)
 668{
 669	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
 670		return sizeof(struct iwl_rx_completion_desc_bz);
 671
 672	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
 673		return sizeof(struct iwl_rx_completion_desc);
 674
 675	return sizeof(__le32);
 676}
 677
 678static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
 679				  struct iwl_rxq *rxq)
 680{
 681	int free_size = iwl_pcie_free_bd_size(trans);
 682
 683	if (rxq->bd)
 684		dma_free_coherent(trans->dev,
 685				  free_size * rxq->queue_size,
 686				  rxq->bd, rxq->bd_dma);
 687	rxq->bd_dma = 0;
 688	rxq->bd = NULL;
 689
 690	rxq->rb_stts_dma = 0;
 691	rxq->rb_stts = NULL;
 692
 693	if (rxq->used_bd)
 694		dma_free_coherent(trans->dev,
 695				  iwl_pcie_used_bd_size(trans) *
 696					rxq->queue_size,
 697				  rxq->used_bd, rxq->used_bd_dma);
 698	rxq->used_bd_dma = 0;
 699	rxq->used_bd = NULL;
 700}
 701
 702static size_t iwl_pcie_rb_stts_size(struct iwl_trans *trans)
 703{
 704	bool use_rx_td = (trans->trans_cfg->device_family >=
 705			  IWL_DEVICE_FAMILY_AX210);
 706
 707	if (use_rx_td)
 708		return sizeof(__le16);
 709
 710	return sizeof(struct iwl_rb_status);
 711}
 712
 713static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
 714				  struct iwl_rxq *rxq)
 715{
 716	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 717	size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
 718	struct device *dev = trans->dev;
 719	int i;
 720	int free_size;
 721
 722	spin_lock_init(&rxq->lock);
 723	if (trans->trans_cfg->mq_rx_supported)
 724		rxq->queue_size = trans->cfg->num_rbds;
 725	else
 726		rxq->queue_size = RX_QUEUE_SIZE;
 727
 728	free_size = iwl_pcie_free_bd_size(trans);
 729
 730	/*
 731	 * Allocate the circular buffer of Read Buffer Descriptors
 732	 * (RBDs)
 733	 */
 734	rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
 735				     &rxq->bd_dma, GFP_KERNEL);
 736	if (!rxq->bd)
 737		goto err;
 738
 739	if (trans->trans_cfg->mq_rx_supported) {
 740		rxq->used_bd = dma_alloc_coherent(dev,
 741						  iwl_pcie_used_bd_size(trans) *
 742							rxq->queue_size,
 743						  &rxq->used_bd_dma,
 744						  GFP_KERNEL);
 745		if (!rxq->used_bd)
 746			goto err;
 747	}
 748
 749	rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
 750	rxq->rb_stts_dma =
 751		trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
 752
 753	return 0;
 754
 755err:
 756	for (i = 0; i < trans->num_rx_queues; i++) {
 757		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 758
 759		iwl_pcie_free_rxq_dma(trans, rxq);
 760	}
 761
 762	return -ENOMEM;
 763}
 764
 765static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
 766{
 767	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 768	size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
 769	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 770	int i, ret;
 771
 772	if (WARN_ON(trans_pcie->rxq))
 773		return -EINVAL;
 774
 775	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
 776				  GFP_KERNEL);
 777	trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
 778				      sizeof(trans_pcie->rx_pool[0]),
 779				      GFP_KERNEL);
 780	trans_pcie->global_table =
 781		kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
 782			sizeof(trans_pcie->global_table[0]),
 783			GFP_KERNEL);
 784	if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
 785	    !trans_pcie->global_table) {
 786		ret = -ENOMEM;
 787		goto err;
 788	}
 789
 790	spin_lock_init(&rba->lock);
 791
 792	/*
 793	 * Allocate the driver's pointer to receive buffer status.
 794	 * Allocate for all queues continuously (HW requirement).
 795	 */
 796	trans_pcie->base_rb_stts =
 797			dma_alloc_coherent(trans->dev,
 798					   rb_stts_size * trans->num_rx_queues,
 799					   &trans_pcie->base_rb_stts_dma,
 800					   GFP_KERNEL);
 801	if (!trans_pcie->base_rb_stts) {
 802		ret = -ENOMEM;
 803		goto err;
 804	}
 805
 806	for (i = 0; i < trans->num_rx_queues; i++) {
 807		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 808
 809		rxq->id = i;
 810		ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
 811		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 812			goto err;
 813	}
 814	return 0;
 815
 816err:
 817	if (trans_pcie->base_rb_stts) {
 818		dma_free_coherent(trans->dev,
 819				  rb_stts_size * trans->num_rx_queues,
 820				  trans_pcie->base_rb_stts,
 821				  trans_pcie->base_rb_stts_dma);
 822		trans_pcie->base_rb_stts = NULL;
 823		trans_pcie->base_rb_stts_dma = 0;
 824	}
 825	kfree(trans_pcie->rx_pool);
 826	trans_pcie->rx_pool = NULL;
 827	kfree(trans_pcie->global_table);
 828	trans_pcie->global_table = NULL;
 
 
 
 
 
 
 
 
 829	kfree(trans_pcie->rxq);
 830	trans_pcie->rxq = NULL;
 831
 832	return ret;
 833}
 834
 835static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
 836{
 837	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 838	u32 rb_size;
 
 839	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
 840
 841	switch (trans_pcie->rx_buf_size) {
 842	case IWL_AMSDU_4K:
 843		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
 844		break;
 845	case IWL_AMSDU_8K:
 846		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
 847		break;
 848	case IWL_AMSDU_12K:
 849		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
 850		break;
 851	default:
 852		WARN_ON(1);
 853		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
 854	}
 855
 856	if (!iwl_trans_grab_nic_access(trans))
 857		return;
 858
 859	/* Stop Rx DMA */
 860	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
 861	/* reset and flush pointers */
 862	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
 863	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
 864	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
 865
 866	/* Reset driver's Rx queue write index */
 867	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
 868
 869	/* Tell device where to find RBD circular buffer in DRAM */
 870	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
 871		    (u32)(rxq->bd_dma >> 8));
 872
 873	/* Tell device where in DRAM to update its Rx status */
 874	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
 875		    rxq->rb_stts_dma >> 4);
 876
 877	/* Enable Rx DMA
 878	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
 879	 *      the credit mechanism in 5000 HW RX FIFO
 880	 * Direct rx interrupts to hosts
 881	 * Rx buffer size 4 or 8k or 12k
 882	 * RB timeout 0x10
 883	 * 256 RBDs
 884	 */
 885	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
 886		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
 887		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
 888		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
 889		    rb_size |
 890		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
 891		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
 892
 893	iwl_trans_release_nic_access(trans);
 894
 895	/* Set interrupt coalescing timer to default (2048 usecs) */
 896	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
 897
 898	/* W/A for interrupt coalescing bug in 7260 and 3160 */
 899	if (trans->cfg->host_interrupt_operation_mode)
 900		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
 901}
 902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
 904{
 905	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 906	u32 rb_size, enabled = 0;
 
 907	int i;
 908
 909	switch (trans_pcie->rx_buf_size) {
 910	case IWL_AMSDU_2K:
 911		rb_size = RFH_RXF_DMA_RB_SIZE_2K;
 912		break;
 913	case IWL_AMSDU_4K:
 914		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
 915		break;
 916	case IWL_AMSDU_8K:
 917		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
 918		break;
 919	case IWL_AMSDU_12K:
 920		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
 921		break;
 922	default:
 923		WARN_ON(1);
 924		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
 925	}
 926
 927	if (!iwl_trans_grab_nic_access(trans))
 928		return;
 929
 930	/* Stop Rx DMA */
 931	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
 932	/* disable free amd used rx queue operation */
 933	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
 934
 935	for (i = 0; i < trans->num_rx_queues; i++) {
 936		/* Tell device where to find RBD free table in DRAM */
 937		iwl_write_prph64_no_grab(trans,
 938					 RFH_Q_FRBDCB_BA_LSB(i),
 939					 trans_pcie->rxq[i].bd_dma);
 940		/* Tell device where to find RBD used table in DRAM */
 941		iwl_write_prph64_no_grab(trans,
 942					 RFH_Q_URBDCB_BA_LSB(i),
 943					 trans_pcie->rxq[i].used_bd_dma);
 944		/* Tell device where in DRAM to update its Rx status */
 945		iwl_write_prph64_no_grab(trans,
 946					 RFH_Q_URBD_STTS_WPTR_LSB(i),
 947					 trans_pcie->rxq[i].rb_stts_dma);
 948		/* Reset device indice tables */
 949		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
 950		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
 951		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
 952
 953		enabled |= BIT(i) | BIT(i + 16);
 954	}
 955
 956	/*
 957	 * Enable Rx DMA
 958	 * Rx buffer size 4 or 8k or 12k
 959	 * Min RB size 4 or 8
 960	 * Drop frames that exceed RB size
 961	 * 512 RBDs
 962	 */
 963	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
 964			       RFH_DMA_EN_ENABLE_VAL | rb_size |
 965			       RFH_RXF_DMA_MIN_RB_4_8 |
 966			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
 967			       RFH_RXF_DMA_RBDCB_SIZE_512);
 968
 969	/*
 970	 * Activate DMA snooping.
 971	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
 972	 * Default queue is 0
 973	 */
 974	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
 975			       RFH_GEN_CFG_RFH_DMA_SNOOP |
 976			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
 977			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
 978			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
 979					       trans->trans_cfg->integrated ?
 980					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
 981					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
 982	/* Enable the relevant rx queues */
 983	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
 984
 985	iwl_trans_release_nic_access(trans);
 986
 987	/* Set interrupt coalescing timer to default (2048 usecs) */
 988	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
 
 
 989}
 990
 991void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
 992{
 993	lockdep_assert_held(&rxq->lock);
 994
 995	INIT_LIST_HEAD(&rxq->rx_free);
 996	INIT_LIST_HEAD(&rxq->rx_used);
 997	rxq->free_count = 0;
 998	rxq->used_count = 0;
 999}
1000
1001static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
1002
1003static inline struct iwl_trans_pcie *iwl_netdev_to_trans_pcie(struct net_device *dev)
1004{
1005	return *(struct iwl_trans_pcie **)netdev_priv(dev);
1006}
1007
1008static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
1009{
1010	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1011	struct iwl_trans_pcie *trans_pcie;
1012	struct iwl_trans *trans;
1013	int ret;
1014
1015	trans_pcie = iwl_netdev_to_trans_pcie(napi->dev);
1016	trans = trans_pcie->trans;
1017
1018	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1019
1020	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
1021		      rxq->id, ret, budget);
1022
1023	if (ret < budget) {
1024		spin_lock(&trans_pcie->irq_lock);
1025		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1026			_iwl_enable_interrupts(trans);
1027		spin_unlock(&trans_pcie->irq_lock);
1028
1029		napi_complete_done(&rxq->napi, ret);
1030	}
1031
1032	return ret;
1033}
1034
1035static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1036{
1037	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1038	struct iwl_trans_pcie *trans_pcie;
1039	struct iwl_trans *trans;
1040	int ret;
1041
1042	trans_pcie = iwl_netdev_to_trans_pcie(napi->dev);
1043	trans = trans_pcie->trans;
1044
1045	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1046	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
1047		      budget);
1048
1049	if (ret < budget) {
1050		int irq_line = rxq->id;
1051
1052		/* FIRST_RSS is shared with line 0 */
1053		if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1054		    rxq->id == 1)
1055			irq_line = 0;
1056
1057		spin_lock(&trans_pcie->irq_lock);
1058		iwl_pcie_clear_irq(trans, irq_line);
1059		spin_unlock(&trans_pcie->irq_lock);
1060
1061		napi_complete_done(&rxq->napi, ret);
1062	}
1063
1064	return ret;
1065}
1066
1067void iwl_pcie_rx_napi_sync(struct iwl_trans *trans)
1068{
1069	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1070	int i;
1071
1072	if (unlikely(!trans_pcie->rxq))
1073		return;
1074
1075	for (i = 0; i < trans->num_rx_queues; i++) {
1076		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1077
1078		if (rxq && rxq->napi.poll)
1079			napi_synchronize(&rxq->napi);
1080	}
1081}
1082
1083static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1084{
1085	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1086	struct iwl_rxq *def_rxq;
1087	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1088	int i, err, queue_size, allocator_pool_size, num_alloc;
1089
1090	if (!trans_pcie->rxq) {
1091		err = iwl_pcie_rx_alloc(trans);
1092		if (err)
1093			return err;
1094	}
1095	def_rxq = trans_pcie->rxq;
1096
1097	cancel_work_sync(&rba->rx_alloc);
1098
1099	spin_lock_bh(&rba->lock);
1100	atomic_set(&rba->req_pending, 0);
1101	atomic_set(&rba->req_ready, 0);
1102	INIT_LIST_HEAD(&rba->rbd_allocated);
1103	INIT_LIST_HEAD(&rba->rbd_empty);
1104	spin_unlock_bh(&rba->lock);
1105
1106	/* free all first - we overwrite everything here */
1107	iwl_pcie_free_rbs_pool(trans);
1108
1109	for (i = 0; i < RX_QUEUE_SIZE; i++)
1110		def_rxq->queue[i] = NULL;
1111
1112	for (i = 0; i < trans->num_rx_queues; i++) {
1113		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1114
1115		spin_lock_bh(&rxq->lock);
 
 
1116		/*
1117		 * Set read write pointer to reflect that we have processed
1118		 * and used all buffers, but have not restocked the Rx queue
1119		 * with fresh buffers
1120		 */
1121		rxq->read = 0;
1122		rxq->write = 0;
1123		rxq->write_actual = 0;
1124		memset(rxq->rb_stts, 0,
1125		       (trans->trans_cfg->device_family >=
1126			IWL_DEVICE_FAMILY_AX210) ?
1127		       sizeof(__le16) : sizeof(struct iwl_rb_status));
1128
1129		iwl_pcie_rx_init_rxb_lists(rxq);
1130
1131		spin_unlock_bh(&rxq->lock);
1132
1133		if (!rxq->napi.poll) {
1134			int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1135
1136			if (trans_pcie->msix_enabled)
1137				poll = iwl_pcie_napi_poll_msix;
1138
1139			netif_napi_add(trans_pcie->napi_dev, &rxq->napi,
1140				       poll);
1141			napi_enable(&rxq->napi);
1142		}
1143
 
1144	}
1145
1146	/* move the pool to the default queue and allocator ownerships */
1147	queue_size = trans->trans_cfg->mq_rx_supported ?
1148			trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1149	allocator_pool_size = trans->num_rx_queues *
1150		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1151	num_alloc = queue_size + allocator_pool_size;
1152
 
1153	for (i = 0; i < num_alloc; i++) {
1154		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1155
1156		if (i < allocator_pool_size)
1157			list_add(&rxb->list, &rba->rbd_empty);
1158		else
1159			list_add(&rxb->list, &def_rxq->rx_used);
1160		trans_pcie->global_table[i] = rxb;
1161		rxb->vid = (u16)(i + 1);
1162		rxb->invalid = true;
1163	}
1164
1165	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1166
1167	return 0;
1168}
1169
1170int iwl_pcie_rx_init(struct iwl_trans *trans)
1171{
1172	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1173	int ret = _iwl_pcie_rx_init(trans);
1174
1175	if (ret)
1176		return ret;
1177
1178	if (trans->trans_cfg->mq_rx_supported)
1179		iwl_pcie_rx_mq_hw_init(trans);
1180	else
1181		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1182
1183	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1184
1185	spin_lock_bh(&trans_pcie->rxq->lock);
1186	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1187	spin_unlock_bh(&trans_pcie->rxq->lock);
1188
1189	return 0;
1190}
1191
1192int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1193{
1194	/* Set interrupt coalescing timer to default (2048 usecs) */
1195	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1196
1197	/*
1198	 * We don't configure the RFH.
1199	 * Restock will be done at alive, after firmware configured the RFH.
1200	 */
1201	return _iwl_pcie_rx_init(trans);
1202}
1203
1204void iwl_pcie_rx_free(struct iwl_trans *trans)
1205{
1206	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1207	size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
1208	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 
 
1209	int i;
1210
1211	/*
1212	 * if rxq is NULL, it means that nothing has been allocated,
1213	 * exit now
1214	 */
1215	if (!trans_pcie->rxq) {
1216		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1217		return;
1218	}
1219
1220	cancel_work_sync(&rba->rx_alloc);
1221
1222	iwl_pcie_free_rbs_pool(trans);
1223
1224	if (trans_pcie->base_rb_stts) {
1225		dma_free_coherent(trans->dev,
1226				  rb_stts_size * trans->num_rx_queues,
1227				  trans_pcie->base_rb_stts,
1228				  trans_pcie->base_rb_stts_dma);
1229		trans_pcie->base_rb_stts = NULL;
1230		trans_pcie->base_rb_stts_dma = 0;
1231	}
1232
1233	for (i = 0; i < trans->num_rx_queues; i++) {
1234		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1235
1236		iwl_pcie_free_rxq_dma(trans, rxq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237
1238		if (rxq->napi.poll) {
1239			napi_disable(&rxq->napi);
1240			netif_napi_del(&rxq->napi);
1241		}
1242	}
1243	kfree(trans_pcie->rx_pool);
1244	kfree(trans_pcie->global_table);
1245	kfree(trans_pcie->rxq);
1246
1247	if (trans_pcie->alloc_page)
1248		__free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1249}
1250
1251static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1252					  struct iwl_rb_allocator *rba)
1253{
1254	spin_lock(&rba->lock);
1255	list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1256	spin_unlock(&rba->lock);
1257}
1258
1259/*
1260 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1261 *
1262 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1263 * When there are 2 empty RBDs - a request for allocation is posted
1264 */
1265static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1266				  struct iwl_rx_mem_buffer *rxb,
1267				  struct iwl_rxq *rxq, bool emergency)
1268{
1269	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1270	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1271
1272	/* Move the RBD to the used list, will be moved to allocator in batches
1273	 * before claiming or posting a request*/
1274	list_add_tail(&rxb->list, &rxq->rx_used);
1275
1276	if (unlikely(emergency))
1277		return;
1278
1279	/* Count the allocator owned RBDs */
1280	rxq->used_count++;
1281
1282	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1283	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1284	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1285	 * after but we still need to post another request.
1286	 */
1287	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1288		/* Move the 2 RBDs to the allocator ownership.
1289		 Allocator has another 6 from pool for the request completion*/
1290		iwl_pcie_rx_move_to_allocator(rxq, rba);
 
 
1291
1292		atomic_inc(&rba->req_pending);
1293		queue_work(rba->alloc_wq, &rba->rx_alloc);
1294	}
1295}
1296
1297static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1298				struct iwl_rxq *rxq,
1299				struct iwl_rx_mem_buffer *rxb,
1300				bool emergency,
1301				int i)
1302{
1303	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1304	struct iwl_txq *txq = trans_pcie->txqs.txq[trans_pcie->txqs.cmd.q_id];
1305	bool page_stolen = false;
1306	int max_len = trans_pcie->rx_buf_bytes;
1307	u32 offset = 0;
1308
1309	if (WARN_ON(!rxb))
1310		return;
1311
1312	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1313
1314	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1315		struct iwl_rx_packet *pkt;
 
1316		bool reclaim;
1317		int len;
1318		struct iwl_rx_cmd_buffer rxcb = {
1319			._offset = rxb->offset + offset,
1320			._rx_page_order = trans_pcie->rx_page_order,
1321			._page = rxb->page,
1322			._page_stolen = false,
1323			.truesize = max_len,
1324		};
1325
1326		pkt = rxb_addr(&rxcb);
1327
1328		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1329			IWL_DEBUG_RX(trans,
1330				     "Q %d: RB end marker at offset %d\n",
1331				     rxq->id, offset);
1332			break;
1333		}
1334
1335		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1336			FH_RSCSR_RXQ_POS != rxq->id,
1337		     "frame on invalid queue - is on %d and indicates %d\n",
1338		     rxq->id,
1339		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1340			FH_RSCSR_RXQ_POS);
1341
1342		IWL_DEBUG_RX(trans,
1343			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1344			     rxq->id, offset,
1345			     iwl_get_cmd_string(trans,
1346						WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)),
 
 
1347			     pkt->hdr.group_id, pkt->hdr.cmd,
1348			     le16_to_cpu(pkt->hdr.sequence));
1349
1350		len = iwl_rx_packet_len(pkt);
1351		len += sizeof(u32); /* account for status word */
1352
1353		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1354
1355		/* check that what the device tells us made sense */
1356		if (len < sizeof(*pkt) || offset > max_len)
1357			break;
1358
1359		maybe_trace_iwlwifi_dev_rx(trans, pkt, len);
1360
1361		/* Reclaim a command buffer only if this packet is a response
1362		 *   to a (driver-originated) command.
1363		 * If the packet (e.g. Rx frame) originated from uCode,
1364		 *   there is no command buffer to reclaim.
1365		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1366		 *   but apparently a few don't get set; catch them here. */
1367		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1368		if (reclaim && !pkt->hdr.group_id) {
1369			int i;
1370
1371			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1372				if (trans_pcie->no_reclaim_cmds[i] ==
1373							pkt->hdr.cmd) {
1374					reclaim = false;
1375					break;
1376				}
1377			}
1378		}
1379
1380		if (rxq->id == IWL_DEFAULT_RX_QUEUE)
 
 
 
 
1381			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1382				       &rxcb);
1383		else
1384			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1385					   &rxcb, rxq->id);
1386
 
 
 
 
 
1387		/*
1388		 * After here, we should always check rxcb._page_stolen,
1389		 * if it is true then one of the handlers took the page.
1390		 */
1391
1392		if (reclaim && txq) {
1393			u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1394			int index = SEQ_TO_INDEX(sequence);
1395			int cmd_index = iwl_txq_get_cmd_index(txq, index);
1396
1397			kfree_sensitive(txq->entries[cmd_index].free_buf);
1398			txq->entries[cmd_index].free_buf = NULL;
1399
1400			/* Invoke any callbacks, transfer the buffer to caller,
1401			 * and fire off the (possibly) blocking
1402			 * iwl_trans_send_cmd()
1403			 * as we reclaim the driver command queue */
1404			if (!rxcb._page_stolen)
1405				iwl_pcie_hcmd_complete(trans, &rxcb);
1406			else
1407				IWL_WARN(trans, "Claim null rxb?\n");
1408		}
1409
1410		page_stolen |= rxcb._page_stolen;
1411		if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1412			break;
1413	}
1414
1415	/* page was stolen from us -- free our reference */
1416	if (page_stolen) {
1417		__free_pages(rxb->page, trans_pcie->rx_page_order);
1418		rxb->page = NULL;
1419	}
1420
1421	/* Reuse the page if possible. For notification packets and
1422	 * SKBs that fail to Rx correctly, add them back into the
1423	 * rx_free list for reuse later. */
1424	if (rxb->page != NULL) {
1425		rxb->page_dma =
1426			dma_map_page(trans->dev, rxb->page, rxb->offset,
1427				     trans_pcie->rx_buf_bytes,
1428				     DMA_FROM_DEVICE);
1429		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1430			/*
1431			 * free the page(s) as well to not break
1432			 * the invariant that the items on the used
1433			 * list have no page(s)
1434			 */
1435			__free_pages(rxb->page, trans_pcie->rx_page_order);
1436			rxb->page = NULL;
1437			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1438		} else {
1439			list_add_tail(&rxb->list, &rxq->rx_free);
1440			rxq->free_count++;
1441		}
1442	} else
1443		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1444}
1445
1446static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1447						  struct iwl_rxq *rxq, int i,
1448						  bool *join)
1449{
1450	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1451	struct iwl_rx_mem_buffer *rxb;
1452	u16 vid;
1453
1454	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1455	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4);
1456
1457	if (!trans->trans_cfg->mq_rx_supported) {
1458		rxb = rxq->queue[i];
1459		rxq->queue[i] = NULL;
1460		return rxb;
1461	}
1462
1463	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
1464		struct iwl_rx_completion_desc_bz *cd = rxq->used_bd;
1465
1466		vid = le16_to_cpu(cd[i].rbid);
1467		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1468	} else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1469		struct iwl_rx_completion_desc *cd = rxq->used_bd;
1470
1471		vid = le16_to_cpu(cd[i].rbid);
1472		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1473	} else {
1474		__le32 *cd = rxq->used_bd;
1475
1476		vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */
1477	}
1478
1479	if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1480		goto out_err;
1481
1482	rxb = trans_pcie->global_table[vid - 1];
1483	if (rxb->invalid)
1484		goto out_err;
1485
1486	IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1487
1488	rxb->invalid = true;
1489
1490	return rxb;
1491
1492out_err:
1493	WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1494	iwl_force_nmi(trans);
1495	return NULL;
1496}
1497
1498/*
1499 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1500 */
1501static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1502{
1503	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1504	struct iwl_rxq *rxq;
1505	u32 r, i, count = 0, handled = 0;
1506	bool emergency = false;
1507
1508	if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1509		return budget;
1510
1511	rxq = &trans_pcie->rxq[queue];
1512
1513restart:
1514	spin_lock(&rxq->lock);
1515	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1516	 * buffer that the driver may process (last buffer filled by ucode). */
1517	r = iwl_get_closed_rb_stts(trans, rxq);
1518	i = rxq->read;
1519
1520	/* W/A 9000 device step A0 wrap-around bug */
1521	r &= (rxq->queue_size - 1);
1522
1523	/* Rx interrupt, but nothing sent from uCode */
1524	if (i == r)
1525		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1526
1527	while (i != r && ++handled < budget) {
1528		struct iwl_rb_allocator *rba = &trans_pcie->rba;
1529		struct iwl_rx_mem_buffer *rxb;
1530		/* number of RBDs still waiting for page allocation */
1531		u32 rb_pending_alloc =
1532			atomic_read(&trans_pcie->rba.req_pending) *
1533			RX_CLAIM_REQ_ALLOC;
1534		bool join = false;
1535
1536		if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1537			     !emergency)) {
1538			iwl_pcie_rx_move_to_allocator(rxq, rba);
1539			emergency = true;
1540			IWL_DEBUG_TPT(trans,
1541				      "RX path is in emergency. Pending allocations %d\n",
1542				      rb_pending_alloc);
1543		}
1544
1545		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1546
1547		rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1548		if (!rxb)
1549			goto out;
1550
1551		if (unlikely(join || rxq->next_rb_is_fragment)) {
1552			rxq->next_rb_is_fragment = join;
1553			/*
1554			 * We can only get a multi-RB in the following cases:
1555			 *  - firmware issue, sending a too big notification
1556			 *  - sniffer mode with a large A-MSDU
1557			 *  - large MTU frames (>2k)
1558			 * since the multi-RB functionality is limited to newer
1559			 * hardware that cannot put multiple entries into a
1560			 * single RB.
1561			 *
1562			 * Right now, the higher layers aren't set up to deal
1563			 * with that, so discard all of these.
1564			 */
1565			list_add_tail(&rxb->list, &rxq->rx_free);
1566			rxq->free_count++;
 
 
 
 
 
 
 
 
 
 
 
 
 
1567		} else {
1568			iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
 
1569		}
1570
 
 
 
1571		i = (i + 1) & (rxq->queue_size - 1);
1572
1573		/*
1574		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1575		 * try to claim the pre-allocated buffers from the allocator.
1576		 * If not ready - will try to reclaim next time.
1577		 * There is no need to reschedule work - allocator exits only
1578		 * on success
1579		 */
1580		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1581			iwl_pcie_rx_allocator_get(trans, rxq);
1582
1583		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
 
 
1584			/* Add the remaining empty RBDs for allocator use */
1585			iwl_pcie_rx_move_to_allocator(rxq, rba);
 
 
1586		} else if (emergency) {
1587			count++;
1588			if (count == 8) {
1589				count = 0;
1590				if (rb_pending_alloc < rxq->queue_size / 3) {
1591					IWL_DEBUG_TPT(trans,
1592						      "RX path exited emergency. Pending allocations %d\n",
1593						      rb_pending_alloc);
1594					emergency = false;
1595				}
1596
1597				rxq->read = i;
1598				spin_unlock(&rxq->lock);
1599				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1600				iwl_pcie_rxq_restock(trans, rxq);
1601				goto restart;
1602			}
1603		}
1604	}
1605out:
1606	/* Backtrack one entry */
1607	rxq->read = i;
1608	spin_unlock(&rxq->lock);
1609
1610	/*
1611	 * handle a case where in emergency there are some unallocated RBDs.
1612	 * those RBDs are in the used list, but are not tracked by the queue's
1613	 * used_count which counts allocator owned RBDs.
1614	 * unallocated emergency RBDs must be allocated on exit, otherwise
1615	 * when called again the function may not be in emergency mode and
1616	 * they will be handed to the allocator with no tracking in the RBD
1617	 * allocator counters, which will lead to them never being claimed back
1618	 * by the queue.
1619	 * by allocating them here, they are now in the queue free list, and
1620	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1621	 */
1622	if (unlikely(emergency && count))
1623		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1624
 
 
 
1625	iwl_pcie_rxq_restock(trans, rxq);
1626
1627	return handled;
1628}
1629
1630static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1631{
1632	u8 queue = entry->entry;
1633	struct msix_entry *entries = entry - queue;
1634
1635	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1636}
1637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1638/*
1639 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1640 * This interrupt handler should be used with RSS queue only.
1641 */
1642irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1643{
1644	struct msix_entry *entry = dev_id;
1645	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1646	struct iwl_trans *trans = trans_pcie->trans;
1647	struct iwl_rxq *rxq;
1648
1649	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1650
1651	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1652		return IRQ_NONE;
1653
1654	if (!trans_pcie->rxq) {
1655		if (net_ratelimit())
1656			IWL_ERR(trans,
1657				"[%d] Got MSI-X interrupt before we have Rx queues\n",
1658				entry->entry);
1659		return IRQ_NONE;
1660	}
1661
1662	rxq = &trans_pcie->rxq[entry->entry];
1663	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1664	IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
1665
1666	local_bh_disable();
1667	if (!napi_schedule(&rxq->napi))
1668		iwl_pcie_clear_irq(trans, entry->entry);
1669	local_bh_enable();
1670
 
 
1671	lock_map_release(&trans->sync_cmd_lockdep_map);
1672
1673	return IRQ_HANDLED;
1674}
1675
1676/*
1677 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1678 */
1679static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1680{
1681	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1682	int i;
1683
1684	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1685	if (trans->cfg->internal_wimax_coex &&
1686	    !trans->cfg->apmg_not_supported &&
1687	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1688			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1689	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1690			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1691		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1692		iwl_op_mode_wimax_active(trans->op_mode);
1693		wake_up(&trans->wait_command_queue);
1694		return;
1695	}
1696
1697	for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1698		if (!trans_pcie->txqs.txq[i])
1699			continue;
1700		del_timer(&trans_pcie->txqs.txq[i]->stuck_timer);
1701	}
1702
1703	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1704	 * before we wake up the command caller, to ensure a proper cleanup. */
1705	iwl_trans_fw_error(trans, false);
1706
1707	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1708	wake_up(&trans->wait_command_queue);
1709}
1710
1711static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1712{
1713	u32 inta;
1714
1715	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1716
1717	trace_iwlwifi_dev_irq(trans->dev);
1718
1719	/* Discover which interrupts are active/pending */
1720	inta = iwl_read32(trans, CSR_INT);
1721
1722	/* the thread will service interrupts and re-enable them */
1723	return inta;
1724}
1725
1726/* a device (PCI-E) page is 4096 bytes long */
1727#define ICT_SHIFT	12
1728#define ICT_SIZE	(1 << ICT_SHIFT)
1729#define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1730
1731/* interrupt handler using ict table, with this interrupt driver will
1732 * stop using INTA register to get device's interrupt, reading this register
1733 * is expensive, device will write interrupts in ICT dram table, increment
1734 * index then will fire interrupt to driver, driver will OR all ICT table
1735 * entries from current index up to table entry with 0 value. the result is
1736 * the interrupt we need to service, driver will set the entries back to 0 and
1737 * set index.
1738 */
1739static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1740{
1741	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1742	u32 inta;
1743	u32 val = 0;
1744	u32 read;
1745
1746	trace_iwlwifi_dev_irq(trans->dev);
1747
1748	/* Ignore interrupt if there's nothing in NIC to service.
1749	 * This may be due to IRQ shared with another device,
1750	 * or due to sporadic interrupts thrown from our NIC. */
1751	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1752	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1753	if (!read)
1754		return 0;
1755
1756	/*
1757	 * Collect all entries up to the first 0, starting from ict_index;
1758	 * note we already read at ict_index.
1759	 */
1760	do {
1761		val |= read;
1762		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1763				trans_pcie->ict_index, read);
1764		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1765		trans_pcie->ict_index =
1766			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1767
1768		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1769		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1770					   read);
1771	} while (read);
1772
1773	/* We should not get this value, just ignore it. */
1774	if (val == 0xffffffff)
1775		val = 0;
1776
1777	/*
1778	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1779	 * (bit 15 before shifting it to 31) to clear when using interrupt
1780	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1781	 * so we use them to decide on the real state of the Rx bit.
1782	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1783	 */
1784	if (val & 0xC0000)
1785		val |= 0x8000;
1786
1787	inta = (0xff & val) | ((0xff00 & val) << 16);
1788	return inta;
1789}
1790
1791void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq)
1792{
1793	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1794	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1795	bool hw_rfkill, prev, report;
1796
1797	mutex_lock(&trans_pcie->mutex);
1798	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1799	hw_rfkill = iwl_is_rfkill_set(trans);
1800	if (hw_rfkill) {
1801		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1802		set_bit(STATUS_RFKILL_HW, &trans->status);
1803	}
1804	if (trans_pcie->opmode_down)
1805		report = hw_rfkill;
1806	else
1807		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1808
1809	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1810		 hw_rfkill ? "disable radio" : "enable radio");
1811
1812	isr_stats->rfkill++;
1813
1814	if (prev != report)
1815		iwl_trans_pcie_rf_kill(trans, report, from_irq);
1816	mutex_unlock(&trans_pcie->mutex);
1817
1818	if (hw_rfkill) {
1819		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1820				       &trans->status))
1821			IWL_DEBUG_RF_KILL(trans,
1822					  "Rfkill while SYNC HCMD in flight\n");
1823		wake_up(&trans->wait_command_queue);
1824	} else {
1825		clear_bit(STATUS_RFKILL_HW, &trans->status);
1826		if (trans_pcie->opmode_down)
1827			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1828	}
1829}
1830
1831irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1832{
1833	struct iwl_trans *trans = dev_id;
1834	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1835	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1836	u32 inta = 0;
1837	u32 handled = 0;
1838	bool polling = false;
1839
1840	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1841
1842	spin_lock_bh(&trans_pcie->irq_lock);
1843
1844	/* dram interrupt table not set yet,
1845	 * use legacy interrupt.
1846	 */
1847	if (likely(trans_pcie->use_ict))
1848		inta = iwl_pcie_int_cause_ict(trans);
1849	else
1850		inta = iwl_pcie_int_cause_non_ict(trans);
1851
1852	if (iwl_have_debug_level(IWL_DL_ISR)) {
1853		IWL_DEBUG_ISR(trans,
1854			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1855			      inta, trans_pcie->inta_mask,
1856			      iwl_read32(trans, CSR_INT_MASK),
1857			      iwl_read32(trans, CSR_FH_INT_STATUS));
1858		if (inta & (~trans_pcie->inta_mask))
1859			IWL_DEBUG_ISR(trans,
1860				      "We got a masked interrupt (0x%08x)\n",
1861				      inta & (~trans_pcie->inta_mask));
1862	}
1863
1864	inta &= trans_pcie->inta_mask;
1865
1866	/*
1867	 * Ignore interrupt if there's nothing in NIC to service.
1868	 * This may be due to IRQ shared with another device,
1869	 * or due to sporadic interrupts thrown from our NIC.
1870	 */
1871	if (unlikely(!inta)) {
1872		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1873		/*
1874		 * Re-enable interrupts here since we don't
1875		 * have anything to service
1876		 */
1877		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1878			_iwl_enable_interrupts(trans);
1879		spin_unlock_bh(&trans_pcie->irq_lock);
1880		lock_map_release(&trans->sync_cmd_lockdep_map);
1881		return IRQ_NONE;
1882	}
1883
1884	if (unlikely(inta == 0xFFFFFFFF || iwl_trans_is_hw_error_value(inta))) {
1885		/*
1886		 * Hardware disappeared. It might have
1887		 * already raised an interrupt.
1888		 */
1889		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1890		spin_unlock_bh(&trans_pcie->irq_lock);
1891		goto out;
1892	}
1893
1894	/* Ack/clear/reset pending uCode interrupts.
1895	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1896	 */
1897	/* There is a hardware bug in the interrupt mask function that some
1898	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1899	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1900	 * ICT interrupt handling mechanism has another bug that might cause
1901	 * these unmasked interrupts fail to be detected. We workaround the
1902	 * hardware bugs here by ACKing all the possible interrupts so that
1903	 * interrupt coalescing can still be achieved.
1904	 */
1905	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1906
1907	if (iwl_have_debug_level(IWL_DL_ISR))
1908		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1909			      inta, iwl_read32(trans, CSR_INT_MASK));
1910
1911	spin_unlock_bh(&trans_pcie->irq_lock);
1912
1913	/* Now service all interrupt bits discovered above. */
1914	if (inta & CSR_INT_BIT_HW_ERR) {
1915		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1916
1917		/* Tell the device to stop sending interrupts */
1918		iwl_disable_interrupts(trans);
1919
1920		isr_stats->hw++;
1921		iwl_pcie_irq_handle_error(trans);
1922
1923		handled |= CSR_INT_BIT_HW_ERR;
1924
1925		goto out;
1926	}
1927
1928	/* NIC fires this, but we don't use it, redundant with WAKEUP */
1929	if (inta & CSR_INT_BIT_SCD) {
1930		IWL_DEBUG_ISR(trans,
1931			      "Scheduler finished to transmit the frame/frames.\n");
1932		isr_stats->sch++;
1933	}
 
1934
1935	/* Alive notification via Rx interrupt will do the real work */
1936	if (inta & CSR_INT_BIT_ALIVE) {
1937		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1938		isr_stats->alive++;
1939		if (trans->trans_cfg->gen2) {
1940			/*
1941			 * We can restock, since firmware configured
1942			 * the RFH
1943			 */
1944			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
 
1945		}
1946
1947		handled |= CSR_INT_BIT_ALIVE;
1948	}
1949
1950	/* Safely ignore these bits for debug checks below */
1951	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1952
1953	/* HW RF KILL switch toggled */
1954	if (inta & CSR_INT_BIT_RF_KILL) {
1955		iwl_pcie_handle_rfkill_irq(trans, true);
1956		handled |= CSR_INT_BIT_RF_KILL;
1957	}
1958
1959	/* Chip got too hot and stopped itself */
1960	if (inta & CSR_INT_BIT_CT_KILL) {
1961		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1962		isr_stats->ctkill++;
1963		handled |= CSR_INT_BIT_CT_KILL;
1964	}
1965
1966	/* Error detected by uCode */
1967	if (inta & CSR_INT_BIT_SW_ERR) {
1968		IWL_ERR(trans, "Microcode SW error detected. "
1969			" Restarting 0x%X.\n", inta);
1970		isr_stats->sw++;
1971		iwl_pcie_irq_handle_error(trans);
1972		handled |= CSR_INT_BIT_SW_ERR;
1973	}
1974
1975	/* uCode wakes up after power-down sleep */
1976	if (inta & CSR_INT_BIT_WAKEUP) {
1977		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1978		iwl_pcie_rxq_check_wrptr(trans);
1979		iwl_pcie_txq_check_wrptrs(trans);
1980
1981		isr_stats->wakeup++;
1982
1983		handled |= CSR_INT_BIT_WAKEUP;
1984	}
1985
1986	/* All uCode command responses, including Tx command responses,
1987	 * Rx "responses" (frame-received notification), and other
1988	 * notifications from uCode come through here*/
1989	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1990		    CSR_INT_BIT_RX_PERIODIC)) {
1991		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1992		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1993			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1994			iwl_write32(trans, CSR_FH_INT_STATUS,
1995					CSR_FH_INT_RX_MASK);
1996		}
1997		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1998			handled |= CSR_INT_BIT_RX_PERIODIC;
1999			iwl_write32(trans,
2000				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
2001		}
2002		/* Sending RX interrupt require many steps to be done in the
2003		 * device:
2004		 * 1- write interrupt to current index in ICT table.
2005		 * 2- dma RX frame.
2006		 * 3- update RX shared data to indicate last write index.
2007		 * 4- send interrupt.
2008		 * This could lead to RX race, driver could receive RX interrupt
2009		 * but the shared data changes does not reflect this;
2010		 * periodic interrupt will detect any dangling Rx activity.
2011		 */
2012
2013		/* Disable periodic interrupt; we use it as just a one-shot. */
2014		iwl_write8(trans, CSR_INT_PERIODIC_REG,
2015			    CSR_INT_PERIODIC_DIS);
2016
2017		/*
2018		 * Enable periodic interrupt in 8 msec only if we received
2019		 * real RX interrupt (instead of just periodic int), to catch
2020		 * any dangling Rx interrupt.  If it was just the periodic
2021		 * interrupt, there was no dangling Rx activity, and no need
2022		 * to extend the periodic interrupt; one-shot is enough.
2023		 */
2024		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2025			iwl_write8(trans, CSR_INT_PERIODIC_REG,
2026				   CSR_INT_PERIODIC_ENA);
2027
2028		isr_stats->rx++;
2029
2030		local_bh_disable();
2031		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2032			polling = true;
2033			__napi_schedule(&trans_pcie->rxq[0].napi);
2034		}
2035		local_bh_enable();
2036	}
2037
2038	/* This "Tx" DMA channel is used only for loading uCode */
2039	if (inta & CSR_INT_BIT_FH_TX) {
2040		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2041		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2042		isr_stats->tx++;
2043		handled |= CSR_INT_BIT_FH_TX;
2044		/* Wake up uCode load routine, now that load is complete */
2045		trans_pcie->ucode_write_complete = true;
2046		wake_up(&trans_pcie->ucode_write_waitq);
2047		/* Wake up IMR write routine, now that write to SRAM is complete */
2048		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2049			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2050			wake_up(&trans_pcie->ucode_write_waitq);
2051		}
2052	}
2053
2054	if (inta & ~handled) {
2055		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2056		isr_stats->unhandled++;
2057	}
2058
2059	if (inta & ~(trans_pcie->inta_mask)) {
2060		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2061			 inta & ~trans_pcie->inta_mask);
2062	}
2063
2064	if (!polling) {
2065		spin_lock_bh(&trans_pcie->irq_lock);
2066		/* only Re-enable all interrupt if disabled by irq */
2067		if (test_bit(STATUS_INT_ENABLED, &trans->status))
2068			_iwl_enable_interrupts(trans);
2069		/* we are loading the firmware, enable FH_TX interrupt only */
2070		else if (handled & CSR_INT_BIT_FH_TX)
2071			iwl_enable_fw_load_int(trans);
2072		/* Re-enable RF_KILL if it occurred */
2073		else if (handled & CSR_INT_BIT_RF_KILL)
2074			iwl_enable_rfkill_int(trans);
2075		/* Re-enable the ALIVE / Rx interrupt if it occurred */
2076		else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2077			iwl_enable_fw_load_int_ctx_info(trans);
2078		spin_unlock_bh(&trans_pcie->irq_lock);
2079	}
2080
2081out:
2082	lock_map_release(&trans->sync_cmd_lockdep_map);
2083	return IRQ_HANDLED;
2084}
2085
2086/******************************************************************************
2087 *
2088 * ICT functions
2089 *
2090 ******************************************************************************/
2091
2092/* Free dram table */
2093void iwl_pcie_free_ict(struct iwl_trans *trans)
2094{
2095	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2096
2097	if (trans_pcie->ict_tbl) {
2098		dma_free_coherent(trans->dev, ICT_SIZE,
2099				  trans_pcie->ict_tbl,
2100				  trans_pcie->ict_tbl_dma);
2101		trans_pcie->ict_tbl = NULL;
2102		trans_pcie->ict_tbl_dma = 0;
2103	}
2104}
2105
2106/*
2107 * allocate dram shared table, it is an aligned memory
2108 * block of ICT_SIZE.
2109 * also reset all data related to ICT table interrupt.
2110 */
2111int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2112{
2113	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2114
2115	trans_pcie->ict_tbl =
2116		dma_alloc_coherent(trans->dev, ICT_SIZE,
2117				   &trans_pcie->ict_tbl_dma, GFP_KERNEL);
 
2118	if (!trans_pcie->ict_tbl)
2119		return -ENOMEM;
2120
2121	/* just an API sanity check ... it is guaranteed to be aligned */
2122	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2123		iwl_pcie_free_ict(trans);
2124		return -EINVAL;
2125	}
2126
2127	return 0;
2128}
2129
2130/* Device is going up inform it about using ICT interrupt table,
2131 * also we need to tell the driver to start using ICT interrupt.
2132 */
2133void iwl_pcie_reset_ict(struct iwl_trans *trans)
2134{
2135	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2136	u32 val;
2137
2138	if (!trans_pcie->ict_tbl)
2139		return;
2140
2141	spin_lock_bh(&trans_pcie->irq_lock);
2142	_iwl_disable_interrupts(trans);
2143
2144	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2145
2146	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2147
2148	val |= CSR_DRAM_INT_TBL_ENABLE |
2149	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
2150	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
2151
2152	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2153
2154	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2155	trans_pcie->use_ict = true;
2156	trans_pcie->ict_index = 0;
2157	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2158	_iwl_enable_interrupts(trans);
2159	spin_unlock_bh(&trans_pcie->irq_lock);
2160}
2161
2162/* Device is going down disable ict interrupt usage */
2163void iwl_pcie_disable_ict(struct iwl_trans *trans)
2164{
2165	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2166
2167	spin_lock_bh(&trans_pcie->irq_lock);
2168	trans_pcie->use_ict = false;
2169	spin_unlock_bh(&trans_pcie->irq_lock);
2170}
2171
2172irqreturn_t iwl_pcie_isr(int irq, void *data)
2173{
2174	struct iwl_trans *trans = data;
2175
2176	if (!trans)
2177		return IRQ_NONE;
2178
2179	/* Disable (but don't clear!) interrupts here to avoid
2180	 * back-to-back ISRs and sporadic interrupts from our NIC.
2181	 * If we have something to service, the tasklet will re-enable ints.
2182	 * If we *don't* have something, we'll re-enable before leaving here.
2183	 */
2184	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2185
2186	return IRQ_WAKE_THREAD;
2187}
2188
2189irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2190{
2191	return IRQ_WAKE_THREAD;
2192}
2193
2194irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2195{
2196	struct msix_entry *entry = dev_id;
2197	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2198	struct iwl_trans *trans = trans_pcie->trans;
2199	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2200	u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
2201	u32 inta_fh, inta_hw;
2202	bool polling = false;
2203	bool sw_err;
2204
2205	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
2206		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
2207
2208	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
2209		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
2210
2211	lock_map_acquire(&trans->sync_cmd_lockdep_map);
2212
2213	spin_lock_bh(&trans_pcie->irq_lock);
2214	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2215	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2216	/*
2217	 * Clear causes registers to avoid being handling the same cause.
2218	 */
2219	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
2220	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2221	spin_unlock_bh(&trans_pcie->irq_lock);
2222
2223	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2224
2225	if (unlikely(!(inta_fh | inta_hw))) {
2226		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2227		lock_map_release(&trans->sync_cmd_lockdep_map);
2228		return IRQ_NONE;
2229	}
2230
2231	if (iwl_have_debug_level(IWL_DL_ISR)) {
2232		IWL_DEBUG_ISR(trans,
2233			      "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2234			      entry->entry, inta_fh, trans_pcie->fh_mask,
2235			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2236		if (inta_fh & ~trans_pcie->fh_mask)
2237			IWL_DEBUG_ISR(trans,
2238				      "We got a masked interrupt (0x%08x)\n",
2239				      inta_fh & ~trans_pcie->fh_mask);
2240	}
2241
2242	inta_fh &= trans_pcie->fh_mask;
2243
2244	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2245	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2246		local_bh_disable();
2247		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2248			polling = true;
2249			__napi_schedule(&trans_pcie->rxq[0].napi);
2250		}
2251		local_bh_enable();
2252	}
2253
2254	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2255	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2256		local_bh_disable();
2257		if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2258			polling = true;
2259			__napi_schedule(&trans_pcie->rxq[1].napi);
2260		}
2261		local_bh_enable();
2262	}
2263
2264	/* This "Tx" DMA channel is used only for loading uCode */
2265	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM &&
2266	    trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2267		IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n");
2268		isr_stats->tx++;
2269
2270		/* Wake up IMR routine once write to SRAM is complete */
2271		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2272			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2273			wake_up(&trans_pcie->ucode_write_waitq);
2274		}
2275	} else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2276		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2277		isr_stats->tx++;
2278		/*
2279		 * Wake up uCode load routine,
2280		 * now that load is complete
2281		 */
2282		trans_pcie->ucode_write_complete = true;
2283		wake_up(&trans_pcie->ucode_write_waitq);
2284
2285		/* Wake up IMR routine once write to SRAM is complete */
2286		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2287			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2288			wake_up(&trans_pcie->ucode_write_waitq);
2289		}
2290	}
2291
2292	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
2293		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ;
2294	else
2295		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR;
2296
2297	if (inta_hw & MSIX_HW_INT_CAUSES_REG_TOP_FATAL_ERR) {
2298		IWL_ERR(trans, "TOP Fatal error detected, inta_hw=0x%x.\n",
2299			inta_hw);
2300		/* TODO: PLDR flow required here for >= Bz */
2301	}
2302
2303	/* Error detected by uCode */
2304	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) {
 
2305		IWL_ERR(trans,
2306			"Microcode SW error detected. Restarting 0x%X.\n",
2307			inta_fh);
2308		isr_stats->sw++;
2309		/* during FW reset flow report errors from there */
2310		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2311			trans_pcie->imr_status = IMR_D2S_ERROR;
2312			wake_up(&trans_pcie->imr_waitq);
2313		} else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
2314			trans_pcie->fw_reset_state = FW_RESET_ERROR;
2315			wake_up(&trans_pcie->fw_reset_waitq);
2316		} else {
2317			iwl_pcie_irq_handle_error(trans);
2318		}
2319	}
2320
2321	/* After checking FH register check HW register */
2322	if (iwl_have_debug_level(IWL_DL_ISR)) {
2323		IWL_DEBUG_ISR(trans,
2324			      "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2325			      entry->entry, inta_hw, trans_pcie->hw_mask,
2326			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2327		if (inta_hw & ~trans_pcie->hw_mask)
2328			IWL_DEBUG_ISR(trans,
2329				      "We got a masked interrupt 0x%08x\n",
2330				      inta_hw & ~trans_pcie->hw_mask);
2331	}
2332
2333	inta_hw &= trans_pcie->hw_mask;
2334
2335	/* Alive notification via Rx interrupt will do the real work */
2336	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2337		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2338		isr_stats->alive++;
2339		if (trans->trans_cfg->gen2) {
2340			/* We can restock, since firmware configured the RFH */
2341			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2342		}
2343	}
2344
2345	/*
2346	 * In some rare cases when the HW is in a bad state, we may
2347	 * get this interrupt too early, when prph_info is still NULL.
2348	 * So make sure that it's not NULL to prevent crashing.
2349	 */
2350	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
2351		u32 sleep_notif =
2352			le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2353		if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2354		    sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2355			IWL_DEBUG_ISR(trans,
2356				      "Sx interrupt: sleep notification = 0x%x\n",
2357				      sleep_notif);
2358			trans_pcie->sx_complete = true;
2359			wake_up(&trans_pcie->sx_waitq);
2360		} else {
2361			/* uCode wakes up after power-down sleep */
2362			IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2363			iwl_pcie_rxq_check_wrptr(trans);
2364			iwl_pcie_txq_check_wrptrs(trans);
2365
2366			isr_stats->wakeup++;
2367		}
2368	}
2369
2370	/* Chip got too hot and stopped itself */
2371	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2372		IWL_ERR(trans, "Microcode CT kill error detected.\n");
2373		isr_stats->ctkill++;
2374	}
2375
2376	/* HW RF KILL switch toggled */
2377	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2378		iwl_pcie_handle_rfkill_irq(trans, true);
2379
2380	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2381		IWL_ERR(trans,
2382			"Hardware error detected. Restarting.\n");
2383
2384		isr_stats->hw++;
2385		trans->dbg.hw_error = true;
2386		iwl_pcie_irq_handle_error(trans);
2387	}
2388
2389	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
2390		IWL_DEBUG_ISR(trans, "Reset flow completed\n");
2391		trans_pcie->fw_reset_state = FW_RESET_OK;
2392		wake_up(&trans_pcie->fw_reset_waitq);
2393	}
2394
2395	if (!polling)
2396		iwl_pcie_clear_irq(trans, entry->entry);
2397
2398	lock_map_release(&trans->sync_cmd_lockdep_map);
2399
2400	return IRQ_HANDLED;
2401}