Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*******************************************************************************
   3 *
   4 * Intel Ethernet Controller XL710 Family Linux Driver
   5 * Copyright(c) 2013 - 2014 Intel Corporation.
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along
  17 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  18 *
  19 * The full GNU General Public License is included in this distribution in
  20 * the file called "COPYING".
  21 *
  22 * Contact Information:
  23 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25 *
  26 ******************************************************************************/
  27
 
 
 
  28#include "i40e_prototype.h"
  29
  30/**
  31 * i40e_init_nvm_ops - Initialize NVM function pointers
  32 * @hw: pointer to the HW structure
  33 *
  34 * Setup the function pointers and the NVM info structure. Should be called
  35 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
  36 * Please notice that the NVM term is used here (& in all methods covered
  37 * in this file) as an equivalent of the FLASH part mapped into the SR.
  38 * We are accessing FLASH always thru the Shadow RAM.
  39 **/
  40i40e_status i40e_init_nvm(struct i40e_hw *hw)
  41{
  42	struct i40e_nvm_info *nvm = &hw->nvm;
  43	i40e_status ret_code = 0;
  44	u32 fla, gens;
  45	u8 sr_size;
  46
  47	/* The SR size is stored regardless of the nvm programming mode
  48	 * as the blank mode may be used in the factory line.
  49	 */
  50	gens = rd32(hw, I40E_GLNVM_GENS);
  51	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
  52			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
  53	/* Switching to words (sr_size contains power of 2KB) */
  54	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
  55
  56	/* Check if we are in the normal or blank NVM programming mode */
  57	fla = rd32(hw, I40E_GLNVM_FLA);
  58	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
  59		/* Max NVM timeout */
  60		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
  61		nvm->blank_nvm_mode = false;
  62	} else { /* Blank programming mode */
  63		nvm->blank_nvm_mode = true;
  64		ret_code = I40E_ERR_NVM_BLANK_MODE;
  65		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
  66	}
  67
  68	return ret_code;
  69}
  70
  71/**
  72 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
  73 * @hw: pointer to the HW structure
  74 * @access: NVM access type (read or write)
  75 *
  76 * This function will request NVM ownership for reading
  77 * via the proper Admin Command.
  78 **/
  79i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
  80				       enum i40e_aq_resource_access_type access)
  81{
  82	i40e_status ret_code = 0;
  83	u64 gtime, timeout;
  84	u64 time_left = 0;
 
  85
  86	if (hw->nvm.blank_nvm_mode)
  87		goto i40e_i40e_acquire_nvm_exit;
  88
  89	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
  90					    0, &time_left, NULL);
  91	/* Reading the Global Device Timer */
  92	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  93
  94	/* Store the timeout */
  95	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
  96
  97	if (ret_code)
  98		i40e_debug(hw, I40E_DEBUG_NVM,
  99			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
 100			   access, time_left, ret_code, hw->aq.asq_last_status);
 101
 102	if (ret_code && time_left) {
 103		/* Poll until the current NVM owner timeouts */
 104		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
 105		while ((gtime < timeout) && time_left) {
 106			usleep_range(10000, 20000);
 107			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
 108			ret_code = i40e_aq_request_resource(hw,
 109							I40E_NVM_RESOURCE_ID,
 110							access, 0, &time_left,
 111							NULL);
 112			if (!ret_code) {
 113				hw->nvm.hw_semaphore_timeout =
 114					    I40E_MS_TO_GTIME(time_left) + gtime;
 115				break;
 116			}
 117		}
 118		if (ret_code) {
 119			hw->nvm.hw_semaphore_timeout = 0;
 120			i40e_debug(hw, I40E_DEBUG_NVM,
 121				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
 122				   time_left, ret_code, hw->aq.asq_last_status);
 123		}
 124	}
 125
 126i40e_i40e_acquire_nvm_exit:
 127	return ret_code;
 128}
 129
 130/**
 131 * i40e_release_nvm - Generic request for releasing the NVM ownership
 132 * @hw: pointer to the HW structure
 133 *
 134 * This function will release NVM resource via the proper Admin Command.
 135 **/
 136void i40e_release_nvm(struct i40e_hw *hw)
 137{
 138	i40e_status ret_code = I40E_SUCCESS;
 139	u32 total_delay = 0;
 
 140
 141	if (hw->nvm.blank_nvm_mode)
 142		return;
 143
 144	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
 145
 146	/* there are some rare cases when trying to release the resource
 147	 * results in an admin Q timeout, so handle them correctly
 148	 */
 149	while ((ret_code == I40E_ERR_ADMIN_QUEUE_TIMEOUT) &&
 150	       (total_delay < hw->aq.asq_cmd_timeout)) {
 151		usleep_range(1000, 2000);
 152		ret_code = i40e_aq_release_resource(hw,
 153						    I40E_NVM_RESOURCE_ID,
 154						    0, NULL);
 155		total_delay++;
 156	}
 157}
 158
 159/**
 160 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
 161 * @hw: pointer to the HW structure
 162 *
 163 * Polls the SRCTL Shadow RAM register done bit.
 164 **/
 165static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
 166{
 167	i40e_status ret_code = I40E_ERR_TIMEOUT;
 168	u32 srctl, wait_cnt;
 169
 170	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
 171	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
 172		srctl = rd32(hw, I40E_GLNVM_SRCTL);
 173		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
 174			ret_code = 0;
 175			break;
 176		}
 177		udelay(5);
 178	}
 179	if (ret_code == I40E_ERR_TIMEOUT)
 180		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
 181	return ret_code;
 182}
 183
 184/**
 185 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
 186 * @hw: pointer to the HW structure
 187 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 188 * @data: word read from the Shadow RAM
 189 *
 190 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
 191 **/
 192static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
 193					    u16 *data)
 194{
 195	i40e_status ret_code = I40E_ERR_TIMEOUT;
 196	u32 sr_reg;
 197
 198	if (offset >= hw->nvm.sr_size) {
 199		i40e_debug(hw, I40E_DEBUG_NVM,
 200			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
 201			   offset, hw->nvm.sr_size);
 202		ret_code = I40E_ERR_PARAM;
 203		goto read_nvm_exit;
 204	}
 205
 206	/* Poll the done bit first */
 207	ret_code = i40e_poll_sr_srctl_done_bit(hw);
 208	if (!ret_code) {
 209		/* Write the address and start reading */
 210		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
 211			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
 212		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
 213
 214		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
 215		ret_code = i40e_poll_sr_srctl_done_bit(hw);
 216		if (!ret_code) {
 217			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
 218			*data = (u16)((sr_reg &
 219				       I40E_GLNVM_SRDATA_RDDATA_MASK)
 220				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
 221		}
 222	}
 223	if (ret_code)
 224		i40e_debug(hw, I40E_DEBUG_NVM,
 225			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
 226			   offset);
 227
 228read_nvm_exit:
 229	return ret_code;
 230}
 231
 232/**
 233 * i40e_read_nvm_aq - Read Shadow RAM.
 234 * @hw: pointer to the HW structure.
 235 * @module_pointer: module pointer location in words from the NVM beginning
 236 * @offset: offset in words from module start
 237 * @words: number of words to write
 238 * @data: buffer with words to write to the Shadow RAM
 239 * @last_command: tells the AdminQ that this is the last command
 240 *
 241 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
 242 **/
 243static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw,
 244				    u8 module_pointer, u32 offset,
 245				    u16 words, void *data,
 246				    bool last_command)
 247{
 248	i40e_status ret_code = I40E_ERR_NVM;
 249	struct i40e_asq_cmd_details cmd_details;
 
 250
 251	memset(&cmd_details, 0, sizeof(cmd_details));
 252	cmd_details.wb_desc = &hw->nvm_wb_desc;
 253
 254	/* Here we are checking the SR limit only for the flat memory model.
 255	 * We cannot do it for the module-based model, as we did not acquire
 256	 * the NVM resource yet (we cannot get the module pointer value).
 257	 * Firmware will check the module-based model.
 258	 */
 259	if ((offset + words) > hw->nvm.sr_size)
 260		i40e_debug(hw, I40E_DEBUG_NVM,
 261			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
 262			   (offset + words), hw->nvm.sr_size);
 263	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 264		/* We can write only up to 4KB (one sector), in one AQ write */
 265		i40e_debug(hw, I40E_DEBUG_NVM,
 266			   "NVM write fail error: tried to write %d words, limit is %d.\n",
 267			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 268	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 269		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 270		/* A single write cannot spread over two sectors */
 271		i40e_debug(hw, I40E_DEBUG_NVM,
 272			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
 273			   offset, words);
 274	else
 275		ret_code = i40e_aq_read_nvm(hw, module_pointer,
 276					    2 * offset,  /*bytes*/
 277					    2 * words,   /*bytes*/
 278					    data, last_command, &cmd_details);
 279
 280	return ret_code;
 281}
 282
 283/**
 284 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
 285 * @hw: pointer to the HW structure
 286 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 287 * @data: word read from the Shadow RAM
 288 *
 289 * Reads one 16 bit word from the Shadow RAM using the AdminQ
 290 **/
 291static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
 292					 u16 *data)
 293{
 294	i40e_status ret_code = I40E_ERR_TIMEOUT;
 295
 296	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
 297	*data = le16_to_cpu(*(__le16 *)data);
 298
 299	return ret_code;
 300}
 301
 302/**
 303 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
 304 * @hw: pointer to the HW structure
 305 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 306 * @data: word read from the Shadow RAM
 307 *
 308 * Reads one 16 bit word from the Shadow RAM.
 309 *
 310 * Do not use this function except in cases where the nvm lock is already
 311 * taken via i40e_acquire_nvm().
 312 **/
 313static i40e_status __i40e_read_nvm_word(struct i40e_hw *hw,
 314					u16 offset, u16 *data)
 315{
 316	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
 317		return i40e_read_nvm_word_aq(hw, offset, data);
 318
 319	return i40e_read_nvm_word_srctl(hw, offset, data);
 320}
 321
 322/**
 323 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
 324 * @hw: pointer to the HW structure
 325 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 326 * @data: word read from the Shadow RAM
 327 *
 328 * Reads one 16 bit word from the Shadow RAM.
 329 **/
 330i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
 331			       u16 *data)
 332{
 333	i40e_status ret_code = 0;
 334
 335	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
 336		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 337	if (ret_code)
 338		return ret_code;
 339
 340	ret_code = __i40e_read_nvm_word(hw, offset, data);
 341
 342	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
 343		i40e_release_nvm(hw);
 344
 345	return ret_code;
 346}
 347
 348/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
 350 * @hw: pointer to the HW structure
 351 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 352 * @words: (in) number of words to read; (out) number of words actually read
 353 * @data: words read from the Shadow RAM
 354 *
 355 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 356 * method. The buffer read is preceded by the NVM ownership take
 357 * and followed by the release.
 358 **/
 359static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
 360					      u16 *words, u16 *data)
 361{
 362	i40e_status ret_code = 0;
 363	u16 index, word;
 364
 365	/* Loop thru the selected region */
 366	for (word = 0; word < *words; word++) {
 367		index = offset + word;
 368		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
 369		if (ret_code)
 370			break;
 371	}
 372
 373	/* Update the number of words read from the Shadow RAM */
 374	*words = word;
 375
 376	return ret_code;
 377}
 378
 379/**
 380 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
 381 * @hw: pointer to the HW structure
 382 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 383 * @words: (in) number of words to read; (out) number of words actually read
 384 * @data: words read from the Shadow RAM
 385 *
 386 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
 387 * method. The buffer read is preceded by the NVM ownership take
 388 * and followed by the release.
 389 **/
 390static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
 391					   u16 *words, u16 *data)
 392{
 393	i40e_status ret_code;
 394	u16 read_size;
 395	bool last_cmd = false;
 396	u16 words_read = 0;
 
 
 397	u16 i = 0;
 398
 399	do {
 400		/* Calculate number of bytes we should read in this step.
 401		 * FVL AQ do not allow to read more than one page at a time or
 402		 * to cross page boundaries.
 403		 */
 404		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
 405			read_size = min(*words,
 406					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
 407				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
 408		else
 409			read_size = min((*words - words_read),
 410					I40E_SR_SECTOR_SIZE_IN_WORDS);
 411
 412		/* Check if this is last command, if so set proper flag */
 413		if ((words_read + read_size) >= *words)
 414			last_cmd = true;
 415
 416		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
 417					    data + words_read, last_cmd);
 418		if (ret_code)
 419			goto read_nvm_buffer_aq_exit;
 420
 421		/* Increment counter for words already read and move offset to
 422		 * new read location
 423		 */
 424		words_read += read_size;
 425		offset += read_size;
 426	} while (words_read < *words);
 427
 428	for (i = 0; i < *words; i++)
 429		data[i] = le16_to_cpu(((__le16 *)data)[i]);
 430
 431read_nvm_buffer_aq_exit:
 432	*words = words_read;
 433	return ret_code;
 434}
 435
 436/**
 437 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
 438 * @hw: pointer to the HW structure
 439 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 440 * @words: (in) number of words to read; (out) number of words actually read
 441 * @data: words read from the Shadow RAM
 442 *
 443 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 444 * method.
 445 **/
 446static i40e_status __i40e_read_nvm_buffer(struct i40e_hw *hw,
 447					  u16 offset, u16 *words,
 448					  u16 *data)
 449{
 450	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
 451		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
 452
 453	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 454}
 455
 456/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457 * i40e_write_nvm_aq - Writes Shadow RAM.
 458 * @hw: pointer to the HW structure.
 459 * @module_pointer: module pointer location in words from the NVM beginning
 460 * @offset: offset in words from module start
 461 * @words: number of words to write
 462 * @data: buffer with words to write to the Shadow RAM
 463 * @last_command: tells the AdminQ that this is the last command
 464 *
 465 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
 466 **/
 467static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
 468				     u32 offset, u16 words, void *data,
 469				     bool last_command)
 470{
 471	i40e_status ret_code = I40E_ERR_NVM;
 472	struct i40e_asq_cmd_details cmd_details;
 
 473
 474	memset(&cmd_details, 0, sizeof(cmd_details));
 475	cmd_details.wb_desc = &hw->nvm_wb_desc;
 476
 477	/* Here we are checking the SR limit only for the flat memory model.
 478	 * We cannot do it for the module-based model, as we did not acquire
 479	 * the NVM resource yet (we cannot get the module pointer value).
 480	 * Firmware will check the module-based model.
 481	 */
 482	if ((offset + words) > hw->nvm.sr_size)
 483		i40e_debug(hw, I40E_DEBUG_NVM,
 484			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
 485			   (offset + words), hw->nvm.sr_size);
 486	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 487		/* We can write only up to 4KB (one sector), in one AQ write */
 488		i40e_debug(hw, I40E_DEBUG_NVM,
 489			   "NVM write fail error: tried to write %d words, limit is %d.\n",
 490			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 491	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 492		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 493		/* A single write cannot spread over two sectors */
 494		i40e_debug(hw, I40E_DEBUG_NVM,
 495			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
 496			   offset, words);
 497	else
 498		ret_code = i40e_aq_update_nvm(hw, module_pointer,
 499					      2 * offset,  /*bytes*/
 500					      2 * words,   /*bytes*/
 501					      data, last_command, 0,
 502					      &cmd_details);
 503
 504	return ret_code;
 505}
 506
 507/**
 508 * i40e_calc_nvm_checksum - Calculates and returns the checksum
 509 * @hw: pointer to hardware structure
 510 * @checksum: pointer to the checksum
 511 *
 512 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
 513 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
 514 * is customer specific and unknown. Therefore, this function skips all maximum
 515 * possible size of VPD (1kB).
 516 **/
 517static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
 518						    u16 *checksum)
 519{
 520	i40e_status ret_code;
 521	struct i40e_virt_mem vmem;
 522	u16 pcie_alt_module = 0;
 523	u16 checksum_local = 0;
 524	u16 vpd_module = 0;
 
 525	u16 *data;
 526	u16 i = 0;
 527
 528	ret_code = i40e_allocate_virt_mem(hw, &vmem,
 529				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
 530	if (ret_code)
 531		goto i40e_calc_nvm_checksum_exit;
 532	data = (u16 *)vmem.va;
 533
 534	/* read pointer to VPD area */
 535	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
 536	if (ret_code) {
 537		ret_code = I40E_ERR_NVM_CHECKSUM;
 538		goto i40e_calc_nvm_checksum_exit;
 539	}
 540
 541	/* read pointer to PCIe Alt Auto-load module */
 542	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
 543					&pcie_alt_module);
 544	if (ret_code) {
 545		ret_code = I40E_ERR_NVM_CHECKSUM;
 546		goto i40e_calc_nvm_checksum_exit;
 547	}
 548
 549	/* Calculate SW checksum that covers the whole 64kB shadow RAM
 550	 * except the VPD and PCIe ALT Auto-load modules
 551	 */
 552	for (i = 0; i < hw->nvm.sr_size; i++) {
 553		/* Read SR page */
 554		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
 555			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
 556
 557			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
 558			if (ret_code) {
 559				ret_code = I40E_ERR_NVM_CHECKSUM;
 560				goto i40e_calc_nvm_checksum_exit;
 561			}
 562		}
 563
 564		/* Skip Checksum word */
 565		if (i == I40E_SR_SW_CHECKSUM_WORD)
 566			continue;
 567		/* Skip VPD module (convert byte size to word count) */
 568		if ((i >= (u32)vpd_module) &&
 569		    (i < ((u32)vpd_module +
 570		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
 571			continue;
 572		}
 573		/* Skip PCIe ALT module (convert byte size to word count) */
 574		if ((i >= (u32)pcie_alt_module) &&
 575		    (i < ((u32)pcie_alt_module +
 576		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
 577			continue;
 578		}
 579
 580		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
 581	}
 582
 583	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
 584
 585i40e_calc_nvm_checksum_exit:
 586	i40e_free_virt_mem(hw, &vmem);
 587	return ret_code;
 588}
 589
 590/**
 591 * i40e_update_nvm_checksum - Updates the NVM checksum
 592 * @hw: pointer to hardware structure
 593 *
 594 * NVM ownership must be acquired before calling this function and released
 595 * on ARQ completion event reception by caller.
 596 * This function will commit SR to NVM.
 597 **/
 598i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
 599{
 600	i40e_status ret_code;
 601	u16 checksum;
 602	__le16 le_sum;
 
 
 603
 604	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
 605	if (!ret_code) {
 606		le_sum = cpu_to_le16(checksum);
 607		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
 608					     1, &le_sum, true);
 609	}
 610
 611	return ret_code;
 612}
 613
 614/**
 615 * i40e_validate_nvm_checksum - Validate EEPROM checksum
 616 * @hw: pointer to hardware structure
 617 * @checksum: calculated checksum
 618 *
 619 * Performs checksum calculation and validates the NVM SW checksum. If the
 620 * caller does not need checksum, the value can be NULL.
 621 **/
 622i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
 623						 u16 *checksum)
 624{
 625	i40e_status ret_code = 0;
 626	u16 checksum_sr = 0;
 627	u16 checksum_local = 0;
 
 
 628
 629	/* We must acquire the NVM lock in order to correctly synchronize the
 630	 * NVM accesses across multiple PFs. Without doing so it is possible
 631	 * for one of the PFs to read invalid data potentially indicating that
 632	 * the checksum is invalid.
 633	 */
 634	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 635	if (ret_code)
 636		return ret_code;
 637	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
 638	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
 639	i40e_release_nvm(hw);
 640	if (ret_code)
 641		return ret_code;
 642
 643	/* Verify read checksum from EEPROM is the same as
 644	 * calculated checksum
 645	 */
 646	if (checksum_local != checksum_sr)
 647		ret_code = I40E_ERR_NVM_CHECKSUM;
 648
 649	/* If the user cares, return the calculated checksum */
 650	if (checksum)
 651		*checksum = checksum_local;
 652
 653	return ret_code;
 654}
 655
 656static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
 657					  struct i40e_nvm_access *cmd,
 658					  u8 *bytes, int *perrno);
 659static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
 660					     struct i40e_nvm_access *cmd,
 661					     u8 *bytes, int *perrno);
 662static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
 663					     struct i40e_nvm_access *cmd,
 664					     u8 *bytes, int *errno);
 665static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
 666						struct i40e_nvm_access *cmd,
 667						int *perrno);
 668static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
 669					 struct i40e_nvm_access *cmd,
 670					 int *perrno);
 671static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
 672					 struct i40e_nvm_access *cmd,
 673					 u8 *bytes, int *perrno);
 674static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
 675					struct i40e_nvm_access *cmd,
 676					u8 *bytes, int *perrno);
 677static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
 678				       struct i40e_nvm_access *cmd,
 679				       u8 *bytes, int *perrno);
 680static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
 681					     struct i40e_nvm_access *cmd,
 682					     u8 *bytes, int *perrno);
 683static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
 684					    struct i40e_nvm_access *cmd,
 685					    u8 *bytes, int *perrno);
 686static inline u8 i40e_nvmupd_get_module(u32 val)
 687{
 688	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
 689}
 690static inline u8 i40e_nvmupd_get_transaction(u32 val)
 691{
 692	return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
 693}
 694
 695static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
 696{
 697	return (u8)((val & I40E_NVM_PRESERVATION_FLAGS_MASK) >>
 698		    I40E_NVM_PRESERVATION_FLAGS_SHIFT);
 699}
 700
 701static const char * const i40e_nvm_update_state_str[] = {
 702	"I40E_NVMUPD_INVALID",
 703	"I40E_NVMUPD_READ_CON",
 704	"I40E_NVMUPD_READ_SNT",
 705	"I40E_NVMUPD_READ_LCB",
 706	"I40E_NVMUPD_READ_SA",
 707	"I40E_NVMUPD_WRITE_ERA",
 708	"I40E_NVMUPD_WRITE_CON",
 709	"I40E_NVMUPD_WRITE_SNT",
 710	"I40E_NVMUPD_WRITE_LCB",
 711	"I40E_NVMUPD_WRITE_SA",
 712	"I40E_NVMUPD_CSUM_CON",
 713	"I40E_NVMUPD_CSUM_SA",
 714	"I40E_NVMUPD_CSUM_LCB",
 715	"I40E_NVMUPD_STATUS",
 716	"I40E_NVMUPD_EXEC_AQ",
 717	"I40E_NVMUPD_GET_AQ_RESULT",
 718	"I40E_NVMUPD_GET_AQ_EVENT",
 719};
 720
 721/**
 722 * i40e_nvmupd_command - Process an NVM update command
 723 * @hw: pointer to hardware structure
 724 * @cmd: pointer to nvm update command
 725 * @bytes: pointer to the data buffer
 726 * @perrno: pointer to return error code
 727 *
 728 * Dispatches command depending on what update state is current
 729 **/
 730i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
 731				struct i40e_nvm_access *cmd,
 732				u8 *bytes, int *perrno)
 733{
 734	i40e_status status;
 735	enum i40e_nvmupd_cmd upd_cmd;
 
 736
 737	/* assume success */
 738	*perrno = 0;
 739
 740	/* early check for status command and debug msgs */
 741	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 742
 743	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
 744		   i40e_nvm_update_state_str[upd_cmd],
 745		   hw->nvmupd_state,
 746		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
 747		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
 748
 749	if (upd_cmd == I40E_NVMUPD_INVALID) {
 750		*perrno = -EFAULT;
 751		i40e_debug(hw, I40E_DEBUG_NVM,
 752			   "i40e_nvmupd_validate_command returns %d errno %d\n",
 753			   upd_cmd, *perrno);
 
 754	}
 755
 756	/* a status request returns immediately rather than
 757	 * going into the state machine
 758	 */
 759	if (upd_cmd == I40E_NVMUPD_STATUS) {
 760		if (!cmd->data_size) {
 761			*perrno = -EFAULT;
 762			return I40E_ERR_BUF_TOO_SHORT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763		}
 
 764
 765		bytes[0] = hw->nvmupd_state;
 766
 767		if (cmd->data_size >= 4) {
 768			bytes[1] = 0;
 769			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 770		}
 
 
 771
 772		/* Clear error status on read */
 773		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
 774			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 775
 776		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777	}
 778
 779	/* Clear status even it is not read and log */
 780	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781		i40e_debug(hw, I40E_DEBUG_NVM,
 782			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
 783		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 
 
 
 
 784	}
 785
 786	/* Acquire lock to prevent race condition where adminq_task
 787	 * can execute after i40e_nvmupd_nvm_read/write but before state
 788	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
 789	 *
 790	 * During NVMUpdate, it is observed that lock could be held for
 791	 * ~5ms for most commands. However lock is held for ~60ms for
 792	 * NVMUPD_CSUM_LCB command.
 793	 */
 794	mutex_lock(&hw->aq.arq_mutex);
 795	switch (hw->nvmupd_state) {
 796	case I40E_NVMUPD_STATE_INIT:
 797		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
 798		break;
 799
 800	case I40E_NVMUPD_STATE_READING:
 801		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
 802		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803
 804	case I40E_NVMUPD_STATE_WRITING:
 805		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
 806		break;
 807
 808	case I40E_NVMUPD_STATE_INIT_WAIT:
 809	case I40E_NVMUPD_STATE_WRITE_WAIT:
 810		/* if we need to stop waiting for an event, clear
 811		 * the wait info and return before doing anything else
 812		 */
 813		if (cmd->offset == 0xffff) {
 814			i40e_nvmupd_clear_wait_state(hw);
 815			status = 0;
 816			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817		}
 818
 819		status = I40E_ERR_NOT_READY;
 820		*perrno = -EBUSY;
 821		break;
 
 
 822
 823	default:
 824		/* invalid state, should never happen */
 
 
 
 
 
 825		i40e_debug(hw, I40E_DEBUG_NVM,
 826			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
 827		status = I40E_NOT_SUPPORTED;
 828		*perrno = -ESRCH;
 829		break;
 
 
 
 
 
 
 
 830	}
 831
 832	mutex_unlock(&hw->aq.arq_mutex);
 833	return status;
 834}
 835
 836/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837 * i40e_nvmupd_state_init - Handle NVM update state Init
 838 * @hw: pointer to hardware structure
 839 * @cmd: pointer to nvm update command buffer
 840 * @bytes: pointer to the data buffer
 841 * @perrno: pointer to return error code
 842 *
 843 * Process legitimate commands of the Init state and conditionally set next
 844 * state. Reject all other commands.
 845 **/
 846static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
 847					  struct i40e_nvm_access *cmd,
 848					  u8 *bytes, int *perrno)
 849{
 850	i40e_status status = 0;
 851	enum i40e_nvmupd_cmd upd_cmd;
 
 852
 853	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 854
 855	switch (upd_cmd) {
 856	case I40E_NVMUPD_READ_SA:
 857		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 858		if (status) {
 859			*perrno = i40e_aq_rc_to_posix(status,
 860						     hw->aq.asq_last_status);
 861		} else {
 862			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 863			i40e_release_nvm(hw);
 864		}
 865		break;
 866
 867	case I40E_NVMUPD_READ_SNT:
 868		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 869		if (status) {
 870			*perrno = i40e_aq_rc_to_posix(status,
 871						     hw->aq.asq_last_status);
 872		} else {
 873			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 874			if (status)
 875				i40e_release_nvm(hw);
 876			else
 877				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
 878		}
 879		break;
 880
 881	case I40E_NVMUPD_WRITE_ERA:
 882		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 883		if (status) {
 884			*perrno = i40e_aq_rc_to_posix(status,
 885						     hw->aq.asq_last_status);
 886		} else {
 887			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
 888			if (status) {
 889				i40e_release_nvm(hw);
 890			} else {
 891				hw->nvm_release_on_done = true;
 892				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
 893				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 894			}
 895		}
 896		break;
 897
 898	case I40E_NVMUPD_WRITE_SA:
 899		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 900		if (status) {
 901			*perrno = i40e_aq_rc_to_posix(status,
 902						     hw->aq.asq_last_status);
 903		} else {
 904			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
 905			if (status) {
 906				i40e_release_nvm(hw);
 907			} else {
 908				hw->nvm_release_on_done = true;
 909				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
 910				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 911			}
 912		}
 913		break;
 914
 915	case I40E_NVMUPD_WRITE_SNT:
 916		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 917		if (status) {
 918			*perrno = i40e_aq_rc_to_posix(status,
 919						     hw->aq.asq_last_status);
 920		} else {
 921			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
 922			if (status) {
 923				i40e_release_nvm(hw);
 924			} else {
 925				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
 926				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
 927			}
 928		}
 929		break;
 930
 931	case I40E_NVMUPD_CSUM_SA:
 932		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 933		if (status) {
 934			*perrno = i40e_aq_rc_to_posix(status,
 935						     hw->aq.asq_last_status);
 936		} else {
 937			status = i40e_update_nvm_checksum(hw);
 938			if (status) {
 939				*perrno = hw->aq.asq_last_status ?
 940				   i40e_aq_rc_to_posix(status,
 941						       hw->aq.asq_last_status) :
 942				   -EIO;
 943				i40e_release_nvm(hw);
 944			} else {
 945				hw->nvm_release_on_done = true;
 946				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
 947				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 948			}
 949		}
 950		break;
 951
 952	case I40E_NVMUPD_EXEC_AQ:
 953		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
 954		break;
 955
 956	case I40E_NVMUPD_GET_AQ_RESULT:
 957		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
 958		break;
 959
 960	case I40E_NVMUPD_GET_AQ_EVENT:
 961		status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
 962		break;
 963
 964	default:
 965		i40e_debug(hw, I40E_DEBUG_NVM,
 966			   "NVMUPD: bad cmd %s in init state\n",
 967			   i40e_nvm_update_state_str[upd_cmd]);
 968		status = I40E_ERR_NVM;
 969		*perrno = -ESRCH;
 970		break;
 971	}
 972	return status;
 973}
 974
 975/**
 976 * i40e_nvmupd_state_reading - Handle NVM update state Reading
 977 * @hw: pointer to hardware structure
 978 * @cmd: pointer to nvm update command buffer
 979 * @bytes: pointer to the data buffer
 980 * @perrno: pointer to return error code
 981 *
 982 * NVM ownership is already held.  Process legitimate commands and set any
 983 * change in state; reject all other commands.
 984 **/
 985static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
 986					     struct i40e_nvm_access *cmd,
 987					     u8 *bytes, int *perrno)
 988{
 989	i40e_status status = 0;
 990	enum i40e_nvmupd_cmd upd_cmd;
 
 991
 992	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 993
 994	switch (upd_cmd) {
 995	case I40E_NVMUPD_READ_SA:
 996	case I40E_NVMUPD_READ_CON:
 997		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 998		break;
 999
1000	case I40E_NVMUPD_READ_LCB:
1001		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1002		i40e_release_nvm(hw);
1003		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1004		break;
1005
1006	default:
1007		i40e_debug(hw, I40E_DEBUG_NVM,
1008			   "NVMUPD: bad cmd %s in reading state.\n",
1009			   i40e_nvm_update_state_str[upd_cmd]);
1010		status = I40E_NOT_SUPPORTED;
1011		*perrno = -ESRCH;
1012		break;
1013	}
1014	return status;
1015}
1016
1017/**
1018 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1019 * @hw: pointer to hardware structure
1020 * @cmd: pointer to nvm update command buffer
1021 * @bytes: pointer to the data buffer
1022 * @perrno: pointer to return error code
1023 *
1024 * NVM ownership is already held.  Process legitimate commands and set any
1025 * change in state; reject all other commands
1026 **/
1027static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
1028					     struct i40e_nvm_access *cmd,
1029					     u8 *bytes, int *perrno)
1030{
1031	i40e_status status = 0;
1032	enum i40e_nvmupd_cmd upd_cmd;
1033	bool retry_attempt = false;
 
1034
1035	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1036
1037retry:
1038	switch (upd_cmd) {
1039	case I40E_NVMUPD_WRITE_CON:
1040		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1041		if (!status) {
1042			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1043			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1044		}
1045		break;
1046
1047	case I40E_NVMUPD_WRITE_LCB:
1048		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1049		if (status) {
1050			*perrno = hw->aq.asq_last_status ?
1051				   i40e_aq_rc_to_posix(status,
1052						       hw->aq.asq_last_status) :
1053				   -EIO;
1054			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1055		} else {
1056			hw->nvm_release_on_done = true;
1057			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1058			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1059		}
1060		break;
1061
1062	case I40E_NVMUPD_CSUM_CON:
1063		/* Assumes the caller has acquired the nvm */
1064		status = i40e_update_nvm_checksum(hw);
1065		if (status) {
1066			*perrno = hw->aq.asq_last_status ?
1067				   i40e_aq_rc_to_posix(status,
1068						       hw->aq.asq_last_status) :
1069				   -EIO;
1070			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1071		} else {
1072			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1073			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1074		}
1075		break;
1076
1077	case I40E_NVMUPD_CSUM_LCB:
1078		/* Assumes the caller has acquired the nvm */
1079		status = i40e_update_nvm_checksum(hw);
1080		if (status) {
1081			*perrno = hw->aq.asq_last_status ?
1082				   i40e_aq_rc_to_posix(status,
1083						       hw->aq.asq_last_status) :
1084				   -EIO;
1085			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1086		} else {
1087			hw->nvm_release_on_done = true;
1088			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1089			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1090		}
1091		break;
1092
1093	default:
1094		i40e_debug(hw, I40E_DEBUG_NVM,
1095			   "NVMUPD: bad cmd %s in writing state.\n",
1096			   i40e_nvm_update_state_str[upd_cmd]);
1097		status = I40E_NOT_SUPPORTED;
1098		*perrno = -ESRCH;
1099		break;
1100	}
1101
1102	/* In some circumstances, a multi-write transaction takes longer
1103	 * than the default 3 minute timeout on the write semaphore.  If
1104	 * the write failed with an EBUSY status, this is likely the problem,
1105	 * so here we try to reacquire the semaphore then retry the write.
1106	 * We only do one retry, then give up.
1107	 */
1108	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1109	    !retry_attempt) {
1110		i40e_status old_status = status;
1111		u32 old_asq_status = hw->aq.asq_last_status;
 
1112		u32 gtime;
1113
1114		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1115		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1116			i40e_debug(hw, I40E_DEBUG_ALL,
1117				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1118				   gtime, hw->nvm.hw_semaphore_timeout);
1119			i40e_release_nvm(hw);
1120			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1121			if (status) {
1122				i40e_debug(hw, I40E_DEBUG_ALL,
1123					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1124					   hw->aq.asq_last_status);
1125				status = old_status;
1126				hw->aq.asq_last_status = old_asq_status;
1127			} else {
1128				retry_attempt = true;
1129				goto retry;
1130			}
1131		}
1132	}
1133
1134	return status;
1135}
1136
1137/**
1138 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1139 * @hw: pointer to the hardware structure
1140 **/
1141void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1142{
1143	i40e_debug(hw, I40E_DEBUG_NVM,
1144		   "NVMUPD: clearing wait on opcode 0x%04x\n",
1145		   hw->nvm_wait_opcode);
1146
1147	if (hw->nvm_release_on_done) {
1148		i40e_release_nvm(hw);
1149		hw->nvm_release_on_done = false;
1150	}
1151	hw->nvm_wait_opcode = 0;
1152
1153	if (hw->aq.arq_last_status) {
1154		hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1155		return;
1156	}
1157
1158	switch (hw->nvmupd_state) {
1159	case I40E_NVMUPD_STATE_INIT_WAIT:
1160		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1161		break;
1162
1163	case I40E_NVMUPD_STATE_WRITE_WAIT:
1164		hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1165		break;
1166
1167	default:
1168		break;
1169	}
1170}
1171
1172/**
1173 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1174 * @hw: pointer to the hardware structure
1175 * @opcode: the event that just happened
1176 **/
1177void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1178				  struct i40e_aq_desc *desc)
1179{
1180	u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1181
1182	if (opcode == hw->nvm_wait_opcode) {
1183		memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1184		i40e_nvmupd_clear_wait_state(hw);
1185	}
1186}
1187
1188/**
1189 * i40e_nvmupd_validate_command - Validate given command
1190 * @hw: pointer to hardware structure
1191 * @cmd: pointer to nvm update command buffer
 
1192 * @perrno: pointer to return error code
1193 *
1194 * Return one of the valid command types or I40E_NVMUPD_INVALID
1195 **/
1196static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1197						 struct i40e_nvm_access *cmd,
1198						 int *perrno)
1199{
1200	enum i40e_nvmupd_cmd upd_cmd;
1201	u8 module, transaction;
1202
1203	/* anything that doesn't match a recognized case is an error */
1204	upd_cmd = I40E_NVMUPD_INVALID;
1205
1206	transaction = i40e_nvmupd_get_transaction(cmd->config);
1207	module = i40e_nvmupd_get_module(cmd->config);
1208
1209	/* limits on data size */
1210	if ((cmd->data_size < 1) ||
1211	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1212		i40e_debug(hw, I40E_DEBUG_NVM,
1213			   "i40e_nvmupd_validate_command data_size %d\n",
1214			   cmd->data_size);
 
1215		*perrno = -EFAULT;
1216		return I40E_NVMUPD_INVALID;
 
 
1217	}
1218
1219	switch (cmd->command) {
1220	case I40E_NVM_READ:
1221		switch (transaction) {
1222		case I40E_NVM_CON:
1223			upd_cmd = I40E_NVMUPD_READ_CON;
1224			break;
1225		case I40E_NVM_SNT:
1226			upd_cmd = I40E_NVMUPD_READ_SNT;
1227			break;
1228		case I40E_NVM_LCB:
1229			upd_cmd = I40E_NVMUPD_READ_LCB;
1230			break;
1231		case I40E_NVM_SA:
1232			upd_cmd = I40E_NVMUPD_READ_SA;
1233			break;
1234		case I40E_NVM_EXEC:
1235			if (module == 0xf)
1236				upd_cmd = I40E_NVMUPD_STATUS;
1237			else if (module == 0)
1238				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1239			break;
1240		case I40E_NVM_AQE:
1241			upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1242			break;
1243		}
1244		break;
1245
1246	case I40E_NVM_WRITE:
1247		switch (transaction) {
1248		case I40E_NVM_CON:
1249			upd_cmd = I40E_NVMUPD_WRITE_CON;
1250			break;
1251		case I40E_NVM_SNT:
1252			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1253			break;
1254		case I40E_NVM_LCB:
1255			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1256			break;
1257		case I40E_NVM_SA:
1258			upd_cmd = I40E_NVMUPD_WRITE_SA;
1259			break;
1260		case I40E_NVM_ERA:
1261			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1262			break;
1263		case I40E_NVM_CSUM:
1264			upd_cmd = I40E_NVMUPD_CSUM_CON;
1265			break;
1266		case (I40E_NVM_CSUM|I40E_NVM_SA):
1267			upd_cmd = I40E_NVMUPD_CSUM_SA;
1268			break;
1269		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1270			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1271			break;
1272		case I40E_NVM_EXEC:
1273			if (module == 0)
1274				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1275			break;
1276		}
1277		break;
1278	}
1279
1280	return upd_cmd;
1281}
 
 
1282
1283/**
1284 * i40e_nvmupd_exec_aq - Run an AQ command
1285 * @hw: pointer to hardware structure
1286 * @cmd: pointer to nvm update command buffer
1287 * @bytes: pointer to the data buffer
1288 * @perrno: pointer to return error code
1289 *
1290 * cmd structure contains identifiers and data buffer
1291 **/
1292static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1293				       struct i40e_nvm_access *cmd,
1294				       u8 *bytes, int *perrno)
1295{
1296	struct i40e_asq_cmd_details cmd_details;
1297	i40e_status status;
1298	struct i40e_aq_desc *aq_desc;
1299	u32 buff_size = 0;
1300	u8 *buff = NULL;
1301	u32 aq_desc_len;
1302	u32 aq_data_len;
1303
1304	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1305	if (cmd->offset == 0xffff)
1306		return 0;
1307
1308	memset(&cmd_details, 0, sizeof(cmd_details));
1309	cmd_details.wb_desc = &hw->nvm_wb_desc;
1310
1311	aq_desc_len = sizeof(struct i40e_aq_desc);
1312	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1313
1314	/* get the aq descriptor */
1315	if (cmd->data_size < aq_desc_len) {
1316		i40e_debug(hw, I40E_DEBUG_NVM,
1317			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1318			   cmd->data_size, aq_desc_len);
1319		*perrno = -EINVAL;
1320		return I40E_ERR_PARAM;
1321	}
1322	aq_desc = (struct i40e_aq_desc *)bytes;
1323
1324	/* if data buffer needed, make sure it's ready */
1325	aq_data_len = cmd->data_size - aq_desc_len;
1326	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1327	if (buff_size) {
1328		if (!hw->nvm_buff.va) {
1329			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1330							hw->aq.asq_buf_size);
1331			if (status)
1332				i40e_debug(hw, I40E_DEBUG_NVM,
1333					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1334					   status);
1335		}
1336
1337		if (hw->nvm_buff.va) {
1338			buff = hw->nvm_buff.va;
1339			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1340		}
1341	}
1342
1343	if (cmd->offset)
1344		memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1345
1346	/* and away we go! */
1347	status = i40e_asq_send_command(hw, aq_desc, buff,
1348				       buff_size, &cmd_details);
1349	if (status) {
1350		i40e_debug(hw, I40E_DEBUG_NVM,
1351			   "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1352			   i40e_stat_str(hw, status),
1353			   i40e_aq_str(hw, hw->aq.asq_last_status));
1354		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1355		return status;
1356	}
1357
1358	/* should we wait for a followup event? */
1359	if (cmd->offset) {
1360		hw->nvm_wait_opcode = cmd->offset;
1361		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1362	}
1363
1364	return status;
1365}
1366
1367/**
1368 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1369 * @hw: pointer to hardware structure
1370 * @cmd: pointer to nvm update command buffer
1371 * @bytes: pointer to the data buffer
1372 * @perrno: pointer to return error code
1373 *
1374 * cmd structure contains identifiers and data buffer
1375 **/
1376static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1377					     struct i40e_nvm_access *cmd,
1378					     u8 *bytes, int *perrno)
1379{
1380	u32 aq_total_len;
1381	u32 aq_desc_len;
1382	int remainder;
1383	u8 *buff;
1384
1385	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1386
1387	aq_desc_len = sizeof(struct i40e_aq_desc);
1388	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1389
1390	/* check offset range */
1391	if (cmd->offset > aq_total_len) {
1392		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1393			   __func__, cmd->offset, aq_total_len);
1394		*perrno = -EINVAL;
1395		return I40E_ERR_PARAM;
1396	}
1397
1398	/* check copylength range */
1399	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1400		int new_len = aq_total_len - cmd->offset;
1401
1402		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1403			   __func__, cmd->data_size, new_len);
1404		cmd->data_size = new_len;
1405	}
1406
1407	remainder = cmd->data_size;
1408	if (cmd->offset < aq_desc_len) {
1409		u32 len = aq_desc_len - cmd->offset;
1410
1411		len = min(len, cmd->data_size);
1412		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1413			   __func__, cmd->offset, cmd->offset + len);
1414
1415		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1416		memcpy(bytes, buff, len);
1417
1418		bytes += len;
1419		remainder -= len;
1420		buff = hw->nvm_buff.va;
1421	} else {
1422		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1423	}
1424
1425	if (remainder > 0) {
1426		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1427
1428		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1429			   __func__, start_byte, start_byte + remainder);
1430		memcpy(bytes, buff, remainder);
1431	}
 
 
 
 
 
 
1432
1433	return 0;
1434}
 
1435
1436/**
1437 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1438 * @hw: pointer to hardware structure
1439 * @cmd: pointer to nvm update command buffer
1440 * @bytes: pointer to the data buffer
1441 * @perrno: pointer to return error code
1442 *
1443 * cmd structure contains identifiers and data buffer
1444 **/
1445static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1446					    struct i40e_nvm_access *cmd,
1447					    u8 *bytes, int *perrno)
1448{
1449	u32 aq_total_len;
1450	u32 aq_desc_len;
1451
1452	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
 
 
 
 
 
 
 
 
 
1453
1454	aq_desc_len = sizeof(struct i40e_aq_desc);
1455	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
 
1456
1457	/* check copylength range */
1458	if (cmd->data_size > aq_total_len) {
1459		i40e_debug(hw, I40E_DEBUG_NVM,
1460			   "%s: copy length %d too big, trimming to %d\n",
1461			   __func__, cmd->data_size, aq_total_len);
1462		cmd->data_size = aq_total_len;
 
1463	}
1464
1465	memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1466
1467	return 0;
1468}
1469
1470/**
1471 * i40e_nvmupd_nvm_read - Read NVM
1472 * @hw: pointer to hardware structure
1473 * @cmd: pointer to nvm update command buffer
1474 * @bytes: pointer to the data buffer
1475 * @perrno: pointer to return error code
1476 *
1477 * cmd structure contains identifiers and data buffer
1478 **/
1479static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1480					struct i40e_nvm_access *cmd,
1481					u8 *bytes, int *perrno)
1482{
1483	struct i40e_asq_cmd_details cmd_details;
1484	i40e_status status;
1485	u8 module, transaction;
1486	bool last;
1487
1488	transaction = i40e_nvmupd_get_transaction(cmd->config);
1489	module = i40e_nvmupd_get_module(cmd->config);
1490	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1491
1492	memset(&cmd_details, 0, sizeof(cmd_details));
1493	cmd_details.wb_desc = &hw->nvm_wb_desc;
1494
1495	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1496				  bytes, last, &cmd_details);
1497	if (status) {
1498		i40e_debug(hw, I40E_DEBUG_NVM,
1499			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1500			   module, cmd->offset, cmd->data_size);
1501		i40e_debug(hw, I40E_DEBUG_NVM,
1502			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1503			   status, hw->aq.asq_last_status);
1504		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1505	}
 
1506
1507	return status;
1508}
1509
1510/**
1511 * i40e_nvmupd_nvm_erase - Erase an NVM module
1512 * @hw: pointer to hardware structure
1513 * @cmd: pointer to nvm update command buffer
1514 * @perrno: pointer to return error code
1515 *
1516 * module, offset, data_size and data are in cmd structure
1517 **/
1518static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1519					 struct i40e_nvm_access *cmd,
1520					 int *perrno)
1521{
1522	i40e_status status = 0;
1523	struct i40e_asq_cmd_details cmd_details;
1524	u8 module, transaction;
1525	bool last;
1526
1527	transaction = i40e_nvmupd_get_transaction(cmd->config);
1528	module = i40e_nvmupd_get_module(cmd->config);
1529	last = (transaction & I40E_NVM_LCB);
 
1530
1531	memset(&cmd_details, 0, sizeof(cmd_details));
1532	cmd_details.wb_desc = &hw->nvm_wb_desc;
 
1533
1534	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1535				   last, &cmd_details);
1536	if (status) {
1537		i40e_debug(hw, I40E_DEBUG_NVM,
1538			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1539			   module, cmd->offset, cmd->data_size);
1540		i40e_debug(hw, I40E_DEBUG_NVM,
1541			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1542			   status, hw->aq.asq_last_status);
1543		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1544	}
1545
1546	return status;
1547}
1548
1549/**
1550 * i40e_nvmupd_nvm_write - Write NVM
1551 * @hw: pointer to hardware structure
1552 * @cmd: pointer to nvm update command buffer
1553 * @bytes: pointer to the data buffer
1554 * @perrno: pointer to return error code
1555 *
1556 * module, offset, data_size and data are in cmd structure
1557 **/
1558static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1559					 struct i40e_nvm_access *cmd,
1560					 u8 *bytes, int *perrno)
1561{
1562	i40e_status status = 0;
1563	struct i40e_asq_cmd_details cmd_details;
1564	u8 module, transaction;
1565	u8 preservation_flags;
1566	bool last;
1567
1568	transaction = i40e_nvmupd_get_transaction(cmd->config);
1569	module = i40e_nvmupd_get_module(cmd->config);
1570	last = (transaction & I40E_NVM_LCB);
1571	preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1572
1573	memset(&cmd_details, 0, sizeof(cmd_details));
1574	cmd_details.wb_desc = &hw->nvm_wb_desc;
1575
1576	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1577				    (u16)cmd->data_size, bytes, last,
1578				    preservation_flags, &cmd_details);
1579	if (status) {
1580		i40e_debug(hw, I40E_DEBUG_NVM,
1581			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1582			   module, cmd->offset, cmd->data_size);
1583		i40e_debug(hw, I40E_DEBUG_NVM,
1584			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1585			   status, hw->aq.asq_last_status);
1586		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1587	}
1588
1589	return status;
1590}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/bitfield.h>
   5#include <linux/delay.h>
   6#include "i40e_alloc.h"
   7#include "i40e_prototype.h"
   8
   9/**
  10 * i40e_init_nvm - Initialize NVM function pointers
  11 * @hw: pointer to the HW structure
  12 *
  13 * Setup the function pointers and the NVM info structure. Should be called
  14 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
  15 * Please notice that the NVM term is used here (& in all methods covered
  16 * in this file) as an equivalent of the FLASH part mapped into the SR.
  17 * We are accessing FLASH always thru the Shadow RAM.
  18 **/
  19int i40e_init_nvm(struct i40e_hw *hw)
  20{
  21	struct i40e_nvm_info *nvm = &hw->nvm;
  22	int ret_code = 0;
  23	u32 fla, gens;
  24	u8 sr_size;
  25
  26	/* The SR size is stored regardless of the nvm programming mode
  27	 * as the blank mode may be used in the factory line.
  28	 */
  29	gens = rd32(hw, I40E_GLNVM_GENS);
  30	sr_size = FIELD_GET(I40E_GLNVM_GENS_SR_SIZE_MASK, gens);
 
  31	/* Switching to words (sr_size contains power of 2KB) */
  32	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
  33
  34	/* Check if we are in the normal or blank NVM programming mode */
  35	fla = rd32(hw, I40E_GLNVM_FLA);
  36	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
  37		/* Max NVM timeout */
  38		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
  39		nvm->blank_nvm_mode = false;
  40	} else { /* Blank programming mode */
  41		nvm->blank_nvm_mode = true;
  42		ret_code = -EIO;
  43		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
  44	}
  45
  46	return ret_code;
  47}
  48
  49/**
  50 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
  51 * @hw: pointer to the HW structure
  52 * @access: NVM access type (read or write)
  53 *
  54 * This function will request NVM ownership for reading
  55 * via the proper Admin Command.
  56 **/
  57int i40e_acquire_nvm(struct i40e_hw *hw,
  58		     enum i40e_aq_resource_access_type access)
  59{
 
  60	u64 gtime, timeout;
  61	u64 time_left = 0;
  62	int ret_code = 0;
  63
  64	if (hw->nvm.blank_nvm_mode)
  65		goto i40e_i40e_acquire_nvm_exit;
  66
  67	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
  68					    0, &time_left, NULL);
  69	/* Reading the Global Device Timer */
  70	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  71
  72	/* Store the timeout */
  73	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
  74
  75	if (ret_code)
  76		i40e_debug(hw, I40E_DEBUG_NVM,
  77			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
  78			   access, time_left, ret_code, hw->aq.asq_last_status);
  79
  80	if (ret_code && time_left) {
  81		/* Poll until the current NVM owner timeouts */
  82		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
  83		while ((gtime < timeout) && time_left) {
  84			usleep_range(10000, 20000);
  85			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  86			ret_code = i40e_aq_request_resource(hw,
  87							I40E_NVM_RESOURCE_ID,
  88							access, 0, &time_left,
  89							NULL);
  90			if (!ret_code) {
  91				hw->nvm.hw_semaphore_timeout =
  92					    I40E_MS_TO_GTIME(time_left) + gtime;
  93				break;
  94			}
  95		}
  96		if (ret_code) {
  97			hw->nvm.hw_semaphore_timeout = 0;
  98			i40e_debug(hw, I40E_DEBUG_NVM,
  99				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
 100				   time_left, ret_code, hw->aq.asq_last_status);
 101		}
 102	}
 103
 104i40e_i40e_acquire_nvm_exit:
 105	return ret_code;
 106}
 107
 108/**
 109 * i40e_release_nvm - Generic request for releasing the NVM ownership
 110 * @hw: pointer to the HW structure
 111 *
 112 * This function will release NVM resource via the proper Admin Command.
 113 **/
 114void i40e_release_nvm(struct i40e_hw *hw)
 115{
 
 116	u32 total_delay = 0;
 117	int ret_code = 0;
 118
 119	if (hw->nvm.blank_nvm_mode)
 120		return;
 121
 122	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
 123
 124	/* there are some rare cases when trying to release the resource
 125	 * results in an admin Q timeout, so handle them correctly
 126	 */
 127	while ((ret_code == -EIO) &&
 128	       (total_delay < hw->aq.asq_cmd_timeout)) {
 129		usleep_range(1000, 2000);
 130		ret_code = i40e_aq_release_resource(hw,
 131						    I40E_NVM_RESOURCE_ID,
 132						    0, NULL);
 133		total_delay++;
 134	}
 135}
 136
 137/**
 138 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
 139 * @hw: pointer to the HW structure
 140 *
 141 * Polls the SRCTL Shadow RAM register done bit.
 142 **/
 143static int i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
 144{
 145	int ret_code = -EIO;
 146	u32 srctl, wait_cnt;
 147
 148	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
 149	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
 150		srctl = rd32(hw, I40E_GLNVM_SRCTL);
 151		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
 152			ret_code = 0;
 153			break;
 154		}
 155		udelay(5);
 156	}
 157	if (ret_code == -EIO)
 158		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
 159	return ret_code;
 160}
 161
 162/**
 163 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
 164 * @hw: pointer to the HW structure
 165 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 166 * @data: word read from the Shadow RAM
 167 *
 168 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
 169 **/
 170static int i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
 171				    u16 *data)
 172{
 173	int ret_code = -EIO;
 174	u32 sr_reg;
 175
 176	if (offset >= hw->nvm.sr_size) {
 177		i40e_debug(hw, I40E_DEBUG_NVM,
 178			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
 179			   offset, hw->nvm.sr_size);
 180		ret_code = -EINVAL;
 181		goto read_nvm_exit;
 182	}
 183
 184	/* Poll the done bit first */
 185	ret_code = i40e_poll_sr_srctl_done_bit(hw);
 186	if (!ret_code) {
 187		/* Write the address and start reading */
 188		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
 189			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
 190		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
 191
 192		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
 193		ret_code = i40e_poll_sr_srctl_done_bit(hw);
 194		if (!ret_code) {
 195			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
 196			*data = FIELD_GET(I40E_GLNVM_SRDATA_RDDATA_MASK,
 197					  sr_reg);
 
 198		}
 199	}
 200	if (ret_code)
 201		i40e_debug(hw, I40E_DEBUG_NVM,
 202			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
 203			   offset);
 204
 205read_nvm_exit:
 206	return ret_code;
 207}
 208
 209/**
 210 * i40e_read_nvm_aq - Read Shadow RAM.
 211 * @hw: pointer to the HW structure.
 212 * @module_pointer: module pointer location in words from the NVM beginning
 213 * @offset: offset in words from module start
 214 * @words: number of words to read
 215 * @data: buffer with words to read to the Shadow RAM
 216 * @last_command: tells the AdminQ that this is the last command
 217 *
 218 * Reads a 16 bit words buffer to the Shadow RAM using the admin command.
 219 **/
 220static int i40e_read_nvm_aq(struct i40e_hw *hw,
 221			    u8 module_pointer, u32 offset,
 222			    u16 words, void *data,
 223			    bool last_command)
 224{
 
 225	struct i40e_asq_cmd_details cmd_details;
 226	int ret_code = -EIO;
 227
 228	memset(&cmd_details, 0, sizeof(cmd_details));
 229	cmd_details.wb_desc = &hw->nvm_wb_desc;
 230
 231	/* Here we are checking the SR limit only for the flat memory model.
 232	 * We cannot do it for the module-based model, as we did not acquire
 233	 * the NVM resource yet (we cannot get the module pointer value).
 234	 * Firmware will check the module-based model.
 235	 */
 236	if ((offset + words) > hw->nvm.sr_size)
 237		i40e_debug(hw, I40E_DEBUG_NVM,
 238			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
 239			   (offset + words), hw->nvm.sr_size);
 240	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 241		/* We can read only up to 4KB (one sector), in one AQ write */
 242		i40e_debug(hw, I40E_DEBUG_NVM,
 243			   "NVM read fail error: tried to read %d words, limit is %d.\n",
 244			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 245	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 246		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 247		/* A single read cannot spread over two sectors */
 248		i40e_debug(hw, I40E_DEBUG_NVM,
 249			   "NVM read error: cannot spread over two sectors in a single read offset=%d words=%d\n",
 250			   offset, words);
 251	else
 252		ret_code = i40e_aq_read_nvm(hw, module_pointer,
 253					    2 * offset,  /*bytes*/
 254					    2 * words,   /*bytes*/
 255					    data, last_command, &cmd_details);
 256
 257	return ret_code;
 258}
 259
 260/**
 261 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
 262 * @hw: pointer to the HW structure
 263 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 264 * @data: word read from the Shadow RAM
 265 *
 266 * Reads one 16 bit word from the Shadow RAM using the AdminQ
 267 **/
 268static int i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
 269				 u16 *data)
 270{
 271	int ret_code = -EIO;
 272
 273	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
 274	*data = le16_to_cpu(*(__le16 *)data);
 275
 276	return ret_code;
 277}
 278
 279/**
 280 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
 281 * @hw: pointer to the HW structure
 282 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 283 * @data: word read from the Shadow RAM
 284 *
 285 * Reads one 16 bit word from the Shadow RAM.
 286 *
 287 * Do not use this function except in cases where the nvm lock is already
 288 * taken via i40e_acquire_nvm().
 289 **/
 290static int __i40e_read_nvm_word(struct i40e_hw *hw,
 291				u16 offset, u16 *data)
 292{
 293	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
 294		return i40e_read_nvm_word_aq(hw, offset, data);
 295
 296	return i40e_read_nvm_word_srctl(hw, offset, data);
 297}
 298
 299/**
 300 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
 301 * @hw: pointer to the HW structure
 302 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 303 * @data: word read from the Shadow RAM
 304 *
 305 * Reads one 16 bit word from the Shadow RAM.
 306 **/
 307int i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
 308		       u16 *data)
 309{
 310	int ret_code = 0;
 311
 312	if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
 313		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 314	if (ret_code)
 315		return ret_code;
 316
 317	ret_code = __i40e_read_nvm_word(hw, offset, data);
 318
 319	if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
 320		i40e_release_nvm(hw);
 321
 322	return ret_code;
 323}
 324
 325/**
 326 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
 327 * @hw: Pointer to the HW structure
 328 * @module_ptr: Pointer to module in words with respect to NVM beginning
 329 * @module_offset: Offset in words from module start
 330 * @data_offset: Offset in words from reading data area start
 331 * @words_data_size: Words to read from NVM
 332 * @data_ptr: Pointer to memory location where resulting buffer will be stored
 333 **/
 334int i40e_read_nvm_module_data(struct i40e_hw *hw,
 335			      u8 module_ptr,
 336			      u16 module_offset,
 337			      u16 data_offset,
 338			      u16 words_data_size,
 339			      u16 *data_ptr)
 340{
 341	u16 specific_ptr = 0;
 342	u16 ptr_value = 0;
 343	u32 offset = 0;
 344	int status;
 345
 346	if (module_ptr != 0) {
 347		status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
 348		if (status) {
 349			i40e_debug(hw, I40E_DEBUG_ALL,
 350				   "Reading nvm word failed.Error code: %d.\n",
 351				   status);
 352			return -EIO;
 353		}
 354	}
 355#define I40E_NVM_INVALID_PTR_VAL 0x7FFF
 356#define I40E_NVM_INVALID_VAL 0xFFFF
 357
 358	/* Pointer not initialized */
 359	if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
 360	    ptr_value == I40E_NVM_INVALID_VAL) {
 361		i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n");
 362		return -EINVAL;
 363	}
 364
 365	/* Check whether the module is in SR mapped area or outside */
 366	if (ptr_value & I40E_PTR_TYPE) {
 367		/* Pointer points outside of the Shared RAM mapped area */
 368		i40e_debug(hw, I40E_DEBUG_ALL,
 369			   "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n");
 370
 371		return -EINVAL;
 372	} else {
 373		/* Read from the Shadow RAM */
 374
 375		status = i40e_read_nvm_word(hw, ptr_value + module_offset,
 376					    &specific_ptr);
 377		if (status) {
 378			i40e_debug(hw, I40E_DEBUG_ALL,
 379				   "Reading nvm word failed.Error code: %d.\n",
 380				   status);
 381			return -EIO;
 382		}
 383
 384		offset = ptr_value + module_offset + specific_ptr +
 385			data_offset;
 386
 387		status = i40e_read_nvm_buffer(hw, offset, &words_data_size,
 388					      data_ptr);
 389		if (status) {
 390			i40e_debug(hw, I40E_DEBUG_ALL,
 391				   "Reading nvm buffer failed.Error code: %d.\n",
 392				   status);
 393		}
 394	}
 395
 396	return status;
 397}
 398
 399/**
 400 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
 401 * @hw: pointer to the HW structure
 402 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 403 * @words: (in) number of words to read; (out) number of words actually read
 404 * @data: words read from the Shadow RAM
 405 *
 406 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 407 * method. The buffer read is preceded by the NVM ownership take
 408 * and followed by the release.
 409 **/
 410static int i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
 411				      u16 *words, u16 *data)
 412{
 413	int ret_code = 0;
 414	u16 index, word;
 415
 416	/* Loop thru the selected region */
 417	for (word = 0; word < *words; word++) {
 418		index = offset + word;
 419		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
 420		if (ret_code)
 421			break;
 422	}
 423
 424	/* Update the number of words read from the Shadow RAM */
 425	*words = word;
 426
 427	return ret_code;
 428}
 429
 430/**
 431 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
 432 * @hw: pointer to the HW structure
 433 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 434 * @words: (in) number of words to read; (out) number of words actually read
 435 * @data: words read from the Shadow RAM
 436 *
 437 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
 438 * method. The buffer read is preceded by the NVM ownership take
 439 * and followed by the release.
 440 **/
 441static int i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
 442				   u16 *words, u16 *data)
 443{
 
 
 444	bool last_cmd = false;
 445	u16 words_read = 0;
 446	u16 read_size;
 447	int ret_code;
 448	u16 i = 0;
 449
 450	do {
 451		/* Calculate number of bytes we should read in this step.
 452		 * FVL AQ do not allow to read more than one page at a time or
 453		 * to cross page boundaries.
 454		 */
 455		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
 456			read_size = min(*words,
 457					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
 458				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
 459		else
 460			read_size = min((*words - words_read),
 461					I40E_SR_SECTOR_SIZE_IN_WORDS);
 462
 463		/* Check if this is last command, if so set proper flag */
 464		if ((words_read + read_size) >= *words)
 465			last_cmd = true;
 466
 467		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
 468					    data + words_read, last_cmd);
 469		if (ret_code)
 470			goto read_nvm_buffer_aq_exit;
 471
 472		/* Increment counter for words already read and move offset to
 473		 * new read location
 474		 */
 475		words_read += read_size;
 476		offset += read_size;
 477	} while (words_read < *words);
 478
 479	for (i = 0; i < *words; i++)
 480		data[i] = le16_to_cpu(((__le16 *)data)[i]);
 481
 482read_nvm_buffer_aq_exit:
 483	*words = words_read;
 484	return ret_code;
 485}
 486
 487/**
 488 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
 489 * @hw: pointer to the HW structure
 490 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 491 * @words: (in) number of words to read; (out) number of words actually read
 492 * @data: words read from the Shadow RAM
 493 *
 494 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 495 * method.
 496 **/
 497static int __i40e_read_nvm_buffer(struct i40e_hw *hw,
 498				  u16 offset, u16 *words,
 499				  u16 *data)
 500{
 501	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
 502		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
 503
 504	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 505}
 506
 507/**
 508 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
 509 * @hw: pointer to the HW structure
 510 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 511 * @words: (in) number of words to read; (out) number of words actually read
 512 * @data: words read from the Shadow RAM
 513 *
 514 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 515 * method. The buffer read is preceded by the NVM ownership take
 516 * and followed by the release.
 517 **/
 518int i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
 519			 u16 *words, u16 *data)
 520{
 521	int ret_code = 0;
 522
 523	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps)) {
 524		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 525		if (!ret_code) {
 526			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
 527							   data);
 528			i40e_release_nvm(hw);
 529		}
 530	} else {
 531		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 532	}
 533
 534	return ret_code;
 535}
 536
 537/**
 538 * i40e_write_nvm_aq - Writes Shadow RAM.
 539 * @hw: pointer to the HW structure.
 540 * @module_pointer: module pointer location in words from the NVM beginning
 541 * @offset: offset in words from module start
 542 * @words: number of words to write
 543 * @data: buffer with words to write to the Shadow RAM
 544 * @last_command: tells the AdminQ that this is the last command
 545 *
 546 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
 547 **/
 548static int i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
 549			     u32 offset, u16 words, void *data,
 550			     bool last_command)
 551{
 
 552	struct i40e_asq_cmd_details cmd_details;
 553	int ret_code = -EIO;
 554
 555	memset(&cmd_details, 0, sizeof(cmd_details));
 556	cmd_details.wb_desc = &hw->nvm_wb_desc;
 557
 558	/* Here we are checking the SR limit only for the flat memory model.
 559	 * We cannot do it for the module-based model, as we did not acquire
 560	 * the NVM resource yet (we cannot get the module pointer value).
 561	 * Firmware will check the module-based model.
 562	 */
 563	if ((offset + words) > hw->nvm.sr_size)
 564		i40e_debug(hw, I40E_DEBUG_NVM,
 565			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
 566			   (offset + words), hw->nvm.sr_size);
 567	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 568		/* We can write only up to 4KB (one sector), in one AQ write */
 569		i40e_debug(hw, I40E_DEBUG_NVM,
 570			   "NVM write fail error: tried to write %d words, limit is %d.\n",
 571			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 572	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 573		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 574		/* A single write cannot spread over two sectors */
 575		i40e_debug(hw, I40E_DEBUG_NVM,
 576			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
 577			   offset, words);
 578	else
 579		ret_code = i40e_aq_update_nvm(hw, module_pointer,
 580					      2 * offset,  /*bytes*/
 581					      2 * words,   /*bytes*/
 582					      data, last_command, 0,
 583					      &cmd_details);
 584
 585	return ret_code;
 586}
 587
 588/**
 589 * i40e_calc_nvm_checksum - Calculates and returns the checksum
 590 * @hw: pointer to hardware structure
 591 * @checksum: pointer to the checksum
 592 *
 593 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
 594 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
 595 * is customer specific and unknown. Therefore, this function skips all maximum
 596 * possible size of VPD (1kB).
 597 **/
 598static int i40e_calc_nvm_checksum(struct i40e_hw *hw,
 599				  u16 *checksum)
 600{
 
 601	struct i40e_virt_mem vmem;
 602	u16 pcie_alt_module = 0;
 603	u16 checksum_local = 0;
 604	u16 vpd_module = 0;
 605	int ret_code;
 606	u16 *data;
 607	u16 i = 0;
 608
 609	ret_code = i40e_allocate_virt_mem(hw, &vmem,
 610				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
 611	if (ret_code)
 612		goto i40e_calc_nvm_checksum_exit;
 613	data = (u16 *)vmem.va;
 614
 615	/* read pointer to VPD area */
 616	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
 617	if (ret_code) {
 618		ret_code = -EIO;
 619		goto i40e_calc_nvm_checksum_exit;
 620	}
 621
 622	/* read pointer to PCIe Alt Auto-load module */
 623	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
 624					&pcie_alt_module);
 625	if (ret_code) {
 626		ret_code = -EIO;
 627		goto i40e_calc_nvm_checksum_exit;
 628	}
 629
 630	/* Calculate SW checksum that covers the whole 64kB shadow RAM
 631	 * except the VPD and PCIe ALT Auto-load modules
 632	 */
 633	for (i = 0; i < hw->nvm.sr_size; i++) {
 634		/* Read SR page */
 635		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
 636			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
 637
 638			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
 639			if (ret_code) {
 640				ret_code = -EIO;
 641				goto i40e_calc_nvm_checksum_exit;
 642			}
 643		}
 644
 645		/* Skip Checksum word */
 646		if (i == I40E_SR_SW_CHECKSUM_WORD)
 647			continue;
 648		/* Skip VPD module (convert byte size to word count) */
 649		if ((i >= (u32)vpd_module) &&
 650		    (i < ((u32)vpd_module +
 651		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
 652			continue;
 653		}
 654		/* Skip PCIe ALT module (convert byte size to word count) */
 655		if ((i >= (u32)pcie_alt_module) &&
 656		    (i < ((u32)pcie_alt_module +
 657		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
 658			continue;
 659		}
 660
 661		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
 662	}
 663
 664	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
 665
 666i40e_calc_nvm_checksum_exit:
 667	i40e_free_virt_mem(hw, &vmem);
 668	return ret_code;
 669}
 670
 671/**
 672 * i40e_update_nvm_checksum - Updates the NVM checksum
 673 * @hw: pointer to hardware structure
 674 *
 675 * NVM ownership must be acquired before calling this function and released
 676 * on ARQ completion event reception by caller.
 677 * This function will commit SR to NVM.
 678 **/
 679int i40e_update_nvm_checksum(struct i40e_hw *hw)
 680{
 
 
 681	__le16 le_sum;
 682	int ret_code;
 683	u16 checksum;
 684
 685	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
 686	if (!ret_code) {
 687		le_sum = cpu_to_le16(checksum);
 688		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
 689					     1, &le_sum, true);
 690	}
 691
 692	return ret_code;
 693}
 694
 695/**
 696 * i40e_validate_nvm_checksum - Validate EEPROM checksum
 697 * @hw: pointer to hardware structure
 698 * @checksum: calculated checksum
 699 *
 700 * Performs checksum calculation and validates the NVM SW checksum. If the
 701 * caller does not need checksum, the value can be NULL.
 702 **/
 703int i40e_validate_nvm_checksum(struct i40e_hw *hw,
 704			       u16 *checksum)
 705{
 
 
 706	u16 checksum_local = 0;
 707	u16 checksum_sr = 0;
 708	int ret_code = 0;
 709
 710	/* We must acquire the NVM lock in order to correctly synchronize the
 711	 * NVM accesses across multiple PFs. Without doing so it is possible
 712	 * for one of the PFs to read invalid data potentially indicating that
 713	 * the checksum is invalid.
 714	 */
 715	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 716	if (ret_code)
 717		return ret_code;
 718	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
 719	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
 720	i40e_release_nvm(hw);
 721	if (ret_code)
 722		return ret_code;
 723
 724	/* Verify read checksum from EEPROM is the same as
 725	 * calculated checksum
 726	 */
 727	if (checksum_local != checksum_sr)
 728		ret_code = -EIO;
 729
 730	/* If the user cares, return the calculated checksum */
 731	if (checksum)
 732		*checksum = checksum_local;
 733
 734	return ret_code;
 735}
 736
 737static u8 i40e_nvmupd_get_module(u32 val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738{
 739	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
 740}
 741static inline u8 i40e_nvmupd_get_transaction(u32 val)
 742{
 743	return FIELD_GET(I40E_NVM_TRANS_MASK, val);
 744}
 745
 746static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
 747{
 748	return FIELD_GET(I40E_NVM_PRESERVATION_FLAGS_MASK, val);
 
 749}
 750
 751static const char * const i40e_nvm_update_state_str[] = {
 752	"I40E_NVMUPD_INVALID",
 753	"I40E_NVMUPD_READ_CON",
 754	"I40E_NVMUPD_READ_SNT",
 755	"I40E_NVMUPD_READ_LCB",
 756	"I40E_NVMUPD_READ_SA",
 757	"I40E_NVMUPD_WRITE_ERA",
 758	"I40E_NVMUPD_WRITE_CON",
 759	"I40E_NVMUPD_WRITE_SNT",
 760	"I40E_NVMUPD_WRITE_LCB",
 761	"I40E_NVMUPD_WRITE_SA",
 762	"I40E_NVMUPD_CSUM_CON",
 763	"I40E_NVMUPD_CSUM_SA",
 764	"I40E_NVMUPD_CSUM_LCB",
 765	"I40E_NVMUPD_STATUS",
 766	"I40E_NVMUPD_EXEC_AQ",
 767	"I40E_NVMUPD_GET_AQ_RESULT",
 768	"I40E_NVMUPD_GET_AQ_EVENT",
 769};
 770
 771/**
 772 * i40e_nvmupd_validate_command - Validate given command
 773 * @hw: pointer to hardware structure
 774 * @cmd: pointer to nvm update command buffer
 
 775 * @perrno: pointer to return error code
 776 *
 777 * Return one of the valid command types or I40E_NVMUPD_INVALID
 778 **/
 779static enum i40e_nvmupd_cmd
 780i40e_nvmupd_validate_command(struct i40e_hw *hw, struct i40e_nvm_access *cmd,
 781			     int *perrno)
 782{
 
 783	enum i40e_nvmupd_cmd upd_cmd;
 784	u8 module, transaction;
 785
 786	/* anything that doesn't match a recognized case is an error */
 787	upd_cmd = I40E_NVMUPD_INVALID;
 
 
 
 788
 789	transaction = i40e_nvmupd_get_transaction(cmd->config);
 790	module = i40e_nvmupd_get_module(cmd->config);
 
 
 
 791
 792	/* limits on data size */
 793	if (cmd->data_size < 1 || cmd->data_size > I40E_NVMUPD_MAX_DATA) {
 794		i40e_debug(hw, I40E_DEBUG_NVM,
 795			   "%s data_size %d\n", __func__, cmd->data_size);
 796		*perrno = -EFAULT;
 797		return I40E_NVMUPD_INVALID;
 798	}
 799
 800	switch (cmd->command) {
 801	case I40E_NVM_READ:
 802		switch (transaction) {
 803		case I40E_NVM_CON:
 804			upd_cmd = I40E_NVMUPD_READ_CON;
 805			break;
 806		case I40E_NVM_SNT:
 807			upd_cmd = I40E_NVMUPD_READ_SNT;
 808			break;
 809		case I40E_NVM_LCB:
 810			upd_cmd = I40E_NVMUPD_READ_LCB;
 811			break;
 812		case I40E_NVM_SA:
 813			upd_cmd = I40E_NVMUPD_READ_SA;
 814			break;
 815		case I40E_NVM_EXEC:
 816			if (module == 0xf)
 817				upd_cmd = I40E_NVMUPD_STATUS;
 818			else if (module == 0)
 819				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
 820			break;
 821		case I40E_NVM_AQE:
 822			upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
 823			break;
 824		}
 825		break;
 826
 827	case I40E_NVM_WRITE:
 828		switch (transaction) {
 829		case I40E_NVM_CON:
 830			upd_cmd = I40E_NVMUPD_WRITE_CON;
 831			break;
 832		case I40E_NVM_SNT:
 833			upd_cmd = I40E_NVMUPD_WRITE_SNT;
 834			break;
 835		case I40E_NVM_LCB:
 836			upd_cmd = I40E_NVMUPD_WRITE_LCB;
 837			break;
 838		case I40E_NVM_SA:
 839			upd_cmd = I40E_NVMUPD_WRITE_SA;
 840			break;
 841		case I40E_NVM_ERA:
 842			upd_cmd = I40E_NVMUPD_WRITE_ERA;
 843			break;
 844		case I40E_NVM_CSUM:
 845			upd_cmd = I40E_NVMUPD_CSUM_CON;
 846			break;
 847		case (I40E_NVM_CSUM | I40E_NVM_SA):
 848			upd_cmd = I40E_NVMUPD_CSUM_SA;
 849			break;
 850		case (I40E_NVM_CSUM | I40E_NVM_LCB):
 851			upd_cmd = I40E_NVMUPD_CSUM_LCB;
 852			break;
 853		case I40E_NVM_EXEC:
 854			if (module == 0)
 855				upd_cmd = I40E_NVMUPD_EXEC_AQ;
 856			break;
 857		}
 858		break;
 859	}
 860
 861	return upd_cmd;
 862}
 
 863
 864/**
 865 * i40e_nvmupd_nvm_erase - Erase an NVM module
 866 * @hw: pointer to hardware structure
 867 * @cmd: pointer to nvm update command buffer
 868 * @perrno: pointer to return error code
 869 *
 870 * module, offset, data_size and data are in cmd structure
 871 **/
 872static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
 873				 struct i40e_nvm_access *cmd,
 874				 int *perrno)
 875{
 876	struct i40e_asq_cmd_details cmd_details;
 877	u8 module, transaction;
 878	int status = 0;
 879	bool last;
 880
 881	transaction = i40e_nvmupd_get_transaction(cmd->config);
 882	module = i40e_nvmupd_get_module(cmd->config);
 883	last = (transaction & I40E_NVM_LCB);
 884
 885	memset(&cmd_details, 0, sizeof(cmd_details));
 886	cmd_details.wb_desc = &hw->nvm_wb_desc;
 887
 888	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
 889				   last, &cmd_details);
 890	if (status) {
 891		i40e_debug(hw, I40E_DEBUG_NVM,
 892			   "%s mod 0x%x  off 0x%x len 0x%x\n",
 893			   __func__, module, cmd->offset, cmd->data_size);
 894		i40e_debug(hw, I40E_DEBUG_NVM,
 895			   "%s status %d aq %d\n",
 896			   __func__, status, hw->aq.asq_last_status);
 897		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
 898	}
 899
 900	return status;
 901}
 902
 903/**
 904 * i40e_nvmupd_nvm_write - Write NVM
 905 * @hw: pointer to hardware structure
 906 * @cmd: pointer to nvm update command buffer
 907 * @bytes: pointer to the data buffer
 908 * @perrno: pointer to return error code
 909 *
 910 * module, offset, data_size and data are in cmd structure
 911 **/
 912static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
 913				 struct i40e_nvm_access *cmd,
 914				 u8 *bytes, int *perrno)
 915{
 916	struct i40e_asq_cmd_details cmd_details;
 917	u8 module, transaction;
 918	u8 preservation_flags;
 919	int status = 0;
 920	bool last;
 921
 922	transaction = i40e_nvmupd_get_transaction(cmd->config);
 923	module = i40e_nvmupd_get_module(cmd->config);
 924	last = (transaction & I40E_NVM_LCB);
 925	preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
 926
 927	memset(&cmd_details, 0, sizeof(cmd_details));
 928	cmd_details.wb_desc = &hw->nvm_wb_desc;
 929
 930	status = i40e_aq_update_nvm(hw, module, cmd->offset,
 931				    (u16)cmd->data_size, bytes, last,
 932				    preservation_flags, &cmd_details);
 933	if (status) {
 934		i40e_debug(hw, I40E_DEBUG_NVM,
 935			   "%s mod 0x%x off 0x%x len 0x%x\n",
 936			   __func__, module, cmd->offset, cmd->data_size);
 937		i40e_debug(hw, I40E_DEBUG_NVM,
 938			   "%s status %d aq %d\n",
 939			   __func__, status, hw->aq.asq_last_status);
 940		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
 941	}
 942
 943	return status;
 944}
 
 
 
 
 
 
 
 
 
 
 
 945
 946/**
 947 * i40e_nvmupd_nvm_read - Read NVM
 948 * @hw: pointer to hardware structure
 949 * @cmd: pointer to nvm update command buffer
 950 * @bytes: pointer to the data buffer
 951 * @perrno: pointer to return error code
 952 *
 953 * cmd structure contains identifiers and data buffer
 954 **/
 955static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
 956				struct i40e_nvm_access *cmd,
 957				u8 *bytes, int *perrno)
 958{
 959	struct i40e_asq_cmd_details cmd_details;
 960	u8 module, transaction;
 961	int status;
 962	bool last;
 963
 964	transaction = i40e_nvmupd_get_transaction(cmd->config);
 965	module = i40e_nvmupd_get_module(cmd->config);
 966	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
 967
 968	memset(&cmd_details, 0, sizeof(cmd_details));
 969	cmd_details.wb_desc = &hw->nvm_wb_desc;
 970
 971	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
 972				  bytes, last, &cmd_details);
 973	if (status) {
 974		i40e_debug(hw, I40E_DEBUG_NVM,
 975			   "%s mod 0x%x  off 0x%x  len 0x%x\n",
 976			   __func__, module, cmd->offset, cmd->data_size);
 977		i40e_debug(hw, I40E_DEBUG_NVM,
 978			   "%s status %d aq %d\n",
 979			   __func__, status, hw->aq.asq_last_status);
 980		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
 981	}
 982
 983	return status;
 984}
 985
 986/**
 987 * i40e_nvmupd_exec_aq - Run an AQ command
 988 * @hw: pointer to hardware structure
 989 * @cmd: pointer to nvm update command buffer
 990 * @bytes: pointer to the data buffer
 991 * @perrno: pointer to return error code
 992 *
 993 * cmd structure contains identifiers and data buffer
 994 **/
 995static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
 996			       struct i40e_nvm_access *cmd,
 997			       u8 *bytes, int *perrno)
 998{
 999	struct i40e_asq_cmd_details cmd_details;
1000	struct i40e_aq_desc *aq_desc;
1001	u32 buff_size = 0;
1002	u8 *buff = NULL;
1003	u32 aq_desc_len;
1004	u32 aq_data_len;
1005	int status;
1006
1007	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1008	if (cmd->offset == 0xffff)
1009		return 0;
1010
1011	memset(&cmd_details, 0, sizeof(cmd_details));
1012	cmd_details.wb_desc = &hw->nvm_wb_desc;
1013
1014	aq_desc_len = sizeof(struct i40e_aq_desc);
1015	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1016
1017	/* get the aq descriptor */
1018	if (cmd->data_size < aq_desc_len) {
1019		i40e_debug(hw, I40E_DEBUG_NVM,
1020			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1021			   cmd->data_size, aq_desc_len);
1022		*perrno = -EINVAL;
1023		return -EINVAL;
1024	}
1025	aq_desc = (struct i40e_aq_desc *)bytes;
1026
1027	/* if data buffer needed, make sure it's ready */
1028	aq_data_len = cmd->data_size - aq_desc_len;
1029	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1030	if (buff_size) {
1031		if (!hw->nvm_buff.va) {
1032			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1033							hw->aq.asq_buf_size);
1034			if (status)
1035				i40e_debug(hw, I40E_DEBUG_NVM,
1036					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1037					   status);
1038		}
1039
1040		if (hw->nvm_buff.va) {
1041			buff = hw->nvm_buff.va;
1042			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1043		}
1044	}
1045
1046	if (cmd->offset)
1047		memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1048
1049	/* and away we go! */
1050	status = i40e_asq_send_command(hw, aq_desc, buff,
1051				       buff_size, &cmd_details);
1052	if (status) {
1053		i40e_debug(hw, I40E_DEBUG_NVM,
1054			   "%s err %pe aq_err %s\n",
1055			   __func__, ERR_PTR(status),
1056			   i40e_aq_str(hw, hw->aq.asq_last_status));
1057		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1058		return status;
1059	}
1060
1061	/* should we wait for a followup event? */
1062	if (cmd->offset) {
1063		hw->nvm_wait_opcode = cmd->offset;
1064		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1065	}
1066
 
1067	return status;
1068}
1069
1070/**
1071 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1072 * @hw: pointer to hardware structure
1073 * @cmd: pointer to nvm update command buffer
1074 * @bytes: pointer to the data buffer
1075 * @perrno: pointer to return error code
1076 *
1077 * cmd structure contains identifiers and data buffer
1078 **/
1079static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1080				     struct i40e_nvm_access *cmd,
1081				     u8 *bytes, int *perrno)
1082{
1083	u32 aq_total_len;
1084	u32 aq_desc_len;
1085	int remainder;
1086	u8 *buff;
1087
1088	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1089
1090	aq_desc_len = sizeof(struct i40e_aq_desc);
1091	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1092
1093	/* check offset range */
1094	if (cmd->offset > aq_total_len) {
1095		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1096			   __func__, cmd->offset, aq_total_len);
1097		*perrno = -EINVAL;
1098		return -EINVAL;
1099	}
1100
1101	/* check copylength range */
1102	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1103		int new_len = aq_total_len - cmd->offset;
1104
1105		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1106			   __func__, cmd->data_size, new_len);
1107		cmd->data_size = new_len;
1108	}
1109
1110	remainder = cmd->data_size;
1111	if (cmd->offset < aq_desc_len) {
1112		u32 len = aq_desc_len - cmd->offset;
1113
1114		len = min(len, cmd->data_size);
1115		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1116			   __func__, cmd->offset, cmd->offset + len);
1117
1118		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1119		memcpy(bytes, buff, len);
1120
1121		bytes += len;
1122		remainder -= len;
1123		buff = hw->nvm_buff.va;
1124	} else {
1125		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1126	}
1127
1128	if (remainder > 0) {
1129		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1130
1131		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1132			   __func__, start_byte, start_byte + remainder);
1133		memcpy(bytes, buff, remainder);
1134	}
1135
1136	return 0;
1137}
1138
1139/**
1140 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1141 * @hw: pointer to hardware structure
1142 * @cmd: pointer to nvm update command buffer
1143 * @bytes: pointer to the data buffer
1144 * @perrno: pointer to return error code
1145 *
1146 * cmd structure contains identifiers and data buffer
1147 **/
1148static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1149				    struct i40e_nvm_access *cmd,
1150				    u8 *bytes, int *perrno)
1151{
1152	u32 aq_total_len;
1153	u32 aq_desc_len;
1154
1155	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1156
1157	aq_desc_len = sizeof(struct i40e_aq_desc);
1158	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1159
1160	/* check copylength range */
1161	if (cmd->data_size > aq_total_len) {
1162		i40e_debug(hw, I40E_DEBUG_NVM,
1163			   "%s: copy length %d too big, trimming to %d\n",
1164			   __func__, cmd->data_size, aq_total_len);
1165		cmd->data_size = aq_total_len;
1166	}
1167
1168	memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1169
1170	return 0;
1171}
1172
1173/**
1174 * i40e_nvmupd_state_init - Handle NVM update state Init
1175 * @hw: pointer to hardware structure
1176 * @cmd: pointer to nvm update command buffer
1177 * @bytes: pointer to the data buffer
1178 * @perrno: pointer to return error code
1179 *
1180 * Process legitimate commands of the Init state and conditionally set next
1181 * state. Reject all other commands.
1182 **/
1183static int i40e_nvmupd_state_init(struct i40e_hw *hw,
1184				  struct i40e_nvm_access *cmd,
1185				  u8 *bytes, int *perrno)
1186{
 
1187	enum i40e_nvmupd_cmd upd_cmd;
1188	int status = 0;
1189
1190	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1191
1192	switch (upd_cmd) {
1193	case I40E_NVMUPD_READ_SA:
1194		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
1195		if (status) {
1196			*perrno = i40e_aq_rc_to_posix(status,
1197						      hw->aq.asq_last_status);
1198		} else {
1199			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1200			i40e_release_nvm(hw);
1201		}
1202		break;
1203
1204	case I40E_NVMUPD_READ_SNT:
1205		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
1206		if (status) {
1207			*perrno = i40e_aq_rc_to_posix(status,
1208						      hw->aq.asq_last_status);
1209		} else {
1210			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1211			if (status)
1212				i40e_release_nvm(hw);
1213			else
1214				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
1215		}
1216		break;
1217
1218	case I40E_NVMUPD_WRITE_ERA:
1219		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1220		if (status) {
1221			*perrno = i40e_aq_rc_to_posix(status,
1222						      hw->aq.asq_last_status);
1223		} else {
1224			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
1225			if (status) {
1226				i40e_release_nvm(hw);
1227			} else {
1228				hw->nvm_release_on_done = true;
1229				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
1230				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1231			}
1232		}
1233		break;
1234
1235	case I40E_NVMUPD_WRITE_SA:
1236		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1237		if (status) {
1238			*perrno = i40e_aq_rc_to_posix(status,
1239						      hw->aq.asq_last_status);
1240		} else {
1241			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1242			if (status) {
1243				i40e_release_nvm(hw);
1244			} else {
1245				hw->nvm_release_on_done = true;
1246				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1247				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1248			}
1249		}
1250		break;
1251
1252	case I40E_NVMUPD_WRITE_SNT:
1253		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1254		if (status) {
1255			*perrno = i40e_aq_rc_to_posix(status,
1256						      hw->aq.asq_last_status);
1257		} else {
1258			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1259			if (status) {
1260				i40e_release_nvm(hw);
1261			} else {
1262				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1263				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1264			}
1265		}
1266		break;
1267
1268	case I40E_NVMUPD_CSUM_SA:
1269		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1270		if (status) {
1271			*perrno = i40e_aq_rc_to_posix(status,
1272						      hw->aq.asq_last_status);
1273		} else {
1274			status = i40e_update_nvm_checksum(hw);
1275			if (status) {
1276				*perrno = hw->aq.asq_last_status ?
1277				   i40e_aq_rc_to_posix(status,
1278						       hw->aq.asq_last_status) :
1279				   -EIO;
1280				i40e_release_nvm(hw);
1281			} else {
1282				hw->nvm_release_on_done = true;
1283				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1284				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1285			}
1286		}
1287		break;
1288
1289	case I40E_NVMUPD_EXEC_AQ:
1290		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1291		break;
1292
1293	case I40E_NVMUPD_GET_AQ_RESULT:
1294		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1295		break;
1296
1297	case I40E_NVMUPD_GET_AQ_EVENT:
1298		status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1299		break;
1300
1301	default:
1302		i40e_debug(hw, I40E_DEBUG_NVM,
1303			   "NVMUPD: bad cmd %s in init state\n",
1304			   i40e_nvm_update_state_str[upd_cmd]);
1305		status = -EIO;
1306		*perrno = -ESRCH;
1307		break;
1308	}
1309	return status;
1310}
1311
1312/**
1313 * i40e_nvmupd_state_reading - Handle NVM update state Reading
1314 * @hw: pointer to hardware structure
1315 * @cmd: pointer to nvm update command buffer
1316 * @bytes: pointer to the data buffer
1317 * @perrno: pointer to return error code
1318 *
1319 * NVM ownership is already held.  Process legitimate commands and set any
1320 * change in state; reject all other commands.
1321 **/
1322static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
1323				     struct i40e_nvm_access *cmd,
1324				     u8 *bytes, int *perrno)
1325{
 
1326	enum i40e_nvmupd_cmd upd_cmd;
1327	int status = 0;
1328
1329	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1330
1331	switch (upd_cmd) {
1332	case I40E_NVMUPD_READ_SA:
1333	case I40E_NVMUPD_READ_CON:
1334		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1335		break;
1336
1337	case I40E_NVMUPD_READ_LCB:
1338		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1339		i40e_release_nvm(hw);
1340		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1341		break;
1342
1343	default:
1344		i40e_debug(hw, I40E_DEBUG_NVM,
1345			   "NVMUPD: bad cmd %s in reading state.\n",
1346			   i40e_nvm_update_state_str[upd_cmd]);
1347		status = -EOPNOTSUPP;
1348		*perrno = -ESRCH;
1349		break;
1350	}
1351	return status;
1352}
1353
1354/**
1355 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1356 * @hw: pointer to hardware structure
1357 * @cmd: pointer to nvm update command buffer
1358 * @bytes: pointer to the data buffer
1359 * @perrno: pointer to return error code
1360 *
1361 * NVM ownership is already held.  Process legitimate commands and set any
1362 * change in state; reject all other commands
1363 **/
1364static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
1365				     struct i40e_nvm_access *cmd,
1366				     u8 *bytes, int *perrno)
1367{
 
1368	enum i40e_nvmupd_cmd upd_cmd;
1369	bool retry_attempt = false;
1370	int status = 0;
1371
1372	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1373
1374retry:
1375	switch (upd_cmd) {
1376	case I40E_NVMUPD_WRITE_CON:
1377		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1378		if (!status) {
1379			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1380			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1381		}
1382		break;
1383
1384	case I40E_NVMUPD_WRITE_LCB:
1385		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1386		if (status) {
1387			*perrno = hw->aq.asq_last_status ?
1388				   i40e_aq_rc_to_posix(status,
1389						       hw->aq.asq_last_status) :
1390				   -EIO;
1391			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1392		} else {
1393			hw->nvm_release_on_done = true;
1394			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1395			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1396		}
1397		break;
1398
1399	case I40E_NVMUPD_CSUM_CON:
1400		/* Assumes the caller has acquired the nvm */
1401		status = i40e_update_nvm_checksum(hw);
1402		if (status) {
1403			*perrno = hw->aq.asq_last_status ?
1404				   i40e_aq_rc_to_posix(status,
1405						       hw->aq.asq_last_status) :
1406				   -EIO;
1407			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1408		} else {
1409			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1410			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1411		}
1412		break;
1413
1414	case I40E_NVMUPD_CSUM_LCB:
1415		/* Assumes the caller has acquired the nvm */
1416		status = i40e_update_nvm_checksum(hw);
1417		if (status) {
1418			*perrno = hw->aq.asq_last_status ?
1419				   i40e_aq_rc_to_posix(status,
1420						       hw->aq.asq_last_status) :
1421				   -EIO;
1422			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1423		} else {
1424			hw->nvm_release_on_done = true;
1425			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1426			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1427		}
1428		break;
1429
1430	default:
1431		i40e_debug(hw, I40E_DEBUG_NVM,
1432			   "NVMUPD: bad cmd %s in writing state.\n",
1433			   i40e_nvm_update_state_str[upd_cmd]);
1434		status = -EOPNOTSUPP;
1435		*perrno = -ESRCH;
1436		break;
1437	}
1438
1439	/* In some circumstances, a multi-write transaction takes longer
1440	 * than the default 3 minute timeout on the write semaphore.  If
1441	 * the write failed with an EBUSY status, this is likely the problem,
1442	 * so here we try to reacquire the semaphore then retry the write.
1443	 * We only do one retry, then give up.
1444	 */
1445	if (status && hw->aq.asq_last_status == I40E_AQ_RC_EBUSY &&
1446	    !retry_attempt) {
 
1447		u32 old_asq_status = hw->aq.asq_last_status;
1448		int old_status = status;
1449		u32 gtime;
1450
1451		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1452		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1453			i40e_debug(hw, I40E_DEBUG_ALL,
1454				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1455				   gtime, hw->nvm.hw_semaphore_timeout);
1456			i40e_release_nvm(hw);
1457			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1458			if (status) {
1459				i40e_debug(hw, I40E_DEBUG_ALL,
1460					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1461					   hw->aq.asq_last_status);
1462				status = old_status;
1463				hw->aq.asq_last_status = old_asq_status;
1464			} else {
1465				retry_attempt = true;
1466				goto retry;
1467			}
1468		}
1469	}
1470
1471	return status;
1472}
1473
1474/**
1475 * i40e_nvmupd_command - Process an NVM update command
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476 * @hw: pointer to hardware structure
1477 * @cmd: pointer to nvm update command
1478 * @bytes: pointer to the data buffer
1479 * @perrno: pointer to return error code
1480 *
1481 * Dispatches command depending on what update state is current
1482 **/
1483int i40e_nvmupd_command(struct i40e_hw *hw,
1484			struct i40e_nvm_access *cmd,
1485			u8 *bytes, int *perrno)
1486{
1487	enum i40e_nvmupd_cmd upd_cmd;
1488	int status;
1489
1490	/* assume success */
1491	*perrno = 0;
1492
1493	/* early check for status command and debug msgs */
1494	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1495
1496	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
1497		   i40e_nvm_update_state_str[upd_cmd],
1498		   hw->nvmupd_state,
1499		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
1500		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
1501
1502	if (upd_cmd == I40E_NVMUPD_INVALID) {
1503		*perrno = -EFAULT;
1504		i40e_debug(hw, I40E_DEBUG_NVM,
1505			   "i40e_nvmupd_validate_command returns %d errno %d\n",
1506			   upd_cmd, *perrno);
1507	}
1508
1509	/* a status request returns immediately rather than
1510	 * going into the state machine
1511	 */
1512	if (upd_cmd == I40E_NVMUPD_STATUS) {
1513		if (!cmd->data_size) {
1514			*perrno = -EFAULT;
1515			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516		}
 
1517
1518		bytes[0] = hw->nvmupd_state;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519
1520		if (cmd->data_size >= 4) {
1521			bytes[1] = 0;
1522			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
1523		}
1524
1525		/* Clear error status on read */
1526		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
1527			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528
 
 
1529		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530	}
1531
1532	/* Clear status even it is not read and log */
1533	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
 
 
 
 
 
1534		i40e_debug(hw, I40E_DEBUG_NVM,
1535			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
1536		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537	}
1538
1539	/* Acquire lock to prevent race condition where adminq_task
1540	 * can execute after i40e_nvmupd_nvm_read/write but before state
1541	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
1542	 *
1543	 * During NVMUpdate, it is observed that lock could be held for
1544	 * ~5ms for most commands. However lock is held for ~60ms for
1545	 * NVMUPD_CSUM_LCB command.
1546	 */
1547	mutex_lock(&hw->aq.arq_mutex);
1548	switch (hw->nvmupd_state) {
1549	case I40E_NVMUPD_STATE_INIT:
1550		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
1551		break;
1552
1553	case I40E_NVMUPD_STATE_READING:
1554		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
1555		break;
1556
1557	case I40E_NVMUPD_STATE_WRITING:
1558		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
1559		break;
 
 
 
 
 
 
 
 
 
 
 
 
1560
1561	case I40E_NVMUPD_STATE_INIT_WAIT:
1562	case I40E_NVMUPD_STATE_WRITE_WAIT:
1563		/* if we need to stop waiting for an event, clear
1564		 * the wait info and return before doing anything else
1565		 */
1566		if (cmd->offset == 0xffff) {
1567			i40e_nvmupd_clear_wait_state(hw);
1568			status = 0;
1569			break;
1570		}
1571
1572		status = -EBUSY;
1573		*perrno = -EBUSY;
1574		break;
1575
1576	default:
1577		/* invalid state, should never happen */
1578		i40e_debug(hw, I40E_DEBUG_NVM,
1579			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
1580		status = -EOPNOTSUPP;
1581		*perrno = -ESRCH;
1582		break;
1583	}
1584
1585	mutex_unlock(&hw->aq.arq_mutex);
1586	return status;
 
1587}
1588
1589/**
1590 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1591 * @hw: pointer to the hardware structure
 
 
 
 
 
1592 **/
1593void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
 
 
1594{
1595	i40e_debug(hw, I40E_DEBUG_NVM,
1596		   "NVMUPD: clearing wait on opcode 0x%04x\n",
1597		   hw->nvm_wait_opcode);
 
 
 
 
 
 
 
 
1598
1599	if (hw->nvm_release_on_done) {
1600		i40e_release_nvm(hw);
1601		hw->nvm_release_on_done = false;
 
 
 
 
 
 
 
1602	}
1603	hw->nvm_wait_opcode = 0;
1604
1605	if (hw->aq.arq_last_status) {
1606		hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1607		return;
1608	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1609
1610	switch (hw->nvmupd_state) {
1611	case I40E_NVMUPD_STATE_INIT_WAIT:
1612		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1613		break;
1614
1615	case I40E_NVMUPD_STATE_WRITE_WAIT:
1616		hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1617		break;
1618
1619	default:
1620		break;
 
 
 
 
 
 
 
 
1621	}
 
 
1622}
1623
1624/**
1625 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1626 * @hw: pointer to the hardware structure
1627 * @opcode: the event that just happened
1628 * @desc: AdminQ descriptor
 
 
 
1629 **/
1630void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1631				  struct i40e_aq_desc *desc)
 
1632{
1633	u32 aq_desc_len = sizeof(struct i40e_aq_desc);
 
 
 
 
 
 
 
 
 
 
 
 
1634
1635	if (opcode == hw->nvm_wait_opcode) {
1636		memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1637		i40e_nvmupd_clear_wait_state(hw);
 
 
 
 
 
 
 
 
1638	}
 
 
1639}