Linux Audio

Check our new training course

Loading...
v4.17
 
   1/* arch/sparc64/kernel/traps.c
   2 *
   3 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   4 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   5 */
   6
   7/*
   8 * I like traps on v9, :))))
   9 */
  10
 
  11#include <linux/extable.h>
  12#include <linux/sched/mm.h>
  13#include <linux/sched/debug.h>
  14#include <linux/linkage.h>
  15#include <linux/kernel.h>
  16#include <linux/signal.h>
  17#include <linux/smp.h>
  18#include <linux/mm.h>
  19#include <linux/init.h>
 
  20#include <linux/kdebug.h>
  21#include <linux/ftrace.h>
  22#include <linux/reboot.h>
  23#include <linux/gfp.h>
  24#include <linux/context_tracking.h>
  25
  26#include <asm/smp.h>
  27#include <asm/delay.h>
  28#include <asm/ptrace.h>
  29#include <asm/oplib.h>
  30#include <asm/page.h>
  31#include <asm/pgtable.h>
  32#include <asm/unistd.h>
  33#include <linux/uaccess.h>
  34#include <asm/fpumacro.h>
  35#include <asm/lsu.h>
  36#include <asm/dcu.h>
  37#include <asm/estate.h>
  38#include <asm/chafsr.h>
  39#include <asm/sfafsr.h>
  40#include <asm/psrcompat.h>
  41#include <asm/processor.h>
  42#include <asm/timer.h>
  43#include <asm/head.h>
  44#include <asm/prom.h>
  45#include <asm/memctrl.h>
  46#include <asm/cacheflush.h>
  47#include <asm/setup.h>
  48
  49#include "entry.h"
  50#include "kernel.h"
  51#include "kstack.h"
  52
  53/* When an irrecoverable trap occurs at tl > 0, the trap entry
  54 * code logs the trap state registers at every level in the trap
  55 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  56 * is as follows:
  57 */
  58struct tl1_traplog {
  59	struct {
  60		unsigned long tstate;
  61		unsigned long tpc;
  62		unsigned long tnpc;
  63		unsigned long tt;
  64	} trapstack[4];
  65	unsigned long tl;
  66};
  67
  68static void dump_tl1_traplog(struct tl1_traplog *p)
  69{
  70	int i, limit;
  71
  72	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  73	       "dumping track stack.\n", p->tl);
  74
  75	limit = (tlb_type == hypervisor) ? 2 : 4;
  76	for (i = 0; i < limit; i++) {
  77		printk(KERN_EMERG
  78		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  79		       "TNPC[%016lx] TT[%lx]\n",
  80		       i + 1,
  81		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  82		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  83		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  84	}
  85}
  86
  87void bad_trap(struct pt_regs *regs, long lvl)
  88{
  89	char buffer[36];
  90	siginfo_t info;
  91
  92	if (notify_die(DIE_TRAP, "bad trap", regs,
  93		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  94		return;
  95
  96	if (lvl < 0x100) {
  97		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  98		die_if_kernel(buffer, regs);
  99	}
 100
 101	lvl -= 0x100;
 102	if (regs->tstate & TSTATE_PRIV) {
 103		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 104		die_if_kernel(buffer, regs);
 105	}
 106	if (test_thread_flag(TIF_32BIT)) {
 107		regs->tpc &= 0xffffffff;
 108		regs->tnpc &= 0xffffffff;
 109	}
 110	info.si_signo = SIGILL;
 111	info.si_errno = 0;
 112	info.si_code = ILL_ILLTRP;
 113	info.si_addr = (void __user *)regs->tpc;
 114	info.si_trapno = lvl;
 115	force_sig_info(SIGILL, &info, current);
 116}
 117
 118void bad_trap_tl1(struct pt_regs *regs, long lvl)
 119{
 120	char buffer[36];
 121	
 122	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 123		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 124		return;
 125
 126	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 127
 128	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 129	die_if_kernel (buffer, regs);
 130}
 131
 132#ifdef CONFIG_DEBUG_BUGVERBOSE
 133void do_BUG(const char *file, int line)
 134{
 135	bust_spinlocks(1);
 136	printk("kernel BUG at %s:%d!\n", file, line);
 137}
 138EXPORT_SYMBOL(do_BUG);
 139#endif
 140
 141static DEFINE_SPINLOCK(dimm_handler_lock);
 142static dimm_printer_t dimm_handler;
 143
 144static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 145{
 146	unsigned long flags;
 147	int ret = -ENODEV;
 148
 149	spin_lock_irqsave(&dimm_handler_lock, flags);
 150	if (dimm_handler) {
 151		ret = dimm_handler(synd_code, paddr, buf, buflen);
 152	} else if (tlb_type == spitfire) {
 153		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 154			ret = -EINVAL;
 155		else
 156			ret = 0;
 157	} else
 158		ret = -ENODEV;
 159	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 160
 161	return ret;
 162}
 163
 164int register_dimm_printer(dimm_printer_t func)
 165{
 166	unsigned long flags;
 167	int ret = 0;
 168
 169	spin_lock_irqsave(&dimm_handler_lock, flags);
 170	if (!dimm_handler)
 171		dimm_handler = func;
 172	else
 173		ret = -EEXIST;
 174	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 175
 176	return ret;
 177}
 178EXPORT_SYMBOL_GPL(register_dimm_printer);
 179
 180void unregister_dimm_printer(dimm_printer_t func)
 181{
 182	unsigned long flags;
 183
 184	spin_lock_irqsave(&dimm_handler_lock, flags);
 185	if (dimm_handler == func)
 186		dimm_handler = NULL;
 187	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 188}
 189EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 190
 191void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 192{
 193	enum ctx_state prev_state = exception_enter();
 194	siginfo_t info;
 195
 196	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 197		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 198		goto out;
 199
 200	if (regs->tstate & TSTATE_PRIV) {
 201		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 202		       "SFAR[%016lx], going.\n", sfsr, sfar);
 203		die_if_kernel("Iax", regs);
 204	}
 205	if (test_thread_flag(TIF_32BIT)) {
 206		regs->tpc &= 0xffffffff;
 207		regs->tnpc &= 0xffffffff;
 208	}
 209	info.si_signo = SIGSEGV;
 210	info.si_errno = 0;
 211	info.si_code = SEGV_MAPERR;
 212	info.si_addr = (void __user *)regs->tpc;
 213	info.si_trapno = 0;
 214	force_sig_info(SIGSEGV, &info, current);
 215out:
 216	exception_exit(prev_state);
 217}
 218
 219void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 220{
 221	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 222		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 223		return;
 224
 225	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 226	spitfire_insn_access_exception(regs, sfsr, sfar);
 227}
 228
 229void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 230{
 231	unsigned short type = (type_ctx >> 16);
 232	unsigned short ctx  = (type_ctx & 0xffff);
 233	siginfo_t info;
 234
 235	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 236		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 237		return;
 238
 239	if (regs->tstate & TSTATE_PRIV) {
 240		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 241		       "CTX[%04x] TYPE[%04x], going.\n",
 242		       addr, ctx, type);
 243		die_if_kernel("Iax", regs);
 244	}
 245
 246	if (test_thread_flag(TIF_32BIT)) {
 247		regs->tpc &= 0xffffffff;
 248		regs->tnpc &= 0xffffffff;
 249	}
 250	info.si_signo = SIGSEGV;
 251	info.si_errno = 0;
 252	info.si_code = SEGV_MAPERR;
 253	info.si_addr = (void __user *) addr;
 254	info.si_trapno = 0;
 255	force_sig_info(SIGSEGV, &info, current);
 256}
 257
 258void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 259{
 260	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 261		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 262		return;
 263
 264	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 265	sun4v_insn_access_exception(regs, addr, type_ctx);
 266}
 267
 268bool is_no_fault_exception(struct pt_regs *regs)
 269{
 270	unsigned char asi;
 271	u32 insn;
 272
 273	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
 274		return false;
 275
 276	/*
 277	 * Must do a little instruction decoding here in order to
 278	 * decide on a course of action. The bits of interest are:
 279	 *  insn[31:30] = op, where 3 indicates the load/store group
 280	 *  insn[24:19] = op3, which identifies individual opcodes
 281	 *  insn[13] indicates an immediate offset
 282	 *  op3[4]=1 identifies alternate space instructions
 283	 *  op3[5:4]=3 identifies floating point instructions
 284	 *  op3[2]=1 identifies stores
 285	 * See "Opcode Maps" in the appendix of any Sparc V9
 286	 * architecture spec for full details.
 287	 */
 288	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
 289		if (insn & 0x2000)		    /* immediate offset */
 290			asi = (regs->tstate >> 24); /* saved %asi       */
 291		else
 292			asi = (insn >> 5);	    /* immediate asi    */
 293		if ((asi & 0xf2) == ASI_PNF) {
 294			if (insn & 0x1000000) {     /* op3[5:4]=3       */
 295				handle_ldf_stq(insn, regs);
 296				return true;
 297			} else if (insn & 0x200000) { /* op3[2], stores */
 298				return false;
 299			}
 300			handle_ld_nf(insn, regs);
 
 
 301			return true;
 302		}
 303	}
 304	return false;
 305}
 306
 307void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 308{
 309	enum ctx_state prev_state = exception_enter();
 310	siginfo_t info;
 311
 312	if (notify_die(DIE_TRAP, "data access exception", regs,
 313		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 314		goto out;
 315
 316	if (regs->tstate & TSTATE_PRIV) {
 317		/* Test if this comes from uaccess places. */
 318		const struct exception_table_entry *entry;
 319
 320		entry = search_exception_tables(regs->tpc);
 321		if (entry) {
 322			/* Ouch, somebody is trying VM hole tricks on us... */
 323#ifdef DEBUG_EXCEPTIONS
 324			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 325			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 326			       regs->tpc, entry->fixup);
 327#endif
 328			regs->tpc = entry->fixup;
 329			regs->tnpc = regs->tpc + 4;
 330			goto out;
 331		}
 332		/* Shit... */
 333		printk("spitfire_data_access_exception: SFSR[%016lx] "
 334		       "SFAR[%016lx], going.\n", sfsr, sfar);
 335		die_if_kernel("Dax", regs);
 336	}
 337
 338	if (is_no_fault_exception(regs))
 339		return;
 340
 341	info.si_signo = SIGSEGV;
 342	info.si_errno = 0;
 343	info.si_code = SEGV_MAPERR;
 344	info.si_addr = (void __user *)sfar;
 345	info.si_trapno = 0;
 346	force_sig_info(SIGSEGV, &info, current);
 347out:
 348	exception_exit(prev_state);
 349}
 350
 351void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 352{
 353	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 354		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 355		return;
 356
 357	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 358	spitfire_data_access_exception(regs, sfsr, sfar);
 359}
 360
 361void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 362{
 363	unsigned short type = (type_ctx >> 16);
 364	unsigned short ctx  = (type_ctx & 0xffff);
 365
 366	if (notify_die(DIE_TRAP, "data access exception", regs,
 367		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 368		return;
 369
 370	if (regs->tstate & TSTATE_PRIV) {
 371		/* Test if this comes from uaccess places. */
 372		const struct exception_table_entry *entry;
 373
 374		entry = search_exception_tables(regs->tpc);
 375		if (entry) {
 376			/* Ouch, somebody is trying VM hole tricks on us... */
 377#ifdef DEBUG_EXCEPTIONS
 378			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 379			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 380			       regs->tpc, entry->fixup);
 381#endif
 382			regs->tpc = entry->fixup;
 383			regs->tnpc = regs->tpc + 4;
 384			return;
 385		}
 386		printk("sun4v_data_access_exception: ADDR[%016lx] "
 387		       "CTX[%04x] TYPE[%04x], going.\n",
 388		       addr, ctx, type);
 389		die_if_kernel("Dax", regs);
 390	}
 391
 392	if (test_thread_flag(TIF_32BIT)) {
 393		regs->tpc &= 0xffffffff;
 394		regs->tnpc &= 0xffffffff;
 395	}
 396	if (is_no_fault_exception(regs))
 397		return;
 398
 399	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
 400	 * is vectored thorugh data access exception trap with fault type
 401	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
 402	 * Accessing an address with invalid ASI for the address, for
 403	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
 404	 * when TTE.mcd is not set for the VA, is also vectored into
 405	 * kerbel by HV as data access exception with fault type set to
 406	 * HV_FAULT_TYPE_INV_ASI.
 407	 */
 408	switch (type) {
 409	case HV_FAULT_TYPE_INV_ASI:
 410		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr, 0,
 411				current);
 412		break;
 413	case HV_FAULT_TYPE_MCD_DIS:
 414		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr, 0,
 415				current);
 416		break;
 417	default:
 418		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr, 0,
 419				current);
 420		break;
 421	}
 422}
 423
 424void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 425{
 426	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 427		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 428		return;
 429
 430	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 431	sun4v_data_access_exception(regs, addr, type_ctx);
 432}
 433
 434#ifdef CONFIG_PCI
 435#include "pci_impl.h"
 436#endif
 437
 438/* When access exceptions happen, we must do this. */
 439static void spitfire_clean_and_reenable_l1_caches(void)
 440{
 441	unsigned long va;
 442
 443	if (tlb_type != spitfire)
 444		BUG();
 445
 446	/* Clean 'em. */
 447	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 448		spitfire_put_icache_tag(va, 0x0);
 449		spitfire_put_dcache_tag(va, 0x0);
 450	}
 451
 452	/* Re-enable in LSU. */
 453	__asm__ __volatile__("flush %%g6\n\t"
 454			     "membar #Sync\n\t"
 455			     "stxa %0, [%%g0] %1\n\t"
 456			     "membar #Sync"
 457			     : /* no outputs */
 458			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 459				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 460			     "i" (ASI_LSU_CONTROL)
 461			     : "memory");
 462}
 463
 464static void spitfire_enable_estate_errors(void)
 465{
 466	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 467			     "membar	#Sync"
 468			     : /* no outputs */
 469			     : "r" (ESTATE_ERR_ALL),
 470			       "i" (ASI_ESTATE_ERROR_EN));
 471}
 472
 473static char ecc_syndrome_table[] = {
 474	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 475	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 476	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 477	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 478	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 479	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 480	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 481	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 482	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 483	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 484	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 485	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 486	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 487	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 488	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 489	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 490	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 491	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 492	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 493	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 494	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 495	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 496	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 497	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 498	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 499	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 500	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 501	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 502	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 503	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 504	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 505	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 506};
 507
 508static char *syndrome_unknown = "<Unknown>";
 509
 510static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 511{
 512	unsigned short scode;
 513	char memmod_str[64], *p;
 514
 515	if (udbl & bit) {
 516		scode = ecc_syndrome_table[udbl & 0xff];
 517		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 518			p = syndrome_unknown;
 519		else
 520			p = memmod_str;
 521		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 522		       "Memory Module \"%s\"\n",
 523		       smp_processor_id(), scode, p);
 524	}
 525
 526	if (udbh & bit) {
 527		scode = ecc_syndrome_table[udbh & 0xff];
 528		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 529			p = syndrome_unknown;
 530		else
 531			p = memmod_str;
 532		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 533		       "Memory Module \"%s\"\n",
 534		       smp_processor_id(), scode, p);
 535	}
 536
 537}
 538
 539static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 540{
 541
 542	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 543	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 544	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 545
 546	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 547
 548	/* We always log it, even if someone is listening for this
 549	 * trap.
 550	 */
 551	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 552		   0, TRAP_TYPE_CEE, SIGTRAP);
 553
 554	/* The Correctable ECC Error trap does not disable I/D caches.  So
 555	 * we only have to restore the ESTATE Error Enable register.
 556	 */
 557	spitfire_enable_estate_errors();
 558}
 559
 560static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 561{
 562	siginfo_t info;
 563
 564	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 565	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 566	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 567
 568	/* XXX add more human friendly logging of the error status
 569	 * XXX as is implemented for cheetah
 570	 */
 571
 572	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 573
 574	/* We always log it, even if someone is listening for this
 575	 * trap.
 576	 */
 577	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 578		   0, tt, SIGTRAP);
 579
 580	if (regs->tstate & TSTATE_PRIV) {
 581		if (tl1)
 582			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 583		die_if_kernel("UE", regs);
 584	}
 585
 586	/* XXX need more intelligent processing here, such as is implemented
 587	 * XXX for cheetah errors, in fact if the E-cache still holds the
 588	 * XXX line with bad parity this will loop
 589	 */
 590
 591	spitfire_clean_and_reenable_l1_caches();
 592	spitfire_enable_estate_errors();
 593
 594	if (test_thread_flag(TIF_32BIT)) {
 595		regs->tpc &= 0xffffffff;
 596		regs->tnpc &= 0xffffffff;
 597	}
 598	info.si_signo = SIGBUS;
 599	info.si_errno = 0;
 600	info.si_code = BUS_OBJERR;
 601	info.si_addr = (void *)0;
 602	info.si_trapno = 0;
 603	force_sig_info(SIGBUS, &info, current);
 604}
 605
 606void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 607{
 608	unsigned long afsr, tt, udbh, udbl;
 609	int tl1;
 610
 611	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 612	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 613	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 614	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 615	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 616
 617#ifdef CONFIG_PCI
 618	if (tt == TRAP_TYPE_DAE &&
 619	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 620		spitfire_clean_and_reenable_l1_caches();
 621		spitfire_enable_estate_errors();
 622
 623		pci_poke_faulted = 1;
 624		regs->tnpc = regs->tpc + 4;
 625		return;
 626	}
 627#endif
 628
 629	if (afsr & SFAFSR_UE)
 630		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 631
 632	if (tt == TRAP_TYPE_CEE) {
 633		/* Handle the case where we took a CEE trap, but ACK'd
 634		 * only the UE state in the UDB error registers.
 635		 */
 636		if (afsr & SFAFSR_UE) {
 637			if (udbh & UDBE_CE) {
 638				__asm__ __volatile__(
 639					"stxa	%0, [%1] %2\n\t"
 640					"membar	#Sync"
 641					: /* no outputs */
 642					: "r" (udbh & UDBE_CE),
 643					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 644			}
 645			if (udbl & UDBE_CE) {
 646				__asm__ __volatile__(
 647					"stxa	%0, [%1] %2\n\t"
 648					"membar	#Sync"
 649					: /* no outputs */
 650					: "r" (udbl & UDBE_CE),
 651					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 652			}
 653		}
 654
 655		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 656	}
 657}
 658
 659int cheetah_pcache_forced_on;
 660
 661void cheetah_enable_pcache(void)
 662{
 663	unsigned long dcr;
 664
 665	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 666	       smp_processor_id());
 667
 668	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 669			     : "=r" (dcr)
 670			     : "i" (ASI_DCU_CONTROL_REG));
 671	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 672	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 673			     "membar #Sync"
 674			     : /* no outputs */
 675			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 676}
 677
 678/* Cheetah error trap handling. */
 679static unsigned long ecache_flush_physbase;
 680static unsigned long ecache_flush_linesize;
 681static unsigned long ecache_flush_size;
 682
 683/* This table is ordered in priority of errors and matches the
 684 * AFAR overwrite policy as well.
 685 */
 686
 687struct afsr_error_table {
 688	unsigned long mask;
 689	const char *name;
 690};
 691
 692static const char CHAFSR_PERR_msg[] =
 693	"System interface protocol error";
 694static const char CHAFSR_IERR_msg[] =
 695	"Internal processor error";
 696static const char CHAFSR_ISAP_msg[] =
 697	"System request parity error on incoming address";
 698static const char CHAFSR_UCU_msg[] =
 699	"Uncorrectable E-cache ECC error for ifetch/data";
 700static const char CHAFSR_UCC_msg[] =
 701	"SW Correctable E-cache ECC error for ifetch/data";
 702static const char CHAFSR_UE_msg[] =
 703	"Uncorrectable system bus data ECC error for read";
 704static const char CHAFSR_EDU_msg[] =
 705	"Uncorrectable E-cache ECC error for stmerge/blkld";
 706static const char CHAFSR_EMU_msg[] =
 707	"Uncorrectable system bus MTAG error";
 708static const char CHAFSR_WDU_msg[] =
 709	"Uncorrectable E-cache ECC error for writeback";
 710static const char CHAFSR_CPU_msg[] =
 711	"Uncorrectable ECC error for copyout";
 712static const char CHAFSR_CE_msg[] =
 713	"HW corrected system bus data ECC error for read";
 714static const char CHAFSR_EDC_msg[] =
 715	"HW corrected E-cache ECC error for stmerge/blkld";
 716static const char CHAFSR_EMC_msg[] =
 717	"HW corrected system bus MTAG ECC error";
 718static const char CHAFSR_WDC_msg[] =
 719	"HW corrected E-cache ECC error for writeback";
 720static const char CHAFSR_CPC_msg[] =
 721	"HW corrected ECC error for copyout";
 722static const char CHAFSR_TO_msg[] =
 723	"Unmapped error from system bus";
 724static const char CHAFSR_BERR_msg[] =
 725	"Bus error response from system bus";
 726static const char CHAFSR_IVC_msg[] =
 727	"HW corrected system bus data ECC error for ivec read";
 728static const char CHAFSR_IVU_msg[] =
 729	"Uncorrectable system bus data ECC error for ivec read";
 730static struct afsr_error_table __cheetah_error_table[] = {
 731	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 732	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 733	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 734	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 735	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 736	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 737	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 738	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 739	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 740	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 741	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 742	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 743	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 744	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 745	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 746	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 747	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 748	/* These two do not update the AFAR. */
 749	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 750	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 751	{	0,		NULL			},
 752};
 753static const char CHPAFSR_DTO_msg[] =
 754	"System bus unmapped error for prefetch/storequeue-read";
 755static const char CHPAFSR_DBERR_msg[] =
 756	"System bus error for prefetch/storequeue-read";
 757static const char CHPAFSR_THCE_msg[] =
 758	"Hardware corrected E-cache Tag ECC error";
 759static const char CHPAFSR_TSCE_msg[] =
 760	"SW handled correctable E-cache Tag ECC error";
 761static const char CHPAFSR_TUE_msg[] =
 762	"Uncorrectable E-cache Tag ECC error";
 763static const char CHPAFSR_DUE_msg[] =
 764	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 765static struct afsr_error_table __cheetah_plus_error_table[] = {
 766	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 767	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 768	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 769	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 770	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 771	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 772	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 773	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 774	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 775	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 776	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 777	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 778	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 779	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 780	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 781	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 782	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 783	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 784	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 785	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 786	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 787	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 788	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 789	/* These two do not update the AFAR. */
 790	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 791	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 792	{	0,		NULL			},
 793};
 794static const char JPAFSR_JETO_msg[] =
 795	"System interface protocol error, hw timeout caused";
 796static const char JPAFSR_SCE_msg[] =
 797	"Parity error on system snoop results";
 798static const char JPAFSR_JEIC_msg[] =
 799	"System interface protocol error, illegal command detected";
 800static const char JPAFSR_JEIT_msg[] =
 801	"System interface protocol error, illegal ADTYPE detected";
 802static const char JPAFSR_OM_msg[] =
 803	"Out of range memory error has occurred";
 804static const char JPAFSR_ETP_msg[] =
 805	"Parity error on L2 cache tag SRAM";
 806static const char JPAFSR_UMS_msg[] =
 807	"Error due to unsupported store";
 808static const char JPAFSR_RUE_msg[] =
 809	"Uncorrectable ECC error from remote cache/memory";
 810static const char JPAFSR_RCE_msg[] =
 811	"Correctable ECC error from remote cache/memory";
 812static const char JPAFSR_BP_msg[] =
 813	"JBUS parity error on returned read data";
 814static const char JPAFSR_WBP_msg[] =
 815	"JBUS parity error on data for writeback or block store";
 816static const char JPAFSR_FRC_msg[] =
 817	"Foreign read to DRAM incurring correctable ECC error";
 818static const char JPAFSR_FRU_msg[] =
 819	"Foreign read to DRAM incurring uncorrectable ECC error";
 820static struct afsr_error_table __jalapeno_error_table[] = {
 821	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 822	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 823	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 824	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 825	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 826	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 827	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 828	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 829	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 830	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 831	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 832	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 833	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 834	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 835	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 836	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 837	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 838	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 839	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 840	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 841	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 842	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 843	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 844	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 845	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 846	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 847	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 848	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 849	/* These two do not update the AFAR. */
 850	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 851	{	0,		NULL			},
 852};
 853static struct afsr_error_table *cheetah_error_table;
 854static unsigned long cheetah_afsr_errors;
 855
 856struct cheetah_err_info *cheetah_error_log;
 857
 858static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 859{
 860	struct cheetah_err_info *p;
 861	int cpu = smp_processor_id();
 862
 863	if (!cheetah_error_log)
 864		return NULL;
 865
 866	p = cheetah_error_log + (cpu * 2);
 867	if ((afsr & CHAFSR_TL1) != 0UL)
 868		p++;
 869
 870	return p;
 871}
 872
 873extern unsigned int tl0_icpe[], tl1_icpe[];
 874extern unsigned int tl0_dcpe[], tl1_dcpe[];
 875extern unsigned int tl0_fecc[], tl1_fecc[];
 876extern unsigned int tl0_cee[], tl1_cee[];
 877extern unsigned int tl0_iae[], tl1_iae[];
 878extern unsigned int tl0_dae[], tl1_dae[];
 879extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 880extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 881extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 882extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 883extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 884
 885void __init cheetah_ecache_flush_init(void)
 886{
 887	unsigned long largest_size, smallest_linesize, order, ver;
 888	int i, sz;
 889
 890	/* Scan all cpu device tree nodes, note two values:
 891	 * 1) largest E-cache size
 892	 * 2) smallest E-cache line size
 893	 */
 894	largest_size = 0UL;
 895	smallest_linesize = ~0UL;
 896
 897	for (i = 0; i < NR_CPUS; i++) {
 898		unsigned long val;
 899
 900		val = cpu_data(i).ecache_size;
 901		if (!val)
 902			continue;
 903
 904		if (val > largest_size)
 905			largest_size = val;
 906
 907		val = cpu_data(i).ecache_line_size;
 908		if (val < smallest_linesize)
 909			smallest_linesize = val;
 910
 911	}
 912
 913	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 914		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 915			    "parameters.\n");
 916		prom_halt();
 917	}
 918
 919	ecache_flush_size = (2 * largest_size);
 920	ecache_flush_linesize = smallest_linesize;
 921
 922	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 923
 924	if (ecache_flush_physbase == ~0UL) {
 925		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 926			    "contiguous physical memory.\n",
 927			    ecache_flush_size);
 928		prom_halt();
 929	}
 930
 931	/* Now allocate error trap reporting scoreboard. */
 932	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 933	for (order = 0; order < MAX_ORDER; order++) {
 934		if ((PAGE_SIZE << order) >= sz)
 935			break;
 936	}
 937	cheetah_error_log = (struct cheetah_err_info *)
 938		__get_free_pages(GFP_KERNEL, order);
 939	if (!cheetah_error_log) {
 940		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 941			    "error logging scoreboard (%d bytes).\n", sz);
 942		prom_halt();
 943	}
 944	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 945
 946	/* Mark all AFSRs as invalid so that the trap handler will
 947	 * log new new information there.
 948	 */
 949	for (i = 0; i < 2 * NR_CPUS; i++)
 950		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 951
 952	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 953	if ((ver >> 32) == __JALAPENO_ID ||
 954	    (ver >> 32) == __SERRANO_ID) {
 955		cheetah_error_table = &__jalapeno_error_table[0];
 956		cheetah_afsr_errors = JPAFSR_ERRORS;
 957	} else if ((ver >> 32) == 0x003e0015) {
 958		cheetah_error_table = &__cheetah_plus_error_table[0];
 959		cheetah_afsr_errors = CHPAFSR_ERRORS;
 960	} else {
 961		cheetah_error_table = &__cheetah_error_table[0];
 962		cheetah_afsr_errors = CHAFSR_ERRORS;
 963	}
 964
 965	/* Now patch trap tables. */
 966	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 967	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 968	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 969	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 970	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 971	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 972	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 973	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 974	if (tlb_type == cheetah_plus) {
 975		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 976		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 977		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 978		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 979	}
 980	flushi(PAGE_OFFSET);
 981}
 982
 983static void cheetah_flush_ecache(void)
 984{
 985	unsigned long flush_base = ecache_flush_physbase;
 986	unsigned long flush_linesize = ecache_flush_linesize;
 987	unsigned long flush_size = ecache_flush_size;
 988
 989	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 990			     "   bne,pt	%%xcc, 1b\n\t"
 991			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 992			     : "=&r" (flush_size)
 993			     : "0" (flush_size), "r" (flush_base),
 994			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 995}
 996
 997static void cheetah_flush_ecache_line(unsigned long physaddr)
 998{
 999	unsigned long alias;
1000
1001	physaddr &= ~(8UL - 1UL);
1002	physaddr = (ecache_flush_physbase +
1003		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
1004	alias = physaddr + (ecache_flush_size >> 1UL);
1005	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
1006			     "ldxa [%1] %2, %%g0\n\t"
1007			     "membar #Sync"
1008			     : /* no outputs */
1009			     : "r" (physaddr), "r" (alias),
1010			       "i" (ASI_PHYS_USE_EC));
1011}
1012
1013/* Unfortunately, the diagnostic access to the I-cache tags we need to
1014 * use to clear the thing interferes with I-cache coherency transactions.
1015 *
1016 * So we must only flush the I-cache when it is disabled.
1017 */
1018static void __cheetah_flush_icache(void)
1019{
1020	unsigned int icache_size, icache_line_size;
1021	unsigned long addr;
1022
1023	icache_size = local_cpu_data().icache_size;
1024	icache_line_size = local_cpu_data().icache_line_size;
1025
1026	/* Clear the valid bits in all the tags. */
1027	for (addr = 0; addr < icache_size; addr += icache_line_size) {
1028		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1029				     "membar #Sync"
1030				     : /* no outputs */
1031				     : "r" (addr | (2 << 3)),
1032				       "i" (ASI_IC_TAG));
1033	}
1034}
1035
1036static void cheetah_flush_icache(void)
1037{
1038	unsigned long dcu_save;
1039
1040	/* Save current DCU, disable I-cache. */
1041	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1042			     "or %0, %2, %%g1\n\t"
1043			     "stxa %%g1, [%%g0] %1\n\t"
1044			     "membar #Sync"
1045			     : "=r" (dcu_save)
1046			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1047			     : "g1");
1048
1049	__cheetah_flush_icache();
1050
1051	/* Restore DCU register */
1052	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1053			     "membar #Sync"
1054			     : /* no outputs */
1055			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1056}
1057
1058static void cheetah_flush_dcache(void)
1059{
1060	unsigned int dcache_size, dcache_line_size;
1061	unsigned long addr;
1062
1063	dcache_size = local_cpu_data().dcache_size;
1064	dcache_line_size = local_cpu_data().dcache_line_size;
1065
1066	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1067		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1068				     "membar #Sync"
1069				     : /* no outputs */
1070				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1071	}
1072}
1073
1074/* In order to make the even parity correct we must do two things.
1075 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1076 * Next, we clear out all 32-bytes of data for that line.  Data of
1077 * all-zero + tag parity value of zero == correct parity.
1078 */
1079static void cheetah_plus_zap_dcache_parity(void)
1080{
1081	unsigned int dcache_size, dcache_line_size;
1082	unsigned long addr;
1083
1084	dcache_size = local_cpu_data().dcache_size;
1085	dcache_line_size = local_cpu_data().dcache_line_size;
1086
1087	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1088		unsigned long tag = (addr >> 14);
1089		unsigned long line;
1090
1091		__asm__ __volatile__("membar	#Sync\n\t"
1092				     "stxa	%0, [%1] %2\n\t"
1093				     "membar	#Sync"
1094				     : /* no outputs */
1095				     : "r" (tag), "r" (addr),
1096				       "i" (ASI_DCACHE_UTAG));
1097		for (line = addr; line < addr + dcache_line_size; line += 8)
1098			__asm__ __volatile__("membar	#Sync\n\t"
1099					     "stxa	%%g0, [%0] %1\n\t"
1100					     "membar	#Sync"
1101					     : /* no outputs */
1102					     : "r" (line),
1103					       "i" (ASI_DCACHE_DATA));
1104	}
1105}
1106
1107/* Conversion tables used to frob Cheetah AFSR syndrome values into
1108 * something palatable to the memory controller driver get_unumber
1109 * routine.
1110 */
1111#define MT0	137
1112#define MT1	138
1113#define MT2	139
1114#define NONE	254
1115#define MTC0	140
1116#define MTC1	141
1117#define MTC2	142
1118#define MTC3	143
1119#define C0	128
1120#define C1	129
1121#define C2	130
1122#define C3	131
1123#define C4	132
1124#define C5	133
1125#define C6	134
1126#define C7	135
1127#define C8	136
1128#define M2	144
1129#define M3	145
1130#define M4	146
1131#define M	147
1132static unsigned char cheetah_ecc_syntab[] = {
1133/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1134/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1135/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1136/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1137/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1138/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1139/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1140/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1141/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1142/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1143/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1144/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1145/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1146/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1147/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1148/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1149/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1150/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1151/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1152/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1153/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1154/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1155/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1156/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1157/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1158/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1159/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1160/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1161/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1162/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1163/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1164/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1165};
1166static unsigned char cheetah_mtag_syntab[] = {
1167       NONE, MTC0,
1168       MTC1, NONE,
1169       MTC2, NONE,
1170       NONE, MT0,
1171       MTC3, NONE,
1172       NONE, MT1,
1173       NONE, MT2,
1174       NONE, NONE
1175};
1176
1177/* Return the highest priority error conditon mentioned. */
1178static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1179{
1180	unsigned long tmp = 0;
1181	int i;
1182
1183	for (i = 0; cheetah_error_table[i].mask; i++) {
1184		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1185			return tmp;
1186	}
1187	return tmp;
1188}
1189
1190static const char *cheetah_get_string(unsigned long bit)
1191{
1192	int i;
1193
1194	for (i = 0; cheetah_error_table[i].mask; i++) {
1195		if ((bit & cheetah_error_table[i].mask) != 0UL)
1196			return cheetah_error_table[i].name;
1197	}
1198	return "???";
1199}
1200
1201static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1202			       unsigned long afsr, unsigned long afar, int recoverable)
1203{
1204	unsigned long hipri;
1205	char unum[256];
1206
1207	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1208	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1209	       afsr, afar,
1210	       (afsr & CHAFSR_TL1) ? 1 : 0);
1211	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1212	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1213	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1214	printk("%s" "ERROR(%d): ",
1215	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1216	printk("TPC<%pS>\n", (void *) regs->tpc);
1217	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1218	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1219	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1220	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1221	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1222	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1223	hipri = cheetah_get_hipri(afsr);
1224	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1225	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1226	       hipri, cheetah_get_string(hipri));
1227
1228	/* Try to get unumber if relevant. */
1229#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1230			 CHAFSR_CPC | CHAFSR_CPU | \
1231			 CHAFSR_UE  | CHAFSR_CE  | \
1232			 CHAFSR_EDC | CHAFSR_EDU  | \
1233			 CHAFSR_UCC | CHAFSR_UCU  | \
1234			 CHAFSR_WDU | CHAFSR_WDC)
1235#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1236	if (afsr & ESYND_ERRORS) {
1237		int syndrome;
1238		int ret;
1239
1240		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1241		syndrome = cheetah_ecc_syntab[syndrome];
1242		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1243		if (ret != -1)
1244			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1245			       (recoverable ? KERN_WARNING : KERN_CRIT),
1246			       smp_processor_id(), unum);
1247	} else if (afsr & MSYND_ERRORS) {
1248		int syndrome;
1249		int ret;
1250
1251		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1252		syndrome = cheetah_mtag_syntab[syndrome];
1253		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1254		if (ret != -1)
1255			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1256			       (recoverable ? KERN_WARNING : KERN_CRIT),
1257			       smp_processor_id(), unum);
1258	}
1259
1260	/* Now dump the cache snapshots. */
1261	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1262	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1263	       (int) info->dcache_index,
1264	       info->dcache_tag,
1265	       info->dcache_utag,
1266	       info->dcache_stag);
1267	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1268	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1269	       info->dcache_data[0],
1270	       info->dcache_data[1],
1271	       info->dcache_data[2],
1272	       info->dcache_data[3]);
1273	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1274	       "u[%016llx] l[%016llx]\n",
1275	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1276	       (int) info->icache_index,
1277	       info->icache_tag,
1278	       info->icache_utag,
1279	       info->icache_stag,
1280	       info->icache_upper,
1281	       info->icache_lower);
1282	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1283	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1284	       info->icache_data[0],
1285	       info->icache_data[1],
1286	       info->icache_data[2],
1287	       info->icache_data[3]);
1288	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1289	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1290	       info->icache_data[4],
1291	       info->icache_data[5],
1292	       info->icache_data[6],
1293	       info->icache_data[7]);
1294	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1295	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1296	       (int) info->ecache_index, info->ecache_tag);
1297	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1298	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1299	       info->ecache_data[0],
1300	       info->ecache_data[1],
1301	       info->ecache_data[2],
1302	       info->ecache_data[3]);
1303
1304	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1305	while (afsr != 0UL) {
1306		unsigned long bit = cheetah_get_hipri(afsr);
1307
1308		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1309		       (recoverable ? KERN_WARNING : KERN_CRIT),
1310		       bit, cheetah_get_string(bit));
1311
1312		afsr &= ~bit;
1313	}
1314
1315	if (!recoverable)
1316		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1317}
1318
1319static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1320{
1321	unsigned long afsr, afar;
1322	int ret = 0;
1323
1324	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1325			     : "=r" (afsr)
1326			     : "i" (ASI_AFSR));
1327	if ((afsr & cheetah_afsr_errors) != 0) {
1328		if (logp != NULL) {
1329			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1330					     : "=r" (afar)
1331					     : "i" (ASI_AFAR));
1332			logp->afsr = afsr;
1333			logp->afar = afar;
1334		}
1335		ret = 1;
1336	}
1337	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1338			     "membar #Sync\n\t"
1339			     : : "r" (afsr), "i" (ASI_AFSR));
1340
1341	return ret;
1342}
1343
1344void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1345{
1346	struct cheetah_err_info local_snapshot, *p;
1347	int recoverable;
1348
1349	/* Flush E-cache */
1350	cheetah_flush_ecache();
1351
1352	p = cheetah_get_error_log(afsr);
1353	if (!p) {
1354		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1355			    afsr, afar);
1356		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1357			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1358		prom_halt();
1359	}
1360
1361	/* Grab snapshot of logged error. */
1362	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1363
1364	/* If the current trap snapshot does not match what the
1365	 * trap handler passed along into our args, big trouble.
1366	 * In such a case, mark the local copy as invalid.
1367	 *
1368	 * Else, it matches and we mark the afsr in the non-local
1369	 * copy as invalid so we may log new error traps there.
1370	 */
1371	if (p->afsr != afsr || p->afar != afar)
1372		local_snapshot.afsr = CHAFSR_INVALID;
1373	else
1374		p->afsr = CHAFSR_INVALID;
1375
1376	cheetah_flush_icache();
1377	cheetah_flush_dcache();
1378
1379	/* Re-enable I-cache/D-cache */
1380	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1381			     "or %%g1, %1, %%g1\n\t"
1382			     "stxa %%g1, [%%g0] %0\n\t"
1383			     "membar #Sync"
1384			     : /* no outputs */
1385			     : "i" (ASI_DCU_CONTROL_REG),
1386			       "i" (DCU_DC | DCU_IC)
1387			     : "g1");
1388
1389	/* Re-enable error reporting */
1390	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1391			     "or %%g1, %1, %%g1\n\t"
1392			     "stxa %%g1, [%%g0] %0\n\t"
1393			     "membar #Sync"
1394			     : /* no outputs */
1395			     : "i" (ASI_ESTATE_ERROR_EN),
1396			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1397			     : "g1");
1398
1399	/* Decide if we can continue after handling this trap and
1400	 * logging the error.
1401	 */
1402	recoverable = 1;
1403	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1404		recoverable = 0;
1405
1406	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1407	 * error was logged while we had error reporting traps disabled.
1408	 */
1409	if (cheetah_recheck_errors(&local_snapshot)) {
1410		unsigned long new_afsr = local_snapshot.afsr;
1411
1412		/* If we got a new asynchronous error, die... */
1413		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1414				CHAFSR_WDU | CHAFSR_CPU |
1415				CHAFSR_IVU | CHAFSR_UE |
1416				CHAFSR_BERR | CHAFSR_TO))
1417			recoverable = 0;
1418	}
1419
1420	/* Log errors. */
1421	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1422
1423	if (!recoverable)
1424		panic("Irrecoverable Fast-ECC error trap.\n");
1425
1426	/* Flush E-cache to kick the error trap handlers out. */
1427	cheetah_flush_ecache();
1428}
1429
1430/* Try to fix a correctable error by pushing the line out from
1431 * the E-cache.  Recheck error reporting registers to see if the
1432 * problem is intermittent.
1433 */
1434static int cheetah_fix_ce(unsigned long physaddr)
1435{
1436	unsigned long orig_estate;
1437	unsigned long alias1, alias2;
1438	int ret;
1439
1440	/* Make sure correctable error traps are disabled. */
1441	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1442			     "andn	%0, %1, %%g1\n\t"
1443			     "stxa	%%g1, [%%g0] %2\n\t"
1444			     "membar	#Sync"
1445			     : "=&r" (orig_estate)
1446			     : "i" (ESTATE_ERROR_CEEN),
1447			       "i" (ASI_ESTATE_ERROR_EN)
1448			     : "g1");
1449
1450	/* We calculate alias addresses that will force the
1451	 * cache line in question out of the E-cache.  Then
1452	 * we bring it back in with an atomic instruction so
1453	 * that we get it in some modified/exclusive state,
1454	 * then we displace it again to try and get proper ECC
1455	 * pushed back into the system.
1456	 */
1457	physaddr &= ~(8UL - 1UL);
1458	alias1 = (ecache_flush_physbase +
1459		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1460	alias2 = alias1 + (ecache_flush_size >> 1);
1461	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1462			     "ldxa	[%1] %3, %%g0\n\t"
1463			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1464			     "ldxa	[%0] %3, %%g0\n\t"
1465			     "ldxa	[%1] %3, %%g0\n\t"
1466			     "membar	#Sync"
1467			     : /* no outputs */
1468			     : "r" (alias1), "r" (alias2),
1469			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1470
1471	/* Did that trigger another error? */
1472	if (cheetah_recheck_errors(NULL)) {
1473		/* Try one more time. */
1474		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1475				     "membar #Sync"
1476				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1477		if (cheetah_recheck_errors(NULL))
1478			ret = 2;
1479		else
1480			ret = 1;
1481	} else {
1482		/* No new error, intermittent problem. */
1483		ret = 0;
1484	}
1485
1486	/* Restore error enables. */
1487	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1488			     "membar	#Sync"
1489			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1490
1491	return ret;
1492}
1493
1494/* Return non-zero if PADDR is a valid physical memory address. */
1495static int cheetah_check_main_memory(unsigned long paddr)
1496{
1497	unsigned long vaddr = PAGE_OFFSET + paddr;
1498
1499	if (vaddr > (unsigned long) high_memory)
1500		return 0;
1501
1502	return kern_addr_valid(vaddr);
1503}
1504
1505void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1506{
1507	struct cheetah_err_info local_snapshot, *p;
1508	int recoverable, is_memory;
1509
1510	p = cheetah_get_error_log(afsr);
1511	if (!p) {
1512		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1513			    afsr, afar);
1514		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1515			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1516		prom_halt();
1517	}
1518
1519	/* Grab snapshot of logged error. */
1520	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1521
1522	/* If the current trap snapshot does not match what the
1523	 * trap handler passed along into our args, big trouble.
1524	 * In such a case, mark the local copy as invalid.
1525	 *
1526	 * Else, it matches and we mark the afsr in the non-local
1527	 * copy as invalid so we may log new error traps there.
1528	 */
1529	if (p->afsr != afsr || p->afar != afar)
1530		local_snapshot.afsr = CHAFSR_INVALID;
1531	else
1532		p->afsr = CHAFSR_INVALID;
1533
1534	is_memory = cheetah_check_main_memory(afar);
1535
1536	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1537		/* XXX Might want to log the results of this operation
1538		 * XXX somewhere... -DaveM
1539		 */
1540		cheetah_fix_ce(afar);
1541	}
1542
1543	{
1544		int flush_all, flush_line;
1545
1546		flush_all = flush_line = 0;
1547		if ((afsr & CHAFSR_EDC) != 0UL) {
1548			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1549				flush_line = 1;
1550			else
1551				flush_all = 1;
1552		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1553			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1554				flush_line = 1;
1555			else
1556				flush_all = 1;
1557		}
1558
1559		/* Trap handler only disabled I-cache, flush it. */
1560		cheetah_flush_icache();
1561
1562		/* Re-enable I-cache */
1563		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1564				     "or %%g1, %1, %%g1\n\t"
1565				     "stxa %%g1, [%%g0] %0\n\t"
1566				     "membar #Sync"
1567				     : /* no outputs */
1568				     : "i" (ASI_DCU_CONTROL_REG),
1569				     "i" (DCU_IC)
1570				     : "g1");
1571
1572		if (flush_all)
1573			cheetah_flush_ecache();
1574		else if (flush_line)
1575			cheetah_flush_ecache_line(afar);
1576	}
1577
1578	/* Re-enable error reporting */
1579	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1580			     "or %%g1, %1, %%g1\n\t"
1581			     "stxa %%g1, [%%g0] %0\n\t"
1582			     "membar #Sync"
1583			     : /* no outputs */
1584			     : "i" (ASI_ESTATE_ERROR_EN),
1585			       "i" (ESTATE_ERROR_CEEN)
1586			     : "g1");
1587
1588	/* Decide if we can continue after handling this trap and
1589	 * logging the error.
1590	 */
1591	recoverable = 1;
1592	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1593		recoverable = 0;
1594
1595	/* Re-check AFSR/AFAR */
1596	(void) cheetah_recheck_errors(&local_snapshot);
1597
1598	/* Log errors. */
1599	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1600
1601	if (!recoverable)
1602		panic("Irrecoverable Correctable-ECC error trap.\n");
1603}
1604
1605void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1606{
1607	struct cheetah_err_info local_snapshot, *p;
1608	int recoverable, is_memory;
1609
1610#ifdef CONFIG_PCI
1611	/* Check for the special PCI poke sequence. */
1612	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1613		cheetah_flush_icache();
1614		cheetah_flush_dcache();
1615
1616		/* Re-enable I-cache/D-cache */
1617		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1618				     "or %%g1, %1, %%g1\n\t"
1619				     "stxa %%g1, [%%g0] %0\n\t"
1620				     "membar #Sync"
1621				     : /* no outputs */
1622				     : "i" (ASI_DCU_CONTROL_REG),
1623				       "i" (DCU_DC | DCU_IC)
1624				     : "g1");
1625
1626		/* Re-enable error reporting */
1627		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1628				     "or %%g1, %1, %%g1\n\t"
1629				     "stxa %%g1, [%%g0] %0\n\t"
1630				     "membar #Sync"
1631				     : /* no outputs */
1632				     : "i" (ASI_ESTATE_ERROR_EN),
1633				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1634				     : "g1");
1635
1636		(void) cheetah_recheck_errors(NULL);
1637
1638		pci_poke_faulted = 1;
1639		regs->tpc += 4;
1640		regs->tnpc = regs->tpc + 4;
1641		return;
1642	}
1643#endif
1644
1645	p = cheetah_get_error_log(afsr);
1646	if (!p) {
1647		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1648			    afsr, afar);
1649		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1650			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1651		prom_halt();
1652	}
1653
1654	/* Grab snapshot of logged error. */
1655	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1656
1657	/* If the current trap snapshot does not match what the
1658	 * trap handler passed along into our args, big trouble.
1659	 * In such a case, mark the local copy as invalid.
1660	 *
1661	 * Else, it matches and we mark the afsr in the non-local
1662	 * copy as invalid so we may log new error traps there.
1663	 */
1664	if (p->afsr != afsr || p->afar != afar)
1665		local_snapshot.afsr = CHAFSR_INVALID;
1666	else
1667		p->afsr = CHAFSR_INVALID;
1668
1669	is_memory = cheetah_check_main_memory(afar);
1670
1671	{
1672		int flush_all, flush_line;
1673
1674		flush_all = flush_line = 0;
1675		if ((afsr & CHAFSR_EDU) != 0UL) {
1676			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1677				flush_line = 1;
1678			else
1679				flush_all = 1;
1680		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1681			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1682				flush_line = 1;
1683			else
1684				flush_all = 1;
1685		}
1686
1687		cheetah_flush_icache();
1688		cheetah_flush_dcache();
1689
1690		/* Re-enable I/D caches */
1691		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1692				     "or %%g1, %1, %%g1\n\t"
1693				     "stxa %%g1, [%%g0] %0\n\t"
1694				     "membar #Sync"
1695				     : /* no outputs */
1696				     : "i" (ASI_DCU_CONTROL_REG),
1697				     "i" (DCU_IC | DCU_DC)
1698				     : "g1");
1699
1700		if (flush_all)
1701			cheetah_flush_ecache();
1702		else if (flush_line)
1703			cheetah_flush_ecache_line(afar);
1704	}
1705
1706	/* Re-enable error reporting */
1707	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1708			     "or %%g1, %1, %%g1\n\t"
1709			     "stxa %%g1, [%%g0] %0\n\t"
1710			     "membar #Sync"
1711			     : /* no outputs */
1712			     : "i" (ASI_ESTATE_ERROR_EN),
1713			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1714			     : "g1");
1715
1716	/* Decide if we can continue after handling this trap and
1717	 * logging the error.
1718	 */
1719	recoverable = 1;
1720	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1721		recoverable = 0;
1722
1723	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1724	 * error was logged while we had error reporting traps disabled.
1725	 */
1726	if (cheetah_recheck_errors(&local_snapshot)) {
1727		unsigned long new_afsr = local_snapshot.afsr;
1728
1729		/* If we got a new asynchronous error, die... */
1730		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1731				CHAFSR_WDU | CHAFSR_CPU |
1732				CHAFSR_IVU | CHAFSR_UE |
1733				CHAFSR_BERR | CHAFSR_TO))
1734			recoverable = 0;
1735	}
1736
1737	/* Log errors. */
1738	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1739
1740	/* "Recoverable" here means we try to yank the page from ever
1741	 * being newly used again.  This depends upon a few things:
1742	 * 1) Must be main memory, and AFAR must be valid.
1743	 * 2) If we trapped from user, OK.
1744	 * 3) Else, if we trapped from kernel we must find exception
1745	 *    table entry (ie. we have to have been accessing user
1746	 *    space).
1747	 *
1748	 * If AFAR is not in main memory, or we trapped from kernel
1749	 * and cannot find an exception table entry, it is unacceptable
1750	 * to try and continue.
1751	 */
1752	if (recoverable && is_memory) {
1753		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1754			/* OK, usermode access. */
1755			recoverable = 1;
1756		} else {
1757			const struct exception_table_entry *entry;
1758
1759			entry = search_exception_tables(regs->tpc);
1760			if (entry) {
1761				/* OK, kernel access to userspace. */
1762				recoverable = 1;
1763
1764			} else {
1765				/* BAD, privileged state is corrupted. */
1766				recoverable = 0;
1767			}
1768
1769			if (recoverable) {
1770				if (pfn_valid(afar >> PAGE_SHIFT))
1771					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1772				else
1773					recoverable = 0;
1774
1775				/* Only perform fixup if we still have a
1776				 * recoverable condition.
1777				 */
1778				if (recoverable) {
1779					regs->tpc = entry->fixup;
1780					regs->tnpc = regs->tpc + 4;
1781				}
1782			}
1783		}
1784	} else {
1785		recoverable = 0;
1786	}
1787
1788	if (!recoverable)
1789		panic("Irrecoverable deferred error trap.\n");
1790}
1791
1792/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1793 *
1794 * Bit0:	0=dcache,1=icache
1795 * Bit1:	0=recoverable,1=unrecoverable
1796 *
1797 * The hardware has disabled both the I-cache and D-cache in
1798 * the %dcr register.  
1799 */
1800void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1801{
1802	if (type & 0x1)
1803		__cheetah_flush_icache();
1804	else
1805		cheetah_plus_zap_dcache_parity();
1806	cheetah_flush_dcache();
1807
1808	/* Re-enable I-cache/D-cache */
1809	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1810			     "or %%g1, %1, %%g1\n\t"
1811			     "stxa %%g1, [%%g0] %0\n\t"
1812			     "membar #Sync"
1813			     : /* no outputs */
1814			     : "i" (ASI_DCU_CONTROL_REG),
1815			       "i" (DCU_DC | DCU_IC)
1816			     : "g1");
1817
1818	if (type & 0x2) {
1819		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1820		       smp_processor_id(),
1821		       (type & 0x1) ? 'I' : 'D',
1822		       regs->tpc);
1823		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1824		panic("Irrecoverable Cheetah+ parity error.");
1825	}
1826
1827	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1828	       smp_processor_id(),
1829	       (type & 0x1) ? 'I' : 'D',
1830	       regs->tpc);
1831	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1832}
1833
1834struct sun4v_error_entry {
1835	/* Unique error handle */
1836/*0x00*/u64		err_handle;
1837
1838	/* %stick value at the time of the error */
1839/*0x08*/u64		err_stick;
1840
1841/*0x10*/u8		reserved_1[3];
1842
1843	/* Error type */
1844/*0x13*/u8		err_type;
1845#define SUN4V_ERR_TYPE_UNDEFINED	0
1846#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1847#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1848#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1849#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1850#define SUN4V_ERR_TYPE_DUMP_CORE	5
1851#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1852#define SUN4V_ERR_TYPE_NUM		7
1853
1854	/* Error attributes */
1855/*0x14*/u32		err_attrs;
1856#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1857#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1858#define SUN4V_ERR_ATTRS_PIO		0x00000004
1859#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1860#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1861#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1862#define SUN4V_ERR_ATTRS_ASR		0x00000040
1863#define SUN4V_ERR_ATTRS_ASI		0x00000080
1864#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1865#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1866#define SUN4V_ERR_ATTRS_MCD		0x00000800
1867#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1868#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1869#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1870#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1871
1872#define SUN4V_ERR_SPSTATE_FAULTED	0
1873#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1874#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1875
1876#define SUN4V_ERR_MODE_USER		1
1877#define SUN4V_ERR_MODE_PRIV		2
1878
1879	/* Real address of the memory region or PIO transaction */
1880/*0x18*/u64		err_raddr;
1881
1882	/* Size of the operation triggering the error, in bytes */
1883/*0x20*/u32		err_size;
1884
1885	/* ID of the CPU */
1886/*0x24*/u16		err_cpu;
1887
1888	/* Grace periof for shutdown, in seconds */
1889/*0x26*/u16		err_secs;
1890
1891	/* Value of the %asi register */
1892/*0x28*/u8		err_asi;
1893
1894/*0x29*/u8		reserved_2;
1895
1896	/* Value of the ASR register number */
1897/*0x2a*/u16		err_asr;
1898#define SUN4V_ERR_ASR_VALID		0x8000
1899
1900/*0x2c*/u32		reserved_3;
1901/*0x30*/u64		reserved_4;
1902/*0x38*/u64		reserved_5;
1903};
1904
1905static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1906static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1907
1908static const char *sun4v_err_type_to_str(u8 type)
1909{
1910	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1911		"undefined",
1912		"uncorrected resumable",
1913		"precise nonresumable",
1914		"deferred nonresumable",
1915		"shutdown request",
1916		"dump core",
1917		"SP state change",
1918	};
1919
1920	if (type < SUN4V_ERR_TYPE_NUM)
1921		return types[type];
1922
1923	return "unknown";
1924}
1925
1926static void sun4v_emit_err_attr_strings(u32 attrs)
1927{
1928	static const char *attr_names[] = {
1929		"processor",
1930		"memory",
1931		"PIO",
1932		"int-registers",
1933		"fpu-registers",
1934		"shutdown-request",
1935		"ASR",
1936		"ASI",
1937		"priv-reg",
1938	};
1939	static const char *sp_states[] = {
1940		"sp-faulted",
1941		"sp-available",
1942		"sp-not-present",
1943		"sp-state-reserved",
1944	};
1945	static const char *modes[] = {
1946		"mode-reserved0",
1947		"user",
1948		"priv",
1949		"mode-reserved1",
1950	};
1951	u32 sp_state, mode;
1952	int i;
1953
1954	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1955		if (attrs & (1U << i)) {
1956			const char *s = attr_names[i];
1957
1958			pr_cont("%s ", s);
1959		}
1960	}
1961
1962	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1963		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1964	pr_cont("%s ", sp_states[sp_state]);
1965
1966	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1967		SUN4V_ERR_ATTRS_MODE_SHFT);
1968	pr_cont("%s ", modes[mode]);
1969
1970	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1971		pr_cont("res-queue-full ");
1972}
1973
1974/* When the report contains a real-address of "-1" it means that the
1975 * hardware did not provide the address.  So we compute the effective
1976 * address of the load or store instruction at regs->tpc and report
1977 * that.  Usually when this happens it's a PIO and in such a case we
1978 * are using physical addresses with bypass ASIs anyways, so what we
1979 * report here is exactly what we want.
1980 */
1981static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1982{
1983	unsigned int insn;
1984	u64 addr;
1985
1986	if (!(regs->tstate & TSTATE_PRIV))
1987		return;
1988
1989	insn = *(unsigned int *) regs->tpc;
1990
1991	addr = compute_effective_address(regs, insn, 0);
1992
1993	printk("%s: insn effective address [0x%016llx]\n",
1994	       pfx, addr);
1995}
1996
1997static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1998			    int cpu, const char *pfx, atomic_t *ocnt)
1999{
2000	u64 *raw_ptr = (u64 *) ent;
2001	u32 attrs;
2002	int cnt;
2003
2004	printk("%s: Reporting on cpu %d\n", pfx, cpu);
2005	printk("%s: TPC [0x%016lx] <%pS>\n",
2006	       pfx, regs->tpc, (void *) regs->tpc);
2007
2008	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
2009	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
2010	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
2011	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
2012
2013	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
2014	       pfx, ent->err_handle, ent->err_stick);
2015
2016	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
2017
2018	attrs = ent->err_attrs;
2019	printk("%s: attrs [0x%08x] < ", pfx, attrs);
2020	sun4v_emit_err_attr_strings(attrs);
2021	pr_cont(">\n");
2022
2023	/* Various fields in the error report are only valid if
2024	 * certain attribute bits are set.
2025	 */
2026	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
2027		     SUN4V_ERR_ATTRS_PIO |
2028		     SUN4V_ERR_ATTRS_ASI)) {
2029		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
2030
2031		if (ent->err_raddr == ~(u64)0)
2032			sun4v_report_real_raddr(pfx, regs);
2033	}
2034
2035	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2036		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2037
2038	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2039		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2040		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2041		     SUN4V_ERR_ATTRS_PRIV_REG))
2042		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2043
2044	if (attrs & SUN4V_ERR_ATTRS_ASI)
2045		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2046
2047	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2048		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2049		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2050	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2051		printk("%s: reg [0x%04x]\n",
2052		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2053
2054	show_regs(regs);
2055
2056	if ((cnt = atomic_read(ocnt)) != 0) {
2057		atomic_set(ocnt, 0);
2058		wmb();
2059		printk("%s: Queue overflowed %d times.\n",
2060		       pfx, cnt);
2061	}
2062}
2063
2064/* Handle memory corruption detected error which is vectored in
2065 * through resumable error trap.
2066 */
2067void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2068{
2069	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2070		       SIGSEGV) == NOTIFY_STOP)
2071		return;
2072
2073	if (regs->tstate & TSTATE_PRIV) {
2074		/* MCD exception could happen because the task was
2075		 * running a system call with MCD enabled and passed a
2076		 * non-versioned pointer or pointer with bad version
2077		 * tag to the system call. In such cases, hypervisor
2078		 * places the address of offending instruction in the
2079		 * resumable error report. This is a deferred error,
2080		 * so the read/write that caused the trap was potentially
2081		 * retired long time back and we may have no choice
2082		 * but to send SIGSEGV to the process.
2083		 */
2084		const struct exception_table_entry *entry;
2085
2086		entry = search_exception_tables(regs->tpc);
2087		if (entry) {
2088			/* Looks like a bad syscall parameter */
2089#ifdef DEBUG_EXCEPTIONS
2090			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2091				 regs->tpc);
2092			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2093				 ent.err_raddr, entry->fixup);
2094#endif
2095			regs->tpc = entry->fixup;
2096			regs->tnpc = regs->tpc + 4;
2097			return;
2098		}
2099	}
2100
2101	/* Send SIGSEGV to the userspace process with the right signal
2102	 * code
2103	 */
2104	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr,
2105			0, current);
2106}
2107
2108/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2109 * Log the event and clear the first word of the entry.
2110 */
2111void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2112{
2113	enum ctx_state prev_state = exception_enter();
2114	struct sun4v_error_entry *ent, local_copy;
2115	struct trap_per_cpu *tb;
2116	unsigned long paddr;
2117	int cpu;
2118
2119	cpu = get_cpu();
2120
2121	tb = &trap_block[cpu];
2122	paddr = tb->resum_kernel_buf_pa + offset;
2123	ent = __va(paddr);
2124
2125	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2126
2127	/* We have a local copy now, so release the entry.  */
2128	ent->err_handle = 0;
2129	wmb();
2130
2131	put_cpu();
2132
2133	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2134		/* We should really take the seconds field of
2135		 * the error report and use it for the shutdown
2136		 * invocation, but for now do the same thing we
2137		 * do for a DS shutdown request.
2138		 */
2139		pr_info("Shutdown request, %u seconds...\n",
2140			local_copy.err_secs);
2141		orderly_poweroff(true);
2142		goto out;
2143	}
2144
2145	/* If this is a memory corruption detected error vectored in
2146	 * by HV through resumable error trap, call the handler
2147	 */
2148	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2149		do_mcd_err(regs, local_copy);
2150		return;
2151	}
2152
2153	sun4v_log_error(regs, &local_copy, cpu,
2154			KERN_ERR "RESUMABLE ERROR",
2155			&sun4v_resum_oflow_cnt);
2156out:
2157	exception_exit(prev_state);
2158}
2159
2160/* If we try to printk() we'll probably make matters worse, by trying
2161 * to retake locks this cpu already holds or causing more errors. So
2162 * just bump a counter, and we'll report these counter bumps above.
2163 */
2164void sun4v_resum_overflow(struct pt_regs *regs)
2165{
2166	atomic_inc(&sun4v_resum_oflow_cnt);
2167}
2168
2169/* Given a set of registers, get the virtual addressi that was being accessed
2170 * by the faulting instructions at tpc.
2171 */
2172static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2173{
2174	unsigned int insn;
2175
2176	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2177		return compute_effective_address(regs, insn,
2178						 (insn >> 25) & 0x1f);
2179	}
2180	return 0;
2181}
2182
2183/* Attempt to handle non-resumable errors generated from userspace.
2184 * Returns true if the signal was handled, false otherwise.
2185 */
2186bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2187				  struct sun4v_error_entry *ent) {
2188
2189	unsigned int attrs = ent->err_attrs;
2190
2191	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2192		unsigned long addr = ent->err_raddr;
2193		siginfo_t info;
2194
2195		if (addr == ~(u64)0) {
2196			/* This seems highly unlikely to ever occur */
2197			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2198		} else {
2199			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2200							      PAGE_SIZE);
2201
2202			/* Break the unfortunate news. */
2203			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2204				 addr);
2205			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2206				 page_cnt);
2207
2208			while (page_cnt-- > 0) {
2209				if (pfn_valid(addr >> PAGE_SHIFT))
2210					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2211				addr += PAGE_SIZE;
2212			}
2213		}
2214		info.si_signo = SIGKILL;
2215		info.si_errno = 0;
2216		info.si_trapno = 0;
2217		force_sig_info(info.si_signo, &info, current);
2218
2219		return true;
2220	}
2221	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2222		siginfo_t info;
2223
2224		info.si_signo = SIGBUS;
2225		info.si_code = BUS_ADRERR;
2226		info.si_addr = (void __user *)sun4v_get_vaddr(regs);
2227		force_sig_info(info.si_signo, &info, current);
2228
2229		return true;
2230	}
2231
2232	/* Default to doing nothing */
2233	return false;
2234}
2235
2236/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2237 * Log the event, clear the first word of the entry, and die.
2238 */
2239void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2240{
2241	struct sun4v_error_entry *ent, local_copy;
2242	struct trap_per_cpu *tb;
2243	unsigned long paddr;
2244	int cpu;
2245
2246	cpu = get_cpu();
2247
2248	tb = &trap_block[cpu];
2249	paddr = tb->nonresum_kernel_buf_pa + offset;
2250	ent = __va(paddr);
2251
2252	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2253
2254	/* We have a local copy now, so release the entry.  */
2255	ent->err_handle = 0;
2256	wmb();
2257
2258	put_cpu();
2259
2260	if (!(regs->tstate & TSTATE_PRIV) &&
2261	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2262		/* DON'T PANIC: This userspace error was handled. */
2263		return;
2264	}
2265
2266#ifdef CONFIG_PCI
2267	/* Check for the special PCI poke sequence. */
2268	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2269		pci_poke_faulted = 1;
2270		regs->tpc += 4;
2271		regs->tnpc = regs->tpc + 4;
2272		return;
2273	}
2274#endif
2275
2276	sun4v_log_error(regs, &local_copy, cpu,
2277			KERN_EMERG "NON-RESUMABLE ERROR",
2278			&sun4v_nonresum_oflow_cnt);
2279
2280	panic("Non-resumable error.");
2281}
2282
2283/* If we try to printk() we'll probably make matters worse, by trying
2284 * to retake locks this cpu already holds or causing more errors. So
2285 * just bump a counter, and we'll report these counter bumps above.
2286 */
2287void sun4v_nonresum_overflow(struct pt_regs *regs)
2288{
2289	/* XXX Actually even this can make not that much sense.  Perhaps
2290	 * XXX we should just pull the plug and panic directly from here?
2291	 */
2292	atomic_inc(&sun4v_nonresum_oflow_cnt);
2293}
2294
2295static void sun4v_tlb_error(struct pt_regs *regs)
2296{
2297	die_if_kernel("TLB/TSB error", regs);
2298}
2299
2300unsigned long sun4v_err_itlb_vaddr;
2301unsigned long sun4v_err_itlb_ctx;
2302unsigned long sun4v_err_itlb_pte;
2303unsigned long sun4v_err_itlb_error;
2304
2305void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2306{
2307	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2308
2309	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2310	       regs->tpc, tl);
2311	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2312	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2313	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2314	       (void *) regs->u_regs[UREG_I7]);
2315	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2316	       "pte[%lx] error[%lx]\n",
2317	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2318	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2319
2320	sun4v_tlb_error(regs);
2321}
2322
2323unsigned long sun4v_err_dtlb_vaddr;
2324unsigned long sun4v_err_dtlb_ctx;
2325unsigned long sun4v_err_dtlb_pte;
2326unsigned long sun4v_err_dtlb_error;
2327
2328void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2329{
2330	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2331
2332	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2333	       regs->tpc, tl);
2334	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2335	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2336	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2337	       (void *) regs->u_regs[UREG_I7]);
2338	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2339	       "pte[%lx] error[%lx]\n",
2340	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2341	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2342
2343	sun4v_tlb_error(regs);
2344}
2345
2346void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2347{
2348	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2349	       err, op);
2350}
2351
2352void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2353{
2354	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2355	       err, op);
2356}
2357
2358static void do_fpe_common(struct pt_regs *regs)
2359{
2360	if (regs->tstate & TSTATE_PRIV) {
2361		regs->tpc = regs->tnpc;
2362		regs->tnpc += 4;
2363	} else {
2364		unsigned long fsr = current_thread_info()->xfsr[0];
2365		siginfo_t info;
2366
2367		if (test_thread_flag(TIF_32BIT)) {
2368			regs->tpc &= 0xffffffff;
2369			regs->tnpc &= 0xffffffff;
2370		}
2371		info.si_signo = SIGFPE;
2372		info.si_errno = 0;
2373		info.si_addr = (void __user *)regs->tpc;
2374		info.si_trapno = 0;
2375		info.si_code = FPE_FIXME;
2376		if ((fsr & 0x1c000) == (1 << 14)) {
2377			if (fsr & 0x10)
2378				info.si_code = FPE_FLTINV;
2379			else if (fsr & 0x08)
2380				info.si_code = FPE_FLTOVF;
2381			else if (fsr & 0x04)
2382				info.si_code = FPE_FLTUND;
2383			else if (fsr & 0x02)
2384				info.si_code = FPE_FLTDIV;
2385			else if (fsr & 0x01)
2386				info.si_code = FPE_FLTRES;
2387		}
2388		force_sig_info(SIGFPE, &info, current);
2389	}
2390}
2391
2392void do_fpieee(struct pt_regs *regs)
2393{
2394	enum ctx_state prev_state = exception_enter();
2395
2396	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2397		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2398		goto out;
2399
2400	do_fpe_common(regs);
2401out:
2402	exception_exit(prev_state);
2403}
2404
2405void do_fpother(struct pt_regs *regs)
2406{
2407	enum ctx_state prev_state = exception_enter();
2408	struct fpustate *f = FPUSTATE;
2409	int ret = 0;
2410
2411	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2412		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2413		goto out;
2414
2415	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2416	case (2 << 14): /* unfinished_FPop */
2417	case (3 << 14): /* unimplemented_FPop */
2418		ret = do_mathemu(regs, f, false);
2419		break;
2420	}
2421	if (ret)
2422		goto out;
2423	do_fpe_common(regs);
2424out:
2425	exception_exit(prev_state);
2426}
2427
2428void do_tof(struct pt_regs *regs)
2429{
2430	enum ctx_state prev_state = exception_enter();
2431	siginfo_t info;
2432
2433	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2434		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2435		goto out;
2436
2437	if (regs->tstate & TSTATE_PRIV)
2438		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2439	if (test_thread_flag(TIF_32BIT)) {
2440		regs->tpc &= 0xffffffff;
2441		regs->tnpc &= 0xffffffff;
2442	}
2443	info.si_signo = SIGEMT;
2444	info.si_errno = 0;
2445	info.si_code = EMT_TAGOVF;
2446	info.si_addr = (void __user *)regs->tpc;
2447	info.si_trapno = 0;
2448	force_sig_info(SIGEMT, &info, current);
2449out:
2450	exception_exit(prev_state);
2451}
2452
2453void do_div0(struct pt_regs *regs)
2454{
2455	enum ctx_state prev_state = exception_enter();
2456	siginfo_t info;
2457
2458	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2459		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2460		goto out;
2461
2462	if (regs->tstate & TSTATE_PRIV)
2463		die_if_kernel("TL0: Kernel divide by zero.", regs);
2464	if (test_thread_flag(TIF_32BIT)) {
2465		regs->tpc &= 0xffffffff;
2466		regs->tnpc &= 0xffffffff;
2467	}
2468	info.si_signo = SIGFPE;
2469	info.si_errno = 0;
2470	info.si_code = FPE_INTDIV;
2471	info.si_addr = (void __user *)regs->tpc;
2472	info.si_trapno = 0;
2473	force_sig_info(SIGFPE, &info, current);
2474out:
2475	exception_exit(prev_state);
2476}
2477
2478static void instruction_dump(unsigned int *pc)
2479{
2480	int i;
2481
2482	if ((((unsigned long) pc) & 3))
2483		return;
2484
2485	printk("Instruction DUMP:");
2486	for (i = -3; i < 6; i++)
2487		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2488	printk("\n");
2489}
2490
2491static void user_instruction_dump(unsigned int __user *pc)
2492{
2493	int i;
2494	unsigned int buf[9];
2495	
2496	if ((((unsigned long) pc) & 3))
2497		return;
2498		
2499	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2500		return;
2501
2502	printk("Instruction DUMP:");
2503	for (i = 0; i < 9; i++)
2504		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2505	printk("\n");
2506}
2507
2508void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2509{
2510	unsigned long fp, ksp;
2511	struct thread_info *tp;
2512	int count = 0;
2513#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2514	int graph = 0;
2515#endif
2516
2517	ksp = (unsigned long) _ksp;
2518	if (!tsk)
2519		tsk = current;
2520	tp = task_thread_info(tsk);
2521	if (ksp == 0UL) {
2522		if (tsk == current)
2523			asm("mov %%fp, %0" : "=r" (ksp));
2524		else
2525			ksp = tp->ksp;
2526	}
2527	if (tp == current_thread_info())
2528		flushw_all();
2529
2530	fp = ksp + STACK_BIAS;
2531
2532	printk("Call Trace:\n");
2533	do {
2534		struct sparc_stackf *sf;
2535		struct pt_regs *regs;
2536		unsigned long pc;
2537
2538		if (!kstack_valid(tp, fp))
2539			break;
2540		sf = (struct sparc_stackf *) fp;
2541		regs = (struct pt_regs *) (sf + 1);
2542
2543		if (kstack_is_trap_frame(tp, regs)) {
2544			if (!(regs->tstate & TSTATE_PRIV))
2545				break;
2546			pc = regs->tpc;
2547			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2548		} else {
2549			pc = sf->callers_pc;
2550			fp = (unsigned long)sf->fp + STACK_BIAS;
2551		}
2552
2553		printk(" [%016lx] %pS\n", pc, (void *) pc);
2554#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2555		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2556			int index = tsk->curr_ret_stack;
2557			if (tsk->ret_stack && index >= graph) {
2558				pc = tsk->ret_stack[index - graph].ret;
2559				printk(" [%016lx] %pS\n", pc, (void *) pc);
 
2560				graph++;
2561			}
2562		}
2563#endif
2564	} while (++count < 16);
2565}
2566
2567static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2568{
2569	unsigned long fp = rw->ins[6];
2570
2571	if (!fp)
2572		return NULL;
2573
2574	return (struct reg_window *) (fp + STACK_BIAS);
2575}
2576
2577void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2578{
2579	static int die_counter;
2580	int count = 0;
2581	
2582	/* Amuse the user. */
2583	printk(
2584"              \\|/ ____ \\|/\n"
2585"              \"@'/ .. \\`@\"\n"
2586"              /_| \\__/ |_\\\n"
2587"                 \\__U_/\n");
2588
2589	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2590	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2591	__asm__ __volatile__("flushw");
2592	show_regs(regs);
2593	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2594	if (regs->tstate & TSTATE_PRIV) {
2595		struct thread_info *tp = current_thread_info();
2596		struct reg_window *rw = (struct reg_window *)
2597			(regs->u_regs[UREG_FP] + STACK_BIAS);
2598
2599		/* Stop the back trace when we hit userland or we
2600		 * find some badly aligned kernel stack.
2601		 */
2602		while (rw &&
2603		       count++ < 30 &&
2604		       kstack_valid(tp, (unsigned long) rw)) {
2605			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2606			       (void *) rw->ins[7]);
2607
2608			rw = kernel_stack_up(rw);
2609		}
2610		instruction_dump ((unsigned int *) regs->tpc);
2611	} else {
2612		if (test_thread_flag(TIF_32BIT)) {
2613			regs->tpc &= 0xffffffff;
2614			regs->tnpc &= 0xffffffff;
2615		}
2616		user_instruction_dump ((unsigned int __user *) regs->tpc);
2617	}
2618	if (panic_on_oops)
2619		panic("Fatal exception");
2620	if (regs->tstate & TSTATE_PRIV)
2621		do_exit(SIGKILL);
2622	do_exit(SIGSEGV);
2623}
2624EXPORT_SYMBOL(die_if_kernel);
2625
2626#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2627#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2628
2629void do_illegal_instruction(struct pt_regs *regs)
2630{
2631	enum ctx_state prev_state = exception_enter();
2632	unsigned long pc = regs->tpc;
2633	unsigned long tstate = regs->tstate;
2634	u32 insn;
2635	siginfo_t info;
2636
2637	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2638		       0, 0x10, SIGILL) == NOTIFY_STOP)
2639		goto out;
2640
2641	if (tstate & TSTATE_PRIV)
2642		die_if_kernel("Kernel illegal instruction", regs);
2643	if (test_thread_flag(TIF_32BIT))
2644		pc = (u32)pc;
2645	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2646		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2647			if (handle_popc(insn, regs))
2648				goto out;
2649		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2650			if (handle_ldf_stq(insn, regs))
2651				goto out;
2652		} else if (tlb_type == hypervisor) {
2653			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2654				if (!vis_emul(regs, insn))
2655					goto out;
2656			} else {
2657				struct fpustate *f = FPUSTATE;
2658
2659				/* On UltraSPARC T2 and later, FPU insns which
2660				 * are not implemented in HW signal an illegal
2661				 * instruction trap and do not set the FP Trap
2662				 * Trap in the %fsr to unimplemented_FPop.
2663				 */
2664				if (do_mathemu(regs, f, true))
2665					goto out;
2666			}
2667		}
2668	}
2669	info.si_signo = SIGILL;
2670	info.si_errno = 0;
2671	info.si_code = ILL_ILLOPC;
2672	info.si_addr = (void __user *)pc;
2673	info.si_trapno = 0;
2674	force_sig_info(SIGILL, &info, current);
2675out:
2676	exception_exit(prev_state);
2677}
2678
2679void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2680{
2681	enum ctx_state prev_state = exception_enter();
2682	siginfo_t info;
2683
2684	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2685		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2686		goto out;
2687
2688	if (regs->tstate & TSTATE_PRIV) {
2689		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2690		goto out;
2691	}
2692	if (is_no_fault_exception(regs))
2693		return;
2694
2695	info.si_signo = SIGBUS;
2696	info.si_errno = 0;
2697	info.si_code = BUS_ADRALN;
2698	info.si_addr = (void __user *)sfar;
2699	info.si_trapno = 0;
2700	force_sig_info(SIGBUS, &info, current);
2701out:
2702	exception_exit(prev_state);
2703}
2704
2705void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2706{
2707	siginfo_t info;
2708
2709	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2710		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2711		return;
2712
2713	if (regs->tstate & TSTATE_PRIV) {
2714		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2715		return;
2716	}
2717	if (is_no_fault_exception(regs))
2718		return;
2719
2720	info.si_signo = SIGBUS;
2721	info.si_errno = 0;
2722	info.si_code = BUS_ADRALN;
2723	info.si_addr = (void __user *) addr;
2724	info.si_trapno = 0;
2725	force_sig_info(SIGBUS, &info, current);
2726}
2727
2728/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2729 * tag mismatch.
2730 *
2731 * ADI version tag mismatch on a load from memory always results in a
2732 * precise exception. Tag mismatch on a store to memory will result in
2733 * precise exception if MCDPER or PMCDPER is set to 1.
2734 */
2735void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2736				      unsigned long context)
2737{
2738	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2739		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2740		return;
2741
2742	if (regs->tstate & TSTATE_PRIV) {
2743		/* MCD exception could happen because the task was running
2744		 * a system call with MCD enabled and passed a non-versioned
2745		 * pointer or pointer with bad version tag to  the system
2746		 * call.
2747		 */
2748		const struct exception_table_entry *entry;
2749
2750		entry = search_exception_tables(regs->tpc);
2751		if (entry) {
2752			/* Looks like a bad syscall parameter */
2753#ifdef DEBUG_EXCEPTIONS
2754			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2755				 regs->tpc);
2756			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2757				 regs->tpc, entry->fixup);
2758#endif
2759			regs->tpc = entry->fixup;
2760			regs->tnpc = regs->tpc + 4;
2761			return;
2762		}
2763		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2764			 __func__, addr, context);
2765		die_if_kernel("MCD precise", regs);
2766	}
2767
2768	if (test_thread_flag(TIF_32BIT)) {
2769		regs->tpc &= 0xffffffff;
2770		regs->tnpc &= 0xffffffff;
2771	}
2772	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr, 0, current);
2773}
2774
2775void do_privop(struct pt_regs *regs)
2776{
2777	enum ctx_state prev_state = exception_enter();
2778	siginfo_t info;
2779
2780	if (notify_die(DIE_TRAP, "privileged operation", regs,
2781		       0, 0x11, SIGILL) == NOTIFY_STOP)
2782		goto out;
2783
2784	if (test_thread_flag(TIF_32BIT)) {
2785		regs->tpc &= 0xffffffff;
2786		regs->tnpc &= 0xffffffff;
2787	}
2788	info.si_signo = SIGILL;
2789	info.si_errno = 0;
2790	info.si_code = ILL_PRVOPC;
2791	info.si_addr = (void __user *)regs->tpc;
2792	info.si_trapno = 0;
2793	force_sig_info(SIGILL, &info, current);
2794out:
2795	exception_exit(prev_state);
2796}
2797
2798void do_privact(struct pt_regs *regs)
2799{
2800	do_privop(regs);
2801}
2802
2803/* Trap level 1 stuff or other traps we should never see... */
2804void do_cee(struct pt_regs *regs)
2805{
2806	exception_enter();
2807	die_if_kernel("TL0: Cache Error Exception", regs);
2808}
2809
2810void do_div0_tl1(struct pt_regs *regs)
2811{
2812	exception_enter();
2813	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2814	die_if_kernel("TL1: DIV0 Exception", regs);
2815}
2816
2817void do_fpieee_tl1(struct pt_regs *regs)
2818{
2819	exception_enter();
2820	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2821	die_if_kernel("TL1: FPU IEEE Exception", regs);
2822}
2823
2824void do_fpother_tl1(struct pt_regs *regs)
2825{
2826	exception_enter();
2827	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2828	die_if_kernel("TL1: FPU Other Exception", regs);
2829}
2830
2831void do_ill_tl1(struct pt_regs *regs)
2832{
2833	exception_enter();
2834	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2835	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2836}
2837
2838void do_irq_tl1(struct pt_regs *regs)
2839{
2840	exception_enter();
2841	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2842	die_if_kernel("TL1: IRQ Exception", regs);
2843}
2844
2845void do_lddfmna_tl1(struct pt_regs *regs)
2846{
2847	exception_enter();
2848	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2849	die_if_kernel("TL1: LDDF Exception", regs);
2850}
2851
2852void do_stdfmna_tl1(struct pt_regs *regs)
2853{
2854	exception_enter();
2855	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2856	die_if_kernel("TL1: STDF Exception", regs);
2857}
2858
2859void do_paw(struct pt_regs *regs)
2860{
2861	exception_enter();
2862	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2863}
2864
2865void do_paw_tl1(struct pt_regs *regs)
2866{
2867	exception_enter();
2868	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2869	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2870}
2871
2872void do_vaw(struct pt_regs *regs)
2873{
2874	exception_enter();
2875	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2876}
2877
2878void do_vaw_tl1(struct pt_regs *regs)
2879{
2880	exception_enter();
2881	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2882	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2883}
2884
2885void do_tof_tl1(struct pt_regs *regs)
2886{
2887	exception_enter();
2888	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2889	die_if_kernel("TL1: Tag Overflow Exception", regs);
2890}
2891
2892void do_getpsr(struct pt_regs *regs)
2893{
2894	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2895	regs->tpc   = regs->tnpc;
2896	regs->tnpc += 4;
2897	if (test_thread_flag(TIF_32BIT)) {
2898		regs->tpc &= 0xffffffff;
2899		regs->tnpc &= 0xffffffff;
2900	}
2901}
2902
2903u64 cpu_mondo_counter[NR_CPUS] = {0};
2904struct trap_per_cpu trap_block[NR_CPUS];
2905EXPORT_SYMBOL(trap_block);
2906
2907/* This can get invoked before sched_init() so play it super safe
2908 * and use hard_smp_processor_id().
2909 */
2910void notrace init_cur_cpu_trap(struct thread_info *t)
2911{
2912	int cpu = hard_smp_processor_id();
2913	struct trap_per_cpu *p = &trap_block[cpu];
2914
2915	p->thread = t;
2916	p->pgd_paddr = 0;
2917}
2918
2919extern void thread_info_offsets_are_bolixed_dave(void);
2920extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2921extern void tsb_config_offsets_are_bolixed_dave(void);
2922
2923/* Only invoked on boot processor. */
2924void __init trap_init(void)
2925{
2926	/* Compile time sanity check. */
2927	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2928		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2929		     TI_CPU != offsetof(struct thread_info, cpu) ||
2930		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2931		     TI_KSP != offsetof(struct thread_info, ksp) ||
2932		     TI_FAULT_ADDR != offsetof(struct thread_info,
2933					       fault_address) ||
2934		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2935		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2936		     TI_REG_WINDOW != offsetof(struct thread_info,
2937					       reg_window) ||
2938		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2939					       rwbuf_stkptrs) ||
2940		     TI_GSR != offsetof(struct thread_info, gsr) ||
2941		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2942		     TI_PRE_COUNT != offsetof(struct thread_info,
2943					      preempt_count) ||
2944		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2945		     TI_CURRENT_DS != offsetof(struct thread_info,
2946						current_ds) ||
2947		     TI_KUNA_REGS != offsetof(struct thread_info,
2948					      kern_una_regs) ||
2949		     TI_KUNA_INSN != offsetof(struct thread_info,
2950					      kern_una_insn) ||
2951		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2952		     (TI_FPREGS & (64 - 1)));
2953
2954	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2955						     thread) ||
2956		     (TRAP_PER_CPU_PGD_PADDR !=
2957		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2958		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2959		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2960		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2961		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2962		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2963		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2964		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2965		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2966		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2967		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2968		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2969		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2970		     (TRAP_PER_CPU_FAULT_INFO !=
2971		      offsetof(struct trap_per_cpu, fault_info)) ||
2972		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2973		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2974		     (TRAP_PER_CPU_CPU_LIST_PA !=
2975		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2976		     (TRAP_PER_CPU_TSB_HUGE !=
2977		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2978		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2979		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2980		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2981		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2982		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2983		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2984		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2985		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2986		     (TRAP_PER_CPU_RESUM_QMASK !=
2987		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2988		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2989		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2990		     (TRAP_PER_CPU_PER_CPU_BASE !=
2991		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2992
2993	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2994		      offsetof(struct tsb_config, tsb)) ||
2995		     (TSB_CONFIG_RSS_LIMIT !=
2996		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2997		     (TSB_CONFIG_NENTRIES !=
2998		      offsetof(struct tsb_config, tsb_nentries)) ||
2999		     (TSB_CONFIG_REG_VAL !=
3000		      offsetof(struct tsb_config, tsb_reg_val)) ||
3001		     (TSB_CONFIG_MAP_VADDR !=
3002		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
3003		     (TSB_CONFIG_MAP_PTE !=
3004		      offsetof(struct tsb_config, tsb_map_pte)));
3005
3006	/* Attach to the address space of init_task.  On SMP we
3007	 * do this in smp.c:smp_callin for other cpus.
3008	 */
3009	mmgrab(&init_mm);
3010	current->active_mm = &init_mm;
3011}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* arch/sparc64/kernel/traps.c
   3 *
   4 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   6 */
   7
   8/*
   9 * I like traps on v9, :))))
  10 */
  11
  12#include <linux/cpu.h>
  13#include <linux/extable.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/debug.h>
  16#include <linux/linkage.h>
  17#include <linux/kernel.h>
  18#include <linux/signal.h>
  19#include <linux/smp.h>
  20#include <linux/mm.h>
  21#include <linux/init.h>
  22#include <linux/kallsyms.h>
  23#include <linux/kdebug.h>
  24#include <linux/ftrace.h>
  25#include <linux/reboot.h>
  26#include <linux/gfp.h>
  27#include <linux/context_tracking.h>
  28
  29#include <asm/smp.h>
  30#include <asm/delay.h>
  31#include <asm/ptrace.h>
  32#include <asm/oplib.h>
  33#include <asm/page.h>
 
  34#include <asm/unistd.h>
  35#include <linux/uaccess.h>
  36#include <asm/fpumacro.h>
  37#include <asm/lsu.h>
  38#include <asm/dcu.h>
  39#include <asm/estate.h>
  40#include <asm/chafsr.h>
  41#include <asm/sfafsr.h>
  42#include <asm/psrcompat.h>
  43#include <asm/processor.h>
  44#include <asm/timer.h>
  45#include <asm/head.h>
  46#include <asm/prom.h>
  47#include <asm/memctrl.h>
  48#include <asm/cacheflush.h>
  49#include <asm/setup.h>
  50
  51#include "entry.h"
  52#include "kernel.h"
  53#include "kstack.h"
  54
  55/* When an irrecoverable trap occurs at tl > 0, the trap entry
  56 * code logs the trap state registers at every level in the trap
  57 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  58 * is as follows:
  59 */
  60struct tl1_traplog {
  61	struct {
  62		unsigned long tstate;
  63		unsigned long tpc;
  64		unsigned long tnpc;
  65		unsigned long tt;
  66	} trapstack[4];
  67	unsigned long tl;
  68};
  69
  70static void dump_tl1_traplog(struct tl1_traplog *p)
  71{
  72	int i, limit;
  73
  74	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  75	       "dumping track stack.\n", p->tl);
  76
  77	limit = (tlb_type == hypervisor) ? 2 : 4;
  78	for (i = 0; i < limit; i++) {
  79		printk(KERN_EMERG
  80		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  81		       "TNPC[%016lx] TT[%lx]\n",
  82		       i + 1,
  83		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  84		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  85		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  86	}
  87}
  88
  89void bad_trap(struct pt_regs *regs, long lvl)
  90{
  91	char buffer[36];
 
  92
  93	if (notify_die(DIE_TRAP, "bad trap", regs,
  94		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  95		return;
  96
  97	if (lvl < 0x100) {
  98		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  99		die_if_kernel(buffer, regs);
 100	}
 101
 102	lvl -= 0x100;
 103	if (regs->tstate & TSTATE_PRIV) {
 104		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 105		die_if_kernel(buffer, regs);
 106	}
 107	if (test_thread_flag(TIF_32BIT)) {
 108		regs->tpc &= 0xffffffff;
 109		regs->tnpc &= 0xffffffff;
 110	}
 111	force_sig_fault_trapno(SIGILL, ILL_ILLTRP,
 112			       (void __user *)regs->tpc, lvl);
 
 
 
 
 113}
 114
 115void bad_trap_tl1(struct pt_regs *regs, long lvl)
 116{
 117	char buffer[36];
 118	
 119	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 120		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 121		return;
 122
 123	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 124
 125	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 126	die_if_kernel (buffer, regs);
 127}
 128
 129#ifdef CONFIG_DEBUG_BUGVERBOSE
 130void do_BUG(const char *file, int line)
 131{
 132	bust_spinlocks(1);
 133	printk("kernel BUG at %s:%d!\n", file, line);
 134}
 135EXPORT_SYMBOL(do_BUG);
 136#endif
 137
 138static DEFINE_SPINLOCK(dimm_handler_lock);
 139static dimm_printer_t dimm_handler;
 140
 141static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 142{
 143	unsigned long flags;
 144	int ret = -ENODEV;
 145
 146	spin_lock_irqsave(&dimm_handler_lock, flags);
 147	if (dimm_handler) {
 148		ret = dimm_handler(synd_code, paddr, buf, buflen);
 149	} else if (tlb_type == spitfire) {
 150		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 151			ret = -EINVAL;
 152		else
 153			ret = 0;
 154	} else
 155		ret = -ENODEV;
 156	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 157
 158	return ret;
 159}
 160
 161int register_dimm_printer(dimm_printer_t func)
 162{
 163	unsigned long flags;
 164	int ret = 0;
 165
 166	spin_lock_irqsave(&dimm_handler_lock, flags);
 167	if (!dimm_handler)
 168		dimm_handler = func;
 169	else
 170		ret = -EEXIST;
 171	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 172
 173	return ret;
 174}
 175EXPORT_SYMBOL_GPL(register_dimm_printer);
 176
 177void unregister_dimm_printer(dimm_printer_t func)
 178{
 179	unsigned long flags;
 180
 181	spin_lock_irqsave(&dimm_handler_lock, flags);
 182	if (dimm_handler == func)
 183		dimm_handler = NULL;
 184	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 185}
 186EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 187
 188void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 189{
 190	enum ctx_state prev_state = exception_enter();
 
 191
 192	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 193		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 194		goto out;
 195
 196	if (regs->tstate & TSTATE_PRIV) {
 197		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 198		       "SFAR[%016lx], going.\n", sfsr, sfar);
 199		die_if_kernel("Iax", regs);
 200	}
 201	if (test_thread_flag(TIF_32BIT)) {
 202		regs->tpc &= 0xffffffff;
 203		regs->tnpc &= 0xffffffff;
 204	}
 205	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)regs->tpc);
 
 
 
 
 
 206out:
 207	exception_exit(prev_state);
 208}
 209
 210void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 211{
 212	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 213		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 214		return;
 215
 216	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 217	spitfire_insn_access_exception(regs, sfsr, sfar);
 218}
 219
 220void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 221{
 222	unsigned short type = (type_ctx >> 16);
 223	unsigned short ctx  = (type_ctx & 0xffff);
 
 224
 225	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 226		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 227		return;
 228
 229	if (regs->tstate & TSTATE_PRIV) {
 230		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 231		       "CTX[%04x] TYPE[%04x], going.\n",
 232		       addr, ctx, type);
 233		die_if_kernel("Iax", regs);
 234	}
 235
 236	if (test_thread_flag(TIF_32BIT)) {
 237		regs->tpc &= 0xffffffff;
 238		regs->tnpc &= 0xffffffff;
 239	}
 240	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr);
 
 
 
 
 
 241}
 242
 243void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 244{
 245	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 246		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 247		return;
 248
 249	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 250	sun4v_insn_access_exception(regs, addr, type_ctx);
 251}
 252
 253static bool is_no_fault_exception(struct pt_regs *regs)
 254{
 255	unsigned char asi;
 256	u32 insn;
 257
 258	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
 259		return false;
 260
 261	/*
 262	 * Must do a little instruction decoding here in order to
 263	 * decide on a course of action. The bits of interest are:
 264	 *  insn[31:30] = op, where 3 indicates the load/store group
 265	 *  insn[24:19] = op3, which identifies individual opcodes
 266	 *  insn[13] indicates an immediate offset
 267	 *  op3[4]=1 identifies alternate space instructions
 268	 *  op3[5:4]=3 identifies floating point instructions
 269	 *  op3[2]=1 identifies stores
 270	 * See "Opcode Maps" in the appendix of any Sparc V9
 271	 * architecture spec for full details.
 272	 */
 273	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
 274		if (insn & 0x2000)		    /* immediate offset */
 275			asi = (regs->tstate >> 24); /* saved %asi       */
 276		else
 277			asi = (insn >> 5);	    /* immediate asi    */
 278		if ((asi & 0xf6) == ASI_PNF) {
 279			if (insn & 0x200000)        /* op3[2], stores   */
 
 
 
 280				return false;
 281			if (insn & 0x1000000)       /* op3[5:4]=3 (fp)  */
 282				handle_ldf_stq(insn, regs);
 283			else
 284				handle_ld_nf(insn, regs);
 285			return true;
 286		}
 287	}
 288	return false;
 289}
 290
 291void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 292{
 293	enum ctx_state prev_state = exception_enter();
 
 294
 295	if (notify_die(DIE_TRAP, "data access exception", regs,
 296		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 297		goto out;
 298
 299	if (regs->tstate & TSTATE_PRIV) {
 300		/* Test if this comes from uaccess places. */
 301		const struct exception_table_entry *entry;
 302
 303		entry = search_exception_tables(regs->tpc);
 304		if (entry) {
 305			/* Ouch, somebody is trying VM hole tricks on us... */
 306#ifdef DEBUG_EXCEPTIONS
 307			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 308			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 309			       regs->tpc, entry->fixup);
 310#endif
 311			regs->tpc = entry->fixup;
 312			regs->tnpc = regs->tpc + 4;
 313			goto out;
 314		}
 315		/* Shit... */
 316		printk("spitfire_data_access_exception: SFSR[%016lx] "
 317		       "SFAR[%016lx], going.\n", sfsr, sfar);
 318		die_if_kernel("Dax", regs);
 319	}
 320
 321	if (is_no_fault_exception(regs))
 322		return;
 323
 324	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar);
 
 
 
 
 
 325out:
 326	exception_exit(prev_state);
 327}
 328
 329void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 330{
 331	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 332		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 333		return;
 334
 335	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 336	spitfire_data_access_exception(regs, sfsr, sfar);
 337}
 338
 339void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 340{
 341	unsigned short type = (type_ctx >> 16);
 342	unsigned short ctx  = (type_ctx & 0xffff);
 343
 344	if (notify_die(DIE_TRAP, "data access exception", regs,
 345		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 346		return;
 347
 348	if (regs->tstate & TSTATE_PRIV) {
 349		/* Test if this comes from uaccess places. */
 350		const struct exception_table_entry *entry;
 351
 352		entry = search_exception_tables(regs->tpc);
 353		if (entry) {
 354			/* Ouch, somebody is trying VM hole tricks on us... */
 355#ifdef DEBUG_EXCEPTIONS
 356			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 357			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 358			       regs->tpc, entry->fixup);
 359#endif
 360			regs->tpc = entry->fixup;
 361			regs->tnpc = regs->tpc + 4;
 362			return;
 363		}
 364		printk("sun4v_data_access_exception: ADDR[%016lx] "
 365		       "CTX[%04x] TYPE[%04x], going.\n",
 366		       addr, ctx, type);
 367		die_if_kernel("Dax", regs);
 368	}
 369
 370	if (test_thread_flag(TIF_32BIT)) {
 371		regs->tpc &= 0xffffffff;
 372		regs->tnpc &= 0xffffffff;
 373	}
 374	if (is_no_fault_exception(regs))
 375		return;
 376
 377	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
 378	 * is vectored thorugh data access exception trap with fault type
 379	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
 380	 * Accessing an address with invalid ASI for the address, for
 381	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
 382	 * when TTE.mcd is not set for the VA, is also vectored into
 383	 * kerbel by HV as data access exception with fault type set to
 384	 * HV_FAULT_TYPE_INV_ASI.
 385	 */
 386	switch (type) {
 387	case HV_FAULT_TYPE_INV_ASI:
 388		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr);
 
 389		break;
 390	case HV_FAULT_TYPE_MCD_DIS:
 391		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr);
 
 392		break;
 393	default:
 394		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr);
 
 395		break;
 396	}
 397}
 398
 399void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 400{
 401	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 402		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 403		return;
 404
 405	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 406	sun4v_data_access_exception(regs, addr, type_ctx);
 407}
 408
 409#ifdef CONFIG_PCI
 410#include "pci_impl.h"
 411#endif
 412
 413/* When access exceptions happen, we must do this. */
 414static void spitfire_clean_and_reenable_l1_caches(void)
 415{
 416	unsigned long va;
 417
 418	if (tlb_type != spitfire)
 419		BUG();
 420
 421	/* Clean 'em. */
 422	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 423		spitfire_put_icache_tag(va, 0x0);
 424		spitfire_put_dcache_tag(va, 0x0);
 425	}
 426
 427	/* Re-enable in LSU. */
 428	__asm__ __volatile__("flush %%g6\n\t"
 429			     "membar #Sync\n\t"
 430			     "stxa %0, [%%g0] %1\n\t"
 431			     "membar #Sync"
 432			     : /* no outputs */
 433			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 434				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 435			     "i" (ASI_LSU_CONTROL)
 436			     : "memory");
 437}
 438
 439static void spitfire_enable_estate_errors(void)
 440{
 441	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 442			     "membar	#Sync"
 443			     : /* no outputs */
 444			     : "r" (ESTATE_ERR_ALL),
 445			       "i" (ASI_ESTATE_ERROR_EN));
 446}
 447
 448static char ecc_syndrome_table[] = {
 449	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 450	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 451	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 452	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 453	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 454	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 455	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 456	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 457	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 458	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 459	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 460	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 461	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 462	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 463	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 464	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 465	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 466	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 467	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 468	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 469	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 470	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 471	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 472	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 473	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 474	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 475	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 476	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 477	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 478	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 479	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 480	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 481};
 482
 483static char *syndrome_unknown = "<Unknown>";
 484
 485static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 486{
 487	unsigned short scode;
 488	char memmod_str[64], *p;
 489
 490	if (udbl & bit) {
 491		scode = ecc_syndrome_table[udbl & 0xff];
 492		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 493			p = syndrome_unknown;
 494		else
 495			p = memmod_str;
 496		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 497		       "Memory Module \"%s\"\n",
 498		       smp_processor_id(), scode, p);
 499	}
 500
 501	if (udbh & bit) {
 502		scode = ecc_syndrome_table[udbh & 0xff];
 503		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 504			p = syndrome_unknown;
 505		else
 506			p = memmod_str;
 507		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 508		       "Memory Module \"%s\"\n",
 509		       smp_processor_id(), scode, p);
 510	}
 511
 512}
 513
 514static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 515{
 516
 517	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 518	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 519	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 520
 521	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 522
 523	/* We always log it, even if someone is listening for this
 524	 * trap.
 525	 */
 526	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 527		   0, TRAP_TYPE_CEE, SIGTRAP);
 528
 529	/* The Correctable ECC Error trap does not disable I/D caches.  So
 530	 * we only have to restore the ESTATE Error Enable register.
 531	 */
 532	spitfire_enable_estate_errors();
 533}
 534
 535static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 536{
 
 
 537	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 538	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 539	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 540
 541	/* XXX add more human friendly logging of the error status
 542	 * XXX as is implemented for cheetah
 543	 */
 544
 545	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 546
 547	/* We always log it, even if someone is listening for this
 548	 * trap.
 549	 */
 550	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 551		   0, tt, SIGTRAP);
 552
 553	if (regs->tstate & TSTATE_PRIV) {
 554		if (tl1)
 555			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 556		die_if_kernel("UE", regs);
 557	}
 558
 559	/* XXX need more intelligent processing here, such as is implemented
 560	 * XXX for cheetah errors, in fact if the E-cache still holds the
 561	 * XXX line with bad parity this will loop
 562	 */
 563
 564	spitfire_clean_and_reenable_l1_caches();
 565	spitfire_enable_estate_errors();
 566
 567	if (test_thread_flag(TIF_32BIT)) {
 568		regs->tpc &= 0xffffffff;
 569		regs->tnpc &= 0xffffffff;
 570	}
 571	force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0);
 
 
 
 
 
 572}
 573
 574void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 575{
 576	unsigned long afsr, tt, udbh, udbl;
 577	int tl1;
 578
 579	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 580	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 581	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 582	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 583	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 584
 585#ifdef CONFIG_PCI
 586	if (tt == TRAP_TYPE_DAE &&
 587	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 588		spitfire_clean_and_reenable_l1_caches();
 589		spitfire_enable_estate_errors();
 590
 591		pci_poke_faulted = 1;
 592		regs->tnpc = regs->tpc + 4;
 593		return;
 594	}
 595#endif
 596
 597	if (afsr & SFAFSR_UE)
 598		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 599
 600	if (tt == TRAP_TYPE_CEE) {
 601		/* Handle the case where we took a CEE trap, but ACK'd
 602		 * only the UE state in the UDB error registers.
 603		 */
 604		if (afsr & SFAFSR_UE) {
 605			if (udbh & UDBE_CE) {
 606				__asm__ __volatile__(
 607					"stxa	%0, [%1] %2\n\t"
 608					"membar	#Sync"
 609					: /* no outputs */
 610					: "r" (udbh & UDBE_CE),
 611					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 612			}
 613			if (udbl & UDBE_CE) {
 614				__asm__ __volatile__(
 615					"stxa	%0, [%1] %2\n\t"
 616					"membar	#Sync"
 617					: /* no outputs */
 618					: "r" (udbl & UDBE_CE),
 619					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 620			}
 621		}
 622
 623		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 624	}
 625}
 626
 627int cheetah_pcache_forced_on;
 628
 629void cheetah_enable_pcache(void)
 630{
 631	unsigned long dcr;
 632
 633	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 634	       smp_processor_id());
 635
 636	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 637			     : "=r" (dcr)
 638			     : "i" (ASI_DCU_CONTROL_REG));
 639	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 640	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 641			     "membar #Sync"
 642			     : /* no outputs */
 643			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 644}
 645
 646/* Cheetah error trap handling. */
 647static unsigned long ecache_flush_physbase;
 648static unsigned long ecache_flush_linesize;
 649static unsigned long ecache_flush_size;
 650
 651/* This table is ordered in priority of errors and matches the
 652 * AFAR overwrite policy as well.
 653 */
 654
 655struct afsr_error_table {
 656	unsigned long mask;
 657	const char *name;
 658};
 659
 660static const char CHAFSR_PERR_msg[] =
 661	"System interface protocol error";
 662static const char CHAFSR_IERR_msg[] =
 663	"Internal processor error";
 664static const char CHAFSR_ISAP_msg[] =
 665	"System request parity error on incoming address";
 666static const char CHAFSR_UCU_msg[] =
 667	"Uncorrectable E-cache ECC error for ifetch/data";
 668static const char CHAFSR_UCC_msg[] =
 669	"SW Correctable E-cache ECC error for ifetch/data";
 670static const char CHAFSR_UE_msg[] =
 671	"Uncorrectable system bus data ECC error for read";
 672static const char CHAFSR_EDU_msg[] =
 673	"Uncorrectable E-cache ECC error for stmerge/blkld";
 674static const char CHAFSR_EMU_msg[] =
 675	"Uncorrectable system bus MTAG error";
 676static const char CHAFSR_WDU_msg[] =
 677	"Uncorrectable E-cache ECC error for writeback";
 678static const char CHAFSR_CPU_msg[] =
 679	"Uncorrectable ECC error for copyout";
 680static const char CHAFSR_CE_msg[] =
 681	"HW corrected system bus data ECC error for read";
 682static const char CHAFSR_EDC_msg[] =
 683	"HW corrected E-cache ECC error for stmerge/blkld";
 684static const char CHAFSR_EMC_msg[] =
 685	"HW corrected system bus MTAG ECC error";
 686static const char CHAFSR_WDC_msg[] =
 687	"HW corrected E-cache ECC error for writeback";
 688static const char CHAFSR_CPC_msg[] =
 689	"HW corrected ECC error for copyout";
 690static const char CHAFSR_TO_msg[] =
 691	"Unmapped error from system bus";
 692static const char CHAFSR_BERR_msg[] =
 693	"Bus error response from system bus";
 694static const char CHAFSR_IVC_msg[] =
 695	"HW corrected system bus data ECC error for ivec read";
 696static const char CHAFSR_IVU_msg[] =
 697	"Uncorrectable system bus data ECC error for ivec read";
 698static struct afsr_error_table __cheetah_error_table[] = {
 699	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 700	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 701	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 702	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 703	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 704	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 705	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 706	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 707	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 708	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 709	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 710	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 711	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 712	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 713	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 714	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 715	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 716	/* These two do not update the AFAR. */
 717	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 718	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 719	{	0,		NULL			},
 720};
 721static const char CHPAFSR_DTO_msg[] =
 722	"System bus unmapped error for prefetch/storequeue-read";
 723static const char CHPAFSR_DBERR_msg[] =
 724	"System bus error for prefetch/storequeue-read";
 725static const char CHPAFSR_THCE_msg[] =
 726	"Hardware corrected E-cache Tag ECC error";
 727static const char CHPAFSR_TSCE_msg[] =
 728	"SW handled correctable E-cache Tag ECC error";
 729static const char CHPAFSR_TUE_msg[] =
 730	"Uncorrectable E-cache Tag ECC error";
 731static const char CHPAFSR_DUE_msg[] =
 732	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 733static struct afsr_error_table __cheetah_plus_error_table[] = {
 734	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 735	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 736	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 737	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 738	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 739	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 740	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 741	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 742	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 743	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 744	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 745	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 746	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 747	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 748	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 749	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 750	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 751	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 752	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 753	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 754	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 755	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 756	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 757	/* These two do not update the AFAR. */
 758	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 759	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 760	{	0,		NULL			},
 761};
 762static const char JPAFSR_JETO_msg[] =
 763	"System interface protocol error, hw timeout caused";
 764static const char JPAFSR_SCE_msg[] =
 765	"Parity error on system snoop results";
 766static const char JPAFSR_JEIC_msg[] =
 767	"System interface protocol error, illegal command detected";
 768static const char JPAFSR_JEIT_msg[] =
 769	"System interface protocol error, illegal ADTYPE detected";
 770static const char JPAFSR_OM_msg[] =
 771	"Out of range memory error has occurred";
 772static const char JPAFSR_ETP_msg[] =
 773	"Parity error on L2 cache tag SRAM";
 774static const char JPAFSR_UMS_msg[] =
 775	"Error due to unsupported store";
 776static const char JPAFSR_RUE_msg[] =
 777	"Uncorrectable ECC error from remote cache/memory";
 778static const char JPAFSR_RCE_msg[] =
 779	"Correctable ECC error from remote cache/memory";
 780static const char JPAFSR_BP_msg[] =
 781	"JBUS parity error on returned read data";
 782static const char JPAFSR_WBP_msg[] =
 783	"JBUS parity error on data for writeback or block store";
 784static const char JPAFSR_FRC_msg[] =
 785	"Foreign read to DRAM incurring correctable ECC error";
 786static const char JPAFSR_FRU_msg[] =
 787	"Foreign read to DRAM incurring uncorrectable ECC error";
 788static struct afsr_error_table __jalapeno_error_table[] = {
 789	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 790	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 791	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 792	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 793	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 794	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 795	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 796	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 797	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 798	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 799	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 800	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 801	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 802	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 803	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 804	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 805	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 806	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 807	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 808	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 809	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 810	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 811	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 812	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 813	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 814	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 815	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 816	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 817	/* These two do not update the AFAR. */
 818	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 819	{	0,		NULL			},
 820};
 821static struct afsr_error_table *cheetah_error_table;
 822static unsigned long cheetah_afsr_errors;
 823
 824struct cheetah_err_info *cheetah_error_log;
 825
 826static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 827{
 828	struct cheetah_err_info *p;
 829	int cpu = smp_processor_id();
 830
 831	if (!cheetah_error_log)
 832		return NULL;
 833
 834	p = cheetah_error_log + (cpu * 2);
 835	if ((afsr & CHAFSR_TL1) != 0UL)
 836		p++;
 837
 838	return p;
 839}
 840
 841extern unsigned int tl0_icpe[], tl1_icpe[];
 842extern unsigned int tl0_dcpe[], tl1_dcpe[];
 843extern unsigned int tl0_fecc[], tl1_fecc[];
 844extern unsigned int tl0_cee[], tl1_cee[];
 845extern unsigned int tl0_iae[], tl1_iae[];
 846extern unsigned int tl0_dae[], tl1_dae[];
 847extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 848extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 849extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 850extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 851extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 852
 853void __init cheetah_ecache_flush_init(void)
 854{
 855	unsigned long largest_size, smallest_linesize, order, ver;
 856	int i, sz;
 857
 858	/* Scan all cpu device tree nodes, note two values:
 859	 * 1) largest E-cache size
 860	 * 2) smallest E-cache line size
 861	 */
 862	largest_size = 0UL;
 863	smallest_linesize = ~0UL;
 864
 865	for (i = 0; i < NR_CPUS; i++) {
 866		unsigned long val;
 867
 868		val = cpu_data(i).ecache_size;
 869		if (!val)
 870			continue;
 871
 872		if (val > largest_size)
 873			largest_size = val;
 874
 875		val = cpu_data(i).ecache_line_size;
 876		if (val < smallest_linesize)
 877			smallest_linesize = val;
 878
 879	}
 880
 881	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 882		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 883			    "parameters.\n");
 884		prom_halt();
 885	}
 886
 887	ecache_flush_size = (2 * largest_size);
 888	ecache_flush_linesize = smallest_linesize;
 889
 890	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 891
 892	if (ecache_flush_physbase == ~0UL) {
 893		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 894			    "contiguous physical memory.\n",
 895			    ecache_flush_size);
 896		prom_halt();
 897	}
 898
 899	/* Now allocate error trap reporting scoreboard. */
 900	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 901	for (order = 0; order < NR_PAGE_ORDERS; order++) {
 902		if ((PAGE_SIZE << order) >= sz)
 903			break;
 904	}
 905	cheetah_error_log = (struct cheetah_err_info *)
 906		__get_free_pages(GFP_KERNEL, order);
 907	if (!cheetah_error_log) {
 908		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 909			    "error logging scoreboard (%d bytes).\n", sz);
 910		prom_halt();
 911	}
 912	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 913
 914	/* Mark all AFSRs as invalid so that the trap handler will
 915	 * log new new information there.
 916	 */
 917	for (i = 0; i < 2 * NR_CPUS; i++)
 918		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 919
 920	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 921	if ((ver >> 32) == __JALAPENO_ID ||
 922	    (ver >> 32) == __SERRANO_ID) {
 923		cheetah_error_table = &__jalapeno_error_table[0];
 924		cheetah_afsr_errors = JPAFSR_ERRORS;
 925	} else if ((ver >> 32) == 0x003e0015) {
 926		cheetah_error_table = &__cheetah_plus_error_table[0];
 927		cheetah_afsr_errors = CHPAFSR_ERRORS;
 928	} else {
 929		cheetah_error_table = &__cheetah_error_table[0];
 930		cheetah_afsr_errors = CHAFSR_ERRORS;
 931	}
 932
 933	/* Now patch trap tables. */
 934	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 935	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 936	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 937	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 938	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 939	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 940	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 941	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 942	if (tlb_type == cheetah_plus) {
 943		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 944		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 945		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 946		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 947	}
 948	flushi(PAGE_OFFSET);
 949}
 950
 951static void cheetah_flush_ecache(void)
 952{
 953	unsigned long flush_base = ecache_flush_physbase;
 954	unsigned long flush_linesize = ecache_flush_linesize;
 955	unsigned long flush_size = ecache_flush_size;
 956
 957	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 958			     "   bne,pt	%%xcc, 1b\n\t"
 959			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 960			     : "=&r" (flush_size)
 961			     : "0" (flush_size), "r" (flush_base),
 962			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 963}
 964
 965static void cheetah_flush_ecache_line(unsigned long physaddr)
 966{
 967	unsigned long alias;
 968
 969	physaddr &= ~(8UL - 1UL);
 970	physaddr = (ecache_flush_physbase +
 971		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
 972	alias = physaddr + (ecache_flush_size >> 1UL);
 973	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
 974			     "ldxa [%1] %2, %%g0\n\t"
 975			     "membar #Sync"
 976			     : /* no outputs */
 977			     : "r" (physaddr), "r" (alias),
 978			       "i" (ASI_PHYS_USE_EC));
 979}
 980
 981/* Unfortunately, the diagnostic access to the I-cache tags we need to
 982 * use to clear the thing interferes with I-cache coherency transactions.
 983 *
 984 * So we must only flush the I-cache when it is disabled.
 985 */
 986static void __cheetah_flush_icache(void)
 987{
 988	unsigned int icache_size, icache_line_size;
 989	unsigned long addr;
 990
 991	icache_size = local_cpu_data().icache_size;
 992	icache_line_size = local_cpu_data().icache_line_size;
 993
 994	/* Clear the valid bits in all the tags. */
 995	for (addr = 0; addr < icache_size; addr += icache_line_size) {
 996		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 997				     "membar #Sync"
 998				     : /* no outputs */
 999				     : "r" (addr | (2 << 3)),
1000				       "i" (ASI_IC_TAG));
1001	}
1002}
1003
1004static void cheetah_flush_icache(void)
1005{
1006	unsigned long dcu_save;
1007
1008	/* Save current DCU, disable I-cache. */
1009	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1010			     "or %0, %2, %%g1\n\t"
1011			     "stxa %%g1, [%%g0] %1\n\t"
1012			     "membar #Sync"
1013			     : "=r" (dcu_save)
1014			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1015			     : "g1");
1016
1017	__cheetah_flush_icache();
1018
1019	/* Restore DCU register */
1020	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1021			     "membar #Sync"
1022			     : /* no outputs */
1023			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1024}
1025
1026static void cheetah_flush_dcache(void)
1027{
1028	unsigned int dcache_size, dcache_line_size;
1029	unsigned long addr;
1030
1031	dcache_size = local_cpu_data().dcache_size;
1032	dcache_line_size = local_cpu_data().dcache_line_size;
1033
1034	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1035		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1036				     "membar #Sync"
1037				     : /* no outputs */
1038				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1039	}
1040}
1041
1042/* In order to make the even parity correct we must do two things.
1043 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1044 * Next, we clear out all 32-bytes of data for that line.  Data of
1045 * all-zero + tag parity value of zero == correct parity.
1046 */
1047static void cheetah_plus_zap_dcache_parity(void)
1048{
1049	unsigned int dcache_size, dcache_line_size;
1050	unsigned long addr;
1051
1052	dcache_size = local_cpu_data().dcache_size;
1053	dcache_line_size = local_cpu_data().dcache_line_size;
1054
1055	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1056		unsigned long tag = (addr >> 14);
1057		unsigned long line;
1058
1059		__asm__ __volatile__("membar	#Sync\n\t"
1060				     "stxa	%0, [%1] %2\n\t"
1061				     "membar	#Sync"
1062				     : /* no outputs */
1063				     : "r" (tag), "r" (addr),
1064				       "i" (ASI_DCACHE_UTAG));
1065		for (line = addr; line < addr + dcache_line_size; line += 8)
1066			__asm__ __volatile__("membar	#Sync\n\t"
1067					     "stxa	%%g0, [%0] %1\n\t"
1068					     "membar	#Sync"
1069					     : /* no outputs */
1070					     : "r" (line),
1071					       "i" (ASI_DCACHE_DATA));
1072	}
1073}
1074
1075/* Conversion tables used to frob Cheetah AFSR syndrome values into
1076 * something palatable to the memory controller driver get_unumber
1077 * routine.
1078 */
1079#define MT0	137
1080#define MT1	138
1081#define MT2	139
1082#define NONE	254
1083#define MTC0	140
1084#define MTC1	141
1085#define MTC2	142
1086#define MTC3	143
1087#define C0	128
1088#define C1	129
1089#define C2	130
1090#define C3	131
1091#define C4	132
1092#define C5	133
1093#define C6	134
1094#define C7	135
1095#define C8	136
1096#define M2	144
1097#define M3	145
1098#define M4	146
1099#define M	147
1100static unsigned char cheetah_ecc_syntab[] = {
1101/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1102/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1103/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1104/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1105/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1106/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1107/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1108/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1109/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1110/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1111/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1112/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1113/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1114/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1115/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1116/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1117/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1118/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1119/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1120/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1121/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1122/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1123/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1124/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1125/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1126/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1127/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1128/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1129/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1130/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1131/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1132/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1133};
1134static unsigned char cheetah_mtag_syntab[] = {
1135       NONE, MTC0,
1136       MTC1, NONE,
1137       MTC2, NONE,
1138       NONE, MT0,
1139       MTC3, NONE,
1140       NONE, MT1,
1141       NONE, MT2,
1142       NONE, NONE
1143};
1144
1145/* Return the highest priority error conditon mentioned. */
1146static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1147{
1148	unsigned long tmp = 0;
1149	int i;
1150
1151	for (i = 0; cheetah_error_table[i].mask; i++) {
1152		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1153			return tmp;
1154	}
1155	return tmp;
1156}
1157
1158static const char *cheetah_get_string(unsigned long bit)
1159{
1160	int i;
1161
1162	for (i = 0; cheetah_error_table[i].mask; i++) {
1163		if ((bit & cheetah_error_table[i].mask) != 0UL)
1164			return cheetah_error_table[i].name;
1165	}
1166	return "???";
1167}
1168
1169static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1170			       unsigned long afsr, unsigned long afar, int recoverable)
1171{
1172	unsigned long hipri;
1173	char unum[256];
1174
1175	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1176	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1177	       afsr, afar,
1178	       (afsr & CHAFSR_TL1) ? 1 : 0);
1179	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1180	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1181	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1182	printk("%s" "ERROR(%d): ",
1183	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1184	printk("TPC<%pS>\n", (void *) regs->tpc);
1185	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1186	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1187	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1188	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1189	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1190	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1191	hipri = cheetah_get_hipri(afsr);
1192	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1193	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1194	       hipri, cheetah_get_string(hipri));
1195
1196	/* Try to get unumber if relevant. */
1197#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1198			 CHAFSR_CPC | CHAFSR_CPU | \
1199			 CHAFSR_UE  | CHAFSR_CE  | \
1200			 CHAFSR_EDC | CHAFSR_EDU  | \
1201			 CHAFSR_UCC | CHAFSR_UCU  | \
1202			 CHAFSR_WDU | CHAFSR_WDC)
1203#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1204	if (afsr & ESYND_ERRORS) {
1205		int syndrome;
1206		int ret;
1207
1208		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1209		syndrome = cheetah_ecc_syntab[syndrome];
1210		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1211		if (ret != -1)
1212			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1213			       (recoverable ? KERN_WARNING : KERN_CRIT),
1214			       smp_processor_id(), unum);
1215	} else if (afsr & MSYND_ERRORS) {
1216		int syndrome;
1217		int ret;
1218
1219		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1220		syndrome = cheetah_mtag_syntab[syndrome];
1221		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1222		if (ret != -1)
1223			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1224			       (recoverable ? KERN_WARNING : KERN_CRIT),
1225			       smp_processor_id(), unum);
1226	}
1227
1228	/* Now dump the cache snapshots. */
1229	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1230	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1231	       (int) info->dcache_index,
1232	       info->dcache_tag,
1233	       info->dcache_utag,
1234	       info->dcache_stag);
1235	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1236	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1237	       info->dcache_data[0],
1238	       info->dcache_data[1],
1239	       info->dcache_data[2],
1240	       info->dcache_data[3]);
1241	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1242	       "u[%016llx] l[%016llx]\n",
1243	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1244	       (int) info->icache_index,
1245	       info->icache_tag,
1246	       info->icache_utag,
1247	       info->icache_stag,
1248	       info->icache_upper,
1249	       info->icache_lower);
1250	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1251	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1252	       info->icache_data[0],
1253	       info->icache_data[1],
1254	       info->icache_data[2],
1255	       info->icache_data[3]);
1256	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1257	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1258	       info->icache_data[4],
1259	       info->icache_data[5],
1260	       info->icache_data[6],
1261	       info->icache_data[7]);
1262	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1263	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1264	       (int) info->ecache_index, info->ecache_tag);
1265	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1266	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1267	       info->ecache_data[0],
1268	       info->ecache_data[1],
1269	       info->ecache_data[2],
1270	       info->ecache_data[3]);
1271
1272	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1273	while (afsr != 0UL) {
1274		unsigned long bit = cheetah_get_hipri(afsr);
1275
1276		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1277		       (recoverable ? KERN_WARNING : KERN_CRIT),
1278		       bit, cheetah_get_string(bit));
1279
1280		afsr &= ~bit;
1281	}
1282
1283	if (!recoverable)
1284		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1285}
1286
1287static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1288{
1289	unsigned long afsr, afar;
1290	int ret = 0;
1291
1292	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1293			     : "=r" (afsr)
1294			     : "i" (ASI_AFSR));
1295	if ((afsr & cheetah_afsr_errors) != 0) {
1296		if (logp != NULL) {
1297			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1298					     : "=r" (afar)
1299					     : "i" (ASI_AFAR));
1300			logp->afsr = afsr;
1301			logp->afar = afar;
1302		}
1303		ret = 1;
1304	}
1305	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1306			     "membar #Sync\n\t"
1307			     : : "r" (afsr), "i" (ASI_AFSR));
1308
1309	return ret;
1310}
1311
1312void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1313{
1314	struct cheetah_err_info local_snapshot, *p;
1315	int recoverable;
1316
1317	/* Flush E-cache */
1318	cheetah_flush_ecache();
1319
1320	p = cheetah_get_error_log(afsr);
1321	if (!p) {
1322		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1323			    afsr, afar);
1324		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1325			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1326		prom_halt();
1327	}
1328
1329	/* Grab snapshot of logged error. */
1330	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1331
1332	/* If the current trap snapshot does not match what the
1333	 * trap handler passed along into our args, big trouble.
1334	 * In such a case, mark the local copy as invalid.
1335	 *
1336	 * Else, it matches and we mark the afsr in the non-local
1337	 * copy as invalid so we may log new error traps there.
1338	 */
1339	if (p->afsr != afsr || p->afar != afar)
1340		local_snapshot.afsr = CHAFSR_INVALID;
1341	else
1342		p->afsr = CHAFSR_INVALID;
1343
1344	cheetah_flush_icache();
1345	cheetah_flush_dcache();
1346
1347	/* Re-enable I-cache/D-cache */
1348	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1349			     "or %%g1, %1, %%g1\n\t"
1350			     "stxa %%g1, [%%g0] %0\n\t"
1351			     "membar #Sync"
1352			     : /* no outputs */
1353			     : "i" (ASI_DCU_CONTROL_REG),
1354			       "i" (DCU_DC | DCU_IC)
1355			     : "g1");
1356
1357	/* Re-enable error reporting */
1358	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1359			     "or %%g1, %1, %%g1\n\t"
1360			     "stxa %%g1, [%%g0] %0\n\t"
1361			     "membar #Sync"
1362			     : /* no outputs */
1363			     : "i" (ASI_ESTATE_ERROR_EN),
1364			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1365			     : "g1");
1366
1367	/* Decide if we can continue after handling this trap and
1368	 * logging the error.
1369	 */
1370	recoverable = 1;
1371	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1372		recoverable = 0;
1373
1374	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1375	 * error was logged while we had error reporting traps disabled.
1376	 */
1377	if (cheetah_recheck_errors(&local_snapshot)) {
1378		unsigned long new_afsr = local_snapshot.afsr;
1379
1380		/* If we got a new asynchronous error, die... */
1381		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1382				CHAFSR_WDU | CHAFSR_CPU |
1383				CHAFSR_IVU | CHAFSR_UE |
1384				CHAFSR_BERR | CHAFSR_TO))
1385			recoverable = 0;
1386	}
1387
1388	/* Log errors. */
1389	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1390
1391	if (!recoverable)
1392		panic("Irrecoverable Fast-ECC error trap.\n");
1393
1394	/* Flush E-cache to kick the error trap handlers out. */
1395	cheetah_flush_ecache();
1396}
1397
1398/* Try to fix a correctable error by pushing the line out from
1399 * the E-cache.  Recheck error reporting registers to see if the
1400 * problem is intermittent.
1401 */
1402static int cheetah_fix_ce(unsigned long physaddr)
1403{
1404	unsigned long orig_estate;
1405	unsigned long alias1, alias2;
1406	int ret;
1407
1408	/* Make sure correctable error traps are disabled. */
1409	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1410			     "andn	%0, %1, %%g1\n\t"
1411			     "stxa	%%g1, [%%g0] %2\n\t"
1412			     "membar	#Sync"
1413			     : "=&r" (orig_estate)
1414			     : "i" (ESTATE_ERROR_CEEN),
1415			       "i" (ASI_ESTATE_ERROR_EN)
1416			     : "g1");
1417
1418	/* We calculate alias addresses that will force the
1419	 * cache line in question out of the E-cache.  Then
1420	 * we bring it back in with an atomic instruction so
1421	 * that we get it in some modified/exclusive state,
1422	 * then we displace it again to try and get proper ECC
1423	 * pushed back into the system.
1424	 */
1425	physaddr &= ~(8UL - 1UL);
1426	alias1 = (ecache_flush_physbase +
1427		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1428	alias2 = alias1 + (ecache_flush_size >> 1);
1429	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1430			     "ldxa	[%1] %3, %%g0\n\t"
1431			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1432			     "ldxa	[%0] %3, %%g0\n\t"
1433			     "ldxa	[%1] %3, %%g0\n\t"
1434			     "membar	#Sync"
1435			     : /* no outputs */
1436			     : "r" (alias1), "r" (alias2),
1437			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1438
1439	/* Did that trigger another error? */
1440	if (cheetah_recheck_errors(NULL)) {
1441		/* Try one more time. */
1442		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1443				     "membar #Sync"
1444				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1445		if (cheetah_recheck_errors(NULL))
1446			ret = 2;
1447		else
1448			ret = 1;
1449	} else {
1450		/* No new error, intermittent problem. */
1451		ret = 0;
1452	}
1453
1454	/* Restore error enables. */
1455	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1456			     "membar	#Sync"
1457			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1458
1459	return ret;
1460}
1461
1462/* Return non-zero if PADDR is a valid physical memory address. */
1463static int cheetah_check_main_memory(unsigned long paddr)
1464{
1465	unsigned long vaddr = PAGE_OFFSET + paddr;
1466
1467	if (vaddr > (unsigned long) high_memory)
1468		return 0;
1469
1470	return kern_addr_valid(vaddr);
1471}
1472
1473void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1474{
1475	struct cheetah_err_info local_snapshot, *p;
1476	int recoverable, is_memory;
1477
1478	p = cheetah_get_error_log(afsr);
1479	if (!p) {
1480		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1481			    afsr, afar);
1482		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1483			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1484		prom_halt();
1485	}
1486
1487	/* Grab snapshot of logged error. */
1488	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1489
1490	/* If the current trap snapshot does not match what the
1491	 * trap handler passed along into our args, big trouble.
1492	 * In such a case, mark the local copy as invalid.
1493	 *
1494	 * Else, it matches and we mark the afsr in the non-local
1495	 * copy as invalid so we may log new error traps there.
1496	 */
1497	if (p->afsr != afsr || p->afar != afar)
1498		local_snapshot.afsr = CHAFSR_INVALID;
1499	else
1500		p->afsr = CHAFSR_INVALID;
1501
1502	is_memory = cheetah_check_main_memory(afar);
1503
1504	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1505		/* XXX Might want to log the results of this operation
1506		 * XXX somewhere... -DaveM
1507		 */
1508		cheetah_fix_ce(afar);
1509	}
1510
1511	{
1512		int flush_all, flush_line;
1513
1514		flush_all = flush_line = 0;
1515		if ((afsr & CHAFSR_EDC) != 0UL) {
1516			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1517				flush_line = 1;
1518			else
1519				flush_all = 1;
1520		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1521			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1522				flush_line = 1;
1523			else
1524				flush_all = 1;
1525		}
1526
1527		/* Trap handler only disabled I-cache, flush it. */
1528		cheetah_flush_icache();
1529
1530		/* Re-enable I-cache */
1531		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1532				     "or %%g1, %1, %%g1\n\t"
1533				     "stxa %%g1, [%%g0] %0\n\t"
1534				     "membar #Sync"
1535				     : /* no outputs */
1536				     : "i" (ASI_DCU_CONTROL_REG),
1537				     "i" (DCU_IC)
1538				     : "g1");
1539
1540		if (flush_all)
1541			cheetah_flush_ecache();
1542		else if (flush_line)
1543			cheetah_flush_ecache_line(afar);
1544	}
1545
1546	/* Re-enable error reporting */
1547	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1548			     "or %%g1, %1, %%g1\n\t"
1549			     "stxa %%g1, [%%g0] %0\n\t"
1550			     "membar #Sync"
1551			     : /* no outputs */
1552			     : "i" (ASI_ESTATE_ERROR_EN),
1553			       "i" (ESTATE_ERROR_CEEN)
1554			     : "g1");
1555
1556	/* Decide if we can continue after handling this trap and
1557	 * logging the error.
1558	 */
1559	recoverable = 1;
1560	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1561		recoverable = 0;
1562
1563	/* Re-check AFSR/AFAR */
1564	(void) cheetah_recheck_errors(&local_snapshot);
1565
1566	/* Log errors. */
1567	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1568
1569	if (!recoverable)
1570		panic("Irrecoverable Correctable-ECC error trap.\n");
1571}
1572
1573void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1574{
1575	struct cheetah_err_info local_snapshot, *p;
1576	int recoverable, is_memory;
1577
1578#ifdef CONFIG_PCI
1579	/* Check for the special PCI poke sequence. */
1580	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1581		cheetah_flush_icache();
1582		cheetah_flush_dcache();
1583
1584		/* Re-enable I-cache/D-cache */
1585		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1586				     "or %%g1, %1, %%g1\n\t"
1587				     "stxa %%g1, [%%g0] %0\n\t"
1588				     "membar #Sync"
1589				     : /* no outputs */
1590				     : "i" (ASI_DCU_CONTROL_REG),
1591				       "i" (DCU_DC | DCU_IC)
1592				     : "g1");
1593
1594		/* Re-enable error reporting */
1595		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1596				     "or %%g1, %1, %%g1\n\t"
1597				     "stxa %%g1, [%%g0] %0\n\t"
1598				     "membar #Sync"
1599				     : /* no outputs */
1600				     : "i" (ASI_ESTATE_ERROR_EN),
1601				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1602				     : "g1");
1603
1604		(void) cheetah_recheck_errors(NULL);
1605
1606		pci_poke_faulted = 1;
1607		regs->tpc += 4;
1608		regs->tnpc = regs->tpc + 4;
1609		return;
1610	}
1611#endif
1612
1613	p = cheetah_get_error_log(afsr);
1614	if (!p) {
1615		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1616			    afsr, afar);
1617		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1618			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1619		prom_halt();
1620	}
1621
1622	/* Grab snapshot of logged error. */
1623	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1624
1625	/* If the current trap snapshot does not match what the
1626	 * trap handler passed along into our args, big trouble.
1627	 * In such a case, mark the local copy as invalid.
1628	 *
1629	 * Else, it matches and we mark the afsr in the non-local
1630	 * copy as invalid so we may log new error traps there.
1631	 */
1632	if (p->afsr != afsr || p->afar != afar)
1633		local_snapshot.afsr = CHAFSR_INVALID;
1634	else
1635		p->afsr = CHAFSR_INVALID;
1636
1637	is_memory = cheetah_check_main_memory(afar);
1638
1639	{
1640		int flush_all, flush_line;
1641
1642		flush_all = flush_line = 0;
1643		if ((afsr & CHAFSR_EDU) != 0UL) {
1644			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1645				flush_line = 1;
1646			else
1647				flush_all = 1;
1648		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1649			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1650				flush_line = 1;
1651			else
1652				flush_all = 1;
1653		}
1654
1655		cheetah_flush_icache();
1656		cheetah_flush_dcache();
1657
1658		/* Re-enable I/D caches */
1659		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1660				     "or %%g1, %1, %%g1\n\t"
1661				     "stxa %%g1, [%%g0] %0\n\t"
1662				     "membar #Sync"
1663				     : /* no outputs */
1664				     : "i" (ASI_DCU_CONTROL_REG),
1665				     "i" (DCU_IC | DCU_DC)
1666				     : "g1");
1667
1668		if (flush_all)
1669			cheetah_flush_ecache();
1670		else if (flush_line)
1671			cheetah_flush_ecache_line(afar);
1672	}
1673
1674	/* Re-enable error reporting */
1675	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1676			     "or %%g1, %1, %%g1\n\t"
1677			     "stxa %%g1, [%%g0] %0\n\t"
1678			     "membar #Sync"
1679			     : /* no outputs */
1680			     : "i" (ASI_ESTATE_ERROR_EN),
1681			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1682			     : "g1");
1683
1684	/* Decide if we can continue after handling this trap and
1685	 * logging the error.
1686	 */
1687	recoverable = 1;
1688	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1689		recoverable = 0;
1690
1691	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1692	 * error was logged while we had error reporting traps disabled.
1693	 */
1694	if (cheetah_recheck_errors(&local_snapshot)) {
1695		unsigned long new_afsr = local_snapshot.afsr;
1696
1697		/* If we got a new asynchronous error, die... */
1698		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1699				CHAFSR_WDU | CHAFSR_CPU |
1700				CHAFSR_IVU | CHAFSR_UE |
1701				CHAFSR_BERR | CHAFSR_TO))
1702			recoverable = 0;
1703	}
1704
1705	/* Log errors. */
1706	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1707
1708	/* "Recoverable" here means we try to yank the page from ever
1709	 * being newly used again.  This depends upon a few things:
1710	 * 1) Must be main memory, and AFAR must be valid.
1711	 * 2) If we trapped from user, OK.
1712	 * 3) Else, if we trapped from kernel we must find exception
1713	 *    table entry (ie. we have to have been accessing user
1714	 *    space).
1715	 *
1716	 * If AFAR is not in main memory, or we trapped from kernel
1717	 * and cannot find an exception table entry, it is unacceptable
1718	 * to try and continue.
1719	 */
1720	if (recoverable && is_memory) {
1721		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1722			/* OK, usermode access. */
1723			recoverable = 1;
1724		} else {
1725			const struct exception_table_entry *entry;
1726
1727			entry = search_exception_tables(regs->tpc);
1728			if (entry) {
1729				/* OK, kernel access to userspace. */
1730				recoverable = 1;
1731
1732			} else {
1733				/* BAD, privileged state is corrupted. */
1734				recoverable = 0;
1735			}
1736
1737			if (recoverable) {
1738				if (pfn_valid(afar >> PAGE_SHIFT))
1739					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1740				else
1741					recoverable = 0;
1742
1743				/* Only perform fixup if we still have a
1744				 * recoverable condition.
1745				 */
1746				if (recoverable) {
1747					regs->tpc = entry->fixup;
1748					regs->tnpc = regs->tpc + 4;
1749				}
1750			}
1751		}
1752	} else {
1753		recoverable = 0;
1754	}
1755
1756	if (!recoverable)
1757		panic("Irrecoverable deferred error trap.\n");
1758}
1759
1760/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1761 *
1762 * Bit0:	0=dcache,1=icache
1763 * Bit1:	0=recoverable,1=unrecoverable
1764 *
1765 * The hardware has disabled both the I-cache and D-cache in
1766 * the %dcr register.  
1767 */
1768void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1769{
1770	if (type & 0x1)
1771		__cheetah_flush_icache();
1772	else
1773		cheetah_plus_zap_dcache_parity();
1774	cheetah_flush_dcache();
1775
1776	/* Re-enable I-cache/D-cache */
1777	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1778			     "or %%g1, %1, %%g1\n\t"
1779			     "stxa %%g1, [%%g0] %0\n\t"
1780			     "membar #Sync"
1781			     : /* no outputs */
1782			     : "i" (ASI_DCU_CONTROL_REG),
1783			       "i" (DCU_DC | DCU_IC)
1784			     : "g1");
1785
1786	if (type & 0x2) {
1787		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1788		       smp_processor_id(),
1789		       (type & 0x1) ? 'I' : 'D',
1790		       regs->tpc);
1791		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1792		panic("Irrecoverable Cheetah+ parity error.");
1793	}
1794
1795	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1796	       smp_processor_id(),
1797	       (type & 0x1) ? 'I' : 'D',
1798	       regs->tpc);
1799	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1800}
1801
1802struct sun4v_error_entry {
1803	/* Unique error handle */
1804/*0x00*/u64		err_handle;
1805
1806	/* %stick value at the time of the error */
1807/*0x08*/u64		err_stick;
1808
1809/*0x10*/u8		reserved_1[3];
1810
1811	/* Error type */
1812/*0x13*/u8		err_type;
1813#define SUN4V_ERR_TYPE_UNDEFINED	0
1814#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1815#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1816#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1817#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1818#define SUN4V_ERR_TYPE_DUMP_CORE	5
1819#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1820#define SUN4V_ERR_TYPE_NUM		7
1821
1822	/* Error attributes */
1823/*0x14*/u32		err_attrs;
1824#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1825#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1826#define SUN4V_ERR_ATTRS_PIO		0x00000004
1827#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1828#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1829#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1830#define SUN4V_ERR_ATTRS_ASR		0x00000040
1831#define SUN4V_ERR_ATTRS_ASI		0x00000080
1832#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1833#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1834#define SUN4V_ERR_ATTRS_MCD		0x00000800
1835#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1836#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1837#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1838#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1839
1840#define SUN4V_ERR_SPSTATE_FAULTED	0
1841#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1842#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1843
1844#define SUN4V_ERR_MODE_USER		1
1845#define SUN4V_ERR_MODE_PRIV		2
1846
1847	/* Real address of the memory region or PIO transaction */
1848/*0x18*/u64		err_raddr;
1849
1850	/* Size of the operation triggering the error, in bytes */
1851/*0x20*/u32		err_size;
1852
1853	/* ID of the CPU */
1854/*0x24*/u16		err_cpu;
1855
1856	/* Grace periof for shutdown, in seconds */
1857/*0x26*/u16		err_secs;
1858
1859	/* Value of the %asi register */
1860/*0x28*/u8		err_asi;
1861
1862/*0x29*/u8		reserved_2;
1863
1864	/* Value of the ASR register number */
1865/*0x2a*/u16		err_asr;
1866#define SUN4V_ERR_ASR_VALID		0x8000
1867
1868/*0x2c*/u32		reserved_3;
1869/*0x30*/u64		reserved_4;
1870/*0x38*/u64		reserved_5;
1871};
1872
1873static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1874static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1875
1876static const char *sun4v_err_type_to_str(u8 type)
1877{
1878	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1879		"undefined",
1880		"uncorrected resumable",
1881		"precise nonresumable",
1882		"deferred nonresumable",
1883		"shutdown request",
1884		"dump core",
1885		"SP state change",
1886	};
1887
1888	if (type < SUN4V_ERR_TYPE_NUM)
1889		return types[type];
1890
1891	return "unknown";
1892}
1893
1894static void sun4v_emit_err_attr_strings(u32 attrs)
1895{
1896	static const char *attr_names[] = {
1897		"processor",
1898		"memory",
1899		"PIO",
1900		"int-registers",
1901		"fpu-registers",
1902		"shutdown-request",
1903		"ASR",
1904		"ASI",
1905		"priv-reg",
1906	};
1907	static const char *sp_states[] = {
1908		"sp-faulted",
1909		"sp-available",
1910		"sp-not-present",
1911		"sp-state-reserved",
1912	};
1913	static const char *modes[] = {
1914		"mode-reserved0",
1915		"user",
1916		"priv",
1917		"mode-reserved1",
1918	};
1919	u32 sp_state, mode;
1920	int i;
1921
1922	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1923		if (attrs & (1U << i)) {
1924			const char *s = attr_names[i];
1925
1926			pr_cont("%s ", s);
1927		}
1928	}
1929
1930	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1931		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1932	pr_cont("%s ", sp_states[sp_state]);
1933
1934	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1935		SUN4V_ERR_ATTRS_MODE_SHFT);
1936	pr_cont("%s ", modes[mode]);
1937
1938	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1939		pr_cont("res-queue-full ");
1940}
1941
1942/* When the report contains a real-address of "-1" it means that the
1943 * hardware did not provide the address.  So we compute the effective
1944 * address of the load or store instruction at regs->tpc and report
1945 * that.  Usually when this happens it's a PIO and in such a case we
1946 * are using physical addresses with bypass ASIs anyways, so what we
1947 * report here is exactly what we want.
1948 */
1949static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1950{
1951	unsigned int insn;
1952	u64 addr;
1953
1954	if (!(regs->tstate & TSTATE_PRIV))
1955		return;
1956
1957	insn = *(unsigned int *) regs->tpc;
1958
1959	addr = compute_effective_address(regs, insn, 0);
1960
1961	printk("%s: insn effective address [0x%016llx]\n",
1962	       pfx, addr);
1963}
1964
1965static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1966			    int cpu, const char *pfx, atomic_t *ocnt)
1967{
1968	u64 *raw_ptr = (u64 *) ent;
1969	u32 attrs;
1970	int cnt;
1971
1972	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1973	printk("%s: TPC [0x%016lx] <%pS>\n",
1974	       pfx, regs->tpc, (void *) regs->tpc);
1975
1976	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1977	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1978	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1979	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1980
1981	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1982	       pfx, ent->err_handle, ent->err_stick);
1983
1984	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1985
1986	attrs = ent->err_attrs;
1987	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1988	sun4v_emit_err_attr_strings(attrs);
1989	pr_cont(">\n");
1990
1991	/* Various fields in the error report are only valid if
1992	 * certain attribute bits are set.
1993	 */
1994	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1995		     SUN4V_ERR_ATTRS_PIO |
1996		     SUN4V_ERR_ATTRS_ASI)) {
1997		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1998
1999		if (ent->err_raddr == ~(u64)0)
2000			sun4v_report_real_raddr(pfx, regs);
2001	}
2002
2003	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2004		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2005
2006	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2007		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2008		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2009		     SUN4V_ERR_ATTRS_PRIV_REG))
2010		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2011
2012	if (attrs & SUN4V_ERR_ATTRS_ASI)
2013		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2014
2015	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2016		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2017		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2018	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2019		printk("%s: reg [0x%04x]\n",
2020		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2021
2022	show_regs(regs);
2023
2024	if ((cnt = atomic_read(ocnt)) != 0) {
2025		atomic_set(ocnt, 0);
2026		wmb();
2027		printk("%s: Queue overflowed %d times.\n",
2028		       pfx, cnt);
2029	}
2030}
2031
2032/* Handle memory corruption detected error which is vectored in
2033 * through resumable error trap.
2034 */
2035static void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2036{
2037	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2038		       SIGSEGV) == NOTIFY_STOP)
2039		return;
2040
2041	if (regs->tstate & TSTATE_PRIV) {
2042		/* MCD exception could happen because the task was
2043		 * running a system call with MCD enabled and passed a
2044		 * non-versioned pointer or pointer with bad version
2045		 * tag to the system call. In such cases, hypervisor
2046		 * places the address of offending instruction in the
2047		 * resumable error report. This is a deferred error,
2048		 * so the read/write that caused the trap was potentially
2049		 * retired long time back and we may have no choice
2050		 * but to send SIGSEGV to the process.
2051		 */
2052		const struct exception_table_entry *entry;
2053
2054		entry = search_exception_tables(regs->tpc);
2055		if (entry) {
2056			/* Looks like a bad syscall parameter */
2057#ifdef DEBUG_EXCEPTIONS
2058			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2059				 regs->tpc);
2060			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2061				 ent.err_raddr, entry->fixup);
2062#endif
2063			regs->tpc = entry->fixup;
2064			regs->tnpc = regs->tpc + 4;
2065			return;
2066		}
2067	}
2068
2069	/* Send SIGSEGV to the userspace process with the right signal
2070	 * code
2071	 */
2072	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr);
 
2073}
2074
2075/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2076 * Log the event and clear the first word of the entry.
2077 */
2078void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2079{
2080	enum ctx_state prev_state = exception_enter();
2081	struct sun4v_error_entry *ent, local_copy;
2082	struct trap_per_cpu *tb;
2083	unsigned long paddr;
2084	int cpu;
2085
2086	cpu = get_cpu();
2087
2088	tb = &trap_block[cpu];
2089	paddr = tb->resum_kernel_buf_pa + offset;
2090	ent = __va(paddr);
2091
2092	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2093
2094	/* We have a local copy now, so release the entry.  */
2095	ent->err_handle = 0;
2096	wmb();
2097
2098	put_cpu();
2099
2100	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2101		/* We should really take the seconds field of
2102		 * the error report and use it for the shutdown
2103		 * invocation, but for now do the same thing we
2104		 * do for a DS shutdown request.
2105		 */
2106		pr_info("Shutdown request, %u seconds...\n",
2107			local_copy.err_secs);
2108		orderly_poweroff(true);
2109		goto out;
2110	}
2111
2112	/* If this is a memory corruption detected error vectored in
2113	 * by HV through resumable error trap, call the handler
2114	 */
2115	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2116		do_mcd_err(regs, local_copy);
2117		return;
2118	}
2119
2120	sun4v_log_error(regs, &local_copy, cpu,
2121			KERN_ERR "RESUMABLE ERROR",
2122			&sun4v_resum_oflow_cnt);
2123out:
2124	exception_exit(prev_state);
2125}
2126
2127/* If we try to printk() we'll probably make matters worse, by trying
2128 * to retake locks this cpu already holds or causing more errors. So
2129 * just bump a counter, and we'll report these counter bumps above.
2130 */
2131void sun4v_resum_overflow(struct pt_regs *regs)
2132{
2133	atomic_inc(&sun4v_resum_oflow_cnt);
2134}
2135
2136/* Given a set of registers, get the virtual addressi that was being accessed
2137 * by the faulting instructions at tpc.
2138 */
2139static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2140{
2141	unsigned int insn;
2142
2143	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2144		return compute_effective_address(regs, insn,
2145						 (insn >> 25) & 0x1f);
2146	}
2147	return 0;
2148}
2149
2150/* Attempt to handle non-resumable errors generated from userspace.
2151 * Returns true if the signal was handled, false otherwise.
2152 */
2153static bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2154					      struct sun4v_error_entry *ent)
2155{
2156	unsigned int attrs = ent->err_attrs;
2157
2158	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2159		unsigned long addr = ent->err_raddr;
 
2160
2161		if (addr == ~(u64)0) {
2162			/* This seems highly unlikely to ever occur */
2163			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2164		} else {
2165			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2166							      PAGE_SIZE);
2167
2168			/* Break the unfortunate news. */
2169			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2170				 addr);
2171			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2172				 page_cnt);
2173
2174			while (page_cnt-- > 0) {
2175				if (pfn_valid(addr >> PAGE_SHIFT))
2176					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2177				addr += PAGE_SIZE;
2178			}
2179		}
2180		force_sig(SIGKILL);
 
 
 
2181
2182		return true;
2183	}
2184	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2185		force_sig_fault(SIGBUS, BUS_ADRERR,
2186				(void __user *)sun4v_get_vaddr(regs));
 
 
 
 
 
2187		return true;
2188	}
2189
2190	/* Default to doing nothing */
2191	return false;
2192}
2193
2194/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2195 * Log the event, clear the first word of the entry, and die.
2196 */
2197void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2198{
2199	struct sun4v_error_entry *ent, local_copy;
2200	struct trap_per_cpu *tb;
2201	unsigned long paddr;
2202	int cpu;
2203
2204	cpu = get_cpu();
2205
2206	tb = &trap_block[cpu];
2207	paddr = tb->nonresum_kernel_buf_pa + offset;
2208	ent = __va(paddr);
2209
2210	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2211
2212	/* We have a local copy now, so release the entry.  */
2213	ent->err_handle = 0;
2214	wmb();
2215
2216	put_cpu();
2217
2218	if (!(regs->tstate & TSTATE_PRIV) &&
2219	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2220		/* DON'T PANIC: This userspace error was handled. */
2221		return;
2222	}
2223
2224#ifdef CONFIG_PCI
2225	/* Check for the special PCI poke sequence. */
2226	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2227		pci_poke_faulted = 1;
2228		regs->tpc += 4;
2229		regs->tnpc = regs->tpc + 4;
2230		return;
2231	}
2232#endif
2233
2234	sun4v_log_error(regs, &local_copy, cpu,
2235			KERN_EMERG "NON-RESUMABLE ERROR",
2236			&sun4v_nonresum_oflow_cnt);
2237
2238	panic("Non-resumable error.");
2239}
2240
2241/* If we try to printk() we'll probably make matters worse, by trying
2242 * to retake locks this cpu already holds or causing more errors. So
2243 * just bump a counter, and we'll report these counter bumps above.
2244 */
2245void sun4v_nonresum_overflow(struct pt_regs *regs)
2246{
2247	/* XXX Actually even this can make not that much sense.  Perhaps
2248	 * XXX we should just pull the plug and panic directly from here?
2249	 */
2250	atomic_inc(&sun4v_nonresum_oflow_cnt);
2251}
2252
2253static void sun4v_tlb_error(struct pt_regs *regs)
2254{
2255	die_if_kernel("TLB/TSB error", regs);
2256}
2257
2258unsigned long sun4v_err_itlb_vaddr;
2259unsigned long sun4v_err_itlb_ctx;
2260unsigned long sun4v_err_itlb_pte;
2261unsigned long sun4v_err_itlb_error;
2262
2263void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2264{
2265	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2266
2267	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2268	       regs->tpc, tl);
2269	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2270	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2271	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2272	       (void *) regs->u_regs[UREG_I7]);
2273	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2274	       "pte[%lx] error[%lx]\n",
2275	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2276	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2277
2278	sun4v_tlb_error(regs);
2279}
2280
2281unsigned long sun4v_err_dtlb_vaddr;
2282unsigned long sun4v_err_dtlb_ctx;
2283unsigned long sun4v_err_dtlb_pte;
2284unsigned long sun4v_err_dtlb_error;
2285
2286void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2287{
2288	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2289
2290	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2291	       regs->tpc, tl);
2292	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2293	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2294	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2295	       (void *) regs->u_regs[UREG_I7]);
2296	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2297	       "pte[%lx] error[%lx]\n",
2298	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2299	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2300
2301	sun4v_tlb_error(regs);
2302}
2303
2304void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2305{
2306	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2307	       err, op);
2308}
2309
2310void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2311{
2312	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2313	       err, op);
2314}
2315
2316static void do_fpe_common(struct pt_regs *regs)
2317{
2318	if (regs->tstate & TSTATE_PRIV) {
2319		regs->tpc = regs->tnpc;
2320		regs->tnpc += 4;
2321	} else {
2322		unsigned long fsr = current_thread_info()->xfsr[0];
2323		int code;
2324
2325		if (test_thread_flag(TIF_32BIT)) {
2326			regs->tpc &= 0xffffffff;
2327			regs->tnpc &= 0xffffffff;
2328		}
2329		code = FPE_FLTUNK;
 
 
 
 
2330		if ((fsr & 0x1c000) == (1 << 14)) {
2331			if (fsr & 0x10)
2332				code = FPE_FLTINV;
2333			else if (fsr & 0x08)
2334				code = FPE_FLTOVF;
2335			else if (fsr & 0x04)
2336				code = FPE_FLTUND;
2337			else if (fsr & 0x02)
2338				code = FPE_FLTDIV;
2339			else if (fsr & 0x01)
2340				code = FPE_FLTRES;
2341		}
2342		force_sig_fault(SIGFPE, code, (void __user *)regs->tpc);
2343	}
2344}
2345
2346void do_fpieee(struct pt_regs *regs)
2347{
2348	enum ctx_state prev_state = exception_enter();
2349
2350	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2351		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2352		goto out;
2353
2354	do_fpe_common(regs);
2355out:
2356	exception_exit(prev_state);
2357}
2358
2359void do_fpother(struct pt_regs *regs)
2360{
2361	enum ctx_state prev_state = exception_enter();
2362	struct fpustate *f = FPUSTATE;
2363	int ret = 0;
2364
2365	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2366		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2367		goto out;
2368
2369	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2370	case (2 << 14): /* unfinished_FPop */
2371	case (3 << 14): /* unimplemented_FPop */
2372		ret = do_mathemu(regs, f, false);
2373		break;
2374	}
2375	if (ret)
2376		goto out;
2377	do_fpe_common(regs);
2378out:
2379	exception_exit(prev_state);
2380}
2381
2382void do_tof(struct pt_regs *regs)
2383{
2384	enum ctx_state prev_state = exception_enter();
 
2385
2386	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2387		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2388		goto out;
2389
2390	if (regs->tstate & TSTATE_PRIV)
2391		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2392	if (test_thread_flag(TIF_32BIT)) {
2393		regs->tpc &= 0xffffffff;
2394		regs->tnpc &= 0xffffffff;
2395	}
2396	force_sig_fault(SIGEMT, EMT_TAGOVF, (void __user *)regs->tpc);
 
 
 
 
 
2397out:
2398	exception_exit(prev_state);
2399}
2400
2401void do_div0(struct pt_regs *regs)
2402{
2403	enum ctx_state prev_state = exception_enter();
 
2404
2405	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2406		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2407		goto out;
2408
2409	if (regs->tstate & TSTATE_PRIV)
2410		die_if_kernel("TL0: Kernel divide by zero.", regs);
2411	if (test_thread_flag(TIF_32BIT)) {
2412		regs->tpc &= 0xffffffff;
2413		regs->tnpc &= 0xffffffff;
2414	}
2415	force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->tpc);
 
 
 
 
 
2416out:
2417	exception_exit(prev_state);
2418}
2419
2420static void instruction_dump(unsigned int *pc)
2421{
2422	int i;
2423
2424	if ((((unsigned long) pc) & 3))
2425		return;
2426
2427	printk("Instruction DUMP:");
2428	for (i = -3; i < 6; i++)
2429		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2430	printk("\n");
2431}
2432
2433static void user_instruction_dump(unsigned int __user *pc)
2434{
2435	int i;
2436	unsigned int buf[9];
2437	
2438	if ((((unsigned long) pc) & 3))
2439		return;
2440		
2441	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2442		return;
2443
2444	printk("Instruction DUMP:");
2445	for (i = 0; i < 9; i++)
2446		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2447	printk("\n");
2448}
2449
2450void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl)
2451{
2452	unsigned long fp, ksp;
2453	struct thread_info *tp;
2454	int count = 0;
2455#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2456	int graph = 0;
2457#endif
2458
2459	ksp = (unsigned long) _ksp;
2460	if (!tsk)
2461		tsk = current;
2462	tp = task_thread_info(tsk);
2463	if (ksp == 0UL) {
2464		if (tsk == current)
2465			asm("mov %%fp, %0" : "=r" (ksp));
2466		else
2467			ksp = tp->ksp;
2468	}
2469	if (tp == current_thread_info())
2470		flushw_all();
2471
2472	fp = ksp + STACK_BIAS;
2473
2474	printk("%sCall Trace:\n", loglvl);
2475	do {
2476		struct sparc_stackf *sf;
2477		struct pt_regs *regs;
2478		unsigned long pc;
2479
2480		if (!kstack_valid(tp, fp))
2481			break;
2482		sf = (struct sparc_stackf *) fp;
2483		regs = (struct pt_regs *) (sf + 1);
2484
2485		if (kstack_is_trap_frame(tp, regs)) {
2486			if (!(regs->tstate & TSTATE_PRIV))
2487				break;
2488			pc = regs->tpc;
2489			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2490		} else {
2491			pc = sf->callers_pc;
2492			fp = (unsigned long)sf->fp + STACK_BIAS;
2493		}
2494
2495		print_ip_sym(loglvl, pc);
2496#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2497		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2498			struct ftrace_ret_stack *ret_stack;
2499			ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2500			if (ret_stack) {
2501				pc = ret_stack->ret;
2502				print_ip_sym(loglvl, pc);
2503				graph++;
2504			}
2505		}
2506#endif
2507	} while (++count < 16);
2508}
2509
2510static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2511{
2512	unsigned long fp = rw->ins[6];
2513
2514	if (!fp)
2515		return NULL;
2516
2517	return (struct reg_window *) (fp + STACK_BIAS);
2518}
2519
2520void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2521{
2522	static int die_counter;
2523	int count = 0;
2524	
2525	/* Amuse the user. */
2526	printk(
2527"              \\|/ ____ \\|/\n"
2528"              \"@'/ .. \\`@\"\n"
2529"              /_| \\__/ |_\\\n"
2530"                 \\__U_/\n");
2531
2532	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2533	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2534	__asm__ __volatile__("flushw");
2535	show_regs(regs);
2536	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2537	if (regs->tstate & TSTATE_PRIV) {
2538		struct thread_info *tp = current_thread_info();
2539		struct reg_window *rw = (struct reg_window *)
2540			(regs->u_regs[UREG_FP] + STACK_BIAS);
2541
2542		/* Stop the back trace when we hit userland or we
2543		 * find some badly aligned kernel stack.
2544		 */
2545		while (rw &&
2546		       count++ < 30 &&
2547		       kstack_valid(tp, (unsigned long) rw)) {
2548			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2549			       (void *) rw->ins[7]);
2550
2551			rw = kernel_stack_up(rw);
2552		}
2553		instruction_dump ((unsigned int *) regs->tpc);
2554	} else {
2555		if (test_thread_flag(TIF_32BIT)) {
2556			regs->tpc &= 0xffffffff;
2557			regs->tnpc &= 0xffffffff;
2558		}
2559		user_instruction_dump ((unsigned int __user *) regs->tpc);
2560	}
2561	if (panic_on_oops)
2562		panic("Fatal exception");
2563	make_task_dead((regs->tstate & TSTATE_PRIV)? SIGKILL : SIGSEGV);
 
 
2564}
2565EXPORT_SYMBOL(die_if_kernel);
2566
2567#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2568#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2569
2570void do_illegal_instruction(struct pt_regs *regs)
2571{
2572	enum ctx_state prev_state = exception_enter();
2573	unsigned long pc = regs->tpc;
2574	unsigned long tstate = regs->tstate;
2575	u32 insn;
 
2576
2577	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2578		       0, 0x10, SIGILL) == NOTIFY_STOP)
2579		goto out;
2580
2581	if (tstate & TSTATE_PRIV)
2582		die_if_kernel("Kernel illegal instruction", regs);
2583	if (test_thread_flag(TIF_32BIT))
2584		pc = (u32)pc;
2585	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2586		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2587			if (handle_popc(insn, regs))
2588				goto out;
2589		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2590			if (handle_ldf_stq(insn, regs))
2591				goto out;
2592		} else if (tlb_type == hypervisor) {
2593			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2594				if (!vis_emul(regs, insn))
2595					goto out;
2596			} else {
2597				struct fpustate *f = FPUSTATE;
2598
2599				/* On UltraSPARC T2 and later, FPU insns which
2600				 * are not implemented in HW signal an illegal
2601				 * instruction trap and do not set the FP Trap
2602				 * Trap in the %fsr to unimplemented_FPop.
2603				 */
2604				if (do_mathemu(regs, f, true))
2605					goto out;
2606			}
2607		}
2608	}
2609	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc);
 
 
 
 
 
2610out:
2611	exception_exit(prev_state);
2612}
2613
2614void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2615{
2616	enum ctx_state prev_state = exception_enter();
 
2617
2618	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2619		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2620		goto out;
2621
2622	if (regs->tstate & TSTATE_PRIV) {
2623		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2624		goto out;
2625	}
2626	if (is_no_fault_exception(regs))
2627		return;
2628
2629	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar);
 
 
 
 
 
2630out:
2631	exception_exit(prev_state);
2632}
2633
2634void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2635{
 
 
2636	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2637		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2638		return;
2639
2640	if (regs->tstate & TSTATE_PRIV) {
2641		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2642		return;
2643	}
2644	if (is_no_fault_exception(regs))
2645		return;
2646
2647	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr);
 
 
 
 
 
2648}
2649
2650/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2651 * tag mismatch.
2652 *
2653 * ADI version tag mismatch on a load from memory always results in a
2654 * precise exception. Tag mismatch on a store to memory will result in
2655 * precise exception if MCDPER or PMCDPER is set to 1.
2656 */
2657void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2658				      unsigned long context)
2659{
2660	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2661		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2662		return;
2663
2664	if (regs->tstate & TSTATE_PRIV) {
2665		/* MCD exception could happen because the task was running
2666		 * a system call with MCD enabled and passed a non-versioned
2667		 * pointer or pointer with bad version tag to  the system
2668		 * call.
2669		 */
2670		const struct exception_table_entry *entry;
2671
2672		entry = search_exception_tables(regs->tpc);
2673		if (entry) {
2674			/* Looks like a bad syscall parameter */
2675#ifdef DEBUG_EXCEPTIONS
2676			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2677				 regs->tpc);
2678			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2679				 regs->tpc, entry->fixup);
2680#endif
2681			regs->tpc = entry->fixup;
2682			regs->tnpc = regs->tpc + 4;
2683			return;
2684		}
2685		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2686			 __func__, addr, context);
2687		die_if_kernel("MCD precise", regs);
2688	}
2689
2690	if (test_thread_flag(TIF_32BIT)) {
2691		regs->tpc &= 0xffffffff;
2692		regs->tnpc &= 0xffffffff;
2693	}
2694	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr);
2695}
2696
2697void do_privop(struct pt_regs *regs)
2698{
2699	enum ctx_state prev_state = exception_enter();
 
2700
2701	if (notify_die(DIE_TRAP, "privileged operation", regs,
2702		       0, 0x11, SIGILL) == NOTIFY_STOP)
2703		goto out;
2704
2705	if (test_thread_flag(TIF_32BIT)) {
2706		regs->tpc &= 0xffffffff;
2707		regs->tnpc &= 0xffffffff;
2708	}
2709	force_sig_fault(SIGILL, ILL_PRVOPC, (void __user *)regs->tpc);
 
 
 
 
 
2710out:
2711	exception_exit(prev_state);
2712}
2713
2714void do_privact(struct pt_regs *regs)
2715{
2716	do_privop(regs);
2717}
2718
2719/* Trap level 1 stuff or other traps we should never see... */
2720void do_cee(struct pt_regs *regs)
2721{
2722	exception_enter();
2723	die_if_kernel("TL0: Cache Error Exception", regs);
2724}
2725
2726void do_div0_tl1(struct pt_regs *regs)
2727{
2728	exception_enter();
2729	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2730	die_if_kernel("TL1: DIV0 Exception", regs);
2731}
2732
2733void do_fpieee_tl1(struct pt_regs *regs)
2734{
2735	exception_enter();
2736	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2737	die_if_kernel("TL1: FPU IEEE Exception", regs);
2738}
2739
2740void do_fpother_tl1(struct pt_regs *regs)
2741{
2742	exception_enter();
2743	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2744	die_if_kernel("TL1: FPU Other Exception", regs);
2745}
2746
2747void do_ill_tl1(struct pt_regs *regs)
2748{
2749	exception_enter();
2750	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2751	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2752}
2753
2754void do_irq_tl1(struct pt_regs *regs)
2755{
2756	exception_enter();
2757	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2758	die_if_kernel("TL1: IRQ Exception", regs);
2759}
2760
2761void do_lddfmna_tl1(struct pt_regs *regs)
2762{
2763	exception_enter();
2764	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2765	die_if_kernel("TL1: LDDF Exception", regs);
2766}
2767
2768void do_stdfmna_tl1(struct pt_regs *regs)
2769{
2770	exception_enter();
2771	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2772	die_if_kernel("TL1: STDF Exception", regs);
2773}
2774
2775void do_paw(struct pt_regs *regs)
2776{
2777	exception_enter();
2778	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2779}
2780
2781void do_paw_tl1(struct pt_regs *regs)
2782{
2783	exception_enter();
2784	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2785	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2786}
2787
2788void do_vaw(struct pt_regs *regs)
2789{
2790	exception_enter();
2791	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2792}
2793
2794void do_vaw_tl1(struct pt_regs *regs)
2795{
2796	exception_enter();
2797	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2798	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2799}
2800
2801void do_tof_tl1(struct pt_regs *regs)
2802{
2803	exception_enter();
2804	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2805	die_if_kernel("TL1: Tag Overflow Exception", regs);
2806}
2807
2808void do_getpsr(struct pt_regs *regs)
2809{
2810	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2811	regs->tpc   = regs->tnpc;
2812	regs->tnpc += 4;
2813	if (test_thread_flag(TIF_32BIT)) {
2814		regs->tpc &= 0xffffffff;
2815		regs->tnpc &= 0xffffffff;
2816	}
2817}
2818
2819u64 cpu_mondo_counter[NR_CPUS] = {0};
2820struct trap_per_cpu trap_block[NR_CPUS];
2821EXPORT_SYMBOL(trap_block);
2822
2823/* This can get invoked before sched_init() so play it super safe
2824 * and use hard_smp_processor_id().
2825 */
2826void notrace init_cur_cpu_trap(struct thread_info *t)
2827{
2828	int cpu = hard_smp_processor_id();
2829	struct trap_per_cpu *p = &trap_block[cpu];
2830
2831	p->thread = t;
2832	p->pgd_paddr = 0;
2833}
2834
2835extern void thread_info_offsets_are_bolixed_dave(void);
2836extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2837extern void tsb_config_offsets_are_bolixed_dave(void);
2838
2839/* Only invoked on boot processor. */
2840void __init trap_init(void)
2841{
2842	/* Compile time sanity check. */
2843	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2844		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2845		     TI_CPU != offsetof(struct thread_info, cpu) ||
2846		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2847		     TI_KSP != offsetof(struct thread_info, ksp) ||
2848		     TI_FAULT_ADDR != offsetof(struct thread_info,
2849					       fault_address) ||
2850		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2851		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2852		     TI_REG_WINDOW != offsetof(struct thread_info,
2853					       reg_window) ||
2854		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2855					       rwbuf_stkptrs) ||
2856		     TI_GSR != offsetof(struct thread_info, gsr) ||
2857		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2858		     TI_PRE_COUNT != offsetof(struct thread_info,
2859					      preempt_count) ||
2860		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
 
 
2861		     TI_KUNA_REGS != offsetof(struct thread_info,
2862					      kern_una_regs) ||
2863		     TI_KUNA_INSN != offsetof(struct thread_info,
2864					      kern_una_insn) ||
2865		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2866		     (TI_FPREGS & (64 - 1)));
2867
2868	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2869						     thread) ||
2870		     (TRAP_PER_CPU_PGD_PADDR !=
2871		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2872		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2873		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2874		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2875		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2876		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2877		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2878		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2879		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2880		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2881		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2882		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2883		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2884		     (TRAP_PER_CPU_FAULT_INFO !=
2885		      offsetof(struct trap_per_cpu, fault_info)) ||
2886		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2887		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2888		     (TRAP_PER_CPU_CPU_LIST_PA !=
2889		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2890		     (TRAP_PER_CPU_TSB_HUGE !=
2891		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2892		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2893		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2894		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2895		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2896		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2897		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2898		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2899		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2900		     (TRAP_PER_CPU_RESUM_QMASK !=
2901		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2902		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2903		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2904		     (TRAP_PER_CPU_PER_CPU_BASE !=
2905		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2906
2907	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2908		      offsetof(struct tsb_config, tsb)) ||
2909		     (TSB_CONFIG_RSS_LIMIT !=
2910		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2911		     (TSB_CONFIG_NENTRIES !=
2912		      offsetof(struct tsb_config, tsb_nentries)) ||
2913		     (TSB_CONFIG_REG_VAL !=
2914		      offsetof(struct tsb_config, tsb_reg_val)) ||
2915		     (TSB_CONFIG_MAP_VADDR !=
2916		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2917		     (TSB_CONFIG_MAP_PTE !=
2918		      offsetof(struct tsb_config, tsb_map_pte)));
2919
2920	/* Attach to the address space of init_task.  On SMP we
2921	 * do this in smp.c:smp_callin for other cpus.
2922	 */
2923	mmgrab(&init_mm);
2924	current->active_mm = &init_mm;
2925}