Loading...
1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/ethtool.h>
21#include <linux/topology.h>
22#include <linux/gfp.h>
23#include <linux/aer.h>
24#include <linux/interrupt.h>
25#include "net_driver.h"
26#include "efx.h"
27#include "nic.h"
28#include "selftest.h"
29
30#include "workarounds.h"
31
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
41const char *const ef4_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
43 [LOOPBACK_DATA] = "DATAPATH",
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
69};
70
71const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
72const char *const ef4_reset_type_names[] = {
73 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
74 [RESET_TYPE_ALL] = "ALL",
75 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
76 [RESET_TYPE_WORLD] = "WORLD",
77 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
78 [RESET_TYPE_DATAPATH] = "DATAPATH",
79 [RESET_TYPE_DISABLE] = "DISABLE",
80 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
81 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
82 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
83 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
84 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
85};
86
87/* Reset workqueue. If any NIC has a hardware failure then a reset will be
88 * queued onto this work queue. This is not a per-nic work queue, because
89 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
90 */
91static struct workqueue_struct *reset_workqueue;
92
93/* How often and how many times to poll for a reset while waiting for a
94 * BIST that another function started to complete.
95 */
96#define BIST_WAIT_DELAY_MS 100
97#define BIST_WAIT_DELAY_COUNT 100
98
99/**************************************************************************
100 *
101 * Configurable values
102 *
103 *************************************************************************/
104
105/*
106 * Use separate channels for TX and RX events
107 *
108 * Set this to 1 to use separate channels for TX and RX. It allows us
109 * to control interrupt affinity separately for TX and RX.
110 *
111 * This is only used in MSI-X interrupt mode
112 */
113bool ef4_separate_tx_channels;
114module_param(ef4_separate_tx_channels, bool, 0444);
115MODULE_PARM_DESC(ef4_separate_tx_channels,
116 "Use separate channels for TX and RX");
117
118/* This is the weight assigned to each of the (per-channel) virtual
119 * NAPI devices.
120 */
121static int napi_weight = 64;
122
123/* This is the time (in jiffies) between invocations of the hardware
124 * monitor.
125 * On Falcon-based NICs, this will:
126 * - Check the on-board hardware monitor;
127 * - Poll the link state and reconfigure the hardware as necessary.
128 * On Siena-based NICs for power systems with EEH support, this will give EEH a
129 * chance to start.
130 */
131static unsigned int ef4_monitor_interval = 1 * HZ;
132
133/* Initial interrupt moderation settings. They can be modified after
134 * module load with ethtool.
135 *
136 * The default for RX should strike a balance between increasing the
137 * round-trip latency and reducing overhead.
138 */
139static unsigned int rx_irq_mod_usec = 60;
140
141/* Initial interrupt moderation settings. They can be modified after
142 * module load with ethtool.
143 *
144 * This default is chosen to ensure that a 10G link does not go idle
145 * while a TX queue is stopped after it has become full. A queue is
146 * restarted when it drops below half full. The time this takes (assuming
147 * worst case 3 descriptors per packet and 1024 descriptors) is
148 * 512 / 3 * 1.2 = 205 usec.
149 */
150static unsigned int tx_irq_mod_usec = 150;
151
152/* This is the first interrupt mode to try out of:
153 * 0 => MSI-X
154 * 1 => MSI
155 * 2 => legacy
156 */
157static unsigned int interrupt_mode;
158
159/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
160 * i.e. the number of CPUs among which we may distribute simultaneous
161 * interrupt handling.
162 *
163 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
164 * The default (0) means to assign an interrupt to each core.
165 */
166static unsigned int rss_cpus;
167module_param(rss_cpus, uint, 0444);
168MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
169
170static bool phy_flash_cfg;
171module_param(phy_flash_cfg, bool, 0644);
172MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
173
174static unsigned irq_adapt_low_thresh = 8000;
175module_param(irq_adapt_low_thresh, uint, 0644);
176MODULE_PARM_DESC(irq_adapt_low_thresh,
177 "Threshold score for reducing IRQ moderation");
178
179static unsigned irq_adapt_high_thresh = 16000;
180module_param(irq_adapt_high_thresh, uint, 0644);
181MODULE_PARM_DESC(irq_adapt_high_thresh,
182 "Threshold score for increasing IRQ moderation");
183
184static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
185 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
186 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
187 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
188module_param(debug, uint, 0);
189MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
190
191/**************************************************************************
192 *
193 * Utility functions and prototypes
194 *
195 *************************************************************************/
196
197static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
198static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
199static void ef4_remove_channel(struct ef4_channel *channel);
200static void ef4_remove_channels(struct ef4_nic *efx);
201static const struct ef4_channel_type ef4_default_channel_type;
202static void ef4_remove_port(struct ef4_nic *efx);
203static void ef4_init_napi_channel(struct ef4_channel *channel);
204static void ef4_fini_napi(struct ef4_nic *efx);
205static void ef4_fini_napi_channel(struct ef4_channel *channel);
206static void ef4_fini_struct(struct ef4_nic *efx);
207static void ef4_start_all(struct ef4_nic *efx);
208static void ef4_stop_all(struct ef4_nic *efx);
209
210#define EF4_ASSERT_RESET_SERIALISED(efx) \
211 do { \
212 if ((efx->state == STATE_READY) || \
213 (efx->state == STATE_RECOVERY) || \
214 (efx->state == STATE_DISABLED)) \
215 ASSERT_RTNL(); \
216 } while (0)
217
218static int ef4_check_disabled(struct ef4_nic *efx)
219{
220 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
221 netif_err(efx, drv, efx->net_dev,
222 "device is disabled due to earlier errors\n");
223 return -EIO;
224 }
225 return 0;
226}
227
228/**************************************************************************
229 *
230 * Event queue processing
231 *
232 *************************************************************************/
233
234/* Process channel's event queue
235 *
236 * This function is responsible for processing the event queue of a
237 * single channel. The caller must guarantee that this function will
238 * never be concurrently called more than once on the same channel,
239 * though different channels may be being processed concurrently.
240 */
241static int ef4_process_channel(struct ef4_channel *channel, int budget)
242{
243 struct ef4_tx_queue *tx_queue;
244 int spent;
245
246 if (unlikely(!channel->enabled))
247 return 0;
248
249 ef4_for_each_channel_tx_queue(tx_queue, channel) {
250 tx_queue->pkts_compl = 0;
251 tx_queue->bytes_compl = 0;
252 }
253
254 spent = ef4_nic_process_eventq(channel, budget);
255 if (spent && ef4_channel_has_rx_queue(channel)) {
256 struct ef4_rx_queue *rx_queue =
257 ef4_channel_get_rx_queue(channel);
258
259 ef4_rx_flush_packet(channel);
260 ef4_fast_push_rx_descriptors(rx_queue, true);
261 }
262
263 /* Update BQL */
264 ef4_for_each_channel_tx_queue(tx_queue, channel) {
265 if (tx_queue->bytes_compl) {
266 netdev_tx_completed_queue(tx_queue->core_txq,
267 tx_queue->pkts_compl, tx_queue->bytes_compl);
268 }
269 }
270
271 return spent;
272}
273
274/* NAPI poll handler
275 *
276 * NAPI guarantees serialisation of polls of the same device, which
277 * provides the guarantee required by ef4_process_channel().
278 */
279static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
280{
281 int step = efx->irq_mod_step_us;
282
283 if (channel->irq_mod_score < irq_adapt_low_thresh) {
284 if (channel->irq_moderation_us > step) {
285 channel->irq_moderation_us -= step;
286 efx->type->push_irq_moderation(channel);
287 }
288 } else if (channel->irq_mod_score > irq_adapt_high_thresh) {
289 if (channel->irq_moderation_us <
290 efx->irq_rx_moderation_us) {
291 channel->irq_moderation_us += step;
292 efx->type->push_irq_moderation(channel);
293 }
294 }
295
296 channel->irq_count = 0;
297 channel->irq_mod_score = 0;
298}
299
300static int ef4_poll(struct napi_struct *napi, int budget)
301{
302 struct ef4_channel *channel =
303 container_of(napi, struct ef4_channel, napi_str);
304 struct ef4_nic *efx = channel->efx;
305 int spent;
306
307 netif_vdbg(efx, intr, efx->net_dev,
308 "channel %d NAPI poll executing on CPU %d\n",
309 channel->channel, raw_smp_processor_id());
310
311 spent = ef4_process_channel(channel, budget);
312
313 if (spent < budget) {
314 if (ef4_channel_has_rx_queue(channel) &&
315 efx->irq_rx_adaptive &&
316 unlikely(++channel->irq_count == 1000)) {
317 ef4_update_irq_mod(efx, channel);
318 }
319
320 ef4_filter_rfs_expire(channel);
321
322 /* There is no race here; although napi_disable() will
323 * only wait for napi_complete(), this isn't a problem
324 * since ef4_nic_eventq_read_ack() will have no effect if
325 * interrupts have already been disabled.
326 */
327 napi_complete_done(napi, spent);
328 ef4_nic_eventq_read_ack(channel);
329 }
330
331 return spent;
332}
333
334/* Create event queue
335 * Event queue memory allocations are done only once. If the channel
336 * is reset, the memory buffer will be reused; this guards against
337 * errors during channel reset and also simplifies interrupt handling.
338 */
339static int ef4_probe_eventq(struct ef4_channel *channel)
340{
341 struct ef4_nic *efx = channel->efx;
342 unsigned long entries;
343
344 netif_dbg(efx, probe, efx->net_dev,
345 "chan %d create event queue\n", channel->channel);
346
347 /* Build an event queue with room for one event per tx and rx buffer,
348 * plus some extra for link state events and MCDI completions. */
349 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
350 EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
351 channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
352
353 return ef4_nic_probe_eventq(channel);
354}
355
356/* Prepare channel's event queue */
357static int ef4_init_eventq(struct ef4_channel *channel)
358{
359 struct ef4_nic *efx = channel->efx;
360 int rc;
361
362 EF4_WARN_ON_PARANOID(channel->eventq_init);
363
364 netif_dbg(efx, drv, efx->net_dev,
365 "chan %d init event queue\n", channel->channel);
366
367 rc = ef4_nic_init_eventq(channel);
368 if (rc == 0) {
369 efx->type->push_irq_moderation(channel);
370 channel->eventq_read_ptr = 0;
371 channel->eventq_init = true;
372 }
373 return rc;
374}
375
376/* Enable event queue processing and NAPI */
377void ef4_start_eventq(struct ef4_channel *channel)
378{
379 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
380 "chan %d start event queue\n", channel->channel);
381
382 /* Make sure the NAPI handler sees the enabled flag set */
383 channel->enabled = true;
384 smp_wmb();
385
386 napi_enable(&channel->napi_str);
387 ef4_nic_eventq_read_ack(channel);
388}
389
390/* Disable event queue processing and NAPI */
391void ef4_stop_eventq(struct ef4_channel *channel)
392{
393 if (!channel->enabled)
394 return;
395
396 napi_disable(&channel->napi_str);
397 channel->enabled = false;
398}
399
400static void ef4_fini_eventq(struct ef4_channel *channel)
401{
402 if (!channel->eventq_init)
403 return;
404
405 netif_dbg(channel->efx, drv, channel->efx->net_dev,
406 "chan %d fini event queue\n", channel->channel);
407
408 ef4_nic_fini_eventq(channel);
409 channel->eventq_init = false;
410}
411
412static void ef4_remove_eventq(struct ef4_channel *channel)
413{
414 netif_dbg(channel->efx, drv, channel->efx->net_dev,
415 "chan %d remove event queue\n", channel->channel);
416
417 ef4_nic_remove_eventq(channel);
418}
419
420/**************************************************************************
421 *
422 * Channel handling
423 *
424 *************************************************************************/
425
426/* Allocate and initialise a channel structure. */
427static struct ef4_channel *
428ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
429{
430 struct ef4_channel *channel;
431 struct ef4_rx_queue *rx_queue;
432 struct ef4_tx_queue *tx_queue;
433 int j;
434
435 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
436 if (!channel)
437 return NULL;
438
439 channel->efx = efx;
440 channel->channel = i;
441 channel->type = &ef4_default_channel_type;
442
443 for (j = 0; j < EF4_TXQ_TYPES; j++) {
444 tx_queue = &channel->tx_queue[j];
445 tx_queue->efx = efx;
446 tx_queue->queue = i * EF4_TXQ_TYPES + j;
447 tx_queue->channel = channel;
448 }
449
450 rx_queue = &channel->rx_queue;
451 rx_queue->efx = efx;
452 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
453
454 return channel;
455}
456
457/* Allocate and initialise a channel structure, copying parameters
458 * (but not resources) from an old channel structure.
459 */
460static struct ef4_channel *
461ef4_copy_channel(const struct ef4_channel *old_channel)
462{
463 struct ef4_channel *channel;
464 struct ef4_rx_queue *rx_queue;
465 struct ef4_tx_queue *tx_queue;
466 int j;
467
468 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
469 if (!channel)
470 return NULL;
471
472 *channel = *old_channel;
473
474 channel->napi_dev = NULL;
475 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
476 channel->napi_str.napi_id = 0;
477 channel->napi_str.state = 0;
478 memset(&channel->eventq, 0, sizeof(channel->eventq));
479
480 for (j = 0; j < EF4_TXQ_TYPES; j++) {
481 tx_queue = &channel->tx_queue[j];
482 if (tx_queue->channel)
483 tx_queue->channel = channel;
484 tx_queue->buffer = NULL;
485 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
486 }
487
488 rx_queue = &channel->rx_queue;
489 rx_queue->buffer = NULL;
490 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
491 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
492
493 return channel;
494}
495
496static int ef4_probe_channel(struct ef4_channel *channel)
497{
498 struct ef4_tx_queue *tx_queue;
499 struct ef4_rx_queue *rx_queue;
500 int rc;
501
502 netif_dbg(channel->efx, probe, channel->efx->net_dev,
503 "creating channel %d\n", channel->channel);
504
505 rc = channel->type->pre_probe(channel);
506 if (rc)
507 goto fail;
508
509 rc = ef4_probe_eventq(channel);
510 if (rc)
511 goto fail;
512
513 ef4_for_each_channel_tx_queue(tx_queue, channel) {
514 rc = ef4_probe_tx_queue(tx_queue);
515 if (rc)
516 goto fail;
517 }
518
519 ef4_for_each_channel_rx_queue(rx_queue, channel) {
520 rc = ef4_probe_rx_queue(rx_queue);
521 if (rc)
522 goto fail;
523 }
524
525 return 0;
526
527fail:
528 ef4_remove_channel(channel);
529 return rc;
530}
531
532static void
533ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
534{
535 struct ef4_nic *efx = channel->efx;
536 const char *type;
537 int number;
538
539 number = channel->channel;
540 if (efx->tx_channel_offset == 0) {
541 type = "";
542 } else if (channel->channel < efx->tx_channel_offset) {
543 type = "-rx";
544 } else {
545 type = "-tx";
546 number -= efx->tx_channel_offset;
547 }
548 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
549}
550
551static void ef4_set_channel_names(struct ef4_nic *efx)
552{
553 struct ef4_channel *channel;
554
555 ef4_for_each_channel(channel, efx)
556 channel->type->get_name(channel,
557 efx->msi_context[channel->channel].name,
558 sizeof(efx->msi_context[0].name));
559}
560
561static int ef4_probe_channels(struct ef4_nic *efx)
562{
563 struct ef4_channel *channel;
564 int rc;
565
566 /* Restart special buffer allocation */
567 efx->next_buffer_table = 0;
568
569 /* Probe channels in reverse, so that any 'extra' channels
570 * use the start of the buffer table. This allows the traffic
571 * channels to be resized without moving them or wasting the
572 * entries before them.
573 */
574 ef4_for_each_channel_rev(channel, efx) {
575 rc = ef4_probe_channel(channel);
576 if (rc) {
577 netif_err(efx, probe, efx->net_dev,
578 "failed to create channel %d\n",
579 channel->channel);
580 goto fail;
581 }
582 }
583 ef4_set_channel_names(efx);
584
585 return 0;
586
587fail:
588 ef4_remove_channels(efx);
589 return rc;
590}
591
592/* Channels are shutdown and reinitialised whilst the NIC is running
593 * to propagate configuration changes (mtu, checksum offload), or
594 * to clear hardware error conditions
595 */
596static void ef4_start_datapath(struct ef4_nic *efx)
597{
598 netdev_features_t old_features = efx->net_dev->features;
599 bool old_rx_scatter = efx->rx_scatter;
600 struct ef4_tx_queue *tx_queue;
601 struct ef4_rx_queue *rx_queue;
602 struct ef4_channel *channel;
603 size_t rx_buf_len;
604
605 /* Calculate the rx buffer allocation parameters required to
606 * support the current MTU, including padding for header
607 * alignment and overruns.
608 */
609 efx->rx_dma_len = (efx->rx_prefix_size +
610 EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
611 efx->type->rx_buffer_padding);
612 rx_buf_len = (sizeof(struct ef4_rx_page_state) +
613 efx->rx_ip_align + efx->rx_dma_len);
614 if (rx_buf_len <= PAGE_SIZE) {
615 efx->rx_scatter = efx->type->always_rx_scatter;
616 efx->rx_buffer_order = 0;
617 } else if (efx->type->can_rx_scatter) {
618 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
619 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
620 2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
621 EF4_RX_BUF_ALIGNMENT) >
622 PAGE_SIZE);
623 efx->rx_scatter = true;
624 efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
625 efx->rx_buffer_order = 0;
626 } else {
627 efx->rx_scatter = false;
628 efx->rx_buffer_order = get_order(rx_buf_len);
629 }
630
631 ef4_rx_config_page_split(efx);
632 if (efx->rx_buffer_order)
633 netif_dbg(efx, drv, efx->net_dev,
634 "RX buf len=%u; page order=%u batch=%u\n",
635 efx->rx_dma_len, efx->rx_buffer_order,
636 efx->rx_pages_per_batch);
637 else
638 netif_dbg(efx, drv, efx->net_dev,
639 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
640 efx->rx_dma_len, efx->rx_page_buf_step,
641 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
642
643 /* Restore previously fixed features in hw_features and remove
644 * features which are fixed now
645 */
646 efx->net_dev->hw_features |= efx->net_dev->features;
647 efx->net_dev->hw_features &= ~efx->fixed_features;
648 efx->net_dev->features |= efx->fixed_features;
649 if (efx->net_dev->features != old_features)
650 netdev_features_change(efx->net_dev);
651
652 /* RX filters may also have scatter-enabled flags */
653 if (efx->rx_scatter != old_rx_scatter)
654 efx->type->filter_update_rx_scatter(efx);
655
656 /* We must keep at least one descriptor in a TX ring empty.
657 * We could avoid this when the queue size does not exactly
658 * match the hardware ring size, but it's not that important.
659 * Therefore we stop the queue when one more skb might fill
660 * the ring completely. We wake it when half way back to
661 * empty.
662 */
663 efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
664 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
665
666 /* Initialise the channels */
667 ef4_for_each_channel(channel, efx) {
668 ef4_for_each_channel_tx_queue(tx_queue, channel) {
669 ef4_init_tx_queue(tx_queue);
670 atomic_inc(&efx->active_queues);
671 }
672
673 ef4_for_each_channel_rx_queue(rx_queue, channel) {
674 ef4_init_rx_queue(rx_queue);
675 atomic_inc(&efx->active_queues);
676 ef4_stop_eventq(channel);
677 ef4_fast_push_rx_descriptors(rx_queue, false);
678 ef4_start_eventq(channel);
679 }
680
681 WARN_ON(channel->rx_pkt_n_frags);
682 }
683
684 if (netif_device_present(efx->net_dev))
685 netif_tx_wake_all_queues(efx->net_dev);
686}
687
688static void ef4_stop_datapath(struct ef4_nic *efx)
689{
690 struct ef4_channel *channel;
691 struct ef4_tx_queue *tx_queue;
692 struct ef4_rx_queue *rx_queue;
693 int rc;
694
695 EF4_ASSERT_RESET_SERIALISED(efx);
696 BUG_ON(efx->port_enabled);
697
698 /* Stop RX refill */
699 ef4_for_each_channel(channel, efx) {
700 ef4_for_each_channel_rx_queue(rx_queue, channel)
701 rx_queue->refill_enabled = false;
702 }
703
704 ef4_for_each_channel(channel, efx) {
705 /* RX packet processing is pipelined, so wait for the
706 * NAPI handler to complete. At least event queue 0
707 * might be kept active by non-data events, so don't
708 * use napi_synchronize() but actually disable NAPI
709 * temporarily.
710 */
711 if (ef4_channel_has_rx_queue(channel)) {
712 ef4_stop_eventq(channel);
713 ef4_start_eventq(channel);
714 }
715 }
716
717 rc = efx->type->fini_dmaq(efx);
718 if (rc && EF4_WORKAROUND_7803(efx)) {
719 /* Schedule a reset to recover from the flush failure. The
720 * descriptor caches reference memory we're about to free,
721 * but falcon_reconfigure_mac_wrapper() won't reconnect
722 * the MACs because of the pending reset.
723 */
724 netif_err(efx, drv, efx->net_dev,
725 "Resetting to recover from flush failure\n");
726 ef4_schedule_reset(efx, RESET_TYPE_ALL);
727 } else if (rc) {
728 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
729 } else {
730 netif_dbg(efx, drv, efx->net_dev,
731 "successfully flushed all queues\n");
732 }
733
734 ef4_for_each_channel(channel, efx) {
735 ef4_for_each_channel_rx_queue(rx_queue, channel)
736 ef4_fini_rx_queue(rx_queue);
737 ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
738 ef4_fini_tx_queue(tx_queue);
739 }
740}
741
742static void ef4_remove_channel(struct ef4_channel *channel)
743{
744 struct ef4_tx_queue *tx_queue;
745 struct ef4_rx_queue *rx_queue;
746
747 netif_dbg(channel->efx, drv, channel->efx->net_dev,
748 "destroy chan %d\n", channel->channel);
749
750 ef4_for_each_channel_rx_queue(rx_queue, channel)
751 ef4_remove_rx_queue(rx_queue);
752 ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
753 ef4_remove_tx_queue(tx_queue);
754 ef4_remove_eventq(channel);
755 channel->type->post_remove(channel);
756}
757
758static void ef4_remove_channels(struct ef4_nic *efx)
759{
760 struct ef4_channel *channel;
761
762 ef4_for_each_channel(channel, efx)
763 ef4_remove_channel(channel);
764}
765
766int
767ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
768{
769 struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
770 u32 old_rxq_entries, old_txq_entries;
771 unsigned i, next_buffer_table = 0;
772 int rc, rc2;
773
774 rc = ef4_check_disabled(efx);
775 if (rc)
776 return rc;
777
778 /* Not all channels should be reallocated. We must avoid
779 * reallocating their buffer table entries.
780 */
781 ef4_for_each_channel(channel, efx) {
782 struct ef4_rx_queue *rx_queue;
783 struct ef4_tx_queue *tx_queue;
784
785 if (channel->type->copy)
786 continue;
787 next_buffer_table = max(next_buffer_table,
788 channel->eventq.index +
789 channel->eventq.entries);
790 ef4_for_each_channel_rx_queue(rx_queue, channel)
791 next_buffer_table = max(next_buffer_table,
792 rx_queue->rxd.index +
793 rx_queue->rxd.entries);
794 ef4_for_each_channel_tx_queue(tx_queue, channel)
795 next_buffer_table = max(next_buffer_table,
796 tx_queue->txd.index +
797 tx_queue->txd.entries);
798 }
799
800 ef4_device_detach_sync(efx);
801 ef4_stop_all(efx);
802 ef4_soft_disable_interrupts(efx);
803
804 /* Clone channels (where possible) */
805 memset(other_channel, 0, sizeof(other_channel));
806 for (i = 0; i < efx->n_channels; i++) {
807 channel = efx->channel[i];
808 if (channel->type->copy)
809 channel = channel->type->copy(channel);
810 if (!channel) {
811 rc = -ENOMEM;
812 goto out;
813 }
814 other_channel[i] = channel;
815 }
816
817 /* Swap entry counts and channel pointers */
818 old_rxq_entries = efx->rxq_entries;
819 old_txq_entries = efx->txq_entries;
820 efx->rxq_entries = rxq_entries;
821 efx->txq_entries = txq_entries;
822 for (i = 0; i < efx->n_channels; i++) {
823 channel = efx->channel[i];
824 efx->channel[i] = other_channel[i];
825 other_channel[i] = channel;
826 }
827
828 /* Restart buffer table allocation */
829 efx->next_buffer_table = next_buffer_table;
830
831 for (i = 0; i < efx->n_channels; i++) {
832 channel = efx->channel[i];
833 if (!channel->type->copy)
834 continue;
835 rc = ef4_probe_channel(channel);
836 if (rc)
837 goto rollback;
838 ef4_init_napi_channel(efx->channel[i]);
839 }
840
841out:
842 /* Destroy unused channel structures */
843 for (i = 0; i < efx->n_channels; i++) {
844 channel = other_channel[i];
845 if (channel && channel->type->copy) {
846 ef4_fini_napi_channel(channel);
847 ef4_remove_channel(channel);
848 kfree(channel);
849 }
850 }
851
852 rc2 = ef4_soft_enable_interrupts(efx);
853 if (rc2) {
854 rc = rc ? rc : rc2;
855 netif_err(efx, drv, efx->net_dev,
856 "unable to restart interrupts on channel reallocation\n");
857 ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
858 } else {
859 ef4_start_all(efx);
860 netif_device_attach(efx->net_dev);
861 }
862 return rc;
863
864rollback:
865 /* Swap back */
866 efx->rxq_entries = old_rxq_entries;
867 efx->txq_entries = old_txq_entries;
868 for (i = 0; i < efx->n_channels; i++) {
869 channel = efx->channel[i];
870 efx->channel[i] = other_channel[i];
871 other_channel[i] = channel;
872 }
873 goto out;
874}
875
876void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
877{
878 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
879}
880
881static const struct ef4_channel_type ef4_default_channel_type = {
882 .pre_probe = ef4_channel_dummy_op_int,
883 .post_remove = ef4_channel_dummy_op_void,
884 .get_name = ef4_get_channel_name,
885 .copy = ef4_copy_channel,
886 .keep_eventq = false,
887};
888
889int ef4_channel_dummy_op_int(struct ef4_channel *channel)
890{
891 return 0;
892}
893
894void ef4_channel_dummy_op_void(struct ef4_channel *channel)
895{
896}
897
898/**************************************************************************
899 *
900 * Port handling
901 *
902 **************************************************************************/
903
904/* This ensures that the kernel is kept informed (via
905 * netif_carrier_on/off) of the link status, and also maintains the
906 * link status's stop on the port's TX queue.
907 */
908void ef4_link_status_changed(struct ef4_nic *efx)
909{
910 struct ef4_link_state *link_state = &efx->link_state;
911
912 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
913 * that no events are triggered between unregister_netdev() and the
914 * driver unloading. A more general condition is that NETDEV_CHANGE
915 * can only be generated between NETDEV_UP and NETDEV_DOWN */
916 if (!netif_running(efx->net_dev))
917 return;
918
919 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
920 efx->n_link_state_changes++;
921
922 if (link_state->up)
923 netif_carrier_on(efx->net_dev);
924 else
925 netif_carrier_off(efx->net_dev);
926 }
927
928 /* Status message for kernel log */
929 if (link_state->up)
930 netif_info(efx, link, efx->net_dev,
931 "link up at %uMbps %s-duplex (MTU %d)\n",
932 link_state->speed, link_state->fd ? "full" : "half",
933 efx->net_dev->mtu);
934 else
935 netif_info(efx, link, efx->net_dev, "link down\n");
936}
937
938void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
939{
940 efx->link_advertising = advertising;
941 if (advertising) {
942 if (advertising & ADVERTISED_Pause)
943 efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
944 else
945 efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
946 if (advertising & ADVERTISED_Asym_Pause)
947 efx->wanted_fc ^= EF4_FC_TX;
948 }
949}
950
951void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
952{
953 efx->wanted_fc = wanted_fc;
954 if (efx->link_advertising) {
955 if (wanted_fc & EF4_FC_RX)
956 efx->link_advertising |= (ADVERTISED_Pause |
957 ADVERTISED_Asym_Pause);
958 else
959 efx->link_advertising &= ~(ADVERTISED_Pause |
960 ADVERTISED_Asym_Pause);
961 if (wanted_fc & EF4_FC_TX)
962 efx->link_advertising ^= ADVERTISED_Asym_Pause;
963 }
964}
965
966static void ef4_fini_port(struct ef4_nic *efx);
967
968/* We assume that efx->type->reconfigure_mac will always try to sync RX
969 * filters and therefore needs to read-lock the filter table against freeing
970 */
971void ef4_mac_reconfigure(struct ef4_nic *efx)
972{
973 down_read(&efx->filter_sem);
974 efx->type->reconfigure_mac(efx);
975 up_read(&efx->filter_sem);
976}
977
978/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
979 * the MAC appropriately. All other PHY configuration changes are pushed
980 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
981 * through ef4_monitor().
982 *
983 * Callers must hold the mac_lock
984 */
985int __ef4_reconfigure_port(struct ef4_nic *efx)
986{
987 enum ef4_phy_mode phy_mode;
988 int rc;
989
990 WARN_ON(!mutex_is_locked(&efx->mac_lock));
991
992 /* Disable PHY transmit in mac level loopbacks */
993 phy_mode = efx->phy_mode;
994 if (LOOPBACK_INTERNAL(efx))
995 efx->phy_mode |= PHY_MODE_TX_DISABLED;
996 else
997 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
998
999 rc = efx->type->reconfigure_port(efx);
1000
1001 if (rc)
1002 efx->phy_mode = phy_mode;
1003
1004 return rc;
1005}
1006
1007/* Reinitialise the MAC to pick up new PHY settings, even if the port is
1008 * disabled. */
1009int ef4_reconfigure_port(struct ef4_nic *efx)
1010{
1011 int rc;
1012
1013 EF4_ASSERT_RESET_SERIALISED(efx);
1014
1015 mutex_lock(&efx->mac_lock);
1016 rc = __ef4_reconfigure_port(efx);
1017 mutex_unlock(&efx->mac_lock);
1018
1019 return rc;
1020}
1021
1022/* Asynchronous work item for changing MAC promiscuity and multicast
1023 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1024 * MAC directly. */
1025static void ef4_mac_work(struct work_struct *data)
1026{
1027 struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1028
1029 mutex_lock(&efx->mac_lock);
1030 if (efx->port_enabled)
1031 ef4_mac_reconfigure(efx);
1032 mutex_unlock(&efx->mac_lock);
1033}
1034
1035static int ef4_probe_port(struct ef4_nic *efx)
1036{
1037 int rc;
1038
1039 netif_dbg(efx, probe, efx->net_dev, "create port\n");
1040
1041 if (phy_flash_cfg)
1042 efx->phy_mode = PHY_MODE_SPECIAL;
1043
1044 /* Connect up MAC/PHY operations table */
1045 rc = efx->type->probe_port(efx);
1046 if (rc)
1047 return rc;
1048
1049 /* Initialise MAC address to permanent address */
1050 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1051
1052 return 0;
1053}
1054
1055static int ef4_init_port(struct ef4_nic *efx)
1056{
1057 int rc;
1058
1059 netif_dbg(efx, drv, efx->net_dev, "init port\n");
1060
1061 mutex_lock(&efx->mac_lock);
1062
1063 rc = efx->phy_op->init(efx);
1064 if (rc)
1065 goto fail1;
1066
1067 efx->port_initialized = true;
1068
1069 /* Reconfigure the MAC before creating dma queues (required for
1070 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1071 ef4_mac_reconfigure(efx);
1072
1073 /* Ensure the PHY advertises the correct flow control settings */
1074 rc = efx->phy_op->reconfigure(efx);
1075 if (rc && rc != -EPERM)
1076 goto fail2;
1077
1078 mutex_unlock(&efx->mac_lock);
1079 return 0;
1080
1081fail2:
1082 efx->phy_op->fini(efx);
1083fail1:
1084 mutex_unlock(&efx->mac_lock);
1085 return rc;
1086}
1087
1088static void ef4_start_port(struct ef4_nic *efx)
1089{
1090 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1091 BUG_ON(efx->port_enabled);
1092
1093 mutex_lock(&efx->mac_lock);
1094 efx->port_enabled = true;
1095
1096 /* Ensure MAC ingress/egress is enabled */
1097 ef4_mac_reconfigure(efx);
1098
1099 mutex_unlock(&efx->mac_lock);
1100}
1101
1102/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1103 * and the async self-test, wait for them to finish and prevent them
1104 * being scheduled again. This doesn't cover online resets, which
1105 * should only be cancelled when removing the device.
1106 */
1107static void ef4_stop_port(struct ef4_nic *efx)
1108{
1109 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1110
1111 EF4_ASSERT_RESET_SERIALISED(efx);
1112
1113 mutex_lock(&efx->mac_lock);
1114 efx->port_enabled = false;
1115 mutex_unlock(&efx->mac_lock);
1116
1117 /* Serialise against ef4_set_multicast_list() */
1118 netif_addr_lock_bh(efx->net_dev);
1119 netif_addr_unlock_bh(efx->net_dev);
1120
1121 cancel_delayed_work_sync(&efx->monitor_work);
1122 ef4_selftest_async_cancel(efx);
1123 cancel_work_sync(&efx->mac_work);
1124}
1125
1126static void ef4_fini_port(struct ef4_nic *efx)
1127{
1128 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1129
1130 if (!efx->port_initialized)
1131 return;
1132
1133 efx->phy_op->fini(efx);
1134 efx->port_initialized = false;
1135
1136 efx->link_state.up = false;
1137 ef4_link_status_changed(efx);
1138}
1139
1140static void ef4_remove_port(struct ef4_nic *efx)
1141{
1142 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1143
1144 efx->type->remove_port(efx);
1145}
1146
1147/**************************************************************************
1148 *
1149 * NIC handling
1150 *
1151 **************************************************************************/
1152
1153static LIST_HEAD(ef4_primary_list);
1154static LIST_HEAD(ef4_unassociated_list);
1155
1156static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1157{
1158 return left->type == right->type &&
1159 left->vpd_sn && right->vpd_sn &&
1160 !strcmp(left->vpd_sn, right->vpd_sn);
1161}
1162
1163static void ef4_associate(struct ef4_nic *efx)
1164{
1165 struct ef4_nic *other, *next;
1166
1167 if (efx->primary == efx) {
1168 /* Adding primary function; look for secondaries */
1169
1170 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1171 list_add_tail(&efx->node, &ef4_primary_list);
1172
1173 list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1174 node) {
1175 if (ef4_same_controller(efx, other)) {
1176 list_del(&other->node);
1177 netif_dbg(other, probe, other->net_dev,
1178 "moving to secondary list of %s %s\n",
1179 pci_name(efx->pci_dev),
1180 efx->net_dev->name);
1181 list_add_tail(&other->node,
1182 &efx->secondary_list);
1183 other->primary = efx;
1184 }
1185 }
1186 } else {
1187 /* Adding secondary function; look for primary */
1188
1189 list_for_each_entry(other, &ef4_primary_list, node) {
1190 if (ef4_same_controller(efx, other)) {
1191 netif_dbg(efx, probe, efx->net_dev,
1192 "adding to secondary list of %s %s\n",
1193 pci_name(other->pci_dev),
1194 other->net_dev->name);
1195 list_add_tail(&efx->node,
1196 &other->secondary_list);
1197 efx->primary = other;
1198 return;
1199 }
1200 }
1201
1202 netif_dbg(efx, probe, efx->net_dev,
1203 "adding to unassociated list\n");
1204 list_add_tail(&efx->node, &ef4_unassociated_list);
1205 }
1206}
1207
1208static void ef4_dissociate(struct ef4_nic *efx)
1209{
1210 struct ef4_nic *other, *next;
1211
1212 list_del(&efx->node);
1213 efx->primary = NULL;
1214
1215 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1216 list_del(&other->node);
1217 netif_dbg(other, probe, other->net_dev,
1218 "moving to unassociated list\n");
1219 list_add_tail(&other->node, &ef4_unassociated_list);
1220 other->primary = NULL;
1221 }
1222}
1223
1224/* This configures the PCI device to enable I/O and DMA. */
1225static int ef4_init_io(struct ef4_nic *efx)
1226{
1227 struct pci_dev *pci_dev = efx->pci_dev;
1228 dma_addr_t dma_mask = efx->type->max_dma_mask;
1229 unsigned int mem_map_size = efx->type->mem_map_size(efx);
1230 int rc, bar;
1231
1232 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1233
1234 bar = efx->type->mem_bar;
1235
1236 rc = pci_enable_device(pci_dev);
1237 if (rc) {
1238 netif_err(efx, probe, efx->net_dev,
1239 "failed to enable PCI device\n");
1240 goto fail1;
1241 }
1242
1243 pci_set_master(pci_dev);
1244
1245 /* Set the PCI DMA mask. Try all possibilities from our
1246 * genuine mask down to 32 bits, because some architectures
1247 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1248 * masks event though they reject 46 bit masks.
1249 */
1250 while (dma_mask > 0x7fffffffUL) {
1251 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1252 if (rc == 0)
1253 break;
1254 dma_mask >>= 1;
1255 }
1256 if (rc) {
1257 netif_err(efx, probe, efx->net_dev,
1258 "could not find a suitable DMA mask\n");
1259 goto fail2;
1260 }
1261 netif_dbg(efx, probe, efx->net_dev,
1262 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1263
1264 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1265 rc = pci_request_region(pci_dev, bar, "sfc");
1266 if (rc) {
1267 netif_err(efx, probe, efx->net_dev,
1268 "request for memory BAR failed\n");
1269 rc = -EIO;
1270 goto fail3;
1271 }
1272 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1273 if (!efx->membase) {
1274 netif_err(efx, probe, efx->net_dev,
1275 "could not map memory BAR at %llx+%x\n",
1276 (unsigned long long)efx->membase_phys, mem_map_size);
1277 rc = -ENOMEM;
1278 goto fail4;
1279 }
1280 netif_dbg(efx, probe, efx->net_dev,
1281 "memory BAR at %llx+%x (virtual %p)\n",
1282 (unsigned long long)efx->membase_phys, mem_map_size,
1283 efx->membase);
1284
1285 return 0;
1286
1287 fail4:
1288 pci_release_region(efx->pci_dev, bar);
1289 fail3:
1290 efx->membase_phys = 0;
1291 fail2:
1292 pci_disable_device(efx->pci_dev);
1293 fail1:
1294 return rc;
1295}
1296
1297static void ef4_fini_io(struct ef4_nic *efx)
1298{
1299 int bar;
1300
1301 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1302
1303 if (efx->membase) {
1304 iounmap(efx->membase);
1305 efx->membase = NULL;
1306 }
1307
1308 if (efx->membase_phys) {
1309 bar = efx->type->mem_bar;
1310 pci_release_region(efx->pci_dev, bar);
1311 efx->membase_phys = 0;
1312 }
1313
1314 /* Don't disable bus-mastering if VFs are assigned */
1315 if (!pci_vfs_assigned(efx->pci_dev))
1316 pci_disable_device(efx->pci_dev);
1317}
1318
1319void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1320{
1321 size_t i;
1322
1323 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1324 efx->rx_indir_table[i] =
1325 ethtool_rxfh_indir_default(i, efx->rss_spread);
1326}
1327
1328static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1329{
1330 cpumask_var_t thread_mask;
1331 unsigned int count;
1332 int cpu;
1333
1334 if (rss_cpus) {
1335 count = rss_cpus;
1336 } else {
1337 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1338 netif_warn(efx, probe, efx->net_dev,
1339 "RSS disabled due to allocation failure\n");
1340 return 1;
1341 }
1342
1343 count = 0;
1344 for_each_online_cpu(cpu) {
1345 if (!cpumask_test_cpu(cpu, thread_mask)) {
1346 ++count;
1347 cpumask_or(thread_mask, thread_mask,
1348 topology_sibling_cpumask(cpu));
1349 }
1350 }
1351
1352 free_cpumask_var(thread_mask);
1353 }
1354
1355 if (count > EF4_MAX_RX_QUEUES) {
1356 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1357 "Reducing number of rx queues from %u to %u.\n",
1358 count, EF4_MAX_RX_QUEUES);
1359 count = EF4_MAX_RX_QUEUES;
1360 }
1361
1362 return count;
1363}
1364
1365/* Probe the number and type of interrupts we are able to obtain, and
1366 * the resulting numbers of channels and RX queues.
1367 */
1368static int ef4_probe_interrupts(struct ef4_nic *efx)
1369{
1370 unsigned int extra_channels = 0;
1371 unsigned int i, j;
1372 int rc;
1373
1374 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1375 if (efx->extra_channel_type[i])
1376 ++extra_channels;
1377
1378 if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1379 struct msix_entry xentries[EF4_MAX_CHANNELS];
1380 unsigned int n_channels;
1381
1382 n_channels = ef4_wanted_parallelism(efx);
1383 if (ef4_separate_tx_channels)
1384 n_channels *= 2;
1385 n_channels += extra_channels;
1386 n_channels = min(n_channels, efx->max_channels);
1387
1388 for (i = 0; i < n_channels; i++)
1389 xentries[i].entry = i;
1390 rc = pci_enable_msix_range(efx->pci_dev,
1391 xentries, 1, n_channels);
1392 if (rc < 0) {
1393 /* Fall back to single channel MSI */
1394 efx->interrupt_mode = EF4_INT_MODE_MSI;
1395 netif_err(efx, drv, efx->net_dev,
1396 "could not enable MSI-X\n");
1397 } else if (rc < n_channels) {
1398 netif_err(efx, drv, efx->net_dev,
1399 "WARNING: Insufficient MSI-X vectors"
1400 " available (%d < %u).\n", rc, n_channels);
1401 netif_err(efx, drv, efx->net_dev,
1402 "WARNING: Performance may be reduced.\n");
1403 n_channels = rc;
1404 }
1405
1406 if (rc > 0) {
1407 efx->n_channels = n_channels;
1408 if (n_channels > extra_channels)
1409 n_channels -= extra_channels;
1410 if (ef4_separate_tx_channels) {
1411 efx->n_tx_channels = min(max(n_channels / 2,
1412 1U),
1413 efx->max_tx_channels);
1414 efx->n_rx_channels = max(n_channels -
1415 efx->n_tx_channels,
1416 1U);
1417 } else {
1418 efx->n_tx_channels = min(n_channels,
1419 efx->max_tx_channels);
1420 efx->n_rx_channels = n_channels;
1421 }
1422 for (i = 0; i < efx->n_channels; i++)
1423 ef4_get_channel(efx, i)->irq =
1424 xentries[i].vector;
1425 }
1426 }
1427
1428 /* Try single interrupt MSI */
1429 if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1430 efx->n_channels = 1;
1431 efx->n_rx_channels = 1;
1432 efx->n_tx_channels = 1;
1433 rc = pci_enable_msi(efx->pci_dev);
1434 if (rc == 0) {
1435 ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1436 } else {
1437 netif_err(efx, drv, efx->net_dev,
1438 "could not enable MSI\n");
1439 efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1440 }
1441 }
1442
1443 /* Assume legacy interrupts */
1444 if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1445 efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1446 efx->n_rx_channels = 1;
1447 efx->n_tx_channels = 1;
1448 efx->legacy_irq = efx->pci_dev->irq;
1449 }
1450
1451 /* Assign extra channels if possible */
1452 j = efx->n_channels;
1453 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1454 if (!efx->extra_channel_type[i])
1455 continue;
1456 if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1457 efx->n_channels <= extra_channels) {
1458 efx->extra_channel_type[i]->handle_no_channel(efx);
1459 } else {
1460 --j;
1461 ef4_get_channel(efx, j)->type =
1462 efx->extra_channel_type[i];
1463 }
1464 }
1465
1466 efx->rss_spread = efx->n_rx_channels;
1467
1468 return 0;
1469}
1470
1471static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1472{
1473 struct ef4_channel *channel, *end_channel;
1474 int rc;
1475
1476 BUG_ON(efx->state == STATE_DISABLED);
1477
1478 efx->irq_soft_enabled = true;
1479 smp_wmb();
1480
1481 ef4_for_each_channel(channel, efx) {
1482 if (!channel->type->keep_eventq) {
1483 rc = ef4_init_eventq(channel);
1484 if (rc)
1485 goto fail;
1486 }
1487 ef4_start_eventq(channel);
1488 }
1489
1490 return 0;
1491fail:
1492 end_channel = channel;
1493 ef4_for_each_channel(channel, efx) {
1494 if (channel == end_channel)
1495 break;
1496 ef4_stop_eventq(channel);
1497 if (!channel->type->keep_eventq)
1498 ef4_fini_eventq(channel);
1499 }
1500
1501 return rc;
1502}
1503
1504static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1505{
1506 struct ef4_channel *channel;
1507
1508 if (efx->state == STATE_DISABLED)
1509 return;
1510
1511 efx->irq_soft_enabled = false;
1512 smp_wmb();
1513
1514 if (efx->legacy_irq)
1515 synchronize_irq(efx->legacy_irq);
1516
1517 ef4_for_each_channel(channel, efx) {
1518 if (channel->irq)
1519 synchronize_irq(channel->irq);
1520
1521 ef4_stop_eventq(channel);
1522 if (!channel->type->keep_eventq)
1523 ef4_fini_eventq(channel);
1524 }
1525}
1526
1527static int ef4_enable_interrupts(struct ef4_nic *efx)
1528{
1529 struct ef4_channel *channel, *end_channel;
1530 int rc;
1531
1532 BUG_ON(efx->state == STATE_DISABLED);
1533
1534 if (efx->eeh_disabled_legacy_irq) {
1535 enable_irq(efx->legacy_irq);
1536 efx->eeh_disabled_legacy_irq = false;
1537 }
1538
1539 efx->type->irq_enable_master(efx);
1540
1541 ef4_for_each_channel(channel, efx) {
1542 if (channel->type->keep_eventq) {
1543 rc = ef4_init_eventq(channel);
1544 if (rc)
1545 goto fail;
1546 }
1547 }
1548
1549 rc = ef4_soft_enable_interrupts(efx);
1550 if (rc)
1551 goto fail;
1552
1553 return 0;
1554
1555fail:
1556 end_channel = channel;
1557 ef4_for_each_channel(channel, efx) {
1558 if (channel == end_channel)
1559 break;
1560 if (channel->type->keep_eventq)
1561 ef4_fini_eventq(channel);
1562 }
1563
1564 efx->type->irq_disable_non_ev(efx);
1565
1566 return rc;
1567}
1568
1569static void ef4_disable_interrupts(struct ef4_nic *efx)
1570{
1571 struct ef4_channel *channel;
1572
1573 ef4_soft_disable_interrupts(efx);
1574
1575 ef4_for_each_channel(channel, efx) {
1576 if (channel->type->keep_eventq)
1577 ef4_fini_eventq(channel);
1578 }
1579
1580 efx->type->irq_disable_non_ev(efx);
1581}
1582
1583static void ef4_remove_interrupts(struct ef4_nic *efx)
1584{
1585 struct ef4_channel *channel;
1586
1587 /* Remove MSI/MSI-X interrupts */
1588 ef4_for_each_channel(channel, efx)
1589 channel->irq = 0;
1590 pci_disable_msi(efx->pci_dev);
1591 pci_disable_msix(efx->pci_dev);
1592
1593 /* Remove legacy interrupt */
1594 efx->legacy_irq = 0;
1595}
1596
1597static void ef4_set_channels(struct ef4_nic *efx)
1598{
1599 struct ef4_channel *channel;
1600 struct ef4_tx_queue *tx_queue;
1601
1602 efx->tx_channel_offset =
1603 ef4_separate_tx_channels ?
1604 efx->n_channels - efx->n_tx_channels : 0;
1605
1606 /* We need to mark which channels really have RX and TX
1607 * queues, and adjust the TX queue numbers if we have separate
1608 * RX-only and TX-only channels.
1609 */
1610 ef4_for_each_channel(channel, efx) {
1611 if (channel->channel < efx->n_rx_channels)
1612 channel->rx_queue.core_index = channel->channel;
1613 else
1614 channel->rx_queue.core_index = -1;
1615
1616 ef4_for_each_channel_tx_queue(tx_queue, channel)
1617 tx_queue->queue -= (efx->tx_channel_offset *
1618 EF4_TXQ_TYPES);
1619 }
1620}
1621
1622static int ef4_probe_nic(struct ef4_nic *efx)
1623{
1624 int rc;
1625
1626 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1627
1628 /* Carry out hardware-type specific initialisation */
1629 rc = efx->type->probe(efx);
1630 if (rc)
1631 return rc;
1632
1633 do {
1634 if (!efx->max_channels || !efx->max_tx_channels) {
1635 netif_err(efx, drv, efx->net_dev,
1636 "Insufficient resources to allocate"
1637 " any channels\n");
1638 rc = -ENOSPC;
1639 goto fail1;
1640 }
1641
1642 /* Determine the number of channels and queues by trying
1643 * to hook in MSI-X interrupts.
1644 */
1645 rc = ef4_probe_interrupts(efx);
1646 if (rc)
1647 goto fail1;
1648
1649 ef4_set_channels(efx);
1650
1651 /* dimension_resources can fail with EAGAIN */
1652 rc = efx->type->dimension_resources(efx);
1653 if (rc != 0 && rc != -EAGAIN)
1654 goto fail2;
1655
1656 if (rc == -EAGAIN)
1657 /* try again with new max_channels */
1658 ef4_remove_interrupts(efx);
1659
1660 } while (rc == -EAGAIN);
1661
1662 if (efx->n_channels > 1)
1663 netdev_rss_key_fill(&efx->rx_hash_key,
1664 sizeof(efx->rx_hash_key));
1665 ef4_set_default_rx_indir_table(efx);
1666
1667 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1668 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1669
1670 /* Initialise the interrupt moderation settings */
1671 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1672 ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1673 true);
1674
1675 return 0;
1676
1677fail2:
1678 ef4_remove_interrupts(efx);
1679fail1:
1680 efx->type->remove(efx);
1681 return rc;
1682}
1683
1684static void ef4_remove_nic(struct ef4_nic *efx)
1685{
1686 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1687
1688 ef4_remove_interrupts(efx);
1689 efx->type->remove(efx);
1690}
1691
1692static int ef4_probe_filters(struct ef4_nic *efx)
1693{
1694 int rc;
1695
1696 spin_lock_init(&efx->filter_lock);
1697 init_rwsem(&efx->filter_sem);
1698 mutex_lock(&efx->mac_lock);
1699 down_write(&efx->filter_sem);
1700 rc = efx->type->filter_table_probe(efx);
1701 if (rc)
1702 goto out_unlock;
1703
1704#ifdef CONFIG_RFS_ACCEL
1705 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1706 struct ef4_channel *channel;
1707 int i, success = 1;
1708
1709 ef4_for_each_channel(channel, efx) {
1710 channel->rps_flow_id =
1711 kcalloc(efx->type->max_rx_ip_filters,
1712 sizeof(*channel->rps_flow_id),
1713 GFP_KERNEL);
1714 if (!channel->rps_flow_id)
1715 success = 0;
1716 else
1717 for (i = 0;
1718 i < efx->type->max_rx_ip_filters;
1719 ++i)
1720 channel->rps_flow_id[i] =
1721 RPS_FLOW_ID_INVALID;
1722 }
1723
1724 if (!success) {
1725 ef4_for_each_channel(channel, efx)
1726 kfree(channel->rps_flow_id);
1727 efx->type->filter_table_remove(efx);
1728 rc = -ENOMEM;
1729 goto out_unlock;
1730 }
1731
1732 efx->rps_expire_index = efx->rps_expire_channel = 0;
1733 }
1734#endif
1735out_unlock:
1736 up_write(&efx->filter_sem);
1737 mutex_unlock(&efx->mac_lock);
1738 return rc;
1739}
1740
1741static void ef4_remove_filters(struct ef4_nic *efx)
1742{
1743#ifdef CONFIG_RFS_ACCEL
1744 struct ef4_channel *channel;
1745
1746 ef4_for_each_channel(channel, efx)
1747 kfree(channel->rps_flow_id);
1748#endif
1749 down_write(&efx->filter_sem);
1750 efx->type->filter_table_remove(efx);
1751 up_write(&efx->filter_sem);
1752}
1753
1754static void ef4_restore_filters(struct ef4_nic *efx)
1755{
1756 down_read(&efx->filter_sem);
1757 efx->type->filter_table_restore(efx);
1758 up_read(&efx->filter_sem);
1759}
1760
1761/**************************************************************************
1762 *
1763 * NIC startup/shutdown
1764 *
1765 *************************************************************************/
1766
1767static int ef4_probe_all(struct ef4_nic *efx)
1768{
1769 int rc;
1770
1771 rc = ef4_probe_nic(efx);
1772 if (rc) {
1773 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1774 goto fail1;
1775 }
1776
1777 rc = ef4_probe_port(efx);
1778 if (rc) {
1779 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1780 goto fail2;
1781 }
1782
1783 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1784 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1785 rc = -EINVAL;
1786 goto fail3;
1787 }
1788 efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1789
1790 rc = ef4_probe_filters(efx);
1791 if (rc) {
1792 netif_err(efx, probe, efx->net_dev,
1793 "failed to create filter tables\n");
1794 goto fail4;
1795 }
1796
1797 rc = ef4_probe_channels(efx);
1798 if (rc)
1799 goto fail5;
1800
1801 return 0;
1802
1803 fail5:
1804 ef4_remove_filters(efx);
1805 fail4:
1806 fail3:
1807 ef4_remove_port(efx);
1808 fail2:
1809 ef4_remove_nic(efx);
1810 fail1:
1811 return rc;
1812}
1813
1814/* If the interface is supposed to be running but is not, start
1815 * the hardware and software data path, regular activity for the port
1816 * (MAC statistics, link polling, etc.) and schedule the port to be
1817 * reconfigured. Interrupts must already be enabled. This function
1818 * is safe to call multiple times, so long as the NIC is not disabled.
1819 * Requires the RTNL lock.
1820 */
1821static void ef4_start_all(struct ef4_nic *efx)
1822{
1823 EF4_ASSERT_RESET_SERIALISED(efx);
1824 BUG_ON(efx->state == STATE_DISABLED);
1825
1826 /* Check that it is appropriate to restart the interface. All
1827 * of these flags are safe to read under just the rtnl lock */
1828 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1829 efx->reset_pending)
1830 return;
1831
1832 ef4_start_port(efx);
1833 ef4_start_datapath(efx);
1834
1835 /* Start the hardware monitor if there is one */
1836 if (efx->type->monitor != NULL)
1837 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1838 ef4_monitor_interval);
1839
1840 efx->type->start_stats(efx);
1841 efx->type->pull_stats(efx);
1842 spin_lock_bh(&efx->stats_lock);
1843 efx->type->update_stats(efx, NULL, NULL);
1844 spin_unlock_bh(&efx->stats_lock);
1845}
1846
1847/* Quiesce the hardware and software data path, and regular activity
1848 * for the port without bringing the link down. Safe to call multiple
1849 * times with the NIC in almost any state, but interrupts should be
1850 * enabled. Requires the RTNL lock.
1851 */
1852static void ef4_stop_all(struct ef4_nic *efx)
1853{
1854 EF4_ASSERT_RESET_SERIALISED(efx);
1855
1856 /* port_enabled can be read safely under the rtnl lock */
1857 if (!efx->port_enabled)
1858 return;
1859
1860 /* update stats before we go down so we can accurately count
1861 * rx_nodesc_drops
1862 */
1863 efx->type->pull_stats(efx);
1864 spin_lock_bh(&efx->stats_lock);
1865 efx->type->update_stats(efx, NULL, NULL);
1866 spin_unlock_bh(&efx->stats_lock);
1867 efx->type->stop_stats(efx);
1868 ef4_stop_port(efx);
1869
1870 /* Stop the kernel transmit interface. This is only valid if
1871 * the device is stopped or detached; otherwise the watchdog
1872 * may fire immediately.
1873 */
1874 WARN_ON(netif_running(efx->net_dev) &&
1875 netif_device_present(efx->net_dev));
1876 netif_tx_disable(efx->net_dev);
1877
1878 ef4_stop_datapath(efx);
1879}
1880
1881static void ef4_remove_all(struct ef4_nic *efx)
1882{
1883 ef4_remove_channels(efx);
1884 ef4_remove_filters(efx);
1885 ef4_remove_port(efx);
1886 ef4_remove_nic(efx);
1887}
1888
1889/**************************************************************************
1890 *
1891 * Interrupt moderation
1892 *
1893 **************************************************************************/
1894unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1895{
1896 if (usecs == 0)
1897 return 0;
1898 if (usecs * 1000 < efx->timer_quantum_ns)
1899 return 1; /* never round down to 0 */
1900 return usecs * 1000 / efx->timer_quantum_ns;
1901}
1902
1903unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
1904{
1905 /* We must round up when converting ticks to microseconds
1906 * because we round down when converting the other way.
1907 */
1908 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1909}
1910
1911/* Set interrupt moderation parameters */
1912int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1913 unsigned int rx_usecs, bool rx_adaptive,
1914 bool rx_may_override_tx)
1915{
1916 struct ef4_channel *channel;
1917 unsigned int timer_max_us;
1918
1919 EF4_ASSERT_RESET_SERIALISED(efx);
1920
1921 timer_max_us = efx->timer_max_ns / 1000;
1922
1923 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1924 return -EINVAL;
1925
1926 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1927 !rx_may_override_tx) {
1928 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1929 "RX and TX IRQ moderation must be equal\n");
1930 return -EINVAL;
1931 }
1932
1933 efx->irq_rx_adaptive = rx_adaptive;
1934 efx->irq_rx_moderation_us = rx_usecs;
1935 ef4_for_each_channel(channel, efx) {
1936 if (ef4_channel_has_rx_queue(channel))
1937 channel->irq_moderation_us = rx_usecs;
1938 else if (ef4_channel_has_tx_queues(channel))
1939 channel->irq_moderation_us = tx_usecs;
1940 }
1941
1942 return 0;
1943}
1944
1945void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1946 unsigned int *rx_usecs, bool *rx_adaptive)
1947{
1948 *rx_adaptive = efx->irq_rx_adaptive;
1949 *rx_usecs = efx->irq_rx_moderation_us;
1950
1951 /* If channels are shared between RX and TX, so is IRQ
1952 * moderation. Otherwise, IRQ moderation is the same for all
1953 * TX channels and is not adaptive.
1954 */
1955 if (efx->tx_channel_offset == 0) {
1956 *tx_usecs = *rx_usecs;
1957 } else {
1958 struct ef4_channel *tx_channel;
1959
1960 tx_channel = efx->channel[efx->tx_channel_offset];
1961 *tx_usecs = tx_channel->irq_moderation_us;
1962 }
1963}
1964
1965/**************************************************************************
1966 *
1967 * Hardware monitor
1968 *
1969 **************************************************************************/
1970
1971/* Run periodically off the general workqueue */
1972static void ef4_monitor(struct work_struct *data)
1973{
1974 struct ef4_nic *efx = container_of(data, struct ef4_nic,
1975 monitor_work.work);
1976
1977 netif_vdbg(efx, timer, efx->net_dev,
1978 "hardware monitor executing on CPU %d\n",
1979 raw_smp_processor_id());
1980 BUG_ON(efx->type->monitor == NULL);
1981
1982 /* If the mac_lock is already held then it is likely a port
1983 * reconfiguration is already in place, which will likely do
1984 * most of the work of monitor() anyway. */
1985 if (mutex_trylock(&efx->mac_lock)) {
1986 if (efx->port_enabled)
1987 efx->type->monitor(efx);
1988 mutex_unlock(&efx->mac_lock);
1989 }
1990
1991 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1992 ef4_monitor_interval);
1993}
1994
1995/**************************************************************************
1996 *
1997 * ioctls
1998 *
1999 *************************************************************************/
2000
2001/* Net device ioctl
2002 * Context: process, rtnl_lock() held.
2003 */
2004static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2005{
2006 struct ef4_nic *efx = netdev_priv(net_dev);
2007 struct mii_ioctl_data *data = if_mii(ifr);
2008
2009 /* Convert phy_id from older PRTAD/DEVAD format */
2010 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2011 (data->phy_id & 0xfc00) == 0x0400)
2012 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2013
2014 return mdio_mii_ioctl(&efx->mdio, data, cmd);
2015}
2016
2017/**************************************************************************
2018 *
2019 * NAPI interface
2020 *
2021 **************************************************************************/
2022
2023static void ef4_init_napi_channel(struct ef4_channel *channel)
2024{
2025 struct ef4_nic *efx = channel->efx;
2026
2027 channel->napi_dev = efx->net_dev;
2028 netif_napi_add(channel->napi_dev, &channel->napi_str,
2029 ef4_poll, napi_weight);
2030}
2031
2032static void ef4_init_napi(struct ef4_nic *efx)
2033{
2034 struct ef4_channel *channel;
2035
2036 ef4_for_each_channel(channel, efx)
2037 ef4_init_napi_channel(channel);
2038}
2039
2040static void ef4_fini_napi_channel(struct ef4_channel *channel)
2041{
2042 if (channel->napi_dev)
2043 netif_napi_del(&channel->napi_str);
2044
2045 channel->napi_dev = NULL;
2046}
2047
2048static void ef4_fini_napi(struct ef4_nic *efx)
2049{
2050 struct ef4_channel *channel;
2051
2052 ef4_for_each_channel(channel, efx)
2053 ef4_fini_napi_channel(channel);
2054}
2055
2056/**************************************************************************
2057 *
2058 * Kernel netpoll interface
2059 *
2060 *************************************************************************/
2061
2062#ifdef CONFIG_NET_POLL_CONTROLLER
2063
2064/* Although in the common case interrupts will be disabled, this is not
2065 * guaranteed. However, all our work happens inside the NAPI callback,
2066 * so no locking is required.
2067 */
2068static void ef4_netpoll(struct net_device *net_dev)
2069{
2070 struct ef4_nic *efx = netdev_priv(net_dev);
2071 struct ef4_channel *channel;
2072
2073 ef4_for_each_channel(channel, efx)
2074 ef4_schedule_channel(channel);
2075}
2076
2077#endif
2078
2079/**************************************************************************
2080 *
2081 * Kernel net device interface
2082 *
2083 *************************************************************************/
2084
2085/* Context: process, rtnl_lock() held. */
2086int ef4_net_open(struct net_device *net_dev)
2087{
2088 struct ef4_nic *efx = netdev_priv(net_dev);
2089 int rc;
2090
2091 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2092 raw_smp_processor_id());
2093
2094 rc = ef4_check_disabled(efx);
2095 if (rc)
2096 return rc;
2097 if (efx->phy_mode & PHY_MODE_SPECIAL)
2098 return -EBUSY;
2099
2100 /* Notify the kernel of the link state polled during driver load,
2101 * before the monitor starts running */
2102 ef4_link_status_changed(efx);
2103
2104 ef4_start_all(efx);
2105 ef4_selftest_async_start(efx);
2106 return 0;
2107}
2108
2109/* Context: process, rtnl_lock() held.
2110 * Note that the kernel will ignore our return code; this method
2111 * should really be a void.
2112 */
2113int ef4_net_stop(struct net_device *net_dev)
2114{
2115 struct ef4_nic *efx = netdev_priv(net_dev);
2116
2117 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2118 raw_smp_processor_id());
2119
2120 /* Stop the device and flush all the channels */
2121 ef4_stop_all(efx);
2122
2123 return 0;
2124}
2125
2126/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2127static void ef4_net_stats(struct net_device *net_dev,
2128 struct rtnl_link_stats64 *stats)
2129{
2130 struct ef4_nic *efx = netdev_priv(net_dev);
2131
2132 spin_lock_bh(&efx->stats_lock);
2133 efx->type->update_stats(efx, NULL, stats);
2134 spin_unlock_bh(&efx->stats_lock);
2135}
2136
2137/* Context: netif_tx_lock held, BHs disabled. */
2138static void ef4_watchdog(struct net_device *net_dev)
2139{
2140 struct ef4_nic *efx = netdev_priv(net_dev);
2141
2142 netif_err(efx, tx_err, efx->net_dev,
2143 "TX stuck with port_enabled=%d: resetting channels\n",
2144 efx->port_enabled);
2145
2146 ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2147}
2148
2149
2150/* Context: process, rtnl_lock() held. */
2151static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2152{
2153 struct ef4_nic *efx = netdev_priv(net_dev);
2154 int rc;
2155
2156 rc = ef4_check_disabled(efx);
2157 if (rc)
2158 return rc;
2159
2160 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2161
2162 ef4_device_detach_sync(efx);
2163 ef4_stop_all(efx);
2164
2165 mutex_lock(&efx->mac_lock);
2166 net_dev->mtu = new_mtu;
2167 ef4_mac_reconfigure(efx);
2168 mutex_unlock(&efx->mac_lock);
2169
2170 ef4_start_all(efx);
2171 netif_device_attach(efx->net_dev);
2172 return 0;
2173}
2174
2175static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2176{
2177 struct ef4_nic *efx = netdev_priv(net_dev);
2178 struct sockaddr *addr = data;
2179 u8 *new_addr = addr->sa_data;
2180 u8 old_addr[6];
2181 int rc;
2182
2183 if (!is_valid_ether_addr(new_addr)) {
2184 netif_err(efx, drv, efx->net_dev,
2185 "invalid ethernet MAC address requested: %pM\n",
2186 new_addr);
2187 return -EADDRNOTAVAIL;
2188 }
2189
2190 /* save old address */
2191 ether_addr_copy(old_addr, net_dev->dev_addr);
2192 ether_addr_copy(net_dev->dev_addr, new_addr);
2193 if (efx->type->set_mac_address) {
2194 rc = efx->type->set_mac_address(efx);
2195 if (rc) {
2196 ether_addr_copy(net_dev->dev_addr, old_addr);
2197 return rc;
2198 }
2199 }
2200
2201 /* Reconfigure the MAC */
2202 mutex_lock(&efx->mac_lock);
2203 ef4_mac_reconfigure(efx);
2204 mutex_unlock(&efx->mac_lock);
2205
2206 return 0;
2207}
2208
2209/* Context: netif_addr_lock held, BHs disabled. */
2210static void ef4_set_rx_mode(struct net_device *net_dev)
2211{
2212 struct ef4_nic *efx = netdev_priv(net_dev);
2213
2214 if (efx->port_enabled)
2215 queue_work(efx->workqueue, &efx->mac_work);
2216 /* Otherwise ef4_start_port() will do this */
2217}
2218
2219static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2220{
2221 struct ef4_nic *efx = netdev_priv(net_dev);
2222 int rc;
2223
2224 /* If disabling RX n-tuple filtering, clear existing filters */
2225 if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2226 rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2227 if (rc)
2228 return rc;
2229 }
2230
2231 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2232 if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2233 /* ef4_set_rx_mode() will schedule MAC work to update filters
2234 * when a new features are finally set in net_dev.
2235 */
2236 ef4_set_rx_mode(net_dev);
2237 }
2238
2239 return 0;
2240}
2241
2242static const struct net_device_ops ef4_netdev_ops = {
2243 .ndo_open = ef4_net_open,
2244 .ndo_stop = ef4_net_stop,
2245 .ndo_get_stats64 = ef4_net_stats,
2246 .ndo_tx_timeout = ef4_watchdog,
2247 .ndo_start_xmit = ef4_hard_start_xmit,
2248 .ndo_validate_addr = eth_validate_addr,
2249 .ndo_do_ioctl = ef4_ioctl,
2250 .ndo_change_mtu = ef4_change_mtu,
2251 .ndo_set_mac_address = ef4_set_mac_address,
2252 .ndo_set_rx_mode = ef4_set_rx_mode,
2253 .ndo_set_features = ef4_set_features,
2254#ifdef CONFIG_NET_POLL_CONTROLLER
2255 .ndo_poll_controller = ef4_netpoll,
2256#endif
2257 .ndo_setup_tc = ef4_setup_tc,
2258#ifdef CONFIG_RFS_ACCEL
2259 .ndo_rx_flow_steer = ef4_filter_rfs,
2260#endif
2261};
2262
2263static void ef4_update_name(struct ef4_nic *efx)
2264{
2265 strcpy(efx->name, efx->net_dev->name);
2266 ef4_mtd_rename(efx);
2267 ef4_set_channel_names(efx);
2268}
2269
2270static int ef4_netdev_event(struct notifier_block *this,
2271 unsigned long event, void *ptr)
2272{
2273 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2274
2275 if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2276 event == NETDEV_CHANGENAME)
2277 ef4_update_name(netdev_priv(net_dev));
2278
2279 return NOTIFY_DONE;
2280}
2281
2282static struct notifier_block ef4_netdev_notifier = {
2283 .notifier_call = ef4_netdev_event,
2284};
2285
2286static ssize_t
2287show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2288{
2289 struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2290 return sprintf(buf, "%d\n", efx->phy_type);
2291}
2292static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2293
2294static int ef4_register_netdev(struct ef4_nic *efx)
2295{
2296 struct net_device *net_dev = efx->net_dev;
2297 struct ef4_channel *channel;
2298 int rc;
2299
2300 net_dev->watchdog_timeo = 5 * HZ;
2301 net_dev->irq = efx->pci_dev->irq;
2302 net_dev->netdev_ops = &ef4_netdev_ops;
2303 net_dev->ethtool_ops = &ef4_ethtool_ops;
2304 net_dev->gso_max_segs = EF4_TSO_MAX_SEGS;
2305 net_dev->min_mtu = EF4_MIN_MTU;
2306 net_dev->max_mtu = EF4_MAX_MTU;
2307
2308 rtnl_lock();
2309
2310 /* Enable resets to be scheduled and check whether any were
2311 * already requested. If so, the NIC is probably hosed so we
2312 * abort.
2313 */
2314 efx->state = STATE_READY;
2315 smp_mb(); /* ensure we change state before checking reset_pending */
2316 if (efx->reset_pending) {
2317 netif_err(efx, probe, efx->net_dev,
2318 "aborting probe due to scheduled reset\n");
2319 rc = -EIO;
2320 goto fail_locked;
2321 }
2322
2323 rc = dev_alloc_name(net_dev, net_dev->name);
2324 if (rc < 0)
2325 goto fail_locked;
2326 ef4_update_name(efx);
2327
2328 /* Always start with carrier off; PHY events will detect the link */
2329 netif_carrier_off(net_dev);
2330
2331 rc = register_netdevice(net_dev);
2332 if (rc)
2333 goto fail_locked;
2334
2335 ef4_for_each_channel(channel, efx) {
2336 struct ef4_tx_queue *tx_queue;
2337 ef4_for_each_channel_tx_queue(tx_queue, channel)
2338 ef4_init_tx_queue_core_txq(tx_queue);
2339 }
2340
2341 ef4_associate(efx);
2342
2343 rtnl_unlock();
2344
2345 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2346 if (rc) {
2347 netif_err(efx, drv, efx->net_dev,
2348 "failed to init net dev attributes\n");
2349 goto fail_registered;
2350 }
2351 return 0;
2352
2353fail_registered:
2354 rtnl_lock();
2355 ef4_dissociate(efx);
2356 unregister_netdevice(net_dev);
2357fail_locked:
2358 efx->state = STATE_UNINIT;
2359 rtnl_unlock();
2360 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2361 return rc;
2362}
2363
2364static void ef4_unregister_netdev(struct ef4_nic *efx)
2365{
2366 if (!efx->net_dev)
2367 return;
2368
2369 BUG_ON(netdev_priv(efx->net_dev) != efx);
2370
2371 if (ef4_dev_registered(efx)) {
2372 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2373 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2374 unregister_netdev(efx->net_dev);
2375 }
2376}
2377
2378/**************************************************************************
2379 *
2380 * Device reset and suspend
2381 *
2382 **************************************************************************/
2383
2384/* Tears down the entire software state and most of the hardware state
2385 * before reset. */
2386void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2387{
2388 EF4_ASSERT_RESET_SERIALISED(efx);
2389
2390 ef4_stop_all(efx);
2391 ef4_disable_interrupts(efx);
2392
2393 mutex_lock(&efx->mac_lock);
2394 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2395 method != RESET_TYPE_DATAPATH)
2396 efx->phy_op->fini(efx);
2397 efx->type->fini(efx);
2398}
2399
2400/* This function will always ensure that the locks acquired in
2401 * ef4_reset_down() are released. A failure return code indicates
2402 * that we were unable to reinitialise the hardware, and the
2403 * driver should be disabled. If ok is false, then the rx and tx
2404 * engines are not restarted, pending a RESET_DISABLE. */
2405int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2406{
2407 int rc;
2408
2409 EF4_ASSERT_RESET_SERIALISED(efx);
2410
2411 /* Ensure that SRAM is initialised even if we're disabling the device */
2412 rc = efx->type->init(efx);
2413 if (rc) {
2414 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2415 goto fail;
2416 }
2417
2418 if (!ok)
2419 goto fail;
2420
2421 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2422 method != RESET_TYPE_DATAPATH) {
2423 rc = efx->phy_op->init(efx);
2424 if (rc)
2425 goto fail;
2426 rc = efx->phy_op->reconfigure(efx);
2427 if (rc && rc != -EPERM)
2428 netif_err(efx, drv, efx->net_dev,
2429 "could not restore PHY settings\n");
2430 }
2431
2432 rc = ef4_enable_interrupts(efx);
2433 if (rc)
2434 goto fail;
2435
2436 down_read(&efx->filter_sem);
2437 ef4_restore_filters(efx);
2438 up_read(&efx->filter_sem);
2439
2440 mutex_unlock(&efx->mac_lock);
2441
2442 ef4_start_all(efx);
2443
2444 return 0;
2445
2446fail:
2447 efx->port_initialized = false;
2448
2449 mutex_unlock(&efx->mac_lock);
2450
2451 return rc;
2452}
2453
2454/* Reset the NIC using the specified method. Note that the reset may
2455 * fail, in which case the card will be left in an unusable state.
2456 *
2457 * Caller must hold the rtnl_lock.
2458 */
2459int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2460{
2461 int rc, rc2;
2462 bool disabled;
2463
2464 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2465 RESET_TYPE(method));
2466
2467 ef4_device_detach_sync(efx);
2468 ef4_reset_down(efx, method);
2469
2470 rc = efx->type->reset(efx, method);
2471 if (rc) {
2472 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2473 goto out;
2474 }
2475
2476 /* Clear flags for the scopes we covered. We assume the NIC and
2477 * driver are now quiescent so that there is no race here.
2478 */
2479 if (method < RESET_TYPE_MAX_METHOD)
2480 efx->reset_pending &= -(1 << (method + 1));
2481 else /* it doesn't fit into the well-ordered scope hierarchy */
2482 __clear_bit(method, &efx->reset_pending);
2483
2484 /* Reinitialise bus-mastering, which may have been turned off before
2485 * the reset was scheduled. This is still appropriate, even in the
2486 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2487 * can respond to requests. */
2488 pci_set_master(efx->pci_dev);
2489
2490out:
2491 /* Leave device stopped if necessary */
2492 disabled = rc ||
2493 method == RESET_TYPE_DISABLE ||
2494 method == RESET_TYPE_RECOVER_OR_DISABLE;
2495 rc2 = ef4_reset_up(efx, method, !disabled);
2496 if (rc2) {
2497 disabled = true;
2498 if (!rc)
2499 rc = rc2;
2500 }
2501
2502 if (disabled) {
2503 dev_close(efx->net_dev);
2504 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2505 efx->state = STATE_DISABLED;
2506 } else {
2507 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2508 netif_device_attach(efx->net_dev);
2509 }
2510 return rc;
2511}
2512
2513/* Try recovery mechanisms.
2514 * For now only EEH is supported.
2515 * Returns 0 if the recovery mechanisms are unsuccessful.
2516 * Returns a non-zero value otherwise.
2517 */
2518int ef4_try_recovery(struct ef4_nic *efx)
2519{
2520#ifdef CONFIG_EEH
2521 /* A PCI error can occur and not be seen by EEH because nothing
2522 * happens on the PCI bus. In this case the driver may fail and
2523 * schedule a 'recover or reset', leading to this recovery handler.
2524 * Manually call the eeh failure check function.
2525 */
2526 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2527 if (eeh_dev_check_failure(eehdev)) {
2528 /* The EEH mechanisms will handle the error and reset the
2529 * device if necessary.
2530 */
2531 return 1;
2532 }
2533#endif
2534 return 0;
2535}
2536
2537/* The worker thread exists so that code that cannot sleep can
2538 * schedule a reset for later.
2539 */
2540static void ef4_reset_work(struct work_struct *data)
2541{
2542 struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2543 unsigned long pending;
2544 enum reset_type method;
2545
2546 pending = READ_ONCE(efx->reset_pending);
2547 method = fls(pending) - 1;
2548
2549 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2550 method == RESET_TYPE_RECOVER_OR_ALL) &&
2551 ef4_try_recovery(efx))
2552 return;
2553
2554 if (!pending)
2555 return;
2556
2557 rtnl_lock();
2558
2559 /* We checked the state in ef4_schedule_reset() but it may
2560 * have changed by now. Now that we have the RTNL lock,
2561 * it cannot change again.
2562 */
2563 if (efx->state == STATE_READY)
2564 (void)ef4_reset(efx, method);
2565
2566 rtnl_unlock();
2567}
2568
2569void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2570{
2571 enum reset_type method;
2572
2573 if (efx->state == STATE_RECOVERY) {
2574 netif_dbg(efx, drv, efx->net_dev,
2575 "recovering: skip scheduling %s reset\n",
2576 RESET_TYPE(type));
2577 return;
2578 }
2579
2580 switch (type) {
2581 case RESET_TYPE_INVISIBLE:
2582 case RESET_TYPE_ALL:
2583 case RESET_TYPE_RECOVER_OR_ALL:
2584 case RESET_TYPE_WORLD:
2585 case RESET_TYPE_DISABLE:
2586 case RESET_TYPE_RECOVER_OR_DISABLE:
2587 case RESET_TYPE_DATAPATH:
2588 method = type;
2589 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2590 RESET_TYPE(method));
2591 break;
2592 default:
2593 method = efx->type->map_reset_reason(type);
2594 netif_dbg(efx, drv, efx->net_dev,
2595 "scheduling %s reset for %s\n",
2596 RESET_TYPE(method), RESET_TYPE(type));
2597 break;
2598 }
2599
2600 set_bit(method, &efx->reset_pending);
2601 smp_mb(); /* ensure we change reset_pending before checking state */
2602
2603 /* If we're not READY then just leave the flags set as the cue
2604 * to abort probing or reschedule the reset later.
2605 */
2606 if (READ_ONCE(efx->state) != STATE_READY)
2607 return;
2608
2609 queue_work(reset_workqueue, &efx->reset_work);
2610}
2611
2612/**************************************************************************
2613 *
2614 * List of NICs we support
2615 *
2616 **************************************************************************/
2617
2618/* PCI device ID table */
2619static const struct pci_device_id ef4_pci_table[] = {
2620 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2621 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2622 .driver_data = (unsigned long) &falcon_a1_nic_type},
2623 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2624 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2625 .driver_data = (unsigned long) &falcon_b0_nic_type},
2626 {0} /* end of list */
2627};
2628
2629/**************************************************************************
2630 *
2631 * Dummy PHY/MAC operations
2632 *
2633 * Can be used for some unimplemented operations
2634 * Needed so all function pointers are valid and do not have to be tested
2635 * before use
2636 *
2637 **************************************************************************/
2638int ef4_port_dummy_op_int(struct ef4_nic *efx)
2639{
2640 return 0;
2641}
2642void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2643
2644static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2645{
2646 return false;
2647}
2648
2649static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2650 .init = ef4_port_dummy_op_int,
2651 .reconfigure = ef4_port_dummy_op_int,
2652 .poll = ef4_port_dummy_op_poll,
2653 .fini = ef4_port_dummy_op_void,
2654};
2655
2656/**************************************************************************
2657 *
2658 * Data housekeeping
2659 *
2660 **************************************************************************/
2661
2662/* This zeroes out and then fills in the invariants in a struct
2663 * ef4_nic (including all sub-structures).
2664 */
2665static int ef4_init_struct(struct ef4_nic *efx,
2666 struct pci_dev *pci_dev, struct net_device *net_dev)
2667{
2668 int i;
2669
2670 /* Initialise common structures */
2671 INIT_LIST_HEAD(&efx->node);
2672 INIT_LIST_HEAD(&efx->secondary_list);
2673 spin_lock_init(&efx->biu_lock);
2674#ifdef CONFIG_SFC_FALCON_MTD
2675 INIT_LIST_HEAD(&efx->mtd_list);
2676#endif
2677 INIT_WORK(&efx->reset_work, ef4_reset_work);
2678 INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2679 INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2680 efx->pci_dev = pci_dev;
2681 efx->msg_enable = debug;
2682 efx->state = STATE_UNINIT;
2683 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2684
2685 efx->net_dev = net_dev;
2686 efx->rx_prefix_size = efx->type->rx_prefix_size;
2687 efx->rx_ip_align =
2688 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2689 efx->rx_packet_hash_offset =
2690 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2691 efx->rx_packet_ts_offset =
2692 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2693 spin_lock_init(&efx->stats_lock);
2694 mutex_init(&efx->mac_lock);
2695 efx->phy_op = &ef4_dummy_phy_operations;
2696 efx->mdio.dev = net_dev;
2697 INIT_WORK(&efx->mac_work, ef4_mac_work);
2698 init_waitqueue_head(&efx->flush_wq);
2699
2700 for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2701 efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2702 if (!efx->channel[i])
2703 goto fail;
2704 efx->msi_context[i].efx = efx;
2705 efx->msi_context[i].index = i;
2706 }
2707
2708 /* Higher numbered interrupt modes are less capable! */
2709 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2710 interrupt_mode);
2711
2712 /* Would be good to use the net_dev name, but we're too early */
2713 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2714 pci_name(pci_dev));
2715 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2716 if (!efx->workqueue)
2717 goto fail;
2718
2719 return 0;
2720
2721fail:
2722 ef4_fini_struct(efx);
2723 return -ENOMEM;
2724}
2725
2726static void ef4_fini_struct(struct ef4_nic *efx)
2727{
2728 int i;
2729
2730 for (i = 0; i < EF4_MAX_CHANNELS; i++)
2731 kfree(efx->channel[i]);
2732
2733 kfree(efx->vpd_sn);
2734
2735 if (efx->workqueue) {
2736 destroy_workqueue(efx->workqueue);
2737 efx->workqueue = NULL;
2738 }
2739}
2740
2741void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2742{
2743 u64 n_rx_nodesc_trunc = 0;
2744 struct ef4_channel *channel;
2745
2746 ef4_for_each_channel(channel, efx)
2747 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2748 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2749 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2750}
2751
2752/**************************************************************************
2753 *
2754 * PCI interface
2755 *
2756 **************************************************************************/
2757
2758/* Main body of final NIC shutdown code
2759 * This is called only at module unload (or hotplug removal).
2760 */
2761static void ef4_pci_remove_main(struct ef4_nic *efx)
2762{
2763 /* Flush reset_work. It can no longer be scheduled since we
2764 * are not READY.
2765 */
2766 BUG_ON(efx->state == STATE_READY);
2767 cancel_work_sync(&efx->reset_work);
2768
2769 ef4_disable_interrupts(efx);
2770 ef4_nic_fini_interrupt(efx);
2771 ef4_fini_port(efx);
2772 efx->type->fini(efx);
2773 ef4_fini_napi(efx);
2774 ef4_remove_all(efx);
2775}
2776
2777/* Final NIC shutdown
2778 * This is called only at module unload (or hotplug removal). A PF can call
2779 * this on its VFs to ensure they are unbound first.
2780 */
2781static void ef4_pci_remove(struct pci_dev *pci_dev)
2782{
2783 struct ef4_nic *efx;
2784
2785 efx = pci_get_drvdata(pci_dev);
2786 if (!efx)
2787 return;
2788
2789 /* Mark the NIC as fini, then stop the interface */
2790 rtnl_lock();
2791 ef4_dissociate(efx);
2792 dev_close(efx->net_dev);
2793 ef4_disable_interrupts(efx);
2794 efx->state = STATE_UNINIT;
2795 rtnl_unlock();
2796
2797 ef4_unregister_netdev(efx);
2798
2799 ef4_mtd_remove(efx);
2800
2801 ef4_pci_remove_main(efx);
2802
2803 ef4_fini_io(efx);
2804 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2805
2806 ef4_fini_struct(efx);
2807 free_netdev(efx->net_dev);
2808
2809 pci_disable_pcie_error_reporting(pci_dev);
2810};
2811
2812/* NIC VPD information
2813 * Called during probe to display the part number of the
2814 * installed NIC. VPD is potentially very large but this should
2815 * always appear within the first 512 bytes.
2816 */
2817#define SFC_VPD_LEN 512
2818static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2819{
2820 struct pci_dev *dev = efx->pci_dev;
2821 char vpd_data[SFC_VPD_LEN];
2822 ssize_t vpd_size;
2823 int ro_start, ro_size, i, j;
2824
2825 /* Get the vpd data from the device */
2826 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2827 if (vpd_size <= 0) {
2828 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2829 return;
2830 }
2831
2832 /* Get the Read only section */
2833 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2834 if (ro_start < 0) {
2835 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2836 return;
2837 }
2838
2839 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2840 j = ro_size;
2841 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2842 if (i + j > vpd_size)
2843 j = vpd_size - i;
2844
2845 /* Get the Part number */
2846 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2847 if (i < 0) {
2848 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2849 return;
2850 }
2851
2852 j = pci_vpd_info_field_size(&vpd_data[i]);
2853 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2854 if (i + j > vpd_size) {
2855 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2856 return;
2857 }
2858
2859 netif_info(efx, drv, efx->net_dev,
2860 "Part Number : %.*s\n", j, &vpd_data[i]);
2861
2862 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2863 j = ro_size;
2864 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2865 if (i < 0) {
2866 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2867 return;
2868 }
2869
2870 j = pci_vpd_info_field_size(&vpd_data[i]);
2871 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2872 if (i + j > vpd_size) {
2873 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2874 return;
2875 }
2876
2877 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2878 if (!efx->vpd_sn)
2879 return;
2880
2881 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2882}
2883
2884
2885/* Main body of NIC initialisation
2886 * This is called at module load (or hotplug insertion, theoretically).
2887 */
2888static int ef4_pci_probe_main(struct ef4_nic *efx)
2889{
2890 int rc;
2891
2892 /* Do start-of-day initialisation */
2893 rc = ef4_probe_all(efx);
2894 if (rc)
2895 goto fail1;
2896
2897 ef4_init_napi(efx);
2898
2899 rc = efx->type->init(efx);
2900 if (rc) {
2901 netif_err(efx, probe, efx->net_dev,
2902 "failed to initialise NIC\n");
2903 goto fail3;
2904 }
2905
2906 rc = ef4_init_port(efx);
2907 if (rc) {
2908 netif_err(efx, probe, efx->net_dev,
2909 "failed to initialise port\n");
2910 goto fail4;
2911 }
2912
2913 rc = ef4_nic_init_interrupt(efx);
2914 if (rc)
2915 goto fail5;
2916 rc = ef4_enable_interrupts(efx);
2917 if (rc)
2918 goto fail6;
2919
2920 return 0;
2921
2922 fail6:
2923 ef4_nic_fini_interrupt(efx);
2924 fail5:
2925 ef4_fini_port(efx);
2926 fail4:
2927 efx->type->fini(efx);
2928 fail3:
2929 ef4_fini_napi(efx);
2930 ef4_remove_all(efx);
2931 fail1:
2932 return rc;
2933}
2934
2935/* NIC initialisation
2936 *
2937 * This is called at module load (or hotplug insertion,
2938 * theoretically). It sets up PCI mappings, resets the NIC,
2939 * sets up and registers the network devices with the kernel and hooks
2940 * the interrupt service routine. It does not prepare the device for
2941 * transmission; this is left to the first time one of the network
2942 * interfaces is brought up (i.e. ef4_net_open).
2943 */
2944static int ef4_pci_probe(struct pci_dev *pci_dev,
2945 const struct pci_device_id *entry)
2946{
2947 struct net_device *net_dev;
2948 struct ef4_nic *efx;
2949 int rc;
2950
2951 /* Allocate and initialise a struct net_device and struct ef4_nic */
2952 net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2953 EF4_MAX_RX_QUEUES);
2954 if (!net_dev)
2955 return -ENOMEM;
2956 efx = netdev_priv(net_dev);
2957 efx->type = (const struct ef4_nic_type *) entry->driver_data;
2958 efx->fixed_features |= NETIF_F_HIGHDMA;
2959
2960 pci_set_drvdata(pci_dev, efx);
2961 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2962 rc = ef4_init_struct(efx, pci_dev, net_dev);
2963 if (rc)
2964 goto fail1;
2965
2966 netif_info(efx, probe, efx->net_dev,
2967 "Solarflare NIC detected\n");
2968
2969 ef4_probe_vpd_strings(efx);
2970
2971 /* Set up basic I/O (BAR mappings etc) */
2972 rc = ef4_init_io(efx);
2973 if (rc)
2974 goto fail2;
2975
2976 rc = ef4_pci_probe_main(efx);
2977 if (rc)
2978 goto fail3;
2979
2980 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2981 NETIF_F_RXCSUM);
2982 /* Mask for features that also apply to VLAN devices */
2983 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2984 NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2985
2986 net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2987
2988 /* Disable VLAN filtering by default. It may be enforced if
2989 * the feature is fixed (i.e. VLAN filters are required to
2990 * receive VLAN tagged packets due to vPort restrictions).
2991 */
2992 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2993 net_dev->features |= efx->fixed_features;
2994
2995 rc = ef4_register_netdev(efx);
2996 if (rc)
2997 goto fail4;
2998
2999 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3000
3001 /* Try to create MTDs, but allow this to fail */
3002 rtnl_lock();
3003 rc = ef4_mtd_probe(efx);
3004 rtnl_unlock();
3005 if (rc && rc != -EPERM)
3006 netif_warn(efx, probe, efx->net_dev,
3007 "failed to create MTDs (%d)\n", rc);
3008
3009 rc = pci_enable_pcie_error_reporting(pci_dev);
3010 if (rc && rc != -EINVAL)
3011 netif_notice(efx, probe, efx->net_dev,
3012 "PCIE error reporting unavailable (%d).\n",
3013 rc);
3014
3015 return 0;
3016
3017 fail4:
3018 ef4_pci_remove_main(efx);
3019 fail3:
3020 ef4_fini_io(efx);
3021 fail2:
3022 ef4_fini_struct(efx);
3023 fail1:
3024 WARN_ON(rc > 0);
3025 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3026 free_netdev(net_dev);
3027 return rc;
3028}
3029
3030static int ef4_pm_freeze(struct device *dev)
3031{
3032 struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3033
3034 rtnl_lock();
3035
3036 if (efx->state != STATE_DISABLED) {
3037 efx->state = STATE_UNINIT;
3038
3039 ef4_device_detach_sync(efx);
3040
3041 ef4_stop_all(efx);
3042 ef4_disable_interrupts(efx);
3043 }
3044
3045 rtnl_unlock();
3046
3047 return 0;
3048}
3049
3050static int ef4_pm_thaw(struct device *dev)
3051{
3052 int rc;
3053 struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3054
3055 rtnl_lock();
3056
3057 if (efx->state != STATE_DISABLED) {
3058 rc = ef4_enable_interrupts(efx);
3059 if (rc)
3060 goto fail;
3061
3062 mutex_lock(&efx->mac_lock);
3063 efx->phy_op->reconfigure(efx);
3064 mutex_unlock(&efx->mac_lock);
3065
3066 ef4_start_all(efx);
3067
3068 netif_device_attach(efx->net_dev);
3069
3070 efx->state = STATE_READY;
3071
3072 efx->type->resume_wol(efx);
3073 }
3074
3075 rtnl_unlock();
3076
3077 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
3078 queue_work(reset_workqueue, &efx->reset_work);
3079
3080 return 0;
3081
3082fail:
3083 rtnl_unlock();
3084
3085 return rc;
3086}
3087
3088static int ef4_pm_poweroff(struct device *dev)
3089{
3090 struct pci_dev *pci_dev = to_pci_dev(dev);
3091 struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3092
3093 efx->type->fini(efx);
3094
3095 efx->reset_pending = 0;
3096
3097 pci_save_state(pci_dev);
3098 return pci_set_power_state(pci_dev, PCI_D3hot);
3099}
3100
3101/* Used for both resume and restore */
3102static int ef4_pm_resume(struct device *dev)
3103{
3104 struct pci_dev *pci_dev = to_pci_dev(dev);
3105 struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3106 int rc;
3107
3108 rc = pci_set_power_state(pci_dev, PCI_D0);
3109 if (rc)
3110 return rc;
3111 pci_restore_state(pci_dev);
3112 rc = pci_enable_device(pci_dev);
3113 if (rc)
3114 return rc;
3115 pci_set_master(efx->pci_dev);
3116 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3117 if (rc)
3118 return rc;
3119 rc = efx->type->init(efx);
3120 if (rc)
3121 return rc;
3122 rc = ef4_pm_thaw(dev);
3123 return rc;
3124}
3125
3126static int ef4_pm_suspend(struct device *dev)
3127{
3128 int rc;
3129
3130 ef4_pm_freeze(dev);
3131 rc = ef4_pm_poweroff(dev);
3132 if (rc)
3133 ef4_pm_resume(dev);
3134 return rc;
3135}
3136
3137static const struct dev_pm_ops ef4_pm_ops = {
3138 .suspend = ef4_pm_suspend,
3139 .resume = ef4_pm_resume,
3140 .freeze = ef4_pm_freeze,
3141 .thaw = ef4_pm_thaw,
3142 .poweroff = ef4_pm_poweroff,
3143 .restore = ef4_pm_resume,
3144};
3145
3146/* A PCI error affecting this device was detected.
3147 * At this point MMIO and DMA may be disabled.
3148 * Stop the software path and request a slot reset.
3149 */
3150static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3151 enum pci_channel_state state)
3152{
3153 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3154 struct ef4_nic *efx = pci_get_drvdata(pdev);
3155
3156 if (state == pci_channel_io_perm_failure)
3157 return PCI_ERS_RESULT_DISCONNECT;
3158
3159 rtnl_lock();
3160
3161 if (efx->state != STATE_DISABLED) {
3162 efx->state = STATE_RECOVERY;
3163 efx->reset_pending = 0;
3164
3165 ef4_device_detach_sync(efx);
3166
3167 ef4_stop_all(efx);
3168 ef4_disable_interrupts(efx);
3169
3170 status = PCI_ERS_RESULT_NEED_RESET;
3171 } else {
3172 /* If the interface is disabled we don't want to do anything
3173 * with it.
3174 */
3175 status = PCI_ERS_RESULT_RECOVERED;
3176 }
3177
3178 rtnl_unlock();
3179
3180 pci_disable_device(pdev);
3181
3182 return status;
3183}
3184
3185/* Fake a successful reset, which will be performed later in ef4_io_resume. */
3186static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3187{
3188 struct ef4_nic *efx = pci_get_drvdata(pdev);
3189 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3190 int rc;
3191
3192 if (pci_enable_device(pdev)) {
3193 netif_err(efx, hw, efx->net_dev,
3194 "Cannot re-enable PCI device after reset.\n");
3195 status = PCI_ERS_RESULT_DISCONNECT;
3196 }
3197
3198 rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3199 if (rc) {
3200 netif_err(efx, hw, efx->net_dev,
3201 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3202 /* Non-fatal error. Continue. */
3203 }
3204
3205 return status;
3206}
3207
3208/* Perform the actual reset and resume I/O operations. */
3209static void ef4_io_resume(struct pci_dev *pdev)
3210{
3211 struct ef4_nic *efx = pci_get_drvdata(pdev);
3212 int rc;
3213
3214 rtnl_lock();
3215
3216 if (efx->state == STATE_DISABLED)
3217 goto out;
3218
3219 rc = ef4_reset(efx, RESET_TYPE_ALL);
3220 if (rc) {
3221 netif_err(efx, hw, efx->net_dev,
3222 "ef4_reset failed after PCI error (%d)\n", rc);
3223 } else {
3224 efx->state = STATE_READY;
3225 netif_dbg(efx, hw, efx->net_dev,
3226 "Done resetting and resuming IO after PCI error.\n");
3227 }
3228
3229out:
3230 rtnl_unlock();
3231}
3232
3233/* For simplicity and reliability, we always require a slot reset and try to
3234 * reset the hardware when a pci error affecting the device is detected.
3235 * We leave both the link_reset and mmio_enabled callback unimplemented:
3236 * with our request for slot reset the mmio_enabled callback will never be
3237 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3238 */
3239static const struct pci_error_handlers ef4_err_handlers = {
3240 .error_detected = ef4_io_error_detected,
3241 .slot_reset = ef4_io_slot_reset,
3242 .resume = ef4_io_resume,
3243};
3244
3245static struct pci_driver ef4_pci_driver = {
3246 .name = KBUILD_MODNAME,
3247 .id_table = ef4_pci_table,
3248 .probe = ef4_pci_probe,
3249 .remove = ef4_pci_remove,
3250 .driver.pm = &ef4_pm_ops,
3251 .err_handler = &ef4_err_handlers,
3252};
3253
3254/**************************************************************************
3255 *
3256 * Kernel module interface
3257 *
3258 *************************************************************************/
3259
3260module_param(interrupt_mode, uint, 0444);
3261MODULE_PARM_DESC(interrupt_mode,
3262 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3263
3264static int __init ef4_init_module(void)
3265{
3266 int rc;
3267
3268 printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3269
3270 rc = register_netdevice_notifier(&ef4_netdev_notifier);
3271 if (rc)
3272 goto err_notifier;
3273
3274 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3275 if (!reset_workqueue) {
3276 rc = -ENOMEM;
3277 goto err_reset;
3278 }
3279
3280 rc = pci_register_driver(&ef4_pci_driver);
3281 if (rc < 0)
3282 goto err_pci;
3283
3284 return 0;
3285
3286 err_pci:
3287 destroy_workqueue(reset_workqueue);
3288 err_reset:
3289 unregister_netdevice_notifier(&ef4_netdev_notifier);
3290 err_notifier:
3291 return rc;
3292}
3293
3294static void __exit ef4_exit_module(void)
3295{
3296 printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3297
3298 pci_unregister_driver(&ef4_pci_driver);
3299 destroy_workqueue(reset_workqueue);
3300 unregister_netdevice_notifier(&ef4_netdev_notifier);
3301
3302}
3303
3304module_init(ef4_init_module);
3305module_exit(ef4_exit_module);
3306
3307MODULE_AUTHOR("Solarflare Communications and "
3308 "Michael Brown <mbrown@fensystems.co.uk>");
3309MODULE_DESCRIPTION("Solarflare Falcon network driver");
3310MODULE_LICENSE("GPL");
3311MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3312MODULE_VERSION(EF4_DRIVER_VERSION);
1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8#include <linux/module.h>
9#include <linux/pci.h>
10#include <linux/netdevice.h>
11#include <linux/etherdevice.h>
12#include <linux/delay.h>
13#include <linux/notifier.h>
14#include <linux/ip.h>
15#include <linux/tcp.h>
16#include <linux/in.h>
17#include <linux/ethtool.h>
18#include <linux/topology.h>
19#include <linux/gfp.h>
20#include <linux/interrupt.h>
21#include "net_driver.h"
22#include "efx.h"
23#include "nic.h"
24#include "selftest.h"
25
26#include "workarounds.h"
27
28/**************************************************************************
29 *
30 * Type name strings
31 *
32 **************************************************************************
33 */
34
35/* Loopback mode names (see LOOPBACK_MODE()) */
36const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
37const char *const ef4_loopback_mode_names[] = {
38 [LOOPBACK_NONE] = "NONE",
39 [LOOPBACK_DATA] = "DATAPATH",
40 [LOOPBACK_GMAC] = "GMAC",
41 [LOOPBACK_XGMII] = "XGMII",
42 [LOOPBACK_XGXS] = "XGXS",
43 [LOOPBACK_XAUI] = "XAUI",
44 [LOOPBACK_GMII] = "GMII",
45 [LOOPBACK_SGMII] = "SGMII",
46 [LOOPBACK_XGBR] = "XGBR",
47 [LOOPBACK_XFI] = "XFI",
48 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
49 [LOOPBACK_GMII_FAR] = "GMII_FAR",
50 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
51 [LOOPBACK_XFI_FAR] = "XFI_FAR",
52 [LOOPBACK_GPHY] = "GPHY",
53 [LOOPBACK_PHYXS] = "PHYXS",
54 [LOOPBACK_PCS] = "PCS",
55 [LOOPBACK_PMAPMD] = "PMA/PMD",
56 [LOOPBACK_XPORT] = "XPORT",
57 [LOOPBACK_XGMII_WS] = "XGMII_WS",
58 [LOOPBACK_XAUI_WS] = "XAUI_WS",
59 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
60 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
61 [LOOPBACK_GMII_WS] = "GMII_WS",
62 [LOOPBACK_XFI_WS] = "XFI_WS",
63 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
64 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
65};
66
67const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
68const char *const ef4_reset_type_names[] = {
69 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
70 [RESET_TYPE_ALL] = "ALL",
71 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
72 [RESET_TYPE_WORLD] = "WORLD",
73 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
74 [RESET_TYPE_DATAPATH] = "DATAPATH",
75 [RESET_TYPE_DISABLE] = "DISABLE",
76 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
77 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
78 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
79 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
80 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
81};
82
83/* Reset workqueue. If any NIC has a hardware failure then a reset will be
84 * queued onto this work queue. This is not a per-nic work queue, because
85 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
86 */
87static struct workqueue_struct *reset_workqueue;
88
89/* How often and how many times to poll for a reset while waiting for a
90 * BIST that another function started to complete.
91 */
92#define BIST_WAIT_DELAY_MS 100
93#define BIST_WAIT_DELAY_COUNT 100
94
95/**************************************************************************
96 *
97 * Configurable values
98 *
99 *************************************************************************/
100
101/*
102 * Use separate channels for TX and RX events
103 *
104 * Set this to 1 to use separate channels for TX and RX. It allows us
105 * to control interrupt affinity separately for TX and RX.
106 *
107 * This is only used in MSI-X interrupt mode
108 */
109bool ef4_separate_tx_channels;
110module_param(ef4_separate_tx_channels, bool, 0444);
111MODULE_PARM_DESC(ef4_separate_tx_channels,
112 "Use separate channels for TX and RX");
113
114/* This is the time (in jiffies) between invocations of the hardware
115 * monitor.
116 * On Falcon-based NICs, this will:
117 * - Check the on-board hardware monitor;
118 * - Poll the link state and reconfigure the hardware as necessary.
119 * On Siena-based NICs for power systems with EEH support, this will give EEH a
120 * chance to start.
121 */
122static unsigned int ef4_monitor_interval = 1 * HZ;
123
124/* Initial interrupt moderation settings. They can be modified after
125 * module load with ethtool.
126 *
127 * The default for RX should strike a balance between increasing the
128 * round-trip latency and reducing overhead.
129 */
130static unsigned int rx_irq_mod_usec = 60;
131
132/* Initial interrupt moderation settings. They can be modified after
133 * module load with ethtool.
134 *
135 * This default is chosen to ensure that a 10G link does not go idle
136 * while a TX queue is stopped after it has become full. A queue is
137 * restarted when it drops below half full. The time this takes (assuming
138 * worst case 3 descriptors per packet and 1024 descriptors) is
139 * 512 / 3 * 1.2 = 205 usec.
140 */
141static unsigned int tx_irq_mod_usec = 150;
142
143/* This is the first interrupt mode to try out of:
144 * 0 => MSI-X
145 * 1 => MSI
146 * 2 => legacy
147 */
148static unsigned int interrupt_mode;
149
150/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
151 * i.e. the number of CPUs among which we may distribute simultaneous
152 * interrupt handling.
153 *
154 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
155 * The default (0) means to assign an interrupt to each core.
156 */
157static unsigned int rss_cpus;
158module_param(rss_cpus, uint, 0444);
159MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
160
161static bool phy_flash_cfg;
162module_param(phy_flash_cfg, bool, 0644);
163MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
164
165static unsigned irq_adapt_low_thresh = 8000;
166module_param(irq_adapt_low_thresh, uint, 0644);
167MODULE_PARM_DESC(irq_adapt_low_thresh,
168 "Threshold score for reducing IRQ moderation");
169
170static unsigned irq_adapt_high_thresh = 16000;
171module_param(irq_adapt_high_thresh, uint, 0644);
172MODULE_PARM_DESC(irq_adapt_high_thresh,
173 "Threshold score for increasing IRQ moderation");
174
175static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
176 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
177 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
178 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
179module_param(debug, uint, 0);
180MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
181
182/**************************************************************************
183 *
184 * Utility functions and prototypes
185 *
186 *************************************************************************/
187
188static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
189static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
190static void ef4_remove_channel(struct ef4_channel *channel);
191static void ef4_remove_channels(struct ef4_nic *efx);
192static const struct ef4_channel_type ef4_default_channel_type;
193static void ef4_remove_port(struct ef4_nic *efx);
194static void ef4_init_napi_channel(struct ef4_channel *channel);
195static void ef4_fini_napi(struct ef4_nic *efx);
196static void ef4_fini_napi_channel(struct ef4_channel *channel);
197static void ef4_fini_struct(struct ef4_nic *efx);
198static void ef4_start_all(struct ef4_nic *efx);
199static void ef4_stop_all(struct ef4_nic *efx);
200
201#define EF4_ASSERT_RESET_SERIALISED(efx) \
202 do { \
203 if ((efx->state == STATE_READY) || \
204 (efx->state == STATE_RECOVERY) || \
205 (efx->state == STATE_DISABLED)) \
206 ASSERT_RTNL(); \
207 } while (0)
208
209static int ef4_check_disabled(struct ef4_nic *efx)
210{
211 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
212 netif_err(efx, drv, efx->net_dev,
213 "device is disabled due to earlier errors\n");
214 return -EIO;
215 }
216 return 0;
217}
218
219/**************************************************************************
220 *
221 * Event queue processing
222 *
223 *************************************************************************/
224
225/* Process channel's event queue
226 *
227 * This function is responsible for processing the event queue of a
228 * single channel. The caller must guarantee that this function will
229 * never be concurrently called more than once on the same channel,
230 * though different channels may be being processed concurrently.
231 */
232static int ef4_process_channel(struct ef4_channel *channel, int budget)
233{
234 struct ef4_tx_queue *tx_queue;
235 int spent;
236
237 if (unlikely(!channel->enabled))
238 return 0;
239
240 ef4_for_each_channel_tx_queue(tx_queue, channel) {
241 tx_queue->pkts_compl = 0;
242 tx_queue->bytes_compl = 0;
243 }
244
245 spent = ef4_nic_process_eventq(channel, budget);
246 if (spent && ef4_channel_has_rx_queue(channel)) {
247 struct ef4_rx_queue *rx_queue =
248 ef4_channel_get_rx_queue(channel);
249
250 ef4_rx_flush_packet(channel);
251 ef4_fast_push_rx_descriptors(rx_queue, true);
252 }
253
254 /* Update BQL */
255 ef4_for_each_channel_tx_queue(tx_queue, channel) {
256 if (tx_queue->bytes_compl) {
257 netdev_tx_completed_queue(tx_queue->core_txq,
258 tx_queue->pkts_compl, tx_queue->bytes_compl);
259 }
260 }
261
262 return spent;
263}
264
265/* NAPI poll handler
266 *
267 * NAPI guarantees serialisation of polls of the same device, which
268 * provides the guarantee required by ef4_process_channel().
269 */
270static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
271{
272 int step = efx->irq_mod_step_us;
273
274 if (channel->irq_mod_score < irq_adapt_low_thresh) {
275 if (channel->irq_moderation_us > step) {
276 channel->irq_moderation_us -= step;
277 efx->type->push_irq_moderation(channel);
278 }
279 } else if (channel->irq_mod_score > irq_adapt_high_thresh) {
280 if (channel->irq_moderation_us <
281 efx->irq_rx_moderation_us) {
282 channel->irq_moderation_us += step;
283 efx->type->push_irq_moderation(channel);
284 }
285 }
286
287 channel->irq_count = 0;
288 channel->irq_mod_score = 0;
289}
290
291static int ef4_poll(struct napi_struct *napi, int budget)
292{
293 struct ef4_channel *channel =
294 container_of(napi, struct ef4_channel, napi_str);
295 struct ef4_nic *efx = channel->efx;
296 int spent;
297
298 netif_vdbg(efx, intr, efx->net_dev,
299 "channel %d NAPI poll executing on CPU %d\n",
300 channel->channel, raw_smp_processor_id());
301
302 spent = ef4_process_channel(channel, budget);
303
304 if (spent < budget) {
305 if (ef4_channel_has_rx_queue(channel) &&
306 efx->irq_rx_adaptive &&
307 unlikely(++channel->irq_count == 1000)) {
308 ef4_update_irq_mod(efx, channel);
309 }
310
311 ef4_filter_rfs_expire(channel);
312
313 /* There is no race here; although napi_disable() will
314 * only wait for napi_complete(), this isn't a problem
315 * since ef4_nic_eventq_read_ack() will have no effect if
316 * interrupts have already been disabled.
317 */
318 napi_complete_done(napi, spent);
319 ef4_nic_eventq_read_ack(channel);
320 }
321
322 return spent;
323}
324
325/* Create event queue
326 * Event queue memory allocations are done only once. If the channel
327 * is reset, the memory buffer will be reused; this guards against
328 * errors during channel reset and also simplifies interrupt handling.
329 */
330static int ef4_probe_eventq(struct ef4_channel *channel)
331{
332 struct ef4_nic *efx = channel->efx;
333 unsigned long entries;
334
335 netif_dbg(efx, probe, efx->net_dev,
336 "chan %d create event queue\n", channel->channel);
337
338 /* Build an event queue with room for one event per tx and rx buffer,
339 * plus some extra for link state events and MCDI completions. */
340 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
341 EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
342 channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
343
344 return ef4_nic_probe_eventq(channel);
345}
346
347/* Prepare channel's event queue */
348static int ef4_init_eventq(struct ef4_channel *channel)
349{
350 struct ef4_nic *efx = channel->efx;
351 int rc;
352
353 EF4_WARN_ON_PARANOID(channel->eventq_init);
354
355 netif_dbg(efx, drv, efx->net_dev,
356 "chan %d init event queue\n", channel->channel);
357
358 rc = ef4_nic_init_eventq(channel);
359 if (rc == 0) {
360 efx->type->push_irq_moderation(channel);
361 channel->eventq_read_ptr = 0;
362 channel->eventq_init = true;
363 }
364 return rc;
365}
366
367/* Enable event queue processing and NAPI */
368void ef4_start_eventq(struct ef4_channel *channel)
369{
370 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
371 "chan %d start event queue\n", channel->channel);
372
373 /* Make sure the NAPI handler sees the enabled flag set */
374 channel->enabled = true;
375 smp_wmb();
376
377 napi_enable(&channel->napi_str);
378 ef4_nic_eventq_read_ack(channel);
379}
380
381/* Disable event queue processing and NAPI */
382void ef4_stop_eventq(struct ef4_channel *channel)
383{
384 if (!channel->enabled)
385 return;
386
387 napi_disable(&channel->napi_str);
388 channel->enabled = false;
389}
390
391static void ef4_fini_eventq(struct ef4_channel *channel)
392{
393 if (!channel->eventq_init)
394 return;
395
396 netif_dbg(channel->efx, drv, channel->efx->net_dev,
397 "chan %d fini event queue\n", channel->channel);
398
399 ef4_nic_fini_eventq(channel);
400 channel->eventq_init = false;
401}
402
403static void ef4_remove_eventq(struct ef4_channel *channel)
404{
405 netif_dbg(channel->efx, drv, channel->efx->net_dev,
406 "chan %d remove event queue\n", channel->channel);
407
408 ef4_nic_remove_eventq(channel);
409}
410
411/**************************************************************************
412 *
413 * Channel handling
414 *
415 *************************************************************************/
416
417/* Allocate and initialise a channel structure. */
418static struct ef4_channel *
419ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
420{
421 struct ef4_channel *channel;
422 struct ef4_rx_queue *rx_queue;
423 struct ef4_tx_queue *tx_queue;
424 int j;
425
426 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
427 if (!channel)
428 return NULL;
429
430 channel->efx = efx;
431 channel->channel = i;
432 channel->type = &ef4_default_channel_type;
433
434 for (j = 0; j < EF4_TXQ_TYPES; j++) {
435 tx_queue = &channel->tx_queue[j];
436 tx_queue->efx = efx;
437 tx_queue->queue = i * EF4_TXQ_TYPES + j;
438 tx_queue->channel = channel;
439 }
440
441 rx_queue = &channel->rx_queue;
442 rx_queue->efx = efx;
443 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
444
445 return channel;
446}
447
448/* Allocate and initialise a channel structure, copying parameters
449 * (but not resources) from an old channel structure.
450 */
451static struct ef4_channel *
452ef4_copy_channel(const struct ef4_channel *old_channel)
453{
454 struct ef4_channel *channel;
455 struct ef4_rx_queue *rx_queue;
456 struct ef4_tx_queue *tx_queue;
457 int j;
458
459 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
460 if (!channel)
461 return NULL;
462
463 *channel = *old_channel;
464
465 channel->napi_dev = NULL;
466 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
467 channel->napi_str.napi_id = 0;
468 channel->napi_str.state = 0;
469 memset(&channel->eventq, 0, sizeof(channel->eventq));
470
471 for (j = 0; j < EF4_TXQ_TYPES; j++) {
472 tx_queue = &channel->tx_queue[j];
473 if (tx_queue->channel)
474 tx_queue->channel = channel;
475 tx_queue->buffer = NULL;
476 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
477 }
478
479 rx_queue = &channel->rx_queue;
480 rx_queue->buffer = NULL;
481 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
482 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
483
484 return channel;
485}
486
487static int ef4_probe_channel(struct ef4_channel *channel)
488{
489 struct ef4_tx_queue *tx_queue;
490 struct ef4_rx_queue *rx_queue;
491 int rc;
492
493 netif_dbg(channel->efx, probe, channel->efx->net_dev,
494 "creating channel %d\n", channel->channel);
495
496 rc = channel->type->pre_probe(channel);
497 if (rc)
498 goto fail;
499
500 rc = ef4_probe_eventq(channel);
501 if (rc)
502 goto fail;
503
504 ef4_for_each_channel_tx_queue(tx_queue, channel) {
505 rc = ef4_probe_tx_queue(tx_queue);
506 if (rc)
507 goto fail;
508 }
509
510 ef4_for_each_channel_rx_queue(rx_queue, channel) {
511 rc = ef4_probe_rx_queue(rx_queue);
512 if (rc)
513 goto fail;
514 }
515
516 return 0;
517
518fail:
519 ef4_remove_channel(channel);
520 return rc;
521}
522
523static void
524ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
525{
526 struct ef4_nic *efx = channel->efx;
527 const char *type;
528 int number;
529
530 number = channel->channel;
531 if (efx->tx_channel_offset == 0) {
532 type = "";
533 } else if (channel->channel < efx->tx_channel_offset) {
534 type = "-rx";
535 } else {
536 type = "-tx";
537 number -= efx->tx_channel_offset;
538 }
539 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
540}
541
542static void ef4_set_channel_names(struct ef4_nic *efx)
543{
544 struct ef4_channel *channel;
545
546 ef4_for_each_channel(channel, efx)
547 channel->type->get_name(channel,
548 efx->msi_context[channel->channel].name,
549 sizeof(efx->msi_context[0].name));
550}
551
552static int ef4_probe_channels(struct ef4_nic *efx)
553{
554 struct ef4_channel *channel;
555 int rc;
556
557 /* Restart special buffer allocation */
558 efx->next_buffer_table = 0;
559
560 /* Probe channels in reverse, so that any 'extra' channels
561 * use the start of the buffer table. This allows the traffic
562 * channels to be resized without moving them or wasting the
563 * entries before them.
564 */
565 ef4_for_each_channel_rev(channel, efx) {
566 rc = ef4_probe_channel(channel);
567 if (rc) {
568 netif_err(efx, probe, efx->net_dev,
569 "failed to create channel %d\n",
570 channel->channel);
571 goto fail;
572 }
573 }
574 ef4_set_channel_names(efx);
575
576 return 0;
577
578fail:
579 ef4_remove_channels(efx);
580 return rc;
581}
582
583/* Channels are shutdown and reinitialised whilst the NIC is running
584 * to propagate configuration changes (mtu, checksum offload), or
585 * to clear hardware error conditions
586 */
587static void ef4_start_datapath(struct ef4_nic *efx)
588{
589 netdev_features_t old_features = efx->net_dev->features;
590 bool old_rx_scatter = efx->rx_scatter;
591 struct ef4_tx_queue *tx_queue;
592 struct ef4_rx_queue *rx_queue;
593 struct ef4_channel *channel;
594 size_t rx_buf_len;
595
596 /* Calculate the rx buffer allocation parameters required to
597 * support the current MTU, including padding for header
598 * alignment and overruns.
599 */
600 efx->rx_dma_len = (efx->rx_prefix_size +
601 EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
602 efx->type->rx_buffer_padding);
603 rx_buf_len = (sizeof(struct ef4_rx_page_state) +
604 efx->rx_ip_align + efx->rx_dma_len);
605 if (rx_buf_len <= PAGE_SIZE) {
606 efx->rx_scatter = efx->type->always_rx_scatter;
607 efx->rx_buffer_order = 0;
608 } else if (efx->type->can_rx_scatter) {
609 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
610 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
611 2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
612 EF4_RX_BUF_ALIGNMENT) >
613 PAGE_SIZE);
614 efx->rx_scatter = true;
615 efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
616 efx->rx_buffer_order = 0;
617 } else {
618 efx->rx_scatter = false;
619 efx->rx_buffer_order = get_order(rx_buf_len);
620 }
621
622 ef4_rx_config_page_split(efx);
623 if (efx->rx_buffer_order)
624 netif_dbg(efx, drv, efx->net_dev,
625 "RX buf len=%u; page order=%u batch=%u\n",
626 efx->rx_dma_len, efx->rx_buffer_order,
627 efx->rx_pages_per_batch);
628 else
629 netif_dbg(efx, drv, efx->net_dev,
630 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
631 efx->rx_dma_len, efx->rx_page_buf_step,
632 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
633
634 /* Restore previously fixed features in hw_features and remove
635 * features which are fixed now
636 */
637 efx->net_dev->hw_features |= efx->net_dev->features;
638 efx->net_dev->hw_features &= ~efx->fixed_features;
639 efx->net_dev->features |= efx->fixed_features;
640 if (efx->net_dev->features != old_features)
641 netdev_features_change(efx->net_dev);
642
643 /* RX filters may also have scatter-enabled flags */
644 if (efx->rx_scatter != old_rx_scatter)
645 efx->type->filter_update_rx_scatter(efx);
646
647 /* We must keep at least one descriptor in a TX ring empty.
648 * We could avoid this when the queue size does not exactly
649 * match the hardware ring size, but it's not that important.
650 * Therefore we stop the queue when one more skb might fill
651 * the ring completely. We wake it when half way back to
652 * empty.
653 */
654 efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
655 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
656
657 /* Initialise the channels */
658 ef4_for_each_channel(channel, efx) {
659 ef4_for_each_channel_tx_queue(tx_queue, channel) {
660 ef4_init_tx_queue(tx_queue);
661 atomic_inc(&efx->active_queues);
662 }
663
664 ef4_for_each_channel_rx_queue(rx_queue, channel) {
665 ef4_init_rx_queue(rx_queue);
666 atomic_inc(&efx->active_queues);
667 ef4_stop_eventq(channel);
668 ef4_fast_push_rx_descriptors(rx_queue, false);
669 ef4_start_eventq(channel);
670 }
671
672 WARN_ON(channel->rx_pkt_n_frags);
673 }
674
675 if (netif_device_present(efx->net_dev))
676 netif_tx_wake_all_queues(efx->net_dev);
677}
678
679static void ef4_stop_datapath(struct ef4_nic *efx)
680{
681 struct ef4_channel *channel;
682 struct ef4_tx_queue *tx_queue;
683 struct ef4_rx_queue *rx_queue;
684 int rc;
685
686 EF4_ASSERT_RESET_SERIALISED(efx);
687 BUG_ON(efx->port_enabled);
688
689 /* Stop RX refill */
690 ef4_for_each_channel(channel, efx) {
691 ef4_for_each_channel_rx_queue(rx_queue, channel)
692 rx_queue->refill_enabled = false;
693 }
694
695 ef4_for_each_channel(channel, efx) {
696 /* RX packet processing is pipelined, so wait for the
697 * NAPI handler to complete. At least event queue 0
698 * might be kept active by non-data events, so don't
699 * use napi_synchronize() but actually disable NAPI
700 * temporarily.
701 */
702 if (ef4_channel_has_rx_queue(channel)) {
703 ef4_stop_eventq(channel);
704 ef4_start_eventq(channel);
705 }
706 }
707
708 rc = efx->type->fini_dmaq(efx);
709 if (rc && EF4_WORKAROUND_7803(efx)) {
710 /* Schedule a reset to recover from the flush failure. The
711 * descriptor caches reference memory we're about to free,
712 * but falcon_reconfigure_mac_wrapper() won't reconnect
713 * the MACs because of the pending reset.
714 */
715 netif_err(efx, drv, efx->net_dev,
716 "Resetting to recover from flush failure\n");
717 ef4_schedule_reset(efx, RESET_TYPE_ALL);
718 } else if (rc) {
719 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
720 } else {
721 netif_dbg(efx, drv, efx->net_dev,
722 "successfully flushed all queues\n");
723 }
724
725 ef4_for_each_channel(channel, efx) {
726 ef4_for_each_channel_rx_queue(rx_queue, channel)
727 ef4_fini_rx_queue(rx_queue);
728 ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
729 ef4_fini_tx_queue(tx_queue);
730 }
731}
732
733static void ef4_remove_channel(struct ef4_channel *channel)
734{
735 struct ef4_tx_queue *tx_queue;
736 struct ef4_rx_queue *rx_queue;
737
738 netif_dbg(channel->efx, drv, channel->efx->net_dev,
739 "destroy chan %d\n", channel->channel);
740
741 ef4_for_each_channel_rx_queue(rx_queue, channel)
742 ef4_remove_rx_queue(rx_queue);
743 ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
744 ef4_remove_tx_queue(tx_queue);
745 ef4_remove_eventq(channel);
746 channel->type->post_remove(channel);
747}
748
749static void ef4_remove_channels(struct ef4_nic *efx)
750{
751 struct ef4_channel *channel;
752
753 ef4_for_each_channel(channel, efx)
754 ef4_remove_channel(channel);
755}
756
757int
758ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
759{
760 struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
761 u32 old_rxq_entries, old_txq_entries;
762 unsigned i, next_buffer_table = 0;
763 int rc, rc2;
764
765 rc = ef4_check_disabled(efx);
766 if (rc)
767 return rc;
768
769 /* Not all channels should be reallocated. We must avoid
770 * reallocating their buffer table entries.
771 */
772 ef4_for_each_channel(channel, efx) {
773 struct ef4_rx_queue *rx_queue;
774 struct ef4_tx_queue *tx_queue;
775
776 if (channel->type->copy)
777 continue;
778 next_buffer_table = max(next_buffer_table,
779 channel->eventq.index +
780 channel->eventq.entries);
781 ef4_for_each_channel_rx_queue(rx_queue, channel)
782 next_buffer_table = max(next_buffer_table,
783 rx_queue->rxd.index +
784 rx_queue->rxd.entries);
785 ef4_for_each_channel_tx_queue(tx_queue, channel)
786 next_buffer_table = max(next_buffer_table,
787 tx_queue->txd.index +
788 tx_queue->txd.entries);
789 }
790
791 ef4_device_detach_sync(efx);
792 ef4_stop_all(efx);
793 ef4_soft_disable_interrupts(efx);
794
795 /* Clone channels (where possible) */
796 memset(other_channel, 0, sizeof(other_channel));
797 for (i = 0; i < efx->n_channels; i++) {
798 channel = efx->channel[i];
799 if (channel->type->copy)
800 channel = channel->type->copy(channel);
801 if (!channel) {
802 rc = -ENOMEM;
803 goto out;
804 }
805 other_channel[i] = channel;
806 }
807
808 /* Swap entry counts and channel pointers */
809 old_rxq_entries = efx->rxq_entries;
810 old_txq_entries = efx->txq_entries;
811 efx->rxq_entries = rxq_entries;
812 efx->txq_entries = txq_entries;
813 for (i = 0; i < efx->n_channels; i++) {
814 swap(efx->channel[i], other_channel[i]);
815 }
816
817 /* Restart buffer table allocation */
818 efx->next_buffer_table = next_buffer_table;
819
820 for (i = 0; i < efx->n_channels; i++) {
821 channel = efx->channel[i];
822 if (!channel->type->copy)
823 continue;
824 rc = ef4_probe_channel(channel);
825 if (rc)
826 goto rollback;
827 ef4_init_napi_channel(efx->channel[i]);
828 }
829
830out:
831 /* Destroy unused channel structures */
832 for (i = 0; i < efx->n_channels; i++) {
833 channel = other_channel[i];
834 if (channel && channel->type->copy) {
835 ef4_fini_napi_channel(channel);
836 ef4_remove_channel(channel);
837 kfree(channel);
838 }
839 }
840
841 rc2 = ef4_soft_enable_interrupts(efx);
842 if (rc2) {
843 rc = rc ? rc : rc2;
844 netif_err(efx, drv, efx->net_dev,
845 "unable to restart interrupts on channel reallocation\n");
846 ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
847 } else {
848 ef4_start_all(efx);
849 netif_device_attach(efx->net_dev);
850 }
851 return rc;
852
853rollback:
854 /* Swap back */
855 efx->rxq_entries = old_rxq_entries;
856 efx->txq_entries = old_txq_entries;
857 for (i = 0; i < efx->n_channels; i++) {
858 swap(efx->channel[i], other_channel[i]);
859 }
860 goto out;
861}
862
863void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
864{
865 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
866}
867
868static const struct ef4_channel_type ef4_default_channel_type = {
869 .pre_probe = ef4_channel_dummy_op_int,
870 .post_remove = ef4_channel_dummy_op_void,
871 .get_name = ef4_get_channel_name,
872 .copy = ef4_copy_channel,
873 .keep_eventq = false,
874};
875
876int ef4_channel_dummy_op_int(struct ef4_channel *channel)
877{
878 return 0;
879}
880
881void ef4_channel_dummy_op_void(struct ef4_channel *channel)
882{
883}
884
885/**************************************************************************
886 *
887 * Port handling
888 *
889 **************************************************************************/
890
891/* This ensures that the kernel is kept informed (via
892 * netif_carrier_on/off) of the link status, and also maintains the
893 * link status's stop on the port's TX queue.
894 */
895void ef4_link_status_changed(struct ef4_nic *efx)
896{
897 struct ef4_link_state *link_state = &efx->link_state;
898
899 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
900 * that no events are triggered between unregister_netdev() and the
901 * driver unloading. A more general condition is that NETDEV_CHANGE
902 * can only be generated between NETDEV_UP and NETDEV_DOWN */
903 if (!netif_running(efx->net_dev))
904 return;
905
906 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
907 efx->n_link_state_changes++;
908
909 if (link_state->up)
910 netif_carrier_on(efx->net_dev);
911 else
912 netif_carrier_off(efx->net_dev);
913 }
914
915 /* Status message for kernel log */
916 if (link_state->up)
917 netif_info(efx, link, efx->net_dev,
918 "link up at %uMbps %s-duplex (MTU %d)\n",
919 link_state->speed, link_state->fd ? "full" : "half",
920 efx->net_dev->mtu);
921 else
922 netif_info(efx, link, efx->net_dev, "link down\n");
923}
924
925void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
926{
927 efx->link_advertising = advertising;
928 if (advertising) {
929 if (advertising & ADVERTISED_Pause)
930 efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
931 else
932 efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
933 if (advertising & ADVERTISED_Asym_Pause)
934 efx->wanted_fc ^= EF4_FC_TX;
935 }
936}
937
938void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
939{
940 efx->wanted_fc = wanted_fc;
941 if (efx->link_advertising) {
942 if (wanted_fc & EF4_FC_RX)
943 efx->link_advertising |= (ADVERTISED_Pause |
944 ADVERTISED_Asym_Pause);
945 else
946 efx->link_advertising &= ~(ADVERTISED_Pause |
947 ADVERTISED_Asym_Pause);
948 if (wanted_fc & EF4_FC_TX)
949 efx->link_advertising ^= ADVERTISED_Asym_Pause;
950 }
951}
952
953static void ef4_fini_port(struct ef4_nic *efx);
954
955/* We assume that efx->type->reconfigure_mac will always try to sync RX
956 * filters and therefore needs to read-lock the filter table against freeing
957 */
958void ef4_mac_reconfigure(struct ef4_nic *efx)
959{
960 down_read(&efx->filter_sem);
961 efx->type->reconfigure_mac(efx);
962 up_read(&efx->filter_sem);
963}
964
965/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
966 * the MAC appropriately. All other PHY configuration changes are pushed
967 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
968 * through ef4_monitor().
969 *
970 * Callers must hold the mac_lock
971 */
972int __ef4_reconfigure_port(struct ef4_nic *efx)
973{
974 enum ef4_phy_mode phy_mode;
975 int rc;
976
977 WARN_ON(!mutex_is_locked(&efx->mac_lock));
978
979 /* Disable PHY transmit in mac level loopbacks */
980 phy_mode = efx->phy_mode;
981 if (LOOPBACK_INTERNAL(efx))
982 efx->phy_mode |= PHY_MODE_TX_DISABLED;
983 else
984 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
985
986 rc = efx->type->reconfigure_port(efx);
987
988 if (rc)
989 efx->phy_mode = phy_mode;
990
991 return rc;
992}
993
994/* Reinitialise the MAC to pick up new PHY settings, even if the port is
995 * disabled. */
996int ef4_reconfigure_port(struct ef4_nic *efx)
997{
998 int rc;
999
1000 EF4_ASSERT_RESET_SERIALISED(efx);
1001
1002 mutex_lock(&efx->mac_lock);
1003 rc = __ef4_reconfigure_port(efx);
1004 mutex_unlock(&efx->mac_lock);
1005
1006 return rc;
1007}
1008
1009/* Asynchronous work item for changing MAC promiscuity and multicast
1010 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1011 * MAC directly. */
1012static void ef4_mac_work(struct work_struct *data)
1013{
1014 struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1015
1016 mutex_lock(&efx->mac_lock);
1017 if (efx->port_enabled)
1018 ef4_mac_reconfigure(efx);
1019 mutex_unlock(&efx->mac_lock);
1020}
1021
1022static int ef4_probe_port(struct ef4_nic *efx)
1023{
1024 int rc;
1025
1026 netif_dbg(efx, probe, efx->net_dev, "create port\n");
1027
1028 if (phy_flash_cfg)
1029 efx->phy_mode = PHY_MODE_SPECIAL;
1030
1031 /* Connect up MAC/PHY operations table */
1032 rc = efx->type->probe_port(efx);
1033 if (rc)
1034 return rc;
1035
1036 /* Initialise MAC address to permanent address */
1037 eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
1038
1039 return 0;
1040}
1041
1042static int ef4_init_port(struct ef4_nic *efx)
1043{
1044 int rc;
1045
1046 netif_dbg(efx, drv, efx->net_dev, "init port\n");
1047
1048 mutex_lock(&efx->mac_lock);
1049
1050 rc = efx->phy_op->init(efx);
1051 if (rc)
1052 goto fail1;
1053
1054 efx->port_initialized = true;
1055
1056 /* Reconfigure the MAC before creating dma queues (required for
1057 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1058 ef4_mac_reconfigure(efx);
1059
1060 /* Ensure the PHY advertises the correct flow control settings */
1061 rc = efx->phy_op->reconfigure(efx);
1062 if (rc && rc != -EPERM)
1063 goto fail2;
1064
1065 mutex_unlock(&efx->mac_lock);
1066 return 0;
1067
1068fail2:
1069 efx->phy_op->fini(efx);
1070fail1:
1071 mutex_unlock(&efx->mac_lock);
1072 return rc;
1073}
1074
1075static void ef4_start_port(struct ef4_nic *efx)
1076{
1077 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1078 BUG_ON(efx->port_enabled);
1079
1080 mutex_lock(&efx->mac_lock);
1081 efx->port_enabled = true;
1082
1083 /* Ensure MAC ingress/egress is enabled */
1084 ef4_mac_reconfigure(efx);
1085
1086 mutex_unlock(&efx->mac_lock);
1087}
1088
1089/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1090 * and the async self-test, wait for them to finish and prevent them
1091 * being scheduled again. This doesn't cover online resets, which
1092 * should only be cancelled when removing the device.
1093 */
1094static void ef4_stop_port(struct ef4_nic *efx)
1095{
1096 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1097
1098 EF4_ASSERT_RESET_SERIALISED(efx);
1099
1100 mutex_lock(&efx->mac_lock);
1101 efx->port_enabled = false;
1102 mutex_unlock(&efx->mac_lock);
1103
1104 /* Serialise against ef4_set_multicast_list() */
1105 netif_addr_lock_bh(efx->net_dev);
1106 netif_addr_unlock_bh(efx->net_dev);
1107
1108 cancel_delayed_work_sync(&efx->monitor_work);
1109 ef4_selftest_async_cancel(efx);
1110 cancel_work_sync(&efx->mac_work);
1111}
1112
1113static void ef4_fini_port(struct ef4_nic *efx)
1114{
1115 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1116
1117 if (!efx->port_initialized)
1118 return;
1119
1120 efx->phy_op->fini(efx);
1121 efx->port_initialized = false;
1122
1123 efx->link_state.up = false;
1124 ef4_link_status_changed(efx);
1125}
1126
1127static void ef4_remove_port(struct ef4_nic *efx)
1128{
1129 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1130
1131 efx->type->remove_port(efx);
1132}
1133
1134/**************************************************************************
1135 *
1136 * NIC handling
1137 *
1138 **************************************************************************/
1139
1140static LIST_HEAD(ef4_primary_list);
1141static LIST_HEAD(ef4_unassociated_list);
1142
1143static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1144{
1145 return left->type == right->type &&
1146 left->vpd_sn && right->vpd_sn &&
1147 !strcmp(left->vpd_sn, right->vpd_sn);
1148}
1149
1150static void ef4_associate(struct ef4_nic *efx)
1151{
1152 struct ef4_nic *other, *next;
1153
1154 if (efx->primary == efx) {
1155 /* Adding primary function; look for secondaries */
1156
1157 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1158 list_add_tail(&efx->node, &ef4_primary_list);
1159
1160 list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1161 node) {
1162 if (ef4_same_controller(efx, other)) {
1163 list_del(&other->node);
1164 netif_dbg(other, probe, other->net_dev,
1165 "moving to secondary list of %s %s\n",
1166 pci_name(efx->pci_dev),
1167 efx->net_dev->name);
1168 list_add_tail(&other->node,
1169 &efx->secondary_list);
1170 other->primary = efx;
1171 }
1172 }
1173 } else {
1174 /* Adding secondary function; look for primary */
1175
1176 list_for_each_entry(other, &ef4_primary_list, node) {
1177 if (ef4_same_controller(efx, other)) {
1178 netif_dbg(efx, probe, efx->net_dev,
1179 "adding to secondary list of %s %s\n",
1180 pci_name(other->pci_dev),
1181 other->net_dev->name);
1182 list_add_tail(&efx->node,
1183 &other->secondary_list);
1184 efx->primary = other;
1185 return;
1186 }
1187 }
1188
1189 netif_dbg(efx, probe, efx->net_dev,
1190 "adding to unassociated list\n");
1191 list_add_tail(&efx->node, &ef4_unassociated_list);
1192 }
1193}
1194
1195static void ef4_dissociate(struct ef4_nic *efx)
1196{
1197 struct ef4_nic *other, *next;
1198
1199 list_del(&efx->node);
1200 efx->primary = NULL;
1201
1202 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1203 list_del(&other->node);
1204 netif_dbg(other, probe, other->net_dev,
1205 "moving to unassociated list\n");
1206 list_add_tail(&other->node, &ef4_unassociated_list);
1207 other->primary = NULL;
1208 }
1209}
1210
1211/* This configures the PCI device to enable I/O and DMA. */
1212static int ef4_init_io(struct ef4_nic *efx)
1213{
1214 struct pci_dev *pci_dev = efx->pci_dev;
1215 dma_addr_t dma_mask = efx->type->max_dma_mask;
1216 unsigned int mem_map_size = efx->type->mem_map_size(efx);
1217 int rc, bar;
1218
1219 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1220
1221 bar = efx->type->mem_bar;
1222
1223 rc = pci_enable_device(pci_dev);
1224 if (rc) {
1225 netif_err(efx, probe, efx->net_dev,
1226 "failed to enable PCI device\n");
1227 goto fail1;
1228 }
1229
1230 pci_set_master(pci_dev);
1231
1232 /* Set the PCI DMA mask. Try all possibilities from our genuine mask
1233 * down to 32 bits, because some architectures will allow 40 bit
1234 * masks event though they reject 46 bit masks.
1235 */
1236 while (dma_mask > 0x7fffffffUL) {
1237 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1238 if (rc == 0)
1239 break;
1240 dma_mask >>= 1;
1241 }
1242 if (rc) {
1243 netif_err(efx, probe, efx->net_dev,
1244 "could not find a suitable DMA mask\n");
1245 goto fail2;
1246 }
1247 netif_dbg(efx, probe, efx->net_dev,
1248 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1249
1250 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1251 rc = pci_request_region(pci_dev, bar, "sfc");
1252 if (rc) {
1253 netif_err(efx, probe, efx->net_dev,
1254 "request for memory BAR failed\n");
1255 rc = -EIO;
1256 goto fail3;
1257 }
1258 efx->membase = ioremap(efx->membase_phys, mem_map_size);
1259 if (!efx->membase) {
1260 netif_err(efx, probe, efx->net_dev,
1261 "could not map memory BAR at %llx+%x\n",
1262 (unsigned long long)efx->membase_phys, mem_map_size);
1263 rc = -ENOMEM;
1264 goto fail4;
1265 }
1266 netif_dbg(efx, probe, efx->net_dev,
1267 "memory BAR at %llx+%x (virtual %p)\n",
1268 (unsigned long long)efx->membase_phys, mem_map_size,
1269 efx->membase);
1270
1271 return 0;
1272
1273 fail4:
1274 pci_release_region(efx->pci_dev, bar);
1275 fail3:
1276 efx->membase_phys = 0;
1277 fail2:
1278 pci_disable_device(efx->pci_dev);
1279 fail1:
1280 return rc;
1281}
1282
1283static void ef4_fini_io(struct ef4_nic *efx)
1284{
1285 int bar;
1286
1287 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1288
1289 if (efx->membase) {
1290 iounmap(efx->membase);
1291 efx->membase = NULL;
1292 }
1293
1294 if (efx->membase_phys) {
1295 bar = efx->type->mem_bar;
1296 pci_release_region(efx->pci_dev, bar);
1297 efx->membase_phys = 0;
1298 }
1299
1300 /* Don't disable bus-mastering if VFs are assigned */
1301 if (!pci_vfs_assigned(efx->pci_dev))
1302 pci_disable_device(efx->pci_dev);
1303}
1304
1305void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1306{
1307 size_t i;
1308
1309 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1310 efx->rx_indir_table[i] =
1311 ethtool_rxfh_indir_default(i, efx->rss_spread);
1312}
1313
1314static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1315{
1316 cpumask_var_t thread_mask;
1317 unsigned int count;
1318 int cpu;
1319
1320 if (rss_cpus) {
1321 count = rss_cpus;
1322 } else {
1323 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1324 netif_warn(efx, probe, efx->net_dev,
1325 "RSS disabled due to allocation failure\n");
1326 return 1;
1327 }
1328
1329 count = 0;
1330 for_each_online_cpu(cpu) {
1331 if (!cpumask_test_cpu(cpu, thread_mask)) {
1332 ++count;
1333 cpumask_or(thread_mask, thread_mask,
1334 topology_sibling_cpumask(cpu));
1335 }
1336 }
1337
1338 free_cpumask_var(thread_mask);
1339 }
1340
1341 if (count > EF4_MAX_RX_QUEUES) {
1342 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1343 "Reducing number of rx queues from %u to %u.\n",
1344 count, EF4_MAX_RX_QUEUES);
1345 count = EF4_MAX_RX_QUEUES;
1346 }
1347
1348 return count;
1349}
1350
1351/* Probe the number and type of interrupts we are able to obtain, and
1352 * the resulting numbers of channels and RX queues.
1353 */
1354static int ef4_probe_interrupts(struct ef4_nic *efx)
1355{
1356 unsigned int extra_channels = 0;
1357 unsigned int i, j;
1358 int rc;
1359
1360 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1361 if (efx->extra_channel_type[i])
1362 ++extra_channels;
1363
1364 if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1365 struct msix_entry xentries[EF4_MAX_CHANNELS];
1366 unsigned int n_channels;
1367
1368 n_channels = ef4_wanted_parallelism(efx);
1369 if (ef4_separate_tx_channels)
1370 n_channels *= 2;
1371 n_channels += extra_channels;
1372 n_channels = min(n_channels, efx->max_channels);
1373
1374 for (i = 0; i < n_channels; i++)
1375 xentries[i].entry = i;
1376 rc = pci_enable_msix_range(efx->pci_dev,
1377 xentries, 1, n_channels);
1378 if (rc < 0) {
1379 /* Fall back to single channel MSI */
1380 efx->interrupt_mode = EF4_INT_MODE_MSI;
1381 netif_err(efx, drv, efx->net_dev,
1382 "could not enable MSI-X\n");
1383 } else if (rc < n_channels) {
1384 netif_err(efx, drv, efx->net_dev,
1385 "WARNING: Insufficient MSI-X vectors"
1386 " available (%d < %u).\n", rc, n_channels);
1387 netif_err(efx, drv, efx->net_dev,
1388 "WARNING: Performance may be reduced.\n");
1389 n_channels = rc;
1390 }
1391
1392 if (rc > 0) {
1393 efx->n_channels = n_channels;
1394 if (n_channels > extra_channels)
1395 n_channels -= extra_channels;
1396 if (ef4_separate_tx_channels) {
1397 efx->n_tx_channels = min(max(n_channels / 2,
1398 1U),
1399 efx->max_tx_channels);
1400 efx->n_rx_channels = max(n_channels -
1401 efx->n_tx_channels,
1402 1U);
1403 } else {
1404 efx->n_tx_channels = min(n_channels,
1405 efx->max_tx_channels);
1406 efx->n_rx_channels = n_channels;
1407 }
1408 for (i = 0; i < efx->n_channels; i++)
1409 ef4_get_channel(efx, i)->irq =
1410 xentries[i].vector;
1411 }
1412 }
1413
1414 /* Try single interrupt MSI */
1415 if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1416 efx->n_channels = 1;
1417 efx->n_rx_channels = 1;
1418 efx->n_tx_channels = 1;
1419 rc = pci_enable_msi(efx->pci_dev);
1420 if (rc == 0) {
1421 ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1422 } else {
1423 netif_err(efx, drv, efx->net_dev,
1424 "could not enable MSI\n");
1425 efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1426 }
1427 }
1428
1429 /* Assume legacy interrupts */
1430 if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1431 efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1432 efx->n_rx_channels = 1;
1433 efx->n_tx_channels = 1;
1434 efx->legacy_irq = efx->pci_dev->irq;
1435 }
1436
1437 /* Assign extra channels if possible */
1438 j = efx->n_channels;
1439 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1440 if (!efx->extra_channel_type[i])
1441 continue;
1442 if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1443 efx->n_channels <= extra_channels) {
1444 efx->extra_channel_type[i]->handle_no_channel(efx);
1445 } else {
1446 --j;
1447 ef4_get_channel(efx, j)->type =
1448 efx->extra_channel_type[i];
1449 }
1450 }
1451
1452 efx->rss_spread = efx->n_rx_channels;
1453
1454 return 0;
1455}
1456
1457static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1458{
1459 struct ef4_channel *channel, *end_channel;
1460 int rc;
1461
1462 BUG_ON(efx->state == STATE_DISABLED);
1463
1464 efx->irq_soft_enabled = true;
1465 smp_wmb();
1466
1467 ef4_for_each_channel(channel, efx) {
1468 if (!channel->type->keep_eventq) {
1469 rc = ef4_init_eventq(channel);
1470 if (rc)
1471 goto fail;
1472 }
1473 ef4_start_eventq(channel);
1474 }
1475
1476 return 0;
1477fail:
1478 end_channel = channel;
1479 ef4_for_each_channel(channel, efx) {
1480 if (channel == end_channel)
1481 break;
1482 ef4_stop_eventq(channel);
1483 if (!channel->type->keep_eventq)
1484 ef4_fini_eventq(channel);
1485 }
1486
1487 return rc;
1488}
1489
1490static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1491{
1492 struct ef4_channel *channel;
1493
1494 if (efx->state == STATE_DISABLED)
1495 return;
1496
1497 efx->irq_soft_enabled = false;
1498 smp_wmb();
1499
1500 if (efx->legacy_irq)
1501 synchronize_irq(efx->legacy_irq);
1502
1503 ef4_for_each_channel(channel, efx) {
1504 if (channel->irq)
1505 synchronize_irq(channel->irq);
1506
1507 ef4_stop_eventq(channel);
1508 if (!channel->type->keep_eventq)
1509 ef4_fini_eventq(channel);
1510 }
1511}
1512
1513static int ef4_enable_interrupts(struct ef4_nic *efx)
1514{
1515 struct ef4_channel *channel, *end_channel;
1516 int rc;
1517
1518 BUG_ON(efx->state == STATE_DISABLED);
1519
1520 if (efx->eeh_disabled_legacy_irq) {
1521 enable_irq(efx->legacy_irq);
1522 efx->eeh_disabled_legacy_irq = false;
1523 }
1524
1525 efx->type->irq_enable_master(efx);
1526
1527 ef4_for_each_channel(channel, efx) {
1528 if (channel->type->keep_eventq) {
1529 rc = ef4_init_eventq(channel);
1530 if (rc)
1531 goto fail;
1532 }
1533 }
1534
1535 rc = ef4_soft_enable_interrupts(efx);
1536 if (rc)
1537 goto fail;
1538
1539 return 0;
1540
1541fail:
1542 end_channel = channel;
1543 ef4_for_each_channel(channel, efx) {
1544 if (channel == end_channel)
1545 break;
1546 if (channel->type->keep_eventq)
1547 ef4_fini_eventq(channel);
1548 }
1549
1550 efx->type->irq_disable_non_ev(efx);
1551
1552 return rc;
1553}
1554
1555static void ef4_disable_interrupts(struct ef4_nic *efx)
1556{
1557 struct ef4_channel *channel;
1558
1559 ef4_soft_disable_interrupts(efx);
1560
1561 ef4_for_each_channel(channel, efx) {
1562 if (channel->type->keep_eventq)
1563 ef4_fini_eventq(channel);
1564 }
1565
1566 efx->type->irq_disable_non_ev(efx);
1567}
1568
1569static void ef4_remove_interrupts(struct ef4_nic *efx)
1570{
1571 struct ef4_channel *channel;
1572
1573 /* Remove MSI/MSI-X interrupts */
1574 ef4_for_each_channel(channel, efx)
1575 channel->irq = 0;
1576 pci_disable_msi(efx->pci_dev);
1577 pci_disable_msix(efx->pci_dev);
1578
1579 /* Remove legacy interrupt */
1580 efx->legacy_irq = 0;
1581}
1582
1583static void ef4_set_channels(struct ef4_nic *efx)
1584{
1585 struct ef4_channel *channel;
1586 struct ef4_tx_queue *tx_queue;
1587
1588 efx->tx_channel_offset =
1589 ef4_separate_tx_channels ?
1590 efx->n_channels - efx->n_tx_channels : 0;
1591
1592 /* We need to mark which channels really have RX and TX
1593 * queues, and adjust the TX queue numbers if we have separate
1594 * RX-only and TX-only channels.
1595 */
1596 ef4_for_each_channel(channel, efx) {
1597 if (channel->channel < efx->n_rx_channels)
1598 channel->rx_queue.core_index = channel->channel;
1599 else
1600 channel->rx_queue.core_index = -1;
1601
1602 ef4_for_each_channel_tx_queue(tx_queue, channel)
1603 tx_queue->queue -= (efx->tx_channel_offset *
1604 EF4_TXQ_TYPES);
1605 }
1606}
1607
1608static int ef4_probe_nic(struct ef4_nic *efx)
1609{
1610 int rc;
1611
1612 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1613
1614 /* Carry out hardware-type specific initialisation */
1615 rc = efx->type->probe(efx);
1616 if (rc)
1617 return rc;
1618
1619 do {
1620 if (!efx->max_channels || !efx->max_tx_channels) {
1621 netif_err(efx, drv, efx->net_dev,
1622 "Insufficient resources to allocate"
1623 " any channels\n");
1624 rc = -ENOSPC;
1625 goto fail1;
1626 }
1627
1628 /* Determine the number of channels and queues by trying
1629 * to hook in MSI-X interrupts.
1630 */
1631 rc = ef4_probe_interrupts(efx);
1632 if (rc)
1633 goto fail1;
1634
1635 ef4_set_channels(efx);
1636
1637 /* dimension_resources can fail with EAGAIN */
1638 rc = efx->type->dimension_resources(efx);
1639 if (rc != 0 && rc != -EAGAIN)
1640 goto fail2;
1641
1642 if (rc == -EAGAIN)
1643 /* try again with new max_channels */
1644 ef4_remove_interrupts(efx);
1645
1646 } while (rc == -EAGAIN);
1647
1648 if (efx->n_channels > 1)
1649 netdev_rss_key_fill(&efx->rx_hash_key,
1650 sizeof(efx->rx_hash_key));
1651 ef4_set_default_rx_indir_table(efx);
1652
1653 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1654 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1655
1656 /* Initialise the interrupt moderation settings */
1657 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1658 ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1659 true);
1660
1661 return 0;
1662
1663fail2:
1664 ef4_remove_interrupts(efx);
1665fail1:
1666 efx->type->remove(efx);
1667 return rc;
1668}
1669
1670static void ef4_remove_nic(struct ef4_nic *efx)
1671{
1672 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1673
1674 ef4_remove_interrupts(efx);
1675 efx->type->remove(efx);
1676}
1677
1678static int ef4_probe_filters(struct ef4_nic *efx)
1679{
1680 int rc;
1681
1682 spin_lock_init(&efx->filter_lock);
1683 init_rwsem(&efx->filter_sem);
1684 mutex_lock(&efx->mac_lock);
1685 down_write(&efx->filter_sem);
1686 rc = efx->type->filter_table_probe(efx);
1687 if (rc)
1688 goto out_unlock;
1689
1690#ifdef CONFIG_RFS_ACCEL
1691 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1692 struct ef4_channel *channel;
1693 int i, success = 1;
1694
1695 ef4_for_each_channel(channel, efx) {
1696 channel->rps_flow_id =
1697 kcalloc(efx->type->max_rx_ip_filters,
1698 sizeof(*channel->rps_flow_id),
1699 GFP_KERNEL);
1700 if (!channel->rps_flow_id)
1701 success = 0;
1702 else
1703 for (i = 0;
1704 i < efx->type->max_rx_ip_filters;
1705 ++i)
1706 channel->rps_flow_id[i] =
1707 RPS_FLOW_ID_INVALID;
1708 }
1709
1710 if (!success) {
1711 ef4_for_each_channel(channel, efx)
1712 kfree(channel->rps_flow_id);
1713 efx->type->filter_table_remove(efx);
1714 rc = -ENOMEM;
1715 goto out_unlock;
1716 }
1717
1718 efx->rps_expire_index = efx->rps_expire_channel = 0;
1719 }
1720#endif
1721out_unlock:
1722 up_write(&efx->filter_sem);
1723 mutex_unlock(&efx->mac_lock);
1724 return rc;
1725}
1726
1727static void ef4_remove_filters(struct ef4_nic *efx)
1728{
1729#ifdef CONFIG_RFS_ACCEL
1730 struct ef4_channel *channel;
1731
1732 ef4_for_each_channel(channel, efx)
1733 kfree(channel->rps_flow_id);
1734#endif
1735 down_write(&efx->filter_sem);
1736 efx->type->filter_table_remove(efx);
1737 up_write(&efx->filter_sem);
1738}
1739
1740static void ef4_restore_filters(struct ef4_nic *efx)
1741{
1742 down_read(&efx->filter_sem);
1743 efx->type->filter_table_restore(efx);
1744 up_read(&efx->filter_sem);
1745}
1746
1747/**************************************************************************
1748 *
1749 * NIC startup/shutdown
1750 *
1751 *************************************************************************/
1752
1753static int ef4_probe_all(struct ef4_nic *efx)
1754{
1755 int rc;
1756
1757 rc = ef4_probe_nic(efx);
1758 if (rc) {
1759 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1760 goto fail1;
1761 }
1762
1763 rc = ef4_probe_port(efx);
1764 if (rc) {
1765 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1766 goto fail2;
1767 }
1768
1769 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1770 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1771 rc = -EINVAL;
1772 goto fail3;
1773 }
1774 efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1775
1776 rc = ef4_probe_filters(efx);
1777 if (rc) {
1778 netif_err(efx, probe, efx->net_dev,
1779 "failed to create filter tables\n");
1780 goto fail4;
1781 }
1782
1783 rc = ef4_probe_channels(efx);
1784 if (rc)
1785 goto fail5;
1786
1787 return 0;
1788
1789 fail5:
1790 ef4_remove_filters(efx);
1791 fail4:
1792 fail3:
1793 ef4_remove_port(efx);
1794 fail2:
1795 ef4_remove_nic(efx);
1796 fail1:
1797 return rc;
1798}
1799
1800/* If the interface is supposed to be running but is not, start
1801 * the hardware and software data path, regular activity for the port
1802 * (MAC statistics, link polling, etc.) and schedule the port to be
1803 * reconfigured. Interrupts must already be enabled. This function
1804 * is safe to call multiple times, so long as the NIC is not disabled.
1805 * Requires the RTNL lock.
1806 */
1807static void ef4_start_all(struct ef4_nic *efx)
1808{
1809 EF4_ASSERT_RESET_SERIALISED(efx);
1810 BUG_ON(efx->state == STATE_DISABLED);
1811
1812 /* Check that it is appropriate to restart the interface. All
1813 * of these flags are safe to read under just the rtnl lock */
1814 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1815 efx->reset_pending)
1816 return;
1817
1818 ef4_start_port(efx);
1819 ef4_start_datapath(efx);
1820
1821 /* Start the hardware monitor if there is one */
1822 if (efx->type->monitor != NULL)
1823 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1824 ef4_monitor_interval);
1825
1826 efx->type->start_stats(efx);
1827 efx->type->pull_stats(efx);
1828 spin_lock_bh(&efx->stats_lock);
1829 efx->type->update_stats(efx, NULL, NULL);
1830 spin_unlock_bh(&efx->stats_lock);
1831}
1832
1833/* Quiesce the hardware and software data path, and regular activity
1834 * for the port without bringing the link down. Safe to call multiple
1835 * times with the NIC in almost any state, but interrupts should be
1836 * enabled. Requires the RTNL lock.
1837 */
1838static void ef4_stop_all(struct ef4_nic *efx)
1839{
1840 EF4_ASSERT_RESET_SERIALISED(efx);
1841
1842 /* port_enabled can be read safely under the rtnl lock */
1843 if (!efx->port_enabled)
1844 return;
1845
1846 /* update stats before we go down so we can accurately count
1847 * rx_nodesc_drops
1848 */
1849 efx->type->pull_stats(efx);
1850 spin_lock_bh(&efx->stats_lock);
1851 efx->type->update_stats(efx, NULL, NULL);
1852 spin_unlock_bh(&efx->stats_lock);
1853 efx->type->stop_stats(efx);
1854 ef4_stop_port(efx);
1855
1856 /* Stop the kernel transmit interface. This is only valid if
1857 * the device is stopped or detached; otherwise the watchdog
1858 * may fire immediately.
1859 */
1860 WARN_ON(netif_running(efx->net_dev) &&
1861 netif_device_present(efx->net_dev));
1862 netif_tx_disable(efx->net_dev);
1863
1864 ef4_stop_datapath(efx);
1865}
1866
1867static void ef4_remove_all(struct ef4_nic *efx)
1868{
1869 ef4_remove_channels(efx);
1870 ef4_remove_filters(efx);
1871 ef4_remove_port(efx);
1872 ef4_remove_nic(efx);
1873}
1874
1875/**************************************************************************
1876 *
1877 * Interrupt moderation
1878 *
1879 **************************************************************************/
1880unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1881{
1882 if (usecs == 0)
1883 return 0;
1884 if (usecs * 1000 < efx->timer_quantum_ns)
1885 return 1; /* never round down to 0 */
1886 return usecs * 1000 / efx->timer_quantum_ns;
1887}
1888
1889/* Set interrupt moderation parameters */
1890int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1891 unsigned int rx_usecs, bool rx_adaptive,
1892 bool rx_may_override_tx)
1893{
1894 struct ef4_channel *channel;
1895 unsigned int timer_max_us;
1896
1897 EF4_ASSERT_RESET_SERIALISED(efx);
1898
1899 timer_max_us = efx->timer_max_ns / 1000;
1900
1901 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1902 return -EINVAL;
1903
1904 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1905 !rx_may_override_tx) {
1906 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1907 "RX and TX IRQ moderation must be equal\n");
1908 return -EINVAL;
1909 }
1910
1911 efx->irq_rx_adaptive = rx_adaptive;
1912 efx->irq_rx_moderation_us = rx_usecs;
1913 ef4_for_each_channel(channel, efx) {
1914 if (ef4_channel_has_rx_queue(channel))
1915 channel->irq_moderation_us = rx_usecs;
1916 else if (ef4_channel_has_tx_queues(channel))
1917 channel->irq_moderation_us = tx_usecs;
1918 }
1919
1920 return 0;
1921}
1922
1923void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1924 unsigned int *rx_usecs, bool *rx_adaptive)
1925{
1926 *rx_adaptive = efx->irq_rx_adaptive;
1927 *rx_usecs = efx->irq_rx_moderation_us;
1928
1929 /* If channels are shared between RX and TX, so is IRQ
1930 * moderation. Otherwise, IRQ moderation is the same for all
1931 * TX channels and is not adaptive.
1932 */
1933 if (efx->tx_channel_offset == 0) {
1934 *tx_usecs = *rx_usecs;
1935 } else {
1936 struct ef4_channel *tx_channel;
1937
1938 tx_channel = efx->channel[efx->tx_channel_offset];
1939 *tx_usecs = tx_channel->irq_moderation_us;
1940 }
1941}
1942
1943/**************************************************************************
1944 *
1945 * Hardware monitor
1946 *
1947 **************************************************************************/
1948
1949/* Run periodically off the general workqueue */
1950static void ef4_monitor(struct work_struct *data)
1951{
1952 struct ef4_nic *efx = container_of(data, struct ef4_nic,
1953 monitor_work.work);
1954
1955 netif_vdbg(efx, timer, efx->net_dev,
1956 "hardware monitor executing on CPU %d\n",
1957 raw_smp_processor_id());
1958 BUG_ON(efx->type->monitor == NULL);
1959
1960 /* If the mac_lock is already held then it is likely a port
1961 * reconfiguration is already in place, which will likely do
1962 * most of the work of monitor() anyway. */
1963 if (mutex_trylock(&efx->mac_lock)) {
1964 if (efx->port_enabled)
1965 efx->type->monitor(efx);
1966 mutex_unlock(&efx->mac_lock);
1967 }
1968
1969 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1970 ef4_monitor_interval);
1971}
1972
1973/**************************************************************************
1974 *
1975 * ioctls
1976 *
1977 *************************************************************************/
1978
1979/* Net device ioctl
1980 * Context: process, rtnl_lock() held.
1981 */
1982static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1983{
1984 struct ef4_nic *efx = netdev_priv(net_dev);
1985 struct mii_ioctl_data *data = if_mii(ifr);
1986
1987 /* Convert phy_id from older PRTAD/DEVAD format */
1988 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1989 (data->phy_id & 0xfc00) == 0x0400)
1990 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1991
1992 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1993}
1994
1995/**************************************************************************
1996 *
1997 * NAPI interface
1998 *
1999 **************************************************************************/
2000
2001static void ef4_init_napi_channel(struct ef4_channel *channel)
2002{
2003 struct ef4_nic *efx = channel->efx;
2004
2005 channel->napi_dev = efx->net_dev;
2006 netif_napi_add(channel->napi_dev, &channel->napi_str, ef4_poll);
2007}
2008
2009static void ef4_init_napi(struct ef4_nic *efx)
2010{
2011 struct ef4_channel *channel;
2012
2013 ef4_for_each_channel(channel, efx)
2014 ef4_init_napi_channel(channel);
2015}
2016
2017static void ef4_fini_napi_channel(struct ef4_channel *channel)
2018{
2019 if (channel->napi_dev)
2020 netif_napi_del(&channel->napi_str);
2021
2022 channel->napi_dev = NULL;
2023}
2024
2025static void ef4_fini_napi(struct ef4_nic *efx)
2026{
2027 struct ef4_channel *channel;
2028
2029 ef4_for_each_channel(channel, efx)
2030 ef4_fini_napi_channel(channel);
2031}
2032
2033/**************************************************************************
2034 *
2035 * Kernel net device interface
2036 *
2037 *************************************************************************/
2038
2039/* Context: process, rtnl_lock() held. */
2040int ef4_net_open(struct net_device *net_dev)
2041{
2042 struct ef4_nic *efx = netdev_priv(net_dev);
2043 int rc;
2044
2045 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2046 raw_smp_processor_id());
2047
2048 rc = ef4_check_disabled(efx);
2049 if (rc)
2050 return rc;
2051 if (efx->phy_mode & PHY_MODE_SPECIAL)
2052 return -EBUSY;
2053
2054 /* Notify the kernel of the link state polled during driver load,
2055 * before the monitor starts running */
2056 ef4_link_status_changed(efx);
2057
2058 ef4_start_all(efx);
2059 ef4_selftest_async_start(efx);
2060 return 0;
2061}
2062
2063/* Context: process, rtnl_lock() held.
2064 * Note that the kernel will ignore our return code; this method
2065 * should really be a void.
2066 */
2067int ef4_net_stop(struct net_device *net_dev)
2068{
2069 struct ef4_nic *efx = netdev_priv(net_dev);
2070
2071 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2072 raw_smp_processor_id());
2073
2074 /* Stop the device and flush all the channels */
2075 ef4_stop_all(efx);
2076
2077 return 0;
2078}
2079
2080/* Context: process, rcu_read_lock or RTNL held, non-blocking. */
2081static void ef4_net_stats(struct net_device *net_dev,
2082 struct rtnl_link_stats64 *stats)
2083{
2084 struct ef4_nic *efx = netdev_priv(net_dev);
2085
2086 spin_lock_bh(&efx->stats_lock);
2087 efx->type->update_stats(efx, NULL, stats);
2088 spin_unlock_bh(&efx->stats_lock);
2089}
2090
2091/* Context: netif_tx_lock held, BHs disabled. */
2092static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue)
2093{
2094 struct ef4_nic *efx = netdev_priv(net_dev);
2095
2096 netif_err(efx, tx_err, efx->net_dev,
2097 "TX stuck with port_enabled=%d: resetting channels\n",
2098 efx->port_enabled);
2099
2100 ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2101}
2102
2103
2104/* Context: process, rtnl_lock() held. */
2105static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2106{
2107 struct ef4_nic *efx = netdev_priv(net_dev);
2108 int rc;
2109
2110 rc = ef4_check_disabled(efx);
2111 if (rc)
2112 return rc;
2113
2114 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2115
2116 ef4_device_detach_sync(efx);
2117 ef4_stop_all(efx);
2118
2119 mutex_lock(&efx->mac_lock);
2120 WRITE_ONCE(net_dev->mtu, new_mtu);
2121 ef4_mac_reconfigure(efx);
2122 mutex_unlock(&efx->mac_lock);
2123
2124 ef4_start_all(efx);
2125 netif_device_attach(efx->net_dev);
2126 return 0;
2127}
2128
2129static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2130{
2131 struct ef4_nic *efx = netdev_priv(net_dev);
2132 struct sockaddr *addr = data;
2133 u8 *new_addr = addr->sa_data;
2134 u8 old_addr[6];
2135 int rc;
2136
2137 if (!is_valid_ether_addr(new_addr)) {
2138 netif_err(efx, drv, efx->net_dev,
2139 "invalid ethernet MAC address requested: %pM\n",
2140 new_addr);
2141 return -EADDRNOTAVAIL;
2142 }
2143
2144 /* save old address */
2145 ether_addr_copy(old_addr, net_dev->dev_addr);
2146 eth_hw_addr_set(net_dev, new_addr);
2147 if (efx->type->set_mac_address) {
2148 rc = efx->type->set_mac_address(efx);
2149 if (rc) {
2150 eth_hw_addr_set(net_dev, old_addr);
2151 return rc;
2152 }
2153 }
2154
2155 /* Reconfigure the MAC */
2156 mutex_lock(&efx->mac_lock);
2157 ef4_mac_reconfigure(efx);
2158 mutex_unlock(&efx->mac_lock);
2159
2160 return 0;
2161}
2162
2163/* Context: netif_addr_lock held, BHs disabled. */
2164static void ef4_set_rx_mode(struct net_device *net_dev)
2165{
2166 struct ef4_nic *efx = netdev_priv(net_dev);
2167
2168 if (efx->port_enabled)
2169 queue_work(efx->workqueue, &efx->mac_work);
2170 /* Otherwise ef4_start_port() will do this */
2171}
2172
2173static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2174{
2175 struct ef4_nic *efx = netdev_priv(net_dev);
2176 int rc;
2177
2178 /* If disabling RX n-tuple filtering, clear existing filters */
2179 if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2180 rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2181 if (rc)
2182 return rc;
2183 }
2184
2185 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2186 if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2187 /* ef4_set_rx_mode() will schedule MAC work to update filters
2188 * when a new features are finally set in net_dev.
2189 */
2190 ef4_set_rx_mode(net_dev);
2191 }
2192
2193 return 0;
2194}
2195
2196static const struct net_device_ops ef4_netdev_ops = {
2197 .ndo_open = ef4_net_open,
2198 .ndo_stop = ef4_net_stop,
2199 .ndo_get_stats64 = ef4_net_stats,
2200 .ndo_tx_timeout = ef4_watchdog,
2201 .ndo_start_xmit = ef4_hard_start_xmit,
2202 .ndo_validate_addr = eth_validate_addr,
2203 .ndo_eth_ioctl = ef4_ioctl,
2204 .ndo_change_mtu = ef4_change_mtu,
2205 .ndo_set_mac_address = ef4_set_mac_address,
2206 .ndo_set_rx_mode = ef4_set_rx_mode,
2207 .ndo_set_features = ef4_set_features,
2208 .ndo_setup_tc = ef4_setup_tc,
2209#ifdef CONFIG_RFS_ACCEL
2210 .ndo_rx_flow_steer = ef4_filter_rfs,
2211#endif
2212};
2213
2214static void ef4_update_name(struct ef4_nic *efx)
2215{
2216 strcpy(efx->name, efx->net_dev->name);
2217 ef4_mtd_rename(efx);
2218 ef4_set_channel_names(efx);
2219}
2220
2221static int ef4_netdev_event(struct notifier_block *this,
2222 unsigned long event, void *ptr)
2223{
2224 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2225
2226 if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2227 event == NETDEV_CHANGENAME)
2228 ef4_update_name(netdev_priv(net_dev));
2229
2230 return NOTIFY_DONE;
2231}
2232
2233static struct notifier_block ef4_netdev_notifier = {
2234 .notifier_call = ef4_netdev_event,
2235};
2236
2237static ssize_t
2238phy_type_show(struct device *dev, struct device_attribute *attr, char *buf)
2239{
2240 struct ef4_nic *efx = dev_get_drvdata(dev);
2241 return sprintf(buf, "%d\n", efx->phy_type);
2242}
2243static DEVICE_ATTR_RO(phy_type);
2244
2245static int ef4_register_netdev(struct ef4_nic *efx)
2246{
2247 struct net_device *net_dev = efx->net_dev;
2248 struct ef4_channel *channel;
2249 int rc;
2250
2251 net_dev->watchdog_timeo = 5 * HZ;
2252 net_dev->irq = efx->pci_dev->irq;
2253 net_dev->netdev_ops = &ef4_netdev_ops;
2254 net_dev->ethtool_ops = &ef4_ethtool_ops;
2255 netif_set_tso_max_segs(net_dev, EF4_TSO_MAX_SEGS);
2256 net_dev->min_mtu = EF4_MIN_MTU;
2257 net_dev->max_mtu = EF4_MAX_MTU;
2258
2259 rtnl_lock();
2260
2261 /* Enable resets to be scheduled and check whether any were
2262 * already requested. If so, the NIC is probably hosed so we
2263 * abort.
2264 */
2265 efx->state = STATE_READY;
2266 smp_mb(); /* ensure we change state before checking reset_pending */
2267 if (efx->reset_pending) {
2268 netif_err(efx, probe, efx->net_dev,
2269 "aborting probe due to scheduled reset\n");
2270 rc = -EIO;
2271 goto fail_locked;
2272 }
2273
2274 rc = dev_alloc_name(net_dev, net_dev->name);
2275 if (rc < 0)
2276 goto fail_locked;
2277 ef4_update_name(efx);
2278
2279 /* Always start with carrier off; PHY events will detect the link */
2280 netif_carrier_off(net_dev);
2281
2282 rc = register_netdevice(net_dev);
2283 if (rc)
2284 goto fail_locked;
2285
2286 ef4_for_each_channel(channel, efx) {
2287 struct ef4_tx_queue *tx_queue;
2288 ef4_for_each_channel_tx_queue(tx_queue, channel)
2289 ef4_init_tx_queue_core_txq(tx_queue);
2290 }
2291
2292 ef4_associate(efx);
2293
2294 rtnl_unlock();
2295
2296 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2297 if (rc) {
2298 netif_err(efx, drv, efx->net_dev,
2299 "failed to init net dev attributes\n");
2300 goto fail_registered;
2301 }
2302 return 0;
2303
2304fail_registered:
2305 rtnl_lock();
2306 ef4_dissociate(efx);
2307 unregister_netdevice(net_dev);
2308fail_locked:
2309 efx->state = STATE_UNINIT;
2310 rtnl_unlock();
2311 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2312 return rc;
2313}
2314
2315static void ef4_unregister_netdev(struct ef4_nic *efx)
2316{
2317 if (!efx->net_dev)
2318 return;
2319
2320 BUG_ON(netdev_priv(efx->net_dev) != efx);
2321
2322 if (ef4_dev_registered(efx)) {
2323 strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2324 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2325 unregister_netdev(efx->net_dev);
2326 }
2327}
2328
2329/**************************************************************************
2330 *
2331 * Device reset and suspend
2332 *
2333 **************************************************************************/
2334
2335/* Tears down the entire software state and most of the hardware state
2336 * before reset. */
2337void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2338{
2339 EF4_ASSERT_RESET_SERIALISED(efx);
2340
2341 ef4_stop_all(efx);
2342 ef4_disable_interrupts(efx);
2343
2344 mutex_lock(&efx->mac_lock);
2345 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2346 method != RESET_TYPE_DATAPATH)
2347 efx->phy_op->fini(efx);
2348 efx->type->fini(efx);
2349}
2350
2351/* This function will always ensure that the locks acquired in
2352 * ef4_reset_down() are released. A failure return code indicates
2353 * that we were unable to reinitialise the hardware, and the
2354 * driver should be disabled. If ok is false, then the rx and tx
2355 * engines are not restarted, pending a RESET_DISABLE. */
2356int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2357{
2358 int rc;
2359
2360 EF4_ASSERT_RESET_SERIALISED(efx);
2361
2362 /* Ensure that SRAM is initialised even if we're disabling the device */
2363 rc = efx->type->init(efx);
2364 if (rc) {
2365 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2366 goto fail;
2367 }
2368
2369 if (!ok)
2370 goto fail;
2371
2372 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2373 method != RESET_TYPE_DATAPATH) {
2374 rc = efx->phy_op->init(efx);
2375 if (rc)
2376 goto fail;
2377 rc = efx->phy_op->reconfigure(efx);
2378 if (rc && rc != -EPERM)
2379 netif_err(efx, drv, efx->net_dev,
2380 "could not restore PHY settings\n");
2381 }
2382
2383 rc = ef4_enable_interrupts(efx);
2384 if (rc)
2385 goto fail;
2386
2387 down_read(&efx->filter_sem);
2388 ef4_restore_filters(efx);
2389 up_read(&efx->filter_sem);
2390
2391 mutex_unlock(&efx->mac_lock);
2392
2393 ef4_start_all(efx);
2394
2395 return 0;
2396
2397fail:
2398 efx->port_initialized = false;
2399
2400 mutex_unlock(&efx->mac_lock);
2401
2402 return rc;
2403}
2404
2405/* Reset the NIC using the specified method. Note that the reset may
2406 * fail, in which case the card will be left in an unusable state.
2407 *
2408 * Caller must hold the rtnl_lock.
2409 */
2410int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2411{
2412 int rc, rc2;
2413 bool disabled;
2414
2415 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2416 RESET_TYPE(method));
2417
2418 ef4_device_detach_sync(efx);
2419 ef4_reset_down(efx, method);
2420
2421 rc = efx->type->reset(efx, method);
2422 if (rc) {
2423 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2424 goto out;
2425 }
2426
2427 /* Clear flags for the scopes we covered. We assume the NIC and
2428 * driver are now quiescent so that there is no race here.
2429 */
2430 if (method < RESET_TYPE_MAX_METHOD)
2431 efx->reset_pending &= -(1 << (method + 1));
2432 else /* it doesn't fit into the well-ordered scope hierarchy */
2433 __clear_bit(method, &efx->reset_pending);
2434
2435 /* Reinitialise bus-mastering, which may have been turned off before
2436 * the reset was scheduled. This is still appropriate, even in the
2437 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2438 * can respond to requests. */
2439 pci_set_master(efx->pci_dev);
2440
2441out:
2442 /* Leave device stopped if necessary */
2443 disabled = rc ||
2444 method == RESET_TYPE_DISABLE ||
2445 method == RESET_TYPE_RECOVER_OR_DISABLE;
2446 rc2 = ef4_reset_up(efx, method, !disabled);
2447 if (rc2) {
2448 disabled = true;
2449 if (!rc)
2450 rc = rc2;
2451 }
2452
2453 if (disabled) {
2454 dev_close(efx->net_dev);
2455 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2456 efx->state = STATE_DISABLED;
2457 } else {
2458 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2459 netif_device_attach(efx->net_dev);
2460 }
2461 return rc;
2462}
2463
2464/* Try recovery mechanisms.
2465 * For now only EEH is supported.
2466 * Returns 0 if the recovery mechanisms are unsuccessful.
2467 * Returns a non-zero value otherwise.
2468 */
2469int ef4_try_recovery(struct ef4_nic *efx)
2470{
2471#ifdef CONFIG_EEH
2472 /* A PCI error can occur and not be seen by EEH because nothing
2473 * happens on the PCI bus. In this case the driver may fail and
2474 * schedule a 'recover or reset', leading to this recovery handler.
2475 * Manually call the eeh failure check function.
2476 */
2477 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2478 if (eeh_dev_check_failure(eehdev)) {
2479 /* The EEH mechanisms will handle the error and reset the
2480 * device if necessary.
2481 */
2482 return 1;
2483 }
2484#endif
2485 return 0;
2486}
2487
2488/* The worker thread exists so that code that cannot sleep can
2489 * schedule a reset for later.
2490 */
2491static void ef4_reset_work(struct work_struct *data)
2492{
2493 struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2494 unsigned long pending;
2495 enum reset_type method;
2496
2497 pending = READ_ONCE(efx->reset_pending);
2498 method = fls(pending) - 1;
2499
2500 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2501 method == RESET_TYPE_RECOVER_OR_ALL) &&
2502 ef4_try_recovery(efx))
2503 return;
2504
2505 if (!pending)
2506 return;
2507
2508 rtnl_lock();
2509
2510 /* We checked the state in ef4_schedule_reset() but it may
2511 * have changed by now. Now that we have the RTNL lock,
2512 * it cannot change again.
2513 */
2514 if (efx->state == STATE_READY)
2515 (void)ef4_reset(efx, method);
2516
2517 rtnl_unlock();
2518}
2519
2520void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2521{
2522 enum reset_type method;
2523
2524 if (efx->state == STATE_RECOVERY) {
2525 netif_dbg(efx, drv, efx->net_dev,
2526 "recovering: skip scheduling %s reset\n",
2527 RESET_TYPE(type));
2528 return;
2529 }
2530
2531 switch (type) {
2532 case RESET_TYPE_INVISIBLE:
2533 case RESET_TYPE_ALL:
2534 case RESET_TYPE_RECOVER_OR_ALL:
2535 case RESET_TYPE_WORLD:
2536 case RESET_TYPE_DISABLE:
2537 case RESET_TYPE_RECOVER_OR_DISABLE:
2538 case RESET_TYPE_DATAPATH:
2539 method = type;
2540 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2541 RESET_TYPE(method));
2542 break;
2543 default:
2544 method = efx->type->map_reset_reason(type);
2545 netif_dbg(efx, drv, efx->net_dev,
2546 "scheduling %s reset for %s\n",
2547 RESET_TYPE(method), RESET_TYPE(type));
2548 break;
2549 }
2550
2551 set_bit(method, &efx->reset_pending);
2552 smp_mb(); /* ensure we change reset_pending before checking state */
2553
2554 /* If we're not READY then just leave the flags set as the cue
2555 * to abort probing or reschedule the reset later.
2556 */
2557 if (READ_ONCE(efx->state) != STATE_READY)
2558 return;
2559
2560 queue_work(reset_workqueue, &efx->reset_work);
2561}
2562
2563/**************************************************************************
2564 *
2565 * List of NICs we support
2566 *
2567 **************************************************************************/
2568
2569/* PCI device ID table */
2570static const struct pci_device_id ef4_pci_table[] = {
2571 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2572 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2573 .driver_data = (unsigned long) &falcon_a1_nic_type},
2574 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2575 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2576 .driver_data = (unsigned long) &falcon_b0_nic_type},
2577 {0} /* end of list */
2578};
2579
2580/**************************************************************************
2581 *
2582 * Dummy PHY/MAC operations
2583 *
2584 * Can be used for some unimplemented operations
2585 * Needed so all function pointers are valid and do not have to be tested
2586 * before use
2587 *
2588 **************************************************************************/
2589int ef4_port_dummy_op_int(struct ef4_nic *efx)
2590{
2591 return 0;
2592}
2593void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2594
2595static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2596{
2597 return false;
2598}
2599
2600static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2601 .init = ef4_port_dummy_op_int,
2602 .reconfigure = ef4_port_dummy_op_int,
2603 .poll = ef4_port_dummy_op_poll,
2604 .fini = ef4_port_dummy_op_void,
2605};
2606
2607/**************************************************************************
2608 *
2609 * Data housekeeping
2610 *
2611 **************************************************************************/
2612
2613/* This zeroes out and then fills in the invariants in a struct
2614 * ef4_nic (including all sub-structures).
2615 */
2616static int ef4_init_struct(struct ef4_nic *efx,
2617 struct pci_dev *pci_dev, struct net_device *net_dev)
2618{
2619 int i;
2620
2621 /* Initialise common structures */
2622 INIT_LIST_HEAD(&efx->node);
2623 INIT_LIST_HEAD(&efx->secondary_list);
2624 spin_lock_init(&efx->biu_lock);
2625#ifdef CONFIG_SFC_FALCON_MTD
2626 INIT_LIST_HEAD(&efx->mtd_list);
2627#endif
2628 INIT_WORK(&efx->reset_work, ef4_reset_work);
2629 INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2630 INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2631 efx->pci_dev = pci_dev;
2632 efx->msg_enable = debug;
2633 efx->state = STATE_UNINIT;
2634 strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2635
2636 efx->net_dev = net_dev;
2637 efx->rx_prefix_size = efx->type->rx_prefix_size;
2638 efx->rx_ip_align =
2639 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2640 efx->rx_packet_hash_offset =
2641 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2642 efx->rx_packet_ts_offset =
2643 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2644 spin_lock_init(&efx->stats_lock);
2645 mutex_init(&efx->mac_lock);
2646 efx->phy_op = &ef4_dummy_phy_operations;
2647 efx->mdio.dev = net_dev;
2648 INIT_WORK(&efx->mac_work, ef4_mac_work);
2649 init_waitqueue_head(&efx->flush_wq);
2650
2651 for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2652 efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2653 if (!efx->channel[i])
2654 goto fail;
2655 efx->msi_context[i].efx = efx;
2656 efx->msi_context[i].index = i;
2657 }
2658
2659 /* Higher numbered interrupt modes are less capable! */
2660 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2661 interrupt_mode);
2662
2663 /* Would be good to use the net_dev name, but we're too early */
2664 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2665 pci_name(pci_dev));
2666 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2667 if (!efx->workqueue)
2668 goto fail;
2669
2670 return 0;
2671
2672fail:
2673 ef4_fini_struct(efx);
2674 return -ENOMEM;
2675}
2676
2677static void ef4_fini_struct(struct ef4_nic *efx)
2678{
2679 int i;
2680
2681 for (i = 0; i < EF4_MAX_CHANNELS; i++)
2682 kfree(efx->channel[i]);
2683
2684 kfree(efx->vpd_sn);
2685
2686 if (efx->workqueue) {
2687 destroy_workqueue(efx->workqueue);
2688 efx->workqueue = NULL;
2689 }
2690}
2691
2692void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2693{
2694 u64 n_rx_nodesc_trunc = 0;
2695 struct ef4_channel *channel;
2696
2697 ef4_for_each_channel(channel, efx)
2698 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2699 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2700 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2701}
2702
2703/**************************************************************************
2704 *
2705 * PCI interface
2706 *
2707 **************************************************************************/
2708
2709/* Main body of final NIC shutdown code
2710 * This is called only at module unload (or hotplug removal).
2711 */
2712static void ef4_pci_remove_main(struct ef4_nic *efx)
2713{
2714 /* Flush reset_work. It can no longer be scheduled since we
2715 * are not READY.
2716 */
2717 BUG_ON(efx->state == STATE_READY);
2718 cancel_work_sync(&efx->reset_work);
2719
2720 ef4_disable_interrupts(efx);
2721 ef4_nic_fini_interrupt(efx);
2722 ef4_fini_port(efx);
2723 efx->type->fini(efx);
2724 ef4_fini_napi(efx);
2725 ef4_remove_all(efx);
2726}
2727
2728/* Final NIC shutdown
2729 * This is called only at module unload (or hotplug removal). A PF can call
2730 * this on its VFs to ensure they are unbound first.
2731 */
2732static void ef4_pci_remove(struct pci_dev *pci_dev)
2733{
2734 struct ef4_nic *efx;
2735
2736 efx = pci_get_drvdata(pci_dev);
2737 if (!efx)
2738 return;
2739
2740 /* Mark the NIC as fini, then stop the interface */
2741 rtnl_lock();
2742 ef4_dissociate(efx);
2743 dev_close(efx->net_dev);
2744 ef4_disable_interrupts(efx);
2745 efx->state = STATE_UNINIT;
2746 rtnl_unlock();
2747
2748 ef4_unregister_netdev(efx);
2749
2750 ef4_mtd_remove(efx);
2751
2752 ef4_pci_remove_main(efx);
2753
2754 ef4_fini_io(efx);
2755 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2756
2757 ef4_fini_struct(efx);
2758 free_netdev(efx->net_dev);
2759};
2760
2761/* NIC VPD information
2762 * Called during probe to display the part number of the installed NIC.
2763 */
2764static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2765{
2766 struct pci_dev *dev = efx->pci_dev;
2767 unsigned int vpd_size, kw_len;
2768 u8 *vpd_data;
2769 int start;
2770
2771 vpd_data = pci_vpd_alloc(dev, &vpd_size);
2772 if (IS_ERR(vpd_data)) {
2773 pci_warn(dev, "Unable to read VPD\n");
2774 return;
2775 }
2776
2777 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2778 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
2779 if (start < 0)
2780 pci_warn(dev, "Part number not found or incomplete\n");
2781 else
2782 pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
2783
2784 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2785 PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
2786 if (start < 0)
2787 pci_warn(dev, "Serial number not found or incomplete\n");
2788 else
2789 efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
2790
2791 kfree(vpd_data);
2792}
2793
2794
2795/* Main body of NIC initialisation
2796 * This is called at module load (or hotplug insertion, theoretically).
2797 */
2798static int ef4_pci_probe_main(struct ef4_nic *efx)
2799{
2800 int rc;
2801
2802 /* Do start-of-day initialisation */
2803 rc = ef4_probe_all(efx);
2804 if (rc)
2805 goto fail1;
2806
2807 ef4_init_napi(efx);
2808
2809 rc = efx->type->init(efx);
2810 if (rc) {
2811 netif_err(efx, probe, efx->net_dev,
2812 "failed to initialise NIC\n");
2813 goto fail3;
2814 }
2815
2816 rc = ef4_init_port(efx);
2817 if (rc) {
2818 netif_err(efx, probe, efx->net_dev,
2819 "failed to initialise port\n");
2820 goto fail4;
2821 }
2822
2823 rc = ef4_nic_init_interrupt(efx);
2824 if (rc)
2825 goto fail5;
2826 rc = ef4_enable_interrupts(efx);
2827 if (rc)
2828 goto fail6;
2829
2830 return 0;
2831
2832 fail6:
2833 ef4_nic_fini_interrupt(efx);
2834 fail5:
2835 ef4_fini_port(efx);
2836 fail4:
2837 efx->type->fini(efx);
2838 fail3:
2839 ef4_fini_napi(efx);
2840 ef4_remove_all(efx);
2841 fail1:
2842 return rc;
2843}
2844
2845/* NIC initialisation
2846 *
2847 * This is called at module load (or hotplug insertion,
2848 * theoretically). It sets up PCI mappings, resets the NIC,
2849 * sets up and registers the network devices with the kernel and hooks
2850 * the interrupt service routine. It does not prepare the device for
2851 * transmission; this is left to the first time one of the network
2852 * interfaces is brought up (i.e. ef4_net_open).
2853 */
2854static int ef4_pci_probe(struct pci_dev *pci_dev,
2855 const struct pci_device_id *entry)
2856{
2857 struct net_device *net_dev;
2858 struct ef4_nic *efx;
2859 int rc;
2860
2861 /* Allocate and initialise a struct net_device and struct ef4_nic */
2862 net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2863 EF4_MAX_RX_QUEUES);
2864 if (!net_dev)
2865 return -ENOMEM;
2866 efx = netdev_priv(net_dev);
2867 efx->type = (const struct ef4_nic_type *) entry->driver_data;
2868 efx->fixed_features |= NETIF_F_HIGHDMA;
2869
2870 pci_set_drvdata(pci_dev, efx);
2871 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2872 rc = ef4_init_struct(efx, pci_dev, net_dev);
2873 if (rc)
2874 goto fail1;
2875
2876 netif_info(efx, probe, efx->net_dev,
2877 "Solarflare NIC detected\n");
2878
2879 ef4_probe_vpd_strings(efx);
2880
2881 /* Set up basic I/O (BAR mappings etc) */
2882 rc = ef4_init_io(efx);
2883 if (rc)
2884 goto fail2;
2885
2886 rc = ef4_pci_probe_main(efx);
2887 if (rc)
2888 goto fail3;
2889
2890 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2891 NETIF_F_RXCSUM);
2892 /* Mask for features that also apply to VLAN devices */
2893 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2894 NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2895
2896 net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2897
2898 /* Disable VLAN filtering by default. It may be enforced if
2899 * the feature is fixed (i.e. VLAN filters are required to
2900 * receive VLAN tagged packets due to vPort restrictions).
2901 */
2902 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2903 net_dev->features |= efx->fixed_features;
2904
2905 rc = ef4_register_netdev(efx);
2906 if (rc)
2907 goto fail4;
2908
2909 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2910
2911 /* Try to create MTDs, but allow this to fail */
2912 rtnl_lock();
2913 rc = ef4_mtd_probe(efx);
2914 rtnl_unlock();
2915 if (rc && rc != -EPERM)
2916 netif_warn(efx, probe, efx->net_dev,
2917 "failed to create MTDs (%d)\n", rc);
2918
2919 return 0;
2920
2921 fail4:
2922 ef4_pci_remove_main(efx);
2923 fail3:
2924 ef4_fini_io(efx);
2925 fail2:
2926 ef4_fini_struct(efx);
2927 fail1:
2928 WARN_ON(rc > 0);
2929 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2930 free_netdev(net_dev);
2931 return rc;
2932}
2933
2934static int ef4_pm_freeze(struct device *dev)
2935{
2936 struct ef4_nic *efx = dev_get_drvdata(dev);
2937
2938 rtnl_lock();
2939
2940 if (efx->state != STATE_DISABLED) {
2941 efx->state = STATE_UNINIT;
2942
2943 ef4_device_detach_sync(efx);
2944
2945 ef4_stop_all(efx);
2946 ef4_disable_interrupts(efx);
2947 }
2948
2949 rtnl_unlock();
2950
2951 return 0;
2952}
2953
2954static int ef4_pm_thaw(struct device *dev)
2955{
2956 int rc;
2957 struct ef4_nic *efx = dev_get_drvdata(dev);
2958
2959 rtnl_lock();
2960
2961 if (efx->state != STATE_DISABLED) {
2962 rc = ef4_enable_interrupts(efx);
2963 if (rc)
2964 goto fail;
2965
2966 mutex_lock(&efx->mac_lock);
2967 efx->phy_op->reconfigure(efx);
2968 mutex_unlock(&efx->mac_lock);
2969
2970 ef4_start_all(efx);
2971
2972 netif_device_attach(efx->net_dev);
2973
2974 efx->state = STATE_READY;
2975
2976 efx->type->resume_wol(efx);
2977 }
2978
2979 rtnl_unlock();
2980
2981 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
2982 queue_work(reset_workqueue, &efx->reset_work);
2983
2984 return 0;
2985
2986fail:
2987 rtnl_unlock();
2988
2989 return rc;
2990}
2991
2992static int ef4_pm_poweroff(struct device *dev)
2993{
2994 struct pci_dev *pci_dev = to_pci_dev(dev);
2995 struct ef4_nic *efx = pci_get_drvdata(pci_dev);
2996
2997 efx->type->fini(efx);
2998
2999 efx->reset_pending = 0;
3000
3001 pci_save_state(pci_dev);
3002 return pci_set_power_state(pci_dev, PCI_D3hot);
3003}
3004
3005/* Used for both resume and restore */
3006static int ef4_pm_resume(struct device *dev)
3007{
3008 struct pci_dev *pci_dev = to_pci_dev(dev);
3009 struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3010 int rc;
3011
3012 rc = pci_set_power_state(pci_dev, PCI_D0);
3013 if (rc)
3014 return rc;
3015 pci_restore_state(pci_dev);
3016 rc = pci_enable_device(pci_dev);
3017 if (rc)
3018 return rc;
3019 pci_set_master(efx->pci_dev);
3020 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3021 if (rc)
3022 return rc;
3023 rc = efx->type->init(efx);
3024 if (rc)
3025 return rc;
3026 rc = ef4_pm_thaw(dev);
3027 return rc;
3028}
3029
3030static int ef4_pm_suspend(struct device *dev)
3031{
3032 int rc;
3033
3034 ef4_pm_freeze(dev);
3035 rc = ef4_pm_poweroff(dev);
3036 if (rc)
3037 ef4_pm_resume(dev);
3038 return rc;
3039}
3040
3041static const struct dev_pm_ops ef4_pm_ops = {
3042 .suspend = ef4_pm_suspend,
3043 .resume = ef4_pm_resume,
3044 .freeze = ef4_pm_freeze,
3045 .thaw = ef4_pm_thaw,
3046 .poweroff = ef4_pm_poweroff,
3047 .restore = ef4_pm_resume,
3048};
3049
3050/* A PCI error affecting this device was detected.
3051 * At this point MMIO and DMA may be disabled.
3052 * Stop the software path and request a slot reset.
3053 */
3054static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3055 pci_channel_state_t state)
3056{
3057 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3058 struct ef4_nic *efx = pci_get_drvdata(pdev);
3059
3060 if (state == pci_channel_io_perm_failure)
3061 return PCI_ERS_RESULT_DISCONNECT;
3062
3063 rtnl_lock();
3064
3065 if (efx->state != STATE_DISABLED) {
3066 efx->state = STATE_RECOVERY;
3067 efx->reset_pending = 0;
3068
3069 ef4_device_detach_sync(efx);
3070
3071 ef4_stop_all(efx);
3072 ef4_disable_interrupts(efx);
3073
3074 status = PCI_ERS_RESULT_NEED_RESET;
3075 } else {
3076 /* If the interface is disabled we don't want to do anything
3077 * with it.
3078 */
3079 status = PCI_ERS_RESULT_RECOVERED;
3080 }
3081
3082 rtnl_unlock();
3083
3084 pci_disable_device(pdev);
3085
3086 return status;
3087}
3088
3089/* Fake a successful reset, which will be performed later in ef4_io_resume. */
3090static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3091{
3092 struct ef4_nic *efx = pci_get_drvdata(pdev);
3093 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3094
3095 if (pci_enable_device(pdev)) {
3096 netif_err(efx, hw, efx->net_dev,
3097 "Cannot re-enable PCI device after reset.\n");
3098 status = PCI_ERS_RESULT_DISCONNECT;
3099 }
3100
3101 return status;
3102}
3103
3104/* Perform the actual reset and resume I/O operations. */
3105static void ef4_io_resume(struct pci_dev *pdev)
3106{
3107 struct ef4_nic *efx = pci_get_drvdata(pdev);
3108 int rc;
3109
3110 rtnl_lock();
3111
3112 if (efx->state == STATE_DISABLED)
3113 goto out;
3114
3115 rc = ef4_reset(efx, RESET_TYPE_ALL);
3116 if (rc) {
3117 netif_err(efx, hw, efx->net_dev,
3118 "ef4_reset failed after PCI error (%d)\n", rc);
3119 } else {
3120 efx->state = STATE_READY;
3121 netif_dbg(efx, hw, efx->net_dev,
3122 "Done resetting and resuming IO after PCI error.\n");
3123 }
3124
3125out:
3126 rtnl_unlock();
3127}
3128
3129/* For simplicity and reliability, we always require a slot reset and try to
3130 * reset the hardware when a pci error affecting the device is detected.
3131 * We leave both the link_reset and mmio_enabled callback unimplemented:
3132 * with our request for slot reset the mmio_enabled callback will never be
3133 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3134 */
3135static const struct pci_error_handlers ef4_err_handlers = {
3136 .error_detected = ef4_io_error_detected,
3137 .slot_reset = ef4_io_slot_reset,
3138 .resume = ef4_io_resume,
3139};
3140
3141static struct pci_driver ef4_pci_driver = {
3142 .name = KBUILD_MODNAME,
3143 .id_table = ef4_pci_table,
3144 .probe = ef4_pci_probe,
3145 .remove = ef4_pci_remove,
3146 .driver.pm = &ef4_pm_ops,
3147 .err_handler = &ef4_err_handlers,
3148};
3149
3150/**************************************************************************
3151 *
3152 * Kernel module interface
3153 *
3154 *************************************************************************/
3155
3156module_param(interrupt_mode, uint, 0444);
3157MODULE_PARM_DESC(interrupt_mode,
3158 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3159
3160static int __init ef4_init_module(void)
3161{
3162 int rc;
3163
3164 printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3165
3166 rc = register_netdevice_notifier(&ef4_netdev_notifier);
3167 if (rc)
3168 goto err_notifier;
3169
3170 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3171 if (!reset_workqueue) {
3172 rc = -ENOMEM;
3173 goto err_reset;
3174 }
3175
3176 rc = pci_register_driver(&ef4_pci_driver);
3177 if (rc < 0)
3178 goto err_pci;
3179
3180 return 0;
3181
3182 err_pci:
3183 destroy_workqueue(reset_workqueue);
3184 err_reset:
3185 unregister_netdevice_notifier(&ef4_netdev_notifier);
3186 err_notifier:
3187 return rc;
3188}
3189
3190static void __exit ef4_exit_module(void)
3191{
3192 printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3193
3194 pci_unregister_driver(&ef4_pci_driver);
3195 destroy_workqueue(reset_workqueue);
3196 unregister_netdevice_notifier(&ef4_netdev_notifier);
3197
3198}
3199
3200module_init(ef4_init_module);
3201module_exit(ef4_exit_module);
3202
3203MODULE_AUTHOR("Solarflare Communications and "
3204 "Michael Brown <mbrown@fensystems.co.uk>");
3205MODULE_DESCRIPTION("Solarflare Falcon network driver");
3206MODULE_LICENSE("GPL");
3207MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3208MODULE_VERSION(EF4_DRIVER_VERSION);