Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
   6 */
   7
   8/* Common definitions for all Efx net driver code */
   9
  10#ifndef EFX_NET_DRIVER_H
  11#define EFX_NET_DRIVER_H
  12
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/ethtool.h>
  16#include <linux/if_vlan.h>
  17#include <linux/timer.h>
  18#include <linux/mdio.h>
  19#include <linux/list.h>
  20#include <linux/pci.h>
  21#include <linux/device.h>
  22#include <linux/highmem.h>
  23#include <linux/workqueue.h>
  24#include <linux/mutex.h>
  25#include <linux/rwsem.h>
  26#include <linux/vmalloc.h>
  27#include <linux/mtd/mtd.h>
  28#include <net/busy_poll.h>
  29#include <net/xdp.h>
  30
  31#include "enum.h"
  32#include "bitfield.h"
  33#include "filter.h"
  34
  35/**************************************************************************
  36 *
  37 * Build definitions
  38 *
  39 **************************************************************************/
  40
  41#ifdef DEBUG
  42#define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
  43#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
  44#else
  45#define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
  46#define EFX_WARN_ON_PARANOID(x) do {} while (0)
  47#endif
  48
  49/**************************************************************************
  50 *
  51 * Efx data structures
  52 *
  53 **************************************************************************/
  54
  55#define EFX_MAX_CHANNELS 32U
  56#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
  57#define EFX_EXTRA_CHANNEL_IOV	0
  58#define EFX_EXTRA_CHANNEL_PTP	1
  59#define EFX_MAX_EXTRA_CHANNELS	2U
  60
  61/* Checksum generation is a per-queue option in hardware, so each
  62 * queue visible to the networking core is backed by two hardware TX
  63 * queues. */
  64#define EFX_MAX_TX_TC		2
  65#define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
  66#define EFX_TXQ_TYPE_OUTER_CSUM	1	/* Outer checksum offload */
  67#define EFX_TXQ_TYPE_INNER_CSUM	2	/* Inner checksum offload */
  68#define EFX_TXQ_TYPE_HIGHPRI	4	/* High-priority (for TC) */
  69#define EFX_TXQ_TYPES		8
  70/* HIGHPRI is Siena-only, and INNER_CSUM is EF10, so no need for both */
  71#define EFX_MAX_TXQ_PER_CHANNEL	4
  72#define EFX_MAX_TX_QUEUES	(EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS)
  73
  74/* Maximum possible MTU the driver supports */
  75#define EFX_MAX_MTU (9 * 1024)
  76
  77/* Minimum MTU, from RFC791 (IP) */
  78#define EFX_MIN_MTU 68
  79
  80/* Maximum total header length for TSOv2 */
  81#define EFX_TSO2_MAX_HDRLEN	208
  82
  83/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
  84 * and should be a multiple of the cache line size.
  85 */
  86#define EFX_RX_USR_BUF_SIZE	(2048 - 256)
  87
  88/* If possible, we should ensure cache line alignment at start and end
  89 * of every buffer.  Otherwise, we just need to ensure 4-byte
  90 * alignment of the network header.
  91 */
  92#if NET_IP_ALIGN == 0
  93#define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
  94#else
  95#define EFX_RX_BUF_ALIGNMENT	4
  96#endif
  97
  98/* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
  99 * still fit two standard MTU size packets into a single 4K page.
 100 */
 101#define EFX_XDP_HEADROOM	128
 102#define EFX_XDP_TAILROOM	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
 103
 104/* Forward declare Precision Time Protocol (PTP) support structure. */
 105struct efx_ptp_data;
 106struct hwtstamp_config;
 107
 108struct efx_self_tests;
 109
 110/**
 111 * struct efx_buffer - A general-purpose DMA buffer
 112 * @addr: host base address of the buffer
 113 * @dma_addr: DMA base address of the buffer
 114 * @len: Buffer length, in bytes
 115 *
 116 * The NIC uses these buffers for its interrupt status registers and
 117 * MAC stats dumps.
 118 */
 119struct efx_buffer {
 120	void *addr;
 121	dma_addr_t dma_addr;
 122	unsigned int len;
 123};
 124
 125/**
 126 * struct efx_special_buffer - DMA buffer entered into buffer table
 127 * @buf: Standard &struct efx_buffer
 128 * @index: Buffer index within controller;s buffer table
 129 * @entries: Number of buffer table entries
 130 *
 131 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
 132 * Event and descriptor rings are addressed via one or more buffer
 133 * table entries (and so can be physically non-contiguous, although we
 134 * currently do not take advantage of that).  On Falcon and Siena we
 135 * have to take care of allocating and initialising the entries
 136 * ourselves.  On later hardware this is managed by the firmware and
 137 * @index and @entries are left as 0.
 138 */
 139struct efx_special_buffer {
 140	struct efx_buffer buf;
 141	unsigned int index;
 142	unsigned int entries;
 143};
 144
 145/**
 146 * struct efx_tx_buffer - buffer state for a TX descriptor
 147 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
 148 *	freed when descriptor completes
 149 * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
 150 *	member is the associated buffer to drop a page reference on.
 151 * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
 152 *	descriptor.
 153 * @dma_addr: DMA address of the fragment.
 154 * @flags: Flags for allocation and DMA mapping type
 155 * @len: Length of this fragment.
 156 *	This field is zero when the queue slot is empty.
 157 * @unmap_len: Length of this fragment to unmap
 158 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
 159 * Only valid if @unmap_len != 0.
 160 */
 161struct efx_tx_buffer {
 162	union {
 163		const struct sk_buff *skb;
 164		struct xdp_frame *xdpf;
 165	};
 166	union {
 167		efx_qword_t option;    /* EF10 */
 168		dma_addr_t dma_addr;
 169	};
 170	unsigned short flags;
 171	unsigned short len;
 172	unsigned short unmap_len;
 173	unsigned short dma_offset;
 174};
 175#define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
 176#define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
 177#define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
 178#define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
 179#define EFX_TX_BUF_XDP		0x20	/* buffer was sent with XDP */
 180#define EFX_TX_BUF_TSO_V3	0x40	/* empty buffer for a TSO_V3 descriptor */
 181
 182/**
 183 * struct efx_tx_queue - An Efx TX queue
 184 *
 185 * This is a ring buffer of TX fragments.
 186 * Since the TX completion path always executes on the same
 187 * CPU and the xmit path can operate on different CPUs,
 188 * performance is increased by ensuring that the completion
 189 * path and the xmit path operate on different cache lines.
 190 * This is particularly important if the xmit path is always
 191 * executing on one CPU which is different from the completion
 192 * path.  There is also a cache line for members which are
 193 * read but not written on the fast path.
 194 *
 195 * @efx: The associated Efx NIC
 196 * @queue: DMA queue number
 197 * @label: Label for TX completion events.
 198 *	Is our index within @channel->tx_queue array.
 199 * @type: configuration type of this TX queue.  A bitmask of %EFX_TXQ_TYPE_* flags.
 200 * @tso_version: Version of TSO in use for this queue.
 201 * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series.
 202 * @channel: The associated channel
 203 * @core_txq: The networking core TX queue structure
 204 * @buffer: The software buffer ring
 205 * @cb_page: Array of pages of copy buffers.  Carved up according to
 206 *	%EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
 207 * @txd: The hardware descriptor ring
 208 * @ptr_mask: The size of the ring minus 1.
 209 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
 210 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
 211 * @initialised: Has hardware queue been initialised?
 212 * @timestamping: Is timestamping enabled for this channel?
 213 * @xdp_tx: Is this an XDP tx queue?
 214 * @read_count: Current read pointer.
 215 *	This is the number of buffers that have been removed from both rings.
 216 * @old_write_count: The value of @write_count when last checked.
 217 *	This is here for performance reasons.  The xmit path will
 218 *	only get the up-to-date value of @write_count if this
 219 *	variable indicates that the queue is empty.  This is to
 220 *	avoid cache-line ping-pong between the xmit path and the
 221 *	completion path.
 222 * @merge_events: Number of TX merged completion events
 223 * @completed_timestamp_major: Top part of the most recent tx timestamp.
 224 * @completed_timestamp_minor: Low part of the most recent tx timestamp.
 225 * @insert_count: Current insert pointer
 226 *	This is the number of buffers that have been added to the
 227 *	software ring.
 228 * @write_count: Current write pointer
 229 *	This is the number of buffers that have been added to the
 230 *	hardware ring.
 231 * @packet_write_count: Completable write pointer
 232 *	This is the write pointer of the last packet written.
 233 *	Normally this will equal @write_count, but as option descriptors
 234 *	don't produce completion events, they won't update this.
 235 *	Filled in iff @efx->type->option_descriptors; only used for PIO.
 236 *	Thus, this is written and used on EF10, and neither on farch.
 237 * @old_read_count: The value of read_count when last checked.
 238 *	This is here for performance reasons.  The xmit path will
 239 *	only get the up-to-date value of read_count if this
 240 *	variable indicates that the queue is full.  This is to
 241 *	avoid cache-line ping-pong between the xmit path and the
 242 *	completion path.
 243 * @tso_bursts: Number of times TSO xmit invoked by kernel
 244 * @tso_long_headers: Number of packets with headers too long for standard
 245 *	blocks
 246 * @tso_packets: Number of packets via the TSO xmit path
 247 * @tso_fallbacks: Number of times TSO fallback used
 248 * @pushes: Number of times the TX push feature has been used
 249 * @pio_packets: Number of times the TX PIO feature has been used
 250 * @xmit_pending: Are any packets waiting to be pushed to the NIC
 251 * @cb_packets: Number of times the TX copybreak feature has been used
 252 * @notify_count: Count of notified descriptors to the NIC
 253 * @empty_read_count: If the completion path has seen the queue as empty
 254 *	and the transmission path has not yet checked this, the value of
 255 *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
 256 */
 257struct efx_tx_queue {
 258	/* Members which don't change on the fast path */
 259	struct efx_nic *efx ____cacheline_aligned_in_smp;
 260	unsigned int queue;
 261	unsigned int label;
 262	unsigned int type;
 263	unsigned int tso_version;
 264	bool tso_encap;
 265	struct efx_channel *channel;
 266	struct netdev_queue *core_txq;
 267	struct efx_tx_buffer *buffer;
 268	struct efx_buffer *cb_page;
 269	struct efx_special_buffer txd;
 270	unsigned int ptr_mask;
 271	void __iomem *piobuf;
 272	unsigned int piobuf_offset;
 273	bool initialised;
 274	bool timestamping;
 275	bool xdp_tx;
 276
 277	/* Members used mainly on the completion path */
 278	unsigned int read_count ____cacheline_aligned_in_smp;
 279	unsigned int old_write_count;
 280	unsigned int merge_events;
 281	unsigned int bytes_compl;
 282	unsigned int pkts_compl;
 283	u32 completed_timestamp_major;
 284	u32 completed_timestamp_minor;
 285
 286	/* Members used only on the xmit path */
 287	unsigned int insert_count ____cacheline_aligned_in_smp;
 288	unsigned int write_count;
 289	unsigned int packet_write_count;
 290	unsigned int old_read_count;
 291	unsigned int tso_bursts;
 292	unsigned int tso_long_headers;
 293	unsigned int tso_packets;
 294	unsigned int tso_fallbacks;
 295	unsigned int pushes;
 296	unsigned int pio_packets;
 297	bool xmit_pending;
 298	unsigned int cb_packets;
 299	unsigned int notify_count;
 300	/* Statistics to supplement MAC stats */
 301	unsigned long tx_packets;
 302
 303	/* Members shared between paths and sometimes updated */
 304	unsigned int empty_read_count ____cacheline_aligned_in_smp;
 305#define EFX_EMPTY_COUNT_VALID 0x80000000
 306	atomic_t flush_outstanding;
 307};
 308
 309#define EFX_TX_CB_ORDER	7
 310#define EFX_TX_CB_SIZE	(1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
 311
 312/**
 313 * struct efx_rx_buffer - An Efx RX data buffer
 314 * @dma_addr: DMA base address of the buffer
 315 * @page: The associated page buffer.
 316 *	Will be %NULL if the buffer slot is currently free.
 317 * @page_offset: If pending: offset in @page of DMA base address.
 318 *	If completed: offset in @page of Ethernet header.
 319 * @len: If pending: length for DMA descriptor.
 320 *	If completed: received length, excluding hash prefix.
 321 * @flags: Flags for buffer and packet state.  These are only set on the
 322 *	first buffer of a scattered packet.
 323 */
 324struct efx_rx_buffer {
 325	dma_addr_t dma_addr;
 326	struct page *page;
 327	u16 page_offset;
 328	u16 len;
 329	u16 flags;
 330};
 331#define EFX_RX_BUF_LAST_IN_PAGE	0x0001
 332#define EFX_RX_PKT_CSUMMED	0x0002
 333#define EFX_RX_PKT_DISCARD	0x0004
 334#define EFX_RX_PKT_TCP		0x0040
 335#define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
 336#define EFX_RX_PKT_CSUM_LEVEL	0x0200
 337
 338/**
 339 * struct efx_rx_page_state - Page-based rx buffer state
 340 *
 341 * Inserted at the start of every page allocated for receive buffers.
 342 * Used to facilitate sharing dma mappings between recycled rx buffers
 343 * and those passed up to the kernel.
 344 *
 345 * @dma_addr: The dma address of this page.
 346 */
 347struct efx_rx_page_state {
 348	dma_addr_t dma_addr;
 349
 350	unsigned int __pad[] ____cacheline_aligned;
 351};
 352
 353/**
 354 * struct efx_rx_queue - An Efx RX queue
 355 * @efx: The associated Efx NIC
 356 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
 357 *	is associated with a real RX queue.
 358 * @buffer: The software buffer ring
 359 * @rxd: The hardware descriptor ring
 360 * @ptr_mask: The size of the ring minus 1.
 361 * @refill_enabled: Enable refill whenever fill level is low
 362 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
 363 *	@rxq_flush_pending.
 364 * @added_count: Number of buffers added to the receive queue.
 365 * @notified_count: Number of buffers given to NIC (<= @added_count).
 366 * @removed_count: Number of buffers removed from the receive queue.
 367 * @scatter_n: Used by NIC specific receive code.
 368 * @scatter_len: Used by NIC specific receive code.
 369 * @page_ring: The ring to store DMA mapped pages for reuse.
 370 * @page_add: Counter to calculate the write pointer for the recycle ring.
 371 * @page_remove: Counter to calculate the read pointer for the recycle ring.
 372 * @page_recycle_count: The number of pages that have been recycled.
 373 * @page_recycle_failed: The number of pages that couldn't be recycled because
 374 *      the kernel still held a reference to them.
 375 * @page_recycle_full: The number of pages that were released because the
 376 *      recycle ring was full.
 377 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
 378 * @max_fill: RX descriptor maximum fill level (<= ring size)
 379 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
 380 *	(<= @max_fill)
 381 * @min_fill: RX descriptor minimum non-zero fill level.
 382 *	This records the minimum fill level observed when a ring
 383 *	refill was triggered.
 384 * @recycle_count: RX buffer recycle counter.
 385 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
 386 * @xdp_rxq_info: XDP specific RX queue information.
 387 * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
 388 */
 389struct efx_rx_queue {
 390	struct efx_nic *efx;
 391	int core_index;
 392	struct efx_rx_buffer *buffer;
 393	struct efx_special_buffer rxd;
 394	unsigned int ptr_mask;
 395	bool refill_enabled;
 396	bool flush_pending;
 397
 398	unsigned int added_count;
 399	unsigned int notified_count;
 400	unsigned int removed_count;
 401	unsigned int scatter_n;
 402	unsigned int scatter_len;
 403	struct page **page_ring;
 404	unsigned int page_add;
 405	unsigned int page_remove;
 406	unsigned int page_recycle_count;
 407	unsigned int page_recycle_failed;
 408	unsigned int page_recycle_full;
 409	unsigned int page_ptr_mask;
 410	unsigned int max_fill;
 411	unsigned int fast_fill_trigger;
 412	unsigned int min_fill;
 413	unsigned int min_overfill;
 414	unsigned int recycle_count;
 415	struct timer_list slow_fill;
 416	unsigned int slow_fill_count;
 417	/* Statistics to supplement MAC stats */
 418	unsigned long rx_packets;
 419	struct xdp_rxq_info xdp_rxq_info;
 420	bool xdp_rxq_info_valid;
 421};
 422
 423enum efx_sync_events_state {
 424	SYNC_EVENTS_DISABLED = 0,
 425	SYNC_EVENTS_QUIESCENT,
 426	SYNC_EVENTS_REQUESTED,
 427	SYNC_EVENTS_VALID,
 428};
 429
 430/**
 431 * struct efx_channel - An Efx channel
 432 *
 433 * A channel comprises an event queue, at least one TX queue, at least
 434 * one RX queue, and an associated tasklet for processing the event
 435 * queue.
 436 *
 437 * @efx: Associated Efx NIC
 438 * @channel: Channel instance number
 439 * @type: Channel type definition
 440 * @eventq_init: Event queue initialised flag
 441 * @enabled: Channel enabled indicator
 442 * @irq: IRQ number (MSI and MSI-X only)
 443 * @irq_moderation_us: IRQ moderation value (in microseconds)
 444 * @napi_dev: Net device used with NAPI
 445 * @napi_str: NAPI control structure
 446 * @state: state for NAPI vs busy polling
 447 * @state_lock: lock protecting @state
 448 * @eventq: Event queue buffer
 449 * @eventq_mask: Event queue pointer mask
 450 * @eventq_read_ptr: Event queue read pointer
 451 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
 452 * @irq_count: Number of IRQs since last adaptive moderation decision
 453 * @irq_mod_score: IRQ moderation score
 454 * @rfs_filter_count: number of accelerated RFS filters currently in place;
 455 *	equals the count of @rps_flow_id slots filled
 456 * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
 457 *	were checked for expiry
 458 * @rfs_expire_index: next accelerated RFS filter ID to check for expiry
 459 * @n_rfs_succeeded: number of successful accelerated RFS filter insertions
 460 * @n_rfs_failed: number of failed accelerated RFS filter insertions
 461 * @filter_work: Work item for efx_filter_rfs_expire()
 462 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
 463 *      indexed by filter ID
 464 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
 465 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
 466 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
 467 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
 468 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
 469 * @n_rx_overlength: Count of RX_OVERLENGTH errors
 470 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
 471 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
 472 *	lack of descriptors
 473 * @n_rx_merge_events: Number of RX merged completion events
 474 * @n_rx_merge_packets: Number of RX packets completed by merged events
 475 * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
 476 * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
 477 * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
 478 * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
 479 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
 480 *	__efx_siena_rx_packet(), or zero if there is none
 481 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
 482 *	by __efx_siena_rx_packet(), if @rx_pkt_n_frags != 0
 483 * @rx_list: list of SKBs from current RX, awaiting processing
 484 * @rx_queue: RX queue for this channel
 485 * @tx_queue: TX queues for this channel
 486 * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type
 487 * @sync_events_state: Current state of sync events on this channel
 488 * @sync_timestamp_major: Major part of the last ptp sync event
 489 * @sync_timestamp_minor: Minor part of the last ptp sync event
 490 */
 491struct efx_channel {
 492	struct efx_nic *efx;
 493	int channel;
 494	const struct efx_channel_type *type;
 495	bool eventq_init;
 496	bool enabled;
 497	int irq;
 498	unsigned int irq_moderation_us;
 499	struct net_device *napi_dev;
 500	struct napi_struct napi_str;
 501#ifdef CONFIG_NET_RX_BUSY_POLL
 502	unsigned long busy_poll_state;
 503#endif
 504	struct efx_special_buffer eventq;
 505	unsigned int eventq_mask;
 506	unsigned int eventq_read_ptr;
 507	int event_test_cpu;
 508
 509	unsigned int irq_count;
 510	unsigned int irq_mod_score;
 511#ifdef CONFIG_RFS_ACCEL
 512	unsigned int rfs_filter_count;
 513	unsigned int rfs_last_expiry;
 514	unsigned int rfs_expire_index;
 515	unsigned int n_rfs_succeeded;
 516	unsigned int n_rfs_failed;
 517	struct delayed_work filter_work;
 518#define RPS_FLOW_ID_INVALID 0xFFFFFFFF
 519	u32 *rps_flow_id;
 520#endif
 521
 522	unsigned int n_rx_tobe_disc;
 523	unsigned int n_rx_ip_hdr_chksum_err;
 524	unsigned int n_rx_tcp_udp_chksum_err;
 525	unsigned int n_rx_outer_ip_hdr_chksum_err;
 526	unsigned int n_rx_outer_tcp_udp_chksum_err;
 527	unsigned int n_rx_inner_ip_hdr_chksum_err;
 528	unsigned int n_rx_inner_tcp_udp_chksum_err;
 529	unsigned int n_rx_eth_crc_err;
 530	unsigned int n_rx_mcast_mismatch;
 531	unsigned int n_rx_frm_trunc;
 532	unsigned int n_rx_overlength;
 533	unsigned int n_skbuff_leaks;
 534	unsigned int n_rx_nodesc_trunc;
 535	unsigned int n_rx_merge_events;
 536	unsigned int n_rx_merge_packets;
 537	unsigned int n_rx_xdp_drops;
 538	unsigned int n_rx_xdp_bad_drops;
 539	unsigned int n_rx_xdp_tx;
 540	unsigned int n_rx_xdp_redirect;
 541
 542	unsigned int rx_pkt_n_frags;
 543	unsigned int rx_pkt_index;
 544
 545	struct list_head *rx_list;
 546
 547	struct efx_rx_queue rx_queue;
 548	struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL];
 549	struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES];
 550
 551	enum efx_sync_events_state sync_events_state;
 552	u32 sync_timestamp_major;
 553	u32 sync_timestamp_minor;
 554};
 555
 556/**
 557 * struct efx_msi_context - Context for each MSI
 558 * @efx: The associated NIC
 559 * @index: Index of the channel/IRQ
 560 * @name: Name of the channel/IRQ
 561 *
 562 * Unlike &struct efx_channel, this is never reallocated and is always
 563 * safe for the IRQ handler to access.
 564 */
 565struct efx_msi_context {
 566	struct efx_nic *efx;
 567	unsigned int index;
 568	char name[IFNAMSIZ + 6];
 569};
 570
 571/**
 572 * struct efx_channel_type - distinguishes traffic and extra channels
 573 * @handle_no_channel: Handle failure to allocate an extra channel
 574 * @pre_probe: Set up extra state prior to initialisation
 575 * @post_remove: Tear down extra state after finalisation, if allocated.
 576 *	May be called on channels that have not been probed.
 577 * @get_name: Generate the channel's name (used for its IRQ handler)
 578 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
 579 *	reallocation is not supported.
 580 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
 581 * @want_txqs: Determine whether this channel should have TX queues
 582 *	created.  If %NULL, TX queues are not created.
 583 * @keep_eventq: Flag for whether event queue should be kept initialised
 584 *	while the device is stopped
 585 * @want_pio: Flag for whether PIO buffers should be linked to this
 586 *	channel's TX queues.
 587 */
 588struct efx_channel_type {
 589	void (*handle_no_channel)(struct efx_nic *);
 590	int (*pre_probe)(struct efx_channel *);
 591	void (*post_remove)(struct efx_channel *);
 592	void (*get_name)(struct efx_channel *, char *buf, size_t len);
 593	struct efx_channel *(*copy)(const struct efx_channel *);
 594	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
 595	bool (*want_txqs)(struct efx_channel *);
 596	bool keep_eventq;
 597	bool want_pio;
 598};
 599
 600enum efx_led_mode {
 601	EFX_LED_OFF	= 0,
 602	EFX_LED_ON	= 1,
 603	EFX_LED_DEFAULT	= 2
 604};
 605
 606#define STRING_TABLE_LOOKUP(val, member) \
 607	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
 608
 609extern const char *const efx_siena_loopback_mode_names[];
 610extern const unsigned int efx_siena_loopback_mode_max;
 611#define LOOPBACK_MODE(efx) \
 612	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_siena_loopback_mode)
 613
 614enum efx_int_mode {
 615	/* Be careful if altering to correct macro below */
 616	EFX_INT_MODE_MSIX = 0,
 617	EFX_INT_MODE_MSI = 1,
 618	EFX_INT_MODE_LEGACY = 2,
 619	EFX_INT_MODE_MAX	/* Insert any new items before this */
 620};
 621#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
 622
 623enum nic_state {
 624	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
 625	STATE_READY = 1,	/* hardware ready and netdev registered */
 626	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
 627	STATE_RECOVERY = 3,	/* device recovering from PCI error */
 628};
 629
 630/* Forward declaration */
 631struct efx_nic;
 632
 633/* Pseudo bit-mask flow control field */
 634#define EFX_FC_RX	FLOW_CTRL_RX
 635#define EFX_FC_TX	FLOW_CTRL_TX
 636#define EFX_FC_AUTO	4
 637
 638/**
 639 * struct efx_link_state - Current state of the link
 640 * @up: Link is up
 641 * @fd: Link is full-duplex
 642 * @fc: Actual flow control flags
 643 * @speed: Link speed (Mbps)
 644 */
 645struct efx_link_state {
 646	bool up;
 647	bool fd;
 648	u8 fc;
 649	unsigned int speed;
 650};
 651
 652static inline bool efx_link_state_equal(const struct efx_link_state *left,
 653					const struct efx_link_state *right)
 654{
 655	return left->up == right->up && left->fd == right->fd &&
 656		left->fc == right->fc && left->speed == right->speed;
 657}
 658
 659/**
 660 * enum efx_phy_mode - PHY operating mode flags
 661 * @PHY_MODE_NORMAL: on and should pass traffic
 662 * @PHY_MODE_TX_DISABLED: on with TX disabled
 663 * @PHY_MODE_LOW_POWER: set to low power through MDIO
 664 * @PHY_MODE_OFF: switched off through external control
 665 * @PHY_MODE_SPECIAL: on but will not pass traffic
 666 */
 667enum efx_phy_mode {
 668	PHY_MODE_NORMAL		= 0,
 669	PHY_MODE_TX_DISABLED	= 1,
 670	PHY_MODE_LOW_POWER	= 2,
 671	PHY_MODE_OFF		= 4,
 672	PHY_MODE_SPECIAL	= 8,
 673};
 674
 675static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
 676{
 677	return !!(mode & ~PHY_MODE_TX_DISABLED);
 678}
 679
 680/**
 681 * struct efx_hw_stat_desc - Description of a hardware statistic
 682 * @name: Name of the statistic as visible through ethtool, or %NULL if
 683 *	it should not be exposed
 684 * @dma_width: Width in bits (0 for non-DMA statistics)
 685 * @offset: Offset within stats (ignored for non-DMA statistics)
 686 */
 687struct efx_hw_stat_desc {
 688	const char *name;
 689	u16 dma_width;
 690	u16 offset;
 691};
 692
 693/* Number of bits used in a multicast filter hash address */
 694#define EFX_MCAST_HASH_BITS 8
 695
 696/* Number of (single-bit) entries in a multicast filter hash */
 697#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
 698
 699/* An Efx multicast filter hash */
 700union efx_multicast_hash {
 701	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
 702	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
 703};
 704
 705struct vfdi_status;
 706
 707/* The reserved RSS context value */
 708#define EFX_MCDI_RSS_CONTEXT_INVALID	0xffffffff
 709/**
 710 * struct efx_rss_context - An RSS context for filtering
 711 * @context_id: 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID.
 712 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
 713 * @rx_hash_key: Toeplitz hash key for this RSS context
 714 * @indir_table: Indirection table for this RSS context
 715 */
 716struct efx_rss_context {
 717	u32 context_id;
 718	bool rx_hash_udp_4tuple;
 719	u8 rx_hash_key[40];
 720	u32 rx_indir_table[128];
 721};
 722
 723#ifdef CONFIG_RFS_ACCEL
 724/* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
 725 * is used to test if filter does or will exist.
 726 */
 727#define EFX_ARFS_FILTER_ID_PENDING	-1
 728#define EFX_ARFS_FILTER_ID_ERROR	-2
 729#define EFX_ARFS_FILTER_ID_REMOVING	-3
 730/**
 731 * struct efx_arfs_rule - record of an ARFS filter and its IDs
 732 * @node: linkage into hash table
 733 * @spec: details of the filter (used as key for hash table).  Use efx->type to
 734 *	determine which member to use.
 735 * @rxq_index: channel to which the filter will steer traffic.
 736 * @arfs_id: filter ID which was returned to ARFS
 737 * @filter_id: index in software filter table.  May be
 738 *	%EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
 739 *	%EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
 740 *	%EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
 741 */
 742struct efx_arfs_rule {
 743	struct hlist_node node;
 744	struct efx_filter_spec spec;
 745	u16 rxq_index;
 746	u16 arfs_id;
 747	s32 filter_id;
 748};
 749
 750/* Size chosen so that the table is one page (4kB) */
 751#define EFX_ARFS_HASH_TABLE_SIZE	512
 752
 753/**
 754 * struct efx_async_filter_insertion - Request to asynchronously insert a filter
 755 * @net_dev: Reference to the netdevice
 756 * @spec: The filter to insert
 757 * @work: Workitem for this request
 758 * @rxq_index: Identifies the channel for which this request was made
 759 * @flow_id: Identifies the kernel-side flow for which this request was made
 760 */
 761struct efx_async_filter_insertion {
 762	struct net_device *net_dev;
 763	struct efx_filter_spec spec;
 764	struct work_struct work;
 765	u16 rxq_index;
 766	u32 flow_id;
 767};
 768
 769/* Maximum number of ARFS workitems that may be in flight on an efx_nic */
 770#define EFX_RPS_MAX_IN_FLIGHT	8
 771#endif /* CONFIG_RFS_ACCEL */
 772
 773enum efx_xdp_tx_queues_mode {
 774	EFX_XDP_TX_QUEUES_DEDICATED,	/* one queue per core, locking not needed */
 775	EFX_XDP_TX_QUEUES_SHARED,	/* each queue used by more than 1 core */
 776	EFX_XDP_TX_QUEUES_BORROWED	/* queues borrowed from net stack */
 777};
 778
 779/**
 780 * struct efx_nic - an Efx NIC
 781 * @name: Device name (net device name or bus id before net device registered)
 782 * @pci_dev: The PCI device
 783 * @node: List node for maintaning primary/secondary function lists
 784 * @primary: &struct efx_nic instance for the primary function of this
 785 *	controller.  May be the same structure, and may be %NULL if no
 786 *	primary function is bound.  Serialised by rtnl_lock.
 787 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
 788 *	functions of the controller, if this is for the primary function.
 789 *	Serialised by rtnl_lock.
 790 * @type: Controller type attributes
 791 * @legacy_irq: IRQ number
 792 * @workqueue: Workqueue for port reconfigures and the HW monitor.
 793 *	Work items do not hold and must not acquire RTNL.
 794 * @workqueue_name: Name of workqueue
 795 * @reset_work: Scheduled reset workitem
 796 * @membase_phys: Memory BAR value as physical address
 797 * @membase: Memory BAR value
 798 * @vi_stride: step between per-VI registers / memory regions
 799 * @interrupt_mode: Interrupt mode
 800 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
 801 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
 802 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
 803 * @irqs_hooked: Channel interrupts are hooked
 804 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
 805 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
 806 * @msg_enable: Log message enable flags
 807 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
 808 * @reset_pending: Bitmask for pending resets
 809 * @tx_queue: TX DMA queues
 810 * @rx_queue: RX DMA queues
 811 * @channel: Channels
 812 * @msi_context: Context for each MSI
 813 * @extra_channel_types: Types of extra (non-traffic) channels that
 814 *	should be allocated for this NIC
 815 * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
 816 * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
 817 * @xdp_txq_queues_mode: XDP TX queues sharing strategy.
 818 * @rxq_entries: Size of receive queues requested by user.
 819 * @txq_entries: Size of transmit queues requested by user.
 820 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
 821 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
 822 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
 823 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
 824 * @sram_lim_qw: Qword address limit of SRAM
 825 * @next_buffer_table: First available buffer table id
 826 * @n_channels: Number of channels in use
 827 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
 828 * @n_tx_channels: Number of channels used for TX
 829 * @n_extra_tx_channels: Number of extra channels with TX queues
 830 * @tx_queues_per_channel: number of TX queues probed on each channel
 831 * @n_xdp_channels: Number of channels used for XDP TX
 832 * @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
 833 * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
 834 * @rx_ip_align: RX DMA address offset to have IP header aligned in
 835 *	accordance with NET_IP_ALIGN
 836 * @rx_dma_len: Current maximum RX DMA length
 837 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
 838 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
 839 *	for use in sk_buff::truesize
 840 * @rx_prefix_size: Size of RX prefix before packet data
 841 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
 842 *	(valid only if @rx_prefix_size != 0; always negative)
 843 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
 844 *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
 845 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
 846 *	(valid only if channel->sync_timestamps_enabled; always negative)
 847 * @rx_scatter: Scatter mode enabled for receives
 848 * @rss_context: Main RSS context
 849 * @vport_id: The function's vport ID, only relevant for PFs
 850 * @int_error_count: Number of internal errors seen recently
 851 * @int_error_expire: Time at which error count will be expired
 852 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
 853 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
 854 *	acknowledge but do nothing else.
 855 * @irq_status: Interrupt status buffer
 856 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
 857 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
 858 * @selftest_work: Work item for asynchronous self-test
 859 * @mtd_list: List of MTDs attached to the NIC
 860 * @nic_data: Hardware dependent state
 861 * @mcdi: Management-Controller-to-Driver Interface state
 862 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
 863 *	efx_monitor() and efx_siena_reconfigure_port()
 864 * @port_enabled: Port enabled indicator.
 865 *	Serialises efx_siena_stop_all(), efx_siena_start_all(),
 866 *	efx_monitor() and efx_mac_work() with kernel interfaces.
 867 *	Safe to read under any one of the rtnl_lock, mac_lock, or netif_tx_lock,
 868 *	but all three must be held to modify it.
 869 * @port_initialized: Port initialized?
 870 * @net_dev: Operating system network device. Consider holding the rtnl lock
 871 * @fixed_features: Features which cannot be turned off
 872 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
 873 *	field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
 874 * @stats_buffer: DMA buffer for statistics
 875 * @phy_type: PHY type
 876 * @phy_data: PHY private data (including PHY-specific stats)
 877 * @mdio: PHY MDIO interface
 878 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
 879 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
 880 * @link_advertising: Autonegotiation advertising flags
 881 * @fec_config: Forward Error Correction configuration flags.  For bit positions
 882 *	see &enum ethtool_fec_config_bits.
 883 * @link_state: Current state of the link
 884 * @n_link_state_changes: Number of times the link has changed state
 885 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
 886 *	Protected by @mac_lock.
 887 * @multicast_hash: Multicast hash table for Falcon-arch.
 888 *	Protected by @mac_lock.
 889 * @wanted_fc: Wanted flow control flags
 890 * @fc_disable: When non-zero flow control is disabled. Typically used to
 891 *	ensure that network back pressure doesn't delay dma queue flushes.
 892 *	Serialised by the rtnl lock.
 893 * @mac_work: Work item for changing MAC promiscuity and multicast hash
 894 * @loopback_mode: Loopback status
 895 * @loopback_modes: Supported loopback mode bitmask
 896 * @loopback_selftest: Offline self-test private state
 897 * @xdp_prog: Current XDP programme for this interface
 898 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
 899 * @filter_state: Architecture-dependent filter table state
 900 * @rps_mutex: Protects RPS state of all channels
 901 * @rps_slot_map: bitmap of in-flight entries in @rps_slot
 902 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
 903 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
 904 *	@rps_next_id).
 905 * @rps_hash_table: Mapping between ARFS filters and their various IDs
 906 * @rps_next_id: next arfs_id for an ARFS filter
 907 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
 908 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
 909 *	Decremented when the efx_flush_rx_queue() is called.
 910 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
 911 *	completed (either success or failure). Not used when MCDI is used to
 912 *	flush receive queues.
 913 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
 914 * @vf_count: Number of VFs intended to be enabled.
 915 * @vf_init_count: Number of VFs that have been fully initialised.
 916 * @vi_scale: log2 number of vnics per VF.
 917 * @ptp_data: PTP state data
 918 * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
 919 * @vpd_sn: Serial number read from VPD
 920 * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
 921 *      xdp_rxq_info structures?
 922 * @netdev_notifier: Netdevice notifier.
 923 * @mem_bar: The BAR that is mapped into membase.
 924 * @reg_base: Offset from the start of the bar to the function control window.
 925 * @monitor_work: Hardware monitor workitem
 926 * @biu_lock: BIU (bus interface unit) lock
 927 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
 928 *	field is used by efx_test_interrupts() to verify that an
 929 *	interrupt has occurred.
 930 * @stats_lock: Statistics update lock. Must be held when calling
 931 *	efx_nic_type::{update,start,stop}_stats.
 932 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
 933 *
 934 * This is stored in the private area of the &struct net_device.
 935 */
 936struct efx_nic {
 937	/* The following fields should be written very rarely */
 938
 939	char name[IFNAMSIZ];
 940	struct list_head node;
 941	struct efx_nic *primary;
 942	struct list_head secondary_list;
 943	struct pci_dev *pci_dev;
 944	unsigned int port_num;
 945	const struct efx_nic_type *type;
 946	int legacy_irq;
 947	bool eeh_disabled_legacy_irq;
 948	struct workqueue_struct *workqueue;
 949	char workqueue_name[16];
 950	struct work_struct reset_work;
 951	resource_size_t membase_phys;
 952	void __iomem *membase;
 953
 954	unsigned int vi_stride;
 955
 956	enum efx_int_mode interrupt_mode;
 957	unsigned int timer_quantum_ns;
 958	unsigned int timer_max_ns;
 959	bool irq_rx_adaptive;
 960	bool irqs_hooked;
 961	unsigned int irq_mod_step_us;
 962	unsigned int irq_rx_moderation_us;
 963	u32 msg_enable;
 964
 965	enum nic_state state;
 966	unsigned long reset_pending;
 967
 968	struct efx_channel *channel[EFX_MAX_CHANNELS];
 969	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
 970	const struct efx_channel_type *
 971	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
 972
 973	unsigned int xdp_tx_queue_count;
 974	struct efx_tx_queue **xdp_tx_queues;
 975	enum efx_xdp_tx_queues_mode xdp_txq_queues_mode;
 976
 977	unsigned rxq_entries;
 978	unsigned txq_entries;
 979	unsigned int txq_stop_thresh;
 980	unsigned int txq_wake_thresh;
 981
 982	unsigned tx_dc_base;
 983	unsigned rx_dc_base;
 984	unsigned sram_lim_qw;
 985	unsigned next_buffer_table;
 986
 987	unsigned int max_channels;
 988	unsigned int max_vis;
 989	unsigned int max_tx_channels;
 990	unsigned n_channels;
 991	unsigned n_rx_channels;
 992	unsigned rss_spread;
 993	unsigned tx_channel_offset;
 994	unsigned n_tx_channels;
 995	unsigned n_extra_tx_channels;
 996	unsigned int tx_queues_per_channel;
 997	unsigned int n_xdp_channels;
 998	unsigned int xdp_channel_offset;
 999	unsigned int xdp_tx_per_channel;
1000	unsigned int rx_ip_align;
1001	unsigned int rx_dma_len;
1002	unsigned int rx_buffer_order;
1003	unsigned int rx_buffer_truesize;
1004	unsigned int rx_page_buf_step;
1005	unsigned int rx_bufs_per_page;
1006	unsigned int rx_pages_per_batch;
1007	unsigned int rx_prefix_size;
1008	int rx_packet_hash_offset;
1009	int rx_packet_len_offset;
1010	int rx_packet_ts_offset;
1011	bool rx_scatter;
1012	struct efx_rss_context rss_context;
1013	u32 vport_id;
1014
1015	unsigned int_error_count;
1016	unsigned long int_error_expire;
1017
1018	bool must_realloc_vis;
1019	bool irq_soft_enabled;
1020	struct efx_buffer irq_status;
1021	unsigned irq_zero_count;
1022	unsigned irq_level;
1023	struct delayed_work selftest_work;
1024
1025#ifdef CONFIG_SFC_SIENA_MTD
1026	struct list_head mtd_list;
1027#endif
1028
1029	void *nic_data;
1030	struct efx_mcdi_data *mcdi;
1031
1032	struct mutex mac_lock;
1033	struct work_struct mac_work;
1034	bool port_enabled;
1035
1036	bool mc_bist_for_other_fn;
1037	bool port_initialized;
1038	struct net_device *net_dev;
1039
1040	netdev_features_t fixed_features;
1041
1042	u16 num_mac_stats;
1043	struct efx_buffer stats_buffer;
1044	u64 rx_nodesc_drops_total;
1045	u64 rx_nodesc_drops_while_down;
1046	bool rx_nodesc_drops_prev_state;
1047
1048	unsigned int phy_type;
1049	void *phy_data;
1050	struct mdio_if_info mdio;
1051	unsigned int mdio_bus;
1052	enum efx_phy_mode phy_mode;
1053
1054	__ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1055	u32 fec_config;
1056	struct efx_link_state link_state;
1057	unsigned int n_link_state_changes;
1058
1059	bool unicast_filter;
1060	union efx_multicast_hash multicast_hash;
1061	u8 wanted_fc;
1062	unsigned fc_disable;
1063
1064	atomic_t rx_reset;
1065	enum efx_loopback_mode loopback_mode;
1066	u64 loopback_modes;
1067
1068	void *loopback_selftest;
1069	/* We access loopback_selftest immediately before running XDP,
1070	 * so we want them next to each other.
1071	 */
1072	struct bpf_prog __rcu *xdp_prog;
1073
1074	struct rw_semaphore filter_sem;
1075	void *filter_state;
1076#ifdef CONFIG_RFS_ACCEL
1077	struct mutex rps_mutex;
1078	unsigned long rps_slot_map;
1079	struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1080	spinlock_t rps_hash_lock;
1081	struct hlist_head *rps_hash_table;
1082	u32 rps_next_id;
1083#endif
1084
1085	atomic_t active_queues;
1086	atomic_t rxq_flush_pending;
1087	atomic_t rxq_flush_outstanding;
1088	wait_queue_head_t flush_wq;
1089
1090#ifdef CONFIG_SFC_SIENA_SRIOV
1091	unsigned vf_count;
1092	unsigned vf_init_count;
1093	unsigned vi_scale;
1094#endif
1095
1096	struct efx_ptp_data *ptp_data;
1097	bool ptp_warned;
1098
1099	char *vpd_sn;
1100	bool xdp_rxq_info_failed;
1101
1102	struct notifier_block netdev_notifier;
1103
1104	unsigned int mem_bar;
1105	u32 reg_base;
1106
1107	/* The following fields may be written more often */
1108
1109	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1110	spinlock_t biu_lock;
1111	int last_irq_cpu;
1112	spinlock_t stats_lock;
1113	atomic_t n_rx_noskb_drops;
1114};
1115
1116static inline int efx_dev_registered(struct efx_nic *efx)
1117{
1118	return efx->net_dev->reg_state == NETREG_REGISTERED;
1119}
1120
1121static inline unsigned int efx_port_num(struct efx_nic *efx)
1122{
1123	return efx->port_num;
1124}
1125
1126struct efx_mtd_partition {
1127	struct list_head node;
1128	struct mtd_info mtd;
1129	const char *dev_type_name;
1130	const char *type_name;
1131	char name[IFNAMSIZ + 20];
1132};
1133
1134struct efx_udp_tunnel {
1135#define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID	0xffff
1136	u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1137	__be16 port;
1138};
1139
1140/**
1141 * struct efx_nic_type - Efx device type definition
1142 * @mem_bar: Get the memory BAR
1143 * @mem_map_size: Get memory BAR mapped size
1144 * @probe: Probe the controller
1145 * @remove: Free resources allocated by probe()
1146 * @init: Initialise the controller
1147 * @dimension_resources: Dimension controller resources (buffer table,
1148 *	and VIs once the available interrupt resources are clear)
1149 * @fini: Shut down the controller
1150 * @monitor: Periodic function for polling link state and hardware monitor
1151 * @map_reset_reason: Map ethtool reset reason to a reset method
1152 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1153 * @reset: Reset the controller hardware and possibly the PHY.  This will
1154 *	be called while the controller is uninitialised.
1155 * @probe_port: Probe the MAC and PHY
1156 * @remove_port: Free resources allocated by probe_port()
1157 * @handle_global_event: Handle a "global" event (may be %NULL)
1158 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1159 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1160 *	(for Falcon architecture)
1161 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1162 *	architecture)
1163 * @prepare_flr: Prepare for an FLR
1164 * @finish_flr: Clean up after an FLR
1165 * @describe_stats: Describe statistics for ethtool
1166 * @update_stats: Update statistics not provided by event handling.
1167 *	Either argument may be %NULL.
1168 * @update_stats_atomic: Update statistics while in atomic context, if that
1169 *	is more limiting than @update_stats.  Otherwise, leave %NULL and
1170 *	driver core will call @update_stats.
1171 * @start_stats: Start the regular fetching of statistics
1172 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1173 * @stop_stats: Stop the regular fetching of statistics
1174 * @push_irq_moderation: Apply interrupt moderation value
1175 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1176 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1177 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1178 *	to the hardware.  Serialised by the mac_lock.
1179 * @check_mac_fault: Check MAC fault state. True if fault present.
1180 * @get_wol: Get WoL configuration from driver state
1181 * @set_wol: Push WoL configuration to the NIC
1182 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1183 * @get_fec_stats: Get standard FEC statistics.
1184 * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1185 *	expected to reset the NIC.
1186 * @test_nvram: Test validity of NVRAM contents
1187 * @mcdi_request: Send an MCDI request with the given header and SDU.
1188 *	The SDU length may be any value from 0 up to the protocol-
1189 *	defined maximum, but its buffer will be padded to a multiple
1190 *	of 4 bytes.
1191 * @mcdi_poll_response: Test whether an MCDI response is available.
1192 * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1193 *	be a multiple of 4.  The length may not be, but the buffer
1194 *	will be padded so it is safe to round up.
1195 * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1196 *	return an appropriate error code for aborting any current
1197 *	request; otherwise return 0.
1198 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1199 *	be separately enabled after this.
1200 * @irq_test_generate: Generate a test IRQ
1201 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1202 *	queue must be separately disabled before this.
1203 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1204 *	a pointer to the &struct efx_msi_context for the channel.
1205 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1206 *	is a pointer to the &struct efx_nic.
1207 * @tx_probe: Allocate resources for TX queue (and select TXQ type)
1208 * @tx_init: Initialise TX queue on the NIC
1209 * @tx_remove: Free resources for TX queue
1210 * @tx_write: Write TX descriptors and doorbell
1211 * @tx_enqueue: Add an SKB to TX queue
1212 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1213 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1214 * @rx_probe: Allocate resources for RX queue
1215 * @rx_init: Initialise RX queue on the NIC
1216 * @rx_remove: Free resources for RX queue
1217 * @rx_write: Write RX descriptors and doorbell
1218 * @rx_defer_refill: Generate a refill reminder event
1219 * @rx_packet: Receive the queued RX buffer on a channel
1220 * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash
1221 * @ev_probe: Allocate resources for event queue
1222 * @ev_init: Initialise event queue on the NIC
1223 * @ev_fini: Deinitialise event queue on the NIC
1224 * @ev_remove: Free resources for event queue
1225 * @ev_process: Process events for a queue, up to the given NAPI quota
1226 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1227 * @ev_test_generate: Generate a test event
1228 * @filter_table_probe: Probe filter capabilities and set up filter software state
1229 * @filter_table_restore: Restore filters removed from hardware
1230 * @filter_table_remove: Remove filters from hardware and tear down software state
1231 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1232 * @filter_insert: add or replace a filter
1233 * @filter_remove_safe: remove a filter by ID, carefully
1234 * @filter_get_safe: retrieve a filter by ID, carefully
1235 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1236 *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1237 * @filter_count_rx_used: Get the number of filters in use at a given priority
1238 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1239 * @filter_get_rx_ids: Get list of RX filters at a given priority
1240 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1241 *	This must check whether the specified table entry is used by RFS
1242 *	and that rps_may_expire_flow() returns true for it.
1243 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1244 *	 using efx_siena_mtd_add()
1245 * @mtd_rename: Set an MTD partition name using the net device name
1246 * @mtd_read: Read from an MTD partition
1247 * @mtd_erase: Erase part of an MTD partition
1248 * @mtd_write: Write to an MTD partition
1249 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1250 *	also notifies the driver that a writer has finished using this
1251 *	partition.
1252 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1253 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1254 *	timestamping, possibly only temporarily for the purposes of a reset.
1255 * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1256 *	and tx_type will already have been validated but this operation
1257 *	must validate and update rx_filter.
1258 * @get_phys_port_id: Get the underlying physical port id.
1259 * @set_mac_address: Set the MAC address of the device
1260 * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1261 *	If %NULL, then device does not support any TSO version.
1262 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1263 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1264 * @print_additional_fwver: Dump NIC-specific additional FW version info
1265 * @sensor_event: Handle a sensor event from MCDI
1266 * @rx_recycle_ring_size: Size of the RX recycle ring
1267 * @revision: Hardware architecture revision
1268 * @txd_ptr_tbl_base: TX descriptor ring base address
1269 * @rxd_ptr_tbl_base: RX descriptor ring base address
1270 * @buf_tbl_base: Buffer table base address
1271 * @evq_ptr_tbl_base: Event queue pointer table base address
1272 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1273 * @max_dma_mask: Maximum possible DMA mask
1274 * @rx_prefix_size: Size of RX prefix before packet data
1275 * @rx_hash_offset: Offset of RX flow hash within prefix
1276 * @rx_ts_offset: Offset of timestamp within prefix
1277 * @rx_buffer_padding: Size of padding at end of RX packet
1278 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1279 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1280 * @option_descriptors: NIC supports TX option descriptors
1281 * @min_interrupt_mode: Lowest capability interrupt mode supported
1282 *	from &enum efx_int_mode.
1283 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1284 * @offload_features: net_device feature flags for protocol offload
1285 *	features implemented in hardware
1286 * @mcdi_max_ver: Maximum MCDI version supported
1287 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1288 */
1289struct efx_nic_type {
1290	bool is_vf;
1291	unsigned int (*mem_bar)(struct efx_nic *efx);
1292	unsigned int (*mem_map_size)(struct efx_nic *efx);
1293	int (*probe)(struct efx_nic *efx);
1294	void (*remove)(struct efx_nic *efx);
1295	int (*init)(struct efx_nic *efx);
1296	int (*dimension_resources)(struct efx_nic *efx);
1297	void (*fini)(struct efx_nic *efx);
1298	void (*monitor)(struct efx_nic *efx);
1299	enum reset_type (*map_reset_reason)(enum reset_type reason);
1300	int (*map_reset_flags)(u32 *flags);
1301	int (*reset)(struct efx_nic *efx, enum reset_type method);
1302	int (*probe_port)(struct efx_nic *efx);
1303	void (*remove_port)(struct efx_nic *efx);
1304	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1305	int (*fini_dmaq)(struct efx_nic *efx);
1306	void (*prepare_flush)(struct efx_nic *efx);
1307	void (*finish_flush)(struct efx_nic *efx);
1308	void (*prepare_flr)(struct efx_nic *efx);
1309	void (*finish_flr)(struct efx_nic *efx);
1310	size_t (*describe_stats)(struct efx_nic *efx, u8 **names);
1311	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1312			       struct rtnl_link_stats64 *core_stats);
1313	size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats,
1314				      struct rtnl_link_stats64 *core_stats);
1315	void (*start_stats)(struct efx_nic *efx);
1316	void (*pull_stats)(struct efx_nic *efx);
1317	void (*stop_stats)(struct efx_nic *efx);
1318	void (*push_irq_moderation)(struct efx_channel *channel);
1319	int (*reconfigure_port)(struct efx_nic *efx);
1320	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1321	int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
1322	bool (*check_mac_fault)(struct efx_nic *efx);
1323	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1324	int (*set_wol)(struct efx_nic *efx, u32 type);
1325	void (*resume_wol)(struct efx_nic *efx);
1326	void (*get_fec_stats)(struct efx_nic *efx,
1327			      struct ethtool_fec_stats *fec_stats);
1328	unsigned int (*check_caps)(const struct efx_nic *efx,
1329				   u8 flag,
1330				   u32 offset);
1331	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1332	int (*test_nvram)(struct efx_nic *efx);
1333	void (*mcdi_request)(struct efx_nic *efx,
1334			     const efx_dword_t *hdr, size_t hdr_len,
1335			     const efx_dword_t *sdu, size_t sdu_len);
1336	bool (*mcdi_poll_response)(struct efx_nic *efx);
1337	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1338				   size_t pdu_offset, size_t pdu_len);
1339	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1340	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1341	void (*irq_enable_master)(struct efx_nic *efx);
1342	int (*irq_test_generate)(struct efx_nic *efx);
1343	void (*irq_disable_non_ev)(struct efx_nic *efx);
1344	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1345	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1346	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1347	void (*tx_init)(struct efx_tx_queue *tx_queue);
1348	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1349	void (*tx_write)(struct efx_tx_queue *tx_queue);
1350	netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
1351	unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1352				     dma_addr_t dma_addr, unsigned int len);
1353	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1354				  const u32 *rx_indir_table, const u8 *key);
1355	int (*rx_pull_rss_config)(struct efx_nic *efx);
1356	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1357	void (*rx_init)(struct efx_rx_queue *rx_queue);
1358	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1359	void (*rx_write)(struct efx_rx_queue *rx_queue);
1360	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1361	void (*rx_packet)(struct efx_channel *channel);
1362	bool (*rx_buf_hash_valid)(const u8 *prefix);
1363	int (*ev_probe)(struct efx_channel *channel);
1364	int (*ev_init)(struct efx_channel *channel);
1365	void (*ev_fini)(struct efx_channel *channel);
1366	void (*ev_remove)(struct efx_channel *channel);
1367	int (*ev_process)(struct efx_channel *channel, int quota);
1368	void (*ev_read_ack)(struct efx_channel *channel);
1369	void (*ev_test_generate)(struct efx_channel *channel);
1370	int (*filter_table_probe)(struct efx_nic *efx);
1371	void (*filter_table_restore)(struct efx_nic *efx);
1372	void (*filter_table_remove)(struct efx_nic *efx);
1373	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1374	s32 (*filter_insert)(struct efx_nic *efx,
1375			     struct efx_filter_spec *spec, bool replace);
1376	int (*filter_remove_safe)(struct efx_nic *efx,
1377				  enum efx_filter_priority priority,
1378				  u32 filter_id);
1379	int (*filter_get_safe)(struct efx_nic *efx,
1380			       enum efx_filter_priority priority,
1381			       u32 filter_id, struct efx_filter_spec *);
1382	int (*filter_clear_rx)(struct efx_nic *efx,
1383			       enum efx_filter_priority priority);
1384	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1385				    enum efx_filter_priority priority);
1386	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1387	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1388				 enum efx_filter_priority priority,
1389				 u32 *buf, u32 size);
1390#ifdef CONFIG_RFS_ACCEL
1391	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1392				      unsigned int index);
1393#endif
1394#ifdef CONFIG_SFC_SIENA_MTD
1395	int (*mtd_probe)(struct efx_nic *efx);
1396	void (*mtd_rename)(struct efx_mtd_partition *part);
1397	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1398			size_t *retlen, u8 *buffer);
1399	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1400	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1401			 size_t *retlen, const u8 *buffer);
1402	int (*mtd_sync)(struct mtd_info *mtd);
1403#endif
1404	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1405	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1406	int (*ptp_set_ts_config)(struct efx_nic *efx,
1407				 struct kernel_hwtstamp_config *init);
1408	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1409	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1410	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1411	int (*get_phys_port_id)(struct efx_nic *efx,
1412				struct netdev_phys_item_id *ppid);
1413	int (*sriov_init)(struct efx_nic *efx);
1414	void (*sriov_fini)(struct efx_nic *efx);
1415	bool (*sriov_wanted)(struct efx_nic *efx);
1416	void (*sriov_reset)(struct efx_nic *efx);
1417	void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1418	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, const u8 *mac);
1419	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1420				 u8 qos);
1421	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1422				     bool spoofchk);
1423	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1424				   struct ifla_vf_info *ivi);
1425	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1426				       int link_state);
1427	int (*vswitching_probe)(struct efx_nic *efx);
1428	int (*vswitching_restore)(struct efx_nic *efx);
1429	void (*vswitching_remove)(struct efx_nic *efx);
1430	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1431	int (*set_mac_address)(struct efx_nic *efx);
1432	u32 (*tso_versions)(struct efx_nic *efx);
1433	int (*udp_tnl_push_ports)(struct efx_nic *efx);
1434	bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1435	size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
1436					 size_t len);
1437	void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
1438	unsigned int (*rx_recycle_ring_size)(const struct efx_nic *efx);
1439
1440	int revision;
1441	unsigned int txd_ptr_tbl_base;
1442	unsigned int rxd_ptr_tbl_base;
1443	unsigned int buf_tbl_base;
1444	unsigned int evq_ptr_tbl_base;
1445	unsigned int evq_rptr_tbl_base;
1446	u64 max_dma_mask;
1447	unsigned int rx_prefix_size;
1448	unsigned int rx_hash_offset;
1449	unsigned int rx_ts_offset;
1450	unsigned int rx_buffer_padding;
1451	bool can_rx_scatter;
1452	bool always_rx_scatter;
1453	bool option_descriptors;
1454	unsigned int min_interrupt_mode;
1455	unsigned int timer_period_max;
1456	netdev_features_t offload_features;
1457	int mcdi_max_ver;
1458	unsigned int max_rx_ip_filters;
1459	u32 hwtstamp_filters;
1460	unsigned int rx_hash_key_size;
1461};
1462
1463/**************************************************************************
1464 *
1465 * Prototypes and inline functions
1466 *
1467 *************************************************************************/
1468
1469static inline struct efx_channel *
1470efx_get_channel(struct efx_nic *efx, unsigned index)
1471{
1472	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1473	return efx->channel[index];
1474}
1475
1476/* Iterate over all used channels */
1477#define efx_for_each_channel(_channel, _efx)				\
1478	for (_channel = (_efx)->channel[0];				\
1479	     _channel;							\
1480	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1481		     (_efx)->channel[_channel->channel + 1] : NULL)
1482
1483/* Iterate over all used channels in reverse */
1484#define efx_for_each_channel_rev(_channel, _efx)			\
1485	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1486	     _channel;							\
1487	     _channel = _channel->channel ?				\
1488		     (_efx)->channel[_channel->channel - 1] : NULL)
1489
1490static inline struct efx_channel *
1491efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
1492{
1493	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
1494	return efx->channel[efx->tx_channel_offset + index];
1495}
1496
1497static inline struct efx_channel *
1498efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
1499{
1500	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
1501	return efx->channel[efx->xdp_channel_offset + index];
1502}
1503
1504static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
1505{
1506	return channel->channel - channel->efx->xdp_channel_offset <
1507	       channel->efx->n_xdp_channels;
1508}
1509
1510static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1511{
1512	return channel && channel->channel >= channel->efx->tx_channel_offset;
1513}
1514
1515static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
1516{
1517	if (efx_channel_is_xdp_tx(channel))
1518		return channel->efx->xdp_tx_per_channel;
1519	return channel->efx->tx_queues_per_channel;
1520}
1521
1522static inline struct efx_tx_queue *
1523efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type)
1524{
1525	EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES);
1526	return channel->tx_queue_by_type[type];
1527}
1528
1529static inline struct efx_tx_queue *
1530efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type)
1531{
1532	struct efx_channel *channel = efx_get_tx_channel(efx, index);
1533
1534	return efx_channel_get_tx_queue(channel, type);
1535}
1536
1537/* Iterate over all TX queues belonging to a channel */
1538#define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1539	if (!efx_channel_has_tx_queues(_channel))			\
1540		;							\
1541	else								\
1542		for (_tx_queue = (_channel)->tx_queue;			\
1543		     _tx_queue < (_channel)->tx_queue +			\
1544				 efx_channel_num_tx_queues(_channel);		\
1545		     _tx_queue++)
1546
1547static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1548{
1549	return channel->rx_queue.core_index >= 0;
1550}
1551
1552static inline struct efx_rx_queue *
1553efx_channel_get_rx_queue(struct efx_channel *channel)
1554{
1555	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1556	return &channel->rx_queue;
1557}
1558
1559/* Iterate over all RX queues belonging to a channel */
1560#define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1561	if (!efx_channel_has_rx_queue(_channel))			\
1562		;							\
1563	else								\
1564		for (_rx_queue = &(_channel)->rx_queue;			\
1565		     _rx_queue;						\
1566		     _rx_queue = NULL)
1567
1568static inline struct efx_channel *
1569efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1570{
1571	return container_of(rx_queue, struct efx_channel, rx_queue);
1572}
1573
1574static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1575{
1576	return efx_rx_queue_channel(rx_queue)->channel;
1577}
1578
1579/* Returns a pointer to the specified receive buffer in the RX
1580 * descriptor queue.
1581 */
1582static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1583						  unsigned int index)
1584{
1585	return &rx_queue->buffer[index];
1586}
1587
1588static inline struct efx_rx_buffer *
1589efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
1590{
1591	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
1592		return efx_rx_buffer(rx_queue, 0);
1593	else
1594		return rx_buf + 1;
1595}
1596
1597/**
1598 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1599 *
1600 * This calculates the maximum frame length that will be used for a
1601 * given MTU.  The frame length will be equal to the MTU plus a
1602 * constant amount of header space and padding.  This is the quantity
1603 * that the net driver will program into the MAC as the maximum frame
1604 * length.
1605 *
1606 * The 10G MAC requires 8-byte alignment on the frame
1607 * length, so we round up to the nearest 8.
1608 *
1609 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1610 * XGMII cycle).  If the frame length reaches the maximum value in the
1611 * same cycle, the XMAC can miss the IPG altogether.  We work around
1612 * this by adding a further 16 bytes.
1613 */
1614#define EFX_FRAME_PAD	16
1615#define EFX_MAX_FRAME_LEN(mtu) \
1616	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1617
1618static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1619{
1620	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1621}
1622static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1623{
1624	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1625}
1626
1627/* Get the max fill level of the TX queues on this channel */
1628static inline unsigned int
1629efx_channel_tx_fill_level(struct efx_channel *channel)
1630{
1631	struct efx_tx_queue *tx_queue;
1632	unsigned int fill_level = 0;
1633
1634	efx_for_each_channel_tx_queue(tx_queue, channel)
1635		fill_level = max(fill_level,
1636				 tx_queue->insert_count - tx_queue->read_count);
1637
1638	return fill_level;
1639}
1640
1641/* Conservative approximation of efx_channel_tx_fill_level using cached value */
1642static inline unsigned int
1643efx_channel_tx_old_fill_level(struct efx_channel *channel)
1644{
1645	struct efx_tx_queue *tx_queue;
1646	unsigned int fill_level = 0;
1647
1648	efx_for_each_channel_tx_queue(tx_queue, channel)
1649		fill_level = max(fill_level,
1650				 tx_queue->insert_count - tx_queue->old_read_count);
1651
1652	return fill_level;
1653}
1654
1655/* Get all supported features.
1656 * If a feature is not fixed, it is present in hw_features.
1657 * If a feature is fixed, it does not present in hw_features, but
1658 * always in features.
1659 */
1660static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1661{
1662	const struct net_device *net_dev = efx->net_dev;
1663
1664	return net_dev->features | net_dev->hw_features;
1665}
1666
1667/* Get the current TX queue insert index. */
1668static inline unsigned int
1669efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1670{
1671	return tx_queue->insert_count & tx_queue->ptr_mask;
1672}
1673
1674/* Get a TX buffer. */
1675static inline struct efx_tx_buffer *
1676__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1677{
1678	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1679}
1680
1681/* Get a TX buffer, checking it's not currently in use. */
1682static inline struct efx_tx_buffer *
1683efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1684{
1685	struct efx_tx_buffer *buffer =
1686		__efx_tx_queue_get_insert_buffer(tx_queue);
1687
1688	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1689	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1690	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1691
1692	return buffer;
1693}
1694
1695#endif /* EFX_NET_DRIVER_H */