Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/**
   2 * drivers/net/ethernet/micrel/ks8851_mll.c
   3 * Copyright (c) 2009 Micrel Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17 */
  18
  19/* Supports:
  20 * KS8851 16bit MLL chip from Micrel Inc.
  21 */
  22
  23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  24
  25#include <linux/interrupt.h>
  26#include <linux/module.h>
  27#include <linux/kernel.h>
  28#include <linux/netdevice.h>
  29#include <linux/etherdevice.h>
  30#include <linux/ethtool.h>
  31#include <linux/cache.h>
  32#include <linux/crc32.h>
  33#include <linux/mii.h>
  34#include <linux/platform_device.h>
  35#include <linux/delay.h>
  36#include <linux/slab.h>
  37#include <linux/ks8851_mll.h>
  38#include <linux/of.h>
  39#include <linux/of_device.h>
  40#include <linux/of_net.h>
  41
  42#define	DRV_NAME	"ks8851_mll"
  43
  44static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
  45#define MAX_RECV_FRAMES			255
  46#define MAX_BUF_SIZE			2048
  47#define TX_BUF_SIZE			2000
  48#define RX_BUF_SIZE			2000
  49
  50#define KS_CCR				0x08
  51#define CCR_EEPROM			(1 << 9)
  52#define CCR_SPI				(1 << 8)
  53#define CCR_8BIT			(1 << 7)
  54#define CCR_16BIT			(1 << 6)
  55#define CCR_32BIT			(1 << 5)
  56#define CCR_SHARED			(1 << 4)
  57#define CCR_32PIN			(1 << 0)
  58
  59/* MAC address registers */
  60#define KS_MARL				0x10
  61#define KS_MARM				0x12
  62#define KS_MARH				0x14
  63
  64#define KS_OBCR				0x20
  65#define OBCR_ODS_16MA			(1 << 6)
  66
  67#define KS_EEPCR			0x22
  68#define EEPCR_EESA			(1 << 4)
  69#define EEPCR_EESB			(1 << 3)
  70#define EEPCR_EEDO			(1 << 2)
  71#define EEPCR_EESCK			(1 << 1)
  72#define EEPCR_EECS			(1 << 0)
  73
  74#define KS_MBIR				0x24
  75#define MBIR_TXMBF			(1 << 12)
  76#define MBIR_TXMBFA			(1 << 11)
  77#define MBIR_RXMBF			(1 << 4)
  78#define MBIR_RXMBFA			(1 << 3)
  79
  80#define KS_GRR				0x26
  81#define GRR_QMU				(1 << 1)
  82#define GRR_GSR				(1 << 0)
  83
  84#define KS_WFCR				0x2A
  85#define WFCR_MPRXE			(1 << 7)
  86#define WFCR_WF3E			(1 << 3)
  87#define WFCR_WF2E			(1 << 2)
  88#define WFCR_WF1E			(1 << 1)
  89#define WFCR_WF0E			(1 << 0)
  90
  91#define KS_WF0CRC0			0x30
  92#define KS_WF0CRC1			0x32
  93#define KS_WF0BM0			0x34
  94#define KS_WF0BM1			0x36
  95#define KS_WF0BM2			0x38
  96#define KS_WF0BM3			0x3A
  97
  98#define KS_WF1CRC0			0x40
  99#define KS_WF1CRC1			0x42
 100#define KS_WF1BM0			0x44
 101#define KS_WF1BM1			0x46
 102#define KS_WF1BM2			0x48
 103#define KS_WF1BM3			0x4A
 104
 105#define KS_WF2CRC0			0x50
 106#define KS_WF2CRC1			0x52
 107#define KS_WF2BM0			0x54
 108#define KS_WF2BM1			0x56
 109#define KS_WF2BM2			0x58
 110#define KS_WF2BM3			0x5A
 111
 112#define KS_WF3CRC0			0x60
 113#define KS_WF3CRC1			0x62
 114#define KS_WF3BM0			0x64
 115#define KS_WF3BM1			0x66
 116#define KS_WF3BM2			0x68
 117#define KS_WF3BM3			0x6A
 118
 119#define KS_TXCR				0x70
 120#define TXCR_TCGICMP			(1 << 8)
 121#define TXCR_TCGUDP			(1 << 7)
 122#define TXCR_TCGTCP			(1 << 6)
 123#define TXCR_TCGIP			(1 << 5)
 124#define TXCR_FTXQ			(1 << 4)
 125#define TXCR_TXFCE			(1 << 3)
 126#define TXCR_TXPE			(1 << 2)
 127#define TXCR_TXCRC			(1 << 1)
 128#define TXCR_TXE			(1 << 0)
 129
 130#define KS_TXSR				0x72
 131#define TXSR_TXLC			(1 << 13)
 132#define TXSR_TXMC			(1 << 12)
 133#define TXSR_TXFID_MASK			(0x3f << 0)
 134#define TXSR_TXFID_SHIFT		(0)
 135#define TXSR_TXFID_GET(_v)		(((_v) >> 0) & 0x3f)
 136
 137
 138#define KS_RXCR1			0x74
 139#define RXCR1_FRXQ			(1 << 15)
 140#define RXCR1_RXUDPFCC			(1 << 14)
 141#define RXCR1_RXTCPFCC			(1 << 13)
 142#define RXCR1_RXIPFCC			(1 << 12)
 143#define RXCR1_RXPAFMA			(1 << 11)
 144#define RXCR1_RXFCE			(1 << 10)
 145#define RXCR1_RXEFE			(1 << 9)
 146#define RXCR1_RXMAFMA			(1 << 8)
 147#define RXCR1_RXBE			(1 << 7)
 148#define RXCR1_RXME			(1 << 6)
 149#define RXCR1_RXUE			(1 << 5)
 150#define RXCR1_RXAE			(1 << 4)
 151#define RXCR1_RXINVF			(1 << 1)
 152#define RXCR1_RXE			(1 << 0)
 153#define RXCR1_FILTER_MASK    		(RXCR1_RXINVF | RXCR1_RXAE | \
 154					 RXCR1_RXMAFMA | RXCR1_RXPAFMA)
 155
 156#define KS_RXCR2			0x76
 157#define RXCR2_SRDBL_MASK		(0x7 << 5)
 158#define RXCR2_SRDBL_SHIFT		(5)
 159#define RXCR2_SRDBL_4B			(0x0 << 5)
 160#define RXCR2_SRDBL_8B			(0x1 << 5)
 161#define RXCR2_SRDBL_16B			(0x2 << 5)
 162#define RXCR2_SRDBL_32B			(0x3 << 5)
 163/* #define RXCR2_SRDBL_FRAME		(0x4 << 5) */
 164#define RXCR2_IUFFP			(1 << 4)
 165#define RXCR2_RXIUFCEZ			(1 << 3)
 166#define RXCR2_UDPLFE			(1 << 2)
 167#define RXCR2_RXICMPFCC			(1 << 1)
 168#define RXCR2_RXSAF			(1 << 0)
 169
 170#define KS_TXMIR			0x78
 171
 172#define KS_RXFHSR			0x7C
 173#define RXFSHR_RXFV			(1 << 15)
 174#define RXFSHR_RXICMPFCS		(1 << 13)
 175#define RXFSHR_RXIPFCS			(1 << 12)
 176#define RXFSHR_RXTCPFCS			(1 << 11)
 177#define RXFSHR_RXUDPFCS			(1 << 10)
 178#define RXFSHR_RXBF			(1 << 7)
 179#define RXFSHR_RXMF			(1 << 6)
 180#define RXFSHR_RXUF			(1 << 5)
 181#define RXFSHR_RXMR			(1 << 4)
 182#define RXFSHR_RXFT			(1 << 3)
 183#define RXFSHR_RXFTL			(1 << 2)
 184#define RXFSHR_RXRF			(1 << 1)
 185#define RXFSHR_RXCE			(1 << 0)
 186#define	RXFSHR_ERR			(RXFSHR_RXCE | RXFSHR_RXRF |\
 187					RXFSHR_RXFTL | RXFSHR_RXMR |\
 188					RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
 189					RXFSHR_RXTCPFCS)
 190#define KS_RXFHBCR			0x7E
 191#define RXFHBCR_CNT_MASK		0x0FFF
 192
 193#define KS_TXQCR			0x80
 194#define TXQCR_AETFE			(1 << 2)
 195#define TXQCR_TXQMAM			(1 << 1)
 196#define TXQCR_METFE			(1 << 0)
 197
 198#define KS_RXQCR			0x82
 199#define RXQCR_RXDTTS			(1 << 12)
 200#define RXQCR_RXDBCTS			(1 << 11)
 201#define RXQCR_RXFCTS			(1 << 10)
 202#define RXQCR_RXIPHTOE			(1 << 9)
 203#define RXQCR_RXDTTE			(1 << 7)
 204#define RXQCR_RXDBCTE			(1 << 6)
 205#define RXQCR_RXFCTE			(1 << 5)
 206#define RXQCR_ADRFE			(1 << 4)
 207#define RXQCR_SDA			(1 << 3)
 208#define RXQCR_RRXEF			(1 << 0)
 209#define RXQCR_CMD_CNTL                	(RXQCR_RXFCTE|RXQCR_ADRFE)
 210
 211#define KS_TXFDPR			0x84
 212#define TXFDPR_TXFPAI			(1 << 14)
 213#define TXFDPR_TXFP_MASK		(0x7ff << 0)
 214#define TXFDPR_TXFP_SHIFT		(0)
 215
 216#define KS_RXFDPR			0x86
 217#define RXFDPR_RXFPAI			(1 << 14)
 218
 219#define KS_RXDTTR			0x8C
 220#define KS_RXDBCTR			0x8E
 221
 222#define KS_IER				0x90
 223#define KS_ISR				0x92
 224#define IRQ_LCI				(1 << 15)
 225#define IRQ_TXI				(1 << 14)
 226#define IRQ_RXI				(1 << 13)
 227#define IRQ_RXOI			(1 << 11)
 228#define IRQ_TXPSI			(1 << 9)
 229#define IRQ_RXPSI			(1 << 8)
 230#define IRQ_TXSAI			(1 << 6)
 231#define IRQ_RXWFDI			(1 << 5)
 232#define IRQ_RXMPDI			(1 << 4)
 233#define IRQ_LDI				(1 << 3)
 234#define IRQ_EDI				(1 << 2)
 235#define IRQ_SPIBEI			(1 << 1)
 236#define IRQ_DEDI			(1 << 0)
 237
 238#define KS_RXFCTR			0x9C
 239#define RXFCTR_THRESHOLD_MASK     	0x00FF
 240
 241#define KS_RXFC				0x9D
 242#define RXFCTR_RXFC_MASK		(0xff << 8)
 243#define RXFCTR_RXFC_SHIFT		(8)
 244#define RXFCTR_RXFC_GET(_v)		(((_v) >> 8) & 0xff)
 245#define RXFCTR_RXFCT_MASK		(0xff << 0)
 246#define RXFCTR_RXFCT_SHIFT		(0)
 247
 248#define KS_TXNTFSR			0x9E
 249
 250#define KS_MAHTR0			0xA0
 251#define KS_MAHTR1			0xA2
 252#define KS_MAHTR2			0xA4
 253#define KS_MAHTR3			0xA6
 254
 255#define KS_FCLWR			0xB0
 256#define KS_FCHWR			0xB2
 257#define KS_FCOWR			0xB4
 258
 259#define KS_CIDER			0xC0
 260#define CIDER_ID			0x8870
 261#define CIDER_REV_MASK			(0x7 << 1)
 262#define CIDER_REV_SHIFT			(1)
 263#define CIDER_REV_GET(_v)		(((_v) >> 1) & 0x7)
 264
 265#define KS_CGCR				0xC6
 266#define KS_IACR				0xC8
 267#define IACR_RDEN			(1 << 12)
 268#define IACR_TSEL_MASK			(0x3 << 10)
 269#define IACR_TSEL_SHIFT			(10)
 270#define IACR_TSEL_MIB			(0x3 << 10)
 271#define IACR_ADDR_MASK			(0x1f << 0)
 272#define IACR_ADDR_SHIFT			(0)
 273
 274#define KS_IADLR			0xD0
 275#define KS_IAHDR			0xD2
 276
 277#define KS_PMECR			0xD4
 278#define PMECR_PME_DELAY			(1 << 14)
 279#define PMECR_PME_POL			(1 << 12)
 280#define PMECR_WOL_WAKEUP		(1 << 11)
 281#define PMECR_WOL_MAGICPKT		(1 << 10)
 282#define PMECR_WOL_LINKUP		(1 << 9)
 283#define PMECR_WOL_ENERGY		(1 << 8)
 284#define PMECR_AUTO_WAKE_EN		(1 << 7)
 285#define PMECR_WAKEUP_NORMAL		(1 << 6)
 286#define PMECR_WKEVT_MASK		(0xf << 2)
 287#define PMECR_WKEVT_SHIFT		(2)
 288#define PMECR_WKEVT_GET(_v)		(((_v) >> 2) & 0xf)
 289#define PMECR_WKEVT_ENERGY		(0x1 << 2)
 290#define PMECR_WKEVT_LINK		(0x2 << 2)
 291#define PMECR_WKEVT_MAGICPKT		(0x4 << 2)
 292#define PMECR_WKEVT_FRAME		(0x8 << 2)
 293#define PMECR_PM_MASK			(0x3 << 0)
 294#define PMECR_PM_SHIFT			(0)
 295#define PMECR_PM_NORMAL			(0x0 << 0)
 296#define PMECR_PM_ENERGY			(0x1 << 0)
 297#define PMECR_PM_SOFTDOWN		(0x2 << 0)
 298#define PMECR_PM_POWERSAVE		(0x3 << 0)
 299
 300/* Standard MII PHY data */
 301#define KS_P1MBCR			0xE4
 302#define P1MBCR_FORCE_FDX		(1 << 8)
 303
 304#define KS_P1MBSR			0xE6
 305#define P1MBSR_AN_COMPLETE		(1 << 5)
 306#define P1MBSR_AN_CAPABLE		(1 << 3)
 307#define P1MBSR_LINK_UP			(1 << 2)
 308
 309#define KS_PHY1ILR			0xE8
 310#define KS_PHY1IHR			0xEA
 311#define KS_P1ANAR			0xEC
 312#define KS_P1ANLPR			0xEE
 313
 314#define KS_P1SCLMD			0xF4
 315#define P1SCLMD_LEDOFF			(1 << 15)
 316#define P1SCLMD_TXIDS			(1 << 14)
 317#define P1SCLMD_RESTARTAN		(1 << 13)
 318#define P1SCLMD_DISAUTOMDIX		(1 << 10)
 319#define P1SCLMD_FORCEMDIX		(1 << 9)
 320#define P1SCLMD_AUTONEGEN		(1 << 7)
 321#define P1SCLMD_FORCE100		(1 << 6)
 322#define P1SCLMD_FORCEFDX		(1 << 5)
 323#define P1SCLMD_ADV_FLOW		(1 << 4)
 324#define P1SCLMD_ADV_100BT_FDX		(1 << 3)
 325#define P1SCLMD_ADV_100BT_HDX		(1 << 2)
 326#define P1SCLMD_ADV_10BT_FDX		(1 << 1)
 327#define P1SCLMD_ADV_10BT_HDX		(1 << 0)
 328
 329#define KS_P1CR				0xF6
 330#define P1CR_HP_MDIX			(1 << 15)
 331#define P1CR_REV_POL			(1 << 13)
 332#define P1CR_OP_100M			(1 << 10)
 333#define P1CR_OP_FDX			(1 << 9)
 334#define P1CR_OP_MDI			(1 << 7)
 335#define P1CR_AN_DONE			(1 << 6)
 336#define P1CR_LINK_GOOD			(1 << 5)
 337#define P1CR_PNTR_FLOW			(1 << 4)
 338#define P1CR_PNTR_100BT_FDX		(1 << 3)
 339#define P1CR_PNTR_100BT_HDX		(1 << 2)
 340#define P1CR_PNTR_10BT_FDX		(1 << 1)
 341#define P1CR_PNTR_10BT_HDX		(1 << 0)
 342
 343/* TX Frame control */
 344
 345#define TXFR_TXIC			(1 << 15)
 346#define TXFR_TXFID_MASK			(0x3f << 0)
 347#define TXFR_TXFID_SHIFT		(0)
 348
 349#define KS_P1SR				0xF8
 350#define P1SR_HP_MDIX			(1 << 15)
 351#define P1SR_REV_POL			(1 << 13)
 352#define P1SR_OP_100M			(1 << 10)
 353#define P1SR_OP_FDX			(1 << 9)
 354#define P1SR_OP_MDI			(1 << 7)
 355#define P1SR_AN_DONE			(1 << 6)
 356#define P1SR_LINK_GOOD			(1 << 5)
 357#define P1SR_PNTR_FLOW			(1 << 4)
 358#define P1SR_PNTR_100BT_FDX		(1 << 3)
 359#define P1SR_PNTR_100BT_HDX		(1 << 2)
 360#define P1SR_PNTR_10BT_FDX		(1 << 1)
 361#define P1SR_PNTR_10BT_HDX		(1 << 0)
 362
 363#define	ENUM_BUS_NONE			0
 364#define	ENUM_BUS_8BIT			1
 365#define	ENUM_BUS_16BIT			2
 366#define	ENUM_BUS_32BIT			3
 367
 368#define MAX_MCAST_LST			32
 369#define HW_MCAST_SIZE			8
 370
 371/**
 372 * union ks_tx_hdr - tx header data
 373 * @txb: The header as bytes
 374 * @txw: The header as 16bit, little-endian words
 375 *
 376 * A dual representation of the tx header data to allow
 377 * access to individual bytes, and to allow 16bit accesses
 378 * with 16bit alignment.
 379 */
 380union ks_tx_hdr {
 381	u8      txb[4];
 382	__le16  txw[2];
 383};
 384
 385/**
 386 * struct ks_net - KS8851 driver private data
 387 * @net_device 	: The network device we're bound to
 388 * @hw_addr	: start address of data register.
 389 * @hw_addr_cmd	: start address of command register.
 390 * @txh    	: temporaly buffer to save status/length.
 391 * @lock	: Lock to ensure that the device is not accessed when busy.
 392 * @pdev	: Pointer to platform device.
 393 * @mii		: The MII state information for the mii calls.
 394 * @frame_head_info   	: frame header information for multi-pkt rx.
 395 * @statelock	: Lock on this structure for tx list.
 396 * @msg_enable	: The message flags controlling driver output (see ethtool).
 397 * @frame_cnt  	: number of frames received.
 398 * @bus_width  	: i/o bus width.
 399 * @rc_rxqcr	: Cached copy of KS_RXQCR.
 400 * @rc_txcr	: Cached copy of KS_TXCR.
 401 * @rc_ier	: Cached copy of KS_IER.
 402 * @sharedbus  	: Multipex(addr and data bus) mode indicator.
 403 * @cmd_reg_cache	: command register cached.
 404 * @cmd_reg_cache_int	: command register cached. Used in the irq handler.
 405 * @promiscuous	: promiscuous mode indicator.
 406 * @all_mcast  	: mutlicast indicator.
 407 * @mcast_lst_size   	: size of multicast list.
 408 * @mcast_lst    	: multicast list.
 409 * @mcast_bits    	: multicast enabed.
 410 * @mac_addr   		: MAC address assigned to this device.
 411 * @fid    		: frame id.
 412 * @extra_byte    	: number of extra byte prepended rx pkt.
 413 * @enabled    		: indicator this device works.
 414 *
 415 * The @lock ensures that the chip is protected when certain operations are
 416 * in progress. When the read or write packet transfer is in progress, most
 417 * of the chip registers are not accessible until the transfer is finished and
 418 * the DMA has been de-asserted.
 419 *
 420 * The @statelock is used to protect information in the structure which may
 421 * need to be accessed via several sources, such as the network driver layer
 422 * or one of the work queues.
 423 *
 424 */
 425
 426/* Receive multiplex framer header info */
 427struct type_frame_head {
 428	u16	sts;         /* Frame status */
 429	u16	len;         /* Byte count */
 430};
 431
 432struct ks_net {
 433	struct net_device	*netdev;
 434	void __iomem    	*hw_addr;
 435	void __iomem    	*hw_addr_cmd;
 436	union ks_tx_hdr		txh ____cacheline_aligned;
 437	struct mutex      	lock; /* spinlock to be interrupt safe */
 438	struct platform_device *pdev;
 439	struct mii_if_info	mii;
 440	struct type_frame_head	*frame_head_info;
 441	spinlock_t		statelock;
 442	u32			msg_enable;
 443	u32			frame_cnt;
 444	int			bus_width;
 445
 446	u16			rc_rxqcr;
 447	u16			rc_txcr;
 448	u16			rc_ier;
 449	u16			sharedbus;
 450	u16			cmd_reg_cache;
 451	u16			cmd_reg_cache_int;
 452	u16			promiscuous;
 453	u16			all_mcast;
 454	u16			mcast_lst_size;
 455	u8			mcast_lst[MAX_MCAST_LST][ETH_ALEN];
 456	u8			mcast_bits[HW_MCAST_SIZE];
 457	u8			mac_addr[6];
 458	u8                      fid;
 459	u8			extra_byte;
 460	u8			enabled;
 461};
 462
 463static int msg_enable;
 464
 465#define BE3             0x8000      /* Byte Enable 3 */
 466#define BE2             0x4000      /* Byte Enable 2 */
 467#define BE1             0x2000      /* Byte Enable 1 */
 468#define BE0             0x1000      /* Byte Enable 0 */
 469
 470/* register read/write calls.
 471 *
 472 * All these calls issue transactions to access the chip's registers. They
 473 * all require that the necessary lock is held to prevent accesses when the
 474 * chip is busy transferring packet data (RX/TX FIFO accesses).
 475 */
 476
 477/**
 478 * ks_rdreg8 - read 8 bit register from device
 479 * @ks	  : The chip information
 480 * @offset: The register address
 481 *
 482 * Read a 8bit register from the chip, returning the result
 483 */
 484static u8 ks_rdreg8(struct ks_net *ks, int offset)
 485{
 486	u16 data;
 487	u8 shift_bit = offset & 0x03;
 488	u8 shift_data = (offset & 1) << 3;
 489	ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
 490	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 491	data  = ioread16(ks->hw_addr);
 492	return (u8)(data >> shift_data);
 493}
 494
 495/**
 496 * ks_rdreg16 - read 16 bit register from device
 497 * @ks	  : The chip information
 498 * @offset: The register address
 499 *
 500 * Read a 16bit register from the chip, returning the result
 501 */
 502
 503static u16 ks_rdreg16(struct ks_net *ks, int offset)
 504{
 505	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
 506	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 507	return ioread16(ks->hw_addr);
 508}
 509
 510/**
 511 * ks_wrreg8 - write 8bit register value to chip
 512 * @ks: The chip information
 513 * @offset: The register address
 514 * @value: The value to write
 515 *
 516 */
 517static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
 518{
 519	u8  shift_bit = (offset & 0x03);
 520	u16 value_write = (u16)(value << ((offset & 1) << 3));
 521	ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
 522	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 523	iowrite16(value_write, ks->hw_addr);
 524}
 525
 526/**
 527 * ks_wrreg16 - write 16bit register value to chip
 528 * @ks: The chip information
 529 * @offset: The register address
 530 * @value: The value to write
 531 *
 532 */
 533
 534static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
 535{
 536	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
 537	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 538	iowrite16(value, ks->hw_addr);
 539}
 540
 541/**
 542 * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
 543 * @ks: The chip state
 544 * @wptr: buffer address to save data
 545 * @len: length in byte to read
 546 *
 547 */
 548static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
 549{
 550	len >>= 1;
 551	while (len--)
 552		*wptr++ = (u16)ioread16(ks->hw_addr);
 553}
 554
 555/**
 556 * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
 557 * @ks: The chip information
 558 * @wptr: buffer address
 559 * @len: length in byte to write
 560 *
 561 */
 562static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
 563{
 564	len >>= 1;
 565	while (len--)
 566		iowrite16(*wptr++, ks->hw_addr);
 567}
 568
 569static void ks_disable_int(struct ks_net *ks)
 570{
 571	ks_wrreg16(ks, KS_IER, 0x0000);
 572}  /* ks_disable_int */
 573
 574static void ks_enable_int(struct ks_net *ks)
 575{
 576	ks_wrreg16(ks, KS_IER, ks->rc_ier);
 577}  /* ks_enable_int */
 578
 579/**
 580 * ks_tx_fifo_space - return the available hardware buffer size.
 581 * @ks: The chip information
 582 *
 583 */
 584static inline u16 ks_tx_fifo_space(struct ks_net *ks)
 585{
 586	return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
 587}
 588
 589/**
 590 * ks_save_cmd_reg - save the command register from the cache.
 591 * @ks: The chip information
 592 *
 593 */
 594static inline void ks_save_cmd_reg(struct ks_net *ks)
 595{
 596	/*ks8851 MLL has a bug to read back the command register.
 597	* So rely on software to save the content of command register.
 598	*/
 599	ks->cmd_reg_cache_int = ks->cmd_reg_cache;
 600}
 601
 602/**
 603 * ks_restore_cmd_reg - restore the command register from the cache and
 604 * 	write to hardware register.
 605 * @ks: The chip information
 606 *
 607 */
 608static inline void ks_restore_cmd_reg(struct ks_net *ks)
 609{
 610	ks->cmd_reg_cache = ks->cmd_reg_cache_int;
 611	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 612}
 613
 614/**
 615 * ks_set_powermode - set power mode of the device
 616 * @ks: The chip information
 617 * @pwrmode: The power mode value to write to KS_PMECR.
 618 *
 619 * Change the power mode of the chip.
 620 */
 621static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
 622{
 623	unsigned pmecr;
 624
 625	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 626
 627	ks_rdreg16(ks, KS_GRR);
 628	pmecr = ks_rdreg16(ks, KS_PMECR);
 629	pmecr &= ~PMECR_PM_MASK;
 630	pmecr |= pwrmode;
 631
 632	ks_wrreg16(ks, KS_PMECR, pmecr);
 633}
 634
 635/**
 636 * ks_read_config - read chip configuration of bus width.
 637 * @ks: The chip information
 638 *
 639 */
 640static void ks_read_config(struct ks_net *ks)
 641{
 642	u16 reg_data = 0;
 643
 644	/* Regardless of bus width, 8 bit read should always work.*/
 645	reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
 646	reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;
 647
 648	/* addr/data bus are multiplexed */
 649	ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
 650
 651	/* There are garbage data when reading data from QMU,
 652	depending on bus-width.
 653	*/
 654
 655	if (reg_data & CCR_8BIT) {
 656		ks->bus_width = ENUM_BUS_8BIT;
 657		ks->extra_byte = 1;
 658	} else if (reg_data & CCR_16BIT) {
 659		ks->bus_width = ENUM_BUS_16BIT;
 660		ks->extra_byte = 2;
 661	} else {
 662		ks->bus_width = ENUM_BUS_32BIT;
 663		ks->extra_byte = 4;
 664	}
 665}
 666
 667/**
 668 * ks_soft_reset - issue one of the soft reset to the device
 669 * @ks: The device state.
 670 * @op: The bit(s) to set in the GRR
 671 *
 672 * Issue the relevant soft-reset command to the device's GRR register
 673 * specified by @op.
 674 *
 675 * Note, the delays are in there as a caution to ensure that the reset
 676 * has time to take effect and then complete. Since the datasheet does
 677 * not currently specify the exact sequence, we have chosen something
 678 * that seems to work with our device.
 679 */
 680static void ks_soft_reset(struct ks_net *ks, unsigned op)
 681{
 682	/* Disable interrupt first */
 683	ks_wrreg16(ks, KS_IER, 0x0000);
 684	ks_wrreg16(ks, KS_GRR, op);
 685	mdelay(10);	/* wait a short time to effect reset */
 686	ks_wrreg16(ks, KS_GRR, 0);
 687	mdelay(1);	/* wait for condition to clear */
 688}
 689
 690
 691static void ks_enable_qmu(struct ks_net *ks)
 692{
 693	u16 w;
 694
 695	w = ks_rdreg16(ks, KS_TXCR);
 696	/* Enables QMU Transmit (TXCR). */
 697	ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
 698
 699	/*
 700	 * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
 701	 * Enable
 702	 */
 703
 704	w = ks_rdreg16(ks, KS_RXQCR);
 705	ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
 706
 707	/* Enables QMU Receive (RXCR1). */
 708	w = ks_rdreg16(ks, KS_RXCR1);
 709	ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
 710	ks->enabled = true;
 711}  /* ks_enable_qmu */
 712
 713static void ks_disable_qmu(struct ks_net *ks)
 714{
 715	u16	w;
 716
 717	w = ks_rdreg16(ks, KS_TXCR);
 718
 719	/* Disables QMU Transmit (TXCR). */
 720	w  &= ~TXCR_TXE;
 721	ks_wrreg16(ks, KS_TXCR, w);
 722
 723	/* Disables QMU Receive (RXCR1). */
 724	w = ks_rdreg16(ks, KS_RXCR1);
 725	w &= ~RXCR1_RXE ;
 726	ks_wrreg16(ks, KS_RXCR1, w);
 727
 728	ks->enabled = false;
 729
 730}  /* ks_disable_qmu */
 731
 732/**
 733 * ks_read_qmu - read 1 pkt data from the QMU.
 734 * @ks: The chip information
 735 * @buf: buffer address to save 1 pkt
 736 * @len: Pkt length
 737 * Here is the sequence to read 1 pkt:
 738 *	1. set sudo DMA mode
 739 *	2. read prepend data
 740 *	3. read pkt data
 741 *	4. reset sudo DMA Mode
 742 */
 743static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
 744{
 745	u32 r =  ks->extra_byte & 0x1 ;
 746	u32 w = ks->extra_byte - r;
 747
 748	/* 1. set sudo DMA mode */
 749	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
 750	ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
 751
 752	/* 2. read prepend data */
 753	/**
 754	 * read 4 + extra bytes and discard them.
 755	 * extra bytes for dummy, 2 for status, 2 for len
 756	 */
 757
 758	/* use likely(r) for 8 bit access for performance */
 759	if (unlikely(r))
 760		ioread8(ks->hw_addr);
 761	ks_inblk(ks, buf, w + 2 + 2);
 762
 763	/* 3. read pkt data */
 764	ks_inblk(ks, buf, ALIGN(len, 4));
 765
 766	/* 4. reset sudo DMA Mode */
 767	ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
 768}
 769
 770/**
 771 * ks_rcv - read multiple pkts data from the QMU.
 772 * @ks: The chip information
 773 * @netdev: The network device being opened.
 774 *
 775 * Read all of header information before reading pkt content.
 776 * It is not allowed only port of pkts in QMU after issuing
 777 * interrupt ack.
 778 */
 779static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
 780{
 781	u32	i;
 782	struct type_frame_head *frame_hdr = ks->frame_head_info;
 783	struct sk_buff *skb;
 784
 785	ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
 786
 787	/* read all header information */
 788	for (i = 0; i < ks->frame_cnt; i++) {
 789		/* Checking Received packet status */
 790		frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
 791		/* Get packet len from hardware */
 792		frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
 793		frame_hdr++;
 794	}
 795
 796	frame_hdr = ks->frame_head_info;
 797	while (ks->frame_cnt--) {
 798		if (unlikely(!(frame_hdr->sts & RXFSHR_RXFV) ||
 799			     frame_hdr->len >= RX_BUF_SIZE ||
 800			     frame_hdr->len <= 0)) {
 801
 802			/* discard an invalid packet */
 803			ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
 804			netdev->stats.rx_dropped++;
 805			if (!(frame_hdr->sts & RXFSHR_RXFV))
 806				netdev->stats.rx_frame_errors++;
 807			else
 808				netdev->stats.rx_length_errors++;
 809			frame_hdr++;
 810			continue;
 811		}
 812
 813		skb = netdev_alloc_skb(netdev, frame_hdr->len + 16);
 814		if (likely(skb)) {
 815			skb_reserve(skb, 2);
 816			/* read data block including CRC 4 bytes */
 817			ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
 818			skb_put(skb, frame_hdr->len - 4);
 819			skb->protocol = eth_type_trans(skb, netdev);
 820			netif_rx(skb);
 821			/* exclude CRC size */
 822			netdev->stats.rx_bytes += frame_hdr->len - 4;
 823			netdev->stats.rx_packets++;
 824		} else {
 825			ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
 826			netdev->stats.rx_dropped++;
 827		}
 828		frame_hdr++;
 829	}
 830}
 831
 832/**
 833 * ks_update_link_status - link status update.
 834 * @netdev: The network device being opened.
 835 * @ks: The chip information
 836 *
 837 */
 838
 839static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
 840{
 841	/* check the status of the link */
 842	u32 link_up_status;
 843	if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
 844		netif_carrier_on(netdev);
 845		link_up_status = true;
 846	} else {
 847		netif_carrier_off(netdev);
 848		link_up_status = false;
 849	}
 850	netif_dbg(ks, link, ks->netdev,
 851		  "%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
 852}
 853
 854/**
 855 * ks_irq - device interrupt handler
 856 * @irq: Interrupt number passed from the IRQ handler.
 857 * @pw: The private word passed to register_irq(), our struct ks_net.
 858 *
 859 * This is the handler invoked to find out what happened
 860 *
 861 * Read the interrupt status, work out what needs to be done and then clear
 862 * any of the interrupts that are not needed.
 863 */
 864
 865static irqreturn_t ks_irq(int irq, void *pw)
 866{
 867	struct net_device *netdev = pw;
 868	struct ks_net *ks = netdev_priv(netdev);
 869	u16 status;
 870
 871	/*this should be the first in IRQ handler */
 872	ks_save_cmd_reg(ks);
 873
 874	status = ks_rdreg16(ks, KS_ISR);
 875	if (unlikely(!status)) {
 876		ks_restore_cmd_reg(ks);
 877		return IRQ_NONE;
 878	}
 879
 880	ks_wrreg16(ks, KS_ISR, status);
 881
 882	if (likely(status & IRQ_RXI))
 883		ks_rcv(ks, netdev);
 884
 885	if (unlikely(status & IRQ_LCI))
 886		ks_update_link_status(netdev, ks);
 887
 888	if (unlikely(status & IRQ_TXI))
 889		netif_wake_queue(netdev);
 890
 891	if (unlikely(status & IRQ_LDI)) {
 892
 893		u16 pmecr = ks_rdreg16(ks, KS_PMECR);
 894		pmecr &= ~PMECR_WKEVT_MASK;
 895		ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 896	}
 897
 898	if (unlikely(status & IRQ_RXOI))
 899		ks->netdev->stats.rx_over_errors++;
 900	/* this should be the last in IRQ handler*/
 901	ks_restore_cmd_reg(ks);
 902	return IRQ_HANDLED;
 903}
 904
 905
 906/**
 907 * ks_net_open - open network device
 908 * @netdev: The network device being opened.
 909 *
 910 * Called when the network device is marked active, such as a user executing
 911 * 'ifconfig up' on the device.
 912 */
 913static int ks_net_open(struct net_device *netdev)
 914{
 915	struct ks_net *ks = netdev_priv(netdev);
 916	int err;
 917
 918#define	KS_INT_FLAGS	IRQF_TRIGGER_LOW
 919	/* lock the card, even if we may not actually do anything
 920	 * else at the moment.
 921	 */
 922
 923	netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
 924
 925	/* reset the HW */
 926	err = request_irq(netdev->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
 927
 928	if (err) {
 929		pr_err("Failed to request IRQ: %d: %d\n", netdev->irq, err);
 930		return err;
 931	}
 932
 933	/* wake up powermode to normal mode */
 934	ks_set_powermode(ks, PMECR_PM_NORMAL);
 935	mdelay(1);	/* wait for normal mode to take effect */
 936
 937	ks_wrreg16(ks, KS_ISR, 0xffff);
 938	ks_enable_int(ks);
 939	ks_enable_qmu(ks);
 940	netif_start_queue(ks->netdev);
 941
 942	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 943
 944	return 0;
 945}
 946
 947/**
 948 * ks_net_stop - close network device
 949 * @netdev: The device being closed.
 950 *
 951 * Called to close down a network device which has been active. Cancell any
 952 * work, shutdown the RX and TX process and then place the chip into a low
 953 * power state whilst it is not being used.
 954 */
 955static int ks_net_stop(struct net_device *netdev)
 956{
 957	struct ks_net *ks = netdev_priv(netdev);
 958
 959	netif_info(ks, ifdown, netdev, "shutting down\n");
 960
 961	netif_stop_queue(netdev);
 962
 963	mutex_lock(&ks->lock);
 964
 965	/* turn off the IRQs and ack any outstanding */
 966	ks_wrreg16(ks, KS_IER, 0x0000);
 967	ks_wrreg16(ks, KS_ISR, 0xffff);
 968
 969	/* shutdown RX/TX QMU */
 970	ks_disable_qmu(ks);
 971
 972	/* set powermode to soft power down to save power */
 973	ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
 974	free_irq(netdev->irq, netdev);
 975	mutex_unlock(&ks->lock);
 976	return 0;
 977}
 978
 979
 980/**
 981 * ks_write_qmu - write 1 pkt data to the QMU.
 982 * @ks: The chip information
 983 * @pdata: buffer address to save 1 pkt
 984 * @len: Pkt length in byte
 985 * Here is the sequence to write 1 pkt:
 986 *	1. set sudo DMA mode
 987 *	2. write status/length
 988 *	3. write pkt data
 989 *	4. reset sudo DMA Mode
 990 *	5. reset sudo DMA mode
 991 *	6. Wait until pkt is out
 992 */
 993static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
 994{
 995	/* start header at txb[0] to align txw entries */
 996	ks->txh.txw[0] = 0;
 997	ks->txh.txw[1] = cpu_to_le16(len);
 998
 999	/* 1. set sudo-DMA mode */
1000	ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
1001	/* 2. write status/lenth info */
1002	ks_outblk(ks, ks->txh.txw, 4);
1003	/* 3. write pkt data */
1004	ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
1005	/* 4. reset sudo-DMA mode */
1006	ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
1007	/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
1008	ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
1009	/* 6. wait until TXQCR_METFE is auto-cleared */
1010	while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
1011		;
1012}
1013
1014/**
1015 * ks_start_xmit - transmit packet
1016 * @skb		: The buffer to transmit
1017 * @netdev	: The device used to transmit the packet.
1018 *
1019 * Called by the network layer to transmit the @skb.
1020 * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
1021 * So while tx is in-progress, prevent IRQ interrupt from happenning.
1022 */
1023static int ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1024{
1025	int retv = NETDEV_TX_OK;
1026	struct ks_net *ks = netdev_priv(netdev);
1027
1028	disable_irq(netdev->irq);
1029	ks_disable_int(ks);
1030	spin_lock(&ks->statelock);
1031
1032	/* Extra space are required:
1033	*  4 byte for alignment, 4 for status/length, 4 for CRC
1034	*/
1035
1036	if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
1037		ks_write_qmu(ks, skb->data, skb->len);
1038		/* add tx statistics */
1039		netdev->stats.tx_bytes += skb->len;
1040		netdev->stats.tx_packets++;
1041		dev_kfree_skb(skb);
1042	} else
1043		retv = NETDEV_TX_BUSY;
1044	spin_unlock(&ks->statelock);
1045	ks_enable_int(ks);
1046	enable_irq(netdev->irq);
1047	return retv;
1048}
1049
1050/**
1051 * ks_start_rx - ready to serve pkts
1052 * @ks		: The chip information
1053 *
1054 */
1055static void ks_start_rx(struct ks_net *ks)
1056{
1057	u16 cntl;
1058
1059	/* Enables QMU Receive (RXCR1). */
1060	cntl = ks_rdreg16(ks, KS_RXCR1);
1061	cntl |= RXCR1_RXE ;
1062	ks_wrreg16(ks, KS_RXCR1, cntl);
1063}  /* ks_start_rx */
1064
1065/**
1066 * ks_stop_rx - stop to serve pkts
1067 * @ks		: The chip information
1068 *
1069 */
1070static void ks_stop_rx(struct ks_net *ks)
1071{
1072	u16 cntl;
1073
1074	/* Disables QMU Receive (RXCR1). */
1075	cntl = ks_rdreg16(ks, KS_RXCR1);
1076	cntl &= ~RXCR1_RXE ;
1077	ks_wrreg16(ks, KS_RXCR1, cntl);
1078
1079}  /* ks_stop_rx */
1080
1081static unsigned long const ethernet_polynomial = 0x04c11db7U;
1082
1083static unsigned long ether_gen_crc(int length, u8 *data)
1084{
1085	long crc = -1;
1086	while (--length >= 0) {
1087		u8 current_octet = *data++;
1088		int bit;
1089
1090		for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
1091			crc = (crc << 1) ^
1092				((crc < 0) ^ (current_octet & 1) ?
1093			ethernet_polynomial : 0);
1094		}
1095	}
1096	return (unsigned long)crc;
1097}  /* ether_gen_crc */
1098
1099/**
1100* ks_set_grpaddr - set multicast information
1101* @ks : The chip information
1102*/
1103
1104static void ks_set_grpaddr(struct ks_net *ks)
1105{
1106	u8	i;
1107	u32	index, position, value;
1108
1109	memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
1110
1111	for (i = 0; i < ks->mcast_lst_size; i++) {
1112		position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
1113		index = position >> 3;
1114		value = 1 << (position & 7);
1115		ks->mcast_bits[index] |= (u8)value;
1116	}
1117
1118	for (i  = 0; i < HW_MCAST_SIZE; i++) {
1119		if (i & 1) {
1120			ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
1121				(ks->mcast_bits[i] << 8) |
1122				ks->mcast_bits[i - 1]);
1123		}
1124	}
1125}  /* ks_set_grpaddr */
1126
1127/**
1128* ks_clear_mcast - clear multicast information
1129*
1130* @ks : The chip information
1131* This routine removes all mcast addresses set in the hardware.
1132*/
1133
1134static void ks_clear_mcast(struct ks_net *ks)
1135{
1136	u16	i, mcast_size;
1137	for (i = 0; i < HW_MCAST_SIZE; i++)
1138		ks->mcast_bits[i] = 0;
1139
1140	mcast_size = HW_MCAST_SIZE >> 2;
1141	for (i = 0; i < mcast_size; i++)
1142		ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
1143}
1144
1145static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
1146{
1147	u16		cntl;
1148	ks->promiscuous = promiscuous_mode;
1149	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1150	cntl = ks_rdreg16(ks, KS_RXCR1);
1151
1152	cntl &= ~RXCR1_FILTER_MASK;
1153	if (promiscuous_mode)
1154		/* Enable Promiscuous mode */
1155		cntl |= RXCR1_RXAE | RXCR1_RXINVF;
1156	else
1157		/* Disable Promiscuous mode (default normal mode) */
1158		cntl |= RXCR1_RXPAFMA;
1159
1160	ks_wrreg16(ks, KS_RXCR1, cntl);
1161
1162	if (ks->enabled)
1163		ks_start_rx(ks);
1164
1165}  /* ks_set_promis */
1166
1167static void ks_set_mcast(struct ks_net *ks, u16 mcast)
1168{
1169	u16	cntl;
1170
1171	ks->all_mcast = mcast;
1172	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1173	cntl = ks_rdreg16(ks, KS_RXCR1);
1174	cntl &= ~RXCR1_FILTER_MASK;
1175	if (mcast)
1176		/* Enable "Perfect with Multicast address passed mode" */
1177		cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1178	else
1179		/**
1180		 * Disable "Perfect with Multicast address passed
1181		 * mode" (normal mode).
1182		 */
1183		cntl |= RXCR1_RXPAFMA;
1184
1185	ks_wrreg16(ks, KS_RXCR1, cntl);
1186
1187	if (ks->enabled)
1188		ks_start_rx(ks);
1189}  /* ks_set_mcast */
1190
1191static void ks_set_rx_mode(struct net_device *netdev)
1192{
1193	struct ks_net *ks = netdev_priv(netdev);
1194	struct netdev_hw_addr *ha;
1195
1196	/* Turn on/off promiscuous mode. */
1197	if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
1198		ks_set_promis(ks,
1199			(u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
1200	/* Turn on/off all mcast mode. */
1201	else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
1202		ks_set_mcast(ks,
1203			(u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
1204	else
1205		ks_set_promis(ks, false);
1206
1207	if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
1208		if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
1209			int i = 0;
1210
1211			netdev_for_each_mc_addr(ha, netdev) {
1212				if (i >= MAX_MCAST_LST)
1213					break;
1214				memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
1215			}
1216			ks->mcast_lst_size = (u8)i;
1217			ks_set_grpaddr(ks);
1218		} else {
1219			/**
1220			 * List too big to support so
1221			 * turn on all mcast mode.
1222			 */
1223			ks->mcast_lst_size = MAX_MCAST_LST;
1224			ks_set_mcast(ks, true);
1225		}
1226	} else {
1227		ks->mcast_lst_size = 0;
1228		ks_clear_mcast(ks);
1229	}
1230} /* ks_set_rx_mode */
1231
1232static void ks_set_mac(struct ks_net *ks, u8 *data)
1233{
1234	u16 *pw = (u16 *)data;
1235	u16 w, u;
1236
1237	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1238
1239	u = *pw++;
1240	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1241	ks_wrreg16(ks, KS_MARH, w);
1242
1243	u = *pw++;
1244	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1245	ks_wrreg16(ks, KS_MARM, w);
1246
1247	u = *pw;
1248	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1249	ks_wrreg16(ks, KS_MARL, w);
1250
1251	memcpy(ks->mac_addr, data, ETH_ALEN);
1252
1253	if (ks->enabled)
1254		ks_start_rx(ks);
1255}
1256
1257static int ks_set_mac_address(struct net_device *netdev, void *paddr)
1258{
1259	struct ks_net *ks = netdev_priv(netdev);
1260	struct sockaddr *addr = paddr;
1261	u8 *da;
1262
1263	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1264
1265	da = (u8 *)netdev->dev_addr;
1266
1267	ks_set_mac(ks, da);
1268	return 0;
1269}
1270
1271static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1272{
1273	struct ks_net *ks = netdev_priv(netdev);
1274
1275	if (!netif_running(netdev))
1276		return -EINVAL;
1277
1278	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1279}
1280
1281static const struct net_device_ops ks_netdev_ops = {
1282	.ndo_open		= ks_net_open,
1283	.ndo_stop		= ks_net_stop,
1284	.ndo_do_ioctl		= ks_net_ioctl,
1285	.ndo_start_xmit		= ks_start_xmit,
1286	.ndo_set_mac_address	= ks_set_mac_address,
1287	.ndo_set_rx_mode	= ks_set_rx_mode,
1288	.ndo_validate_addr	= eth_validate_addr,
1289};
1290
1291/* ethtool support */
1292
1293static void ks_get_drvinfo(struct net_device *netdev,
1294			       struct ethtool_drvinfo *di)
1295{
1296	strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
1297	strlcpy(di->version, "1.00", sizeof(di->version));
1298	strlcpy(di->bus_info, dev_name(netdev->dev.parent),
1299		sizeof(di->bus_info));
1300}
1301
1302static u32 ks_get_msglevel(struct net_device *netdev)
1303{
1304	struct ks_net *ks = netdev_priv(netdev);
1305	return ks->msg_enable;
1306}
1307
1308static void ks_set_msglevel(struct net_device *netdev, u32 to)
1309{
1310	struct ks_net *ks = netdev_priv(netdev);
1311	ks->msg_enable = to;
1312}
1313
1314static int ks_get_link_ksettings(struct net_device *netdev,
1315				 struct ethtool_link_ksettings *cmd)
1316{
1317	struct ks_net *ks = netdev_priv(netdev);
1318
1319	mii_ethtool_get_link_ksettings(&ks->mii, cmd);
1320
1321	return 0;
1322}
1323
1324static int ks_set_link_ksettings(struct net_device *netdev,
1325				 const struct ethtool_link_ksettings *cmd)
1326{
1327	struct ks_net *ks = netdev_priv(netdev);
1328	return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
1329}
1330
1331static u32 ks_get_link(struct net_device *netdev)
1332{
1333	struct ks_net *ks = netdev_priv(netdev);
1334	return mii_link_ok(&ks->mii);
1335}
1336
1337static int ks_nway_reset(struct net_device *netdev)
1338{
1339	struct ks_net *ks = netdev_priv(netdev);
1340	return mii_nway_restart(&ks->mii);
1341}
1342
1343static const struct ethtool_ops ks_ethtool_ops = {
1344	.get_drvinfo	= ks_get_drvinfo,
1345	.get_msglevel	= ks_get_msglevel,
1346	.set_msglevel	= ks_set_msglevel,
1347	.get_link	= ks_get_link,
1348	.nway_reset	= ks_nway_reset,
1349	.get_link_ksettings = ks_get_link_ksettings,
1350	.set_link_ksettings = ks_set_link_ksettings,
1351};
1352
1353/* MII interface controls */
1354
1355/**
1356 * ks_phy_reg - convert MII register into a KS8851 register
1357 * @reg: MII register number.
1358 *
1359 * Return the KS8851 register number for the corresponding MII PHY register
1360 * if possible. Return zero if the MII register has no direct mapping to the
1361 * KS8851 register set.
1362 */
1363static int ks_phy_reg(int reg)
1364{
1365	switch (reg) {
1366	case MII_BMCR:
1367		return KS_P1MBCR;
1368	case MII_BMSR:
1369		return KS_P1MBSR;
1370	case MII_PHYSID1:
1371		return KS_PHY1ILR;
1372	case MII_PHYSID2:
1373		return KS_PHY1IHR;
1374	case MII_ADVERTISE:
1375		return KS_P1ANAR;
1376	case MII_LPA:
1377		return KS_P1ANLPR;
1378	}
1379
1380	return 0x0;
1381}
1382
1383/**
1384 * ks_phy_read - MII interface PHY register read.
1385 * @netdev: The network device the PHY is on.
1386 * @phy_addr: Address of PHY (ignored as we only have one)
1387 * @reg: The register to read.
1388 *
1389 * This call reads data from the PHY register specified in @reg. Since the
1390 * device does not support all the MII registers, the non-existent values
1391 * are always returned as zero.
1392 *
1393 * We return zero for unsupported registers as the MII code does not check
1394 * the value returned for any error status, and simply returns it to the
1395 * caller. The mii-tool that the driver was tested with takes any -ve error
1396 * as real PHY capabilities, thus displaying incorrect data to the user.
1397 */
1398static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
1399{
1400	struct ks_net *ks = netdev_priv(netdev);
1401	int ksreg;
1402	int result;
1403
1404	ksreg = ks_phy_reg(reg);
1405	if (!ksreg)
1406		return 0x0;	/* no error return allowed, so use zero */
1407
1408	mutex_lock(&ks->lock);
1409	result = ks_rdreg16(ks, ksreg);
1410	mutex_unlock(&ks->lock);
1411
1412	return result;
1413}
1414
1415static void ks_phy_write(struct net_device *netdev,
1416			     int phy, int reg, int value)
1417{
1418	struct ks_net *ks = netdev_priv(netdev);
1419	int ksreg;
1420
1421	ksreg = ks_phy_reg(reg);
1422	if (ksreg) {
1423		mutex_lock(&ks->lock);
1424		ks_wrreg16(ks, ksreg, value);
1425		mutex_unlock(&ks->lock);
1426	}
1427}
1428
1429/**
1430 * ks_read_selftest - read the selftest memory info.
1431 * @ks: The device state
1432 *
1433 * Read and check the TX/RX memory selftest information.
1434 */
1435static int ks_read_selftest(struct ks_net *ks)
1436{
1437	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1438	int ret = 0;
1439	unsigned rd;
1440
1441	rd = ks_rdreg16(ks, KS_MBIR);
1442
1443	if ((rd & both_done) != both_done) {
1444		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1445		return 0;
1446	}
1447
1448	if (rd & MBIR_TXMBFA) {
1449		netdev_err(ks->netdev, "TX memory selftest fails\n");
1450		ret |= 1;
1451	}
1452
1453	if (rd & MBIR_RXMBFA) {
1454		netdev_err(ks->netdev, "RX memory selftest fails\n");
1455		ret |= 2;
1456	}
1457
1458	netdev_info(ks->netdev, "the selftest passes\n");
1459	return ret;
1460}
1461
1462static void ks_setup(struct ks_net *ks)
1463{
1464	u16	w;
1465
1466	/**
1467	 * Configure QMU Transmit
1468	 */
1469
1470	/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
1471	ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
1472
1473	/* Setup Receive Frame Data Pointer Auto-Increment */
1474	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
1475
1476	/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1477	ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
1478
1479	/* Setup RxQ Command Control (RXQCR) */
1480	ks->rc_rxqcr = RXQCR_CMD_CNTL;
1481	ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
1482
1483	/**
1484	 * set the force mode to half duplex, default is full duplex
1485	 *  because if the auto-negotiation fails, most switch uses
1486	 *  half-duplex.
1487	 */
1488
1489	w = ks_rdreg16(ks, KS_P1MBCR);
1490	w &= ~P1MBCR_FORCE_FDX;
1491	ks_wrreg16(ks, KS_P1MBCR, w);
1492
1493	w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
1494	ks_wrreg16(ks, KS_TXCR, w);
1495
1496	w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
1497
1498	if (ks->promiscuous)         /* bPromiscuous */
1499		w |= (RXCR1_RXAE | RXCR1_RXINVF);
1500	else if (ks->all_mcast) /* Multicast address passed mode */
1501		w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1502	else                                   /* Normal mode */
1503		w |= RXCR1_RXPAFMA;
1504
1505	ks_wrreg16(ks, KS_RXCR1, w);
1506}  /*ks_setup */
1507
1508
1509static void ks_setup_int(struct ks_net *ks)
1510{
1511	ks->rc_ier = 0x00;
1512	/* Clear the interrupts status of the hardware. */
1513	ks_wrreg16(ks, KS_ISR, 0xffff);
1514
1515	/* Enables the interrupts of the hardware. */
1516	ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
1517}  /* ks_setup_int */
1518
1519static int ks_hw_init(struct ks_net *ks)
1520{
1521#define	MHEADER_SIZE	(sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
1522	ks->promiscuous = 0;
1523	ks->all_mcast = 0;
1524	ks->mcast_lst_size = 0;
1525
1526	ks->frame_head_info = devm_kmalloc(&ks->pdev->dev, MHEADER_SIZE,
1527					   GFP_KERNEL);
1528	if (!ks->frame_head_info)
1529		return false;
1530
1531	ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
1532	return true;
1533}
1534
1535#if defined(CONFIG_OF)
1536static const struct of_device_id ks8851_ml_dt_ids[] = {
1537	{ .compatible = "micrel,ks8851-mll" },
1538	{ /* sentinel */ }
1539};
1540MODULE_DEVICE_TABLE(of, ks8851_ml_dt_ids);
1541#endif
1542
1543static int ks8851_probe(struct platform_device *pdev)
1544{
1545	int err;
1546	struct resource *io_d, *io_c;
1547	struct net_device *netdev;
1548	struct ks_net *ks;
1549	u16 id, data;
1550	const char *mac;
1551
1552	netdev = alloc_etherdev(sizeof(struct ks_net));
1553	if (!netdev)
1554		return -ENOMEM;
1555
1556	SET_NETDEV_DEV(netdev, &pdev->dev);
1557
1558	ks = netdev_priv(netdev);
1559	ks->netdev = netdev;
1560
1561	io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1562	ks->hw_addr = devm_ioremap_resource(&pdev->dev, io_d);
1563	if (IS_ERR(ks->hw_addr)) {
1564		err = PTR_ERR(ks->hw_addr);
1565		goto err_free;
1566	}
1567
1568	io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1569	ks->hw_addr_cmd = devm_ioremap_resource(&pdev->dev, io_c);
1570	if (IS_ERR(ks->hw_addr_cmd)) {
1571		err = PTR_ERR(ks->hw_addr_cmd);
1572		goto err_free;
1573	}
1574
1575	netdev->irq = platform_get_irq(pdev, 0);
1576
1577	if ((int)netdev->irq < 0) {
1578		err = netdev->irq;
1579		goto err_free;
1580	}
1581
1582	ks->pdev = pdev;
1583
1584	mutex_init(&ks->lock);
1585	spin_lock_init(&ks->statelock);
1586
1587	netdev->netdev_ops = &ks_netdev_ops;
1588	netdev->ethtool_ops = &ks_ethtool_ops;
1589
1590	/* setup mii state */
1591	ks->mii.dev             = netdev;
1592	ks->mii.phy_id          = 1,
1593	ks->mii.phy_id_mask     = 1;
1594	ks->mii.reg_num_mask    = 0xf;
1595	ks->mii.mdio_read       = ks_phy_read;
1596	ks->mii.mdio_write      = ks_phy_write;
1597
1598	netdev_info(netdev, "message enable is %d\n", msg_enable);
1599	/* set the default message enable */
1600	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1601						     NETIF_MSG_PROBE |
1602						     NETIF_MSG_LINK));
1603	ks_read_config(ks);
1604
1605	/* simple check for a valid chip being connected to the bus */
1606	if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1607		netdev_err(netdev, "failed to read device ID\n");
1608		err = -ENODEV;
1609		goto err_free;
1610	}
1611
1612	if (ks_read_selftest(ks)) {
1613		netdev_err(netdev, "failed to read device ID\n");
1614		err = -ENODEV;
1615		goto err_free;
1616	}
1617
1618	err = register_netdev(netdev);
1619	if (err)
1620		goto err_free;
1621
1622	platform_set_drvdata(pdev, netdev);
1623
1624	ks_soft_reset(ks, GRR_GSR);
1625	ks_hw_init(ks);
1626	ks_disable_qmu(ks);
1627	ks_setup(ks);
1628	ks_setup_int(ks);
1629
1630	data = ks_rdreg16(ks, KS_OBCR);
1631	ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);
1632
1633	/* overwriting the default MAC address */
1634	if (pdev->dev.of_node) {
1635		mac = of_get_mac_address(pdev->dev.of_node);
1636		if (mac)
1637			memcpy(ks->mac_addr, mac, ETH_ALEN);
1638	} else {
1639		struct ks8851_mll_platform_data *pdata;
1640
1641		pdata = dev_get_platdata(&pdev->dev);
1642		if (!pdata) {
1643			netdev_err(netdev, "No platform data\n");
1644			err = -ENODEV;
1645			goto err_pdata;
1646		}
1647		memcpy(ks->mac_addr, pdata->mac_addr, ETH_ALEN);
1648	}
1649	if (!is_valid_ether_addr(ks->mac_addr)) {
1650		/* Use random MAC address if none passed */
1651		eth_random_addr(ks->mac_addr);
1652		netdev_info(netdev, "Using random mac address\n");
1653	}
1654	netdev_info(netdev, "Mac address is: %pM\n", ks->mac_addr);
1655
1656	memcpy(netdev->dev_addr, ks->mac_addr, ETH_ALEN);
1657
1658	ks_set_mac(ks, netdev->dev_addr);
1659
1660	id = ks_rdreg16(ks, KS_CIDER);
1661
1662	netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
1663		    (id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
1664	return 0;
1665
1666err_pdata:
1667	unregister_netdev(netdev);
1668err_free:
1669	free_netdev(netdev);
1670	return err;
1671}
1672
1673static int ks8851_remove(struct platform_device *pdev)
1674{
1675	struct net_device *netdev = platform_get_drvdata(pdev);
1676
1677	unregister_netdev(netdev);
1678	free_netdev(netdev);
1679	return 0;
1680
1681}
1682
1683static struct platform_driver ks8851_platform_driver = {
1684	.driver = {
1685		.name = DRV_NAME,
1686		.of_match_table	= of_match_ptr(ks8851_ml_dt_ids),
1687	},
1688	.probe = ks8851_probe,
1689	.remove = ks8851_remove,
1690};
1691
1692module_platform_driver(ks8851_platform_driver);
1693
1694MODULE_DESCRIPTION("KS8851 MLL Network driver");
1695MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
1696MODULE_LICENSE("GPL");
1697module_param_named(message, msg_enable, int, 0);
1698MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1699