Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Copyright (C) 2017 - Cambridge Greys Limited
   3 * Copyright (C) 2011 - 2014 Cisco Systems Inc
   4 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
   5 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
   6 * James Leu (jleu@mindspring.net).
   7 * Copyright (C) 2001 by various other people who didn't put their name here.
   8 * Licensed under the GPL.
   9 */
  10
  11#include <linux/version.h>
  12#include <linux/bootmem.h>
  13#include <linux/etherdevice.h>
  14#include <linux/ethtool.h>
  15#include <linux/inetdevice.h>
  16#include <linux/init.h>
  17#include <linux/list.h>
  18#include <linux/netdevice.h>
  19#include <linux/platform_device.h>
  20#include <linux/rtnetlink.h>
  21#include <linux/skbuff.h>
  22#include <linux/slab.h>
  23#include <linux/interrupt.h>
 
 
 
 
  24#include <init.h>
  25#include <irq_kern.h>
  26#include <irq_user.h>
  27#include <net_kern.h>
  28#include <os.h>
  29#include "mconsole_kern.h"
  30#include "vector_user.h"
  31#include "vector_kern.h"
  32
  33/*
  34 * Adapted from network devices with the following major changes:
  35 * All transports are static - simplifies the code significantly
  36 * Multiple FDs/IRQs per device
  37 * Vector IO optionally used for read/write, falling back to legacy
  38 * based on configuration and/or availability
  39 * Configuration is no longer positional - L2TPv3 and GRE require up to
  40 * 10 parameters, passing this as positional is not fit for purpose.
  41 * Only socket transports are supported
  42 */
  43
  44
  45#define DRIVER_NAME "uml-vector"
  46#define DRIVER_VERSION "01"
  47struct vector_cmd_line_arg {
  48	struct list_head list;
  49	int unit;
  50	char *arguments;
  51};
  52
  53struct vector_device {
  54	struct list_head list;
  55	struct net_device *dev;
  56	struct platform_device pdev;
  57	int unit;
  58	int opened;
  59};
  60
  61static LIST_HEAD(vec_cmd_line);
  62
  63static DEFINE_SPINLOCK(vector_devices_lock);
  64static LIST_HEAD(vector_devices);
  65
  66static int driver_registered;
  67
  68static void vector_eth_configure(int n, struct arglist *def);
 
  69
  70/* Argument accessors to set variables (and/or set default values)
  71 * mtu, buffer sizing, default headroom, etc
  72 */
  73
  74#define DEFAULT_HEADROOM 2
  75#define SAFETY_MARGIN 32
  76#define DEFAULT_VECTOR_SIZE 64
  77#define TX_SMALL_PACKET 128
  78#define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
  79
  80static const struct {
  81	const char string[ETH_GSTRING_LEN];
  82} ethtool_stats_keys[] = {
  83	{ "rx_queue_max" },
  84	{ "rx_queue_running_average" },
  85	{ "tx_queue_max" },
  86	{ "tx_queue_running_average" },
  87	{ "rx_encaps_errors" },
  88	{ "tx_timeout_count" },
  89	{ "tx_restart_queue" },
  90	{ "tx_kicks" },
  91	{ "tx_flow_control_xon" },
  92	{ "tx_flow_control_xoff" },
  93	{ "rx_csum_offload_good" },
  94	{ "rx_csum_offload_errors"},
  95	{ "sg_ok"},
  96	{ "sg_linearized"},
  97};
  98
  99#define VECTOR_NUM_STATS	ARRAY_SIZE(ethtool_stats_keys)
 100
 101static void vector_reset_stats(struct vector_private *vp)
 102{
 
 
 
 
 
 
 
 103	vp->estats.rx_queue_max = 0;
 104	vp->estats.rx_queue_running_average = 0;
 105	vp->estats.tx_queue_max = 0;
 106	vp->estats.tx_queue_running_average = 0;
 107	vp->estats.rx_encaps_errors = 0;
 
 
 
 
 
 
 
 
 
 108	vp->estats.tx_timeout_count = 0;
 109	vp->estats.tx_restart_queue = 0;
 110	vp->estats.tx_kicks = 0;
 111	vp->estats.tx_flow_control_xon = 0;
 112	vp->estats.tx_flow_control_xoff = 0;
 113	vp->estats.sg_ok = 0;
 114	vp->estats.sg_linearized = 0;
 
 115}
 116
 117static int get_mtu(struct arglist *def)
 118{
 119	char *mtu = uml_vector_fetch_arg(def, "mtu");
 120	long result;
 121
 122	if (mtu != NULL) {
 123		if (kstrtoul(mtu, 10, &result) == 0)
 124			return result;
 
 125	}
 126	return ETH_MAX_PACKET;
 127}
 128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129static int get_depth(struct arglist *def)
 130{
 131	char *mtu = uml_vector_fetch_arg(def, "depth");
 132	long result;
 133
 134	if (mtu != NULL) {
 135		if (kstrtoul(mtu, 10, &result) == 0)
 136			return result;
 137	}
 138	return DEFAULT_VECTOR_SIZE;
 139}
 140
 141static int get_headroom(struct arglist *def)
 142{
 143	char *mtu = uml_vector_fetch_arg(def, "headroom");
 144	long result;
 145
 146	if (mtu != NULL) {
 147		if (kstrtoul(mtu, 10, &result) == 0)
 148			return result;
 149	}
 150	return DEFAULT_HEADROOM;
 151}
 152
 153static int get_req_size(struct arglist *def)
 154{
 155	char *gro = uml_vector_fetch_arg(def, "gro");
 156	long result;
 157
 158	if (gro != NULL) {
 159		if (kstrtoul(gro, 10, &result) == 0) {
 160			if (result > 0)
 161				return 65536;
 162		}
 163	}
 164	return get_mtu(def) + ETH_HEADER_OTHER +
 165		get_headroom(def) + SAFETY_MARGIN;
 166}
 167
 168
 169static int get_transport_options(struct arglist *def)
 170{
 171	char *transport = uml_vector_fetch_arg(def, "transport");
 172	char *vector = uml_vector_fetch_arg(def, "vec");
 173
 174	int vec_rx = VECTOR_RX;
 175	int vec_tx = VECTOR_TX;
 176	long parsed;
 
 
 
 
 177
 178	if (vector != NULL) {
 179		if (kstrtoul(vector, 10, &parsed) == 0) {
 180			if (parsed == 0) {
 181				vec_rx = 0;
 182				vec_tx = 0;
 183			}
 184		}
 185	}
 186
 
 
 187
 188	if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
 189		return (vec_rx | VECTOR_BPF);
 
 
 190	if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
 191		return (vec_rx | vec_tx);
 192	return (vec_rx | vec_tx);
 193}
 194
 195
 196/* A mini-buffer for packet drop read
 197 * All of our supported transports are datagram oriented and we always
 198 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
 199 * than the packet size it still counts as full packet read and will
 200 * clean the incoming stream to keep sigio/epoll happy
 201 */
 202
 203#define DROP_BUFFER_SIZE 32
 204
 205static char *drop_buffer;
 206
 207/* Array backed queues optimized for bulk enqueue/dequeue and
 208 * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
 209 * For more details and full design rationale see
 210 * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
 211 */
 212
 213
 214/*
 215 * Advance the mmsg queue head by n = advance. Resets the queue to
 216 * maximum enqueue/dequeue-at-once capacity if possible. Called by
 217 * dequeuers. Caller must hold the head_lock!
 218 */
 219
 220static int vector_advancehead(struct vector_queue *qi, int advance)
 221{
 222	int queue_depth;
 223
 224	qi->head =
 225		(qi->head + advance)
 226			% qi->max_depth;
 227
 228
 229	spin_lock(&qi->tail_lock);
 230	qi->queue_depth -= advance;
 231
 232	/* we are at 0, use this to
 233	 * reset head and tail so we can use max size vectors
 234	 */
 235
 236	if (qi->queue_depth == 0) {
 237		qi->head = 0;
 238		qi->tail = 0;
 239	}
 240	queue_depth = qi->queue_depth;
 241	spin_unlock(&qi->tail_lock);
 242	return queue_depth;
 243}
 244
 245/*	Advance the queue tail by n = advance.
 246 *	This is called by enqueuers which should hold the
 247 *	head lock already
 248 */
 249
 250static int vector_advancetail(struct vector_queue *qi, int advance)
 251{
 252	int queue_depth;
 253
 254	qi->tail =
 255		(qi->tail + advance)
 256			% qi->max_depth;
 257	spin_lock(&qi->head_lock);
 258	qi->queue_depth += advance;
 259	queue_depth = qi->queue_depth;
 260	spin_unlock(&qi->head_lock);
 261	return queue_depth;
 262}
 263
 264static int prep_msg(struct vector_private *vp,
 265	struct sk_buff *skb,
 266	struct iovec *iov)
 267{
 268	int iov_index = 0;
 269	int nr_frags, frag;
 270	skb_frag_t *skb_frag;
 271
 272	nr_frags = skb_shinfo(skb)->nr_frags;
 273	if (nr_frags > MAX_IOV_SIZE) {
 274		if (skb_linearize(skb) != 0)
 275			goto drop;
 276	}
 277	if (vp->header_size > 0) {
 278		iov[iov_index].iov_len = vp->header_size;
 279		vp->form_header(iov[iov_index].iov_base, skb, vp);
 280		iov_index++;
 281	}
 282	iov[iov_index].iov_base = skb->data;
 283	if (nr_frags > 0) {
 284		iov[iov_index].iov_len = skb->len - skb->data_len;
 285		vp->estats.sg_ok++;
 286	} else
 287		iov[iov_index].iov_len = skb->len;
 288	iov_index++;
 289	for (frag = 0; frag < nr_frags; frag++) {
 290		skb_frag = &skb_shinfo(skb)->frags[frag];
 291		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
 292		iov[iov_index].iov_len = skb_frag_size(skb_frag);
 293		iov_index++;
 294	}
 295	return iov_index;
 296drop:
 297	return -1;
 298}
 299/*
 300 * Generic vector enqueue with support for forming headers using transport
 301 * specific callback. Allows GRE, L2TPv3, RAW and other transports
 302 * to use a common enqueue procedure in vector mode
 303 */
 304
 305static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
 306{
 307	struct vector_private *vp = netdev_priv(qi->dev);
 308	int queue_depth;
 309	int packet_len;
 310	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
 311	int iov_count;
 312
 313	spin_lock(&qi->tail_lock);
 314	spin_lock(&qi->head_lock);
 315	queue_depth = qi->queue_depth;
 316	spin_unlock(&qi->head_lock);
 317
 318	if (skb)
 319		packet_len = skb->len;
 320
 321	if (queue_depth < qi->max_depth) {
 322
 323		*(qi->skbuff_vector + qi->tail) = skb;
 324		mmsg_vector += qi->tail;
 325		iov_count = prep_msg(
 326			vp,
 327			skb,
 328			mmsg_vector->msg_hdr.msg_iov
 329		);
 330		if (iov_count < 1)
 331			goto drop;
 332		mmsg_vector->msg_hdr.msg_iovlen = iov_count;
 333		mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
 334		mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
 
 335		queue_depth = vector_advancetail(qi, 1);
 336	} else
 337		goto drop;
 338	spin_unlock(&qi->tail_lock);
 339	return queue_depth;
 340drop:
 341	qi->dev->stats.tx_dropped++;
 342	if (skb != NULL) {
 343		packet_len = skb->len;
 344		dev_consume_skb_any(skb);
 345		netdev_completed_queue(qi->dev, 1, packet_len);
 346	}
 347	spin_unlock(&qi->tail_lock);
 348	return queue_depth;
 349}
 350
 351static int consume_vector_skbs(struct vector_queue *qi, int count)
 352{
 353	struct sk_buff *skb;
 354	int skb_index;
 355	int bytes_compl = 0;
 356
 357	for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
 358		skb = *(qi->skbuff_vector + skb_index);
 359		/* mark as empty to ensure correct destruction if
 360		 * needed
 361		 */
 362		bytes_compl += skb->len;
 363		*(qi->skbuff_vector + skb_index) = NULL;
 364		dev_consume_skb_any(skb);
 365	}
 366	qi->dev->stats.tx_bytes += bytes_compl;
 367	qi->dev->stats.tx_packets += count;
 368	netdev_completed_queue(qi->dev, count, bytes_compl);
 369	return vector_advancehead(qi, count);
 370}
 371
 372/*
 373 * Generic vector deque via sendmmsg with support for forming headers
 374 * using transport specific callback. Allows GRE, L2TPv3, RAW and
 375 * other transports to use a common dequeue procedure in vector mode
 376 */
 377
 378
 379static int vector_send(struct vector_queue *qi)
 380{
 381	struct vector_private *vp = netdev_priv(qi->dev);
 382	struct mmsghdr *send_from;
 383	int result = 0, send_len, queue_depth = qi->max_depth;
 384
 385	if (spin_trylock(&qi->head_lock)) {
 386		if (spin_trylock(&qi->tail_lock)) {
 387			/* update queue_depth to current value */
 388			queue_depth = qi->queue_depth;
 389			spin_unlock(&qi->tail_lock);
 390			while (queue_depth > 0) {
 391				/* Calculate the start of the vector */
 392				send_len = queue_depth;
 393				send_from = qi->mmsg_vector;
 394				send_from += qi->head;
 395				/* Adjust vector size if wraparound */
 396				if (send_len + qi->head > qi->max_depth)
 397					send_len = qi->max_depth - qi->head;
 398				/* Try to TX as many packets as possible */
 399				if (send_len > 0) {
 400					result = uml_vector_sendmmsg(
 401						 vp->fds->tx_fd,
 402						 send_from,
 403						 send_len,
 404						 0
 405					);
 406					vp->in_write_poll =
 407						(result != send_len);
 408				}
 409				/* For some of the sendmmsg error scenarios
 410				 * we may end being unsure in the TX success
 411				 * for all packets. It is safer to declare
 412				 * them all TX-ed and blame the network.
 413				 */
 414				if (result < 0) {
 415					if (net_ratelimit())
 416						netdev_err(vp->dev, "sendmmsg err=%i\n",
 417							result);
 418					result = send_len;
 419				}
 420				if (result > 0) {
 421					queue_depth =
 422						consume_vector_skbs(qi, result);
 423					/* This is equivalent to an TX IRQ.
 424					 * Restart the upper layers to feed us
 425					 * more packets.
 426					 */
 427					if (result > vp->estats.tx_queue_max)
 428						vp->estats.tx_queue_max = result;
 429					vp->estats.tx_queue_running_average =
 430						(vp->estats.tx_queue_running_average + result) >> 1;
 431				}
 432				netif_trans_update(qi->dev);
 433				netif_wake_queue(qi->dev);
 434				/* if TX is busy, break out of the send loop,
 435				 *  poll write IRQ will reschedule xmit for us
 436				 */
 437				if (result != send_len) {
 438					vp->estats.tx_restart_queue++;
 439					break;
 440				}
 
 
 
 
 
 
 
 
 441			}
 442		}
 443		spin_unlock(&qi->head_lock);
 444	} else {
 445		tasklet_schedule(&vp->tx_poll);
 446	}
 447	return queue_depth;
 448}
 449
 450/* Queue destructor. Deliberately stateless so we can use
 451 * it in queue cleanup if initialization fails.
 452 */
 453
 454static void destroy_queue(struct vector_queue *qi)
 455{
 456	int i;
 457	struct iovec *iov;
 458	struct vector_private *vp = netdev_priv(qi->dev);
 459	struct mmsghdr *mmsg_vector;
 460
 461	if (qi == NULL)
 462		return;
 463	/* deallocate any skbuffs - we rely on any unused to be
 464	 * set to NULL.
 465	 */
 466	if (qi->skbuff_vector != NULL) {
 467		for (i = 0; i < qi->max_depth; i++) {
 468			if (*(qi->skbuff_vector + i) != NULL)
 469				dev_kfree_skb_any(*(qi->skbuff_vector + i));
 470		}
 471		kfree(qi->skbuff_vector);
 472	}
 473	/* deallocate matching IOV structures including header buffs */
 474	if (qi->mmsg_vector != NULL) {
 475		mmsg_vector = qi->mmsg_vector;
 476		for (i = 0; i < qi->max_depth; i++) {
 477			iov = mmsg_vector->msg_hdr.msg_iov;
 478			if (iov != NULL) {
 479				if ((vp->header_size > 0) &&
 480					(iov->iov_base != NULL))
 481					kfree(iov->iov_base);
 482				kfree(iov);
 483			}
 484			mmsg_vector++;
 485		}
 486		kfree(qi->mmsg_vector);
 487	}
 488	kfree(qi);
 489}
 490
 491/*
 492 * Queue constructor. Create a queue with a given side.
 493 */
 494static struct vector_queue *create_queue(
 495	struct vector_private *vp,
 496	int max_size,
 497	int header_size,
 498	int num_extra_frags)
 499{
 500	struct vector_queue *result;
 501	int i;
 502	struct iovec *iov;
 503	struct mmsghdr *mmsg_vector;
 504
 505	result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
 506	if (result == NULL)
 507		goto out_fail;
 508	result->max_depth = max_size;
 509	result->dev = vp->dev;
 510	result->mmsg_vector = kmalloc(
 511		(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
 
 
 512	result->skbuff_vector = kmalloc(
 513		(sizeof(void *) * max_size), GFP_KERNEL);
 514	if (result->mmsg_vector == NULL || result->skbuff_vector == NULL)
 515		goto out_fail;
 
 
 516
 517	mmsg_vector = result->mmsg_vector;
 518	for (i = 0; i < max_size; i++) {
 519		/* Clear all pointers - we use non-NULL as marking on
 520		 * what to free on destruction
 521		 */
 522		*(result->skbuff_vector + i) = NULL;
 523		mmsg_vector->msg_hdr.msg_iov = NULL;
 524		mmsg_vector++;
 525	}
 526	mmsg_vector = result->mmsg_vector;
 527	result->max_iov_frags = num_extra_frags;
 528	for (i = 0; i < max_size; i++) {
 529		if (vp->header_size > 0)
 530			iov = kmalloc(
 531				sizeof(struct iovec) * (3 + num_extra_frags),
 532				GFP_KERNEL
 533			);
 534		else
 535			iov = kmalloc(
 536				sizeof(struct iovec) * (2 + num_extra_frags),
 537				GFP_KERNEL
 538			);
 539		if (iov == NULL)
 540			goto out_fail;
 541		mmsg_vector->msg_hdr.msg_iov = iov;
 542		mmsg_vector->msg_hdr.msg_iovlen = 1;
 543		mmsg_vector->msg_hdr.msg_control = NULL;
 544		mmsg_vector->msg_hdr.msg_controllen = 0;
 545		mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
 546		mmsg_vector->msg_hdr.msg_name = NULL;
 547		mmsg_vector->msg_hdr.msg_namelen = 0;
 548		if (vp->header_size > 0) {
 549			iov->iov_base = kmalloc(header_size, GFP_KERNEL);
 550			if (iov->iov_base == NULL)
 551				goto out_fail;
 552			iov->iov_len = header_size;
 553			mmsg_vector->msg_hdr.msg_iovlen = 2;
 554			iov++;
 555		}
 556		iov->iov_base = NULL;
 557		iov->iov_len = 0;
 558		mmsg_vector++;
 559	}
 560	spin_lock_init(&result->head_lock);
 561	spin_lock_init(&result->tail_lock);
 562	result->queue_depth = 0;
 563	result->head = 0;
 564	result->tail = 0;
 565	return result;
 
 
 
 
 
 566out_fail:
 567	destroy_queue(result);
 568	return NULL;
 569}
 570
 571/*
 572 * We do not use the RX queue as a proper wraparound queue for now
 573 * This is not necessary because the consumption via netif_rx()
 574 * happens in-line. While we can try using the return code of
 575 * netif_rx() for flow control there are no drivers doing this today.
 576 * For this RX specific use we ignore the tail/head locks and
 577 * just read into a prepared queue filled with skbuffs.
 578 */
 579
 580static struct sk_buff *prep_skb(
 581	struct vector_private *vp,
 582	struct user_msghdr *msg)
 583{
 584	int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
 585	struct sk_buff *result;
 586	int iov_index = 0, len;
 587	struct iovec *iov = msg->msg_iov;
 588	int err, nr_frags, frag;
 589	skb_frag_t *skb_frag;
 590
 591	if (vp->req_size <= linear)
 592		len = linear;
 593	else
 594		len = vp->req_size;
 595	result = alloc_skb_with_frags(
 596		linear,
 597		len - vp->max_packet,
 598		3,
 599		&err,
 600		GFP_ATOMIC
 601	);
 602	if (vp->header_size > 0)
 603		iov_index++;
 604	if (result == NULL) {
 605		iov[iov_index].iov_base = NULL;
 606		iov[iov_index].iov_len = 0;
 607		goto done;
 608	}
 609	skb_reserve(result, vp->headroom);
 610	result->dev = vp->dev;
 611	skb_put(result, vp->max_packet);
 612	result->data_len = len - vp->max_packet;
 613	result->len += len - vp->max_packet;
 614	skb_reset_mac_header(result);
 615	result->ip_summed = CHECKSUM_NONE;
 616	iov[iov_index].iov_base = result->data;
 617	iov[iov_index].iov_len = vp->max_packet;
 618	iov_index++;
 619
 620	nr_frags = skb_shinfo(result)->nr_frags;
 621	for (frag = 0; frag < nr_frags; frag++) {
 622		skb_frag = &skb_shinfo(result)->frags[frag];
 623		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
 624		if (iov[iov_index].iov_base != NULL)
 625			iov[iov_index].iov_len = skb_frag_size(skb_frag);
 626		else
 627			iov[iov_index].iov_len = 0;
 628		iov_index++;
 629	}
 630done:
 631	msg->msg_iovlen = iov_index;
 632	return result;
 633}
 634
 635
 636/* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
 637
 638static void prep_queue_for_rx(struct vector_queue *qi)
 639{
 640	struct vector_private *vp = netdev_priv(qi->dev);
 641	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
 642	void **skbuff_vector = qi->skbuff_vector;
 643	int i;
 644
 645	if (qi->queue_depth == 0)
 
 
 646		return;
 647	for (i = 0; i < qi->queue_depth; i++) {
 
 
 
 
 
 
 
 648		/* it is OK if allocation fails - recvmmsg with NULL data in
 649		 * iov argument still performs an RX, just drops the packet
 650		 * This allows us stop faffing around with a "drop buffer"
 651		 */
 652
 653		*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
 654		skbuff_vector++;
 655		mmsg_vector++;
 656	}
 657	qi->queue_depth = 0;
 658}
 659
 660static struct vector_device *find_device(int n)
 661{
 662	struct vector_device *device;
 663	struct list_head *ele;
 664
 665	spin_lock(&vector_devices_lock);
 666	list_for_each(ele, &vector_devices) {
 667		device = list_entry(ele, struct vector_device, list);
 668		if (device->unit == n)
 669			goto out;
 670	}
 671	device = NULL;
 672 out:
 673	spin_unlock(&vector_devices_lock);
 674	return device;
 675}
 676
 677static int vector_parse(char *str, int *index_out, char **str_out,
 678			char **error_out)
 679{
 680	int n, len, err;
 681	char *start = str;
 682
 683	len = strlen(str);
 684
 685	while ((*str != ':') && (strlen(str) > 1))
 686		str++;
 687	if (*str != ':') {
 688		*error_out = "Expected ':' after device number";
 689		return -EINVAL;
 690	}
 691	*str = '\0';
 692
 693	err = kstrtouint(start, 0, &n);
 694	if (err < 0) {
 695		*error_out = "Bad device number";
 696		return err;
 697	}
 698
 699	str++;
 700	if (find_device(n)) {
 701		*error_out = "Device already configured";
 702		return -EINVAL;
 703	}
 704
 705	*index_out = n;
 706	*str_out = str;
 707	return 0;
 708}
 709
 710static int vector_config(char *str, char **error_out)
 711{
 712	int err, n;
 713	char *params;
 714	struct arglist *parsed;
 715
 716	err = vector_parse(str, &n, &params, error_out);
 717	if (err != 0)
 718		return err;
 719
 720	/* This string is broken up and the pieces used by the underlying
 721	 * driver. We should copy it to make sure things do not go wrong
 722	 * later.
 723	 */
 724
 725	params = kstrdup(params, GFP_KERNEL);
 726	if (params == NULL) {
 727		*error_out = "vector_config failed to strdup string";
 728		return -ENOMEM;
 729	}
 730
 731	parsed = uml_parse_vector_ifspec(params);
 732
 733	if (parsed == NULL) {
 734		*error_out = "vector_config failed to parse parameters";
 
 735		return -EINVAL;
 736	}
 737
 738	vector_eth_configure(n, parsed);
 739	return 0;
 740}
 741
 742static int vector_id(char **str, int *start_out, int *end_out)
 743{
 744	char *end;
 745	int n;
 746
 747	n = simple_strtoul(*str, &end, 0);
 748	if ((*end != '\0') || (end == *str))
 749		return -1;
 750
 751	*start_out = n;
 752	*end_out = n;
 753	*str = end;
 754	return n;
 755}
 756
 757static int vector_remove(int n, char **error_out)
 758{
 759	struct vector_device *vec_d;
 760	struct net_device *dev;
 761	struct vector_private *vp;
 762
 763	vec_d = find_device(n);
 764	if (vec_d == NULL)
 765		return -ENODEV;
 766	dev = vec_d->dev;
 767	vp = netdev_priv(dev);
 768	if (vp->fds != NULL)
 769		return -EBUSY;
 770	unregister_netdev(dev);
 771	platform_device_unregister(&vec_d->pdev);
 772	return 0;
 773}
 774
 775/*
 776 * There is no shared per-transport initialization code, so
 777 * we will just initialize each interface one by one and
 778 * add them to a list
 779 */
 780
 781static struct platform_driver uml_net_driver = {
 782	.driver = {
 783		.name = DRIVER_NAME,
 784	},
 785};
 786
 787
 788static void vector_device_release(struct device *dev)
 789{
 790	struct vector_device *device = dev_get_drvdata(dev);
 
 791	struct net_device *netdev = device->dev;
 792
 793	list_del(&device->list);
 794	kfree(device);
 795	free_netdev(netdev);
 796}
 797
 798/* Bog standard recv using recvmsg - not used normally unless the user
 799 * explicitly specifies not to use recvmmsg vector RX.
 800 */
 801
 802static int vector_legacy_rx(struct vector_private *vp)
 803{
 804	int pkt_len;
 805	struct user_msghdr hdr;
 806	struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
 807	int iovpos = 0;
 808	struct sk_buff *skb;
 809	int header_check;
 810
 811	hdr.msg_name = NULL;
 812	hdr.msg_namelen = 0;
 813	hdr.msg_iov = (struct iovec *) &iov;
 814	hdr.msg_control = NULL;
 815	hdr.msg_controllen = 0;
 816	hdr.msg_flags = 0;
 817
 818	if (vp->header_size > 0) {
 819		iov[0].iov_base = vp->header_rxbuffer;
 820		iov[0].iov_len = vp->header_size;
 821	}
 822
 823	skb = prep_skb(vp, &hdr);
 824
 825	if (skb == NULL) {
 826		/* Read a packet into drop_buffer and don't do
 827		 * anything with it.
 828		 */
 829		iov[iovpos].iov_base = drop_buffer;
 830		iov[iovpos].iov_len = DROP_BUFFER_SIZE;
 831		hdr.msg_iovlen = 1;
 832		vp->dev->stats.rx_dropped++;
 833	}
 834
 835	pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
 
 
 
 
 836
 837	if (skb != NULL) {
 838		if (pkt_len > vp->header_size) {
 839			if (vp->header_size > 0) {
 840				header_check = vp->verify_header(
 841					vp->header_rxbuffer, skb, vp);
 842				if (header_check < 0) {
 843					dev_kfree_skb_irq(skb);
 844					vp->dev->stats.rx_dropped++;
 845					vp->estats.rx_encaps_errors++;
 846					return 0;
 847				}
 848				if (header_check > 0) {
 849					vp->estats.rx_csum_offload_good++;
 850					skb->ip_summed = CHECKSUM_UNNECESSARY;
 851				}
 852			}
 853			pskb_trim(skb, pkt_len - vp->rx_header_size);
 854			skb->protocol = eth_type_trans(skb, skb->dev);
 855			vp->dev->stats.rx_bytes += skb->len;
 856			vp->dev->stats.rx_packets++;
 857			netif_rx(skb);
 858		} else {
 859			dev_kfree_skb_irq(skb);
 860		}
 861	}
 862	return pkt_len;
 863}
 864
 865/*
 866 * Packet at a time TX which falls back to vector TX if the
 867 * underlying transport is busy.
 868 */
 869
 870
 871
 872static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
 873{
 874	struct iovec iov[3 + MAX_IOV_SIZE];
 875	int iov_count, pkt_len = 0;
 876
 877	iov[0].iov_base = vp->header_txbuffer;
 878	iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
 879
 880	if (iov_count < 1)
 881		goto drop;
 
 882	pkt_len = uml_vector_writev(
 883		vp->fds->tx_fd,
 884		(struct iovec *) &iov,
 885		iov_count
 886	);
 887
 
 
 
 888	netif_trans_update(vp->dev);
 889	netif_wake_queue(vp->dev);
 890
 891	if (pkt_len > 0) {
 892		vp->dev->stats.tx_bytes += skb->len;
 893		vp->dev->stats.tx_packets++;
 894	} else {
 895		vp->dev->stats.tx_dropped++;
 896	}
 897	consume_skb(skb);
 898	return pkt_len;
 899drop:
 900	vp->dev->stats.tx_dropped++;
 901	consume_skb(skb);
 
 
 902	return pkt_len;
 903}
 904
 905/*
 906 * Receive as many messages as we can in one call using the special
 907 * mmsg vector matched to an skb vector which we prepared earlier.
 908 */
 909
 910static int vector_mmsg_rx(struct vector_private *vp)
 911{
 912	int packet_count, i;
 913	struct vector_queue *qi = vp->rx_queue;
 914	struct sk_buff *skb;
 915	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
 916	void **skbuff_vector = qi->skbuff_vector;
 917	int header_check;
 918
 919	/* Refresh the vector and make sure it is with new skbs and the
 920	 * iovs are updated to point to them.
 921	 */
 922
 923	prep_queue_for_rx(qi);
 924
 925	/* Fire the Lazy Gun - get as many packets as we can in one go. */
 926
 
 
 
 927	packet_count = uml_vector_recvmmsg(
 928		vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
 
 
 
 929
 930	if (packet_count <= 0)
 931		return packet_count;
 932
 933	/* We treat packet processing as enqueue, buffer refresh as dequeue
 934	 * The queue_depth tells us how many buffers have been used and how
 935	 * many do we need to prep the next time prep_queue_for_rx() is called.
 936	 */
 937
 938	qi->queue_depth = packet_count;
 939
 940	for (i = 0; i < packet_count; i++) {
 941		skb = (*skbuff_vector);
 942		if (mmsg_vector->msg_len > vp->header_size) {
 943			if (vp->header_size > 0) {
 944				header_check = vp->verify_header(
 945					mmsg_vector->msg_hdr.msg_iov->iov_base,
 946					skb,
 947					vp
 948				);
 949				if (header_check < 0) {
 950				/* Overlay header failed to verify - discard.
 951				 * We can actually keep this skb and reuse it,
 952				 * but that will make the prep logic too
 953				 * complex.
 954				 */
 955					dev_kfree_skb_irq(skb);
 956					vp->estats.rx_encaps_errors++;
 957					continue;
 958				}
 959				if (header_check > 0) {
 960					vp->estats.rx_csum_offload_good++;
 961					skb->ip_summed = CHECKSUM_UNNECESSARY;
 962				}
 963			}
 964			pskb_trim(skb,
 965				mmsg_vector->msg_len - vp->rx_header_size);
 966			skb->protocol = eth_type_trans(skb, skb->dev);
 967			/*
 968			 * We do not need to lock on updating stats here
 969			 * The interrupt loop is non-reentrant.
 970			 */
 971			vp->dev->stats.rx_bytes += skb->len;
 972			vp->dev->stats.rx_packets++;
 973			netif_rx(skb);
 974		} else {
 975			/* Overlay header too short to do anything - discard.
 976			 * We can actually keep this skb and reuse it,
 977			 * but that will make the prep logic too complex.
 978			 */
 979			if (skb != NULL)
 980				dev_kfree_skb_irq(skb);
 981		}
 982		(*skbuff_vector) = NULL;
 983		/* Move to the next buffer element */
 984		mmsg_vector++;
 985		skbuff_vector++;
 986	}
 987	if (packet_count > 0) {
 988		if (vp->estats.rx_queue_max < packet_count)
 989			vp->estats.rx_queue_max = packet_count;
 990		vp->estats.rx_queue_running_average =
 991			(vp->estats.rx_queue_running_average + packet_count) >> 1;
 992	}
 993	return packet_count;
 994}
 995
 996static void vector_rx(struct vector_private *vp)
 997{
 998	int err;
 999
1000	if ((vp->options & VECTOR_RX) > 0)
1001		while ((err = vector_mmsg_rx(vp)) > 0)
1002			;
1003	else
1004		while ((err = vector_legacy_rx(vp)) > 0)
1005			;
1006	if ((err != 0) && net_ratelimit())
1007		netdev_err(vp->dev, "vector_rx: error(%d)\n", err);
1008}
1009
1010static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1011{
1012	struct vector_private *vp = netdev_priv(dev);
1013	int queue_depth = 0;
1014
 
 
 
 
 
 
 
1015	if ((vp->options & VECTOR_TX) == 0) {
1016		writev_tx(vp, skb);
1017		return NETDEV_TX_OK;
1018	}
1019
1020	/* We do BQL only in the vector path, no point doing it in
1021	 * packet at a time mode as there is no device queue
1022	 */
1023
1024	netdev_sent_queue(vp->dev, skb->len);
1025	queue_depth = vector_enqueue(vp->tx_queue, skb);
1026
1027	/* if the device queue is full, stop the upper layers and
1028	 * flush it.
1029	 */
1030
1031	if (queue_depth >= vp->tx_queue->max_depth - 1) {
1032		vp->estats.tx_kicks++;
1033		netif_stop_queue(dev);
1034		vector_send(vp->tx_queue);
1035		return NETDEV_TX_OK;
1036	}
1037	if (skb->xmit_more) {
1038		mod_timer(&vp->tl, vp->coalesce);
1039		return NETDEV_TX_OK;
 
 
 
 
1040	}
1041	if (skb->len < TX_SMALL_PACKET) {
1042		vp->estats.tx_kicks++;
1043		vector_send(vp->tx_queue);
1044	} else
1045		tasklet_schedule(&vp->tx_poll);
1046	return NETDEV_TX_OK;
1047}
1048
1049static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1050{
1051	struct net_device *dev = dev_id;
1052	struct vector_private *vp = netdev_priv(dev);
1053
1054	if (!netif_running(dev))
1055		return IRQ_NONE;
1056	vector_rx(vp);
1057	return IRQ_HANDLED;
1058
1059}
1060
1061static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1062{
1063	struct net_device *dev = dev_id;
1064	struct vector_private *vp = netdev_priv(dev);
1065
1066	if (!netif_running(dev))
1067		return IRQ_NONE;
1068	/* We need to pay attention to it only if we got
1069	 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1070	 * we ignore it. In the future, it may be worth
1071	 * it to improve the IRQ controller a bit to make
1072	 * tweaking the IRQ mask less costly
1073	 */
1074
1075	if (vp->in_write_poll)
1076		tasklet_schedule(&vp->tx_poll);
1077	return IRQ_HANDLED;
1078
1079}
1080
1081static int irq_rr;
1082
1083static int vector_net_close(struct net_device *dev)
1084{
1085	struct vector_private *vp = netdev_priv(dev);
1086	unsigned long flags;
1087
1088	netif_stop_queue(dev);
1089	del_timer(&vp->tl);
1090
 
 
1091	if (vp->fds == NULL)
1092		return 0;
1093
1094	/* Disable and free all IRQS */
1095	if (vp->rx_irq > 0) {
1096		um_free_irq(vp->rx_irq, dev);
1097		vp->rx_irq = 0;
1098	}
1099	if (vp->tx_irq > 0) {
1100		um_free_irq(vp->tx_irq, dev);
1101		vp->tx_irq = 0;
1102	}
1103	tasklet_kill(&vp->tx_poll);
 
1104	if (vp->fds->rx_fd > 0) {
 
 
1105		os_close_file(vp->fds->rx_fd);
1106		vp->fds->rx_fd = -1;
1107	}
1108	if (vp->fds->tx_fd > 0) {
1109		os_close_file(vp->fds->tx_fd);
1110		vp->fds->tx_fd = -1;
1111	}
1112	if (vp->bpf != NULL)
1113		kfree(vp->bpf);
1114	if (vp->fds->remote_addr != NULL)
1115		kfree(vp->fds->remote_addr);
1116	if (vp->transport_data != NULL)
1117		kfree(vp->transport_data);
1118	if (vp->header_rxbuffer != NULL)
1119		kfree(vp->header_rxbuffer);
1120	if (vp->header_txbuffer != NULL)
1121		kfree(vp->header_txbuffer);
1122	if (vp->rx_queue != NULL)
1123		destroy_queue(vp->rx_queue);
1124	if (vp->tx_queue != NULL)
1125		destroy_queue(vp->tx_queue);
1126	kfree(vp->fds);
1127	vp->fds = NULL;
1128	spin_lock_irqsave(&vp->lock, flags);
1129	vp->opened = false;
1130	spin_unlock_irqrestore(&vp->lock, flags);
1131	return 0;
1132}
1133
1134/* TX tasklet */
1135
1136static void vector_tx_poll(unsigned long data)
1137{
1138	struct vector_private *vp = (struct vector_private *)data;
 
 
 
1139
1140	vp->estats.tx_kicks++;
1141	vector_send(vp->tx_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1142}
 
1143static void vector_reset_tx(struct work_struct *work)
1144{
1145	struct vector_private *vp =
1146		container_of(work, struct vector_private, reset_tx);
1147	netdev_reset_queue(vp->dev);
1148	netif_start_queue(vp->dev);
1149	netif_wake_queue(vp->dev);
1150}
 
1151static int vector_net_open(struct net_device *dev)
1152{
1153	struct vector_private *vp = netdev_priv(dev);
1154	unsigned long flags;
1155	int err = -EINVAL;
1156	struct vector_device *vdevice;
1157
1158	spin_lock_irqsave(&vp->lock, flags);
1159	if (vp->opened) {
1160		spin_unlock_irqrestore(&vp->lock, flags);
1161		return -ENXIO;
1162	}
1163	vp->opened = true;
1164	spin_unlock_irqrestore(&vp->lock, flags);
 
1165
1166	vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1167
1168	if (vp->fds == NULL)
1169		goto out_close;
1170
1171	if (build_transport_data(vp) < 0)
1172		goto out_close;
1173
1174	if ((vp->options & VECTOR_RX) > 0) {
1175		vp->rx_queue = create_queue(
1176			vp,
1177			get_depth(vp->parsed),
1178			vp->rx_header_size,
1179			MAX_IOV_SIZE
1180		);
1181		vp->rx_queue->queue_depth = get_depth(vp->parsed);
1182	} else {
1183		vp->header_rxbuffer = kmalloc(
1184			vp->rx_header_size,
1185			GFP_KERNEL
1186		);
1187		if (vp->header_rxbuffer == NULL)
1188			goto out_close;
1189	}
1190	if ((vp->options & VECTOR_TX) > 0) {
1191		vp->tx_queue = create_queue(
1192			vp,
1193			get_depth(vp->parsed),
1194			vp->header_size,
1195			MAX_IOV_SIZE
1196		);
1197	} else {
1198		vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1199		if (vp->header_txbuffer == NULL)
1200			goto out_close;
1201	}
1202
 
 
 
 
1203	/* READ IRQ */
1204	err = um_request_irq(
1205		irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1206			IRQ_READ, vector_rx_interrupt,
1207			IRQF_SHARED, dev->name, dev);
1208	if (err != 0) {
1209		netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1210		err = -ENETUNREACH;
1211		goto out_close;
1212	}
1213	vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1214	dev->irq = irq_rr + VECTOR_BASE_IRQ;
1215	irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1216
1217	/* WRITE IRQ - we need it only if we have vector TX */
1218	if ((vp->options & VECTOR_TX) > 0) {
1219		err = um_request_irq(
1220			irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1221				IRQ_WRITE, vector_tx_interrupt,
1222				IRQF_SHARED, dev->name, dev);
1223		if (err != 0) {
1224			netdev_err(dev,
1225				"vector_open: failed to get tx irq(%d)\n", err);
1226			err = -ENETUNREACH;
1227			goto out_close;
1228		}
1229		vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1230		irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1231	}
1232
1233	if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1234		if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1235			vp->options = vp->options | VECTOR_BPF;
1236	}
 
 
1237
1238	if ((vp->options & VECTOR_BPF) != 0)
1239		vp->bpf = uml_vector_default_bpf(vp->fds->rx_fd, dev->dev_addr);
1240
1241	netif_start_queue(dev);
 
1242
1243	/* clear buffer - it can happen that the host side of the interface
1244	 * is full when we get here. In this case, new data is never queued,
1245	 * SIGIOs never arrive, and the net never works.
1246	 */
1247
1248	vector_rx(vp);
1249
1250	vector_reset_stats(vp);
1251	vdevice = find_device(vp->unit);
1252	vdevice->opened = 1;
1253
1254	if ((vp->options & VECTOR_TX) != 0)
1255		add_timer(&vp->tl);
1256	return 0;
1257out_close:
1258	vector_net_close(dev);
1259	return err;
1260}
1261
1262
1263static void vector_net_set_multicast_list(struct net_device *dev)
1264{
1265	/* TODO: - we can do some BPF games here */
1266	return;
1267}
1268
1269static void vector_net_tx_timeout(struct net_device *dev)
1270{
1271	struct vector_private *vp = netdev_priv(dev);
1272
1273	vp->estats.tx_timeout_count++;
1274	netif_trans_update(dev);
1275	schedule_work(&vp->reset_tx);
1276}
1277
1278static netdev_features_t vector_fix_features(struct net_device *dev,
1279	netdev_features_t features)
1280{
1281	features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1282	return features;
1283}
1284
1285static int vector_set_features(struct net_device *dev,
1286	netdev_features_t features)
1287{
1288	struct vector_private *vp = netdev_priv(dev);
1289	/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1290	 * no way to negotiate it on raw sockets, so we can change
1291	 * only our side.
1292	 */
1293	if (features & NETIF_F_GRO)
1294		/* All new frame buffers will be GRO-sized */
1295		vp->req_size = 65536;
1296	else
1297		/* All new frame buffers will be normal sized */
1298		vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1299	return 0;
1300}
1301
1302#ifdef CONFIG_NET_POLL_CONTROLLER
1303static void vector_net_poll_controller(struct net_device *dev)
1304{
1305	disable_irq(dev->irq);
1306	vector_rx_interrupt(dev->irq, dev);
1307	enable_irq(dev->irq);
1308}
1309#endif
1310
1311static void vector_net_get_drvinfo(struct net_device *dev,
1312				struct ethtool_drvinfo *info)
1313{
1314	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1315	strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316}
1317
1318static void vector_get_ringparam(struct net_device *netdev,
1319				struct ethtool_ringparam *ring)
 
 
1320{
1321	struct vector_private *vp = netdev_priv(netdev);
1322
1323	ring->rx_max_pending = vp->rx_queue->max_depth;
1324	ring->tx_max_pending = vp->tx_queue->max_depth;
1325	ring->rx_pending = vp->rx_queue->max_depth;
1326	ring->tx_pending = vp->tx_queue->max_depth;
1327}
1328
1329static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1330{
1331	switch (stringset) {
1332	case ETH_SS_TEST:
1333		*buf = '\0';
1334		break;
1335	case ETH_SS_STATS:
1336		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1337		break;
1338	default:
1339		WARN_ON(1);
1340		break;
1341	}
1342}
1343
1344static int vector_get_sset_count(struct net_device *dev, int sset)
1345{
1346	switch (sset) {
1347	case ETH_SS_TEST:
1348		return 0;
1349	case ETH_SS_STATS:
1350		return VECTOR_NUM_STATS;
1351	default:
1352		return -EOPNOTSUPP;
1353	}
1354}
1355
1356static void vector_get_ethtool_stats(struct net_device *dev,
1357	struct ethtool_stats *estats,
1358	u64 *tmp_stats)
1359{
1360	struct vector_private *vp = netdev_priv(dev);
1361
 
 
 
 
 
 
 
 
1362	memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
 
 
1363}
1364
1365static int vector_get_coalesce(struct net_device *netdev,
1366					struct ethtool_coalesce *ec)
 
 
1367{
1368	struct vector_private *vp = netdev_priv(netdev);
1369
1370	ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1371	return 0;
1372}
1373
1374static int vector_set_coalesce(struct net_device *netdev,
1375					struct ethtool_coalesce *ec)
 
 
1376{
1377	struct vector_private *vp = netdev_priv(netdev);
1378
1379	vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1380	if (vp->coalesce == 0)
1381		vp->coalesce = 1;
1382	return 0;
1383}
1384
1385static const struct ethtool_ops vector_net_ethtool_ops = {
 
1386	.get_drvinfo	= vector_net_get_drvinfo,
1387	.get_link	= ethtool_op_get_link,
1388	.get_ts_info	= ethtool_op_get_ts_info,
1389	.get_ringparam	= vector_get_ringparam,
1390	.get_strings	= vector_get_strings,
1391	.get_sset_count	= vector_get_sset_count,
1392	.get_ethtool_stats = vector_get_ethtool_stats,
1393	.get_coalesce	= vector_get_coalesce,
1394	.set_coalesce	= vector_set_coalesce,
 
1395};
1396
1397
1398static const struct net_device_ops vector_netdev_ops = {
1399	.ndo_open		= vector_net_open,
1400	.ndo_stop		= vector_net_close,
1401	.ndo_start_xmit		= vector_net_start_xmit,
1402	.ndo_set_rx_mode	= vector_net_set_multicast_list,
1403	.ndo_tx_timeout		= vector_net_tx_timeout,
1404	.ndo_set_mac_address	= eth_mac_addr,
1405	.ndo_validate_addr	= eth_validate_addr,
1406	.ndo_fix_features	= vector_fix_features,
1407	.ndo_set_features	= vector_set_features,
1408#ifdef CONFIG_NET_POLL_CONTROLLER
1409	.ndo_poll_controller = vector_net_poll_controller,
1410#endif
1411};
1412
1413
1414static void vector_timer_expire(struct timer_list *t)
1415{
1416	struct vector_private *vp = from_timer(vp, t, tl);
1417
1418	vp->estats.tx_kicks++;
1419	vector_send(vp->tx_queue);
1420}
1421
 
 
1422static void vector_eth_configure(
1423		int n,
1424		struct arglist *def
1425	)
1426{
1427	struct vector_device *device;
1428	struct net_device *dev;
1429	struct vector_private *vp;
1430	int err;
1431
1432	device = kzalloc(sizeof(*device), GFP_KERNEL);
1433	if (device == NULL) {
1434		printk(KERN_ERR "eth_configure failed to allocate struct "
1435				 "vector_device\n");
1436		return;
1437	}
1438	dev = alloc_etherdev(sizeof(struct vector_private));
1439	if (dev == NULL) {
1440		printk(KERN_ERR "eth_configure: failed to allocate struct "
1441				 "net_device for vec%d\n", n);
1442		goto out_free_device;
1443	}
1444
1445	dev->mtu = get_mtu(def);
1446
1447	INIT_LIST_HEAD(&device->list);
1448	device->unit = n;
1449
1450	/* If this name ends up conflicting with an existing registered
1451	 * netdevice, that is OK, register_netdev{,ice}() will notice this
1452	 * and fail.
1453	 */
1454	snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1455	uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1456	vp = netdev_priv(dev);
1457
1458	/* sysfs register */
1459	if (!driver_registered) {
1460		platform_driver_register(&uml_net_driver);
1461		driver_registered = 1;
1462	}
1463	device->pdev.id = n;
1464	device->pdev.name = DRIVER_NAME;
1465	device->pdev.dev.release = vector_device_release;
1466	dev_set_drvdata(&device->pdev.dev, device);
1467	if (platform_device_register(&device->pdev))
1468		goto out_free_netdev;
1469	SET_NETDEV_DEV(dev, &device->pdev.dev);
1470
1471	device->dev = dev;
1472
1473	*vp = ((struct vector_private)
1474		{
1475		.list			= LIST_HEAD_INIT(vp->list),
1476		.dev			= dev,
1477		.unit			= n,
1478		.options		= get_transport_options(def),
1479		.rx_irq			= 0,
1480		.tx_irq			= 0,
1481		.parsed			= def,
1482		.max_packet		= get_mtu(def) + ETH_HEADER_OTHER,
1483		/* TODO - we need to calculate headroom so that ip header
1484		 * is 16 byte aligned all the time
1485		 */
1486		.headroom		= get_headroom(def),
1487		.form_header		= NULL,
1488		.verify_header		= NULL,
1489		.header_rxbuffer	= NULL,
1490		.header_txbuffer	= NULL,
1491		.header_size		= 0,
1492		.rx_header_size		= 0,
1493		.rexmit_scheduled	= false,
1494		.opened			= false,
1495		.transport_data		= NULL,
1496		.in_write_poll		= false,
1497		.coalesce		= 2,
1498		.req_size		= get_req_size(def)
1499		});
 
 
1500
1501	dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1502	tasklet_init(&vp->tx_poll, vector_tx_poll, (unsigned long)vp);
1503	INIT_WORK(&vp->reset_tx, vector_reset_tx);
1504
1505	timer_setup(&vp->tl, vector_timer_expire, 0);
1506	spin_lock_init(&vp->lock);
1507
1508	/* FIXME */
1509	dev->netdev_ops = &vector_netdev_ops;
1510	dev->ethtool_ops = &vector_net_ethtool_ops;
1511	dev->watchdog_timeo = (HZ >> 1);
1512	/* primary IRQ - fixme */
1513	dev->irq = 0; /* we will adjust this once opened */
1514
1515	rtnl_lock();
1516	err = register_netdevice(dev);
1517	rtnl_unlock();
1518	if (err)
1519		goto out_undo_user_init;
1520
1521	spin_lock(&vector_devices_lock);
1522	list_add(&device->list, &vector_devices);
1523	spin_unlock(&vector_devices_lock);
1524
1525	return;
1526
1527out_undo_user_init:
1528	return;
1529out_free_netdev:
1530	free_netdev(dev);
1531out_free_device:
1532	kfree(device);
1533}
1534
1535
1536
1537
1538/*
1539 * Invoked late in the init
1540 */
1541
1542static int __init vector_init(void)
1543{
1544	struct list_head *ele;
1545	struct vector_cmd_line_arg *def;
1546	struct arglist *parsed;
1547
1548	list_for_each(ele, &vec_cmd_line) {
1549		def = list_entry(ele, struct vector_cmd_line_arg, list);
1550		parsed = uml_parse_vector_ifspec(def->arguments);
1551		if (parsed != NULL)
1552			vector_eth_configure(def->unit, parsed);
1553	}
1554	return 0;
1555}
1556
1557
1558/* Invoked at initial argument parsing, only stores
1559 * arguments until a proper vector_init is called
1560 * later
1561 */
1562
1563static int __init vector_setup(char *str)
1564{
1565	char *error;
1566	int n, err;
1567	struct vector_cmd_line_arg *new;
1568
1569	err = vector_parse(str, &n, &str, &error);
1570	if (err) {
1571		printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1572				 str, error);
1573		return 1;
1574	}
1575	new = alloc_bootmem(sizeof(*new));
 
 
 
1576	INIT_LIST_HEAD(&new->list);
1577	new->unit = n;
1578	new->arguments = str;
1579	list_add_tail(&new->list, &vec_cmd_line);
1580	return 1;
1581}
1582
1583__setup("vec", vector_setup);
1584__uml_help(vector_setup,
1585"vec[0-9]+:<option>=<value>,<option>=<value>\n"
1586"	 Configure a vector io network device.\n\n"
1587);
1588
1589late_initcall(vector_init);
1590
1591static struct mc_device vector_mc = {
1592	.list		= LIST_HEAD_INIT(vector_mc.list),
1593	.name		= "vec",
1594	.config		= vector_config,
1595	.get_config	= NULL,
1596	.id		= vector_id,
1597	.remove		= vector_remove,
1598};
1599
1600#ifdef CONFIG_INET
1601static int vector_inetaddr_event(
1602	struct notifier_block *this,
1603	unsigned long event,
1604	void *ptr)
1605{
1606	return NOTIFY_DONE;
1607}
1608
1609static struct notifier_block vector_inetaddr_notifier = {
1610	.notifier_call		= vector_inetaddr_event,
1611};
1612
1613static void inet_register(void)
1614{
1615	register_inetaddr_notifier(&vector_inetaddr_notifier);
1616}
1617#else
1618static inline void inet_register(void)
1619{
1620}
1621#endif
1622
1623static int vector_net_init(void)
1624{
1625	mconsole_register_dev(&vector_mc);
1626	inet_register();
1627	return 0;
1628}
1629
1630__initcall(vector_net_init);
1631
1632
1633
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited
   4 * Copyright (C) 2011 - 2014 Cisco Systems Inc
   5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
   6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
   7 * James Leu (jleu@mindspring.net).
   8 * Copyright (C) 2001 by various other people who didn't put their name here.
 
   9 */
  10
  11#include <linux/memblock.h>
 
  12#include <linux/etherdevice.h>
  13#include <linux/ethtool.h>
  14#include <linux/inetdevice.h>
  15#include <linux/init.h>
  16#include <linux/list.h>
  17#include <linux/netdevice.h>
  18#include <linux/platform_device.h>
  19#include <linux/rtnetlink.h>
  20#include <linux/skbuff.h>
  21#include <linux/slab.h>
  22#include <linux/interrupt.h>
  23#include <linux/firmware.h>
  24#include <linux/fs.h>
  25#include <asm/atomic.h>
  26#include <uapi/linux/filter.h>
  27#include <init.h>
  28#include <irq_kern.h>
  29#include <irq_user.h>
  30#include <net_kern.h>
  31#include <os.h>
  32#include "mconsole_kern.h"
  33#include "vector_user.h"
  34#include "vector_kern.h"
  35
  36/*
  37 * Adapted from network devices with the following major changes:
  38 * All transports are static - simplifies the code significantly
  39 * Multiple FDs/IRQs per device
  40 * Vector IO optionally used for read/write, falling back to legacy
  41 * based on configuration and/or availability
  42 * Configuration is no longer positional - L2TPv3 and GRE require up to
  43 * 10 parameters, passing this as positional is not fit for purpose.
  44 * Only socket transports are supported
  45 */
  46
  47
  48#define DRIVER_NAME "uml-vector"
 
  49struct vector_cmd_line_arg {
  50	struct list_head list;
  51	int unit;
  52	char *arguments;
  53};
  54
  55struct vector_device {
  56	struct list_head list;
  57	struct net_device *dev;
  58	struct platform_device pdev;
  59	int unit;
  60	int opened;
  61};
  62
  63static LIST_HEAD(vec_cmd_line);
  64
  65static DEFINE_SPINLOCK(vector_devices_lock);
  66static LIST_HEAD(vector_devices);
  67
  68static int driver_registered;
  69
  70static void vector_eth_configure(int n, struct arglist *def);
  71static int vector_mmsg_rx(struct vector_private *vp, int budget);
  72
  73/* Argument accessors to set variables (and/or set default values)
  74 * mtu, buffer sizing, default headroom, etc
  75 */
  76
  77#define DEFAULT_HEADROOM 2
  78#define SAFETY_MARGIN 32
  79#define DEFAULT_VECTOR_SIZE 64
  80#define TX_SMALL_PACKET 128
  81#define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
  82
  83static const struct {
  84	const char string[ETH_GSTRING_LEN];
  85} ethtool_stats_keys[] = {
  86	{ "rx_queue_max" },
  87	{ "rx_queue_running_average" },
  88	{ "tx_queue_max" },
  89	{ "tx_queue_running_average" },
  90	{ "rx_encaps_errors" },
  91	{ "tx_timeout_count" },
  92	{ "tx_restart_queue" },
  93	{ "tx_kicks" },
  94	{ "tx_flow_control_xon" },
  95	{ "tx_flow_control_xoff" },
  96	{ "rx_csum_offload_good" },
  97	{ "rx_csum_offload_errors"},
  98	{ "sg_ok"},
  99	{ "sg_linearized"},
 100};
 101
 102#define VECTOR_NUM_STATS	ARRAY_SIZE(ethtool_stats_keys)
 103
 104static void vector_reset_stats(struct vector_private *vp)
 105{
 106	/* We reuse the existing queue locks for stats */
 107
 108	/* RX stats are modified with RX head_lock held
 109	 * in vector_poll.
 110	 */
 111
 112	spin_lock(&vp->rx_queue->head_lock);
 113	vp->estats.rx_queue_max = 0;
 114	vp->estats.rx_queue_running_average = 0;
 
 
 115	vp->estats.rx_encaps_errors = 0;
 116	vp->estats.sg_ok = 0;
 117	vp->estats.sg_linearized = 0;
 118	spin_unlock(&vp->rx_queue->head_lock);
 119
 120	/* TX stats are modified with TX head_lock held
 121	 * in vector_send.
 122	 */
 123
 124	spin_lock(&vp->tx_queue->head_lock);
 125	vp->estats.tx_timeout_count = 0;
 126	vp->estats.tx_restart_queue = 0;
 127	vp->estats.tx_kicks = 0;
 128	vp->estats.tx_flow_control_xon = 0;
 129	vp->estats.tx_flow_control_xoff = 0;
 130	vp->estats.tx_queue_max = 0;
 131	vp->estats.tx_queue_running_average = 0;
 132	spin_unlock(&vp->tx_queue->head_lock);
 133}
 134
 135static int get_mtu(struct arglist *def)
 136{
 137	char *mtu = uml_vector_fetch_arg(def, "mtu");
 138	long result;
 139
 140	if (mtu != NULL) {
 141		if (kstrtoul(mtu, 10, &result) == 0)
 142			if ((result < (1 << 16) - 1) && (result >= 576))
 143				return result;
 144	}
 145	return ETH_MAX_PACKET;
 146}
 147
 148static char *get_bpf_file(struct arglist *def)
 149{
 150	return uml_vector_fetch_arg(def, "bpffile");
 151}
 152
 153static bool get_bpf_flash(struct arglist *def)
 154{
 155	char *allow = uml_vector_fetch_arg(def, "bpfflash");
 156	long result;
 157
 158	if (allow != NULL) {
 159		if (kstrtoul(allow, 10, &result) == 0)
 160			return result > 0;
 161	}
 162	return false;
 163}
 164
 165static int get_depth(struct arglist *def)
 166{
 167	char *mtu = uml_vector_fetch_arg(def, "depth");
 168	long result;
 169
 170	if (mtu != NULL) {
 171		if (kstrtoul(mtu, 10, &result) == 0)
 172			return result;
 173	}
 174	return DEFAULT_VECTOR_SIZE;
 175}
 176
 177static int get_headroom(struct arglist *def)
 178{
 179	char *mtu = uml_vector_fetch_arg(def, "headroom");
 180	long result;
 181
 182	if (mtu != NULL) {
 183		if (kstrtoul(mtu, 10, &result) == 0)
 184			return result;
 185	}
 186	return DEFAULT_HEADROOM;
 187}
 188
 189static int get_req_size(struct arglist *def)
 190{
 191	char *gro = uml_vector_fetch_arg(def, "gro");
 192	long result;
 193
 194	if (gro != NULL) {
 195		if (kstrtoul(gro, 10, &result) == 0) {
 196			if (result > 0)
 197				return 65536;
 198		}
 199	}
 200	return get_mtu(def) + ETH_HEADER_OTHER +
 201		get_headroom(def) + SAFETY_MARGIN;
 202}
 203
 204
 205static int get_transport_options(struct arglist *def)
 206{
 207	char *transport = uml_vector_fetch_arg(def, "transport");
 208	char *vector = uml_vector_fetch_arg(def, "vec");
 209
 210	int vec_rx = VECTOR_RX;
 211	int vec_tx = VECTOR_TX;
 212	long parsed;
 213	int result = 0;
 214
 215	if (transport == NULL)
 216		return -EINVAL;
 217
 218	if (vector != NULL) {
 219		if (kstrtoul(vector, 10, &parsed) == 0) {
 220			if (parsed == 0) {
 221				vec_rx = 0;
 222				vec_tx = 0;
 223			}
 224		}
 225	}
 226
 227	if (get_bpf_flash(def))
 228		result = VECTOR_BPF_FLASH;
 229
 230	if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
 231		return result;
 232	if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
 233		return (result | vec_rx | VECTOR_BPF);
 234	if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
 235		return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
 236	return (result | vec_rx | vec_tx);
 237}
 238
 239
 240/* A mini-buffer for packet drop read
 241 * All of our supported transports are datagram oriented and we always
 242 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
 243 * than the packet size it still counts as full packet read and will
 244 * clean the incoming stream to keep sigio/epoll happy
 245 */
 246
 247#define DROP_BUFFER_SIZE 32
 248
 249static char *drop_buffer;
 250
 
 
 
 
 
 
 251
 252/*
 253 * Advance the mmsg queue head by n = advance. Resets the queue to
 254 * maximum enqueue/dequeue-at-once capacity if possible. Called by
 255 * dequeuers. Caller must hold the head_lock!
 256 */
 257
 258static int vector_advancehead(struct vector_queue *qi, int advance)
 259{
 
 
 260	qi->head =
 261		(qi->head + advance)
 262			% qi->max_depth;
 263
 264
 265	atomic_sub(advance, &qi->queue_depth);
 266	return atomic_read(&qi->queue_depth);
 
 
 
 
 
 
 
 
 
 
 
 
 267}
 268
 269/*	Advance the queue tail by n = advance.
 270 *	This is called by enqueuers which should hold the
 271 *	head lock already
 272 */
 273
 274static int vector_advancetail(struct vector_queue *qi, int advance)
 275{
 
 
 276	qi->tail =
 277		(qi->tail + advance)
 278			% qi->max_depth;
 279	atomic_add(advance, &qi->queue_depth);
 280	return atomic_read(&qi->queue_depth);
 
 
 
 281}
 282
 283static int prep_msg(struct vector_private *vp,
 284	struct sk_buff *skb,
 285	struct iovec *iov)
 286{
 287	int iov_index = 0;
 288	int nr_frags, frag;
 289	skb_frag_t *skb_frag;
 290
 291	nr_frags = skb_shinfo(skb)->nr_frags;
 292	if (nr_frags > MAX_IOV_SIZE) {
 293		if (skb_linearize(skb) != 0)
 294			goto drop;
 295	}
 296	if (vp->header_size > 0) {
 297		iov[iov_index].iov_len = vp->header_size;
 298		vp->form_header(iov[iov_index].iov_base, skb, vp);
 299		iov_index++;
 300	}
 301	iov[iov_index].iov_base = skb->data;
 302	if (nr_frags > 0) {
 303		iov[iov_index].iov_len = skb->len - skb->data_len;
 304		vp->estats.sg_ok++;
 305	} else
 306		iov[iov_index].iov_len = skb->len;
 307	iov_index++;
 308	for (frag = 0; frag < nr_frags; frag++) {
 309		skb_frag = &skb_shinfo(skb)->frags[frag];
 310		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
 311		iov[iov_index].iov_len = skb_frag_size(skb_frag);
 312		iov_index++;
 313	}
 314	return iov_index;
 315drop:
 316	return -1;
 317}
 318/*
 319 * Generic vector enqueue with support for forming headers using transport
 320 * specific callback. Allows GRE, L2TPv3, RAW and other transports
 321 * to use a common enqueue procedure in vector mode
 322 */
 323
 324static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
 325{
 326	struct vector_private *vp = netdev_priv(qi->dev);
 327	int queue_depth;
 328	int packet_len;
 329	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
 330	int iov_count;
 331
 332	spin_lock(&qi->tail_lock);
 333	queue_depth = atomic_read(&qi->queue_depth);
 
 
 334
 335	if (skb)
 336		packet_len = skb->len;
 337
 338	if (queue_depth < qi->max_depth) {
 339
 340		*(qi->skbuff_vector + qi->tail) = skb;
 341		mmsg_vector += qi->tail;
 342		iov_count = prep_msg(
 343			vp,
 344			skb,
 345			mmsg_vector->msg_hdr.msg_iov
 346		);
 347		if (iov_count < 1)
 348			goto drop;
 349		mmsg_vector->msg_hdr.msg_iovlen = iov_count;
 350		mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
 351		mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
 352		wmb(); /* Make the packet visible to the NAPI poll thread */
 353		queue_depth = vector_advancetail(qi, 1);
 354	} else
 355		goto drop;
 356	spin_unlock(&qi->tail_lock);
 357	return queue_depth;
 358drop:
 359	qi->dev->stats.tx_dropped++;
 360	if (skb != NULL) {
 361		packet_len = skb->len;
 362		dev_consume_skb_any(skb);
 363		netdev_completed_queue(qi->dev, 1, packet_len);
 364	}
 365	spin_unlock(&qi->tail_lock);
 366	return queue_depth;
 367}
 368
 369static int consume_vector_skbs(struct vector_queue *qi, int count)
 370{
 371	struct sk_buff *skb;
 372	int skb_index;
 373	int bytes_compl = 0;
 374
 375	for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
 376		skb = *(qi->skbuff_vector + skb_index);
 377		/* mark as empty to ensure correct destruction if
 378		 * needed
 379		 */
 380		bytes_compl += skb->len;
 381		*(qi->skbuff_vector + skb_index) = NULL;
 382		dev_consume_skb_any(skb);
 383	}
 384	qi->dev->stats.tx_bytes += bytes_compl;
 385	qi->dev->stats.tx_packets += count;
 386	netdev_completed_queue(qi->dev, count, bytes_compl);
 387	return vector_advancehead(qi, count);
 388}
 389
 390/*
 391 * Generic vector dequeue via sendmmsg with support for forming headers
 392 * using transport specific callback. Allows GRE, L2TPv3, RAW and
 393 * other transports to use a common dequeue procedure in vector mode
 394 */
 395
 396
 397static int vector_send(struct vector_queue *qi)
 398{
 399	struct vector_private *vp = netdev_priv(qi->dev);
 400	struct mmsghdr *send_from;
 401	int result = 0, send_len;
 402
 403	if (spin_trylock(&qi->head_lock)) {
 404		/* update queue_depth to current value */
 405		while (atomic_read(&qi->queue_depth) > 0) {
 406			/* Calculate the start of the vector */
 407			send_len = atomic_read(&qi->queue_depth);
 408			send_from = qi->mmsg_vector;
 409			send_from += qi->head;
 410			/* Adjust vector size if wraparound */
 411			if (send_len + qi->head > qi->max_depth)
 412				send_len = qi->max_depth - qi->head;
 413			/* Try to TX as many packets as possible */
 414			if (send_len > 0) {
 415				result = uml_vector_sendmmsg(
 416					 vp->fds->tx_fd,
 417					 send_from,
 418					 send_len,
 419					 0
 420				);
 421				vp->in_write_poll =
 422					(result != send_len);
 423			}
 424			/* For some of the sendmmsg error scenarios
 425			 * we may end being unsure in the TX success
 426			 * for all packets. It is safer to declare
 427			 * them all TX-ed and blame the network.
 428			 */
 429			if (result < 0) {
 430				if (net_ratelimit())
 431					netdev_err(vp->dev, "sendmmsg err=%i\n",
 432						result);
 433				vp->in_error = true;
 434				result = send_len;
 435			}
 436			if (result > 0) {
 437				consume_vector_skbs(qi, result);
 438				/* This is equivalent to an TX IRQ.
 439				 * Restart the upper layers to feed us
 440				 * more packets.
 
 
 
 
 
 
 
 
 
 
 
 
 
 441				 */
 442				if (result > vp->estats.tx_queue_max)
 443					vp->estats.tx_queue_max = result;
 444				vp->estats.tx_queue_running_average =
 445					(vp->estats.tx_queue_running_average + result) >> 1;
 446			}
 447			netif_wake_queue(qi->dev);
 448			/* if TX is busy, break out of the send loop,
 449			 *  poll write IRQ will reschedule xmit for us.
 450			 */
 451			if (result != send_len) {
 452				vp->estats.tx_restart_queue++;
 453				break;
 454			}
 455		}
 456		spin_unlock(&qi->head_lock);
 
 
 457	}
 458	return atomic_read(&qi->queue_depth);
 459}
 460
 461/* Queue destructor. Deliberately stateless so we can use
 462 * it in queue cleanup if initialization fails.
 463 */
 464
 465static void destroy_queue(struct vector_queue *qi)
 466{
 467	int i;
 468	struct iovec *iov;
 469	struct vector_private *vp = netdev_priv(qi->dev);
 470	struct mmsghdr *mmsg_vector;
 471
 472	if (qi == NULL)
 473		return;
 474	/* deallocate any skbuffs - we rely on any unused to be
 475	 * set to NULL.
 476	 */
 477	if (qi->skbuff_vector != NULL) {
 478		for (i = 0; i < qi->max_depth; i++) {
 479			if (*(qi->skbuff_vector + i) != NULL)
 480				dev_kfree_skb_any(*(qi->skbuff_vector + i));
 481		}
 482		kfree(qi->skbuff_vector);
 483	}
 484	/* deallocate matching IOV structures including header buffs */
 485	if (qi->mmsg_vector != NULL) {
 486		mmsg_vector = qi->mmsg_vector;
 487		for (i = 0; i < qi->max_depth; i++) {
 488			iov = mmsg_vector->msg_hdr.msg_iov;
 489			if (iov != NULL) {
 490				if ((vp->header_size > 0) &&
 491					(iov->iov_base != NULL))
 492					kfree(iov->iov_base);
 493				kfree(iov);
 494			}
 495			mmsg_vector++;
 496		}
 497		kfree(qi->mmsg_vector);
 498	}
 499	kfree(qi);
 500}
 501
 502/*
 503 * Queue constructor. Create a queue with a given side.
 504 */
 505static struct vector_queue *create_queue(
 506	struct vector_private *vp,
 507	int max_size,
 508	int header_size,
 509	int num_extra_frags)
 510{
 511	struct vector_queue *result;
 512	int i;
 513	struct iovec *iov;
 514	struct mmsghdr *mmsg_vector;
 515
 516	result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
 517	if (result == NULL)
 518		return NULL;
 519	result->max_depth = max_size;
 520	result->dev = vp->dev;
 521	result->mmsg_vector = kmalloc(
 522		(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
 523	if (result->mmsg_vector == NULL)
 524		goto out_mmsg_fail;
 525	result->skbuff_vector = kmalloc(
 526		(sizeof(void *) * max_size), GFP_KERNEL);
 527	if (result->skbuff_vector == NULL)
 528		goto out_skb_fail;
 529
 530	/* further failures can be handled safely by destroy_queue*/
 531
 532	mmsg_vector = result->mmsg_vector;
 533	for (i = 0; i < max_size; i++) {
 534		/* Clear all pointers - we use non-NULL as marking on
 535		 * what to free on destruction
 536		 */
 537		*(result->skbuff_vector + i) = NULL;
 538		mmsg_vector->msg_hdr.msg_iov = NULL;
 539		mmsg_vector++;
 540	}
 541	mmsg_vector = result->mmsg_vector;
 542	result->max_iov_frags = num_extra_frags;
 543	for (i = 0; i < max_size; i++) {
 544		if (vp->header_size > 0)
 545			iov = kmalloc_array(3 + num_extra_frags,
 546					    sizeof(struct iovec),
 547					    GFP_KERNEL
 548			);
 549		else
 550			iov = kmalloc_array(2 + num_extra_frags,
 551					    sizeof(struct iovec),
 552					    GFP_KERNEL
 553			);
 554		if (iov == NULL)
 555			goto out_fail;
 556		mmsg_vector->msg_hdr.msg_iov = iov;
 557		mmsg_vector->msg_hdr.msg_iovlen = 1;
 558		mmsg_vector->msg_hdr.msg_control = NULL;
 559		mmsg_vector->msg_hdr.msg_controllen = 0;
 560		mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
 561		mmsg_vector->msg_hdr.msg_name = NULL;
 562		mmsg_vector->msg_hdr.msg_namelen = 0;
 563		if (vp->header_size > 0) {
 564			iov->iov_base = kmalloc(header_size, GFP_KERNEL);
 565			if (iov->iov_base == NULL)
 566				goto out_fail;
 567			iov->iov_len = header_size;
 568			mmsg_vector->msg_hdr.msg_iovlen = 2;
 569			iov++;
 570		}
 571		iov->iov_base = NULL;
 572		iov->iov_len = 0;
 573		mmsg_vector++;
 574	}
 575	spin_lock_init(&result->head_lock);
 576	spin_lock_init(&result->tail_lock);
 577	atomic_set(&result->queue_depth, 0);
 578	result->head = 0;
 579	result->tail = 0;
 580	return result;
 581out_skb_fail:
 582	kfree(result->mmsg_vector);
 583out_mmsg_fail:
 584	kfree(result);
 585	return NULL;
 586out_fail:
 587	destroy_queue(result);
 588	return NULL;
 589}
 590
 591/*
 592 * We do not use the RX queue as a proper wraparound queue for now
 593 * This is not necessary because the consumption via napi_gro_receive()
 594 * happens in-line. While we can try using the return code of
 595 * netif_rx() for flow control there are no drivers doing this today.
 596 * For this RX specific use we ignore the tail/head locks and
 597 * just read into a prepared queue filled with skbuffs.
 598 */
 599
 600static struct sk_buff *prep_skb(
 601	struct vector_private *vp,
 602	struct user_msghdr *msg)
 603{
 604	int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
 605	struct sk_buff *result;
 606	int iov_index = 0, len;
 607	struct iovec *iov = msg->msg_iov;
 608	int err, nr_frags, frag;
 609	skb_frag_t *skb_frag;
 610
 611	if (vp->req_size <= linear)
 612		len = linear;
 613	else
 614		len = vp->req_size;
 615	result = alloc_skb_with_frags(
 616		linear,
 617		len - vp->max_packet,
 618		3,
 619		&err,
 620		GFP_ATOMIC
 621	);
 622	if (vp->header_size > 0)
 623		iov_index++;
 624	if (result == NULL) {
 625		iov[iov_index].iov_base = NULL;
 626		iov[iov_index].iov_len = 0;
 627		goto done;
 628	}
 629	skb_reserve(result, vp->headroom);
 630	result->dev = vp->dev;
 631	skb_put(result, vp->max_packet);
 632	result->data_len = len - vp->max_packet;
 633	result->len += len - vp->max_packet;
 634	skb_reset_mac_header(result);
 635	result->ip_summed = CHECKSUM_NONE;
 636	iov[iov_index].iov_base = result->data;
 637	iov[iov_index].iov_len = vp->max_packet;
 638	iov_index++;
 639
 640	nr_frags = skb_shinfo(result)->nr_frags;
 641	for (frag = 0; frag < nr_frags; frag++) {
 642		skb_frag = &skb_shinfo(result)->frags[frag];
 643		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
 644		if (iov[iov_index].iov_base != NULL)
 645			iov[iov_index].iov_len = skb_frag_size(skb_frag);
 646		else
 647			iov[iov_index].iov_len = 0;
 648		iov_index++;
 649	}
 650done:
 651	msg->msg_iovlen = iov_index;
 652	return result;
 653}
 654
 655
 656/* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs */
 657
 658static void prep_queue_for_rx(struct vector_queue *qi)
 659{
 660	struct vector_private *vp = netdev_priv(qi->dev);
 661	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
 662	void **skbuff_vector = qi->skbuff_vector;
 663	int i, queue_depth;
 664
 665	queue_depth = atomic_read(&qi->queue_depth);
 666
 667	if (queue_depth == 0)
 668		return;
 669
 670	/* RX is always emptied 100% during each cycle, so we do not
 671	 * have to do the tail wraparound math for it.
 672	 */
 673
 674	qi->head = qi->tail = 0;
 675
 676	for (i = 0; i < queue_depth; i++) {
 677		/* it is OK if allocation fails - recvmmsg with NULL data in
 678		 * iov argument still performs an RX, just drops the packet
 679		 * This allows us stop faffing around with a "drop buffer"
 680		 */
 681
 682		*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
 683		skbuff_vector++;
 684		mmsg_vector++;
 685	}
 686	atomic_set(&qi->queue_depth, 0);
 687}
 688
 689static struct vector_device *find_device(int n)
 690{
 691	struct vector_device *device;
 692	struct list_head *ele;
 693
 694	spin_lock(&vector_devices_lock);
 695	list_for_each(ele, &vector_devices) {
 696		device = list_entry(ele, struct vector_device, list);
 697		if (device->unit == n)
 698			goto out;
 699	}
 700	device = NULL;
 701 out:
 702	spin_unlock(&vector_devices_lock);
 703	return device;
 704}
 705
 706static int vector_parse(char *str, int *index_out, char **str_out,
 707			char **error_out)
 708{
 709	int n, err;
 710	char *start = str;
 711
 
 
 712	while ((*str != ':') && (strlen(str) > 1))
 713		str++;
 714	if (*str != ':') {
 715		*error_out = "Expected ':' after device number";
 716		return -EINVAL;
 717	}
 718	*str = '\0';
 719
 720	err = kstrtouint(start, 0, &n);
 721	if (err < 0) {
 722		*error_out = "Bad device number";
 723		return err;
 724	}
 725
 726	str++;
 727	if (find_device(n)) {
 728		*error_out = "Device already configured";
 729		return -EINVAL;
 730	}
 731
 732	*index_out = n;
 733	*str_out = str;
 734	return 0;
 735}
 736
 737static int vector_config(char *str, char **error_out)
 738{
 739	int err, n;
 740	char *params;
 741	struct arglist *parsed;
 742
 743	err = vector_parse(str, &n, &params, error_out);
 744	if (err != 0)
 745		return err;
 746
 747	/* This string is broken up and the pieces used by the underlying
 748	 * driver. We should copy it to make sure things do not go wrong
 749	 * later.
 750	 */
 751
 752	params = kstrdup(params, GFP_KERNEL);
 753	if (params == NULL) {
 754		*error_out = "vector_config failed to strdup string";
 755		return -ENOMEM;
 756	}
 757
 758	parsed = uml_parse_vector_ifspec(params);
 759
 760	if (parsed == NULL) {
 761		*error_out = "vector_config failed to parse parameters";
 762		kfree(params);
 763		return -EINVAL;
 764	}
 765
 766	vector_eth_configure(n, parsed);
 767	return 0;
 768}
 769
 770static int vector_id(char **str, int *start_out, int *end_out)
 771{
 772	char *end;
 773	int n;
 774
 775	n = simple_strtoul(*str, &end, 0);
 776	if ((*end != '\0') || (end == *str))
 777		return -1;
 778
 779	*start_out = n;
 780	*end_out = n;
 781	*str = end;
 782	return n;
 783}
 784
 785static int vector_remove(int n, char **error_out)
 786{
 787	struct vector_device *vec_d;
 788	struct net_device *dev;
 789	struct vector_private *vp;
 790
 791	vec_d = find_device(n);
 792	if (vec_d == NULL)
 793		return -ENODEV;
 794	dev = vec_d->dev;
 795	vp = netdev_priv(dev);
 796	if (vp->fds != NULL)
 797		return -EBUSY;
 798	unregister_netdev(dev);
 799	platform_device_unregister(&vec_d->pdev);
 800	return 0;
 801}
 802
 803/*
 804 * There is no shared per-transport initialization code, so
 805 * we will just initialize each interface one by one and
 806 * add them to a list
 807 */
 808
 809static struct platform_driver uml_net_driver = {
 810	.driver = {
 811		.name = DRIVER_NAME,
 812	},
 813};
 814
 815
 816static void vector_device_release(struct device *dev)
 817{
 818	struct vector_device *device =
 819		container_of(dev, struct vector_device, pdev.dev);
 820	struct net_device *netdev = device->dev;
 821
 822	list_del(&device->list);
 823	kfree(device);
 824	free_netdev(netdev);
 825}
 826
 827/* Bog standard recv using recvmsg - not used normally unless the user
 828 * explicitly specifies not to use recvmmsg vector RX.
 829 */
 830
 831static int vector_legacy_rx(struct vector_private *vp)
 832{
 833	int pkt_len;
 834	struct user_msghdr hdr;
 835	struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
 836	int iovpos = 0;
 837	struct sk_buff *skb;
 838	int header_check;
 839
 840	hdr.msg_name = NULL;
 841	hdr.msg_namelen = 0;
 842	hdr.msg_iov = (struct iovec *) &iov;
 843	hdr.msg_control = NULL;
 844	hdr.msg_controllen = 0;
 845	hdr.msg_flags = 0;
 846
 847	if (vp->header_size > 0) {
 848		iov[0].iov_base = vp->header_rxbuffer;
 849		iov[0].iov_len = vp->header_size;
 850	}
 851
 852	skb = prep_skb(vp, &hdr);
 853
 854	if (skb == NULL) {
 855		/* Read a packet into drop_buffer and don't do
 856		 * anything with it.
 857		 */
 858		iov[iovpos].iov_base = drop_buffer;
 859		iov[iovpos].iov_len = DROP_BUFFER_SIZE;
 860		hdr.msg_iovlen = 1;
 861		vp->dev->stats.rx_dropped++;
 862	}
 863
 864	pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
 865	if (pkt_len < 0) {
 866		vp->in_error = true;
 867		return pkt_len;
 868	}
 869
 870	if (skb != NULL) {
 871		if (pkt_len > vp->header_size) {
 872			if (vp->header_size > 0) {
 873				header_check = vp->verify_header(
 874					vp->header_rxbuffer, skb, vp);
 875				if (header_check < 0) {
 876					dev_kfree_skb_irq(skb);
 877					vp->dev->stats.rx_dropped++;
 878					vp->estats.rx_encaps_errors++;
 879					return 0;
 880				}
 881				if (header_check > 0) {
 882					vp->estats.rx_csum_offload_good++;
 883					skb->ip_summed = CHECKSUM_UNNECESSARY;
 884				}
 885			}
 886			pskb_trim(skb, pkt_len - vp->rx_header_size);
 887			skb->protocol = eth_type_trans(skb, skb->dev);
 888			vp->dev->stats.rx_bytes += skb->len;
 889			vp->dev->stats.rx_packets++;
 890			napi_gro_receive(&vp->napi, skb);
 891		} else {
 892			dev_kfree_skb_irq(skb);
 893		}
 894	}
 895	return pkt_len;
 896}
 897
 898/*
 899 * Packet at a time TX which falls back to vector TX if the
 900 * underlying transport is busy.
 901 */
 902
 903
 904
 905static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
 906{
 907	struct iovec iov[3 + MAX_IOV_SIZE];
 908	int iov_count, pkt_len = 0;
 909
 910	iov[0].iov_base = vp->header_txbuffer;
 911	iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
 912
 913	if (iov_count < 1)
 914		goto drop;
 915
 916	pkt_len = uml_vector_writev(
 917		vp->fds->tx_fd,
 918		(struct iovec *) &iov,
 919		iov_count
 920	);
 921
 922	if (pkt_len < 0)
 923		goto drop;
 924
 925	netif_trans_update(vp->dev);
 926	netif_wake_queue(vp->dev);
 927
 928	if (pkt_len > 0) {
 929		vp->dev->stats.tx_bytes += skb->len;
 930		vp->dev->stats.tx_packets++;
 931	} else {
 932		vp->dev->stats.tx_dropped++;
 933	}
 934	consume_skb(skb);
 935	return pkt_len;
 936drop:
 937	vp->dev->stats.tx_dropped++;
 938	consume_skb(skb);
 939	if (pkt_len < 0)
 940		vp->in_error = true;
 941	return pkt_len;
 942}
 943
 944/*
 945 * Receive as many messages as we can in one call using the special
 946 * mmsg vector matched to an skb vector which we prepared earlier.
 947 */
 948
 949static int vector_mmsg_rx(struct vector_private *vp, int budget)
 950{
 951	int packet_count, i;
 952	struct vector_queue *qi = vp->rx_queue;
 953	struct sk_buff *skb;
 954	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
 955	void **skbuff_vector = qi->skbuff_vector;
 956	int header_check;
 957
 958	/* Refresh the vector and make sure it is with new skbs and the
 959	 * iovs are updated to point to them.
 960	 */
 961
 962	prep_queue_for_rx(qi);
 963
 964	/* Fire the Lazy Gun - get as many packets as we can in one go. */
 965
 966	if (budget > qi->max_depth)
 967		budget = qi->max_depth;
 968
 969	packet_count = uml_vector_recvmmsg(
 970		vp->fds->rx_fd, qi->mmsg_vector, budget, 0);
 971
 972	if (packet_count < 0)
 973		vp->in_error = true;
 974
 975	if (packet_count <= 0)
 976		return packet_count;
 977
 978	/* We treat packet processing as enqueue, buffer refresh as dequeue
 979	 * The queue_depth tells us how many buffers have been used and how
 980	 * many do we need to prep the next time prep_queue_for_rx() is called.
 981	 */
 982
 983	atomic_add(packet_count, &qi->queue_depth);
 984
 985	for (i = 0; i < packet_count; i++) {
 986		skb = (*skbuff_vector);
 987		if (mmsg_vector->msg_len > vp->header_size) {
 988			if (vp->header_size > 0) {
 989				header_check = vp->verify_header(
 990					mmsg_vector->msg_hdr.msg_iov->iov_base,
 991					skb,
 992					vp
 993				);
 994				if (header_check < 0) {
 995				/* Overlay header failed to verify - discard.
 996				 * We can actually keep this skb and reuse it,
 997				 * but that will make the prep logic too
 998				 * complex.
 999				 */
1000					dev_kfree_skb_irq(skb);
1001					vp->estats.rx_encaps_errors++;
1002					continue;
1003				}
1004				if (header_check > 0) {
1005					vp->estats.rx_csum_offload_good++;
1006					skb->ip_summed = CHECKSUM_UNNECESSARY;
1007				}
1008			}
1009			pskb_trim(skb,
1010				mmsg_vector->msg_len - vp->rx_header_size);
1011			skb->protocol = eth_type_trans(skb, skb->dev);
1012			/*
1013			 * We do not need to lock on updating stats here
1014			 * The interrupt loop is non-reentrant.
1015			 */
1016			vp->dev->stats.rx_bytes += skb->len;
1017			vp->dev->stats.rx_packets++;
1018			napi_gro_receive(&vp->napi, skb);
1019		} else {
1020			/* Overlay header too short to do anything - discard.
1021			 * We can actually keep this skb and reuse it,
1022			 * but that will make the prep logic too complex.
1023			 */
1024			if (skb != NULL)
1025				dev_kfree_skb_irq(skb);
1026		}
1027		(*skbuff_vector) = NULL;
1028		/* Move to the next buffer element */
1029		mmsg_vector++;
1030		skbuff_vector++;
1031	}
1032	if (packet_count > 0) {
1033		if (vp->estats.rx_queue_max < packet_count)
1034			vp->estats.rx_queue_max = packet_count;
1035		vp->estats.rx_queue_running_average =
1036			(vp->estats.rx_queue_running_average + packet_count) >> 1;
1037	}
1038	return packet_count;
1039}
1040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1042{
1043	struct vector_private *vp = netdev_priv(dev);
1044	int queue_depth = 0;
1045
1046	if (vp->in_error) {
1047		deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1048		if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1049			deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1050		return NETDEV_TX_BUSY;
1051	}
1052
1053	if ((vp->options & VECTOR_TX) == 0) {
1054		writev_tx(vp, skb);
1055		return NETDEV_TX_OK;
1056	}
1057
1058	/* We do BQL only in the vector path, no point doing it in
1059	 * packet at a time mode as there is no device queue
1060	 */
1061
1062	netdev_sent_queue(vp->dev, skb->len);
1063	queue_depth = vector_enqueue(vp->tx_queue, skb);
1064
1065	if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) {
 
 
 
 
 
 
 
 
 
 
1066		mod_timer(&vp->tl, vp->coalesce);
1067		return NETDEV_TX_OK;
1068	} else {
1069		queue_depth = vector_send(vp->tx_queue);
1070		if (queue_depth > 0)
1071			napi_schedule(&vp->napi);
1072	}
1073
 
 
 
 
1074	return NETDEV_TX_OK;
1075}
1076
1077static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1078{
1079	struct net_device *dev = dev_id;
1080	struct vector_private *vp = netdev_priv(dev);
1081
1082	if (!netif_running(dev))
1083		return IRQ_NONE;
1084	napi_schedule(&vp->napi);
1085	return IRQ_HANDLED;
1086
1087}
1088
1089static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1090{
1091	struct net_device *dev = dev_id;
1092	struct vector_private *vp = netdev_priv(dev);
1093
1094	if (!netif_running(dev))
1095		return IRQ_NONE;
1096	/* We need to pay attention to it only if we got
1097	 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1098	 * we ignore it. In the future, it may be worth
1099	 * it to improve the IRQ controller a bit to make
1100	 * tweaking the IRQ mask less costly
1101	 */
1102
1103	napi_schedule(&vp->napi);
 
1104	return IRQ_HANDLED;
1105
1106}
1107
1108static int irq_rr;
1109
1110static int vector_net_close(struct net_device *dev)
1111{
1112	struct vector_private *vp = netdev_priv(dev);
 
1113
1114	netif_stop_queue(dev);
1115	del_timer(&vp->tl);
1116
1117	vp->opened = false;
1118
1119	if (vp->fds == NULL)
1120		return 0;
1121
1122	/* Disable and free all IRQS */
1123	if (vp->rx_irq > 0) {
1124		um_free_irq(vp->rx_irq, dev);
1125		vp->rx_irq = 0;
1126	}
1127	if (vp->tx_irq > 0) {
1128		um_free_irq(vp->tx_irq, dev);
1129		vp->tx_irq = 0;
1130	}
1131	napi_disable(&vp->napi);
1132	netif_napi_del(&vp->napi);
1133	if (vp->fds->rx_fd > 0) {
1134		if (vp->bpf)
1135			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1136		os_close_file(vp->fds->rx_fd);
1137		vp->fds->rx_fd = -1;
1138	}
1139	if (vp->fds->tx_fd > 0) {
1140		os_close_file(vp->fds->tx_fd);
1141		vp->fds->tx_fd = -1;
1142	}
1143	if (vp->bpf != NULL)
1144		kfree(vp->bpf->filter);
1145	kfree(vp->bpf);
1146	vp->bpf = NULL;
1147	kfree(vp->fds->remote_addr);
1148	kfree(vp->transport_data);
1149	kfree(vp->header_rxbuffer);
1150	kfree(vp->header_txbuffer);
 
 
1151	if (vp->rx_queue != NULL)
1152		destroy_queue(vp->rx_queue);
1153	if (vp->tx_queue != NULL)
1154		destroy_queue(vp->tx_queue);
1155	kfree(vp->fds);
1156	vp->fds = NULL;
1157	vp->in_error = false;
 
 
1158	return 0;
1159}
1160
1161static int vector_poll(struct napi_struct *napi, int budget)
 
 
1162{
1163	struct vector_private *vp = container_of(napi, struct vector_private, napi);
1164	int work_done = 0;
1165	int err;
1166	bool tx_enqueued = false;
1167
1168	if ((vp->options & VECTOR_TX) != 0)
1169		tx_enqueued = (vector_send(vp->tx_queue) > 0);
1170	spin_lock(&vp->rx_queue->head_lock);
1171	if ((vp->options & VECTOR_RX) > 0)
1172		err = vector_mmsg_rx(vp, budget);
1173	else {
1174		err = vector_legacy_rx(vp);
1175		if (err > 0)
1176			err = 1;
1177	}
1178	spin_unlock(&vp->rx_queue->head_lock);
1179	if (err > 0)
1180		work_done += err;
1181
1182	if (tx_enqueued || err > 0)
1183		napi_schedule(napi);
1184	if (work_done <= budget)
1185		napi_complete_done(napi, work_done);
1186	return work_done;
1187}
1188
1189static void vector_reset_tx(struct work_struct *work)
1190{
1191	struct vector_private *vp =
1192		container_of(work, struct vector_private, reset_tx);
1193	netdev_reset_queue(vp->dev);
1194	netif_start_queue(vp->dev);
1195	netif_wake_queue(vp->dev);
1196}
1197
1198static int vector_net_open(struct net_device *dev)
1199{
1200	struct vector_private *vp = netdev_priv(dev);
 
1201	int err = -EINVAL;
1202	struct vector_device *vdevice;
1203
1204	if (vp->opened)
 
 
1205		return -ENXIO;
 
1206	vp->opened = true;
1207
1208	vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1209
1210	vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1211
1212	if (vp->fds == NULL)
1213		goto out_close;
1214
1215	if (build_transport_data(vp) < 0)
1216		goto out_close;
1217
1218	if ((vp->options & VECTOR_RX) > 0) {
1219		vp->rx_queue = create_queue(
1220			vp,
1221			get_depth(vp->parsed),
1222			vp->rx_header_size,
1223			MAX_IOV_SIZE
1224		);
1225		atomic_set(&vp->rx_queue->queue_depth, get_depth(vp->parsed));
1226	} else {
1227		vp->header_rxbuffer = kmalloc(
1228			vp->rx_header_size,
1229			GFP_KERNEL
1230		);
1231		if (vp->header_rxbuffer == NULL)
1232			goto out_close;
1233	}
1234	if ((vp->options & VECTOR_TX) > 0) {
1235		vp->tx_queue = create_queue(
1236			vp,
1237			get_depth(vp->parsed),
1238			vp->header_size,
1239			MAX_IOV_SIZE
1240		);
1241	} else {
1242		vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1243		if (vp->header_txbuffer == NULL)
1244			goto out_close;
1245	}
1246
1247	netif_napi_add_weight(vp->dev, &vp->napi, vector_poll,
1248			      get_depth(vp->parsed));
1249	napi_enable(&vp->napi);
1250
1251	/* READ IRQ */
1252	err = um_request_irq(
1253		irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1254			IRQ_READ, vector_rx_interrupt,
1255			IRQF_SHARED, dev->name, dev);
1256	if (err < 0) {
1257		netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1258		err = -ENETUNREACH;
1259		goto out_close;
1260	}
1261	vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1262	dev->irq = irq_rr + VECTOR_BASE_IRQ;
1263	irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1264
1265	/* WRITE IRQ - we need it only if we have vector TX */
1266	if ((vp->options & VECTOR_TX) > 0) {
1267		err = um_request_irq(
1268			irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1269				IRQ_WRITE, vector_tx_interrupt,
1270				IRQF_SHARED, dev->name, dev);
1271		if (err < 0) {
1272			netdev_err(dev,
1273				"vector_open: failed to get tx irq(%d)\n", err);
1274			err = -ENETUNREACH;
1275			goto out_close;
1276		}
1277		vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1278		irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1279	}
1280
1281	if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1282		if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1283			vp->options |= VECTOR_BPF;
1284	}
1285	if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1286		vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1287
1288	if (vp->bpf != NULL)
1289		uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1290
1291	netif_start_queue(dev);
1292	vector_reset_stats(vp);
1293
1294	/* clear buffer - it can happen that the host side of the interface
1295	 * is full when we get here. In this case, new data is never queued,
1296	 * SIGIOs never arrive, and the net never works.
1297	 */
1298
1299	napi_schedule(&vp->napi);
1300
 
1301	vdevice = find_device(vp->unit);
1302	vdevice->opened = 1;
1303
1304	if ((vp->options & VECTOR_TX) != 0)
1305		add_timer(&vp->tl);
1306	return 0;
1307out_close:
1308	vector_net_close(dev);
1309	return err;
1310}
1311
1312
1313static void vector_net_set_multicast_list(struct net_device *dev)
1314{
1315	/* TODO: - we can do some BPF games here */
1316	return;
1317}
1318
1319static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1320{
1321	struct vector_private *vp = netdev_priv(dev);
1322
1323	vp->estats.tx_timeout_count++;
1324	netif_trans_update(dev);
1325	schedule_work(&vp->reset_tx);
1326}
1327
1328static netdev_features_t vector_fix_features(struct net_device *dev,
1329	netdev_features_t features)
1330{
1331	features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1332	return features;
1333}
1334
1335static int vector_set_features(struct net_device *dev,
1336	netdev_features_t features)
1337{
1338	struct vector_private *vp = netdev_priv(dev);
1339	/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1340	 * no way to negotiate it on raw sockets, so we can change
1341	 * only our side.
1342	 */
1343	if (features & NETIF_F_GRO)
1344		/* All new frame buffers will be GRO-sized */
1345		vp->req_size = 65536;
1346	else
1347		/* All new frame buffers will be normal sized */
1348		vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1349	return 0;
1350}
1351
1352#ifdef CONFIG_NET_POLL_CONTROLLER
1353static void vector_net_poll_controller(struct net_device *dev)
1354{
1355	disable_irq(dev->irq);
1356	vector_rx_interrupt(dev->irq, dev);
1357	enable_irq(dev->irq);
1358}
1359#endif
1360
1361static void vector_net_get_drvinfo(struct net_device *dev,
1362				struct ethtool_drvinfo *info)
1363{
1364	strscpy(info->driver, DRIVER_NAME);
1365}
1366
1367static int vector_net_load_bpf_flash(struct net_device *dev,
1368				struct ethtool_flash *efl)
1369{
1370	struct vector_private *vp = netdev_priv(dev);
1371	struct vector_device *vdevice;
1372	const struct firmware *fw;
1373	int result = 0;
1374
1375	if (!(vp->options & VECTOR_BPF_FLASH)) {
1376		netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1377		return -1;
1378	}
1379
1380	if (vp->bpf != NULL) {
1381		if (vp->opened)
1382			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1383		kfree(vp->bpf->filter);
1384		vp->bpf->filter = NULL;
1385	} else {
1386		vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1387		if (vp->bpf == NULL) {
1388			netdev_err(dev, "failed to allocate memory for firmware\n");
1389			goto flash_fail;
1390		}
1391	}
1392
1393	vdevice = find_device(vp->unit);
1394
1395	if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1396		goto flash_fail;
1397
1398	vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1399	if (!vp->bpf->filter)
1400		goto free_buffer;
1401
1402	vp->bpf->len = fw->size / sizeof(struct sock_filter);
1403	release_firmware(fw);
1404
1405	if (vp->opened)
1406		result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1407
1408	return result;
1409
1410free_buffer:
1411	release_firmware(fw);
1412
1413flash_fail:
1414	if (vp->bpf != NULL)
1415		kfree(vp->bpf->filter);
1416	kfree(vp->bpf);
1417	vp->bpf = NULL;
1418	return -1;
1419}
1420
1421static void vector_get_ringparam(struct net_device *netdev,
1422				 struct ethtool_ringparam *ring,
1423				 struct kernel_ethtool_ringparam *kernel_ring,
1424				 struct netlink_ext_ack *extack)
1425{
1426	struct vector_private *vp = netdev_priv(netdev);
1427
1428	ring->rx_max_pending = vp->rx_queue->max_depth;
1429	ring->tx_max_pending = vp->tx_queue->max_depth;
1430	ring->rx_pending = vp->rx_queue->max_depth;
1431	ring->tx_pending = vp->tx_queue->max_depth;
1432}
1433
1434static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1435{
1436	switch (stringset) {
1437	case ETH_SS_TEST:
1438		*buf = '\0';
1439		break;
1440	case ETH_SS_STATS:
1441		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1442		break;
1443	default:
1444		WARN_ON(1);
1445		break;
1446	}
1447}
1448
1449static int vector_get_sset_count(struct net_device *dev, int sset)
1450{
1451	switch (sset) {
1452	case ETH_SS_TEST:
1453		return 0;
1454	case ETH_SS_STATS:
1455		return VECTOR_NUM_STATS;
1456	default:
1457		return -EOPNOTSUPP;
1458	}
1459}
1460
1461static void vector_get_ethtool_stats(struct net_device *dev,
1462	struct ethtool_stats *estats,
1463	u64 *tmp_stats)
1464{
1465	struct vector_private *vp = netdev_priv(dev);
1466
1467	/* Stats are modified in the dequeue portions of
1468	 * rx/tx which are protected by the head locks
1469	 * grabbing these locks here ensures they are up
1470	 * to date.
1471	 */
1472
1473	spin_lock(&vp->tx_queue->head_lock);
1474	spin_lock(&vp->rx_queue->head_lock);
1475	memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1476	spin_unlock(&vp->rx_queue->head_lock);
1477	spin_unlock(&vp->tx_queue->head_lock);
1478}
1479
1480static int vector_get_coalesce(struct net_device *netdev,
1481			       struct ethtool_coalesce *ec,
1482			       struct kernel_ethtool_coalesce *kernel_coal,
1483			       struct netlink_ext_ack *extack)
1484{
1485	struct vector_private *vp = netdev_priv(netdev);
1486
1487	ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1488	return 0;
1489}
1490
1491static int vector_set_coalesce(struct net_device *netdev,
1492			       struct ethtool_coalesce *ec,
1493			       struct kernel_ethtool_coalesce *kernel_coal,
1494			       struct netlink_ext_ack *extack)
1495{
1496	struct vector_private *vp = netdev_priv(netdev);
1497
1498	vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1499	if (vp->coalesce == 0)
1500		vp->coalesce = 1;
1501	return 0;
1502}
1503
1504static const struct ethtool_ops vector_net_ethtool_ops = {
1505	.supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1506	.get_drvinfo	= vector_net_get_drvinfo,
1507	.get_link	= ethtool_op_get_link,
1508	.get_ts_info	= ethtool_op_get_ts_info,
1509	.get_ringparam	= vector_get_ringparam,
1510	.get_strings	= vector_get_strings,
1511	.get_sset_count	= vector_get_sset_count,
1512	.get_ethtool_stats = vector_get_ethtool_stats,
1513	.get_coalesce	= vector_get_coalesce,
1514	.set_coalesce	= vector_set_coalesce,
1515	.flash_device	= vector_net_load_bpf_flash,
1516};
1517
1518
1519static const struct net_device_ops vector_netdev_ops = {
1520	.ndo_open		= vector_net_open,
1521	.ndo_stop		= vector_net_close,
1522	.ndo_start_xmit		= vector_net_start_xmit,
1523	.ndo_set_rx_mode	= vector_net_set_multicast_list,
1524	.ndo_tx_timeout		= vector_net_tx_timeout,
1525	.ndo_set_mac_address	= eth_mac_addr,
1526	.ndo_validate_addr	= eth_validate_addr,
1527	.ndo_fix_features	= vector_fix_features,
1528	.ndo_set_features	= vector_set_features,
1529#ifdef CONFIG_NET_POLL_CONTROLLER
1530	.ndo_poll_controller = vector_net_poll_controller,
1531#endif
1532};
1533
 
1534static void vector_timer_expire(struct timer_list *t)
1535{
1536	struct vector_private *vp = from_timer(vp, t, tl);
1537
1538	vp->estats.tx_kicks++;
1539	napi_schedule(&vp->napi);
1540}
1541
1542
1543
1544static void vector_eth_configure(
1545		int n,
1546		struct arglist *def
1547	)
1548{
1549	struct vector_device *device;
1550	struct net_device *dev;
1551	struct vector_private *vp;
1552	int err;
1553
1554	device = kzalloc(sizeof(*device), GFP_KERNEL);
1555	if (device == NULL) {
1556		printk(KERN_ERR "eth_configure failed to allocate struct "
1557				 "vector_device\n");
1558		return;
1559	}
1560	dev = alloc_etherdev(sizeof(struct vector_private));
1561	if (dev == NULL) {
1562		printk(KERN_ERR "eth_configure: failed to allocate struct "
1563				 "net_device for vec%d\n", n);
1564		goto out_free_device;
1565	}
1566
1567	dev->mtu = get_mtu(def);
1568
1569	INIT_LIST_HEAD(&device->list);
1570	device->unit = n;
1571
1572	/* If this name ends up conflicting with an existing registered
1573	 * netdevice, that is OK, register_netdev{,ice}() will notice this
1574	 * and fail.
1575	 */
1576	snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1577	uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1578	vp = netdev_priv(dev);
1579
1580	/* sysfs register */
1581	if (!driver_registered) {
1582		platform_driver_register(&uml_net_driver);
1583		driver_registered = 1;
1584	}
1585	device->pdev.id = n;
1586	device->pdev.name = DRIVER_NAME;
1587	device->pdev.dev.release = vector_device_release;
1588	dev_set_drvdata(&device->pdev.dev, device);
1589	if (platform_device_register(&device->pdev))
1590		goto out_free_netdev;
1591	SET_NETDEV_DEV(dev, &device->pdev.dev);
1592
1593	device->dev = dev;
1594
1595	*vp = ((struct vector_private)
1596		{
1597		.list			= LIST_HEAD_INIT(vp->list),
1598		.dev			= dev,
1599		.unit			= n,
1600		.options		= get_transport_options(def),
1601		.rx_irq			= 0,
1602		.tx_irq			= 0,
1603		.parsed			= def,
1604		.max_packet		= get_mtu(def) + ETH_HEADER_OTHER,
1605		/* TODO - we need to calculate headroom so that ip header
1606		 * is 16 byte aligned all the time
1607		 */
1608		.headroom		= get_headroom(def),
1609		.form_header		= NULL,
1610		.verify_header		= NULL,
1611		.header_rxbuffer	= NULL,
1612		.header_txbuffer	= NULL,
1613		.header_size		= 0,
1614		.rx_header_size		= 0,
1615		.rexmit_scheduled	= false,
1616		.opened			= false,
1617		.transport_data		= NULL,
1618		.in_write_poll		= false,
1619		.coalesce		= 2,
1620		.req_size		= get_req_size(def),
1621		.in_error		= false,
1622		.bpf			= NULL
1623	});
1624
1625	dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
 
1626	INIT_WORK(&vp->reset_tx, vector_reset_tx);
1627
1628	timer_setup(&vp->tl, vector_timer_expire, 0);
 
1629
1630	/* FIXME */
1631	dev->netdev_ops = &vector_netdev_ops;
1632	dev->ethtool_ops = &vector_net_ethtool_ops;
1633	dev->watchdog_timeo = (HZ >> 1);
1634	/* primary IRQ - fixme */
1635	dev->irq = 0; /* we will adjust this once opened */
1636
1637	rtnl_lock();
1638	err = register_netdevice(dev);
1639	rtnl_unlock();
1640	if (err)
1641		goto out_undo_user_init;
1642
1643	spin_lock(&vector_devices_lock);
1644	list_add(&device->list, &vector_devices);
1645	spin_unlock(&vector_devices_lock);
1646
1647	return;
1648
1649out_undo_user_init:
1650	return;
1651out_free_netdev:
1652	free_netdev(dev);
1653out_free_device:
1654	kfree(device);
1655}
1656
1657
1658
1659
1660/*
1661 * Invoked late in the init
1662 */
1663
1664static int __init vector_init(void)
1665{
1666	struct list_head *ele;
1667	struct vector_cmd_line_arg *def;
1668	struct arglist *parsed;
1669
1670	list_for_each(ele, &vec_cmd_line) {
1671		def = list_entry(ele, struct vector_cmd_line_arg, list);
1672		parsed = uml_parse_vector_ifspec(def->arguments);
1673		if (parsed != NULL)
1674			vector_eth_configure(def->unit, parsed);
1675	}
1676	return 0;
1677}
1678
1679
1680/* Invoked at initial argument parsing, only stores
1681 * arguments until a proper vector_init is called
1682 * later
1683 */
1684
1685static int __init vector_setup(char *str)
1686{
1687	char *error;
1688	int n, err;
1689	struct vector_cmd_line_arg *new;
1690
1691	err = vector_parse(str, &n, &str, &error);
1692	if (err) {
1693		printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1694				 str, error);
1695		return 1;
1696	}
1697	new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1698	if (!new)
1699		panic("%s: Failed to allocate %zu bytes\n", __func__,
1700		      sizeof(*new));
1701	INIT_LIST_HEAD(&new->list);
1702	new->unit = n;
1703	new->arguments = str;
1704	list_add_tail(&new->list, &vec_cmd_line);
1705	return 1;
1706}
1707
1708__setup("vec", vector_setup);
1709__uml_help(vector_setup,
1710"vec[0-9]+:<option>=<value>,<option>=<value>\n"
1711"	 Configure a vector io network device.\n\n"
1712);
1713
1714late_initcall(vector_init);
1715
1716static struct mc_device vector_mc = {
1717	.list		= LIST_HEAD_INIT(vector_mc.list),
1718	.name		= "vec",
1719	.config		= vector_config,
1720	.get_config	= NULL,
1721	.id		= vector_id,
1722	.remove		= vector_remove,
1723};
1724
1725#ifdef CONFIG_INET
1726static int vector_inetaddr_event(
1727	struct notifier_block *this,
1728	unsigned long event,
1729	void *ptr)
1730{
1731	return NOTIFY_DONE;
1732}
1733
1734static struct notifier_block vector_inetaddr_notifier = {
1735	.notifier_call		= vector_inetaddr_event,
1736};
1737
1738static void inet_register(void)
1739{
1740	register_inetaddr_notifier(&vector_inetaddr_notifier);
1741}
1742#else
1743static inline void inet_register(void)
1744{
1745}
1746#endif
1747
1748static int vector_net_init(void)
1749{
1750	mconsole_register_dev(&vector_mc);
1751	inet_register();
1752	return 0;
1753}
1754
1755__initcall(vector_net_init);
1756
1757
1758