Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Copyright (C) 2017 - Cambridge Greys Ltd
  3 * Copyright (C) 2011 - 2014 Cisco Systems Inc
  4 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  5 * Licensed under the GPL
  6 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
  7 *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
  8 */
  9
 10#include <linux/cpumask.h>
 11#include <linux/hardirq.h>
 12#include <linux/interrupt.h>
 13#include <linux/kernel_stat.h>
 14#include <linux/module.h>
 15#include <linux/sched.h>
 16#include <linux/seq_file.h>
 17#include <linux/slab.h>
 18#include <as-layout.h>
 19#include <kern_util.h>
 20#include <os.h>
 21#include <irq_user.h>
 
 
 22
 23
 24/* When epoll triggers we do not know why it did so
 25 * we can also have different IRQs for read and write.
 26 * This is why we keep a small irq_fd array for each fd -
 27 * one entry per IRQ type
 28 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 29
 30struct irq_entry {
 31	struct irq_entry *next;
 32	int fd;
 33	struct irq_fd *irq_array[MAX_IRQ_TYPE + 1];
 
 
 34};
 35
 36static struct irq_entry *active_fds;
 37
 38static DEFINE_SPINLOCK(irq_lock);
 
 
 
 
 
 
 39
 40static void irq_io_loop(struct irq_fd *irq, struct uml_pt_regs *regs)
 41{
 42/*
 43 * irq->active guards against reentry
 44 * irq->pending accumulates pending requests
 45 * if pending is raised the irq_handler is re-run
 46 * until pending is cleared
 47 */
 48	if (irq->active) {
 49		irq->active = false;
 
 50		do {
 51			irq->pending = false;
 52			do_IRQ(irq->irq, regs);
 53		} while (irq->pending && (!irq->purge));
 54		if (!irq->purge)
 55			irq->active = true;
 56	} else {
 57		irq->pending = true;
 58	}
 59}
 60
 61void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 62{
 63	struct irq_entry *irq_entry;
 64	struct irq_fd *irq;
 
 
 
 65
 66	int n, i, j;
 
 
 67
 68	while (1) {
 69		/* This is now lockless - epoll keeps back-referencesto the irqs
 70		 * which have trigger it so there is no need to walk the irq
 71		 * list and lock it every time. We avoid locking by turning off
 72		 * IO for a specific fd by executing os_del_epoll_fd(fd) before
 73		 * we do any changes to the actual data structures
 74		 */
 75		n = os_waiting_for_events_epoll();
 76
 77		if (n <= 0) {
 78			if (n == -EINTR)
 79				continue;
 80			else
 81				break;
 82		}
 83
 84		for (i = 0; i < n ; i++) {
 85			/* Epoll back reference is the entry with 3 irq_fd
 86			 * leaves - one for each irq type.
 87			 */
 88			irq_entry = (struct irq_entry *)
 89				os_epoll_get_data_pointer(i);
 90			for (j = 0; j < MAX_IRQ_TYPE ; j++) {
 91				irq = irq_entry->irq_array[j];
 92				if (irq == NULL)
 93					continue;
 94				if (os_epoll_triggered(i, irq->events) > 0)
 95					irq_io_loop(irq, regs);
 96				if (irq->purge) {
 97					irq_entry->irq_array[j] = NULL;
 98					kfree(irq);
 99				}
100			}
101		}
102	}
 
 
 
103}
104
105static int assign_epoll_events_to_irq(struct irq_entry *irq_entry)
106{
107	int i;
108	int events = 0;
109	struct irq_fd *irq;
 
110
111	for (i = 0; i < MAX_IRQ_TYPE ; i++) {
112		irq = irq_entry->irq_array[i];
113		if (irq != NULL)
114			events = irq->events | events;
115	}
116	if (events > 0) {
117	/* os_add_epoll will call os_mod_epoll if this already exists */
118		return os_add_epoll_fd(events, irq_entry->fd, irq_entry);
 
119	}
120	/* No events - delete */
121	return os_del_epoll_fd(irq_entry->fd);
122}
123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
126static int activate_fd(int irq, int fd, int type, void *dev_id)
 
 
127{
128	struct irq_fd *new_fd;
129	struct irq_entry *irq_entry;
130	int i, err, events;
131	unsigned long flags;
132
133	err = os_set_fd_async(fd);
134	if (err < 0)
135		goto out;
136
137	spin_lock_irqsave(&irq_lock, flags);
138
139	/* Check if we have an entry for this fd */
140
141	err = -EBUSY;
142	for (irq_entry = active_fds;
143		irq_entry != NULL; irq_entry = irq_entry->next) {
144		if (irq_entry->fd == fd)
145			break;
146	}
147
148	if (irq_entry == NULL) {
149		/* This needs to be atomic as it may be called from an
150		 * IRQ context.
151		 */
152		irq_entry = kmalloc(sizeof(struct irq_entry), GFP_ATOMIC);
153		if (irq_entry == NULL) {
154			printk(KERN_ERR
155				"Failed to allocate new IRQ entry\n");
156			goto out_unlock;
157		}
158		irq_entry->fd = fd;
159		for (i = 0; i < MAX_IRQ_TYPE; i++)
160			irq_entry->irq_array[i] = NULL;
161		irq_entry->next = active_fds;
162		active_fds = irq_entry;
163	}
164
165	/* Check if we are trying to re-register an interrupt for a
166	 * particular fd
167	 */
168
169	if (irq_entry->irq_array[type] != NULL) {
170		printk(KERN_ERR
171			"Trying to reregister IRQ %d FD %d TYPE %d ID %p\n",
172			irq, fd, type, dev_id
173		);
174		goto out_unlock;
175	} else {
176		/* New entry for this fd */
177
178		err = -ENOMEM;
179		new_fd = kmalloc(sizeof(struct irq_fd), GFP_ATOMIC);
180		if (new_fd == NULL)
181			goto out_unlock;
 
 
 
 
 
182
183		events = os_event_mask(type);
 
 
 
184
185		*new_fd = ((struct irq_fd) {
186			.id		= dev_id,
187			.irq		= irq,
188			.type		= type,
189			.events		= events,
190			.active		= true,
191			.pending	= false,
192			.purge		= false
193		});
194		/* Turn off any IO on this fd - allows us to
195		 * avoid locking the IRQ loop
196		 */
197		os_del_epoll_fd(irq_entry->fd);
198		irq_entry->irq_array[type] = new_fd;
199	}
 
200
201	/* Turn back IO on with the correct (new) IO event mask */
202	assign_epoll_events_to_irq(irq_entry);
203	spin_unlock_irqrestore(&irq_lock, flags);
204	maybe_sigio_broken(fd, (type != IRQ_NONE));
205
206	return 0;
207out_unlock:
208	spin_unlock_irqrestore(&irq_lock, flags);
209out:
210	return err;
211}
212
213/*
214 * Walk the IRQ list and dispose of any unused entries.
215 * Should be done under irq_lock.
216 */
217
218static void garbage_collect_irq_entries(void)
219{
220	int i;
221	bool reap;
222	struct irq_entry *walk;
223	struct irq_entry *previous = NULL;
224	struct irq_entry *to_free;
225
226	if (active_fds == NULL)
227		return;
228	walk = active_fds;
229	while (walk != NULL) {
230		reap = true;
231		for (i = 0; i < MAX_IRQ_TYPE ; i++) {
232			if (walk->irq_array[i] != NULL) {
233				reap = false;
234				break;
235			}
236		}
237		if (reap) {
238			if (previous == NULL)
239				active_fds = walk->next;
240			else
241				previous->next = walk->next;
242			to_free = walk;
243		} else {
244			to_free = NULL;
245		}
246		walk = walk->next;
247		if (to_free != NULL)
248			kfree(to_free);
249	}
250}
251
252/*
253 * Walk the IRQ list and get the descriptor for our FD
254 */
255
256static struct irq_entry *get_irq_entry_by_fd(int fd)
257{
258	struct irq_entry *walk = active_fds;
259
260	while (walk != NULL) {
261		if (walk->fd == fd)
262			return walk;
263		walk = walk->next;
264	}
265	return NULL;
266}
267
268
269/*
270 * Walk the IRQ list and dispose of an entry for a specific
271 * device, fd and number. Note - if sharing an IRQ for read
272 * and writefor the same FD it will be disposed in either case.
273 * If this behaviour is undesirable use different IRQ ids.
274 */
275
276#define IGNORE_IRQ 1
277#define IGNORE_DEV (1<<1)
278
279static void do_free_by_irq_and_dev(
280	struct irq_entry *irq_entry,
281	unsigned int irq,
282	void *dev,
283	int flags
284)
285{
286	int i;
287	struct irq_fd *to_free;
288
289	for (i = 0; i < MAX_IRQ_TYPE ; i++) {
290		if (irq_entry->irq_array[i] != NULL) {
291			if (
292			((flags & IGNORE_IRQ) ||
293				(irq_entry->irq_array[i]->irq == irq)) &&
294			((flags & IGNORE_DEV) ||
295				(irq_entry->irq_array[i]->id == dev))
296			) {
297				/* Turn off any IO on this fd - allows us to
298				 * avoid locking the IRQ loop
299				 */
300				os_del_epoll_fd(irq_entry->fd);
301				to_free = irq_entry->irq_array[i];
302				irq_entry->irq_array[i] = NULL;
303				assign_epoll_events_to_irq(irq_entry);
304				if (to_free->active)
305					to_free->purge = true;
306				else
307					kfree(to_free);
308			}
309		}
310	}
311}
312
313void free_irq_by_fd(int fd)
314{
315	struct irq_entry *to_free;
316	unsigned long flags;
317
318	spin_lock_irqsave(&irq_lock, flags);
319	to_free = get_irq_entry_by_fd(fd);
320	if (to_free != NULL) {
321		do_free_by_irq_and_dev(
322			to_free,
323			-1,
324			NULL,
325			IGNORE_IRQ | IGNORE_DEV
326		);
327	}
328	garbage_collect_irq_entries();
329	spin_unlock_irqrestore(&irq_lock, flags);
330}
331EXPORT_SYMBOL(free_irq_by_fd);
332
333static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
334{
335	struct irq_entry *to_free;
336	unsigned long flags;
337
338	spin_lock_irqsave(&irq_lock, flags);
339	to_free = active_fds;
340	while (to_free != NULL) {
341		do_free_by_irq_and_dev(
342			to_free,
343			irq,
344			dev,
345			0
346		);
347		to_free = to_free->next;
348	}
349	garbage_collect_irq_entries();
350	spin_unlock_irqrestore(&irq_lock, flags);
351}
352
 
 
353
354void reactivate_fd(int fd, int irqnum)
355{
356	/** NOP - we do auto-EOI now **/
 
 
 
 
 
 
 
 
 
 
 
 
357}
358
359void deactivate_fd(int fd, int irqnum)
360{
361	struct irq_entry *to_free;
362	unsigned long flags;
 
363
364	os_del_epoll_fd(fd);
 
365	spin_lock_irqsave(&irq_lock, flags);
366	to_free = get_irq_entry_by_fd(fd);
367	if (to_free != NULL) {
368		do_free_by_irq_and_dev(
369			to_free,
370			irqnum,
371			NULL,
372			IGNORE_DEV
373		);
 
374	}
375	garbage_collect_irq_entries();
 
 
376	spin_unlock_irqrestore(&irq_lock, flags);
 
377	ignore_sigio_fd(fd);
378}
379EXPORT_SYMBOL(deactivate_fd);
380
381/*
382 * Called just before shutdown in order to provide a clean exec
383 * environment in case the system is rebooting.  No locking because
384 * that would cause a pointless shutdown hang if something hadn't
385 * released the lock.
386 */
387int deactivate_all_fds(void)
388{
389	unsigned long flags;
390	struct irq_entry *to_free;
391
392	spin_lock_irqsave(&irq_lock, flags);
393	/* Stop IO. The IRQ loop has no lock so this is our
394	 * only way of making sure we are safe to dispose
395	 * of all IRQ handlers
396	 */
397	os_set_ioignore();
398	to_free = active_fds;
399	while (to_free != NULL) {
400		do_free_by_irq_and_dev(
401			to_free,
402			-1,
403			NULL,
404			IGNORE_IRQ | IGNORE_DEV
405		);
406		to_free = to_free->next;
407	}
408	garbage_collect_irq_entries();
409	spin_unlock_irqrestore(&irq_lock, flags);
410	os_close_epoll_fd();
411	return 0;
412}
413
414/*
415 * do_IRQ handles all normal device IRQs (the special
416 * SMP cross-CPU interrupts have their own specific
417 * handlers).
418 */
419unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
420{
421	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
422	irq_enter();
423	generic_handle_irq(irq);
424	irq_exit();
425	set_irq_regs(old_regs);
426	return 1;
427}
428
429void um_free_irq(unsigned int irq, void *dev)
430{
 
 
 
 
431	free_irq_by_irq_and_dev(irq, dev);
432	free_irq(irq, dev);
 
433}
434EXPORT_SYMBOL(um_free_irq);
435
436int um_request_irq(unsigned int irq, int fd, int type,
437		   irq_handler_t handler,
438		   unsigned long irqflags, const char * devname,
439		   void *dev_id)
 
 
440{
441	int err;
442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443	if (fd != -1) {
444		err = activate_fd(irq, fd, type, dev_id);
445		if (err)
446			return err;
447	}
448
449	return request_irq(irq, handler, irqflags, devname, dev_id);
 
 
 
 
 
 
 
450}
451
 
 
 
 
 
 
 
452EXPORT_SYMBOL(um_request_irq);
453EXPORT_SYMBOL(reactivate_fd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454
455/*
456 * irq_chip must define at least enable/disable and ack when
457 * the edge handler is used.
458 */
459static void dummy(struct irq_data *d)
460{
461}
462
463/* This is used for everything else than the timer. */
464static struct irq_chip normal_irq_type = {
465	.name = "SIGIO",
466	.irq_disable = dummy,
467	.irq_enable = dummy,
468	.irq_ack = dummy,
469	.irq_mask = dummy,
470	.irq_unmask = dummy,
 
471};
472
473static struct irq_chip SIGVTALRM_irq_type = {
474	.name = "SIGVTALRM",
475	.irq_disable = dummy,
476	.irq_enable = dummy,
477	.irq_ack = dummy,
478	.irq_mask = dummy,
479	.irq_unmask = dummy,
480};
481
482void __init init_IRQ(void)
483{
484	int i;
485
486	irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq);
487
488
489	for (i = 1; i < NR_IRQS; i++)
490		irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
491	/* Initialize EPOLL Loop */
492	os_setup_epoll();
493}
494
495/*
496 * IRQ stack entry and exit:
497 *
498 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
499 * and switch over to the IRQ stack after some preparation.  We use
500 * sigaltstack to receive signals on a separate stack from the start.
501 * These two functions make sure the rest of the kernel won't be too
502 * upset by being on a different stack.  The IRQ stack has a
503 * thread_info structure at the bottom so that current et al continue
504 * to work.
505 *
506 * to_irq_stack copies the current task's thread_info to the IRQ stack
507 * thread_info and sets the tasks's stack to point to the IRQ stack.
508 *
509 * from_irq_stack copies the thread_info struct back (flags may have
510 * been modified) and resets the task's stack pointer.
511 *
512 * Tricky bits -
513 *
514 * What happens when two signals race each other?  UML doesn't block
515 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
516 * could arrive while a previous one is still setting up the
517 * thread_info.
518 *
519 * There are three cases -
520 *     The first interrupt on the stack - sets up the thread_info and
521 * handles the interrupt
522 *     A nested interrupt interrupting the copying of the thread_info -
523 * can't handle the interrupt, as the stack is in an unknown state
524 *     A nested interrupt not interrupting the copying of the
525 * thread_info - doesn't do any setup, just handles the interrupt
526 *
527 * The first job is to figure out whether we interrupted stack setup.
528 * This is done by xchging the signal mask with thread_info->pending.
529 * If the value that comes back is zero, then there is no setup in
530 * progress, and the interrupt can be handled.  If the value is
531 * non-zero, then there is stack setup in progress.  In order to have
532 * the interrupt handled, we leave our signal in the mask, and it will
533 * be handled by the upper handler after it has set up the stack.
534 *
535 * Next is to figure out whether we are the outer handler or a nested
536 * one.  As part of setting up the stack, thread_info->real_thread is
537 * set to non-NULL (and is reset to NULL on exit).  This is the
538 * nesting indicator.  If it is non-NULL, then the stack is already
539 * set up and the handler can run.
540 */
541
542static unsigned long pending_mask;
543
544unsigned long to_irq_stack(unsigned long *mask_out)
545{
546	struct thread_info *ti;
547	unsigned long mask, old;
548	int nested;
549
550	mask = xchg(&pending_mask, *mask_out);
551	if (mask != 0) {
552		/*
553		 * If any interrupts come in at this point, we want to
554		 * make sure that their bits aren't lost by our
555		 * putting our bit in.  So, this loop accumulates bits
556		 * until xchg returns the same value that we put in.
557		 * When that happens, there were no new interrupts,
558		 * and pending_mask contains a bit for each interrupt
559		 * that came in.
560		 */
561		old = *mask_out;
562		do {
563			old |= mask;
564			mask = xchg(&pending_mask, old);
565		} while (mask != old);
566		return 1;
567	}
568
569	ti = current_thread_info();
570	nested = (ti->real_thread != NULL);
571	if (!nested) {
572		struct task_struct *task;
573		struct thread_info *tti;
574
575		task = cpu_tasks[ti->cpu].task;
576		tti = task_thread_info(task);
577
578		*ti = *tti;
579		ti->real_thread = tti;
580		task->stack = ti;
581	}
582
583	mask = xchg(&pending_mask, 0);
584	*mask_out |= mask | nested;
585	return 0;
586}
587
588unsigned long from_irq_stack(int nested)
589{
590	struct thread_info *ti, *to;
591	unsigned long mask;
592
593	ti = current_thread_info();
594
595	pending_mask = 1;
596
597	to = ti->real_thread;
598	current->stack = to;
599	ti->real_thread = NULL;
600	*to = *ti;
601
602	mask = xchg(&pending_mask, 0);
603	return mask & ~1;
604}
605
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2017 - Cambridge Greys Ltd
  4 * Copyright (C) 2011 - 2014 Cisco Systems Inc
  5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
 
  6 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
  7 *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
  8 */
  9
 10#include <linux/cpumask.h>
 11#include <linux/hardirq.h>
 12#include <linux/interrupt.h>
 13#include <linux/kernel_stat.h>
 14#include <linux/module.h>
 15#include <linux/sched.h>
 16#include <linux/seq_file.h>
 17#include <linux/slab.h>
 18#include <as-layout.h>
 19#include <kern_util.h>
 20#include <os.h>
 21#include <irq_user.h>
 22#include <irq_kern.h>
 23#include <linux/time-internal.h>
 24
 25
 26/* When epoll triggers we do not know why it did so
 27 * we can also have different IRQs for read and write.
 28 * This is why we keep a small irq_reg array for each fd -
 29 * one entry per IRQ type
 30 */
 31struct irq_reg {
 32	void *id;
 33	int irq;
 34	/* it's cheaper to store this than to query it */
 35	int events;
 36	bool active;
 37	bool pending;
 38	bool wakeup;
 39#ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
 40	bool pending_event;
 41	void (*timetravel_handler)(int, int, void *,
 42				   struct time_travel_event *);
 43	struct time_travel_event event;
 44#endif
 45};
 46
 47struct irq_entry {
 48	struct list_head list;
 49	int fd;
 50	struct irq_reg reg[NUM_IRQ_TYPES];
 51	bool suspended;
 52	bool sigio_workaround;
 53};
 54
 
 
 55static DEFINE_SPINLOCK(irq_lock);
 56static LIST_HEAD(active_fds);
 57static DECLARE_BITMAP(irqs_allocated, UM_LAST_SIGNAL_IRQ);
 58static bool irqs_suspended;
 59#ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
 60static bool irqs_pending;
 61#endif
 62
 63static void irq_io_loop(struct irq_reg *irq, struct uml_pt_regs *regs)
 64{
 65/*
 66 * irq->active guards against reentry
 67 * irq->pending accumulates pending requests
 68 * if pending is raised the irq_handler is re-run
 69 * until pending is cleared
 70 */
 71	if (irq->active) {
 72		irq->active = false;
 73
 74		do {
 75			irq->pending = false;
 76			do_IRQ(irq->irq, regs);
 77		} while (irq->pending);
 78
 79		irq->active = true;
 80	} else {
 81		irq->pending = true;
 82	}
 83}
 84
 85#ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
 86static void irq_event_handler(struct time_travel_event *ev)
 87{
 88	struct irq_reg *reg = container_of(ev, struct irq_reg, event);
 89
 90	/* do nothing if suspended; just cause a wakeup and mark as pending */
 91	if (irqs_suspended) {
 92		irqs_pending = true;
 93		reg->pending_event = true;
 94		return;
 95	}
 96
 97	generic_handle_irq(reg->irq);
 98}
 99
100static bool irq_do_timetravel_handler(struct irq_entry *entry,
101				      enum um_irq_type t)
102{
103	struct irq_reg *reg = &entry->reg[t];
104
105	if (!reg->timetravel_handler)
106		return false;
107
108	/*
109	 * Handle all messages - we might get multiple even while
110	 * interrupts are already suspended, due to suspend order
111	 * etc. Note that time_travel_add_irq_event() will not add
112	 * an event twice, if it's pending already "first wins".
113	 */
114	reg->timetravel_handler(reg->irq, entry->fd, reg->id, &reg->event);
115
116	if (!reg->event.pending)
117		return false;
118
119	return true;
120}
121
122static void irq_do_pending_events(bool timetravel_handlers_only)
123{
124	struct irq_entry *entry;
125
126	if (!irqs_pending || timetravel_handlers_only)
127		return;
128
129	irqs_pending = false;
130
131	list_for_each_entry(entry, &active_fds, list) {
132		enum um_irq_type t;
133
134		for (t = 0; t < NUM_IRQ_TYPES; t++) {
135			struct irq_reg *reg = &entry->reg[t];
136
137			/*
138			 * Any timetravel_handler was invoked already, just
139			 * directly run the IRQ.
140			 */
141			if (reg->pending_event) {
142				irq_enter();
143				generic_handle_irq(reg->irq);
144				irq_exit();
145				reg->pending_event = false;
146			}
147		}
148	}
149}
150#else
151static bool irq_do_timetravel_handler(struct irq_entry *entry,
152				      enum um_irq_type t)
153{
154	return false;
155}
156
157static void irq_do_pending_events(bool timetravel_handlers_only)
158{
159}
160#endif
161
162static void sigio_reg_handler(int idx, struct irq_entry *entry, enum um_irq_type t,
163			      struct uml_pt_regs *regs,
164			      bool timetravel_handlers_only)
165{
166	struct irq_reg *reg = &entry->reg[t];
167
168	if (!reg->events)
169		return;
170
171	if (os_epoll_triggered(idx, reg->events) <= 0)
172		return;
173
174	if (irq_do_timetravel_handler(entry, t))
175		return;
176
177	/*
178	 * If we're called to only run time-travel handlers then don't
179	 * actually proceed but mark sigio as pending (if applicable).
180	 * For suspend/resume, timetravel_handlers_only may be true
181	 * despite time-travel not being configured and used.
182	 */
183	if (timetravel_handlers_only) {
184#ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
185		reg->pending_event = true;
186		irqs_pending = true;
187		mark_sigio_pending();
188#endif
189		return;
190	}
191
192	irq_io_loop(reg, regs);
193}
194
195static void _sigio_handler(struct uml_pt_regs *regs,
196			   bool timetravel_handlers_only)
197{
198	struct irq_entry *irq_entry;
199	int n, i;
200
201	if (timetravel_handlers_only && !um_irq_timetravel_handler_used())
202		return;
203
204	/* Flush out pending events that were ignored due to time-travel. */
205	if (!irqs_suspended)
206		irq_do_pending_events(timetravel_handlers_only);
207
208	while (1) {
209		/* This is now lockless - epoll keeps back-referencesto the irqs
210		 * which have trigger it so there is no need to walk the irq
211		 * list and lock it every time. We avoid locking by turning off
212		 * IO for a specific fd by executing os_del_epoll_fd(fd) before
213		 * we do any changes to the actual data structures
214		 */
215		n = os_waiting_for_events_epoll();
216
217		if (n <= 0) {
218			if (n == -EINTR)
219				continue;
220			else
221				break;
222		}
223
224		for (i = 0; i < n ; i++) {
225			enum um_irq_type t;
226
227			irq_entry = os_epoll_get_data_pointer(i);
228
229			for (t = 0; t < NUM_IRQ_TYPES; t++)
230				sigio_reg_handler(i, irq_entry, t, regs,
231						  timetravel_handlers_only);
 
 
 
 
 
 
 
 
 
232		}
233	}
234
235	if (!timetravel_handlers_only)
236		free_irqs();
237}
238
239void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
240{
241	preempt_disable();
242	_sigio_handler(regs, irqs_suspended);
243	preempt_enable();
244}
245
246static struct irq_entry *get_irq_entry_by_fd(int fd)
247{
248	struct irq_entry *walk;
249
250	lockdep_assert_held(&irq_lock);
251
252	list_for_each_entry(walk, &active_fds, list) {
253		if (walk->fd == fd)
254			return walk;
255	}
256
257	return NULL;
258}
259
260static void free_irq_entry(struct irq_entry *to_free, bool remove)
261{
262	if (!to_free)
263		return;
264
265	if (remove)
266		os_del_epoll_fd(to_free->fd);
267	list_del(&to_free->list);
268	kfree(to_free);
269}
270
271static bool update_irq_entry(struct irq_entry *entry)
272{
273	enum um_irq_type i;
274	int events = 0;
275
276	for (i = 0; i < NUM_IRQ_TYPES; i++)
277		events |= entry->reg[i].events;
278
279	if (events) {
280		/* will modify (instead of add) if needed */
281		os_add_epoll_fd(events, entry->fd, entry);
282		return true;
283	}
284
285	os_del_epoll_fd(entry->fd);
286	return false;
287}
288
289static void update_or_free_irq_entry(struct irq_entry *entry)
290{
291	if (!update_irq_entry(entry))
292		free_irq_entry(entry, false);
293}
294
295static int activate_fd(int irq, int fd, enum um_irq_type type, void *dev_id,
296		       void (*timetravel_handler)(int, int, void *,
297						  struct time_travel_event *))
298{
 
299	struct irq_entry *irq_entry;
300	int err, events = os_event_mask(type);
301	unsigned long flags;
302
303	err = os_set_fd_async(fd);
304	if (err < 0)
305		goto out;
306
307	spin_lock_irqsave(&irq_lock, flags);
308	irq_entry = get_irq_entry_by_fd(fd);
309	if (irq_entry) {
310		/* cannot register the same FD twice with the same type */
311		if (WARN_ON(irq_entry->reg[type].events)) {
312			err = -EALREADY;
 
 
 
 
 
 
 
 
 
 
 
 
 
313			goto out_unlock;
314		}
 
 
 
 
 
 
 
 
 
 
315
316		/* temporarily disable to avoid IRQ-side locking */
317		os_del_epoll_fd(fd);
 
 
 
 
318	} else {
319		irq_entry = kzalloc(sizeof(*irq_entry), GFP_ATOMIC);
320		if (!irq_entry) {
321			err = -ENOMEM;
 
 
322			goto out_unlock;
323		}
324		irq_entry->fd = fd;
325		list_add_tail(&irq_entry->list, &active_fds);
326		maybe_sigio_broken(fd);
327	}
328
329	irq_entry->reg[type].id = dev_id;
330	irq_entry->reg[type].irq = irq;
331	irq_entry->reg[type].active = true;
332	irq_entry->reg[type].events = events;
333
334#ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
335	if (um_irq_timetravel_handler_used()) {
336		irq_entry->reg[type].timetravel_handler = timetravel_handler;
337		irq_entry->reg[type].event.fn = irq_event_handler;
 
 
 
 
 
 
 
 
 
 
338	}
339#endif
340
341	WARN_ON(!update_irq_entry(irq_entry));
 
342	spin_unlock_irqrestore(&irq_lock, flags);
 
343
344	return 0;
345out_unlock:
346	spin_unlock_irqrestore(&irq_lock, flags);
347out:
348	return err;
349}
350
351/*
352 * Remove the entry or entries for a specific FD, if you
353 * don't want to remove all the possible entries then use
354 * um_free_irq() or deactivate_fd() instead.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356void free_irq_by_fd(int fd)
357{
358	struct irq_entry *to_free;
359	unsigned long flags;
360
361	spin_lock_irqsave(&irq_lock, flags);
362	to_free = get_irq_entry_by_fd(fd);
363	free_irq_entry(to_free, true);
 
 
 
 
 
 
 
 
364	spin_unlock_irqrestore(&irq_lock, flags);
365}
366EXPORT_SYMBOL(free_irq_by_fd);
367
368static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
369{
370	struct irq_entry *entry;
371	unsigned long flags;
372
373	spin_lock_irqsave(&irq_lock, flags);
374	list_for_each_entry(entry, &active_fds, list) {
375		enum um_irq_type i;
 
 
 
 
 
 
 
 
 
 
 
376
377		for (i = 0; i < NUM_IRQ_TYPES; i++) {
378			struct irq_reg *reg = &entry->reg[i];
379
380			if (!reg->events)
381				continue;
382			if (reg->irq != irq)
383				continue;
384			if (reg->id != dev)
385				continue;
386
387			os_del_epoll_fd(entry->fd);
388			reg->events = 0;
389			update_or_free_irq_entry(entry);
390			goto out;
391		}
392	}
393out:
394	spin_unlock_irqrestore(&irq_lock, flags);
395}
396
397void deactivate_fd(int fd, int irqnum)
398{
399	struct irq_entry *entry;
400	unsigned long flags;
401	enum um_irq_type i;
402
403	os_del_epoll_fd(fd);
404
405	spin_lock_irqsave(&irq_lock, flags);
406	entry = get_irq_entry_by_fd(fd);
407	if (!entry)
408		goto out;
409
410	for (i = 0; i < NUM_IRQ_TYPES; i++) {
411		if (!entry->reg[i].events)
412			continue;
413		if (entry->reg[i].irq == irqnum)
414			entry->reg[i].events = 0;
415	}
416
417	update_or_free_irq_entry(entry);
418out:
419	spin_unlock_irqrestore(&irq_lock, flags);
420
421	ignore_sigio_fd(fd);
422}
423EXPORT_SYMBOL(deactivate_fd);
424
425/*
426 * Called just before shutdown in order to provide a clean exec
427 * environment in case the system is rebooting.  No locking because
428 * that would cause a pointless shutdown hang if something hadn't
429 * released the lock.
430 */
431int deactivate_all_fds(void)
432{
433	struct irq_entry *entry;
 
434
 
435	/* Stop IO. The IRQ loop has no lock so this is our
436	 * only way of making sure we are safe to dispose
437	 * of all IRQ handlers
438	 */
439	os_set_ioignore();
440
441	/* we can no longer call kfree() here so just deactivate */
442	list_for_each_entry(entry, &active_fds, list)
443		os_del_epoll_fd(entry->fd);
 
 
 
 
 
 
 
 
444	os_close_epoll_fd();
445	return 0;
446}
447
448/*
449 * do_IRQ handles all normal device IRQs (the special
450 * SMP cross-CPU interrupts have their own specific
451 * handlers).
452 */
453unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
454{
455	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
456	irq_enter();
457	generic_handle_irq(irq);
458	irq_exit();
459	set_irq_regs(old_regs);
460	return 1;
461}
462
463void um_free_irq(int irq, void *dev)
464{
465	if (WARN(irq < 0 || irq > UM_LAST_SIGNAL_IRQ,
466		 "freeing invalid irq %d", irq))
467		return;
468
469	free_irq_by_irq_and_dev(irq, dev);
470	free_irq(irq, dev);
471	clear_bit(irq, irqs_allocated);
472}
473EXPORT_SYMBOL(um_free_irq);
474
475static int
476_um_request_irq(int irq, int fd, enum um_irq_type type,
477		irq_handler_t handler, unsigned long irqflags,
478		const char *devname, void *dev_id,
479		void (*timetravel_handler)(int, int, void *,
480					   struct time_travel_event *))
481{
482	int err;
483
484	if (irq == UM_IRQ_ALLOC) {
485		int i;
486
487		for (i = UM_FIRST_DYN_IRQ; i < NR_IRQS; i++) {
488			if (!test_and_set_bit(i, irqs_allocated)) {
489				irq = i;
490				break;
491			}
492		}
493	}
494
495	if (irq < 0)
496		return -ENOSPC;
497
498	if (fd != -1) {
499		err = activate_fd(irq, fd, type, dev_id, timetravel_handler);
500		if (err)
501			goto error;
502	}
503
504	err = request_irq(irq, handler, irqflags, devname, dev_id);
505	if (err < 0)
506		goto error;
507
508	return irq;
509error:
510	clear_bit(irq, irqs_allocated);
511	return err;
512}
513
514int um_request_irq(int irq, int fd, enum um_irq_type type,
515		   irq_handler_t handler, unsigned long irqflags,
516		   const char *devname, void *dev_id)
517{
518	return _um_request_irq(irq, fd, type, handler, irqflags,
519			       devname, dev_id, NULL);
520}
521EXPORT_SYMBOL(um_request_irq);
522
523#ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
524int um_request_irq_tt(int irq, int fd, enum um_irq_type type,
525		      irq_handler_t handler, unsigned long irqflags,
526		      const char *devname, void *dev_id,
527		      void (*timetravel_handler)(int, int, void *,
528						 struct time_travel_event *))
529{
530	return _um_request_irq(irq, fd, type, handler, irqflags,
531			       devname, dev_id, timetravel_handler);
532}
533EXPORT_SYMBOL(um_request_irq_tt);
534
535void sigio_run_timetravel_handlers(void)
536{
537	_sigio_handler(NULL, true);
538}
539#endif
540
541#ifdef CONFIG_PM_SLEEP
542void um_irqs_suspend(void)
543{
544	struct irq_entry *entry;
545	unsigned long flags;
546
547	irqs_suspended = true;
548
549	spin_lock_irqsave(&irq_lock, flags);
550	list_for_each_entry(entry, &active_fds, list) {
551		enum um_irq_type t;
552		bool clear = true;
553
554		for (t = 0; t < NUM_IRQ_TYPES; t++) {
555			if (!entry->reg[t].events)
556				continue;
557
558			/*
559			 * For the SIGIO_WRITE_IRQ, which is used to handle the
560			 * SIGIO workaround thread, we need special handling:
561			 * enable wake for it itself, but below we tell it about
562			 * any FDs that should be suspended.
563			 */
564			if (entry->reg[t].wakeup ||
565			    entry->reg[t].irq == SIGIO_WRITE_IRQ
566#ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT
567			    || entry->reg[t].timetravel_handler
568#endif
569			    ) {
570				clear = false;
571				break;
572			}
573		}
574
575		if (clear) {
576			entry->suspended = true;
577			os_clear_fd_async(entry->fd);
578			entry->sigio_workaround =
579				!__ignore_sigio_fd(entry->fd);
580		}
581	}
582	spin_unlock_irqrestore(&irq_lock, flags);
583}
584
585void um_irqs_resume(void)
586{
587	struct irq_entry *entry;
588	unsigned long flags;
589
590
591	spin_lock_irqsave(&irq_lock, flags);
592	list_for_each_entry(entry, &active_fds, list) {
593		if (entry->suspended) {
594			int err = os_set_fd_async(entry->fd);
595
596			WARN(err < 0, "os_set_fd_async returned %d\n", err);
597			entry->suspended = false;
598
599			if (entry->sigio_workaround) {
600				err = __add_sigio_fd(entry->fd);
601				WARN(err < 0, "add_sigio_returned %d\n", err);
602			}
603		}
604	}
605	spin_unlock_irqrestore(&irq_lock, flags);
606
607	irqs_suspended = false;
608	send_sigio_to_self();
609}
610
611static int normal_irq_set_wake(struct irq_data *d, unsigned int on)
612{
613	struct irq_entry *entry;
614	unsigned long flags;
615
616	spin_lock_irqsave(&irq_lock, flags);
617	list_for_each_entry(entry, &active_fds, list) {
618		enum um_irq_type t;
619
620		for (t = 0; t < NUM_IRQ_TYPES; t++) {
621			if (!entry->reg[t].events)
622				continue;
623
624			if (entry->reg[t].irq != d->irq)
625				continue;
626			entry->reg[t].wakeup = on;
627			goto unlock;
628		}
629	}
630unlock:
631	spin_unlock_irqrestore(&irq_lock, flags);
632	return 0;
633}
634#else
635#define normal_irq_set_wake NULL
636#endif
637
638/*
639 * irq_chip must define at least enable/disable and ack when
640 * the edge handler is used.
641 */
642static void dummy(struct irq_data *d)
643{
644}
645
646/* This is used for everything other than the timer. */
647static struct irq_chip normal_irq_type = {
648	.name = "SIGIO",
649	.irq_disable = dummy,
650	.irq_enable = dummy,
651	.irq_ack = dummy,
652	.irq_mask = dummy,
653	.irq_unmask = dummy,
654	.irq_set_wake = normal_irq_set_wake,
655};
656
657static struct irq_chip alarm_irq_type = {
658	.name = "SIGALRM",
659	.irq_disable = dummy,
660	.irq_enable = dummy,
661	.irq_ack = dummy,
662	.irq_mask = dummy,
663	.irq_unmask = dummy,
664};
665
666void __init init_IRQ(void)
667{
668	int i;
669
670	irq_set_chip_and_handler(TIMER_IRQ, &alarm_irq_type, handle_edge_irq);
 
671
672	for (i = 1; i < UM_LAST_SIGNAL_IRQ; i++)
673		irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
674	/* Initialize EPOLL Loop */
675	os_setup_epoll();
676}