Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* smp.c: Sparc64 SMP support.
   3 *
   4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/kernel.h>
   9#include <linux/sched/mm.h>
  10#include <linux/sched/hotplug.h>
  11#include <linux/mm.h>
  12#include <linux/pagemap.h>
  13#include <linux/threads.h>
  14#include <linux/smp.h>
  15#include <linux/interrupt.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/delay.h>
  18#include <linux/init.h>
  19#include <linux/spinlock.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/cache.h>
  23#include <linux/jiffies.h>
  24#include <linux/profile.h>
  25#include <linux/bootmem.h>
  26#include <linux/vmalloc.h>
  27#include <linux/ftrace.h>
  28#include <linux/cpu.h>
  29#include <linux/slab.h>
  30#include <linux/kgdb.h>
  31
  32#include <asm/head.h>
  33#include <asm/ptrace.h>
  34#include <linux/atomic.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mmu_context.h>
  37#include <asm/cpudata.h>
  38#include <asm/hvtramp.h>
  39#include <asm/io.h>
  40#include <asm/timer.h>
  41#include <asm/setup.h>
  42
  43#include <asm/irq.h>
  44#include <asm/irq_regs.h>
  45#include <asm/page.h>
  46#include <asm/pgtable.h>
  47#include <asm/oplib.h>
  48#include <linux/uaccess.h>
  49#include <asm/starfire.h>
  50#include <asm/tlb.h>
 
  51#include <asm/sections.h>
  52#include <asm/prom.h>
  53#include <asm/mdesc.h>
  54#include <asm/ldc.h>
  55#include <asm/hypervisor.h>
  56#include <asm/pcr.h>
  57
  58#include "cpumap.h"
  59#include "kernel.h"
  60
  61DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  62cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  63	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  64
  65cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
  66	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
  67
  68cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
  69	[0 ... NR_CPUS - 1] = CPU_MASK_NONE };
  70
  71EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  72EXPORT_SYMBOL(cpu_core_map);
  73EXPORT_SYMBOL(cpu_core_sib_map);
  74EXPORT_SYMBOL(cpu_core_sib_cache_map);
  75
  76static cpumask_t smp_commenced_mask;
  77
  78static DEFINE_PER_CPU(bool, poke);
  79static bool cpu_poke;
  80
  81void smp_info(struct seq_file *m)
  82{
  83	int i;
  84	
  85	seq_printf(m, "State:\n");
  86	for_each_online_cpu(i)
  87		seq_printf(m, "CPU%d:\t\tonline\n", i);
  88}
  89
  90void smp_bogo(struct seq_file *m)
  91{
  92	int i;
  93	
  94	for_each_online_cpu(i)
  95		seq_printf(m,
  96			   "Cpu%dClkTck\t: %016lx\n",
  97			   i, cpu_data(i).clock_tick);
  98}
  99
 100extern void setup_sparc64_timer(void);
 101
 102static volatile unsigned long callin_flag = 0;
 103
 104void smp_callin(void)
 105{
 106	int cpuid = hard_smp_processor_id();
 107
 108	__local_per_cpu_offset = __per_cpu_offset(cpuid);
 109
 110	if (tlb_type == hypervisor)
 111		sun4v_ktsb_register();
 112
 113	__flush_tlb_all();
 114
 115	setup_sparc64_timer();
 116
 117	if (cheetah_pcache_forced_on)
 118		cheetah_enable_pcache();
 119
 120	callin_flag = 1;
 121	__asm__ __volatile__("membar #Sync\n\t"
 122			     "flush  %%g6" : : : "memory");
 123
 124	/* Clear this or we will die instantly when we
 125	 * schedule back to this idler...
 126	 */
 127	current_thread_info()->new_child = 0;
 128
 129	/* Attach to the address space of init_task. */
 130	mmgrab(&init_mm);
 131	current->active_mm = &init_mm;
 132
 133	/* inform the notifiers about the new cpu */
 134	notify_cpu_starting(cpuid);
 135
 136	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 137		rmb();
 138
 139	set_cpu_online(cpuid, true);
 140
 141	/* idle thread is expected to have preempt disabled */
 142	preempt_disable();
 143
 144	local_irq_enable();
 145
 146	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 147}
 148
 149void cpu_panic(void)
 150{
 151	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 152	panic("SMP bolixed\n");
 153}
 154
 155/* This tick register synchronization scheme is taken entirely from
 156 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 157 *
 158 * The only change I've made is to rework it so that the master
 159 * initiates the synchonization instead of the slave. -DaveM
 160 */
 161
 162#define MASTER	0
 163#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
 164
 165#define NUM_ROUNDS	64	/* magic value */
 166#define NUM_ITERS	5	/* likewise */
 167
 168static DEFINE_RAW_SPINLOCK(itc_sync_lock);
 169static unsigned long go[SLAVE + 1];
 170
 171#define DEBUG_TICK_SYNC	0
 172
 173static inline long get_delta (long *rt, long *master)
 174{
 175	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 176	unsigned long tcenter, t0, t1, tm;
 177	unsigned long i;
 178
 179	for (i = 0; i < NUM_ITERS; i++) {
 180		t0 = tick_ops->get_tick();
 181		go[MASTER] = 1;
 182		membar_safe("#StoreLoad");
 183		while (!(tm = go[SLAVE]))
 184			rmb();
 185		go[SLAVE] = 0;
 186		wmb();
 187		t1 = tick_ops->get_tick();
 188
 189		if (t1 - t0 < best_t1 - best_t0)
 190			best_t0 = t0, best_t1 = t1, best_tm = tm;
 191	}
 192
 193	*rt = best_t1 - best_t0;
 194	*master = best_tm - best_t0;
 195
 196	/* average best_t0 and best_t1 without overflow: */
 197	tcenter = (best_t0/2 + best_t1/2);
 198	if (best_t0 % 2 + best_t1 % 2 == 2)
 199		tcenter++;
 200	return tcenter - best_tm;
 201}
 202
 203void smp_synchronize_tick_client(void)
 204{
 205	long i, delta, adj, adjust_latency = 0, done = 0;
 206	unsigned long flags, rt, master_time_stamp;
 207#if DEBUG_TICK_SYNC
 208	struct {
 209		long rt;	/* roundtrip time */
 210		long master;	/* master's timestamp */
 211		long diff;	/* difference between midpoint and master's timestamp */
 212		long lat;	/* estimate of itc adjustment latency */
 213	} t[NUM_ROUNDS];
 214#endif
 215
 216	go[MASTER] = 1;
 217
 218	while (go[MASTER])
 219		rmb();
 220
 221	local_irq_save(flags);
 222	{
 223		for (i = 0; i < NUM_ROUNDS; i++) {
 224			delta = get_delta(&rt, &master_time_stamp);
 225			if (delta == 0)
 226				done = 1;	/* let's lock on to this... */
 227
 228			if (!done) {
 229				if (i > 0) {
 230					adjust_latency += -delta;
 231					adj = -delta + adjust_latency/4;
 232				} else
 233					adj = -delta;
 234
 235				tick_ops->add_tick(adj);
 236			}
 237#if DEBUG_TICK_SYNC
 238			t[i].rt = rt;
 239			t[i].master = master_time_stamp;
 240			t[i].diff = delta;
 241			t[i].lat = adjust_latency/4;
 242#endif
 243		}
 244	}
 245	local_irq_restore(flags);
 246
 247#if DEBUG_TICK_SYNC
 248	for (i = 0; i < NUM_ROUNDS; i++)
 249		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 250		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 251#endif
 252
 253	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 254	       "(last diff %ld cycles, maxerr %lu cycles)\n",
 255	       smp_processor_id(), delta, rt);
 256}
 257
 258static void smp_start_sync_tick_client(int cpu);
 259
 260static void smp_synchronize_one_tick(int cpu)
 261{
 262	unsigned long flags, i;
 263
 264	go[MASTER] = 0;
 265
 266	smp_start_sync_tick_client(cpu);
 267
 268	/* wait for client to be ready */
 269	while (!go[MASTER])
 270		rmb();
 271
 272	/* now let the client proceed into his loop */
 273	go[MASTER] = 0;
 274	membar_safe("#StoreLoad");
 275
 276	raw_spin_lock_irqsave(&itc_sync_lock, flags);
 277	{
 278		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 279			while (!go[MASTER])
 280				rmb();
 281			go[MASTER] = 0;
 282			wmb();
 283			go[SLAVE] = tick_ops->get_tick();
 284			membar_safe("#StoreLoad");
 285		}
 286	}
 287	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
 288}
 289
 290#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 291static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 292				void **descrp)
 293{
 294	extern unsigned long sparc64_ttable_tl0;
 295	extern unsigned long kern_locked_tte_data;
 296	struct hvtramp_descr *hdesc;
 297	unsigned long trampoline_ra;
 298	struct trap_per_cpu *tb;
 299	u64 tte_vaddr, tte_data;
 300	unsigned long hv_err;
 301	int i;
 302
 303	hdesc = kzalloc(sizeof(*hdesc) +
 304			(sizeof(struct hvtramp_mapping) *
 305			 num_kernel_image_mappings - 1),
 306			GFP_KERNEL);
 307	if (!hdesc) {
 308		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 309		       "hvtramp_descr.\n");
 310		return;
 311	}
 312	*descrp = hdesc;
 313
 314	hdesc->cpu = cpu;
 315	hdesc->num_mappings = num_kernel_image_mappings;
 316
 317	tb = &trap_block[cpu];
 318
 319	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 320	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 321
 322	hdesc->thread_reg = thread_reg;
 323
 324	tte_vaddr = (unsigned long) KERNBASE;
 325	tte_data = kern_locked_tte_data;
 326
 327	for (i = 0; i < hdesc->num_mappings; i++) {
 328		hdesc->maps[i].vaddr = tte_vaddr;
 329		hdesc->maps[i].tte   = tte_data;
 330		tte_vaddr += 0x400000;
 331		tte_data  += 0x400000;
 332	}
 333
 334	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 335
 336	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 337				 kimage_addr_to_ra(&sparc64_ttable_tl0),
 338				 __pa(hdesc));
 339	if (hv_err)
 340		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 341		       "gives error %lu\n", hv_err);
 342}
 343#endif
 344
 345extern unsigned long sparc64_cpu_startup;
 346
 347/* The OBP cpu startup callback truncates the 3rd arg cookie to
 348 * 32-bits (I think) so to be safe we have it read the pointer
 349 * contained here so we work on >4GB machines. -DaveM
 350 */
 351static struct thread_info *cpu_new_thread = NULL;
 352
 353static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 354{
 355	unsigned long entry =
 356		(unsigned long)(&sparc64_cpu_startup);
 357	unsigned long cookie =
 358		(unsigned long)(&cpu_new_thread);
 359	void *descr = NULL;
 360	int timeout, ret;
 361
 362	callin_flag = 0;
 363	cpu_new_thread = task_thread_info(idle);
 364
 365	if (tlb_type == hypervisor) {
 366#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 367		if (ldom_domaining_enabled)
 368			ldom_startcpu_cpuid(cpu,
 369					    (unsigned long) cpu_new_thread,
 370					    &descr);
 371		else
 372#endif
 373			prom_startcpu_cpuid(cpu, entry, cookie);
 374	} else {
 375		struct device_node *dp = of_find_node_by_cpuid(cpu);
 376
 377		prom_startcpu(dp->phandle, entry, cookie);
 378	}
 379
 380	for (timeout = 0; timeout < 50000; timeout++) {
 381		if (callin_flag)
 382			break;
 383		udelay(100);
 384	}
 385
 386	if (callin_flag) {
 387		ret = 0;
 388	} else {
 389		printk("Processor %d is stuck.\n", cpu);
 390		ret = -ENODEV;
 391	}
 392	cpu_new_thread = NULL;
 393
 394	kfree(descr);
 395
 396	return ret;
 397}
 398
 399static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 400{
 401	u64 result, target;
 402	int stuck, tmp;
 403
 404	if (this_is_starfire) {
 405		/* map to real upaid */
 406		cpu = (((cpu & 0x3c) << 1) |
 407			((cpu & 0x40) >> 4) |
 408			(cpu & 0x3));
 409	}
 410
 411	target = (cpu << 14) | 0x70;
 412again:
 413	/* Ok, this is the real Spitfire Errata #54.
 414	 * One must read back from a UDB internal register
 415	 * after writes to the UDB interrupt dispatch, but
 416	 * before the membar Sync for that write.
 417	 * So we use the high UDB control register (ASI 0x7f,
 418	 * ADDR 0x20) for the dummy read. -DaveM
 419	 */
 420	tmp = 0x40;
 421	__asm__ __volatile__(
 422	"wrpr	%1, %2, %%pstate\n\t"
 423	"stxa	%4, [%0] %3\n\t"
 424	"stxa	%5, [%0+%8] %3\n\t"
 425	"add	%0, %8, %0\n\t"
 426	"stxa	%6, [%0+%8] %3\n\t"
 427	"membar	#Sync\n\t"
 428	"stxa	%%g0, [%7] %3\n\t"
 429	"membar	#Sync\n\t"
 430	"mov	0x20, %%g1\n\t"
 431	"ldxa	[%%g1] 0x7f, %%g0\n\t"
 432	"membar	#Sync"
 433	: "=r" (tmp)
 434	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 435	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
 436	  "r" (0x10), "0" (tmp)
 437        : "g1");
 438
 439	/* NOTE: PSTATE_IE is still clear. */
 440	stuck = 100000;
 441	do {
 442		__asm__ __volatile__("ldxa [%%g0] %1, %0"
 443			: "=r" (result)
 444			: "i" (ASI_INTR_DISPATCH_STAT));
 445		if (result == 0) {
 446			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 447					     : : "r" (pstate));
 448			return;
 449		}
 450		stuck -= 1;
 451		if (stuck == 0)
 452			break;
 453	} while (result & 0x1);
 454	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 455			     : : "r" (pstate));
 456	if (stuck == 0) {
 457		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 458		       smp_processor_id(), result);
 459	} else {
 460		udelay(2);
 461		goto again;
 462	}
 463}
 464
 465static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 466{
 467	u64 *mondo, data0, data1, data2;
 468	u16 *cpu_list;
 469	u64 pstate;
 470	int i;
 471
 472	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 473	cpu_list = __va(tb->cpu_list_pa);
 474	mondo = __va(tb->cpu_mondo_block_pa);
 475	data0 = mondo[0];
 476	data1 = mondo[1];
 477	data2 = mondo[2];
 478	for (i = 0; i < cnt; i++)
 479		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 480}
 481
 482/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 483 * packet, but we have no use for that.  However we do take advantage of
 484 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 485 */
 486static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 487{
 488	int nack_busy_id, is_jbus, need_more;
 489	u64 *mondo, pstate, ver, busy_mask;
 490	u16 *cpu_list;
 491
 492	cpu_list = __va(tb->cpu_list_pa);
 493	mondo = __va(tb->cpu_mondo_block_pa);
 494
 495	/* Unfortunately, someone at Sun had the brilliant idea to make the
 496	 * busy/nack fields hard-coded by ITID number for this Ultra-III
 497	 * derivative processor.
 498	 */
 499	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 500	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 501		   (ver >> 32) == __SERRANO_ID);
 502
 503	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 504
 505retry:
 506	need_more = 0;
 507	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 508			     : : "r" (pstate), "i" (PSTATE_IE));
 509
 510	/* Setup the dispatch data registers. */
 511	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
 512			     "stxa	%1, [%4] %6\n\t"
 513			     "stxa	%2, [%5] %6\n\t"
 514			     "membar	#Sync\n\t"
 515			     : /* no outputs */
 516			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 517			       "r" (0x40), "r" (0x50), "r" (0x60),
 518			       "i" (ASI_INTR_W));
 519
 520	nack_busy_id = 0;
 521	busy_mask = 0;
 522	{
 523		int i;
 524
 525		for (i = 0; i < cnt; i++) {
 526			u64 target, nr;
 527
 528			nr = cpu_list[i];
 529			if (nr == 0xffff)
 530				continue;
 531
 532			target = (nr << 14) | 0x70;
 533			if (is_jbus) {
 534				busy_mask |= (0x1UL << (nr * 2));
 535			} else {
 536				target |= (nack_busy_id << 24);
 537				busy_mask |= (0x1UL <<
 538					      (nack_busy_id * 2));
 539			}
 540			__asm__ __volatile__(
 541				"stxa	%%g0, [%0] %1\n\t"
 542				"membar	#Sync\n\t"
 543				: /* no outputs */
 544				: "r" (target), "i" (ASI_INTR_W));
 545			nack_busy_id++;
 546			if (nack_busy_id == 32) {
 547				need_more = 1;
 548				break;
 549			}
 550		}
 551	}
 552
 553	/* Now, poll for completion. */
 554	{
 555		u64 dispatch_stat, nack_mask;
 556		long stuck;
 557
 558		stuck = 100000 * nack_busy_id;
 559		nack_mask = busy_mask << 1;
 560		do {
 561			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
 562					     : "=r" (dispatch_stat)
 563					     : "i" (ASI_INTR_DISPATCH_STAT));
 564			if (!(dispatch_stat & (busy_mask | nack_mask))) {
 565				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 566						     : : "r" (pstate));
 567				if (unlikely(need_more)) {
 568					int i, this_cnt = 0;
 569					for (i = 0; i < cnt; i++) {
 570						if (cpu_list[i] == 0xffff)
 571							continue;
 572						cpu_list[i] = 0xffff;
 573						this_cnt++;
 574						if (this_cnt == 32)
 575							break;
 576					}
 577					goto retry;
 578				}
 579				return;
 580			}
 581			if (!--stuck)
 582				break;
 583		} while (dispatch_stat & busy_mask);
 584
 585		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 586				     : : "r" (pstate));
 587
 588		if (dispatch_stat & busy_mask) {
 589			/* Busy bits will not clear, continue instead
 590			 * of freezing up on this cpu.
 591			 */
 592			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 593			       smp_processor_id(), dispatch_stat);
 594		} else {
 595			int i, this_busy_nack = 0;
 596
 597			/* Delay some random time with interrupts enabled
 598			 * to prevent deadlock.
 599			 */
 600			udelay(2 * nack_busy_id);
 601
 602			/* Clear out the mask bits for cpus which did not
 603			 * NACK us.
 604			 */
 605			for (i = 0; i < cnt; i++) {
 606				u64 check_mask, nr;
 607
 608				nr = cpu_list[i];
 609				if (nr == 0xffff)
 610					continue;
 611
 612				if (is_jbus)
 613					check_mask = (0x2UL << (2*nr));
 614				else
 615					check_mask = (0x2UL <<
 616						      this_busy_nack);
 617				if ((dispatch_stat & check_mask) == 0)
 618					cpu_list[i] = 0xffff;
 619				this_busy_nack += 2;
 620				if (this_busy_nack == 64)
 621					break;
 622			}
 623
 624			goto retry;
 625		}
 626	}
 627}
 628
 629#define	CPU_MONDO_COUNTER(cpuid)	(cpu_mondo_counter[cpuid])
 630#define	MONDO_USEC_WAIT_MIN		2
 631#define	MONDO_USEC_WAIT_MAX		100
 632#define	MONDO_RETRY_LIMIT		500000
 633
 634/* Multi-cpu list version.
 635 *
 636 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
 637 * Sometimes not all cpus receive the mondo, requiring us to re-send
 638 * the mondo until all cpus have received, or cpus are truly stuck
 639 * unable to receive mondo, and we timeout.
 640 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
 641 * perform guest service, such as PCIe error handling. Consider the
 642 * service time, 1 second overall wait is reasonable for 1 cpu.
 643 * Here two in-between mondo check wait time are defined: 2 usec for
 644 * single cpu quick turn around and up to 100usec for large cpu count.
 645 * Deliver mondo to large number of cpus could take longer, we adjusts
 646 * the retry count as long as target cpus are making forward progress.
 647 */
 648static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 649{
 650	int this_cpu, tot_cpus, prev_sent, i, rem;
 651	int usec_wait, retries, tot_retries;
 652	u16 first_cpu = 0xffff;
 653	unsigned long xc_rcvd = 0;
 654	unsigned long status;
 655	int ecpuerror_id = 0;
 656	int enocpu_id = 0;
 657	u16 *cpu_list;
 658	u16 cpu;
 659
 660	this_cpu = smp_processor_id();
 661	cpu_list = __va(tb->cpu_list_pa);
 662	usec_wait = cnt * MONDO_USEC_WAIT_MIN;
 663	if (usec_wait > MONDO_USEC_WAIT_MAX)
 664		usec_wait = MONDO_USEC_WAIT_MAX;
 665	retries = tot_retries = 0;
 666	tot_cpus = cnt;
 667	prev_sent = 0;
 668
 669	do {
 670		int n_sent, mondo_delivered, target_cpu_busy;
 671
 672		status = sun4v_cpu_mondo_send(cnt,
 673					      tb->cpu_list_pa,
 674					      tb->cpu_mondo_block_pa);
 675
 676		/* HV_EOK means all cpus received the xcall, we're done.  */
 677		if (likely(status == HV_EOK))
 678			goto xcall_done;
 679
 680		/* If not these non-fatal errors, panic */
 681		if (unlikely((status != HV_EWOULDBLOCK) &&
 682			(status != HV_ECPUERROR) &&
 683			(status != HV_ENOCPU)))
 684			goto fatal_errors;
 685
 686		/* First, see if we made any forward progress.
 687		 *
 688		 * Go through the cpu_list, count the target cpus that have
 689		 * received our mondo (n_sent), and those that did not (rem).
 690		 * Re-pack cpu_list with the cpus remain to be retried in the
 691		 * front - this simplifies tracking the truly stalled cpus.
 692		 *
 693		 * The hypervisor indicates successful sends by setting
 694		 * cpu list entries to the value 0xffff.
 695		 *
 696		 * EWOULDBLOCK means some target cpus did not receive the
 697		 * mondo and retry usually helps.
 698		 *
 699		 * ECPUERROR means at least one target cpu is in error state,
 700		 * it's usually safe to skip the faulty cpu and retry.
 701		 *
 702		 * ENOCPU means one of the target cpu doesn't belong to the
 703		 * domain, perhaps offlined which is unexpected, but not
 704		 * fatal and it's okay to skip the offlined cpu.
 705		 */
 706		rem = 0;
 707		n_sent = 0;
 708		for (i = 0; i < cnt; i++) {
 709			cpu = cpu_list[i];
 710			if (likely(cpu == 0xffff)) {
 711				n_sent++;
 712			} else if ((status == HV_ECPUERROR) &&
 713				(sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
 714				ecpuerror_id = cpu + 1;
 715			} else if (status == HV_ENOCPU && !cpu_online(cpu)) {
 716				enocpu_id = cpu + 1;
 717			} else {
 718				cpu_list[rem++] = cpu;
 719			}
 720		}
 721
 722		/* No cpu remained, we're done. */
 723		if (rem == 0)
 724			break;
 725
 726		/* Otherwise, update the cpu count for retry. */
 727		cnt = rem;
 728
 729		/* Record the overall number of mondos received by the
 730		 * first of the remaining cpus.
 731		 */
 732		if (first_cpu != cpu_list[0]) {
 733			first_cpu = cpu_list[0];
 734			xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
 735		}
 736
 737		/* Was any mondo delivered successfully? */
 738		mondo_delivered = (n_sent > prev_sent);
 739		prev_sent = n_sent;
 740
 741		/* or, was any target cpu busy processing other mondos? */
 742		target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
 743		xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
 744
 745		/* Retry count is for no progress. If we're making progress,
 746		 * reset the retry count.
 747		 */
 748		if (likely(mondo_delivered || target_cpu_busy)) {
 749			tot_retries += retries;
 750			retries = 0;
 751		} else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
 752			goto fatal_mondo_timeout;
 753		}
 754
 755		/* Delay a little bit to let other cpus catch up on
 756		 * their cpu mondo queue work.
 757		 */
 758		if (!mondo_delivered)
 759			udelay(usec_wait);
 760
 761		retries++;
 762	} while (1);
 763
 764xcall_done:
 765	if (unlikely(ecpuerror_id > 0)) {
 766		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
 767		       this_cpu, ecpuerror_id - 1);
 768	} else if (unlikely(enocpu_id > 0)) {
 769		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
 770		       this_cpu, enocpu_id - 1);
 771	}
 772	return;
 773
 774fatal_errors:
 775	/* fatal errors include bad alignment, etc */
 776	pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
 777	       this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 778	panic("Unexpected SUN4V mondo error %lu\n", status);
 779
 780fatal_mondo_timeout:
 781	/* some cpus being non-responsive to the cpu mondo */
 782	pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
 783	       this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
 784	panic("SUN4V mondo timeout panic\n");
 785}
 786
 787static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 788
 789static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 790{
 791	struct trap_per_cpu *tb;
 792	int this_cpu, i, cnt;
 793	unsigned long flags;
 794	u16 *cpu_list;
 795	u64 *mondo;
 796
 797	/* We have to do this whole thing with interrupts fully disabled.
 798	 * Otherwise if we send an xcall from interrupt context it will
 799	 * corrupt both our mondo block and cpu list state.
 800	 *
 801	 * One consequence of this is that we cannot use timeout mechanisms
 802	 * that depend upon interrupts being delivered locally.  So, for
 803	 * example, we cannot sample jiffies and expect it to advance.
 804	 *
 805	 * Fortunately, udelay() uses %stick/%tick so we can use that.
 806	 */
 807	local_irq_save(flags);
 808
 809	this_cpu = smp_processor_id();
 810	tb = &trap_block[this_cpu];
 811
 812	mondo = __va(tb->cpu_mondo_block_pa);
 813	mondo[0] = data0;
 814	mondo[1] = data1;
 815	mondo[2] = data2;
 816	wmb();
 817
 818	cpu_list = __va(tb->cpu_list_pa);
 819
 820	/* Setup the initial cpu list.  */
 821	cnt = 0;
 822	for_each_cpu(i, mask) {
 823		if (i == this_cpu || !cpu_online(i))
 824			continue;
 825		cpu_list[cnt++] = i;
 826	}
 827
 828	if (cnt)
 829		xcall_deliver_impl(tb, cnt);
 830
 831	local_irq_restore(flags);
 832}
 833
 834/* Send cross call to all processors mentioned in MASK_P
 835 * except self.  Really, there are only two cases currently,
 836 * "cpu_online_mask" and "mm_cpumask(mm)".
 837 */
 838static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 839{
 840	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 841
 842	xcall_deliver(data0, data1, data2, mask);
 843}
 844
 845/* Send cross call to all processors except self. */
 846static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 847{
 848	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 849}
 850
 851extern unsigned long xcall_sync_tick;
 852
 853static void smp_start_sync_tick_client(int cpu)
 854{
 855	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 856		      cpumask_of(cpu));
 857}
 858
 859extern unsigned long xcall_call_function;
 860
 861void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 862{
 863	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 864}
 865
 866extern unsigned long xcall_call_function_single;
 867
 868void arch_send_call_function_single_ipi(int cpu)
 869{
 870	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 871		      cpumask_of(cpu));
 872}
 873
 874void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 875{
 876	clear_softint(1 << irq);
 877	irq_enter();
 878	generic_smp_call_function_interrupt();
 879	irq_exit();
 880}
 881
 882void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 883{
 884	clear_softint(1 << irq);
 885	irq_enter();
 886	generic_smp_call_function_single_interrupt();
 887	irq_exit();
 888}
 889
 890static void tsb_sync(void *info)
 891{
 892	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 893	struct mm_struct *mm = info;
 894
 895	/* It is not valid to test "current->active_mm == mm" here.
 896	 *
 897	 * The value of "current" is not changed atomically with
 898	 * switch_mm().  But that's OK, we just need to check the
 899	 * current cpu's trap block PGD physical address.
 900	 */
 901	if (tp->pgd_paddr == __pa(mm->pgd))
 902		tsb_context_switch(mm);
 903}
 904
 905void smp_tsb_sync(struct mm_struct *mm)
 906{
 907	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 908}
 909
 910extern unsigned long xcall_flush_tlb_mm;
 911extern unsigned long xcall_flush_tlb_page;
 912extern unsigned long xcall_flush_tlb_kernel_range;
 913extern unsigned long xcall_fetch_glob_regs;
 914extern unsigned long xcall_fetch_glob_pmu;
 915extern unsigned long xcall_fetch_glob_pmu_n4;
 916extern unsigned long xcall_receive_signal;
 917extern unsigned long xcall_new_mmu_context_version;
 918#ifdef CONFIG_KGDB
 919extern unsigned long xcall_kgdb_capture;
 920#endif
 921
 922#ifdef DCACHE_ALIASING_POSSIBLE
 923extern unsigned long xcall_flush_dcache_page_cheetah;
 924#endif
 925extern unsigned long xcall_flush_dcache_page_spitfire;
 926
 927static inline void __local_flush_dcache_page(struct page *page)
 928{
 
 
 929#ifdef DCACHE_ALIASING_POSSIBLE
 930	__flush_dcache_page(page_address(page),
 
 931			    ((tlb_type == spitfire) &&
 932			     page_mapping_file(page) != NULL));
 933#else
 934	if (page_mapping_file(page) != NULL &&
 935	    tlb_type == spitfire)
 936		__flush_icache_page(__pa(page_address(page)));
 
 
 
 937#endif
 938}
 939
 940void smp_flush_dcache_page_impl(struct page *page, int cpu)
 941{
 942	int this_cpu;
 943
 944	if (tlb_type == hypervisor)
 945		return;
 946
 947#ifdef CONFIG_DEBUG_DCFLUSH
 948	atomic_inc(&dcpage_flushes);
 949#endif
 950
 951	this_cpu = get_cpu();
 952
 953	if (cpu == this_cpu) {
 954		__local_flush_dcache_page(page);
 955	} else if (cpu_online(cpu)) {
 956		void *pg_addr = page_address(page);
 957		u64 data0 = 0;
 958
 959		if (tlb_type == spitfire) {
 960			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 961			if (page_mapping_file(page) != NULL)
 962				data0 |= ((u64)1 << 32);
 963		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 964#ifdef DCACHE_ALIASING_POSSIBLE
 965			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
 966#endif
 967		}
 968		if (data0) {
 969			xcall_deliver(data0, __pa(pg_addr),
 970				      (u64) pg_addr, cpumask_of(cpu));
 
 
 
 971#ifdef CONFIG_DEBUG_DCFLUSH
 972			atomic_inc(&dcpage_flushes_xcall);
 973#endif
 
 
 974		}
 975	}
 976
 977	put_cpu();
 978}
 979
 980void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 981{
 982	void *pg_addr;
 983	u64 data0;
 984
 985	if (tlb_type == hypervisor)
 986		return;
 987
 988	preempt_disable();
 989
 990#ifdef CONFIG_DEBUG_DCFLUSH
 991	atomic_inc(&dcpage_flushes);
 992#endif
 993	data0 = 0;
 994	pg_addr = page_address(page);
 995	if (tlb_type == spitfire) {
 996		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 997		if (page_mapping_file(page) != NULL)
 998			data0 |= ((u64)1 << 32);
 999	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1000#ifdef DCACHE_ALIASING_POSSIBLE
1001		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1002#endif
1003	}
1004	if (data0) {
1005		xcall_deliver(data0, __pa(pg_addr),
1006			      (u64) pg_addr, cpu_online_mask);
 
 
 
1007#ifdef CONFIG_DEBUG_DCFLUSH
1008		atomic_inc(&dcpage_flushes_xcall);
1009#endif
 
 
1010	}
1011	__local_flush_dcache_page(page);
1012
1013	preempt_enable();
1014}
1015
1016#ifdef CONFIG_KGDB
1017void kgdb_roundup_cpus(unsigned long flags)
1018{
1019	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1020}
1021#endif
1022
1023void smp_fetch_global_regs(void)
1024{
1025	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1026}
1027
1028void smp_fetch_global_pmu(void)
1029{
1030	if (tlb_type == hypervisor &&
1031	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1032		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1033	else
1034		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1035}
1036
1037/* We know that the window frames of the user have been flushed
1038 * to the stack before we get here because all callers of us
1039 * are flush_tlb_*() routines, and these run after flush_cache_*()
1040 * which performs the flushw.
1041 *
1042 * The SMP TLB coherency scheme we use works as follows:
1043 *
1044 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1045 *    space has (potentially) executed on, this is the heuristic
1046 *    we use to avoid doing cross calls.
1047 *
1048 *    Also, for flushing from kswapd and also for clones, we
1049 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1050 *
1051 * 2) TLB context numbers are shared globally across all processors
1052 *    in the system, this allows us to play several games to avoid
1053 *    cross calls.
1054 *
1055 *    One invariant is that when a cpu switches to a process, and
1056 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1057 *    current cpu's bit set, that tlb context is flushed locally.
1058 *
1059 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1060 *    cross calls when we want to flush the currently running process's
1061 *    tlb state.  This is done by clearing all cpu bits except the current
1062 *    processor's in current->mm->cpu_vm_mask and performing the
1063 *    flush locally only.  This will force any subsequent cpus which run
1064 *    this task to flush the context from the local tlb if the process
1065 *    migrates to another cpu (again).
1066 *
1067 * 3) For shared address spaces (threads) and swapping we bite the
1068 *    bullet for most cases and perform the cross call (but only to
1069 *    the cpus listed in cpu_vm_mask).
1070 *
1071 *    The performance gain from "optimizing" away the cross call for threads is
1072 *    questionable (in theory the big win for threads is the massive sharing of
1073 *    address space state across processors).
1074 */
1075
1076/* This currently is only used by the hugetlb arch pre-fault
1077 * hook on UltraSPARC-III+ and later when changing the pagesize
1078 * bits of the context register for an address space.
1079 */
1080void smp_flush_tlb_mm(struct mm_struct *mm)
1081{
1082	u32 ctx = CTX_HWBITS(mm->context);
1083	int cpu = get_cpu();
1084
1085	if (atomic_read(&mm->mm_users) == 1) {
1086		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1087		goto local_flush_and_out;
1088	}
1089
1090	smp_cross_call_masked(&xcall_flush_tlb_mm,
1091			      ctx, 0, 0,
1092			      mm_cpumask(mm));
1093
1094local_flush_and_out:
1095	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1096
1097	put_cpu();
1098}
1099
1100struct tlb_pending_info {
1101	unsigned long ctx;
1102	unsigned long nr;
1103	unsigned long *vaddrs;
1104};
1105
1106static void tlb_pending_func(void *info)
1107{
1108	struct tlb_pending_info *t = info;
1109
1110	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1111}
1112
1113void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1114{
1115	u32 ctx = CTX_HWBITS(mm->context);
1116	struct tlb_pending_info info;
1117	int cpu = get_cpu();
 
1118
1119	info.ctx = ctx;
1120	info.nr = nr;
1121	info.vaddrs = vaddrs;
1122
1123	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1124		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1125	else
1126		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1127				       &info, 1);
1128
1129	__flush_tlb_pending(ctx, nr, vaddrs);
1130
1131	put_cpu();
1132}
1133
1134void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1135{
1136	unsigned long context = CTX_HWBITS(mm->context);
1137	int cpu = get_cpu();
1138
1139	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1140		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1141	else
1142		smp_cross_call_masked(&xcall_flush_tlb_page,
1143				      context, vaddr, 0,
1144				      mm_cpumask(mm));
1145	__flush_tlb_page(context, vaddr);
1146
1147	put_cpu();
1148}
1149
1150void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1151{
1152	start &= PAGE_MASK;
1153	end    = PAGE_ALIGN(end);
1154	if (start != end) {
1155		smp_cross_call(&xcall_flush_tlb_kernel_range,
1156			       0, start, end);
1157
1158		__flush_tlb_kernel_range(start, end);
1159	}
1160}
1161
1162/* CPU capture. */
1163/* #define CAPTURE_DEBUG */
1164extern unsigned long xcall_capture;
1165
1166static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1167static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1168static unsigned long penguins_are_doing_time;
1169
1170void smp_capture(void)
1171{
1172	int result = atomic_add_return(1, &smp_capture_depth);
1173
1174	if (result == 1) {
1175		int ncpus = num_online_cpus();
1176
1177#ifdef CAPTURE_DEBUG
1178		printk("CPU[%d]: Sending penguins to jail...",
1179		       smp_processor_id());
1180#endif
1181		penguins_are_doing_time = 1;
1182		atomic_inc(&smp_capture_registry);
1183		smp_cross_call(&xcall_capture, 0, 0, 0);
1184		while (atomic_read(&smp_capture_registry) != ncpus)
1185			rmb();
1186#ifdef CAPTURE_DEBUG
1187		printk("done\n");
1188#endif
1189	}
1190}
1191
1192void smp_release(void)
1193{
1194	if (atomic_dec_and_test(&smp_capture_depth)) {
1195#ifdef CAPTURE_DEBUG
1196		printk("CPU[%d]: Giving pardon to "
1197		       "imprisoned penguins\n",
1198		       smp_processor_id());
1199#endif
1200		penguins_are_doing_time = 0;
1201		membar_safe("#StoreLoad");
1202		atomic_dec(&smp_capture_registry);
1203	}
1204}
1205
1206/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1207 * set, so they can service tlb flush xcalls...
1208 */
1209extern void prom_world(int);
1210
1211void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1212{
1213	clear_softint(1 << irq);
1214
1215	preempt_disable();
1216
1217	__asm__ __volatile__("flushw");
1218	prom_world(1);
1219	atomic_inc(&smp_capture_registry);
1220	membar_safe("#StoreLoad");
1221	while (penguins_are_doing_time)
1222		rmb();
1223	atomic_dec(&smp_capture_registry);
1224	prom_world(0);
1225
1226	preempt_enable();
1227}
1228
1229/* /proc/profile writes can call this, don't __init it please. */
1230int setup_profiling_timer(unsigned int multiplier)
1231{
1232	return -EINVAL;
1233}
1234
1235void __init smp_prepare_cpus(unsigned int max_cpus)
1236{
1237}
1238
1239void smp_prepare_boot_cpu(void)
1240{
1241}
1242
1243void __init smp_setup_processor_id(void)
1244{
1245	if (tlb_type == spitfire)
1246		xcall_deliver_impl = spitfire_xcall_deliver;
1247	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1248		xcall_deliver_impl = cheetah_xcall_deliver;
1249	else
1250		xcall_deliver_impl = hypervisor_xcall_deliver;
1251}
1252
1253void __init smp_fill_in_cpu_possible_map(void)
1254{
1255	int possible_cpus = num_possible_cpus();
1256	int i;
1257
1258	if (possible_cpus > nr_cpu_ids)
1259		possible_cpus = nr_cpu_ids;
1260
1261	for (i = 0; i < possible_cpus; i++)
1262		set_cpu_possible(i, true);
1263	for (; i < NR_CPUS; i++)
1264		set_cpu_possible(i, false);
1265}
1266
1267void smp_fill_in_sib_core_maps(void)
1268{
1269	unsigned int i;
1270
1271	for_each_present_cpu(i) {
1272		unsigned int j;
1273
1274		cpumask_clear(&cpu_core_map[i]);
1275		if (cpu_data(i).core_id == 0) {
1276			cpumask_set_cpu(i, &cpu_core_map[i]);
1277			continue;
1278		}
1279
1280		for_each_present_cpu(j) {
1281			if (cpu_data(i).core_id ==
1282			    cpu_data(j).core_id)
1283				cpumask_set_cpu(j, &cpu_core_map[i]);
1284		}
1285	}
1286
1287	for_each_present_cpu(i)  {
1288		unsigned int j;
1289
1290		for_each_present_cpu(j)  {
1291			if (cpu_data(i).max_cache_id ==
1292			    cpu_data(j).max_cache_id)
1293				cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1294
1295			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1296				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1297		}
1298	}
1299
1300	for_each_present_cpu(i) {
1301		unsigned int j;
1302
1303		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1304		if (cpu_data(i).proc_id == -1) {
1305			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1306			continue;
1307		}
1308
1309		for_each_present_cpu(j) {
1310			if (cpu_data(i).proc_id ==
1311			    cpu_data(j).proc_id)
1312				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1313		}
1314	}
1315}
1316
1317int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1318{
1319	int ret = smp_boot_one_cpu(cpu, tidle);
1320
1321	if (!ret) {
1322		cpumask_set_cpu(cpu, &smp_commenced_mask);
1323		while (!cpu_online(cpu))
1324			mb();
1325		if (!cpu_online(cpu)) {
1326			ret = -ENODEV;
1327		} else {
1328			/* On SUN4V, writes to %tick and %stick are
1329			 * not allowed.
1330			 */
1331			if (tlb_type != hypervisor)
1332				smp_synchronize_one_tick(cpu);
1333		}
1334	}
1335	return ret;
1336}
1337
1338#ifdef CONFIG_HOTPLUG_CPU
1339void cpu_play_dead(void)
1340{
1341	int cpu = smp_processor_id();
1342	unsigned long pstate;
1343
1344	idle_task_exit();
1345
1346	if (tlb_type == hypervisor) {
1347		struct trap_per_cpu *tb = &trap_block[cpu];
1348
1349		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1350				tb->cpu_mondo_pa, 0);
1351		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1352				tb->dev_mondo_pa, 0);
1353		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1354				tb->resum_mondo_pa, 0);
1355		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1356				tb->nonresum_mondo_pa, 0);
1357	}
1358
1359	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1360	membar_safe("#Sync");
1361
1362	local_irq_disable();
1363
1364	__asm__ __volatile__(
1365		"rdpr	%%pstate, %0\n\t"
1366		"wrpr	%0, %1, %%pstate"
1367		: "=r" (pstate)
1368		: "i" (PSTATE_IE));
1369
1370	while (1)
1371		barrier();
1372}
1373
1374int __cpu_disable(void)
1375{
1376	int cpu = smp_processor_id();
1377	cpuinfo_sparc *c;
1378	int i;
1379
1380	for_each_cpu(i, &cpu_core_map[cpu])
1381		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1382	cpumask_clear(&cpu_core_map[cpu]);
1383
1384	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1385		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1386	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1387
1388	c = &cpu_data(cpu);
1389
1390	c->core_id = 0;
1391	c->proc_id = -1;
1392
1393	smp_wmb();
1394
1395	/* Make sure no interrupts point to this cpu.  */
1396	fixup_irqs();
1397
1398	local_irq_enable();
1399	mdelay(1);
1400	local_irq_disable();
1401
1402	set_cpu_online(cpu, false);
1403
1404	cpu_map_rebuild();
1405
1406	return 0;
1407}
1408
1409void __cpu_die(unsigned int cpu)
1410{
1411	int i;
1412
1413	for (i = 0; i < 100; i++) {
1414		smp_rmb();
1415		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1416			break;
1417		msleep(100);
1418	}
1419	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1420		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1421	} else {
1422#if defined(CONFIG_SUN_LDOMS)
1423		unsigned long hv_err;
1424		int limit = 100;
1425
1426		do {
1427			hv_err = sun4v_cpu_stop(cpu);
1428			if (hv_err == HV_EOK) {
1429				set_cpu_present(cpu, false);
1430				break;
1431			}
1432		} while (--limit > 0);
1433		if (limit <= 0) {
1434			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1435			       hv_err);
1436		}
1437#endif
1438	}
1439}
1440#endif
1441
1442void __init smp_cpus_done(unsigned int max_cpus)
1443{
1444}
1445
1446static void send_cpu_ipi(int cpu)
1447{
1448	xcall_deliver((u64) &xcall_receive_signal,
1449			0, 0, cpumask_of(cpu));
1450}
1451
1452void scheduler_poke(void)
1453{
1454	if (!cpu_poke)
1455		return;
1456
1457	if (!__this_cpu_read(poke))
1458		return;
1459
1460	__this_cpu_write(poke, false);
1461	set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1462}
1463
1464static unsigned long send_cpu_poke(int cpu)
1465{
1466	unsigned long hv_err;
1467
1468	per_cpu(poke, cpu) = true;
1469	hv_err = sun4v_cpu_poke(cpu);
1470	if (hv_err != HV_EOK) {
1471		per_cpu(poke, cpu) = false;
1472		pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1473				    __func__, hv_err);
1474	}
1475
1476	return hv_err;
1477}
1478
1479void smp_send_reschedule(int cpu)
1480{
1481	if (cpu == smp_processor_id()) {
1482		WARN_ON_ONCE(preemptible());
1483		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1484		return;
1485	}
1486
1487	/* Use cpu poke to resume idle cpu if supported. */
1488	if (cpu_poke && idle_cpu(cpu)) {
1489		unsigned long ret;
1490
1491		ret = send_cpu_poke(cpu);
1492		if (ret == HV_EOK)
1493			return;
1494	}
1495
1496	/* Use IPI in following cases:
1497	 * - cpu poke not supported
1498	 * - cpu not idle
1499	 * - send_cpu_poke() returns with error
1500	 */
1501	send_cpu_ipi(cpu);
1502}
1503
1504void smp_init_cpu_poke(void)
1505{
1506	unsigned long major;
1507	unsigned long minor;
1508	int ret;
1509
1510	if (tlb_type != hypervisor)
1511		return;
1512
1513	ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1514	if (ret) {
1515		pr_debug("HV_GRP_CORE is not registered\n");
1516		return;
1517	}
1518
1519	if (major == 1 && minor >= 6) {
1520		/* CPU POKE is registered. */
1521		cpu_poke = true;
1522		return;
1523	}
1524
1525	pr_debug("CPU_POKE not supported\n");
1526}
1527
1528void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1529{
1530	clear_softint(1 << irq);
1531	scheduler_ipi();
1532}
1533
1534static void stop_this_cpu(void *dummy)
1535{
1536	set_cpu_online(smp_processor_id(), false);
1537	prom_stopself();
1538}
1539
1540void smp_send_stop(void)
1541{
1542	int cpu;
1543
1544	if (tlb_type == hypervisor) {
1545		int this_cpu = smp_processor_id();
1546#ifdef CONFIG_SERIAL_SUNHV
1547		sunhv_migrate_hvcons_irq(this_cpu);
1548#endif
1549		for_each_online_cpu(cpu) {
1550			if (cpu == this_cpu)
1551				continue;
1552
1553			set_cpu_online(cpu, false);
1554#ifdef CONFIG_SUN_LDOMS
1555			if (ldom_domaining_enabled) {
1556				unsigned long hv_err;
1557				hv_err = sun4v_cpu_stop(cpu);
1558				if (hv_err)
1559					printk(KERN_ERR "sun4v_cpu_stop() "
1560					       "failed err=%lu\n", hv_err);
1561			} else
1562#endif
1563				prom_stopcpu_cpuid(cpu);
1564		}
1565	} else
1566		smp_call_function(stop_this_cpu, NULL, 0);
1567}
1568
1569/**
1570 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1571 * @cpu: cpu to allocate for
1572 * @size: size allocation in bytes
1573 * @align: alignment
1574 *
1575 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1576 * does the right thing for NUMA regardless of the current
1577 * configuration.
1578 *
1579 * RETURNS:
1580 * Pointer to the allocated area on success, NULL on failure.
1581 */
1582static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1583					size_t align)
1584{
1585	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1586#ifdef CONFIG_NEED_MULTIPLE_NODES
1587	int node = cpu_to_node(cpu);
1588	void *ptr;
1589
1590	if (!node_online(node) || !NODE_DATA(node)) {
1591		ptr = __alloc_bootmem(size, align, goal);
1592		pr_info("cpu %d has no node %d or node-local memory\n",
1593			cpu, node);
1594		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1595			 cpu, size, __pa(ptr));
1596	} else {
1597		ptr = __alloc_bootmem_node(NODE_DATA(node),
1598					   size, align, goal);
1599		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1600			 "%016lx\n", cpu, size, node, __pa(ptr));
1601	}
1602	return ptr;
1603#else
1604	return __alloc_bootmem(size, align, goal);
1605#endif
1606}
1607
1608static void __init pcpu_free_bootmem(void *ptr, size_t size)
1609{
1610	free_bootmem(__pa(ptr), size);
1611}
1612
1613static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1614{
1615	if (cpu_to_node(from) == cpu_to_node(to))
1616		return LOCAL_DISTANCE;
1617	else
1618		return REMOTE_DISTANCE;
1619}
1620
1621static void __init pcpu_populate_pte(unsigned long addr)
1622{
1623	pgd_t *pgd = pgd_offset_k(addr);
1624	pud_t *pud;
1625	pmd_t *pmd;
1626
1627	if (pgd_none(*pgd)) {
1628		pud_t *new;
1629
1630		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1631		pgd_populate(&init_mm, pgd, new);
1632	}
1633
1634	pud = pud_offset(pgd, addr);
1635	if (pud_none(*pud)) {
1636		pmd_t *new;
1637
1638		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1639		pud_populate(&init_mm, pud, new);
1640	}
1641
1642	pmd = pmd_offset(pud, addr);
1643	if (!pmd_present(*pmd)) {
1644		pte_t *new;
1645
1646		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1647		pmd_populate_kernel(&init_mm, pmd, new);
1648	}
1649}
1650
1651void __init setup_per_cpu_areas(void)
1652{
1653	unsigned long delta;
1654	unsigned int cpu;
1655	int rc = -EINVAL;
1656
1657	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1658		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1659					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1660					    pcpu_cpu_distance,
1661					    pcpu_alloc_bootmem,
1662					    pcpu_free_bootmem);
1663		if (rc)
1664			pr_warning("PERCPU: %s allocator failed (%d), "
1665				   "falling back to page size\n",
1666				   pcpu_fc_names[pcpu_chosen_fc], rc);
1667	}
1668	if (rc < 0)
1669		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1670					   pcpu_alloc_bootmem,
1671					   pcpu_free_bootmem,
1672					   pcpu_populate_pte);
1673	if (rc < 0)
1674		panic("cannot initialize percpu area (err=%d)", rc);
1675
1676	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1677	for_each_possible_cpu(cpu)
1678		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1679
1680	/* Setup %g5 for the boot cpu.  */
1681	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1682
1683	of_fill_in_cpu_data();
1684	if (tlb_type == hypervisor)
1685		mdesc_fill_in_cpu_data(cpu_all_mask);
1686}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* smp.c: Sparc64 SMP support.
   3 *
   4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/kernel.h>
   9#include <linux/sched/mm.h>
  10#include <linux/sched/hotplug.h>
  11#include <linux/mm.h>
  12#include <linux/pagemap.h>
  13#include <linux/threads.h>
  14#include <linux/smp.h>
  15#include <linux/interrupt.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/delay.h>
  18#include <linux/init.h>
  19#include <linux/spinlock.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/cache.h>
  23#include <linux/jiffies.h>
  24#include <linux/profile.h>
  25#include <linux/memblock.h>
  26#include <linux/vmalloc.h>
  27#include <linux/ftrace.h>
  28#include <linux/cpu.h>
  29#include <linux/slab.h>
  30#include <linux/kgdb.h>
  31
  32#include <asm/head.h>
  33#include <asm/ptrace.h>
  34#include <linux/atomic.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mmu_context.h>
  37#include <asm/cpudata.h>
  38#include <asm/hvtramp.h>
  39#include <asm/io.h>
  40#include <asm/timer.h>
  41#include <asm/setup.h>
  42
  43#include <asm/irq.h>
  44#include <asm/irq_regs.h>
  45#include <asm/page.h>
 
  46#include <asm/oplib.h>
  47#include <linux/uaccess.h>
  48#include <asm/starfire.h>
  49#include <asm/tlb.h>
  50#include <asm/pgalloc.h>
  51#include <asm/sections.h>
  52#include <asm/prom.h>
  53#include <asm/mdesc.h>
  54#include <asm/ldc.h>
  55#include <asm/hypervisor.h>
  56#include <asm/pcr.h>
  57
  58#include "cpumap.h"
  59#include "kernel.h"
  60
  61DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  62cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  63	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  64
  65cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
  66	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
  67
  68cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
  69	[0 ... NR_CPUS - 1] = CPU_MASK_NONE };
  70
  71EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  72EXPORT_SYMBOL(cpu_core_map);
  73EXPORT_SYMBOL(cpu_core_sib_map);
  74EXPORT_SYMBOL(cpu_core_sib_cache_map);
  75
  76static cpumask_t smp_commenced_mask;
  77
  78static DEFINE_PER_CPU(bool, poke);
  79static bool cpu_poke;
  80
  81void smp_info(struct seq_file *m)
  82{
  83	int i;
  84	
  85	seq_printf(m, "State:\n");
  86	for_each_online_cpu(i)
  87		seq_printf(m, "CPU%d:\t\tonline\n", i);
  88}
  89
  90void smp_bogo(struct seq_file *m)
  91{
  92	int i;
  93	
  94	for_each_online_cpu(i)
  95		seq_printf(m,
  96			   "Cpu%dClkTck\t: %016lx\n",
  97			   i, cpu_data(i).clock_tick);
  98}
  99
 100extern void setup_sparc64_timer(void);
 101
 102static volatile unsigned long callin_flag = 0;
 103
 104void smp_callin(void)
 105{
 106	int cpuid = hard_smp_processor_id();
 107
 108	__local_per_cpu_offset = __per_cpu_offset(cpuid);
 109
 110	if (tlb_type == hypervisor)
 111		sun4v_ktsb_register();
 112
 113	__flush_tlb_all();
 114
 115	setup_sparc64_timer();
 116
 117	if (cheetah_pcache_forced_on)
 118		cheetah_enable_pcache();
 119
 120	callin_flag = 1;
 121	__asm__ __volatile__("membar #Sync\n\t"
 122			     "flush  %%g6" : : : "memory");
 123
 124	/* Clear this or we will die instantly when we
 125	 * schedule back to this idler...
 126	 */
 127	current_thread_info()->new_child = 0;
 128
 129	/* Attach to the address space of init_task. */
 130	mmgrab(&init_mm);
 131	current->active_mm = &init_mm;
 132
 133	/* inform the notifiers about the new cpu */
 134	notify_cpu_starting(cpuid);
 135
 136	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 137		rmb();
 138
 139	set_cpu_online(cpuid, true);
 140
 
 
 
 141	local_irq_enable();
 142
 143	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 144}
 145
 146void cpu_panic(void)
 147{
 148	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 149	panic("SMP bolixed\n");
 150}
 151
 152/* This tick register synchronization scheme is taken entirely from
 153 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 154 *
 155 * The only change I've made is to rework it so that the master
 156 * initiates the synchonization instead of the slave. -DaveM
 157 */
 158
 159#define MASTER	0
 160#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
 161
 162#define NUM_ROUNDS	64	/* magic value */
 163#define NUM_ITERS	5	/* likewise */
 164
 165static DEFINE_RAW_SPINLOCK(itc_sync_lock);
 166static unsigned long go[SLAVE + 1];
 167
 168#define DEBUG_TICK_SYNC	0
 169
 170static inline long get_delta (long *rt, long *master)
 171{
 172	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 173	unsigned long tcenter, t0, t1, tm;
 174	unsigned long i;
 175
 176	for (i = 0; i < NUM_ITERS; i++) {
 177		t0 = tick_ops->get_tick();
 178		go[MASTER] = 1;
 179		membar_safe("#StoreLoad");
 180		while (!(tm = go[SLAVE]))
 181			rmb();
 182		go[SLAVE] = 0;
 183		wmb();
 184		t1 = tick_ops->get_tick();
 185
 186		if (t1 - t0 < best_t1 - best_t0)
 187			best_t0 = t0, best_t1 = t1, best_tm = tm;
 188	}
 189
 190	*rt = best_t1 - best_t0;
 191	*master = best_tm - best_t0;
 192
 193	/* average best_t0 and best_t1 without overflow: */
 194	tcenter = (best_t0/2 + best_t1/2);
 195	if (best_t0 % 2 + best_t1 % 2 == 2)
 196		tcenter++;
 197	return tcenter - best_tm;
 198}
 199
 200void smp_synchronize_tick_client(void)
 201{
 202	long i, delta, adj, adjust_latency = 0, done = 0;
 203	unsigned long flags, rt, master_time_stamp;
 204#if DEBUG_TICK_SYNC
 205	struct {
 206		long rt;	/* roundtrip time */
 207		long master;	/* master's timestamp */
 208		long diff;	/* difference between midpoint and master's timestamp */
 209		long lat;	/* estimate of itc adjustment latency */
 210	} t[NUM_ROUNDS];
 211#endif
 212
 213	go[MASTER] = 1;
 214
 215	while (go[MASTER])
 216		rmb();
 217
 218	local_irq_save(flags);
 219	{
 220		for (i = 0; i < NUM_ROUNDS; i++) {
 221			delta = get_delta(&rt, &master_time_stamp);
 222			if (delta == 0)
 223				done = 1;	/* let's lock on to this... */
 224
 225			if (!done) {
 226				if (i > 0) {
 227					adjust_latency += -delta;
 228					adj = -delta + adjust_latency/4;
 229				} else
 230					adj = -delta;
 231
 232				tick_ops->add_tick(adj);
 233			}
 234#if DEBUG_TICK_SYNC
 235			t[i].rt = rt;
 236			t[i].master = master_time_stamp;
 237			t[i].diff = delta;
 238			t[i].lat = adjust_latency/4;
 239#endif
 240		}
 241	}
 242	local_irq_restore(flags);
 243
 244#if DEBUG_TICK_SYNC
 245	for (i = 0; i < NUM_ROUNDS; i++)
 246		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 247		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 248#endif
 249
 250	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 251	       "(last diff %ld cycles, maxerr %lu cycles)\n",
 252	       smp_processor_id(), delta, rt);
 253}
 254
 255static void smp_start_sync_tick_client(int cpu);
 256
 257static void smp_synchronize_one_tick(int cpu)
 258{
 259	unsigned long flags, i;
 260
 261	go[MASTER] = 0;
 262
 263	smp_start_sync_tick_client(cpu);
 264
 265	/* wait for client to be ready */
 266	while (!go[MASTER])
 267		rmb();
 268
 269	/* now let the client proceed into his loop */
 270	go[MASTER] = 0;
 271	membar_safe("#StoreLoad");
 272
 273	raw_spin_lock_irqsave(&itc_sync_lock, flags);
 274	{
 275		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 276			while (!go[MASTER])
 277				rmb();
 278			go[MASTER] = 0;
 279			wmb();
 280			go[SLAVE] = tick_ops->get_tick();
 281			membar_safe("#StoreLoad");
 282		}
 283	}
 284	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
 285}
 286
 287#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 288static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 289				void **descrp)
 290{
 291	extern unsigned long sparc64_ttable_tl0;
 292	extern unsigned long kern_locked_tte_data;
 293	struct hvtramp_descr *hdesc;
 294	unsigned long trampoline_ra;
 295	struct trap_per_cpu *tb;
 296	u64 tte_vaddr, tte_data;
 297	unsigned long hv_err;
 298	int i;
 299
 300	hdesc = kzalloc(struct_size(hdesc, maps, num_kernel_image_mappings),
 
 
 301			GFP_KERNEL);
 302	if (!hdesc) {
 303		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 304		       "hvtramp_descr.\n");
 305		return;
 306	}
 307	*descrp = hdesc;
 308
 309	hdesc->cpu = cpu;
 310	hdesc->num_mappings = num_kernel_image_mappings;
 311
 312	tb = &trap_block[cpu];
 313
 314	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 315	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 316
 317	hdesc->thread_reg = thread_reg;
 318
 319	tte_vaddr = (unsigned long) KERNBASE;
 320	tte_data = kern_locked_tte_data;
 321
 322	for (i = 0; i < hdesc->num_mappings; i++) {
 323		hdesc->maps[i].vaddr = tte_vaddr;
 324		hdesc->maps[i].tte   = tte_data;
 325		tte_vaddr += 0x400000;
 326		tte_data  += 0x400000;
 327	}
 328
 329	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 330
 331	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 332				 kimage_addr_to_ra(&sparc64_ttable_tl0),
 333				 __pa(hdesc));
 334	if (hv_err)
 335		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 336		       "gives error %lu\n", hv_err);
 337}
 338#endif
 339
 340extern unsigned long sparc64_cpu_startup;
 341
 342/* The OBP cpu startup callback truncates the 3rd arg cookie to
 343 * 32-bits (I think) so to be safe we have it read the pointer
 344 * contained here so we work on >4GB machines. -DaveM
 345 */
 346static struct thread_info *cpu_new_thread = NULL;
 347
 348static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 349{
 350	unsigned long entry =
 351		(unsigned long)(&sparc64_cpu_startup);
 352	unsigned long cookie =
 353		(unsigned long)(&cpu_new_thread);
 354	void *descr = NULL;
 355	int timeout, ret;
 356
 357	callin_flag = 0;
 358	cpu_new_thread = task_thread_info(idle);
 359
 360	if (tlb_type == hypervisor) {
 361#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 362		if (ldom_domaining_enabled)
 363			ldom_startcpu_cpuid(cpu,
 364					    (unsigned long) cpu_new_thread,
 365					    &descr);
 366		else
 367#endif
 368			prom_startcpu_cpuid(cpu, entry, cookie);
 369	} else {
 370		struct device_node *dp = of_find_node_by_cpuid(cpu);
 371
 372		prom_startcpu(dp->phandle, entry, cookie);
 373	}
 374
 375	for (timeout = 0; timeout < 50000; timeout++) {
 376		if (callin_flag)
 377			break;
 378		udelay(100);
 379	}
 380
 381	if (callin_flag) {
 382		ret = 0;
 383	} else {
 384		printk("Processor %d is stuck.\n", cpu);
 385		ret = -ENODEV;
 386	}
 387	cpu_new_thread = NULL;
 388
 389	kfree(descr);
 390
 391	return ret;
 392}
 393
 394static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 395{
 396	u64 result, target;
 397	int stuck, tmp;
 398
 399	if (this_is_starfire) {
 400		/* map to real upaid */
 401		cpu = (((cpu & 0x3c) << 1) |
 402			((cpu & 0x40) >> 4) |
 403			(cpu & 0x3));
 404	}
 405
 406	target = (cpu << 14) | 0x70;
 407again:
 408	/* Ok, this is the real Spitfire Errata #54.
 409	 * One must read back from a UDB internal register
 410	 * after writes to the UDB interrupt dispatch, but
 411	 * before the membar Sync for that write.
 412	 * So we use the high UDB control register (ASI 0x7f,
 413	 * ADDR 0x20) for the dummy read. -DaveM
 414	 */
 415	tmp = 0x40;
 416	__asm__ __volatile__(
 417	"wrpr	%1, %2, %%pstate\n\t"
 418	"stxa	%4, [%0] %3\n\t"
 419	"stxa	%5, [%0+%8] %3\n\t"
 420	"add	%0, %8, %0\n\t"
 421	"stxa	%6, [%0+%8] %3\n\t"
 422	"membar	#Sync\n\t"
 423	"stxa	%%g0, [%7] %3\n\t"
 424	"membar	#Sync\n\t"
 425	"mov	0x20, %%g1\n\t"
 426	"ldxa	[%%g1] 0x7f, %%g0\n\t"
 427	"membar	#Sync"
 428	: "=r" (tmp)
 429	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 430	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
 431	  "r" (0x10), "0" (tmp)
 432        : "g1");
 433
 434	/* NOTE: PSTATE_IE is still clear. */
 435	stuck = 100000;
 436	do {
 437		__asm__ __volatile__("ldxa [%%g0] %1, %0"
 438			: "=r" (result)
 439			: "i" (ASI_INTR_DISPATCH_STAT));
 440		if (result == 0) {
 441			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 442					     : : "r" (pstate));
 443			return;
 444		}
 445		stuck -= 1;
 446		if (stuck == 0)
 447			break;
 448	} while (result & 0x1);
 449	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 450			     : : "r" (pstate));
 451	if (stuck == 0) {
 452		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 453		       smp_processor_id(), result);
 454	} else {
 455		udelay(2);
 456		goto again;
 457	}
 458}
 459
 460static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 461{
 462	u64 *mondo, data0, data1, data2;
 463	u16 *cpu_list;
 464	u64 pstate;
 465	int i;
 466
 467	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 468	cpu_list = __va(tb->cpu_list_pa);
 469	mondo = __va(tb->cpu_mondo_block_pa);
 470	data0 = mondo[0];
 471	data1 = mondo[1];
 472	data2 = mondo[2];
 473	for (i = 0; i < cnt; i++)
 474		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 475}
 476
 477/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 478 * packet, but we have no use for that.  However we do take advantage of
 479 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 480 */
 481static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 482{
 483	int nack_busy_id, is_jbus, need_more;
 484	u64 *mondo, pstate, ver, busy_mask;
 485	u16 *cpu_list;
 486
 487	cpu_list = __va(tb->cpu_list_pa);
 488	mondo = __va(tb->cpu_mondo_block_pa);
 489
 490	/* Unfortunately, someone at Sun had the brilliant idea to make the
 491	 * busy/nack fields hard-coded by ITID number for this Ultra-III
 492	 * derivative processor.
 493	 */
 494	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 495	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 496		   (ver >> 32) == __SERRANO_ID);
 497
 498	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 499
 500retry:
 501	need_more = 0;
 502	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 503			     : : "r" (pstate), "i" (PSTATE_IE));
 504
 505	/* Setup the dispatch data registers. */
 506	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
 507			     "stxa	%1, [%4] %6\n\t"
 508			     "stxa	%2, [%5] %6\n\t"
 509			     "membar	#Sync\n\t"
 510			     : /* no outputs */
 511			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 512			       "r" (0x40), "r" (0x50), "r" (0x60),
 513			       "i" (ASI_INTR_W));
 514
 515	nack_busy_id = 0;
 516	busy_mask = 0;
 517	{
 518		int i;
 519
 520		for (i = 0; i < cnt; i++) {
 521			u64 target, nr;
 522
 523			nr = cpu_list[i];
 524			if (nr == 0xffff)
 525				continue;
 526
 527			target = (nr << 14) | 0x70;
 528			if (is_jbus) {
 529				busy_mask |= (0x1UL << (nr * 2));
 530			} else {
 531				target |= (nack_busy_id << 24);
 532				busy_mask |= (0x1UL <<
 533					      (nack_busy_id * 2));
 534			}
 535			__asm__ __volatile__(
 536				"stxa	%%g0, [%0] %1\n\t"
 537				"membar	#Sync\n\t"
 538				: /* no outputs */
 539				: "r" (target), "i" (ASI_INTR_W));
 540			nack_busy_id++;
 541			if (nack_busy_id == 32) {
 542				need_more = 1;
 543				break;
 544			}
 545		}
 546	}
 547
 548	/* Now, poll for completion. */
 549	{
 550		u64 dispatch_stat, nack_mask;
 551		long stuck;
 552
 553		stuck = 100000 * nack_busy_id;
 554		nack_mask = busy_mask << 1;
 555		do {
 556			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
 557					     : "=r" (dispatch_stat)
 558					     : "i" (ASI_INTR_DISPATCH_STAT));
 559			if (!(dispatch_stat & (busy_mask | nack_mask))) {
 560				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 561						     : : "r" (pstate));
 562				if (unlikely(need_more)) {
 563					int i, this_cnt = 0;
 564					for (i = 0; i < cnt; i++) {
 565						if (cpu_list[i] == 0xffff)
 566							continue;
 567						cpu_list[i] = 0xffff;
 568						this_cnt++;
 569						if (this_cnt == 32)
 570							break;
 571					}
 572					goto retry;
 573				}
 574				return;
 575			}
 576			if (!--stuck)
 577				break;
 578		} while (dispatch_stat & busy_mask);
 579
 580		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 581				     : : "r" (pstate));
 582
 583		if (dispatch_stat & busy_mask) {
 584			/* Busy bits will not clear, continue instead
 585			 * of freezing up on this cpu.
 586			 */
 587			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 588			       smp_processor_id(), dispatch_stat);
 589		} else {
 590			int i, this_busy_nack = 0;
 591
 592			/* Delay some random time with interrupts enabled
 593			 * to prevent deadlock.
 594			 */
 595			udelay(2 * nack_busy_id);
 596
 597			/* Clear out the mask bits for cpus which did not
 598			 * NACK us.
 599			 */
 600			for (i = 0; i < cnt; i++) {
 601				u64 check_mask, nr;
 602
 603				nr = cpu_list[i];
 604				if (nr == 0xffff)
 605					continue;
 606
 607				if (is_jbus)
 608					check_mask = (0x2UL << (2*nr));
 609				else
 610					check_mask = (0x2UL <<
 611						      this_busy_nack);
 612				if ((dispatch_stat & check_mask) == 0)
 613					cpu_list[i] = 0xffff;
 614				this_busy_nack += 2;
 615				if (this_busy_nack == 64)
 616					break;
 617			}
 618
 619			goto retry;
 620		}
 621	}
 622}
 623
 624#define	CPU_MONDO_COUNTER(cpuid)	(cpu_mondo_counter[cpuid])
 625#define	MONDO_USEC_WAIT_MIN		2
 626#define	MONDO_USEC_WAIT_MAX		100
 627#define	MONDO_RETRY_LIMIT		500000
 628
 629/* Multi-cpu list version.
 630 *
 631 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
 632 * Sometimes not all cpus receive the mondo, requiring us to re-send
 633 * the mondo until all cpus have received, or cpus are truly stuck
 634 * unable to receive mondo, and we timeout.
 635 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
 636 * perform guest service, such as PCIe error handling. Consider the
 637 * service time, 1 second overall wait is reasonable for 1 cpu.
 638 * Here two in-between mondo check wait time are defined: 2 usec for
 639 * single cpu quick turn around and up to 100usec for large cpu count.
 640 * Deliver mondo to large number of cpus could take longer, we adjusts
 641 * the retry count as long as target cpus are making forward progress.
 642 */
 643static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 644{
 645	int this_cpu, tot_cpus, prev_sent, i, rem;
 646	int usec_wait, retries, tot_retries;
 647	u16 first_cpu = 0xffff;
 648	unsigned long xc_rcvd = 0;
 649	unsigned long status;
 650	int ecpuerror_id = 0;
 651	int enocpu_id = 0;
 652	u16 *cpu_list;
 653	u16 cpu;
 654
 655	this_cpu = smp_processor_id();
 656	cpu_list = __va(tb->cpu_list_pa);
 657	usec_wait = cnt * MONDO_USEC_WAIT_MIN;
 658	if (usec_wait > MONDO_USEC_WAIT_MAX)
 659		usec_wait = MONDO_USEC_WAIT_MAX;
 660	retries = tot_retries = 0;
 661	tot_cpus = cnt;
 662	prev_sent = 0;
 663
 664	do {
 665		int n_sent, mondo_delivered, target_cpu_busy;
 666
 667		status = sun4v_cpu_mondo_send(cnt,
 668					      tb->cpu_list_pa,
 669					      tb->cpu_mondo_block_pa);
 670
 671		/* HV_EOK means all cpus received the xcall, we're done.  */
 672		if (likely(status == HV_EOK))
 673			goto xcall_done;
 674
 675		/* If not these non-fatal errors, panic */
 676		if (unlikely((status != HV_EWOULDBLOCK) &&
 677			(status != HV_ECPUERROR) &&
 678			(status != HV_ENOCPU)))
 679			goto fatal_errors;
 680
 681		/* First, see if we made any forward progress.
 682		 *
 683		 * Go through the cpu_list, count the target cpus that have
 684		 * received our mondo (n_sent), and those that did not (rem).
 685		 * Re-pack cpu_list with the cpus remain to be retried in the
 686		 * front - this simplifies tracking the truly stalled cpus.
 687		 *
 688		 * The hypervisor indicates successful sends by setting
 689		 * cpu list entries to the value 0xffff.
 690		 *
 691		 * EWOULDBLOCK means some target cpus did not receive the
 692		 * mondo and retry usually helps.
 693		 *
 694		 * ECPUERROR means at least one target cpu is in error state,
 695		 * it's usually safe to skip the faulty cpu and retry.
 696		 *
 697		 * ENOCPU means one of the target cpu doesn't belong to the
 698		 * domain, perhaps offlined which is unexpected, but not
 699		 * fatal and it's okay to skip the offlined cpu.
 700		 */
 701		rem = 0;
 702		n_sent = 0;
 703		for (i = 0; i < cnt; i++) {
 704			cpu = cpu_list[i];
 705			if (likely(cpu == 0xffff)) {
 706				n_sent++;
 707			} else if ((status == HV_ECPUERROR) &&
 708				(sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
 709				ecpuerror_id = cpu + 1;
 710			} else if (status == HV_ENOCPU && !cpu_online(cpu)) {
 711				enocpu_id = cpu + 1;
 712			} else {
 713				cpu_list[rem++] = cpu;
 714			}
 715		}
 716
 717		/* No cpu remained, we're done. */
 718		if (rem == 0)
 719			break;
 720
 721		/* Otherwise, update the cpu count for retry. */
 722		cnt = rem;
 723
 724		/* Record the overall number of mondos received by the
 725		 * first of the remaining cpus.
 726		 */
 727		if (first_cpu != cpu_list[0]) {
 728			first_cpu = cpu_list[0];
 729			xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
 730		}
 731
 732		/* Was any mondo delivered successfully? */
 733		mondo_delivered = (n_sent > prev_sent);
 734		prev_sent = n_sent;
 735
 736		/* or, was any target cpu busy processing other mondos? */
 737		target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
 738		xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
 739
 740		/* Retry count is for no progress. If we're making progress,
 741		 * reset the retry count.
 742		 */
 743		if (likely(mondo_delivered || target_cpu_busy)) {
 744			tot_retries += retries;
 745			retries = 0;
 746		} else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
 747			goto fatal_mondo_timeout;
 748		}
 749
 750		/* Delay a little bit to let other cpus catch up on
 751		 * their cpu mondo queue work.
 752		 */
 753		if (!mondo_delivered)
 754			udelay(usec_wait);
 755
 756		retries++;
 757	} while (1);
 758
 759xcall_done:
 760	if (unlikely(ecpuerror_id > 0)) {
 761		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
 762		       this_cpu, ecpuerror_id - 1);
 763	} else if (unlikely(enocpu_id > 0)) {
 764		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
 765		       this_cpu, enocpu_id - 1);
 766	}
 767	return;
 768
 769fatal_errors:
 770	/* fatal errors include bad alignment, etc */
 771	pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
 772	       this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 773	panic("Unexpected SUN4V mondo error %lu\n", status);
 774
 775fatal_mondo_timeout:
 776	/* some cpus being non-responsive to the cpu mondo */
 777	pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
 778	       this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
 779	panic("SUN4V mondo timeout panic\n");
 780}
 781
 782static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 783
 784static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 785{
 786	struct trap_per_cpu *tb;
 787	int this_cpu, i, cnt;
 788	unsigned long flags;
 789	u16 *cpu_list;
 790	u64 *mondo;
 791
 792	/* We have to do this whole thing with interrupts fully disabled.
 793	 * Otherwise if we send an xcall from interrupt context it will
 794	 * corrupt both our mondo block and cpu list state.
 795	 *
 796	 * One consequence of this is that we cannot use timeout mechanisms
 797	 * that depend upon interrupts being delivered locally.  So, for
 798	 * example, we cannot sample jiffies and expect it to advance.
 799	 *
 800	 * Fortunately, udelay() uses %stick/%tick so we can use that.
 801	 */
 802	local_irq_save(flags);
 803
 804	this_cpu = smp_processor_id();
 805	tb = &trap_block[this_cpu];
 806
 807	mondo = __va(tb->cpu_mondo_block_pa);
 808	mondo[0] = data0;
 809	mondo[1] = data1;
 810	mondo[2] = data2;
 811	wmb();
 812
 813	cpu_list = __va(tb->cpu_list_pa);
 814
 815	/* Setup the initial cpu list.  */
 816	cnt = 0;
 817	for_each_cpu(i, mask) {
 818		if (i == this_cpu || !cpu_online(i))
 819			continue;
 820		cpu_list[cnt++] = i;
 821	}
 822
 823	if (cnt)
 824		xcall_deliver_impl(tb, cnt);
 825
 826	local_irq_restore(flags);
 827}
 828
 829/* Send cross call to all processors mentioned in MASK_P
 830 * except self.  Really, there are only two cases currently,
 831 * "cpu_online_mask" and "mm_cpumask(mm)".
 832 */
 833static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 834{
 835	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 836
 837	xcall_deliver(data0, data1, data2, mask);
 838}
 839
 840/* Send cross call to all processors except self. */
 841static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 842{
 843	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 844}
 845
 846extern unsigned long xcall_sync_tick;
 847
 848static void smp_start_sync_tick_client(int cpu)
 849{
 850	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 851		      cpumask_of(cpu));
 852}
 853
 854extern unsigned long xcall_call_function;
 855
 856void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 857{
 858	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 859}
 860
 861extern unsigned long xcall_call_function_single;
 862
 863void arch_send_call_function_single_ipi(int cpu)
 864{
 865	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 866		      cpumask_of(cpu));
 867}
 868
 869void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 870{
 871	clear_softint(1 << irq);
 872	irq_enter();
 873	generic_smp_call_function_interrupt();
 874	irq_exit();
 875}
 876
 877void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 878{
 879	clear_softint(1 << irq);
 880	irq_enter();
 881	generic_smp_call_function_single_interrupt();
 882	irq_exit();
 883}
 884
 885static void tsb_sync(void *info)
 886{
 887	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 888	struct mm_struct *mm = info;
 889
 890	/* It is not valid to test "current->active_mm == mm" here.
 891	 *
 892	 * The value of "current" is not changed atomically with
 893	 * switch_mm().  But that's OK, we just need to check the
 894	 * current cpu's trap block PGD physical address.
 895	 */
 896	if (tp->pgd_paddr == __pa(mm->pgd))
 897		tsb_context_switch(mm);
 898}
 899
 900void smp_tsb_sync(struct mm_struct *mm)
 901{
 902	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 903}
 904
 905extern unsigned long xcall_flush_tlb_mm;
 906extern unsigned long xcall_flush_tlb_page;
 907extern unsigned long xcall_flush_tlb_kernel_range;
 908extern unsigned long xcall_fetch_glob_regs;
 909extern unsigned long xcall_fetch_glob_pmu;
 910extern unsigned long xcall_fetch_glob_pmu_n4;
 911extern unsigned long xcall_receive_signal;
 912extern unsigned long xcall_new_mmu_context_version;
 913#ifdef CONFIG_KGDB
 914extern unsigned long xcall_kgdb_capture;
 915#endif
 916
 917#ifdef DCACHE_ALIASING_POSSIBLE
 918extern unsigned long xcall_flush_dcache_page_cheetah;
 919#endif
 920extern unsigned long xcall_flush_dcache_page_spitfire;
 921
 922static inline void __local_flush_dcache_folio(struct folio *folio)
 923{
 924	unsigned int i, nr = folio_nr_pages(folio);
 925
 926#ifdef DCACHE_ALIASING_POSSIBLE
 927	for (i = 0; i < nr; i++)
 928		__flush_dcache_page(folio_address(folio) + i * PAGE_SIZE,
 929			    ((tlb_type == spitfire) &&
 930			     folio_flush_mapping(folio) != NULL));
 931#else
 932	if (folio_flush_mapping(folio) != NULL &&
 933	    tlb_type == spitfire) {
 934		unsigned long pfn = folio_pfn(folio)
 935		for (i = 0; i < nr; i++)
 936			__flush_icache_page((pfn + i) * PAGE_SIZE);
 937	}
 938#endif
 939}
 940
 941void smp_flush_dcache_folio_impl(struct folio *folio, int cpu)
 942{
 943	int this_cpu;
 944
 945	if (tlb_type == hypervisor)
 946		return;
 947
 948#ifdef CONFIG_DEBUG_DCFLUSH
 949	atomic_inc(&dcpage_flushes);
 950#endif
 951
 952	this_cpu = get_cpu();
 953
 954	if (cpu == this_cpu) {
 955		__local_flush_dcache_folio(folio);
 956	} else if (cpu_online(cpu)) {
 957		void *pg_addr = folio_address(folio);
 958		u64 data0 = 0;
 959
 960		if (tlb_type == spitfire) {
 961			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 962			if (folio_flush_mapping(folio) != NULL)
 963				data0 |= ((u64)1 << 32);
 964		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 965#ifdef DCACHE_ALIASING_POSSIBLE
 966			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
 967#endif
 968		}
 969		if (data0) {
 970			unsigned int i, nr = folio_nr_pages(folio);
 971
 972			for (i = 0; i < nr; i++) {
 973				xcall_deliver(data0, __pa(pg_addr),
 974					      (u64) pg_addr, cpumask_of(cpu));
 975#ifdef CONFIG_DEBUG_DCFLUSH
 976				atomic_inc(&dcpage_flushes_xcall);
 977#endif
 978				pg_addr += PAGE_SIZE;
 979			}
 980		}
 981	}
 982
 983	put_cpu();
 984}
 985
 986void flush_dcache_folio_all(struct mm_struct *mm, struct folio *folio)
 987{
 988	void *pg_addr;
 989	u64 data0;
 990
 991	if (tlb_type == hypervisor)
 992		return;
 993
 994	preempt_disable();
 995
 996#ifdef CONFIG_DEBUG_DCFLUSH
 997	atomic_inc(&dcpage_flushes);
 998#endif
 999	data0 = 0;
1000	pg_addr = folio_address(folio);
1001	if (tlb_type == spitfire) {
1002		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1003		if (folio_flush_mapping(folio) != NULL)
1004			data0 |= ((u64)1 << 32);
1005	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1006#ifdef DCACHE_ALIASING_POSSIBLE
1007		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1008#endif
1009	}
1010	if (data0) {
1011		unsigned int i, nr = folio_nr_pages(folio);
1012
1013		for (i = 0; i < nr; i++) {
1014			xcall_deliver(data0, __pa(pg_addr),
1015				      (u64) pg_addr, cpu_online_mask);
1016#ifdef CONFIG_DEBUG_DCFLUSH
1017			atomic_inc(&dcpage_flushes_xcall);
1018#endif
1019			pg_addr += PAGE_SIZE;
1020		}
1021	}
1022	__local_flush_dcache_folio(folio);
1023
1024	preempt_enable();
1025}
1026
1027#ifdef CONFIG_KGDB
1028void kgdb_roundup_cpus(void)
1029{
1030	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1031}
1032#endif
1033
1034void smp_fetch_global_regs(void)
1035{
1036	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1037}
1038
1039void smp_fetch_global_pmu(void)
1040{
1041	if (tlb_type == hypervisor &&
1042	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1043		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1044	else
1045		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1046}
1047
1048/* We know that the window frames of the user have been flushed
1049 * to the stack before we get here because all callers of us
1050 * are flush_tlb_*() routines, and these run after flush_cache_*()
1051 * which performs the flushw.
1052 *
1053 * mm->cpu_vm_mask is a bit mask of which cpus an address
1054 * space has (potentially) executed on, this is the heuristic
1055 * we use to limit cross calls.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056 */
1057
1058/* This currently is only used by the hugetlb arch pre-fault
1059 * hook on UltraSPARC-III+ and later when changing the pagesize
1060 * bits of the context register for an address space.
1061 */
1062void smp_flush_tlb_mm(struct mm_struct *mm)
1063{
1064	u32 ctx = CTX_HWBITS(mm->context);
 
1065
1066	get_cpu();
 
 
 
1067
1068	smp_cross_call_masked(&xcall_flush_tlb_mm,
1069			      ctx, 0, 0,
1070			      mm_cpumask(mm));
1071
 
1072	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1073
1074	put_cpu();
1075}
1076
1077struct tlb_pending_info {
1078	unsigned long ctx;
1079	unsigned long nr;
1080	unsigned long *vaddrs;
1081};
1082
1083static void tlb_pending_func(void *info)
1084{
1085	struct tlb_pending_info *t = info;
1086
1087	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1088}
1089
1090void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1091{
1092	u32 ctx = CTX_HWBITS(mm->context);
1093	struct tlb_pending_info info;
1094
1095	get_cpu();
1096
1097	info.ctx = ctx;
1098	info.nr = nr;
1099	info.vaddrs = vaddrs;
1100
1101	smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1102			       &info, 1);
 
 
 
1103
1104	__flush_tlb_pending(ctx, nr, vaddrs);
1105
1106	put_cpu();
1107}
1108
1109void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1110{
1111	unsigned long context = CTX_HWBITS(mm->context);
 
1112
1113	get_cpu();
1114
1115	smp_cross_call_masked(&xcall_flush_tlb_page,
1116			      context, vaddr, 0,
1117			      mm_cpumask(mm));
1118
1119	__flush_tlb_page(context, vaddr);
1120
1121	put_cpu();
1122}
1123
1124void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1125{
1126	start &= PAGE_MASK;
1127	end    = PAGE_ALIGN(end);
1128	if (start != end) {
1129		smp_cross_call(&xcall_flush_tlb_kernel_range,
1130			       0, start, end);
1131
1132		__flush_tlb_kernel_range(start, end);
1133	}
1134}
1135
1136/* CPU capture. */
1137/* #define CAPTURE_DEBUG */
1138extern unsigned long xcall_capture;
1139
1140static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1141static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1142static unsigned long penguins_are_doing_time;
1143
1144void smp_capture(void)
1145{
1146	int result = atomic_add_return(1, &smp_capture_depth);
1147
1148	if (result == 1) {
1149		int ncpus = num_online_cpus();
1150
1151#ifdef CAPTURE_DEBUG
1152		printk("CPU[%d]: Sending penguins to jail...",
1153		       smp_processor_id());
1154#endif
1155		penguins_are_doing_time = 1;
1156		atomic_inc(&smp_capture_registry);
1157		smp_cross_call(&xcall_capture, 0, 0, 0);
1158		while (atomic_read(&smp_capture_registry) != ncpus)
1159			rmb();
1160#ifdef CAPTURE_DEBUG
1161		printk("done\n");
1162#endif
1163	}
1164}
1165
1166void smp_release(void)
1167{
1168	if (atomic_dec_and_test(&smp_capture_depth)) {
1169#ifdef CAPTURE_DEBUG
1170		printk("CPU[%d]: Giving pardon to "
1171		       "imprisoned penguins\n",
1172		       smp_processor_id());
1173#endif
1174		penguins_are_doing_time = 0;
1175		membar_safe("#StoreLoad");
1176		atomic_dec(&smp_capture_registry);
1177	}
1178}
1179
1180/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1181 * set, so they can service tlb flush xcalls...
1182 */
1183extern void prom_world(int);
1184
1185void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1186{
1187	clear_softint(1 << irq);
1188
1189	preempt_disable();
1190
1191	__asm__ __volatile__("flushw");
1192	prom_world(1);
1193	atomic_inc(&smp_capture_registry);
1194	membar_safe("#StoreLoad");
1195	while (penguins_are_doing_time)
1196		rmb();
1197	atomic_dec(&smp_capture_registry);
1198	prom_world(0);
1199
1200	preempt_enable();
1201}
1202
 
 
 
 
 
 
1203void __init smp_prepare_cpus(unsigned int max_cpus)
1204{
1205}
1206
 
 
 
 
1207void __init smp_setup_processor_id(void)
1208{
1209	if (tlb_type == spitfire)
1210		xcall_deliver_impl = spitfire_xcall_deliver;
1211	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1212		xcall_deliver_impl = cheetah_xcall_deliver;
1213	else
1214		xcall_deliver_impl = hypervisor_xcall_deliver;
1215}
1216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217void smp_fill_in_sib_core_maps(void)
1218{
1219	unsigned int i;
1220
1221	for_each_present_cpu(i) {
1222		unsigned int j;
1223
1224		cpumask_clear(&cpu_core_map[i]);
1225		if (cpu_data(i).core_id == 0) {
1226			cpumask_set_cpu(i, &cpu_core_map[i]);
1227			continue;
1228		}
1229
1230		for_each_present_cpu(j) {
1231			if (cpu_data(i).core_id ==
1232			    cpu_data(j).core_id)
1233				cpumask_set_cpu(j, &cpu_core_map[i]);
1234		}
1235	}
1236
1237	for_each_present_cpu(i)  {
1238		unsigned int j;
1239
1240		for_each_present_cpu(j)  {
1241			if (cpu_data(i).max_cache_id ==
1242			    cpu_data(j).max_cache_id)
1243				cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1244
1245			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1246				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1247		}
1248	}
1249
1250	for_each_present_cpu(i) {
1251		unsigned int j;
1252
1253		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1254		if (cpu_data(i).proc_id == -1) {
1255			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1256			continue;
1257		}
1258
1259		for_each_present_cpu(j) {
1260			if (cpu_data(i).proc_id ==
1261			    cpu_data(j).proc_id)
1262				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1263		}
1264	}
1265}
1266
1267int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1268{
1269	int ret = smp_boot_one_cpu(cpu, tidle);
1270
1271	if (!ret) {
1272		cpumask_set_cpu(cpu, &smp_commenced_mask);
1273		while (!cpu_online(cpu))
1274			mb();
1275		if (!cpu_online(cpu)) {
1276			ret = -ENODEV;
1277		} else {
1278			/* On SUN4V, writes to %tick and %stick are
1279			 * not allowed.
1280			 */
1281			if (tlb_type != hypervisor)
1282				smp_synchronize_one_tick(cpu);
1283		}
1284	}
1285	return ret;
1286}
1287
1288#ifdef CONFIG_HOTPLUG_CPU
1289void cpu_play_dead(void)
1290{
1291	int cpu = smp_processor_id();
1292	unsigned long pstate;
1293
1294	idle_task_exit();
1295
1296	if (tlb_type == hypervisor) {
1297		struct trap_per_cpu *tb = &trap_block[cpu];
1298
1299		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1300				tb->cpu_mondo_pa, 0);
1301		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1302				tb->dev_mondo_pa, 0);
1303		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1304				tb->resum_mondo_pa, 0);
1305		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1306				tb->nonresum_mondo_pa, 0);
1307	}
1308
1309	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1310	membar_safe("#Sync");
1311
1312	local_irq_disable();
1313
1314	__asm__ __volatile__(
1315		"rdpr	%%pstate, %0\n\t"
1316		"wrpr	%0, %1, %%pstate"
1317		: "=r" (pstate)
1318		: "i" (PSTATE_IE));
1319
1320	while (1)
1321		barrier();
1322}
1323
1324int __cpu_disable(void)
1325{
1326	int cpu = smp_processor_id();
1327	cpuinfo_sparc *c;
1328	int i;
1329
1330	for_each_cpu(i, &cpu_core_map[cpu])
1331		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1332	cpumask_clear(&cpu_core_map[cpu]);
1333
1334	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1335		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1336	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1337
1338	c = &cpu_data(cpu);
1339
1340	c->core_id = 0;
1341	c->proc_id = -1;
1342
1343	smp_wmb();
1344
1345	/* Make sure no interrupts point to this cpu.  */
1346	fixup_irqs();
1347
1348	local_irq_enable();
1349	mdelay(1);
1350	local_irq_disable();
1351
1352	set_cpu_online(cpu, false);
1353
1354	cpu_map_rebuild();
1355
1356	return 0;
1357}
1358
1359void __cpu_die(unsigned int cpu)
1360{
1361	int i;
1362
1363	for (i = 0; i < 100; i++) {
1364		smp_rmb();
1365		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1366			break;
1367		msleep(100);
1368	}
1369	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1370		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1371	} else {
1372#if defined(CONFIG_SUN_LDOMS)
1373		unsigned long hv_err;
1374		int limit = 100;
1375
1376		do {
1377			hv_err = sun4v_cpu_stop(cpu);
1378			if (hv_err == HV_EOK) {
1379				set_cpu_present(cpu, false);
1380				break;
1381			}
1382		} while (--limit > 0);
1383		if (limit <= 0) {
1384			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1385			       hv_err);
1386		}
1387#endif
1388	}
1389}
1390#endif
1391
1392void __init smp_cpus_done(unsigned int max_cpus)
1393{
1394}
1395
1396static void send_cpu_ipi(int cpu)
1397{
1398	xcall_deliver((u64) &xcall_receive_signal,
1399			0, 0, cpumask_of(cpu));
1400}
1401
1402void scheduler_poke(void)
1403{
1404	if (!cpu_poke)
1405		return;
1406
1407	if (!__this_cpu_read(poke))
1408		return;
1409
1410	__this_cpu_write(poke, false);
1411	set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1412}
1413
1414static unsigned long send_cpu_poke(int cpu)
1415{
1416	unsigned long hv_err;
1417
1418	per_cpu(poke, cpu) = true;
1419	hv_err = sun4v_cpu_poke(cpu);
1420	if (hv_err != HV_EOK) {
1421		per_cpu(poke, cpu) = false;
1422		pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1423				    __func__, hv_err);
1424	}
1425
1426	return hv_err;
1427}
1428
1429void arch_smp_send_reschedule(int cpu)
1430{
1431	if (cpu == smp_processor_id()) {
1432		WARN_ON_ONCE(preemptible());
1433		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1434		return;
1435	}
1436
1437	/* Use cpu poke to resume idle cpu if supported. */
1438	if (cpu_poke && idle_cpu(cpu)) {
1439		unsigned long ret;
1440
1441		ret = send_cpu_poke(cpu);
1442		if (ret == HV_EOK)
1443			return;
1444	}
1445
1446	/* Use IPI in following cases:
1447	 * - cpu poke not supported
1448	 * - cpu not idle
1449	 * - send_cpu_poke() returns with error
1450	 */
1451	send_cpu_ipi(cpu);
1452}
1453
1454void smp_init_cpu_poke(void)
1455{
1456	unsigned long major;
1457	unsigned long minor;
1458	int ret;
1459
1460	if (tlb_type != hypervisor)
1461		return;
1462
1463	ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1464	if (ret) {
1465		pr_debug("HV_GRP_CORE is not registered\n");
1466		return;
1467	}
1468
1469	if (major == 1 && minor >= 6) {
1470		/* CPU POKE is registered. */
1471		cpu_poke = true;
1472		return;
1473	}
1474
1475	pr_debug("CPU_POKE not supported\n");
1476}
1477
1478void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1479{
1480	clear_softint(1 << irq);
1481	scheduler_ipi();
1482}
1483
1484static void stop_this_cpu(void *dummy)
1485{
1486	set_cpu_online(smp_processor_id(), false);
1487	prom_stopself();
1488}
1489
1490void smp_send_stop(void)
1491{
1492	int cpu;
1493
1494	if (tlb_type == hypervisor) {
1495		int this_cpu = smp_processor_id();
1496#ifdef CONFIG_SERIAL_SUNHV
1497		sunhv_migrate_hvcons_irq(this_cpu);
1498#endif
1499		for_each_online_cpu(cpu) {
1500			if (cpu == this_cpu)
1501				continue;
1502
1503			set_cpu_online(cpu, false);
1504#ifdef CONFIG_SUN_LDOMS
1505			if (ldom_domaining_enabled) {
1506				unsigned long hv_err;
1507				hv_err = sun4v_cpu_stop(cpu);
1508				if (hv_err)
1509					printk(KERN_ERR "sun4v_cpu_stop() "
1510					       "failed err=%lu\n", hv_err);
1511			} else
1512#endif
1513				prom_stopcpu_cpuid(cpu);
1514		}
1515	} else
1516		smp_call_function(stop_this_cpu, NULL, 0);
1517}
1518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1520{
1521	if (cpu_to_node(from) == cpu_to_node(to))
1522		return LOCAL_DISTANCE;
1523	else
1524		return REMOTE_DISTANCE;
1525}
1526
1527static int __init pcpu_cpu_to_node(int cpu)
1528{
1529	return cpu_to_node(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530}
1531
1532void __init setup_per_cpu_areas(void)
1533{
1534	unsigned long delta;
1535	unsigned int cpu;
1536	int rc = -EINVAL;
1537
1538	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1539		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1540					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1541					    pcpu_cpu_distance,
1542					    pcpu_cpu_to_node);
 
1543		if (rc)
1544			pr_warn("PERCPU: %s allocator failed (%d), "
1545				"falling back to page size\n",
1546				pcpu_fc_names[pcpu_chosen_fc], rc);
1547	}
1548	if (rc < 0)
1549		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1550					   pcpu_cpu_to_node);
 
 
1551	if (rc < 0)
1552		panic("cannot initialize percpu area (err=%d)", rc);
1553
1554	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1555	for_each_possible_cpu(cpu)
1556		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1557
1558	/* Setup %g5 for the boot cpu.  */
1559	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1560
1561	of_fill_in_cpu_data();
1562	if (tlb_type == hypervisor)
1563		mdesc_fill_in_cpu_data(cpu_all_mask);
1564}